November 6, 2019

Mr. Keo Chen ACT Enviro, Inc. PO Box 430 Troutdale, OR 97060

SUBJECT: Intent to Dispose of Former Water Supply Well Decommissioning Wastes Generated by NW Natural, Gasco Property, 7900 NW St. Helens Road, Portland, Oregon

HAI Project No.: 2708

Dear Mr. Chen:

At the request of NW Natural, Hahn and Associates, Inc. (HAI) is coordinating the disposal of certain wastes generated during the decommissioning of water supply well "MULT 802", located at the NW Natural Gasco property. Decommissioning activities were performed between May and August 2019, with HAI overseeing and documenting the activities. HAI collected multiple characterization samples of the waste that are deemed to be representative of the materials to be disposed. This profile package, inclusive of analytical testing results, is to be used to facilitate the disposal of the wastes that were generated during the well decommissioning activities.

Wastes removed from the well during decommissioning consisted of tar and pitch material which are black with a minor granular component and are solid to highly viscous at ambient temperatures. These wastes, along with minor soils, plastic, and other debris are contained in 23 55-gallon steel drums.

Characterization samples representative of the tar and pitch wastes were collected over the course of the decommissioning work. A description of samples deemed representative of the waste is presented below.

- <u>2708-190513-COMP1:</u> chemical concentrations detected are deemed representative of the hard, black, solid, tar and pitch, component of the waste.
- <u>2708-190520-006 and 2708-190521-007</u>: chemical concentrations detected are deemed representative of the viscous putty-like tar, component of the waste.
- <u>2708-190522-011:</u> chemical concentrations detected are deemed representative of the softer granular solid tar, component of waste.

Characterization samples were provided under chain-of-custody to Apex Laboratories, LLC of Tigard, Oregon. The following analytical parameters were tested in one or more of the identified characterization samples.

- Total cyanide by American Standard of Testing and Materials (ASTM) Method D7511-12;
- Total metals by Environmental Protection Agency (EPA) Method 6020A;

- Total petroleum hydrocarbons (TPH): diesel- and oil-range by Northwest Method (NW) TPH-Dx and gasoline-range by NWTPH-Gx;
- Volatile organic compounds (VOCs) by EPA 8260C;
- Toxicity Characteristic Leaching Procedure (TCLP) VOCs by EPA Method SW1311;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270D.
- Total cyanide by American Standard of Testing and Materials (ASTM) Method D7511-12;
- Total metals by Environmental Protection Agency (EPA) Method 6020A;
- Viscosity, Density, and Specific Gravity by ASTM Methods D4052 and D7042 (Triton Analytics Corp).

Analytical testing results are tabulated on Tables 1 through 5 which are included as Attachment 2. Full laboratory documentation related to these analyses are included as Attachment 3.

These decommissioning wastes were not generated within an area where impacts potentially attributable to a Resource Conservation and Recovery Act (RCRA) listed waste are anticipated, and as such the data are not subject to evaluation with regard to a potential listed RCRA hazardous waste.

Benzene was detected in representative samples of the waste material at concentrations ranging from 55.4 milligrams per kilogram (mg/kg) to 164 mg/kg. Toxicity Characteristic Leaching Procedure (TCLP) testing detected leachable levels of benzene in two samples at concentrations of 0.72 milligrams per liter (mg/L) and 3.15 mg/L, which exceed the RCRA TC value of 0.5 mg/L. Therefore, the generated waste will maintain a D018 waste code (benzene) and will be managed and disposed of as a hazardous waste.

Based on the waste characterization testing results and as described in the attached waste profile CH1929826, it is requested that Clean Harbors, Inc. approve of the incineration of these wastes as D018 hazardous waste at the RCRA Subtitle C permitted Clean Harbors, Inc. Aragonite Incineration Facility located in Dugway, Utah.

Completed Clean Harbors Inc. Hazardous Waste Profile forms (Attachment 1), data summary tables (Attachment 2), and the Apex Laboratories Analytical reports (Attachment 3), are enclosed for your information.

Please contact the undersigned or Rob Ede of HAI with any questions.

Sincerely,

Ben Uhl, R.G.

Sr. Field Manager

Ban Ulle

benu@hahnenv.com

Attachments (3):

Attachment 1 - Hazardous Waste Profile Sheets

Attachment 2 - Data Summary Tables

Attachment 3 - Apex Laboratories Analytical Reports

cc: Bob Wyatt, NW Natural (electronic only)

Patty Dost, Pearl Legal Group PC (electronic only)

Rachel Melissa, Pearl Legal Group PC (electronic only)

Sarah Riddle, Pearl Legal Group PC (electronic only)

Ryan Barth, Anchor QEA, LLC (electronic only)

Tim Stone, Anchor QEA, LLC (electronic only)

Jen Mott, Anchor QEA, LLC (electronic only)

Chip Byrd, Sevenson Environmental Services, Inc. (electronic only)

Rob Ede, Hahn and Associates, Inc. (electronic only)

Dana Bayuk, Oregon DEQ (electronic only)

ATTACHMENT 1 Hazardous Waste Profile Sheets

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1929826

A. GENERAL INFORMATION

GENERATOR EPA ID #/REGISTRATION #

GENERATOR CODE (Assigned by Clean Harbors)

OR0000204701

GENERATOR NAME:

NW Natural

NW9414 Portland

CITY

STATE/PROVINCE

PHONE: (503) 286-1785

ZIP/POSTAL CODE

97210

ADDRESS 7900 NW St Helens Rd

CUSTOMER CODE (Assigned by Clean Harbors) ADDRESS 13600 Southeast Ambler Road AD26983

CUSTOMER NAME:

Clackamas

Advanced Chemical Transport STATE/PROVINCE

OR ZIP/POSTAL CODE

97015

B. WASTE DESCRIPTION

WASTE DESCRIPTION: Tar and pitch

PROCESS GENERATING WASTE: waste materials from the decommissioning of former water supply well MULT 802

IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ?

C. PHYSICAL PROPERTI		ING CONTAINED WITHIN A LARGER	SHIPPING CONTAINER? No		
PHYSICAL STATE SOLID WITHOUT FR POWDER MONOLITHIC SOLID LIQUID WITH NO SO LIQUID/SOLID MIXTU	DLIDS	% BY VOLUME (Approx.)	0.00 DLE 0.00 TTOM 0.00	VISCOSITY (If liquid present) 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molasses)	COLOR <u>black/dark</u> grey
% FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDED SOLID SLUDGE GAS/AEROSOL		ODOR NONE MILD STRONG Describe: Tar odor	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)		TOTAL ORGANIC CARBON <= 1% 1-9% >= 10%
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) > 1.2 (e.g. Methylene Chloride)		BTU/LB (MJ/kg) < 2,000 (<4. 2,000-5,000 5,000-10,00 ✓ > 10,000 (>2 Actual:	(4.6-11.6) 0 (11.6-23.2)

D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, CHEMICAL MIN MAX UOM 1-METHYLNAPHTHALENE PPM 1720.0000000 --4900.00000 00 13300.0000 2-METHYLNAPHTHALENE 1720.000000 --PPM 000 **ACENAPTHENE** 880.0000000 --22600.0000 **PPM** 000 **ANTHRACENE** 2050.0000000 --11700.0000 PPM

000 **BENZENE** 0.5000000 3.1500000 PPM BENZO(A)ANTHRACENE 4390.0000000 --7230.00000 PPM 00 **BENZO(A)PYRENE** 4700.0000000 --9030.00000 PPM 00 **BENZO(B)FLUORANTHENE** 5100.0000000 --10100.0000 PPM 000 BENZO(G,H,I)PERYLENE 3150.0000000 --6990.00000 00

BENZO(K)FLUORANTHENE 2120.0000000 --3740.00000 PPM 00 DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING >1/4" THICK OR YES

>12" LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFORCING BAR OR PIECES OF CONCRETE >3")?

If yes, describe, including dimensions:

DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM?

✓ NO YES

DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER POTENTIALLY INFECTIOUS MATERIAL?

YES

I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies:

The waste was never exposed to potentially infectious material.

YES YES

NO NO

Chemical disinfection or some other form of sterilization has been applied to the waste.

Page 1 of 5

I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS.

YES

NO NO

I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED.

YES

SPECIFY THE SOURCE CODE ASSOCIATED WITH THE G39 SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE. W409

WASTE

E. CONSTITUENTS

Are these values based on testing or knowledge?		Knowledge	V	Testing
---	--	-----------	---	---------

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLICABLE	
D004	ARSENIC	5.0		1.6600000	PPM		
D005	BARIUM	100.0		20.5000000	PPM		
D006	CADMIUM	1.0		0.3490000	PPM		
D007	CHROMIUM	5.0		2.8300000	PPM		· •
D008	LEAD	5.0		26.8000000	PPM		
D009	MERCURY	0.2		ND > 0.38	PPM		
D010	SELENIUM	1.0		ND > 4.76	PPM		
D011	SILVER	5.0		ND > 4.76 ND > 0.95	PPM		- -
	VOLATILE COMPOUNDS					MAY LION	
D018	BENZENE	0.5	3.1500	OTHER CONSTITUE	NIS	MAX UON	NOT APPLICABLE
D019	CARBON TETRACHLORIDE	0.5	3.7000	BROMINE			~
D013	CHLOROBENZENE	100.0		CHLORINE			····
D021	CHLOROFORM	6.0		FLUORINE			·····
				IODINE			·····
D028	1,2-DICHLOROETHANE	0.5		SULFUR			····· 🛱 ·····
D029	1,1-DICHLOROETHYLENE	0.7		POTASSIUM			····-
D035	METHYL ETHYL KETONE	200.0		SODIUM			····-
D039	TETRACHLOROETHYLENE	0.7					
D040	TRICHLOROETHYLENE	0.5 		AMMONIA			····-
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE			
	SEMI-VOLATILE COMPOUNDS			CYANIDE REACTIVE			<u> </u>
D023	o-CRESOL	200.0		CYANIDE TOTAL		14.5000 PPN	
D024	m-CRESOL	200.0		SULFIDE REACTIVE			<u> </u>
D025	p-CRESOL	200.0		HOCs		PCBs	
D026	CRESOL (TOTAL)	200.0		NONE		NONE	
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM		< 50 PPM	
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=50 PPM	
D032	HEXACHLOROBENZENE	0.13		>= 1000 1 1 W			
D033	HEXACHLOROBUTADIENE	0.5				IF PCBS ARE PRE WASTE REGULAT	
D034	HEXACHLOROETHANE	3.0				CFR 761?	
D036	NITROBENZENE	2.0				YES	V NO
D037	PENTACHLOROPHENOL	100.0					_
D038	PYRIDINE	5.0					
D041	2,4,5-TRICHLOROPHENOL	400.0					
D042	2,4,6-TRICHLOROPHENOL	2.0					
	PESTICIDES AND HERBICIDES						
D012	ENDRIN	0.02					
D013	LINDANE	0.4					
D014	METHOXYCHLOR	10.0					
D014 D015	TOXAPHENE	0.5					
D016	2,4-D	10.0					
D010 D017	2,4,5-TP (SILVEX)	1.0					
D017 D020	CHLORDANE						
		0.03					
D031	HEPTACHLOR (AND ITS EPOXIDE)	0.008					

NO (If yes, explain)

CHOOSE ALL THAT APPLY

EXPLOSIVE DEA REGULATED SUBSTANCES ✓ OSHA REGULATED CARCINOGENS **FUMING** POLYMERIZABLE **RADIOACTIVE** REACTIVE MATERIAL NONE OF THE ABOVE

F. R	EGULA1	ORY:	STATU	JS		
✓	YES		NO	USEPA HAZARDOUS W	ASTE?	
				D018		
	YES	✓	NO	DO ANY STATE WASTE	CODES APPLY?	
				Texas Waste Code		
	YES	✓	NO	DO ANY CANADIAN PRO	OVINCIAL WASTE CODES APPLY?	
✓	YES		NO		BITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT F	PER 40 CFR PART 268?
				LDR CATEGORY: VARIANCE INFO:	This is subject to LDR.	
	YES	~	NO	IS THIS A UNIVERSAL W	VASTE?	
	YES	~	NO		THE WASTE CLASSIFIED AS A VERY SMALL QUANTITY GENERA	ATOR (VSQG) OR A STATE EQUIVALENT
	YES	•	NO		NG TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUC	CT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
	YES	~	NO	DOES TREATMENT OF	THIS WASTE GENERATE A F006 OR F019 SLUDGE?	
	YES	•	NO	IS THIS WASTE STREAM	M SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHI	BITION FOUND AT 40 CFR 268.3(C)?
~	YES		NO	DOES THIS WASTE COM	NTAIN VOC'S IN CONCENTRATIONS >=500 PPM?	
	YES	•	NO	DOES THE WASTE CON	ITAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A	A VAPOR PRESSURE >= .3KPA (.044 PSIA)?
	YES	~	NO	DOES THIS WASTE COM	NTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM H	AS A VAPOR PRESSURE > 76.6 KPA (11.1 PSIA)?
	YES	~	NO	IS THIS CERCLA REGUL	LATED (SUPERFUND) WASTE ?	
	YES	•	NO	IS THE WASTE SUBJEC	T TO ONE OF THE FOLLOWING NESHAP RULES?	
				Hazardous Organic	NESHAP (HON) rule (subpart G) Pharmaceuticals pro	duction (subpart GGG)
✓	YES		NO	IF THIS IS A US EPA HA	ZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZE	ENE?
		YES YES	V	NESHAP rules b	stream come from a facility with one of the SIC codes listed under berbecause the original source of the waste is from a chemical manufactu	ring, coke by-product recovery, or petroleum refinery process?
				NO Is the generating TAB quantity for your facil	g source of this waste stream a facility with Total Annual Benzene (TAI lity? Megagram/year (1 Mg = 2,200 lbs)	b) > 10 Mg/year ?
				, , ,	nowledge of the Waste Or Test Data	Knowledge Testing
				ne knowledge :	iomodgo et the Waste of Tool Bata	Rilowiedge resuing
	G. DOT/					
				PPING NAME:		
ЪО					SOLID, N.O.S., (BENZENE), 9, PG III (D018)	
				REQUIREMENTS	33.23, 1113.31, (32.112.112), 3, 1 3 (23.13)	
	_			FREQUENCY ONE	TIME WEEKLY MONTHLY QUARTERLY YEARLY OTI	HER
		V	_	NTAINERIZED	BULK LIQUID	BULK SOLID
				RS/SHIPMENT	GALLONS/SHIPMENT: 0 Min -0 Max GAL	SHIPMENT UOM: TON YARD
	RAGE (NTAINEF			30		TONS/YARDS/SHIPMENT: 0 Min - 0 Max
	POR	TABLE 1	OTE TA	NK BOX CARTON CA	ASE	
		SIC YARD	BOX	✓ DRUM		
	ОТН	IER:		DRUM SIZE: 55		
1. 5	SPECIAL	REQ	UEST			
	COMMEN	NTS OR	REQU	ESTS:		
GEI	NERATOR	R'S CEF	RTIFICA	ATION		
I ce	rtify that I	am autl nitted a	norized re repre	to execute this document as an	n authorized agent. I hereby certify that all information submitted in this and attach Clean Harbors discovers a discrepancy during the approval process, Generator g	
	ΑU	THORI	ZED S	SIGNATURE	NAME (PRINT) TITLE Robert J. Wyatt Director, Legacy Envir	DATE Tonmental Program 11/06/2019
_						

Addendum

D. COMPOSITION	
CHEMICAL	MIN MAX UOM
CARBAZOLE	2280.00 5590.0 PPM 00000 000000
CHRYSENE	4520.00 7850.0 PPM 00000 000000
DIBENZO(A,H)ANTHRACENE	904.000 973.00 PPM 0000 00000
DIBENZOFURAN	5590.00 12500. PPM 00000 000000 0
ETHYLBENZENE	12.4000 104.00 PPM 000 00000
FLUORANTHENE	18700.0 27500. PPM 000000 000000 0
FLUORENE	5240.00 11600. PPM 00000 000000 0
INDENO(1,2,3-C,D)PYRENE	3540.00 6560.0 PPM 00000 000000
LEAD	13.1000 26.800 PPM 000 0000
NAPTHALENE	475.000 10500. PPM 0000 000000 0
PHENANTHRENE	8820.00 42000. PPM 00000 000000 0
PLASTIC	1.00000 10.000 % 00 0000
PYRENE	18100.0 23400. PPM 000000 000000 0
TAR AND PITCH	75.0000 90.000 % 000 0000
WOOD	1.00000 5.0000 % 00 000
XYLENE	8.00000 156.00 PPM 00 00000

G. DOT/TDG INFORMATION

ATTACHMENT 2 Data Summary Tables

Table 1 - Summary of Analytical Results for Tar Material Samples: TPH and VOCs

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

	Waste Type ==>	Tar / Pitch	Tar - V	/iscous	Tar - Solid
	Sample Number ==>	2708-190513-COMP1	2708-190520-006	2708-190521-007	2708-190522-011
	Sample Date ==>	13-May-19	20-May-19	21-May-19	22-May-19
	Sample Depth (feet bgs) ==>	47, 96, and 136	318	352	363
	Location ==>	12-inch Casing	8-inch Casing	8-inch Casing	Borehole
	F	12-inch dasing	0-inon odding	0-inon odding	Borenoic
	EPA Toxicity Screening Level (20 Times Toxicity Threshold Value) in mg/kg		Analytical Resul	ts in mg/kg (ppm)	
Total Petroleum Hydrocarbons by NW Method	П	l		T	
Gasoline-Range TPH		2,400.		39,200.	21,800. J
Diesel-Range TPH	-	91,500.		305,000.	162,000.
Oil-Range TPH	-	176,000.	-	132,000.	133,000.
Volatile Organic Compounds (VOCs) by EPA Method 8260C					
1,1-Dichloroethane	-	7.39 U	79.9 U	141. U	17.5 UJ
1,1-Dichloroethene	14.	7.39 U	79.9 U	141. U	17.5 UJ
1,1-Dichloropropene	-	14.8 U	160. U	282. U	35. UJ
1,1,1-Trichloroethane	<u> </u>	7.39 U	79.9 U	141. U	17.5 UJ
1,1,1,2-Tetrachloroethane		29.6 U	319. U	565. U	17.5 UJ
1,1,2-Trichloroethane		7.39 U	79.9 U	141. U	17.5 UJ
1,1,2,2-Tetrachloroethane	ļ	14.8 U	160. U	282. U	35. UJ
1,2-Dibromo-3-chloropropane	-	73.9 U	799. U	1,410. U	175. UJ
1,2-Dichlorobenzene	-	7.39 U	79.9 U	141. U	17.5 UJ
1,2-Dichloroethane	10.	7.39 U	79.9 U	141. U	17.5 UJ
1,2-Dichloroethene, cis-		7.39 U	79.9 U	141. U	17.5 UJ
1,2-Dichloroethene, trans-		7.39 U	79.9 U	141. U	17.5 UJ
1,2-Dichloropropane		7.39 U 73.9 U	79.9 U 799. U	141. U 1,410. U	17.5 UJ
1,2,3-Trichlorobenzene		73.9 U 14.8 U	799. U 160. U	1,410. U 282. U	175. UJ 35. UJ
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene		73.9 U	799. U	1,410. U	175. UJ
1,2,4-Trimethylbenzene		14.8 U	160. U	282. U	58. J
1,3-Dichlorobenzene	-	7.39 U	79.9 U	141. U	17.5 UJ
1,3-Dichloropropane	-	14.8 U	160. U	282. U	35. UJ
1,3-Dichloropropene, cis-	-	14.8 U	160. U	282. U	35. UJ
1,3-Dichloropropene, trans-	-	14.8 U	160. U	282. U	35. UJ
1,3,5-Trimethylbenzene (Mesitylene)	-	14.8 U	160. U	282. U	35. UJ
1,4-Dichlorobenzene	150.	7.39 U	79.9 U	141. U	17.5 UJ
2-Chlorotoluene	-	14.8 U	160. U	282. U	35. UJ
2-Hexanone (Methyl butyl ketone)	-	148. U	1,600. U	2,820. U	350. UJ
2,2-Dichloropropane		14.8 U	160. U	282. U	35. UJ
4-Chlorotoluene	-	14.8 U	160. U	282. U	35. UJ
4-Methyl-2-pentanone (Methyl isobutyl ketone)		148. U	1,600. U	2,820. U	350. UJ
Acetone	ļ	296. U	3,190. U	5,650. U	699. UJ
Acrylonitrile		29.6 U	319. U	565. U	69.9 UJ
Benzene	10.	55.4	114.	164.	114. J
Bromoblenzene Romockloromethane	· · · · · · · · · · · · · · · · · · ·	7.39 U 14.8 U	79.9 U 160. U	141. U 282. U	17.5 UJ 35. UJ
Bromochloromethane Bromodichloromethane	<u> </u>	14.8 U 29.6 U	160. U 319. U	282. U	35. UJ 35. UJ
Bromoform (Tribromomethane)		59.1 U	639. U	1,130. U	69.9 UJ
Bromomethane (Methyl bromide)	<u>-</u>	148. U	1,600. U	2,820. U	350. UJ
Carbon disulfide	-	148. U	1,600. U	2,820. U	350. UJ
Carbon tetrachloride (Tetrachloromethane)	10.	29.6 U	319. U	565. U	35. UJ
Chlorobenzene	2,000.	7.39 U	79.9 U	141. U	17.5 UJ
Chloroethane	-	148. U	1,600. U	2,820. U	350. UJ
Chloroform	120.	14.8 U	160. U	282. U	35. UJ
Chloromethane	-	73.9 U	799. U	1,410. U	175. UJ
Cymene, p- (4-lsopropyltoluene)	-	14.8 U	160. U	282. U	35. UJ
Dibromochloromethane	-	29.6 U	319. U	565. U	69.9 UJ
Dibromomethane	ļ	14.8 U	160. U	282. U	35. UJ
Dichlorodifluoromethane	<u> </u>	29.6 U	319. U	565. U	69.9 UJ
Dichloromethane (Methylene chloride)	ļ	73.9 UJ	799. UJ	1,410. UJ	175. UJ
Ethylbenzene	<u> </u>	12.4	95.5	141 . U	104. J
Ethylene dibromide (1,2-Dibromoethane)	l	14.8 U	160. U	282. U	35. UJ

Table 1 - Summary of Analytical Results for Tar Material Samples: TPH and VOCs

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

	ı								
	Waste Type ==>	Tar / Pito	:h		Tar - V	iscous		Tar - Sol	id
	Sample Number ==>	2708-190513-	COMP1	2708-19052	0-006	2708-19052	-007	2708-19052	2-011
	Sample Date ==>	13-May-1	9	20-May-1	9	21-May-1	9	22-May-	19
	Sample Depth (feet bgs) ==>	47, 96, and	136	318		352		363	
	Location ==>	12-inch Ca	sing	8-inch Cas	ing	8-inch Cas	ing	Borehol	е
	EPA Toxicity Screening Level (20 Times Toxicity Threshold Value) in mg/kg			Analytic	cal Result	s in mg/kg (ppm)			
Volatile Organic Compounds (VOCs) by EPA Method 8260C									
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	10.	29.6	U	319.	U	565.	U	69.9	UJ
Isopropylbenzene (Cumene)	-	14.8	U	160.	U	282.	U	35.	UJ
m,p-Xylene	-	17.1		160.	U	282.	U	156.	J
Methyl ethyl ketone (2-Butanone)	-	148.	U	1,600.	U	2,820.	U	350.	UJ
Methyl tert-butyl ether (MTBE)	-	14.8	U	160.	U	282.	U	35.	UJ
n-Butylbenzene	-	14.8	U	160.	U	282.	U	35.	UJ
n-Propylbenzene	-	7.39	U	79.9	U	141.	U	17.5	UJ
Naphthalene	-	475.		10,300.		10,500.		9,020.	
o-Xylene	-	8.02		79.9	U	141.	U	50.3	J
sec-Butylbenzene	-	14.8	U	160.	U	282.	U	35.	UJ
Styrene	-	14.8	U	160.	U	282.	U	39.5	J
tert-Butylbenzene	-	14.8	U	160.	U	282.	U	35.	UJ
Tetrachloroethene (PCE)	14.	7.39	U	79.9	U	141.	U	17.5	UJ
Toluene	-	29.3		160.	U	282.	U	145.	J
Trichloroethene (TCE)	10.	7.39	U	79.9	U	141.	U	17.5	UJ
Trichlorofluoromethane (Fluorotrichloromethane)	<u>-</u>	29.6	U	319.	U	565.	U	69.9	UJ
Vinyl chloride	4.	7.39	U	79.9	U	141.	U	17.5	UJ

Notes:

bgs = below ground surface
bold = detected concentration

Bold and Yellow = Detected concentration exceeds EPA Toxicity Screening Level

EPA = Environmental Protection Agency

J = estimated concentration

mg/kg = milligrams per kilogram

ppm = parts per million TPH = total petroleum hydrocarbons U = not detected

VOCs = volatile organic compounds

"-" = not tested

Table 2 - Summary of Analytical Results for Tar Material Samples: TCLP VOCs

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

Waste Type ==>	Tar / Pitch	Tar - V	Tar - Solid	
Sample Number ==>	Sample Number ==> 2708-190513-COMP1 2708		2708-190521-007	2708-190522-011
Sample Date ==>	13-May-19	20-May-19 21-May-19		22-May-19
Sample Depth (feet bgs) ==>	47, 96, and 136	318	352	363
Location ==>	12-inch Casing	8-inch Casing	8-inch Casing	Borehole

Part Training terror Part P		Location ==>	12-inch Casin	ig	8-inch Casing	8-inch Casing	Borehole	
1.5-Bittingstellung			Analytical Result			ults in mg/L (ppm)		
1.1Defendementer 0.7	TCLP Volatile Organic Compounds (VOCs) by EPA M	lethod SW1311/8260C						
1.1-Celebropropered	1,1-Dichloroethane	-	0.03	U		0.03 U	-	
1.1.1 1.2.	1,1-Dichloroethene	0.7	0.03	U	<u>-</u>	0.03 U	-	
1.1.1.2-Trichtscherechane	1,1-Dichloropropene	-	0.05	U	-	0.05 U	-	
1,1,2,7 instructioned 0,03	1,1,1-Trichloroethane	-	0.03	U		0.03 U		
1.1.2.2.Timerachementum	1,1,1,2-Tetrachloroethane		0.03	U		0.03 U		
1.2-Biories-3-thiopipopage 0.28	1,1,2-Trichloroethane	-	0.03	U		0.03 U	-	
1.250meno-3-chrispropropase	1,1,2,2-Tetrachloroethane		0.03	U		0.03 U		
1.4.3-Brichoventhere, circ 0.55	1,2-Dibromo-3-chloropropane	-	0.25	U	-	0.25 U		
1.2-Delchorenthere, op. 0.05	1,2-Dichlorobenzene	-	0.03	U	-	0.03 U		
1.2-Definitionentheme, trans- 0.03 U 0.05 U	1,2-Dichloroethane	0.5	0.03	U	<u>-</u>	0.03 U	-	
1.2 DeChloroprogramme	1,2-Dichloroethene, cis-	-	0.05	U	-	0.05 U		
1.2.3-Tischlorophane 1.3-Dischlorophane 1.3-Disch	1,2-Dichloroethene, trans-	-	0.03	U	-	0.03 U	-	
1.2.3 Techhoropeane	1,2-Dichloropropane	-	0.03	U	-	0.03 U	-	
1.2.4-Trinshipthenzene	1,2,3-Trichlorobenzene	-	0.05	U	-	0.05 U	-	
1.2.4-Trinshipthenzene			0.05			0.05 U		
1.2.4-Immethybenzene		-			-	· · · · · · · · · · · · · · · · · · ·	-	
1.3-Dehthospergene	1,2,4-Trimethylbenzene					. I		
1.3-Dichinopropages	1,3-Dichlorobenzene	-	0.03		-	0.03 U	-	
1.3-Dichloropropose, irans	1,3-Dichloropropane	-	0.05		-	0.05 U	-	
1.3-Dichloropropene, trans-		-			-	•	-	
1.3.5-Timesthybenzene (Mestykene)	1,3-Dichloropropene, trans-	-	0.05		-		-	
1.4-Dichorobenzene 7.5 0.03 U - 0.03 U - 2-Chierotobene 7.5 0.05 U - 0.05 U - 0.05 U - 2-Chierotobene 7.5 0.05 U - 0.05 U - 0.05 U - 0.05 U - 2-Chierotobene 7.5 0.05 U - 0.05 U - 0.05 U - 0.05 U - 2-Chierotobene 7.5 0.05 U - 0.0		-	0.05		-	:	-	
2-Chlorotoluene		7.5			-		-	
2.+Lexanone (Methyl butyl ketone)		-			-		-	
2.2-Dichloropropane		-			-	:	-	
### Chlorotoluene		-			-	: II	-	
4-Methyl-2-gentanone (Methyl isobutyl ketone) - 0.5 U - 0.5 U - Acetone 1 U - 1.1 U - - 0.0 -	4-Chlorotoluene	-			-	T T	-	
Acetone		-			-	:	-	
Senzene		-			-	1	-	
Bromoblerzene		0.5			-		-	
Bromochloromethane	Bromobenzene	-	0.03	U	-	0.03 U	-	
Bromodichloromethane	Bromochloromethane	-	0.05		-		-	
Bromomethane (Methyl bromide)	Bromodichloromethane	-	0.05		-	0.05 U	-	
Carbon tetrachloride (Tetrachloromethane) 0.5 0.05 U - 0.05 U - Chlorobenzene 100 0.03 U - 0.03 U - Chloroform 6 0.05 U - 0.05 U - Chloromethane - 0.25 U - 0.05 U - Chloromethane - 0.25 U - 0.25 UJ - Chloromethane - 0.05 U - 0.05 U - Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Dibromochloromethane - 0.05 U - 0.05 U - Dichloromethane - 0.05 U - 0.05 U - Ethylene dibromide (Methylene chloride) -	Bromoform (Tribromomethane)	-	0.05	U	-	0.05 U	-	
Carbon tetrachloride (Tetrachloromethane) 0.5 0.05 U - 0.05 U - Chlorobenzene 100 0.03 U - 0.03 U - Chloroform 6 0.05 U - 0.05 U - Chloromethane - 0.25 U - 0.05 U - Chloromethane - 0.25 U - 0.25 UJ - Chloromethane - 0.05 U - 0.05 U - Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Dibromochloromethane - 0.05 U - 0.05 U - Dichloromethane - 0.05 U - 0.05 U - Ethylene dibromide (Methylene chloride) -	Bromomethane (Methyl bromide)	-	0.25	U	-	0.25 U	-	
Chloroethane - 0.25 U - 0.25 U - Chloroform 6 0.05 U - 0.05 U - Chloromethane - 0.25 U - 0.25 UU - Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Dibromochloromethane - 0.05 U - 0.05 U - Dibromomethane - 0.05 U - 0.05 U - Dichloromethane - 0.05 U - 0.25 U - Ethylene dibromide (Methylene chloride) - 0.13 - <td>Carbon tetrachloride (Tetrachloromethane)</td> <td>0.5</td> <td>0.05</td> <td></td> <td>-</td> <td>0.05 U</td> <td>-</td>	Carbon tetrachloride (Tetrachloromethane)	0.5	0.05		-	0.05 U	-	
Chloroethane - 0.25 U - 0.25 U - Chloroform 6 0.05 U - 0.05 U - Chloromethane - 0.25 U - 0.25 UU - Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Dibromochloromethane - 0.05 U - 0.05 U - Dibromomethane - 0.05 U - 0.05 U - Dichloromethane - 0.05 U - 0.25 U - Ethylene dibromide (Methylene chloride) - 0.13 - <td>Chlorobenzene</td> <td>100</td> <td>0.03</td> <td>U</td> <td>-</td> <td>0.03 U</td> <td>-</td>	Chlorobenzene	100	0.03	U	-	0.03 U	-	
Chloroform 6 0.05 U - 0.05 U - 0.05 U - 0.05 U - 0.25 UU - 0.05 U - 0.03 U - 0.03 U - 0.03 U -	Chloroethane	-	0.25		-	0.25 U	-	
Chloromethane - 0.25 U - 0.25 UU - Cymene, p. (4-Isopropyltoluene) - 0.05 U - 0.05 U - Dibromochloromethane - 0.05 U - 0.05 U - Dibromomethane - 0.05 U - 0.05 U - Dichloromethane - 0.05 U - 0.05 U - Dichloromethane (Methylene chloride) - 0.3 U - 0.05 U - Ethylbenzene - 0.13 - 0.25 U - Ethylene dibromide (1,2-Dibromoethane) - 0.03 U - 0.03 U - Hexachlorobutadiene (Hexachloro-1,3-butadiene) 0.5 0.25 U - 0.05 U - Isopropylbenzene (Cumene) - 0.05 U - 0.05 U - Methyl ethyl ketone (2-Butanon		6			-	:	-	
Cymene, p- (4-Isopropyltoluene) - 0.05 U - 0.05 U - Dibromochloromethane - 0.05 U - 0.05 U - Dibromomethane - 0.05 U - 0.05 U - Dichloromethane - 0.05 U - 0.05 U - Dichloromethane (Methylene chloride) - 0.3 U - 0.05 U - Ethylenzene - 0.13 - 0.38 - - Ethylene dibromide (1,2-Dibromoethane) - 0.03 U - 0.03 U - Hexachlorobutadiene (Hexachloro-1,3-butadiene) 0.5 0.25 U - 0.05 U - Isopropylbenzene (Cumene) - 0.05 U - 0.05 U - mp-Xylene - 0.11 - 0.52 - - Methyl ethyl ketone (2-Butanone) 200 </td <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>•</td> <td>-</td>		-			-	•	-	
Dibromochloromethane		-			-		-	
Dibromomethane - 0.05 U - 0.05 U - Dichlorodifluoromethane - 0.05 U - 0.05 U - Dichloromethane (Methylene chloride) - 0.3 U - 0.25 U - Ethylene dibromida (1,2-Dibromoethane) - 0.03 U - 0.03 U - Hexachlorobutadiene (Hexachloro-1,3-butadiene) 0.5 0.25 U - 0.05 U - Isopropylbenzene (Cumene) - 0.05 U - 0.05 U - m.pXylene - 0.11 - 0.52 - - 0.5 U - 0.5 U - 0.5 U - 0.5 U - 0.52 - - - 0.05 U - 0.52 U - 0.52 - - 0.52 - - 0.52 - - 0.5 <td< td=""><td>67</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td></td<>	67	-			-		-	
Dichlorodifluoromethane		-			-		-	
Dichloromethane (Methylene chloride)		-			-	,	-	
Ethylene dibromide (1,2-Dibromoethane) - 0.13 - 0.38 - Ethylene dibromide (1,2-Dibromoethane) - 0.03 U - 0.03 U - Hexachlorobutadiene (Hexachloro-1,3-butadiene) 0.5 0.25 U - 0.25 U - Isopropylbenzene (Cumene) - 0.05 U - 0.05 U - m.pXylene - 0.11 - 0.52 - - Methyl ethyl ketone (2-Butanone) 200 0.5 U - 0.5 U - Methyl tert-butyl ether (MTBE) - 0.05 U - 0.05 U -		-			-	:	-	
Ethylene dibromide (1,2-Dibromoethane) - 0.03 U - 0.03 U - Hexachloro-1,3-butadiene (Hexachloro-1,3-butadiene) 0.5 0.25 U - 0.25 U - Isopropylbenzene (Cumene) - 0.05 U - 0.05 U - m.pXylene - 0.11 - 0.52 - - Methyl ethyl ketone (2-Butanone) 200 0.5 U - 0.5 U - Methyl terr-butyl ether (MTBE) - 0.05 U - 0.05 U -		-			-		-	
Hexachlorobutadiene (Hexachloro-1,3-butadiene) 0.5 0.25 U - 0.25 U - Isopropylbenzene (Cumene) - 0.05 U - 0.05 U - mp-Xylene - 0.11 - 0.52 - - Methyl ethyl ketone (2-Butanone) 200 0.5 U - 0.5 U - Methyl terr-butyl ether (MTBE) - 0.05 U - 0.05 U -		-		U	-		-	
Isopropylbenzene (Cumene)		0.5			-		-	
mpXylene - 0.11 - 0.52 - Methyl ethyl ketone (2-Butanone) 200 0.5 U - 0.5 U - Methyl tert-butyl ether (MTBE) - 0.05 U - 0.05 U -					-		-	
Methyl ethyl ketone (2-Butanone) 200 0.5 U - 0.5 U - Methyl tert-butyl ether (MTBE) - 0.05 U - 0.05 U -		-		<u>.</u>	-	;	-	
Methyl tert-butyl ether (MTBE) - 0.05 U - 0.05 U -		200		IJ	-		-	
					-		-	
0.00 0 1						;		
lacksquare					-	: I	-	
n-Propylbenzene - 0.03 U - 0.03 U - Naphthalene - 1.76 J - 11.2						•	<u>-</u>	

Table 2 - Summary of Analytical Results for Tar Material Samples: TCLP VOCs

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

-				
Waste Type ==>	Tar / Pitch	Tar - V	Tar - Solid	
Sample Number ==>	2708-190513-COMP1	2708-190520-006	2708-190521-007	2708-190522-011
Sample Date ==>	13-May-19	20-May-19	21-May-19	22-May-19
Sample Depth (feet bgs) ==>	47, 96, and 136	318	352	363
Location ==>	12-inch Casing	8-inch Casing	8-inch Casing	Borehole

	Location	12 11011 0031	''9	o mon odding	o inten odding	,	Bolcholc
	EPA Toxicity Level in mg/L (ppm) ¹			Analytical Resu	Its in mg/L (ppm)		
TCLP Volatile Organic Compounds (VOCs) by EPA N	lethod SW1311/8260C						
o-Xylene	-	0.06		-	0.18		-
sec-Butylbenzene	-	0.05	U	-	0.05	U	-
Styrene	-	0.05	U	-	0.18		-
tert-Butylbenzene	-	0.05	U	-	0.05	U	-
Tetrachloroethene (PCE)	0.7	0.03	U		0.03	U	-
Toluene	-	0.26		-	1.56		-
Trichloroethene (TCE)	0.5	0.03	U		0.03	U	-
Trichlorofluoromethane (Fluorotrichloromethane)	-	0.1	U	-	0.1	U	-
Vinyl chloride	0.2	0.03	U		0.03	U	

Notes:

1 = Characteristic Hazardous Waste Level (40 CFR 261 Subpart C)

bgs = below ground surface

bold = detected concentration

Bold and Yellow = Detected concentration exceeds EPA Toxicity Level

EPA = Environmental Protection Agency

J = estimated concentration

mg/L = milligrams per liter ppm = parts per million

TCLP = Toxicity Characteristic Leaching Procedure

U = not detected

VOCs = volatile organic compounds

"-" = not tested

Table 3 - Summary of Analytical Results for Tar Material Samples: SVOCs

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

	_					
	Waste Type ==>	Tar / Pitch	Tar - \	/iscous	Tar - Solid	
	Sample Number ==>	2708-190513-COMP1	2708-190520-006	2708-190521-007	2708-190522-011	
	Sample Date ==>	13-May-19	20-May-19	21-May-19	22-May-19	
San	nple Depth (feet bgs) ==>	47, 96, and 136	318	352	363	
-	Location ==>	12-inch Casing	8-inch Casing	8-inch Casing	Borehole	
	EPA Toxicity Screening Level (20 times Toxicity Threshold Value) in mg/kg		Analytical Resul	its in mg/kg (ppm)		
	5 5					
	-	1,720. U	6,420.	0.58	2,960.	
	-	1,720. U 2,160. U	6,420 . 1,960. U	0.58 0.5 U	2,960.	

	Threshold Value) in mg/kg	Analytical Results in mg/kg (ppm)							
SVOCs by EPA Method 8270D	<u>,, ,,</u>								
1-Methylnaphthalene	-	1,720.	U	6,420.		0.58		2,960.	
1,2-Dichlorobenzene	-	2,160.	U	1,960.	U	0.5	U	-	
1,2-Dinitrobenzene	-	21,600.	U	19,600.	U	5.	U	-	
1,2,4-Trichlorobenzene	-	2,160.	U	1,960.	U	0.5	U	-	
1,3-Dichlorobenzene	-	2,160.	U	1,960.	U	0.5	UJ	-	
1,3-Dinitrobenzene	-	21,600.	U	19,600.	U	5.	U	-	*********
1,4-Dichlorobenzene	150	2,160.	U	1,960.	U	0.5	UJ	-	********
1,4-Dinitrobenzene	-	21,600.	U	19,600.	U	5.	U	-	
2-Chloronaphthalene	-	863.	U	785.	U	0.2	U	-	
2-Chlorophenol	-	4,300.	U	3,910.	U	1.	U	-	
2-Methylnaphthalene	-	1,720.	U	13,300.		0.81		5,650.	
2-Methylphenol (o-Cresol)	-	2,160.	U	1,960.	U	8.84		-	
2-Nitroaniline	_	17,200.	U	15,700.	U	4.	U	-	
2-Nitrophenol	_	8,630.	U	7,850.	U	2.	U	-	
2,2'-Oxybis (1-chloropropane)	_	2,160.	U	1,960.	U	0.5	U		
2,3,4,6-Tetrachlorophenol		4,300.	U	3,910.	U	1.	U		
2,3,5,6-Tetrachiorophenol		4,300.	U	3,910.	U	1.	U		• • • • • • • • • • • • • • • • • • • •
2,3,5,6-Tetracritorophenol		4,300. 4,300.	U	3,910. 3,910.	U	1.	U		
	·		U		U	2.93			
2,4-Dimethylphenol		4,300.		3,910.				•••••	• • • • • • • • • • • • • • • • • • • •
2,4-Dinitrophenol		21,600.	U	19,600.	U	5.	U	·····	
2,4-Dinitrotoluene	2.6	8,630.	U	7,850.	U	2.	U	· · · · · · · · · · · · · · · · · · ·	
2,4,5-Trichlorophenol	8,000	4,300.	U	3,910.	U	<u>1</u> .	U	·····	
2,4,6-Trichlorophenol	40	4,300.	U	3,910.	U	1.	U		
2,6-Dinitrotoluene		8,630.	U	7,850.	U	2.	U		
3-Methylphenol & 4-Methylphenol (m&p-Cresol)		2,160.	U	1,960.	U	23.9			
3-Nitroaniline		17,200.	U	15,700.	U	4.	U	-	
3,3'-Dichlorobenzidine		17,300.	U	15,700.	U			-	
4-Bromophenyl-phenyl ether		2,160.	U	1,960.	U	0.5	U		
4-Chloro-3-methylphenol		8,630.	U	7,850.	U	2.	U		
4-Chloroaniline		2,160.	U	1,960.	U	0.5	U		
4-Chlorophenyl phenyl ether		2,160.	U	1,960.	U	0.5	U		
4-Nitroaniline		17,200.	U	15,700.	Ų	4.	U		
4-Nitrophenol		8,630.	U	7,850.	U	2.	U		~~~~~
4,6-Dichloro-2-methylphenol		21,600.	U	19,600.	U	5.	U		
Acenaphthene		880.	J	22,600.		0.86		9,320.	
Acenaphthylene		863.	U	785.	U	0.2	U	877.	U
Aniline		4,300.	U	3,910.	U	7.23			
Anthracene	-	2,050.		11,700.		0.2	U	6,230.	
Azobenzene	-	2,160.	U	1,960.	U	0.5	U		
Benzo(a)anthracene	-	7,230.		6,200.		0.2	U	5,750.	
Benzo(a)pyrene	-	9,030.		6,980.		0.3	U	6,830.	
Benzo(b)fluoranthene	-	10,100.		7,190.		0.3	U	7,020.	
Benzo(g,h,i)perylene	-	6,990.		4,560.		0.2	U	4,250.	
Benzo(k)fluoranthene		3,740.		2,850.		0.3	U	2,840.	
Benzoic acid	-	108,000.	U	97,900.	U	20.	U	-	
Benzyl alcohol	-	4,300.	U	3,910.	U	2.	U	-	
bis(2-Chloroethoxy)methane	-	2,160.	U	1,960.	U	0.5	U	-	
pis(2-Chloroethyl)ether	-	2,160.	U	1,960.	U	0.5	U	-	• ~~~~
pis(2-Ethylhexyl)adipate	-	21,600.	U	19,600.	U	5.	U	-	*******
bis(2-Ethylhexyl)phthalate	_	12,900.	U	11,800.	U	4.	U	-	
Butylbenzyl phthalate	-	8,630.	U	7,850.	U	4.	U	-	
Carbazole	-	2,280.		5,590.		0.74		-	
Chrysene		7,850.		6,140.		0.74	U	5,980.	
Di-n-butyl phthalate	··	8,630.	U	7,850.	U	4.	U	-	
or in outji primalate		8,630.	U	7,850.	U	4.	U	······	

Table 3 - Summary of Analytical Results for Tar Material Samples: SVOCs

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

	_									
	Waste Type ==>	Tar / Pitch			Tar - Vis	scous		Tar - Solid		
	Sample Number ==>	2708-190513-COM	P1	2708-190520-006		2708-190521-0	007	2708-190522-0	11	
	Sample Date ==>	13-May-19		20-May-19		21-May-19		22-May-19		
Sai	mple Depth (feet bgs) ==>	47, 96, and 136	47, 96, and 136		318			363		
	Location ==>	12-inch Casing		8-inch Casin	g	8-inch Casin	9	Borehole		
	EPA Toxicity Screening Level (20 times Toxicity Threshold Value) in mg/kg	Analytical Results in mg/kg (ppm)								
SVOCs by EPA Method 8270D										
Dibenzo(a,h)anthracene	-	973.		785.	U	0.2	U	904.		
Dibenzofuran	-	863.	U	12,500.		0.39		5,590.		
Diethyl phthalate		8,630.	U	7,850.	U	4.	U			
Dimethyl phthalate	-	8,630.	U	7,850.	U	4.	U	-		
Fluoranthene	-	18,700.		27,500.		0.2	U	19,300.		
Fluorene	-	863.	U	11,600.		0.21		5,240.		
Hexachlorobenzene	2.6	863.	U	785.	U	0.2	U	-		
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	10	2,160.	U	1,960.	U	0.5	UJ	-		
Hexachlorocyclopentadiene	-	4,300.	U	3,910.	U	1.	UJ	-		
Hexachloroethane	60	2,160.	U	1,960.	U	0.5	UJ	-		
Indeno(1,2,3-c,d)pyrene	-	6,560.		4,470.		0.2	U	4,670.		
Isophorone	-	2,160.	U	1,960.	U	0.5	U	-		
n-Nitrosodi-n-propylamine	-	2,160.	U	1,960.	U	0.5	U	-		
n-Nitrosodimethylamine	-	2,160.	U	1,960.	U	0.5	U	-		
n-Nitrosodiphenylamine	-	2,160.	U	1,960.	U	0.5	U	·····		
Naphthalene		1,720.	U	36,900.		9.36		16,200.		
Nitrobenzene	-	8,630.	U	7,850.	U	2.	U			

U

U

Pyridine
Notes:

Phenol

Pyrene

Pentachlorophenol

bgs = below ground surface

bold = detected concentration

Bold and Yellow = Detected concentration exceeds EPA Toxicity Level

2,000

100

8,630.

1,720.

18,500

4,300

8,820.

EPA = Environmental Protection Agency

Phenanthrene

J = estimated concentration

mg/kg = milligrams per kilogram

42,000.

ppm = parts per million

7,850.

1,570.

23,400.

3,910.

SVOCs = semivolatile organic compounds

U

U

2.

0.2

2.31

0.27

U

U

20,600.

18,100.

U = not detected

"-" = not tested

Table 4 - Summary of Analytical Results for Tar Material Samples: Metals and Cyanide

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

-				
Waste Type ==>	Tar / Pitch	Tar - V	Tar - Solid	
Sample Number ==>	2708-190513-COMP1	2708-190520-006	2708-190521-007	2708-190522-011
Sample Date ==>	13-May-19	20-May-19	21-May-19	22-May-19
Sample Depth (feet bgs) ==>	47, 96, and 136	318	352	363
Location ==>	12-inch Casing	8-inch Casing	8-inch Casing	Borehole

	Sample Depth (feet bgs) ==>	47, 96, and 136		318		352		363			
	Location ==>	Location ==> 12-inch Casing 8			ing	8-inch Casi	ng	Borehole			
	EPA Toxicity Screening Level (20 times Toxicity Threshold Value) in mg/kg	Analytical Results in mg/kg (ppm)									
Metals by EPA Method 6020A											
Aluminum	-	1,690.	J	55.6	U	238.	U	-			
Antimony		1.04	U	1.11	U	4.76	U				
Arsenic	10	1.66		1.11	U	4.76	U	-			
Barium	2,000	20.5		2.27	J	4.76	U	-			
Beryllium		0.21		0.22	U	0.95	U				
Cadmium	20	0.35		0.37	į	0.95	U	-			
Calcium		559.		111.	U	476.	U				
Chromium	100	2.83		1.11	U	4.76	U	-			
Copper		10.9	J	1.78		4.76	U	-			
Iron		30,800.		1,250.		1,130.	J				
Lead	100	26.8		27.9		13.1	J	-			
Magnesium		82.2		55.6	U	238.	U				
Manganese		363.		8.74		16.7		-			
Mercury	4	0.08	U	0.09	U	0.38	U	-			
Nickel		7.86	J	1.11	UJ	4.76	U	·····			
Potassium		104.	U	111.	U	476.	U				
Selenium	20	1.04	U	1.11	U	4.76	U				
Silver	100	0.21	U	0.22	U	0.95	U	-			
Sodium		104.	U	160.		476.	U	-			
Thallium		0.21	U	0.22	U	0.95	U				
Vanadium	-	16.3		1.16		4.76	U				
Zinc	-	71.3	J	35.	J	19.	U	-			
Total Cyanide by ASTM D7511-12											
Total Cyanide	-	14.5		0.846	J	-		-			

Notes:

ASTM = American Society for Testing and Materials

bgs = below ground surface

bold = detected concentration

Bold and Yellow = Detected concentration exceeds EPA Toxicity Level

EPA = Environmental Protection Agency

J = estimated concentration

mg/kg = milligrams per kilogram

ppm = parts per million

U = not detected
"-" = not tested

IDW Sample Results: Tar Material NW Natural - Gasco Portland, Oregon 2708 MULT 802 TAR.xlsx

Table 5 - Viscosity and Density of Tar Sample -007

MULT 802 Decommissioning NW Natural, Gasco Property Portland, Oregon

Waste Type ==>	Tar - Viscous
Sample Number ==>	
Sample Date ==>	
Sample Depth (feet bgs) ==>	
Location ==>	8-inch Casing

Parameters	30 Degrees C (86 F)	35 Degrees C (95F)	40 Degrees C (104F)	45 Degrees C (113F)	50 Degrees C (122F)
Dynamic Viscosity (mPa-s) by ASTM D7042	10,096.	5,262.48	2,846.8	1,601.01	964.26
Kinematic Viscosity (mm²/s) by ASTM D7042	8,432.1	4,405.77 ±3.4%	2,386.9	1,347.4 ±3.2%	813.72 ±3.1%
Density (g/cm³) by ASTM D7042	1.2	1.19	1.19	1.19	1.19

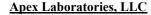
Notes:

1 = Sample -007 collected on May 21, 2019 from tar contents present inside 8-inch ID steel casing at 352 feet below ground surface ASTM = American Society for Testing and Materials

C = Celsius

F = Fahrenheit

g/cm³ = grams per cubic centimeter


mm²/s = square millimeters per second

mPa-s = millipascal per second

IDW Sample Results: Tar Material

NW Natural - Gasco Portland, Oregon 2708 MULT 802 TAR.xlsx

ATTACHMENT 3 Apex Laboratories Analytical Reports

Wednesday, May 29, 2019 Rob Ede Hahn and Associates 434 NW 6th Ave. Suite 203 Portland, OR 97209

RE: A9E0508 - Mult 802 Decommissioning - 2708-60F

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9E0508, which was received by the laboratory on 5/15/2019 at 12:35:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

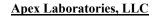
(See Cooler Receipt Form for details)

Cooler #1

4.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.


Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 1 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
2708-190513-001	A9E0508-01	Solid	05/13/19 15:15	05/15/19 12:35
2708-190513-002	A9E0508-02	Solid	05/13/19 16:00	05/15/19 12:35
2708-190514-004	A9E0508-04	Solid	05/14/19 15:00	05/15/19 12:35
COMP1	A9E0508-05	Solid	05/13/19 15:15	05/15/19 12:35

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or	Oil Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
COMP1 (A9E0508-05)				Matrix: Solid Batch: 9051067				
Diesel	91500		16900	mg/kg	100	05/21/19	NWTPH-Dx	F-17
Oil	176000		33900	mg/kg	100	05/21/19	NWTPH-Dx	F-17
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	100	05/21/19	NWTPH-Dx	S-01

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

Gaso	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
COMP1 (A9E0508-05)				Matrix: Solid Batch: 9051006			СОМР					
Gasoline Range Organics	2400		1480	mg/kg	10000	05/17/19	NWTPH-Gx (MS)					
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	ery: 117 % 97 %	Limits: 50-150 % 50-150 %	1 1	05/17/19 05/17/19	NWTPH-Gx (MS) NWTPH-Gx (MS)					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
OMP1 (A9E0508-05)				Matrix: So	lid	Bat	tch: 9051006	СОМІ
Acetone	ND		296000	ug/kg	10000	05/17/19	5035A/8260C	
Acrylonitrile	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
Benzene	55400		2960	ug/kg	10000	05/17/19	5035A/8260C	
Bromobenzene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
Bromochloromethane	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Bromodichloromethane	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
Bromoform	ND		59100	ug/kg	10000	05/17/19	5035A/8260C	
Bromomethane	ND		148000	ug/kg	10000	05/17/19	5035A/8260C	
-Butanone (MEK)	ND		148000	ug/kg	10000	05/17/19	5035A/8260C	
-Butylbenzene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
ec-Butylbenzene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
ert-Butylbenzene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Carbon disulfide	ND		148000	ug/kg	10000	05/17/19	5035A/8260C	
arbon tetrachloride	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
Chlorobenzene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
Chloroethane	ND		148000	ug/kg	10000	05/17/19	5035A/8260C	
Chloroform	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Chloromethane	ND		73900	ug/kg	10000	05/17/19	5035A/8260C	
-Chlorotoluene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
-Chlorotoluene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Dibromochloromethane	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
,2-Dibromo-3-chloropropane	ND		73900	ug/kg	10000	05/17/19	5035A/8260C	
,2-Dibromoethane (EDB)	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
ribromomethane	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
2-Dichlorobenzene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
3-Dichlorobenzene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
4-Dichlorobenzene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
chlorodifluoromethane	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
1-Dichloroethane	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
2-Dichloroethane (EDC)	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
1-Dichloroethene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
s-1,2-Dichloroethene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
ans-1,2-Dichloroethene	ND		7390	ug/kg ug/kg	10000	05/17/19	5035A/8260C	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

		Volatile Organic Compounds by EPA 5035A/8260C						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
	Result					<u> </u>		
OMP1 (A9E0508-05)				Matrix: So	nia	Ba	tch: 9051006	COMP
1,2-Dichloropropane	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
1,3-Dichloropropane	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
2,2-Dichloropropane	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
,1-Dichloropropene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
eis-1,3-Dichloropropene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
rans-1,3-Dichloropropene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Ethylbenzene	12400		7390	ug/kg	10000	05/17/19	5035A/8260C	
Hexachlorobutadiene	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
2-Hexanone	ND		148000	ug/kg	10000	05/17/19	5035A/8260C	
sopropylbenzene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
1-Isopropyltoluene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Methylene chloride	ND		73900	ug/kg	10000	05/17/19	5035A/8260C	
-Methyl-2-pentanone (MiBK)	ND		148000	ug/kg	10000	05/17/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Naphthalene	475000		29600	ug/kg	10000	05/17/19	5035A/8260C	
n-Propylbenzene	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
Styrene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
,1,1,2-Tetrachloroethane	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
,1,2,2-Tetrachloroethane	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
Tetrachloroethene (PCE)	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
Toluene	29300		14800	ug/kg	10000	05/17/19	5035A/8260C	
,2,3-Trichlorobenzene	ND		73900	ug/kg	10000	05/17/19	5035A/8260C	
,2,4-Trichlorobenzene	ND		73900	ug/kg	10000	05/17/19	5035A/8260C	
,1,1-Trichloroethane	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
,1,2-Trichloroethane	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
richloroethene (TCE)	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
richlorofluoromethane	ND		29600	ug/kg	10000	05/17/19	5035A/8260C	
2,3-Trichloropropane	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
2,4-Trimethylbenzene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
3,5-Trimethylbenzene	ND		14800	ug/kg	10000	05/17/19	5035A/8260C	
inyl chloride	ND		7390	ug/kg	10000	05/17/19	5035A/8260C	
ı,p-Xylene	17100		14800	ug/kg	10000	05/17/19	5035A/8260C	
-Xylene	8020		7390	ug/kg ug/kg	10000	05/17/19	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic C	Compounds	by EPA	5035A/	8260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Uı	nits	Dilution	Date Analyzed	Method Ref.	Notes
COMP1 (A9E0508-05)		Matrix: Solid Batch: 9				ch: 9051006	COMP		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106%	Limits:	80-120 %	1	05/17/19	5035A/8260C	
Toluene-d8 (Surr)			95 %		80-120 %	1	05/17/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			100 %		80-120 %	1	05/17/19	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
OMP1 (A9E0508-05)				Matrix: So	olid	Bat	tch: 9051246	
Acetone	ND		1.00	mg/L	50	05/24/19	1311/8260C	
Benzene	0.720		0.0125	mg/L	50	05/24/19	1311/8260C	
Bromobenzene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
Bromochloromethane	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
Bromodichloromethane	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
Bromoform	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
Bromomethane	ND		0.250	mg/L	50	05/24/19	1311/8260C	
2-Butanone (MEK)	ND		0.500	mg/L	50	05/24/19	1311/8260C	
n-Butylbenzene	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
ec-Butylbenzene	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
ert-Butylbenzene	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
Carbon tetrachloride	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
Chlorobenzene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
Chloroethane	ND		0.250	mg/L	50	05/24/19	1311/8260C	
Chloroform	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
Chloromethane	ND		0.250	mg/L	50	05/24/19	1311/8260C	
2-Chlorotoluene	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
-Chlorotoluene	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
,2-Dibromo-3-chloropropane	ND		0.250	mg/L	50	05/24/19	1311/8260C	
Dibromochloromethane	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
,2-Dibromoethane (EDB)	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
Dibromomethane	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
,2-Dichlorobenzene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
,3-Dichlorobenzene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
,4-Dichlorobenzene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
pichlorodifluoromethane	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
1-Dichloroethane	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
1-Dichloroethene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
2-Dichloroethane (EDC)	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
s-1,2-Dichloroethene	ND		0.0500	mg/L	50	05/24/19	1311/8260C	
ans-1,2-Dichloroethene	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
,2-Dichloropropane	ND		0.0250	mg/L	50	05/24/19	1311/8260C	
3-Dichloropropane	ND		0.0500	mg/L	50	05/24/19	1311/8260C	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	TCLP Volatile Organic Compounds by EPA 1311/8260C									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
OMP1 (A9E0508-05)				Matrix: Solid		-	tch: 9051246			
2,2-Dichloropropane	ND		0.0500	mg/L	50	05/24/19	1311/8260C			
2,2-Dichloropropane 1,1-Dichloropropene	ND ND		0.0500	mg/L mg/L	50	05/24/19	1311/8260C 1311/8260C			
cis-1,3-Dichloropropene	ND ND		0.0500	C	50	05/24/19	1311/8260C 1311/8260C			
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND ND		0.0500	mg/L mg/L	50	05/24/19	1311/8260C 1311/8260C			
, 1 1			0.0500		50 50	05/24/19	1311/8260C 1311/8260C			
Ethylbenzene Hexachlorobutadiene	0.126 ND			mg/L		05/24/19	1311/8260C 1311/8260C			
	ND ND		0.250	mg/L	50	05/24/19	1311/8260C 1311/8260C			
2-Hexanone			0.500	mg/L	50		1311/8260C 1311/8260C			
Isopropylbenzene 4 Isopropyltolyopo	ND ND		0.0500	mg/L	50	05/24/19	1311/8260C 1311/8260C			
4-Isopropyltoluene 4 Methyl 2 pontonone (MiPK)	ND ND		0.0500	mg/L	50	05/24/19	1311/8260C 1311/8260C			
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50	05/24/19				
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50	05/24/19	1311/8260C	. 0.		
Methylene chloride	ND		0.300	mg/L	50	05/24/19	1311/8260C	A-01		
Naphthalene	1.76		0.100	mg/L	50	05/24/19	1311/8260C	Q-42		
n-Propylbenzene	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
Styrene	ND		0.0500	mg/L	50	05/24/19	1311/8260C			
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
Toluene	0.263		0.0500	mg/L	50	05/24/19	1311/8260C			
1,2,3-Trichlorobenzene	ND		0.0500	mg/L	50	05/24/19	1311/8260C			
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50	05/24/19	1311/8260C			
1,1,1-Trichloroethane	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
1,1,2-Trichloroethane	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
Trichloroethene (TCE)	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
Trichlorofluoromethane	ND		0.100	mg/L	50	05/24/19	1311/8260C			
,2,3-Trichloropropane	ND		0.0500	mg/L	50	05/24/19	1311/8260C			
,2,4-Trimethylbenzene	ND		0.0500	mg/L	50	05/24/19	1311/8260C			
,3,5-Trimethylbenzene	ND		0.0500	mg/L	50	05/24/19	1311/8260C			
inyl chloride	ND		0.0250	mg/L	50	05/24/19	1311/8260C			
n,p-Xylene	0.113		0.0500	mg/L	50	05/24/19	1311/8260C			
-Xylene	0.0634		0.0250	mg/L	50	05/24/19	1311/8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	05/24/19	1311/8260C			
Toluene-d8 (Surr)			98 %	80-120 %	1	05/24/19	1311/8260C			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	TCLP Volatile Organic Compounds by EPA 1311/8260C											
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
COMP1 (A9E0508-05)				Matrix: Solid Bato			tch: 9051246					
Surrogate: 4-Bromofluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 S	% 1	05/24/19	1311/8260C					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compou	inds by EPA	1 82/0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
COMP1 (A9E0508-05)				Matrix: So	lid	Batch: 9051065		
Acenaphthene	880000		863000	ug/kg	10000	05/21/19	EPA 8270D	B, Q-29
Acenaphthylene	ND		863000	ug/kg	10000	05/21/19	EPA 8270D	
Anthracene	2050000		863000	ug/kg	10000	05/21/19	EPA 8270D	B-02
Benz(a)anthracene	7230000		863000	ug/kg	10000	05/21/19	EPA 8270D	
Benzo(a)pyrene	9030000		1290000	ug/kg	10000	05/21/19	EPA 8270D	
Benzo(b)fluoranthene	10100000		1290000	ug/kg	10000	05/21/19	EPA 8270D	M-05
Benzo(k)fluoranthene	3740000		1290000	ug/kg	10000	05/21/19	EPA 8270D	M-05
Benzo(g,h,i)perylene	6990000		863000	ug/kg	10000	05/21/19	EPA 8270D	
Chrysene	7850000		863000	ug/kg	10000	05/21/19	EPA 8270D	
Dibenz(a,h)anthracene	973000		863000	ug/kg	10000	05/21/19	EPA 8270D	
Fluoranthene	18700000		863000	ug/kg	10000	05/21/19	EPA 8270D	B-02
Fluorene	ND		863000	ug/kg	10000	05/21/19	EPA 8270D	
Indeno(1,2,3-cd)pyrene	6560000		863000	ug/kg	10000	05/21/19	EPA 8270D	
1-Methylnaphthalene	ND		1720000	ug/kg	10000	05/21/19	EPA 8270D	
2-Methylnaphthalene	ND		1720000	ug/kg	10000	05/21/19	EPA 8270D	
Naphthalene	ND		1720000	ug/kg	10000	05/21/19	EPA 8270D	Q-42
Phenanthrene	8820000		863000	ug/kg	10000	05/21/19	EPA 8270D	В
Pyrene	18500000		863000	ug/kg	10000	05/21/19	EPA 8270D	B-02
Carbazole	2280000		1290000	ug/kg	10000	05/21/19	EPA 8270D	
Dibenzofuran	ND		863000	ug/kg	10000	05/21/19	EPA 8270D	
4-Chloro-3-methylphenol	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D	
2-Chlorophenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D	
2,4-Dichlorophenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D	
2,4-Dimethylphenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D	
2,4-Dinitrophenol	ND		21600000	ug/kg	10000	05/21/19	EPA 8270D	
4,6-Dinitro-2-methylphenol	ND		21600000	ug/kg	10000	05/21/19	EPA 8270D	
2-Methylphenol	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D	
3+4-Methylphenol(s)	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D	
2-Nitrophenol	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D	
4-Nitrophenol	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D	
Pentachlorophenol (PCP)	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D	
Phenol	ND		1720000	ug/kg	10000	05/21/19	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270D									
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
OMP1 (A9E0508-05)				Matrix: Solid		Batch: 9051065				
2,3,5,6-Tetrachlorophenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D			
2,4,5-Trichlorophenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D			
2,4,6-Trichlorophenol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D			
Bis(2-ethylhexyl)phthalate	ND		12900000	ug/kg	10000	05/21/19	EPA 8270D			
Butyl benzyl phthalate	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			
Diethylphthalate	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			
Dimethylphthalate	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			
Di-n-butylphthalate	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			
Di-n-octyl phthalate	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			
N-Nitrosodimethylamine	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
N-Nitroso-di-n-propylamine	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
N-Nitrosodiphenylamine	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
Bis(2-Chloroethoxy) methane	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
Bis(2-Chloroethyl) ether	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
2,2'-Oxybis(1-Chloropropane)	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
Hexachlorobenzene	ND		863000	ug/kg	10000	05/21/19	EPA 8270D			
Hexachlorobutadiene	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
Hexachlorocyclopentadiene	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D			
Hexachloroethane	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
2-Chloronaphthalene	ND		863000	ug/kg	10000	05/21/19	EPA 8270D			
1,2-Dichlorobenzene	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
1,3-Dichlorobenzene	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
1,4-Dichlorobenzene	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
1,2,4-Trichlorobenzene	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
4-Bromophenyl phenyl ether	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
4-Chlorophenyl phenyl ether	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
Aniline	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D			
4-Chloroaniline	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D			
2-Nitroaniline	ND		17200000	ug/kg	10000	05/21/19	EPA 8270D			
3-Nitroaniline	ND		17200000	ug/kg	10000	05/21/19	EPA 8270D			
4-Nitroaniline	ND		17200000	ug/kg	10000	05/21/19	EPA 8270D			
Nitrobenzene	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			
2,4-Dinitrotoluene	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	unds by EPA 8	270D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
COMP1 (A9E0508-05)				Matrix: Solid	ı	Batch: 9051065			
2,6-Dinitrotoluene	ND		8630000	ug/kg	10000	05/21/19	EPA 8270D		
Benzoic acid	ND		108000000	ug/kg	10000	05/21/19	EPA 8270D		
Benzyl alcohol	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D		
Isophorone	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D		
Azobenzene (1,2-DPH)	ND		2160000	ug/kg	10000	05/21/19	EPA 8270D		
Bis(2-Ethylhexyl) adipate	ND		21600000	ug/kg	10000	05/21/19	EPA 8270D		
3,3'-Dichlorobenzidine	ND		17300000	ug/kg	10000	05/21/19	EPA 8270D	Q-52	
1,2-Dinitrobenzene	ND		21600000	ug/kg	10000	05/21/19	EPA 8270D		
1,3-Dinitrobenzene	ND		21600000	ug/kg	10000	05/21/19	EPA 8270D		
1,4-Dinitrobenzene	ND		21600000	ug/kg	10000	05/21/19	EPA 8270D		
Pyridine	ND		4300000	ug/kg	10000	05/21/19	EPA 8270D		
Surrogate: Nitrobenzene-d5 (Surr)		Recover	v: 1310 %	Limits: 37-122 %	10000	05/21/19	EPA 8270D	S-05	
2-Fluorobiphenyl (Surr)			%	44-115 %	10000	05/21/19	EPA 8270D	S-01	
Phenol-d6 (Surr)			%	33-122 %	10000	05/21/19	EPA 8270D	S-01	
p-Terphenyl-d14 (Surr)			513 %	54-127 %	10000	05/21/19	EPA 8270D	S-05	
2-Fluorophenol (Surr)			%	35-115 %	10000	05/21/19	EPA 8270D	S-01	
2,4,6-Tribromophenol (Surr)			%	39-132 %	10000	05/21/19	EPA 8270D	S-01	

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 602	20A (ICPMS)					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
COMP1 (A9E0508-05)		Matrix: Solid								
Batch: 9051011										
Aluminum	1690		51.9	51.9 mg/kg 10			05/20/19 EPA 6020A			
Antimony	ND		1.04	mg/kg	10	05/20/19	EPA 6020A			
Arsenic	1.66		1.04		10	05/20/19	EPA 6020A			
Barium	20.5		1.04	mg/kg	10	05/20/19	EPA 6020A			
Beryllium	0.211		0.207	mg/kg	10	05/20/19	EPA 6020A			
Cadmium	0.349		0.207	mg/kg	10	05/20/19	EPA 6020A			
Calcium	559		104	mg/kg	10	05/20/19	EPA 6020A			
Chromium	2.83		1.04	mg/kg	10	05/20/19	EPA 6020A			
Copper	10.9		1.04	mg/kg	10	05/20/19	EPA 6020A			
Iron	30800		51.9	mg/kg	10	05/20/19	EPA 6020A			
Lead	26.8		0.207	mg/kg	10	05/20/19	EPA 6020A			
Magnesium	82.2		51.9	mg/kg	10	05/20/19	EPA 6020A			
Manganese	363		1.04	mg/kg	10	05/20/19	EPA 6020A			
Mercury	ND		0.0830	mg/kg	10	05/20/19	EPA 6020A			
Nickel	7.86		1.04	mg/kg	10	05/20/19	EPA 6020A			
Potassium	ND		104	mg/kg	10	05/20/19	EPA 6020A			
Selenium	ND		1.04	mg/kg	10	05/20/19	EPA 6020A			
Silver	ND		0.207	mg/kg	10	05/20/19	EPA 6020A			
Thallium	ND		0.207	mg/kg	10	05/20/19	EPA 6020A			
Vanadium	16.3		1.04	mg/kg	10	05/20/19	EPA 6020A			
Zinc	71.3		4.15	mg/kg	10	05/20/19	EPA 6020A			
OMP1 (A9E0508-05RE1)				Matrix: So	lid					
Batch: 9051011										
Sodium	ND		104	mg/kg	10	05/21/19	EPA 6020A			

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection												
	Sample	Detection	Reporting			Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
COMP1 (A9E0508-05)				Matrix: So	olid	Bat	tch: 9051027						
Cyanide, Total	14.5		1.97	mg/kg	20	05/20/19	D7511-12						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

ANALYTICAL SAMPLE RESULTS

	TCLP Extraction by EPA 1311 (ZHE)											
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
COMP1 (A9E0508-05)				Matrix: So	olid	Ва						
TCLP ZHE Extraction	PREP			N/A	1	05/23/19	EPA 1311 ZHE					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hyd	rocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051067 - EPA 3546 (F	uels)						Soli	d				
Blank (9051067-BLK1)			Prepared	1: 05/20/19	16:21 Ana	lyzed: 05/21	/19 02:49					
NWTPH-Dx												
Diesel	ND		25.0	mg/kg	1							
Oil	ND		50.0	mg/kg	1							
Surr: o-Terphenyl (Surr)		Reco	very: 103 %	Limits: 50	-150 %	Dil	ution: 1x					
LCS (9051067-BS1)			Prepared	1: 05/20/19	16:21 Ana	lyzed: 05/21	/19 03:09					
NWTPH-Dx												
Diesel	111		25.0	mg/kg	1	125		89	70-130%			
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50)-150 %	Dil	ution: 1x					
Duplicate (9051067-DUP1)			Prepared	1: 05/20/19	16:21 Ana	lyzed: 05/21	/19 03:51					
QC Source Sample: COMP1 (A9	E0508-05)											
NWTPH-Dx												
Diesel	92800		17500	mg/kg	100		91500			1	30%	F-1
Oil	184000		35100	mg/kg	100		176000			5	30%	F-1
Surr: o-Terphenyl (Surr)		R	ecovery: %	Limits: 50	-150 %	Dil	ution: 100x					S-01

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ons (Benz	ene thro	igh Naph	thalene) l	by NWTI	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051006 - EPA 5035A							Soil					
Blank (9051006-BLK1)			Prepared	d: 05/17/19	10:00 Anal	yzed: 05/17	/19 12:11					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 115 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	1-150 %		"					
LCS (9051006-BS2)			Prepared	d: 05/17/19	10:00 Anal	yzed: 05/17	/19 11:44					
NWTPH-Gx (MS)												
Gasoline Range Organics	28.1		5.00	mg/kg	50	25.0		113	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 111 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	1-150 %		"					
Duplicate (9051006-DUP1)			Prepared	d: 05/14/19	00:00 Anal	yzed: 05/17	/19 14:27					
QC Source Sample: Non-SDG (A9	E0511-50)											
Gasoline Range Organics	ND		5.43	mg/kg	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 118 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	-150 %		"					
Duplicate (9051006-DUP2)			Prepared	1: 05/14/19	00:00 Anal	yzed: 05/17	/19 15:21					
QC Source Sample: Non-SDG (A9	E0511-51)											
Gasoline Range Organics	ND		5.78	mg/kg	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 128 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	-150 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Batch 9051006 - EPA 5035A						Soil		
Blank (9051006-BLK1)		Prepared:	05/17/19 10	:00 Anal	yzed: 05/17	/19 12:11		
5035A/8260C								
Acetone	ND	 667	ug/kg	50			 	
Acrylonitrile	ND	 66.7	ug/kg	50			 	
Benzene	ND	 6.67	ug/kg	50			 	
Bromobenzene	ND	 16.7	ug/kg	50			 	
Bromochloromethane	ND	 33.3	ug/kg	50			 	
Bromodichloromethane	ND	 66.7	ug/kg	50			 	
Bromoform	ND	 133	ug/kg	50			 	
Bromomethane	ND	 333	ug/kg	50			 	
2-Butanone (MEK)	ND	 333	ug/kg	50			 	
n-Butylbenzene	ND	 33.3	ug/kg	50			 	
sec-Butylbenzene	ND	 33.3	ug/kg	50			 	
tert-Butylbenzene	ND	 33.3	ug/kg	50			 	
Carbon disulfide	ND	 333	ug/kg	50			 	
Carbon tetrachloride	ND	 66.7	ug/kg	50			 	
Chlorobenzene	ND	 16.7	ug/kg	50			 	
Chloroethane	ND	 333	ug/kg	50			 	
Chloroform	ND	 33.3	ug/kg	50			 	
Chloromethane	ND	 167	ug/kg	50			 	
2-Chlorotoluene	ND	 33.3	ug/kg	50			 	
4-Chlorotoluene	ND	 33.3	ug/kg	50			 	
Dibromochloromethane	ND	 66.7	ug/kg	50			 	
1,2-Dibromo-3-chloropropane	ND	 167	ug/kg	50			 	
1,2-Dibromoethane (EDB)	ND	 33.3	ug/kg	50			 	
Dibromomethane	ND	 33.3	ug/kg	50			 	
1,2-Dichlorobenzene	ND	 16.7	ug/kg	50			 	
1,3-Dichlorobenzene	ND	 16.7	ug/kg	50			 	
1,4-Dichlorobenzene	ND	 16.7	ug/kg	50			 	
Dichlorodifluoromethane	ND	 66.7	ug/kg	50			 	
,1-Dichloroethane	ND	 16.7	ug/kg	50			 	
1,2-Dichloroethane (EDC)	ND	 16.7	ug/kg	50			 	
1,1-Dichloroethene	ND	 16.7	ug/kg	50			 	
cis-1,2-Dichloroethene	ND	 16.7	ug/kg	50			 	
rans-1,2-Dichloroethene	ND	 16.7	ug/kg	50			 	

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051006 - EPA 5035A							Soil					
Blank (9051006-BLK1)			Prepared	: 05/17/19	10:00 Ana	yzed: 05/17/	/19 12:11					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
,1-Dichloropropene	ND		33.3	ug/kg	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
rans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
sopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
l-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
,1,1,2-Tetrachloroethane	ND		66.7	ug/kg	50							
,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
,2,3-Trichlorobenzene	ND		167	ug/kg	50							
,2,4-Trichlorobenzene	ND		167	ug/kg	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Frichloroethene (TCE)	ND		16.7	ug/kg	50							
Trichlorofluoromethane	ND		66.7	ug/kg	50							
,2,3-Trichloropropane	ND		33.3	ug/kg	50							
,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
√inyl chloride	ND		16.7	ug/kg	50							
n,p-Xylene	ND ND		33.3	ug/kg	50							
n,p-Aylene p-Xylene	ND ND		16.7	ug/kg ug/kg	50							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051006 - EPA 5035A Soil Blank (9051006-BLK1) Prepared: 05/17/19 10:00 Analyzed: 05/17/19 12:11 Surr: Toluene-d8 (Surr) Recovery: 96 % Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 102 % 80-120 % LCS (9051006-BS1) Prepared: 05/17/19 10:00 Analyzed: 05/17/19 11:17 5035A/8260C Acetone 1640 1000 ug/kg 50 2000 82 80-120% Acrylonitrile 945 100 50 1000 94 80-120% --ug/kg Benzene 1050 10.0 ug/kg 50 1000 105 80-120% 25.0 1000 Bromobenzene 1050 50 105 80-120% ug/kg ---------Bromochloromethane 1030 50.0 50 1000 103 80-120% ug/kg 1070 100 1000 107 Bromodichloromethane ug/kg 50 80-120% ---Bromoform 1240 200 ug/kg 50 1000 124 80-120% O-56 Bromomethane 1240 500 50 1000 124 80-120% Q-56 ug/kg 2-Butanone (MEK) 1880 500 50 2000 94 80-120% ug/kg 50.0 50 1000 118 80-120% n-Butylbenzene 1180 ug/kg -----sec-Butylbenzene 1180 50.0 50 1000 118 80-120% ug/kg tert-Butylbenzene 1140 50.0 50 1000 114 80-120% ug/kg Carbon disulfide 894 500 ug/kg 50 1000 89 80-120% Carbon tetrachloride 1230 100 50 1000 123 80-120% Q-56 ug/kg ---Chlorobenzene 978 25.0 ug/kg 50 1000 98 80-120% Chloroethane 1080 500 50 1000 108 80-120% ug/kg 1000 80-120% Chloroform 1070 50.0 ug/kg 50 107 Chloromethane 936 250 50 1000 94 80-120% ug/kg 2-Chlorotoluene 1100 50.0 ug/kg 50 1000 110 80-120% 4-Chlorotoluene 1150 50.0 ug/kg 50 1000 115 80-120% Dibromochloromethane 1050 100 ug/kg 50 1000 105 80-120% 1,2-Dibromo-3-chloropropane 908 250 ug/kg 50 1000 91 80-120% 1,2-Dibromoethane (EDB) 975 1000 98 80-120% 50.0 ug/kg 50 Dibromomethane 1070 50.0 50 1000 107 80-120% ug/kg 1,2-Dichlorobenzene 1040 25.0 ug/kg 50 1000 104 80-120% 1,3-Dichlorobenzene 1060 25.0 ug/kg 50 1000 106 80-120% 1,4-Dichlorobenzene 1010 25.0 50 1000 101 80-120% ug/kg Dichlorodifluoromethane 992 100 ug/kg 50 1000 99 80-120% 1,1-Dichloroethane 944 25.0 1000 94 80-120% ug/kg 50

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 21 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051006 - EPA 5035A							Soil					
LCS (9051006-BS1)			Prepared	: 05/17/19	10:00 Anal	lyzed: 05/17	/19 11:17					
1,2-Dichloroethane (EDC)	990		25.0	ug/kg	50	1000		99	80-120%			
1,1-Dichloroethene	836		25.0	ug/kg	50	1000		84	80-120%			
cis-1,2-Dichloroethene	1050		25.0	ug/kg	50	1000		105	80-120%			
trans-1,2-Dichloroethene	928		25.0	ug/kg	50	1000		93	80-120%			
1,2-Dichloropropane	1070		25.0	ug/kg	50	1000		107	80-120%			
1,3-Dichloropropane	1050		50.0	ug/kg	50	1000		105	80-120%			
2,2-Dichloropropane	1290		50.0	ug/kg	50	1000		129	80-120%			Q-56
1,1-Dichloropropene	1080		50.0	ug/kg	50	1000		108	80-120%			
cis-1,3-Dichloropropene	956		50.0	ug/kg	50	1000		96	80-120%			
trans-1,3-Dichloropropene	1000		50.0	ug/kg	50	1000		100	80-120%			
Ethylbenzene	1040		25.0	ug/kg	50	1000		104	80-120%			
Hexachlorobutadiene	1090		100	ug/kg	50	1000		109	80-120%			
2-Hexanone	1800		500	ug/kg	50	2000		90	80-120%			
Isopropylbenzene	1160		50.0	ug/kg	50	1000		116	80-120%			
4-Isopropyltoluene	1130		50.0	ug/kg	50	1000		113	80-120%			
Methylene chloride	742		250	ug/kg	50	1000		74	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	1950		500	ug/kg	50	2000		97	80-120%			
Methyl tert-butyl ether (MTBE)	1030		50.0	ug/kg	50	1000		103	80-120%			
Naphthalene	870		100	ug/kg	50	1000		87	80-120%			
n-Propylbenzene	1140		25.0	ug/kg	50	1000		114	80-120%			
Styrene	1010		50.0	ug/kg	50	1000		101	80-120%			
1,1,1,2-Tetrachloroethane	1170		100	ug/kg	50	1000		117	80-120%			
1,1,2,2-Tetrachloroethane	1140		50.0	ug/kg	50	1000		114	80-120%			
Tetrachloroethene (PCE)	993		25.0	ug/kg	50	1000		99	80-120%			
Toluene	933		50.0	ug/kg	50	1000		93	80-120%			
1,2,3-Trichlorobenzene	987		250	ug/kg	50	1000		99	80-120%			
1,2,4-Trichlorobenzene	1050		250	ug/kg	50	1000		105	80-120%			
1,1,1-Trichloroethane	1200		25.0	ug/kg	50	1000		120	80-120%			
1,1,2-Trichloroethane	1070		25.0	ug/kg	50	1000		107	80-120%			
Trichloroethene (TCE)	1060		25.0	ug/kg	50	1000		106	80-120%			
Trichlorofluoromethane	1160		100	ug/kg	50	1000		116	80-120%			
1,2,3-Trichloropropane	1060		50.0	ug/kg	50	1000		106	80-120%			
1,2,4-Trimethylbenzene	1160		50.0	ug/kg	50	1000		116	80-120%			
1,3,5-Trimethylbenzene	1170		50.0	ug/kg	50	1000		117	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: **Mult 802 Decommissioning**

434 NW 6th Ave. Suite 203 Project Number: 2708-60F Report ID: Portland, OR 97209 Project Manager: Rob Ede A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051006 - EPA 5035A							Soil					
LCS (9051006-BS1)			Prepared	1: 05/17/19	10:00 Ana	lyzed: 05/17	/19 11:17					
/inyl chloride	1010		25.0	ug/kg	50	1000		101	80-120%			
n,p-Xylene	2170		50.0	ug/kg	50	2000		109	80-120%			
-Xylene	1090		25.0	ug/kg	50	1000		109	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Ouplicate (9051006-DUP1)			Prepared	l: 05/14/19 (00:00 Ana	lyzed: 05/17	/19 14:27					
OC Source Sample: Non-SDG (A9	E0511-50)											
Acetone	ND		1090	ug/kg	50		ND				30%	
crylonitrile	ND		109	ug/kg	50		ND				30%	
Benzene	ND		10.9	ug/kg	50		ND				30%	
Fromobenzene	ND		27.1	ug/kg	50		ND				30%	
Bromochloromethane	ND		54.3	ug/kg	50		ND				30%	
romodichloromethane	ND		109	ug/kg	50		ND				30%	
Bromoform	ND		217	ug/kg	50		ND				30%	
Bromomethane	ND		543	ug/kg	50		ND				30%	
-Butanone (MEK)	ND		543	ug/kg	50		ND				30%	
-Butylbenzene	ND		54.3	ug/kg	50		ND				30%	
ec-Butylbenzene	ND		54.3	ug/kg	50		ND				30%	
ert-Butylbenzene	ND		54.3	ug/kg	50		ND				30%	
Carbon disulfide	ND		543	ug/kg	50		ND				30%	
Carbon tetrachloride	ND		109	ug/kg	50		ND				30%	
Chlorobenzene	ND		27.1	ug/kg	50		ND				30%	
Chloroethane	ND		543	ug/kg	50		ND				30%	
Chloroform	ND		54.3	ug/kg	50		ND				30%	
Chloromethane	ND		271	ug/kg	50		ND				30%	
-Chlorotoluene	ND		54.3	ug/kg	50		ND				30%	
-Chlorotoluene	ND		54.3	ug/kg	50		ND				30%	
Dibromochloromethane	ND		109	ug/kg	50		ND				30%	
,2-Dibromo-3-chloropropane	ND		271	ug/kg	50		ND				30%	
,2-Dibromoethane (EDB)	ND		54.3	ug/kg	50		ND				30%	
Dibromomethane	ND		54.3	ug/kg	50		ND				30%	
,2-Dichlorobenzene	ND		27.1	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 23 of 61 Philip Nerenberg, Lab Director

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051006 - EPA 5035A Soil **Duplicate (9051006-DUP1)** Prepared: 05/14/19 00:00 Analyzed: 05/17/19 14:27 QC Source Sample: Non-SDG (A9E0511-50) 1,3-Dichlorobenzene ND 27.1 50 ND 30% ug/kg ND 27.1 1,4-Dichlorobenzene ug/kg 50 ND 30% Dichlorodifluoromethane ND 109 ug/kg 50 ND 30% 1,1-Dichloroethane ND 27.1 ug/kg 50 ND 30% 1,2-Dichloroethane (EDC) ND 27.1 50 ND 30% ug/kg ---ND 27.1 1,1-Dichloroethene ug/kg 50 ND 30% cis-1,2-Dichloroethene ND 27.1 ug/kg 50 ND 30% trans-1,2-Dichloroethene ND 27.1 ND 30% ug/kg 50 ug/kg 1,2-Dichloropropane ND 27.1 50 ND 30% 1,3-Dichloropropane ND 54 3 ug/kg 50 ND 30% 2,2-Dichloropropane ND 54.3 ug/kg 50 ND 30% ND 54.3 ND 30% 1,1-Dichloropropene ug/kg 50 cis-1,3-Dichloropropene ND 54.3 ug/kg 50 ND 30% ND 54.3 ND 30% trans-1,3-Dichloropropene ug/kg 50 27.1 Ethylbenzene ND ug/kg 50 ND 30% Hexachlorobutadiene ND 109 ug/kg 50 ND 30% 2-Hexanone ND 543 ug/kg 50 ND 30% ND ND 30% Isopropylbenzene 54.3 50 ug/kg ---54.3 ND 4-Isopropyltoluene ug/kg 50 ND 30% 271 Methylene chloride ND 50 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND ND 30% 543 ug/kg 50 Methyl tert-butyl ether (MTBE) ND ---54.3 ug/kg 50 ND ---30% Naphthalene ND 109 ug/kg 50 ND 30% ND 27.1 ND 30% n-Propylbenzene 50 --ug/kg ND 54.3 ND 30% Styrene ug/kg 50 ND 109 ND 30% 1,1,1,2-Tetrachloroethane ug/kg 50 1,1,2,2-Tetrachloroethane ND 54.3 50 ND 30% ug/kg Tetrachloroethene (PCE) ND ---27.1 ug/kg 50 ---ND ------30% ND 54.3 ug/kg 50 ND 30% 1,2,3-Trichlorobenzene ND 271 ND 30% ug/kg 50 ---1,2,4-Trichlorobenzene ND 271 ug/kg 50 ND 30% 27.1 ND 1,1,1-Trichloroethane ND 50 30% ug/kg ---

Apex Laboratories

Philip Nevenberg

1,1,2-Trichloroethane

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 24 of 61

50

27.1

ug/kg

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051006 - EPA 5035A							Soil					
Duplicate (9051006-DUP1)			Prepared	l: 05/14/19 (00:00 Anal	lyzed: 05/17	/19 14:27					
QC Source Sample: Non-SDG (A9	E0511-50)											
Trichloroethene (TCE)	ND		27.1	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		109	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		54.3	ug/kg	50		ND				30%	
,2,4-Trimethylbenzene	ND		54.3	ug/kg	50		ND				30%	
1,3,5-Trimethylbenzene	ND		54.3	ug/kg	50		ND				30%	
Vinyl chloride	ND		27.1	ug/kg	50		ND				30%	
n,p-Xylene	ND		54.3	ug/kg	50		ND				30%	
o-Xylene	ND		27.1	ug/kg	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80-	-120 %		"					
QC Source Sample: Non-SDG (A9			1160	ua/lea	50		ND				200/	
Acetone	ND		1160	ug/kg	50		ND				30%	
Acrylonitrile	ND		116	ug/kg	50		ND				30%	
Benzene	ND		11.6	ug/kg	50		ND				30%	
Bromobenzene	ND		28.9	ug/kg	50		ND				30%	
Bromochloromethane	ND		57.8	ug/kg	50		ND				30%	
Bromodichloromethane	ND		116	ug/kg	50		ND				30%	
Bromoform	ND		231	ug/kg	50		ND				30%	
Bromomethane	ND		578	ug/kg	50		ND				30%	
2-Butanone (MEK)	ND		578	ug/kg	50		ND				30%	
n-Butylbenzene	ND		57.8	ug/kg	50		ND				30%	
ec-Butylbenzene	ND		57.8	ug/kg	50		ND				30%	
ert-Butylbenzene	ND		57.8	ug/kg	50		ND				30%	
Carbon disulfide	ND		578	ug/kg	50		ND				30%	
Carbon tetrachloride	ND		116	ug/kg	50		ND				30%	
Chlorobenzene	ND		28.9	ug/kg	50		ND				30%	
Chloroethane	ND		578	ug/kg	50		ND				30%	
Chloroform	ND		57.8	ug/kg	50		ND				30%	
Chloromethane	ND		289	ug/kg	50		ND				30%	
-Chlorotoluene	ND		57.8	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051006 - EPA 5035A Soil **Duplicate (9051006-DUP2)** Prepared: 05/14/19 00:00 Analyzed: 05/17/19 15:21 QC Source Sample: Non-SDG (A9E0511-51) 4-Chlorotoluene ND 57.8 50 ND 30% ug/kg 116 ND Dibromochloromethane ug/kg 50 ND 30% 1,2-Dibromo-3-chloropropane ND 289 ug/kg 50 ND 30% 1,2-Dibromoethane (EDB) ND 57.8 ug/kg 50 ND 30% Dibromomethane ND 57.8 50 ND 30% ug/kg ---ND 28.9 ND 30% 1,2-Dichlorobenzene ug/kg 50 1,3-Dichlorobenzene ND 28.9 ug/kg 50 ND 30% ND 28.9 50 ND 30% 1,4-Dichlorobenzene ug/kg ug/kg Dichlorodifluoromethane ND 116 50 ND 30% 1,1-Dichloroethane ND 28.9 ug/kg 50 ND 30% 1,2-Dichloroethane (EDC) ND 28.9 ug/kg 50 ND 30% 1,1-Dichloroethene ND 28.9 50 ND 30% ug/kg cis-1,2-Dichloroethene ND 28.9 ug/kg 50 ND 30% ND 28.9 ND 30% trans-1,2-Dichloroethene ug/kg 50 28.9 1,2-Dichloropropane ND ug/kg 50 ND 30% 1,3-Dichloropropane ND 57.8 ug/kg 50 ND 30% 2,2-Dichloropropane ND 57.8 ug/kg 50 ND 30% ND 57.8 ND 30% 1,1-Dichloropropene 50 ug/kg ND 57.8 cis-1,3-Dichloropropene ug/kg 50 ND 30% trans-1,3-Dichloropropene ND 57.8 50 ND 30% ug/kg ND 28.9 ND 30% Ethylbenzene ug/kg 50 Hexachlorobutadiene ND ---116 ug/kg 50 ND ---30% 2-Hexanone ND 578 ug/kg 50 ND 30% ND 57.8 ND 30% Isopropylbenzene 50 --ug/kg ND 57.8 ND 30% 4-Isopropyltoluene ug/kg 50 ND 30% Methylene chloride 289 ND ug/kg 50 4-Methyl-2-pentanone (MiBK) ND 578 50 ND 30% ug/kg Methyl tert-butyl ether (MTBE) ND ---57.8 ug/kg 50 ---ND ------30% Naphthalene ND 116 ug/kg 50 ND 30% ND 28.9 ND 30% n-Propylbenzene ug/kg 50 ---Styrene ND 57.8 ug/kg 50 ND 30%

Apex Laboratories

Philip Nevenberg

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

ND

ND

116

57.8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

30%

ND

ND

Philip Nerenberg, Lab Director

Page 26 of 61

50

50

ug/kg

ug/kg

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vola	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051006 - EPA 5035A							Soil					
Duplicate (9051006-DUP2)			Prepared	: 05/14/19	00:00 Anal	lyzed: 05/17	/19 15:21					
QC Source Sample: Non-SDG (A9	E0511-51)											
Tetrachloroethene (PCE)	ND		28.9	ug/kg	50		ND				30%	
Toluene	ND		57.8	ug/kg	50		ND				30%	
1,2,3-Trichlorobenzene	ND		289	ug/kg	50		ND				30%	
1,2,4-Trichlorobenzene	ND		289	ug/kg	50		ND				30%	
1,1,1-Trichloroethane	ND		28.9	ug/kg	50		ND				30%	
1,1,2-Trichloroethane	ND		28.9	ug/kg	50		ND				30%	
Trichloroethene (TCE)	ND		28.9	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		116	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		57.8	ug/kg	50		ND				30%	
1,2,4-Trimethylbenzene	ND		57.8	ug/kg	50		ND				30%	
1,3,5-Trimethylbenzene	ND		57.8	ug/kg	50		ND				30%	
Vinyl chloride	ND		28.9	ug/kg	50		ND				30%	
m,p-Xylene	ND		57.8	ug/kg	50		ND				30%	
o-Xylene	ND		28.9	ug/kg	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 110 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			93 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80	1-120 %		"					
Matrix Spike (9051006-MS1)			Prepared	: 05/14/19 (00:00 Anal	lyzed: 05/17	/19 16:15					
QC Source Sample: Non-SDG (A9	E0511-53)											
5035A/8260C	<u> </u>											
Acetone	2670		1220	ug/kg	50	2440	ND	109	36-164%			
Acrylonitrile	1500		122	ug/kg	50	1220	ND		65-134%			
Benzene	1320		12.2	ug/kg	50	1220	ND	108	77-121%			
Bromobenzene	1270		30.5	ug/kg	50	1220	ND	104	78-121%			
Bromochloromethane	1460		60.9	ug/kg	50	1220	ND	119	78-125%			
Bromodichloromethane	1500		122	ug/kg	50	1220	ND		75-127%			
Bromoform	1690		244	ug/kg	50	1220	ND	139	67-132%			Q-
Bromomethane	1720		609	ug/kg	50	1220	ND		53-143%			Q-
2-Butanone (MEK)	3090		609	ug/kg	50	2440	ND	127	51-148%			
n-Butylbenzene	1270		60.9	ug/kg	50	1220	ND	104	70-128%			
sec-Butylbenzene	1280		60.9	ug/kg	50	1220	ND	105	73-126%			
ert-Butylbenzene	1270		60.9	ug/kg	50	1220	ND	104	73-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051006 - EPA 5035A Soil Matrix Spike (9051006-MS1) Prepared: 05/14/19 00:00 Analyzed: 05/17/19 16:15 QC Source Sample: Non-SDG (A9E0511-53) Carbon disulfide 1160 609 50 1220 ND 95 63-132% ug/kg 122 1220 Q-54b Carbon tetrachloride 1530 ug/kg 50 ND 125 70-135% Chlorobenzene 1170 30.5 ug/kg 50 1220 ND 96 79-120% Q-01 Chloroethane 2490 609 ug/kg 50 1220 ND 204 59-139% Chloroform 1380 60.9 50 1220 ND 113 78-123% ug/kg ---1220 ND 97 Chloromethane 1190 305 ug/kg 50 50-136% 2-Chlorotoluene 1260 60.9 ug/kg 50 1220 ND 104 75-122% 60.9 1220 ND 108 4-Chlorotoluene 1320 ug/kg 50 72-124% Dibromochloromethane 1390 122 ug/kg 50 1220 ND 114 74-126% 1,2-Dibromo-3-chloropropane 1170 305 ug/kg 50 1220 ND 96 61-132% 1,2-Dibromoethane (EDB) 1270 60.9 ug/kg 50 1220 ND 104 78-122% 60.9 O-01 50 1220 ND 78-125% Dibromomethane 1540 ug/kg 127 1220 1,2-Dichlorobenzene 1290 30.5 ug/kg 50 ND 105 78-121% 103 1250 30.5 1220 ND 77-121% 1,3-Dichlorobenzene ug/kg 50 1,4-Dichlorobenzene 1180 30.5 ug/kg 50 1220 ND 97 75-120% Dichlorodifluoromethane 1260 122 ug/kg 50 1220 ND 103 29-149% ___ 1,1-Dichloroethane 1220 30.5 ug/kg 50 1220 ND 100 76-125% 1400 30.5 1220 ND 73-128% 1,2-Dichloroethane (EDC) 50 115 ug/kg 1090 1220 70-131% 1,1-Dichloroethene 30.5 ug/kg 50 ND 90 cis-1,2-Dichloroethene 30.5 50 1220 ND 110 77-123% 1340 ug/kg 1220 ND 94 74-125% trans-1,2-Dichloroethene 1140 30.5 ug/kg 50 1,2-Dichloropropane 1450 ---30.5 ug/kg 50 1220 ND 119 76-123% ---1,3-Dichloropropane 1310 60.9 ug/kg 50 1220 ND 107 77-121% 60.9 1220 ND 120 67-133% Q-54h 2,2-Dichloropropane 1460 50 --ug/kg ---60.9 1220 107 76-125% 1,1-Dichloropropene 1310 ug/kg 50 ND 1220 1140 60.9 ND 93 74-126% cis-1,3-Dichloropropene ug/kg 50 trans-1,3-Dichloropropene 60.9 50 1220 ND 103 71-130% 1260 ug/kg 1220 ND 97 76-122% Ethylbenzene 1190 ---30.5 ug/kg 50 Hexachlorobutadiene 1190 122 ug/kg 50 1220 ND 97 61-135% 2-Hexanone 2610 609 2440 ND 107 53-145% ug/kg 50 Isopropylbenzene 1330 60.9 ug/kg 50 1220 ND 109 68-134% 60.9 1220 ND 101 4-Isopropyltoluene 1240 50 73-127% ug/kg ------

Apex Laboratories

Philip Manherz

1020

Methylene chloride

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

84

70-128%

Q-54i

Philip Nerenberg, Lab Director

Page 28 of 61

50

1220

ND

305

ug/kg

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051006 - EPA 5035A Soil Matrix Spike (9051006-MS1) Prepared: 05/14/19 00:00 Analyzed: 05/17/19 16:15 QC Source Sample: Non-SDG (A9E0511-53) 4-Methyl-2-pentanone (MiBK) 2900 609 50 2440 ND 119 65-135% ug/kg Methyl tert-butyl ether (MTBE) 60.9 1220 1450 ug/kg 50 ND 119 73-125% Naphthalene 1020 122 ug/kg 50 1220 ND 84 62-129% n-Propylbenzene 1250 30.5 ug/kg 50 1220 ND 103 73-125% 1260 60.9 50 1220 ND 104 76-124% Styrene ug/kg ---122 1220 ND 117 78-125% 1,1,1,2-Tetrachloroethane 1420 ug/kg 50 Q-01 1,1,2,2-Tetrachloroethane 1590 60.9 ug/kg 50 1220 ND 130 70-124% Tetrachloroethene (PCE) 30.5 1220 ND 88 73-128% 1070 ug/kg 50 ug/kg Toluene 1060 60.9 50 1220 ND 87 77-121% 1,2,3-Trichlorobenzene 1180 305 ug/kg 50 1220 ND 97 66-130% 1,2,4-Trichlorobenzene 1220 305 ug/kg 50 1220 ND 100 67-129% 1,1,1-Trichloroethane 30.5 50 1220 ND 122 73-130% 1490 ug/kg 1220 78-121% 1,1,2-Trichloroethane 1360 30.5 ug/kg 50 ND 112 1220 Trichloroethene (TCE) 30.5 ND 103 77-123% 1260 ug/kg 50 Q-01 Trichlorofluoromethane 5040 122 ug/kg 50 1220 ND 413 62-140% 1,2,3-Trichloropropane 1360 60.9 ug/kg 50 1220 ND 112 73-125% ___ 1,2,4-Trimethylbenzene 1320 60.9 ug/kg 50 1220 ND 108 75-123% 1,3,5-Trimethylbenzene 60.9 1220 ND 108 73-124% 1320 50 ug/kg

1220

2440

1220

ND

ND

ND

Dilution: 1x

113

104

106

56-135%

77-124%

77-123%

30.5

60.9

30.5

108 %

90 %

100 %

Recovery:

ug/kg

ug/kg

ug/kg

Limits:

50

50

50

80-120 %

80-120 %

80-120 %

1380

2530

1290

Apex Laboratories

Philip Nevenberg

Vinyl chloride

Surr: 1,4-Difluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	30B TCLP	Volatiles					Wat	er				
Blank (9051246-BLK1)			Prepared	05/24/19	09:00 Ana	lyzed: 05/24/	/19 10:44					TCLP
1311/8260C												
Acetone	ND		1.00	mg/L	50							
Benzene	ND		0.0125	mg/L	50							
Bromobenzene	ND		0.0250	mg/L	50							
Bromochloromethane	ND		0.0500	mg/L	50							
Bromodichloromethane	ND		0.0500	mg/L	50							
Bromoform	ND		0.0500	mg/L	50							
Bromomethane	ND		0.250	mg/L	50							
2-Butanone (MEK)	ND		0.500	mg/L	50							
n-Butylbenzene	ND		0.0500	mg/L	50							
sec-Butylbenzene	ND		0.0500	mg/L	50							
tert-Butylbenzene	ND		0.0500	mg/L	50							
Carbon tetrachloride	ND		0.0500	mg/L	50							
Chlorobenzene	ND		0.0250	mg/L	50							
Chloroethane	ND		0.250	mg/L	50							
Chloroform	ND		0.0500	mg/L	50							
Chloromethane	ND		0.250	mg/L	50							
2-Chlorotoluene	ND		0.0500	mg/L	50							
4-Chlorotoluene	ND		0.0500	mg/L	50							
1,2-Dibromo-3-chloropropane	ND		0.250	mg/L	50							
Dibromochloromethane	ND		0.0500	mg/L	50							
1,2-Dibromoethane (EDB)	ND		0.0250	mg/L	50							
Dibromomethane	ND		0.0500	mg/L	50							
1,2-Dichlorobenzene	ND		0.0250	mg/L	50							
1,3-Dichlorobenzene	ND		0.0250	mg/L	50							
1,4-Dichlorobenzene	ND		0.0250	mg/L	50							
Dichlorodifluoromethane	ND		0.0500	mg/L	50							
1,1-Dichloroethane	ND		0.0250	mg/L	50							
1,1-Dichloroethene	ND		0.0250	mg/L	50							
1,2-Dichloroethane (EDC)	ND		0.0250	mg/L	50							
cis-1,2-Dichloroethene	ND		0.0500	mg/L	50							
trans-1,2-Dichloroethene	ND		0.0250	mg/L	50							
1,2-Dichloropropane	ND		0.0250	mg/L	50							
1,3-Dichloropropane	ND		0.0500	mg/L	50							
1,5 2 temoropropune	110		0.0200	g/L	50							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
Blank (9051246-BLK1)			Prepared	: 05/24/19	09:00 Ana	yzed: 05/24/	/19 10:44					TCLP
2,2-Dichloropropane	ND		0.0500	mg/L	50							
1,1-Dichloropropene	ND		0.0500	mg/L	50							
cis-1,3-Dichloropropene	ND		0.0500	mg/L	50							
trans-1,3-Dichloropropene	ND		0.0500	mg/L	50							
Ethylbenzene	ND		0.0250	mg/L	50							
Hexachlorobutadiene	ND		0.250	mg/L	50							
2-Hexanone	ND		0.500	mg/L	50							
Isopropylbenzene	ND		0.0500	mg/L	50							
4-Isopropyltoluene	ND		0.0500	mg/L	50							
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50							
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50							
Methylene chloride	0.281		0.250	mg/L	50							I
Naphthalene	ND		0.100	mg/L	50							
n-Propylbenzene	ND		0.0250	mg/L	50							
Styrene	ND		0.0500	mg/L	50							
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50							
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50							
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50							
Toluene	ND		0.0500	mg/L	50							
1,2,3-Trichlorobenzene	ND		0.0500	mg/L	50							
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50							
1,1,1-Trichloroethane	ND		0.0250	mg/L	50							
1,1,2-Trichloroethane	ND		0.0250	mg/L	50							
Trichloroethene (TCE)	ND		0.0250	mg/L	50							
Trichlorofluoromethane	ND		0.100	mg/L	50							
1,2,3-Trichloropropane	ND		0.0500	mg/L	50							
1,2,4-Trimethylbenzene	ND		0.0500	mg/L	50							
1,3,5-Trimethylbenzene	ND		0.0500	mg/L	50							
Vinyl chloride	ND		0.0250	mg/L	50							
m,p-Xylene	ND		0.0500	mg/L	50							
o-Xylene	ND		0.0250	mg/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	-120 %	Dilı	ution: Ix					
Toluene-d8 (Surr)			97 %		-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analyte

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

RPD

Limit

Notes

% REC

Limits

RPD

% REC

Hahn and Associates Project: Mult 802 Decommissioning

Reporting

Limit

0.0250

0.0250

0.0250

0.0500

0.0250

0.0250

0.0250

0.0500

0.0250

0.0250

0.0500

mg/L

50

50

50

50

50

50

50

50

50

50

50

Detection

Limit

Result

1.03

1.06

1.03

1.17

1 09

1.02

1.17

1.18

1.08

1.15

1.10

Batch 9051246 - EPA 1311/5030B TCLP Volatiles

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

Units

QUALITY CONTROL (QC) SAMPLE RESULTS

Dilution

TCLP Volatile Organic Compounds by EPA 1311/8260C

Spike

Amount

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Source

Result

Water

LCS (9051246-BS1) Prepared: 05/24/19 09:00 Analyzed: 05/24/19 10:15 TCLP 1311/8260C 2.02 Acetone 1.00 mg/L 50 2.00 101 80-120% Benzene 1.12 0.0125 mg/L 50 1.00 112 80-120% ---Bromobenzene 1.04 0.0250 mg/L 50 1.00 104 80-120% Bromochloromethane 1.33 0.0500 50 1.00 133 80-120% Q-56 mg/L ------Bromodichloromethane 1.28 0.050050 1.00 128 80-120% Q-56 mg/L Bromoform 1.26 0.0500 mg/L 50 1.00 80-120% Q-56 126 E-05, Q-56 Bromomethane 1.62 0.250 mg/L 50 1.00 162 80-120% ___ 2-Butanone (MEK) 80-120% 2.14 0.500 mg/L 50 2.00 ---107 n-Butylbenzene 1.11 0.0500mg/L 50 1.00 111 80-120% sec-Butylbenzene 1.12 0.0500 50 1.00 112 80-120% mg/L -----tert-Butylbenzene 1.06 0.0500mg/L 50 1.00 106 80-120% Carbon tetrachloride 1.32 0.0500mg/L 50 1.00 132 80-120% O-56 1.08 0.0250 1.00 108 80-120% Chlorobenzene mg/L 50 mg/L Chloroethane 0.882 0.250 50 1.00 88 80-120% 0.0500 80-120% Chloroform 1.18 mg/L 50 1.00 118 Chloromethane 0.957 0.250 mg/L 50 1.00 96 80-120% 2-Chlorotoluene 1.05 0.0500mg/L 50 1.00 105 80-120% 4-Chlorotoluene 1.09 0.0500mg/L 50 1.00 109 80-120% 0.940 0.250 50 1.00 94 80-120% 1,2-Dibromo-3-chloropropane mg/L Dibromochloromethane 1.15 0.0500 mg/L 50 1.00 115 80-120% 1,2-Dibromoethane (EDB) 1.10 0.0250 50 1.00 110 80-120% mg/L 0.0500 80-120% Dibromomethane 1.18 mg/L 50 1.00 118

Apex Laboratories

Philip Merenberg

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1.1-Dichloroethane

1,1-Dichloroethene

Dichlorodifluoromethane

1,2-Dichloroethane (EDC)

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

103

106

103

117

109

102

117

118

108

115

110

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Philip Nerenberg, Lab Director

Page 32 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
LCS (9051246-BS1)			Prepared	: 05/24/19	09:00 Ana	lyzed: 05/24	/19 10:15					TCLP
2,2-Dichloropropane	1.13		0.0500	mg/L	50	1.00		113	80-120%			
1,1-Dichloropropene	1.16		0.0500	mg/L	50	1.00		116	80-120%			
cis-1,3-Dichloropropene	1.03		0.0500	mg/L	50	1.00		103	80-120%			
trans-1,3-Dichloropropene	1.13		0.0500	mg/L	50	1.00		113	80-120%			
Ethylbenzene	1.13		0.0250	mg/L	50	1.00		113	80-120%			
Hexachlorobutadiene	1.04		0.250	mg/L	50	1.00		104	80-120%			
2-Hexanone	1.96		0.500	mg/L	50	2.00		98	80-120%			
Isopropylbenzene	1.10		0.0500	mg/L	50	1.00		110	80-120%			
4-Isopropyltoluene	1.09		0.0500	mg/L	50	1.00		109	80-120%			
4-Methyl-2-pentanone (MiBK)	2.02		0.500	mg/L	50	2.00		101	80-120%			
Methyl tert-butyl ether (MTBE)	1.03		0.0500	mg/L	50	1.00		103	80-120%			
Methylene chloride	1.32		0.250	mg/L	50	1.00		132	80-120%			B, Q-56
Naphthalene	0.863		0.100	mg/L	50	1.00		86	80-120%			
n-Propylbenzene	1.13		0.0250	mg/L	50	1.00		113	80-120%			
Styrene	1.15		0.0500	mg/L	50	1.00		115	80-120%			
1,1,1,2-Tetrachloroethane	1.18		0.0250	mg/L	50	1.00		118	80-120%			
1,1,2,2-Tetrachloroethane	1.09		0.0250	mg/L	50	1.00		109	80-120%			
Tetrachloroethene (PCE)	1.11		0.0250	mg/L	50	1.00		111	80-120%			
Toluene	1.10		0.0500	mg/L	50	1.00		110	80-120%			
1,2,3-Trichlorobenzene	0.916		0.0500	mg/L	50	1.00		92	80-120%			
1,2,4-Trichlorobenzene	0.909		0.100	mg/L	50	1.00		91	80-120%			
1,1,1-Trichloroethane	1.18		0.0250	mg/L	50	1.00		118	80-120%			
1,1,2-Trichloroethane	1.08		0.0250	mg/L	50	1.00		108	80-120%			
Trichloroethene (TCE)	1.13		0.0250	mg/L	50	1.00		113	80-120%			
Trichlorofluoromethane	1.05		0.100	mg/L	50	1.00		105	80-120%			
1,2,3-Trichloropropane	1.10		0.0500	mg/L	50	1.00		110	80-120%			
1,2,4-Trimethylbenzene	1.10		0.0500	mg/L	50	1.00		110	80-120%			
1,3,5-Trimethylbenzene	1.09		0.0500	mg/L	50	1.00		109	80-120%			
Vinyl chloride	0.867		0.0250	mg/L	50	1.00		87	80-120%			
m,p-Xylene	2.25		0.0500	mg/L	50	2.00		113	80-120%			
o-Xylene	1.06		0.0250	mg/L	50	1.00		106	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C Detection Reporting Spike % REC RPD Source Analyte Result Limit Units Dilution % REC RPD Limit Limit Amount Result Limits Notes Batch 9051246 - EPA 1311/5030B TCLP Volatiles Water **Duplicate (9051246-DUP1)** Prepared: 05/24/19 10:48 Analyzed: 05/24/19 11:41 QC Source Sample: COMP1 (A9E0508-05) 1311/8260C ND 1.00 50 ND 30% mg/L Acetone Benzene 0.737 0.0125 mg/L 50 0.720 2 30% Bromobenzene ND 0.0250 30% mg/L 50 ND ---------Bromochloromethane ND 0.0500 mg/L 50 ND 30% Bromodichloromethane ND 0.0500 50 ND 30% --mg/L Bromoform ND 0.0500 mg/L 50 ND 30% Bromomethane ND 0.250 50 ND 30% mg/L ------2-Butanone (MEK) ND 0.500 mg/L 50 ND 30% n-Butylbenzene ND 0.0500 50 ND 30% mg/L sec-Butylbenzene ND 0.0500 mg/L 50 ND 30% tert-Butvlbenzene ND 0.0500 mg/L 50 ND 30% Carbon tetrachloride ND 0.0500 mg/L 50 ND 30% Chlorobenzene ND 0.0250 50 ND 30% mg/L ---Chloroethane ND 0.250 mg/L 50 ND 30% Chloroform ND 0.0500 mg/L 50 ND 30% Chloromethane ND 0.250 mg/L 50 ND 30% 2-Chlorotoluene ND 0.0500 50 ND 30% mg/L 4-Chlorotoluene ND 0.0500 mg/L 50 ND 30% 1,2-Dibromo-3-chloropropane ND 0.250 mg/L 50 ND 30% 0.0500 30% Dibromochloromethane ND mg/L 50 ND 1,2-Dibromoethane (EDB) ND 0.0250 mg/L 50 ND 30% Dibromomethane ND ND 30% 0.0500 mg/L 50 1,2-Dichlorobenzene ND 0.0250 mg/L 50 ND 30% 1,3-Dichlorobenzene ND 0.0250 mg/L 50 ND 30% 1,4-Dichlorobenzene ND 0.0250 mg/L 50 ND 30% ND 30% Dichlorodifluoromethane 0.0500 50 ND mg/L 1,1-Dichloroethane ND 0.0250 mg/L 50 ND 30% 0.0250 ND 50 ND 30% 1,1-Dichloroethene mg/L ND ND 1,2-Dichloroethane (EDC) 0.0250 mg/L 50 30% cis-1,2-Dichloroethene ND ---0.0500 mg/L 50 ND 30% trans-1,2-Dichloroethene ND 0.0250 mg/L 50 ND 30%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
Duplicate (9051246-DUP1)			Prepared	: 05/24/19	10:48 Ana	lyzed: 05/24	/19 11:41					
QC Source Sample: COMP1 (A91	E0508-05)											
1,2-Dichloropropane	ND		0.0250	mg/L	50		ND				30%	
1,3-Dichloropropane	ND		0.0500	mg/L	50		ND				30%	
2,2-Dichloropropane	ND		0.0500	mg/L	50		ND				30%	
1,1-Dichloropropene	ND		0.0500	mg/L	50		ND				30%	
cis-1,3-Dichloropropene	ND		0.0500	mg/L	50		ND				30%	
trans-1,3-Dichloropropene	ND		0.0500	mg/L	50		ND				30%	
Ethylbenzene	0.127		0.0250	mg/L	50		0.126			0.8	30%	
Hexachlorobutadiene	ND		0.250	mg/L	50		ND				30%	
2-Hexanone	ND		0.500	mg/L	50		ND				30%	
Isopropylbenzene	ND		0.0500	mg/L	50		ND				30%	
4-Isopropyltoluene	ND		0.0500	mg/L	50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50		ND				30%	
Methylene chloride	ND		0.350	mg/L	50		ND				30%	A-01
Naphthalene	1.95		0.100	mg/L	50		1.76			11	30%	
n-Propylbenzene	ND		0.0250	mg/L	50		ND				30%	
Styrene	ND		0.0500	mg/L	50		ND				30%	
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50		ND				30%	
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50		ND				30%	
Toluene	0.266		0.0500	mg/L	50		0.263			1	30%	
1,2,3-Trichlorobenzene	ND		0.0500	mg/L	50		ND				30%	
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50		ND				30%	
1,1,1-Trichloroethane	ND		0.0250	mg/L	50		ND				30%	
1,1,2-Trichloroethane	ND		0.0250	mg/L	50		ND				30%	
Trichloroethene (TCE)	ND		0.0250	mg/L	50		ND				30%	
Trichlorofluoromethane	ND		0.100	mg/L	50		ND				30%	
1,2,3-Trichloropropane	ND		0.0500	mg/L	50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0500	mg/L	50		0.0418			***	30%	
1,3,5-Trimethylbenzene	ND		0.0500	mg/L	50		ND				30%	
Vinyl chloride	ND		0.0250	mg/L	50		ND				30%	
m,p-Xylene	0.112		0.0500	mg/L	50		0.113			0.5	30%	
o-Xylene	0.0632		0.0250	mg/L	50		0.0634			0.4	30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP	Volatile Or	ganic Co	mpounds	by EPA	1311/8260	oc				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
Duplicate (9051246-DUP1)			Prepared	1: 05/24/19	10:48 Ana	lyzed: 05/24	/19 11:41					
QC Source Sample: COMP1 (A91	E0508-05)											
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
Matrix Spike (9051246-MS1)			Prepared	1: 05/24/19	10:48 Ana	yzed: 05/24	/19 12:09					
QC Source Sample: COMP1 (A91	E0508-05)											
<u>1311/8260C</u>												
Acetone	2.10		1.00	mg/L	50	2.00	ND	105	70-130%			
Benzene	1.89		0.0125	mg/L	50	1.00	0.720	117	70-130%			
Bromobenzene	1.06		0.0250	mg/L	50	1.00	ND	106	70-130%			
Bromochloromethane	1.32		0.0500	mg/L	50	1.00	ND	132	70-130%			Q-54
Bromodichloromethane	1.28		0.0500	mg/L	50	1.00	ND	128	70-130%			Q-54
Bromoform	1.27		0.0500	mg/L	50	1.00	ND	127	70-130%			Q-54
Bromomethane	1.41		0.250	mg/L	50	1.00	ND	141	70-130%			E-05, Q-54
2-Butanone (MEK)	2.16		0.500	mg/L	50	2.00	ND	108	70-130%			
n-Butylbenzene	1.16		0.0500	mg/L	50	1.00	ND	116	70-130%			
sec-Butylbenzene	1.13		0.0500	mg/L	50	1.00	ND	113	70-130%			
tert-Butylbenzene	1.07		0.0500	mg/L	50	1.00	ND	107	70-130%			
Carbon tetrachloride	1.31		0.0500	mg/L	50	1.00	ND	131	70-130%			Q-5
Chlorobenzene	1.08		0.0250	mg/L	50	1.00	ND	108	70-130%			
Chloroethane	0.885		0.250	mg/L	50	1.00	ND	89	70-130%			
Chloroform	1.20		0.0500	mg/L	50	1.00	ND	120	70-130%			
Chloromethane	1.01		0.250	mg/L	50	1.00	ND	101	70-130%			
2-Chlorotoluene	1.06		0.0500	mg/L	50	1.00	ND	106	70-130%			
4-Chlorotoluene	1.09		0.0500	mg/L	50	1.00	ND	109	70-130%			
1,2-Dibromo-3-chloropropane	0.931		0.250	mg/L	50	1.00	ND	93	70-130%			
Dibromochloromethane	1.14		0.0500	mg/L	50	1.00	ND	114	70-130%			
1,2-Dibromoethane (EDB)	1.10		0.0250	mg/L	50	1.00	ND	110	70-130%			
Dibromomethane	1.21		0.0500	mg/L	50	1.00	ND	121	70-130%			
1,2-Dichlorobenzene	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,3-Dichlorobenzene	1.06		0.0250	mg/L	50	1.00	ND	106	70-130%			
1,4-Dichlorobenzene	1.04		0.0250	mg/L	50	1.00	ND	104	70-130%			
Dichlorodifluoromethane	1.18		0.0500	mg/L	50	1.00	ND	118	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
Matrix Spike (9051246-MS1)			Prepared	05/24/19	10:48 Ana	lyzed: 05/24	/19 12:09					
QC Source Sample: COMP1 (A9I	E0508-05)											
1,1-Dichloroethane	1.11		0.0250	mg/L	50	1.00	ND	111	70-130%			
1,1-Dichloroethene	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,2-Dichloroethane (EDC)	1.19		0.0250	mg/L	50	1.00	ND	119	70-130%			
cis-1,2-Dichloroethene	1.18		0.0500	mg/L	50	1.00	ND	118	70-130%			
trans-1,2-Dichloroethene	1.08		0.0250	mg/L	50	1.00	ND	108	70-130%			
1,2-Dichloropropane	1.18		0.0250	mg/L	50	1.00	ND	118	70-130%			
1,3-Dichloropropane	1.10		0.0500	mg/L	50	1.00	ND	110	70-130%			
2,2-Dichloropropane	1.20		0.0500	mg/L	50	1.00	ND	120	70-130%			
1,1-Dichloropropene	1.18		0.0500	mg/L	50	1.00	ND	118	70-130%			
cis-1,3-Dichloropropene	1.02		0.0500	mg/L	50	1.00	ND	102	70-130%			
trans-1,3-Dichloropropene	1.14		0.0500	mg/L	50	1.00	ND	114	70-130%			
Ethylbenzene	1.27		0.0250	mg/L	50	1.00	0.126	114	70-130%			
Hexachlorobutadiene	1.04		0.250	mg/L	50	1.00	ND	104	70-130%			
2-Hexanone	1.96		0.500	mg/L	50	2.00	ND	98	70-130%			
Isopropylbenzene	1.11		0.0500	mg/L	50	1.00	ND	111	70-130%			
4-Isopropyltoluene	1.10		0.0500	mg/L	50	1.00	ND	110	70-130%			
4-Methyl-2-pentanone (MiBK)	2.00		0.500	mg/L	50	2.00	ND	100	70-130%			
Methyl tert-butyl ether (MTBE)	1.05		0.0500	mg/L	50	1.00	ND	105	70-130%			
Methylene chloride	1.29		0.250	mg/L	50	1.00	ND	102	70-130%			B, Q-54
Naphthalene	3.07		0.100	mg/L	50	1.00	1.76	131	70-130%			Q-01
n-Propylbenzene	1.15		0.0250	mg/L	50	1.00	ND	115	70-130%			
Styrene	1.19		0.0500	mg/L	50	1.00	ND	119	70-130%			
1,1,1,2-Tetrachloroethane	1.16		0.0250	mg/L	50	1.00	ND	116	70-130%			
1,1,2,2-Tetrachloroethane	1.09		0.0250	mg/L	50	1.00	ND	109	70-130%			
Tetrachloroethene (PCE)	1.11		0.0250	mg/L	50	1.00	ND	111	70-130%			
Toluene	1.37		0.0500	mg/L	50	1.00	0.263	111	70-130%			
1,2,3-Trichlorobenzene	0.964		0.0500	mg/L	50	1.00	ND	96	70-130%			
1,2,4-Trichlorobenzene	0.953		0.100	mg/L	50	1.00	ND	95	70-130%			
1,1,1-Trichloroethane	1.16		0.0250	mg/L	50	1.00	ND	116	70-130%			
1,1,2-Trichloroethane	1.07		0.0250	mg/L	50	1.00	ND	107	70-130%			
Trichloroethene (TCE)	1.12		0.0250	mg/L	50	1.00	ND	112	70-130%			
Trichlorofluoromethane	1.03		0.100	mg/L	50	1.00	ND	103	70-130%			
1,2,3-Trichloropropane	1.10		0.0500	mg/L	50	1.00	ND	110	70-130%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP \	/olatile Or	ganic Co	mpounds	s by EPA	1311/8260	C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051246 - EPA 1311/503	0B TCLP	/olatiles					Wat	er				
Matrix Spike (9051246-MS1)			Prepared	1: 05/24/19	10:48 Ana	lyzed: 05/24	/19 12:09					
QC Source Sample: COMP1 (A9I	E0508-05)											
1,2,4-Trimethylbenzene	1.18		0.0500	mg/L	50	1.00	0.0418	114	70-130%			
1,3,5-Trimethylbenzene	1.13		0.0500	mg/L	50	1.00	ND	113	70-130%			
Vinyl chloride	0.890		0.0250	mg/L	50	1.00	ND	89	70-130%			
m,p-Xylene	2.41		0.0500	mg/L	50	2.00	0.113	115	70-130%			
o-Xylene	1.15		0.0250	mg/L	50	1.00	0.0634	109	70-130%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	-120 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051065 - EPA 3546							Soli	d				
Blank (9051065-BLK1)			Prepared	: 05/20/19	16:13 Anal	lyzed: 05/21/	/19 09:51					
EPA 8270D												
Acenaphthene	148		6.68	ug/kg	1							B, Q-29
Acenaphthylene	ND		6.68	ug/kg	1							
Anthracene	ND		6.68	ug/kg	1							B-02
Benz(a)anthracene	ND		6.68	ug/kg	1							
Benzo(a)pyrene	ND		10.0	ug/kg	1							
Benzo(b)fluoranthene	ND		10.0	ug/kg	1							
Benzo(k)fluoranthene	ND		10.0	ug/kg	1							
Benzo(g,h,i)perylene	ND		6.68	ug/kg	1							
Chrysene	ND		6.68	ug/kg	1							
Dibenz(a,h)anthracene	ND		6.68	ug/kg	1							
Fluoranthene	ND		6.68	ug/kg	1							B-02
Fluorene	26.2		6.68	ug/kg	1							В
Indeno(1,2,3-cd)pyrene	ND		6.68	ug/kg	1							
1-Methylnaphthalene	108		13.3	ug/kg	1							В
2-Methylnaphthalene	223		13.3	ug/kg	1							B, Q-29
Naphthalene	1070		13.3	ug/kg	1							B, Q-29
Phenanthrene	27.7		6.68	ug/kg	1							В
Pyrene	ND		6.68	ug/kg	1							B-02
Carbazole	ND		10.0	ug/kg	1							
Dibenzofuran	46.6		6.68	ug/kg	1							В
4-Chloro-3-methylphenol	ND		66.8	ug/kg	1							
2-Chlorophenol	ND		33.2	ug/kg	1							
2,4-Dichlorophenol	ND		33.2	ug/kg	1							
2,4-Dimethylphenol	ND		33.2	ug/kg	1							
2,4-Dinitrophenol	ND		167	ug/kg	1							
4,6-Dinitro-2-methylphenol	ND		167	ug/kg	1							
2-Methylphenol	ND		16.7	ug/kg	1							B-02
3+4-Methylphenol(s)	ND		16.7	ug/kg	1							B-02
2-Nitrophenol	ND		66.8	ug/kg	1							
4-Nitrophenol	ND		66.8	ug/kg	1							
Pentachlorophenol (PCP)	ND		66.8	ug/kg	1							
Phenol	23.4		13.3	ug/kg	1							В
2,3,4,6-Tetrachlorophenol	ND		33.2	ug/kg	1							S

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

					Amount	Result	% REC	Limits	KI D	Limit	Notes
						Soli	d				
		Prepared	: 05/20/19	16:13 Anal	yzed: 05/21/	19 09:51					
ND		33.2	ug/kg	1							
ND		33.2	ug/kg	1							
ND		33.2	ug/kg	1							
ND		100	ug/kg	1							
ND		66.8	ug/kg	1							
ND		66.8	ug/kg	1							
ND		66.8	ug/kg	1							
ND		66.8	ug/kg	1							
ND		66.8	ug/kg	1							
ND		16.7	ug/kg	1							
ND		16.7	ug/kg	1							
ND		16.7	ug/kg	1							
ND		16.7		1							
ND		16.7		1							
ND		16.7	ug/kg	1							
ND		6.68	ug/kg	1							
ND		16.7	ug/kg	1							
ND		33.2		1							
ND		16.7	ug/kg	1							
ND		6.68		1							
ND		16.7		1							
ND		16.7		1							
ND		16.7		1							
ND		16.7		1							
		16.7		1							
		16.7		1							
				1							
	ND N	ND ND <td< td=""><td>ND 33.2 ND 100 ND 66.8 ND 66.8 ND 66.8 ND 66.8 ND 66.8 ND 66.8 ND 16.7 ND 16.</td><td>ND 33.2 ug/kg ND 33.2 ug/kg ND 100 ug/kg ND 66.8 ug/kg ND 16.7 ug/kg ND 16.6 ug/kg ND 16.7 ug/kg ND 16.7 ug/kg ND 16.7 ug/kg ND 16.7 ug/kg ND </td><td>ND 33.2 ug/kg 1 ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg</td><td>ND 33.2 ug/kg 1 ND 33.2 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg 1 </td><td>ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 66.8 ug/kg 1 ND 66.8 ug/kg 1 ND 66.8 ug/kg 1 </td><td>ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg 1 ND 133 ug/kg 1</td><td>ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg 1</td><td>ND </td><td>ND 33.2 ug/kg 1</td></td<>	ND 33.2 ND 100 ND 66.8 ND 66.8 ND 66.8 ND 66.8 ND 66.8 ND 66.8 ND 16.7 ND 16.	ND 33.2 ug/kg ND 33.2 ug/kg ND 100 ug/kg ND 66.8 ug/kg ND 16.7 ug/kg ND 16.6 ug/kg ND 16.7 ug/kg ND 16.7 ug/kg ND 16.7 ug/kg ND 16.7 ug/kg ND	ND 33.2 ug/kg 1 ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg	ND 33.2 ug/kg 1 ND 33.2 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg 1	ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 66.8 ug/kg 1 ND 66.8 ug/kg 1 ND 66.8 ug/kg 1	ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg 1 ND 133 ug/kg 1	ND 33.2 ug/kg 1 ND 100 ug/kg 1 ND 100 ug/kg 1 ND 66.8 ug/kg 1 ND 16.7 ug/kg 1	ND	ND 33.2 ug/kg 1

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic (Compoun	ds by EP	A 8270D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051065 - EPA 3546							Soli	d				
Blank (9051065-BLK1)			Prepared	d: 05/20/19	16:13 Anal	yzed: 05/21	/19 09:51					
Benzoic acid	ND		832	ug/kg	1							
Benzyl alcohol	ND		33.2	ug/kg	1							
Isophorone	ND		16.7	ug/kg	1							
Azobenzene (1,2-DPH)	ND		16.7	ug/kg	1							
Bis(2-Ethylhexyl) adipate	ND		167	ug/kg	1							
3,3'-Dichlorobenzidine	ND		134	ug/kg	1							Q-5
1,2-Dinitrobenzene	ND		167	ug/kg	1							
1,3-Dinitrobenzene	ND		167	ug/kg	1							
1,4-Dinitrobenzene	ND		167	ug/kg	1							
Pyridine	ND		33.2	ug/kg	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 87 %	Limits: 37	7-122 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			89 %	44	-115 %		"					
Phenol-d6 (Surr)			79 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			94 %	54	-127 %		"					
2-Fluorophenol (Surr)			81 %	35	-115 %		"					
2,4,6-Tribromophenol (Surr)			87 %	39	-132 %		"					
LCS (9051065-BS1)			Prepared	d: 05/20/19	16:13 Anal	yzed: 05/21	/19 10:28					Q-18
EPA 8270D						-						
Acenaphthene	682		6.68	ug/kg	1	533		128	40-122%			B, Q-2
Acenaphthylene	567		6.68	ug/kg	1	533		106	32-132%			
Anthracene	550		6.68	ug/kg	1	533		103	47-123%			B-0
Benz(a)anthracene	557		6.68	ug/kg	1	533		104	49-126%			
Benzo(a)pyrene	592		10.0	ug/kg	1	533		111	45-129%			
Benzo(b)fluoranthene	545		10.0	ug/kg	1	533		102	45-132%			
Benzo(k)fluoranthene	539		10.0	ug/kg	1	533		101	47-132%			
Benzo(g,h,i)perylene	565		6.68	ug/kg	1	533		106	43-134%			
Chrysene	542		6.68	ug/kg	1	533		102	50-124%			
Dibenz(a,h)anthracene	558		6.68	ug/kg	1	533		105	45-134%			
Fluoranthene	554		6.68	ug/kg	1	533		104	50-127%			B-0
Fluorene	546		6.68	ug/kg	1	533			43-125%			
Indeno(1,2,3-cd)pyrene	538		6.68	ug/kg	1	533			45-133%			
1-Methylnaphthalene	617		13.3	ug/kg	1	533		116	40-120%			
2-Methylnaphthalene	740		13.3	2 0								B, Q-2

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051065 - EPA 3546							Soli	d				
LCS (9051065-BS1)			Prepared	: 05/20/19	16:13 Anal	yzed: 05/21	/19 10:28					Q-18
Naphthalene	1450		13.3	ug/kg	1	533		273	35-123%			Q-29, B
Phenanthrene	561		6.68	ug/kg	1	533		105	50-121%			В
Pyrene	546		6.68	ug/kg	1	533		102	47-127%			B-02
Carbazole	557		10.0	ug/kg	1	533		104	50-122%			
Dibenzofuran	606		6.68	ug/kg	1	533		114	44-120%			В
4-Chloro-3-methylphenol	521		66.8	ug/kg	1	533		98	45-122%			
2-Chlorophenol	537		33.2	ug/kg	1	533		101	34-121%			
2,4-Dichlorophenol	560		33.2	ug/kg	1	533		105	40-122%			
2,4-Dimethylphenol	584		33.2	ug/kg	1	533		109	30-127%			
2,4-Dinitrophenol	534		167	ug/kg	1	533		100	5-137%			
4,6-Dinitro-2-methylphenol	645		167	ug/kg	1	533		121	29-132%			
2-Methylphenol	550		16.7	ug/kg	1	533		103	32-122%			B-02
3+4-Methylphenol(s)	577		16.7	ug/kg	1	533		108	34-120%			B-02
2-Nitrophenol	563		66.8	ug/kg	1	533		106	36-123%			
4-Nitrophenol	520		66.8	ug/kg	1	533		97	30-132%			
Pentachlorophenol (PCP)	560		66.8	ug/kg	1	533		105	25-133%			
Phenol	547		13.3	ug/kg	1	533		103	34-120%			В
2,3,4,6-Tetrachlorophenol	545		33.2	ug/kg	1	533		102	44-125%			
2,3,5,6-Tetrachlorophenol	555		33.2	ug/kg	1	533		104	40-120%			
2,4,5-Trichlorophenol	566		33.2	ug/kg	1	533		106	41-124%			
2,4,6-Trichlorophenol	548		33.2	ug/kg	1	533		103	39-126%			
Bis(2-ethylhexyl)phthalate	596		100	ug/kg	1	533		112	51-133%			
Butyl benzyl phthalate	590		66.8	ug/kg	1	533		111	48-132%			
Diethylphthalate	573		66.8	ug/kg	1	533		107	50-124%			
Dimethylphthalate	571		66.8	ug/kg	1	533		107	48-124%			
Di-n-butylphthalate	576		66.8	ug/kg	1	533		108	51-128%			
Di-n-octyl phthalate	570		66.8	ug/kg	1	533		107	44-140%			
N-Nitrosodimethylamine	470		16.7	ug/kg	1	533		88	23-120%			
N-Nitroso-di-n-propylamine	507		16.7	ug/kg	1	533		95	36-120%			
N-Nitrosodiphenylamine	549		16.7	ug/kg	1	533		103	38-127%			
Bis(2-Chloroethoxy) methane	510		16.7	ug/kg	1	533		96	36-121%			
Bis(2-Chloroethyl) ether	489		16.7	ug/kg	1	533		92	31-120%			
2,2'-Oxybis(1-Chloropropane)	456		16.7	ug/kg	1	533		86	33-131%			
Hexachlorobenzene	539		6.68	ug/kg	1	533		101	44-122%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270D

Detection Penerting Spiles Source 0/ DEC DDD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051065 - EPA 3546							Soli	d				
LCS (9051065-BS1)			Prepared	: 05/20/19	16:13 Ana	lyzed: 05/21	/19 10:28					Q-18
Hexachlorobutadiene	520		16.7	ug/kg	1	533		98	32-123%			
Hexachlorocyclopentadiene	622		33.2	ug/kg	1	533		117	5-140%			
Hexachloroethane	521		16.7	ug/kg	1	533		98	28-120%			
2-Chloronaphthalene	580		6.68	ug/kg	1	533		109	41-120%			
1,2-Dichlorobenzene	523		16.7	ug/kg	1	533		98	33-120%			
1,3-Dichlorobenzene	495		16.7	ug/kg	1	533		93	30-120%			
1,4-Dichlorobenzene	523		16.7	ug/kg	1	533		98	31-120%			
1,2,4-Trichlorobenzene	517		16.7	ug/kg	1	533		97	34-120%			
4-Bromophenyl phenyl ether	552		16.7	ug/kg	1	533		104	46-124%			
4-Chlorophenyl phenyl ether	543		16.7	ug/kg	1	533		102	45-121%			
Aniline	378		33.2	ug/kg	1	533		71	7-120%			Q-31
4-Chloroaniline	307		16.7	ug/kg	1	533		58	16-120%			Q-31
2-Nitroaniline	591		133	ug/kg	1	533		111	44-127%			
3-Nitroaniline	638		133	ug/kg	1	533		120	33-120%			Q-41
4-Nitroaniline	589		133	ug/kg	1	533		110	35-120%			
Nitrobenzene	507		66.8	ug/kg	1	533		95	34-122%			
2,4-Dinitrotoluene	571		66.8	ug/kg	1	533		107	48-126%			
2,6-Dinitrotoluene	603		66.8	ug/kg	1	533		113	46-124%			
Benzoic acid	612		418	ug/kg	1	1070		57	5-140%			
Benzyl alcohol	525		33.2	ug/kg	1	533		98	29-122%			
Isophorone	516		16.7	ug/kg	1	533		97	30-122%			
Azobenzene (1,2-DPH)	545		16.7	ug/kg	1	533		102	39-125%			
Bis(2-Ethylhexyl) adipate	559		167	ug/kg	1	533		105	60-121%			
3,3'-Dichlorobenzidine	2960		134	ug/kg	1	1070		277	22-121%			Q-29, Q-41
1,2-Dinitrobenzene	559		167	ug/kg	1	533		105	44-120%			
1,3-Dinitrobenzene	591		167	ug/kg	1	533		111	42-127%			
1,4-Dinitrobenzene	594		167	ug/kg	1	533		111	37-132%			
Pyridine	375		33.2	ug/kg	1	533		70	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 83 %	Limits: 37	7-122 %	Dilı	ıtion: 1x					
2-Fluorobiphenyl (Surr)			93 %	44	-115 %		"					
Phenol-d6 (Surr)			89 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			97 %	54	-127 %		"					
2-Fluorophenol (Surr)			89 %	35	-115 %		"					
2,4,6-Tribromophenol (Surr)			105 %	39	-132 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile C	Organic (Compoun	ds by EP	A 8270D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051065 - EPA 3546							Solid	l				
Duplicate (9051065-DUP1)			Prepared:	05/20/19	16:13 Ana	lyzed: 05/21	/19 11:40					
QC Source Sample: COMP1 (A9	PE0508-05)											
EPA 8270D												
Acenaphthene	ND		807000	ug/kg	10000		880000			***	30%	
Acenaphthylene	ND		807000	ug/kg	10000		ND				30%	
Anthracene	1970000		807000	ug/kg	10000		2050000			4	30%	B-0
Benz(a)anthracene	6290000		807000	ug/kg	10000		7230000			14	30%	
Benzo(a)pyrene	8270000		1210000	ug/kg	10000		9030000			9	30%	
Benzo(b)fluoranthene	9400000		1210000	ug/kg	10000		10100000			7	30%	M-0
Benzo(k)fluoranthene	3200000		1210000	ug/kg	10000		3740000			15	30%	M-0
Benzo(g,h,i)perylene	6320000		807000	ug/kg	10000		6990000			10	30%	
Chrysene	7370000		807000	ug/kg	10000		7850000			6	30%	
Dibenz(a,h)anthracene	961000		807000	ug/kg	10000		973000			1	30%	
Fluoranthene	17700000)	807000	ug/kg	10000		18700000			6	30%	B-0
Fluorene	ND		807000	ug/kg	10000		445000			***	30%	
Indeno(1,2,3-cd)pyrene	6140000		807000	ug/kg	10000		6560000			7	30%	
1-Methylnaphthalene	ND		1610000	ug/kg	10000		ND				30%	
2-Methylnaphthalene	ND		1610000	ug/kg	10000		ND				30%	
Naphthalene	ND		1610000	ug/kg	10000		970000			***	30%	Q-1
Phenanthrene	8650000		807000	ug/kg	10000		8820000			2	30%	
Pyrene	17400000)	807000	ug/kg	10000		18500000			6	30%	B-0
Carbazole	2170000		1210000	ug/kg	10000		2280000			5	30%	
Dibenzofuran	ND		807000	ug/kg	10000		ND				30%	
4-Chloro-3-methylphenol	ND		8070000	ug/kg	10000		ND				30%	
2-Chlorophenol	ND		4020000	ug/kg	10000		ND				30%	
2,4-Dichlorophenol	ND		4020000	ug/kg	10000		ND				30%	
2,4-Dimethylphenol	ND		4020000	ug/kg	10000		ND				30%	
2,4-Dinitrophenol	ND		20200000	ug/kg	10000		ND				30%	
4,6-Dinitro-2-methylphenol	ND		20200000	ug/kg	10000		ND				30%	
2-Methylphenol	ND		2020000	ug/kg	10000		ND				30%	
3+4-Methylphenol(s)	ND		2020000	ug/kg	10000		ND				30%	
2-Nitrophenol	ND		8070000	ug/kg	10000		ND				30%	
4-Nitrophenol	ND		8070000	ug/kg	10000		ND				30%	
Pentachlorophenol (PCP)	ND		8070000	ug/kg	10000		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051065 - EPA 3546 Solid **Duplicate (9051065-DUP1)** Prepared: 05/20/19 16:13 Analyzed: 05/21/19 11:40 QC Source Sample: COMP1 (A9E0508-05) Phenol ND 1610000 ug/kg 10000 ND 30% 30% ND 4020000 2,3,4,6-Tetrachlorophenol ug/kg 10000 ND ug/kg 2,3,5,6-Tetrachlorophenol ND 4020000 10000 ND 30% 2,4,5-Trichlorophenol ND 4020000 ug/kg 10000 ND 30% 2,4,6-Trichlorophenol ND 4020000 10000 ND 30% ug/kg ---------ND ND 30% Bis(2-ethylhexyl)phthalate 12100000 ug/kg 10000 Butyl benzyl phthalate ND 8070000 ug/kg 10000 ND 30% Diethylphthalate ND 8070000 ND 30% --ug/kg 10000 ug/kg Dimethylphthalate ND ---8070000 10000 ND 30% Di-n-butylphthalate ND 8070000 ug/kg 10000 ND 30% Di-n-octyl phthalate ND 8070000 ug/kg 10000 ND 30% N-Nitrosodimethylamine ND 2020000 ND 30% ug/kg 10000 N-Nitroso-di-n-propylamine ND 2020000 ug/kg 10000 ND 30% N-Nitrosodiphenylamine ND 2020000 10000 ND 30% ug/kg Bis(2-Chloroethoxy) methane ND 2020000 ug/kg 10000 ND 30% Bis(2-Chloroethyl) ether ND ___ 2020000 ug/kg 10000 ND ___ 30% 2,2'-Oxybis(1-Chloropropane) ND 2020000 ug/kg 10000 ND 30% ND ND 30% Hexachlorobenzene 807000 10000 ug/kg ---ND Hexachlorobutadiene 2020000 ug/kg 10000 ND 30% 4020000 Hexachlorocyclopentadiene ND 10000 ND 30% ug/kg ND 2020000 ND 30% Hexachloroethane ug/kg 10000 2-Chloronaphthalene ND ---807000 ug/kg 10000 ND ------30% 1,2-Dichlorobenzene ND 2020000 ug/kg 10000 ND 30% ND 2020000 ND 30% 1,3-Dichlorobenzene ug/kg 10000 ---ND 2020000 ND 30% 1,4-Dichlorobenzene ug/kg 10000 ND 30% 1,2,4-Trichlorobenzene 2020000 10000 ND ug/kg ---4-Bromophenyl phenyl ether ND 2020000 10000 ND 30% ug/kg ND 2020000 ND 4-Chlorophenyl phenyl ether --ug/kg 10000 ---------30% Aniline ND 4020000 ug/kg 10000 ND 30% 4-Chloroaniline ND 2020000 10000 ND 30% ug/kg ---2-Nitroaniline ND 16100000 ug/kg 10000 ND 30% ND 16100000 ND 30% 3-Nitroaniline 10000 ug/kg ------

Apex Laboratories

Philip Merenberg

ND

4-Nitroaniline

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 45 of 61

10000

16100000

ug/kg

S-01

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Amount Result % REC Limits RPD Limit Limit Notes Batch 9051065 - EPA 3546 Solid **Duplicate (9051065-DUP1)** Prepared: 05/20/19 16:13 Analyzed: 05/21/19 11:40 QC Source Sample: COMP1 (A9E0508-05) ug/kg Nitrobenzene ND 8070000 10000 ND 30% 2,4-Dinitrotoluene ND 8070000 10000 30% ug/kg ND 8070000 2,6-Dinitrotoluene ND ug/kg 10000 ND 30% Benzoic acid ND 101000000 ug/kg 10000 ND 30% Benzyl alcohol ND 4020000 ug/kg 10000 ND 30% 30% ND 2020000 10000 ND Isophorone ug/kg 2020000 Azobenzene (1,2-DPH) ND ug/kg 10000 ND 30% Bis(2-Ethylhexyl) adipate ND 20200000 ND 30% ug/kg 10000 Q-52 3,3'-Dichlorobenzidine ND 16100000 ug/kg 10000 ND 30% 1,2-Dinitrobenzene ND 20200000 ug/kg 10000 ND 30% 1,3-Dinitrobenzene ND 20200000 ug/kg 10000 ND 30% 20200000 1,4-Dinitrobenzene ND 10000 ND 30% ug/kg ND 4020000 10000 ND 30% Pyridine ug/kg Surr: Nitrobenzene-d5 (Surr) Recovery: 865 % Limits: 37-122 % Dilution: 10000x S-05 2-Fluorobiphenyl (Surr) % 44-115 % S-01 Phenol-d6 (Surr) % 33-122 % S-01 p-Terphenyl-d14 (Surr) % 54-127 % S-01 2-Fluorophenol (Surr) % 35-115 % S-01

39-132 %

%

Apex Laboratories

Philip Nevenberg

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 46 of 61

Hahn and Associates

Project: N

Mult 802 Decommissioning

434 NW 6th Ave. Suite 203Project Number: 2708-60FPortland, OR 97209Project Manager: Rob Ede

Report ID: A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	OA (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051011 - EPA 3051A							Soli	d				
Blank (9051011-BLK1)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/20	/19 20:55					
EPA 6020A												
Antimony	ND		0.962	mg/kg	10							
Arsenic	ND		0.962	mg/kg	10							
Barium	ND		0.962	mg/kg	10							
Beryllium	ND		0.192	mg/kg	10							
Cadmium	ND		0.192	mg/kg	10							
Chromium	ND		0.962	mg/kg	10							
Copper	ND		0.962	mg/kg	10							
Iron	ND		48.1	mg/kg	10							
Lead	ND		0.192	mg/kg	10							
Manganese	ND		0.962	mg/kg	10							
Mercury	ND		0.0769	mg/kg	10							
Nickel	ND		0.962	mg/kg	10							
Selenium	ND		0.962	mg/kg	10							
Silver	ND		0.192	mg/kg	10							
Thallium	ND		0.192	mg/kg	10							
Vanadium	ND		0.962	mg/kg	10							
Zinc	ND		3.85	mg/kg	10							
Blank (9051011-BLK2)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/21	/19 19:25					
EPA 6020A												
Aluminum	ND		48.1	mg/kg	10							
Calcium	ND		96.2	mg/kg	10							
Magnesium	ND		48.1	mg/kg	10							
Potassium	ND		96.2	mg/kg								0
Sodium	ND		96.2	mg/kg	10							Q-
LCS (9051011-BS1)			Prepared	: 05/17/19	12:15 Anal	lyzed: 05/20	/19 20:59					
EPA 6020A												
Antimony	24.2		1.00	mg/kg	10	25.0		97	80-120%			
Arsenic	50.5		1.00	mg/kg		50.0		101	80-120%			
Barium	51.9		1.00	mg/kg	10	50.0		104	80-120%			
Beryllium	23.9		0.200	mg/kg	10	25.0		96	80-120%			
Cadmium	50.2		0.200	mg/kg	10	50.0		100	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	DA (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051011 - EPA 3051A							Soli	d				
LCS (9051011-BS1)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/20/	/19 20:59					
Chromium	51.7		1.00	mg/kg	10	50.0		103	80-120%			
Copper	50.6		1.00	mg/kg	10	50.0		101	80-120%			
Iron	2550		50.0	mg/kg	10	2500		102	80-120%			
Lead	48.6		0.200	mg/kg		50.0		97	80-120%			
Manganese	51.7		1.00	mg/kg	10	50.0		103	80-120%			
Mercury	0.969		0.0800	mg/kg	10	1.00		97	80-120%			
Nickel	52.3		1.00	mg/kg		50.0		105	80-120%			
Selenium	22.4		1.00	mg/kg		25.0		90	80-120%			
Silver	24.8		0.200	mg/kg	10	25.0		99	80-120%			
Thallium	24.6		0.200	mg/kg		25.0		99	80-120%			
Vanadium	50.5		1.00	mg/kg	10	50.0		101	80-120%			
Zinc	52.8		4.00	mg/kg		50.0		106	80-120%			
LCS (9051011-BS2)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/21/	/19 19:29					
EPA 6020A			1									
Aluminum	2420		50.0	mg/kg	10	2500		97	80-120%			
Calcium	2550		100	mg/kg		2500		102	80-120%			
Magnesium	2410		50.0	mg/kg		2500		96	80-120%			
Potassium	2600		100	mg/kg		2500		104	80-120%			
Sodium	2580		100	mg/kg		2500		103	80-120%			Q-10
Duplicate (9051011-DUP1)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/20/	/19 21:21					
QC Source Sample: COMP1 (A9	E0508-05)		•									
EPA 6020A												
Aluminum	1710		49.9	mg/kg	10		1690			0.8	40%	
Antimony	ND		0.998	mg/kg			ND				40%	
Arsenic	1.33		0.998	mg/kg			1.66			22	40%	
Barium	15.6		0.998	mg/kg			20.5			27	40%	
Beryllium	ND		0.200	mg/kg			0.211			***	40%	
Cadmium	0.557		0.200	mg/kg			0.349			46	40%	Q-0:
Calcium	509		99.8	mg/kg			559			9	40%	~-0.
Chromium	2.38		0.998				2.83			18	40%	
			0.998	mg/kg			10.9			33	40%	
Copper	7.83			mg/kg								
Iron	33800		49.9	mg/kg	10		30800			9	40%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	A (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051011 - EPA 3051A							Soli	d				
Duplicate (9051011-DUP1)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/20	/19 21:21					
QC Source Sample: COMP1 (A9H	E0508-05)											
Lead	22.8		0.200	mg/kg	10		26.8			16	40%	
Magnesium	106		49.9	mg/kg	10		82.2			25	40%	
Manganese	362		0.998	mg/kg	10		363			0.3	40%	
Mercury	ND		0.0798	mg/kg	10		ND				40%	
Nickel	9.17		0.998	mg/kg	10		7.86			15	40%	
Potassium	ND		99.8	mg/kg	10		ND				40%	
Selenium	ND		0.998	mg/kg	10		ND				40%	
Silver	ND		0.200	mg/kg	10		ND				40%	
Thallium	ND		0.200	mg/kg	10		ND				40%	
Vanadium	11.9		0.998	mg/kg	10		16.3			32	40%	
Zinc	74.0		3.99	mg/kg	10		71.3			4	40%	
QC Source Sample: COMP1 (A9E EPA 6020A	E0508-05RE	<u> </u>										
Sodium	ND		99.8	mg/kg	10		95.6			***	40%	Q-1
Matrix Spike (9051011-MS1)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/20	/19 21:25					
QC Source Sample: COMP1 (A9E	E0508-05)											
EPA 6020A												
Aluminum	3640		52.4	mg/kg		2620	1690		75-125%			Q-0
Antimony	23.7		1.05	mg/kg	10	26.2	ND	90	75-125%			
Arsenic	50.4		1.05	mg/kg	10	52.4	1.66	93	75-125%			
Barium	64.0		1.05	mg/kg	10	52.4	20.5	83	75-125%			
Beryllium	23.4		0.210	mg/kg	10	26.2	0.211	88	75-125%			
Cadmium	50.3		0.210	mg/kg	10	52.4	0.349	95	75-125%			
Calcium	2810		105	mg/kg	10	2620	559	86	75-125%			
Chromium	61.6		1.05	mg/kg	10	52.4	2.83	112	75-125%			
Copper	77.0		1.05	mg/kg	10	52.4	10.9	126	75-125%			Q-0
Iron	32000		52.4	mg/kg	10	2620	30800	47	75-125%			Q-03, Q-0
Lead	66.9		0.210	mg/kg	10	52.4	26.8	77	75-125%			
Loud	00.5			88		02	20.0					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	DA (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051011 - EPA 3051A							Soli	id				
Matrix Spike (9051011-MS1)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/20	/19 21:25					
QC Source Sample: COMP1 (A9E	20508-05)											
Manganese	181		1.05	mg/kg	10	52.4	363	-346	75-125%			Q-04
Mercury	0.960		0.0839	mg/kg	10	1.05	ND	92	75-125%			
Nickel	76.5		1.05	mg/kg	10	52.4	7.86	131	75-125%			Q-04
Potassium	2540		105	mg/kg	10	2620	ND	97	75-125%			
Selenium	21.7		1.05	mg/kg	10	26.2	ND	83	75-125%			
Silver	25.2		0.210	mg/kg	10	26.2	ND	96	75-125%			
Thallium	23.2		0.210	mg/kg	10	26.2	ND	89	75-125%			
Vanadium	60.5		1.05	mg/kg	10	52.4	16.3	84	75-125%			
Zinc	97.8		4.19	mg/kg	10	52.4	71.3	51	75-125%			Q-04
Matrix Spike (9051011-MS2)			Prepared	: 05/17/19	12:15 Ana	lyzed: 05/21	/19 19:50					
QC Source Sample: COMP1 (A9E EPA 6020A	0508-05RE	1)										
Sodium	2620		105	mg/kg	10	2620	95.6	96	75-125%			Q-16

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051027 - ASTM D7511-1	12mod (S)					Soli	d				
Blank (9051027-BLK1)			Prepared	: 05/20/19	07:51 Anal	lyzed: 05/20)/19 13:50					
D7511-12 Cyanide, Total	ND		0.100	mg/kg	1							
LCS (9051027-BS1)			Prepared	: 05/20/19 (07:51 Ana	lyzed: 05/20)/19 13:52					
<u>D7511-12</u>												
Cyanide, Total	0.422		0.100	mg/kg	1	0.400		105	84-116%			
LCS (9051027-BS2)			Prepared	: 05/20/19	07:51 Ana	lyzed: 05/20)/19 13:48					
<u>D7511-12</u>				_								
Cyanide, Total	0.108		0.100	mg/kg	1	0.200		54	84-116%			CN_1
Matrix Spike (9051027-MS1)			Prepared	: 05/20/19 (07:51 Ana	lyzed: 05/20)/19 14:00					
QC Source Sample: COMP1 (A9E	0508-05)											
D7511-12 Cyanide, Total	14.1		2.00	mg/kg	20	0.399	14.5	-95	64-136%			Q-03
Matrix Spike Dup (9051027-MS	SD1)		Prepared	: 05/20/19	07:51 Anal	lyzed: 05/20)/19 14:04					
QC Source Sample: COMP1 (A9E	0508-05)											
<u>D7511-12</u>	10.5		1.05		20	0.205	14.5	• • •	< 1.10 < C :	_	470/	0.00
Cyanide, Total	13.5		1.97	mg/kg	20	0.395	14.5	-266	64-136%	5	47%	Q-03

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	ls)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051067							
A9E0508-05	Solid	NWTPH-Dx	05/13/19 15:15	05/20/19 16:21	1.18g/5mL	10g/5mL	8.47
	Gaso	line Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051006			•	•			
A9E0508-05	Solid	NWTPH-Gx (MS)	05/13/19 15:15	05/13/19 15:15	10.15g/15mL	5g/5mL	1.48
		Volatile Orga	anic Compounds by	EPA 5035A/8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051006	111111111	- Induited	Sumprou	Tropulou			
A9E0508-05	Solid	5035A/8260C	05/13/19 15:15	05/13/19 15:15	10.15g/15mL	5g/5mL	1.48
		TCLP Volatile	Organic Compounds	s by EPA 1311/8260	C		
Prep: EPA 1311/5030I	rep: EPA 1311/5030B TCLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051246							
A9E0508-05	Solid	1311/8260C	05/13/19 15:15	05/24/19 10:48	5mL/5mL	5mL/5mL	1.00
		Semivolatil	e Organic Compoun	ds by EPA 8270D			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051065		onou	Sampion	. repureu			
A9E0508-05	Solid	EPA 8270D	05/13/19 15:15	05/20/19 16:13	1.16g/5mL	15g/2mL	32.30
		Total	Metals by EPA 602	OA (ICPMS)			
Prep: EPA 3051A		1000	,	()	Sample	Default	RL Prep
•	Matrice	Matle - J	Com:-1- J	Draw	Initial/Final	Initial/Final	Factor
Lab Number Batch: 9051011	Matrix	Method	Sampled	Prepared	minimi/1 mui	minan/1 mai	1 40101
A9E0508-05	Solid	EPA 6020A	05/13/19 15:15	05/17/19 12:15	0.482g/50mL	0.5g/50mL	1.04
11/10/00 0/	Sonu	2171 002071	03/13/17 13.13	05/1//1/ 12.15	0.402g/30IIIL	0.5g/50IIIL	1.07

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

SAMPLE PREPARATION INFORMATION

		Tota	Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A		V 4 1	a		Sample Initial/Final	Default Initial/Final	RL Prep Factor
Lab Number	Matrix	Method	Sampled	Prepared			
A9E0508-05RE1	Solid	EPA 6020A	05/13/19 15:15	05/17/19 12:15	0.482g/50mL	0.5g/50mL	1.04
		Total Cyanide by UV	Digestion/Gas Diffus	sion/Amperometric I	Detection		
Prep: ASTM D7511-12mod (S)				Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051027							
A9E0508-05	Solid	D7511-12	05/13/19 15:15	05/20/19 07:51	2.5342g/50mL	2.5g/50mL	0.99
		TCL	P Extraction by EPA	1311 (ZHE)			
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051218							
A9E0508-05	Solid	EPA 1311 ZHE	05/13/19 15:15	05/23/19 15:35	25.06g/500mL	25g/500mL	NA

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:


Apex Laboratories

ex Laborat	<u>ories</u>
A-01	Reporting limit raised due to possible lab contamination.
В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
CN_I	Cyanide Interference Challenge Solution. No Cyanide is present in spike solution. Results are valid if Non Detect (No Cyanide detected.)
COMP	Sample is a composite of discrete samples. See prep information for details.
E-05	Estimated Result. Initial Calibration Verification (ICV) failed high. No affect on non-detect results.
F-17	No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-17	RPD between original and duplicate sample is outside of established control limits.
Q-18	Matrix Spike results for this extraction batch are not reported due to the high dilution necessary for analysis of the source sample.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to erratic or low blank spike recoveries, results for this analyte are considered Estimated Values.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +12%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +13%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +3.3%. The results are reported as Estimated Values.

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and AssociatesProject:Mult 802 Decommissioning434 NW 6th Ave. Suite 203Project Number:2708-60FReport ID:Portland, OR 97209Project Manager:Rob EdeA9E0508 - 05 29 19 1543

Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +3.5%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +3.6%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +42%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +6%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +8%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +9.1%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -5.9%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
TCLP	This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 9051218.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

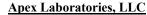
"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.


Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 56 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 57 of 61

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 58 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0508 - 05 29 19 1543

HAHN AND ASSOCIATES, INC. Environmental Consultants 434 WW Safth Avenue, Sule 203 - Porland OR 97209 (573) 794-0777 - Ess. KROS 2027 - POR	FIGHT AND ASSOCIATES, INC. Environmental Consultants W. Swith Avenue, Suite 203 - Fortland OR 9' 15031 746-0711 - Ess. Kross 222 - 220	Consults 103 - Port	ants land OR 97209		Laboratory	Laboratory Lab Project No.	Apex Labs Tigard, Oregon	uoßa			5	CHAIN OF CUSTO	CHAIN OF CUSTODY Chain of Custody No. 1
	1000	22 (500)		L									
Project Manager Project No.	Rob Ede 2708-60F			Š	Liquid with Sediment Sample Test Filtrate	Sediment Sa Test Filtrale		Test Segment		Tes:805		Samples Received at 4C (Y or N)	or N)
Project Name Collected by	Mult 802 Decommissioning Ben Uhi	commissio	ning	Σ	Multi-Phase Sample Test One (wit	e Sample Test One (which)		Test Separately				Provide Verbal Results (Y or N) Provide Preliminary Fax Results	rN) No
Comments				Matri	¥			N S	Analyses to be Borfer	Po Borfor	73	-	
Sample Number Prefix: 2708-190513- and *2708-190514-	refix: 2708	-190513					a					-	
PLEASE FREEZE and HOLD all but VOAs.	and HOLD a	ll but V	OAs.	******		9260	0728 1			Methor			
Composite VOAs (5035) and soil jars from samples - 001, -002, and -004 to prepare sample COMP1 for testing as selected.	5035) and s to prepare f.	sample sample	from samples - COMP1 for		spanistra	PortieM Ac	PA Methoo		A9∃ yd al	Series le by EPA l			
							OCs py E	хо-нат	TPH-Gx	0\7000\ 0\70000 0\70000			н
ŀ				SW N'a	410		Enll		S	000	922		ina
Lab ID Sample #	Date	Time	Sample Description) 	L)			Removies
100	13-May-19	15:15	47 feet bgs	×	<u>۳</u>		-	-		-	-	-	u manuar i
002	13-May-19	16:00	96 feet bgs	×	3		1	-		-			
003	13-May-19	16:05	pitch frags; 136 feet		-	-	-	-	 	-		-	
+004	14-May-19	15:00	136 feet bgs	×	m		-	-		+	-	-	
COMP1				ľ		×	×	×	>	>		+	
				-	-			+		+			Lab Prepared
	ļ			+	-		1	-	-	-	-	1.	
					ļ		 	-	ļ	1	-	1	
								-	ļ				
										-	-		
				7									
				7									
				\dagger									-
				+			1			-			
				-			-		-	-			
				1			\dagger	+	-	-	-		
				H				+					
Belinguished by												-	
Tropies of	180		Hahn and Associates, Inc		Date		Time	Sec.	A pan		Julus 4	Company	4
Reinquished/by			Company		Date		Time		Deg pa	W	5/15/19	Company	١.
Relinquished by	ė,		Company	 	Date	F	Time	Sec.	ceived by		*	Company	2
				1		1					I) S		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates

Project:

Mult 802 Decommissioning

434 NW 6th Ave. Suite 203 Portland, OR 97209 Project Number: **2708-60F**Project Manager: **Rob Ede**

Report ID: A9E0508 - 05 29 19 1543

Lab Prepared Appropriate Containers Used (Y or N)
Provide Verbal Results (Y or N)
Provide Preliminary Fax Results Chain of Custody No. непа Shake Apex Labs Liquid with Sediment Sample
Test Filtrate
Multi-Phase Sample Lab Project No. AOCe (EPA 8260C) Number of Containers Other Water 96 feet bgs pitch frags, 136 feet bgs PLEASE FREEZE and HOLD all but VOAs. Composite VOA (5035) from samples -001, -002, and -004 to prepare sample COMP1 for VOC testing. 47 feet bgs 136 feet bgs 434 NW Sixth Avenue, Suite 203 • Portland OR 97209 HAHN AND ASSOCIATES, INC. Rob Ede 2708-60F Muti 802 Decorrentssioning Ben Uni **Environmental Consultants** Sample Number Prefix: 2708-190513-and *2708-190514-15:15 16:00 16:05 15:00 13-May-19 13-May-19 13-May-19 14-May-19 Date COMP1 005 83 .00 90

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

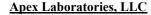
Philip Manherg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates
434 NW 6th Ave. Suite 203
Portland, OR 97209

Project: Mult 802 Decommissioning

Project Number: **2708-60F**Project Manager: **Rob Ede**


Report ID: A9E0508 - 05 29 19 1543

APEX LABS COOLER RECEIP	<u>l' form</u>
Client: Hahn E	Element WO#: A9 E0508
Project/Project #: Mult 802 Decomm	issioning 2708-601=
Delivery Info:	
Date/time received: $\frac{5}{15}/19$ @ 1235 By: CF	H
Delivered by: Apex Client ESS FedEx UPS Swit	ft Sanyou CDC Other
Cooler Inspection Date/time inspected: 5/15/19@ 1349	By: C C 11
	als? Yes No X
Signed/dated by client? Yes X No	als: 165NO
Signed/dated by Apex? Yes X No	
Cooler#1 Cooler#2 Cooler#3 Cooler	#4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	
Received on ice? (Y/N)	
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other) [Gel/Real/Other]	
Condition: Good	
If some coolers are in temp and some out, were green dots applied to out Out of temperature samples form initiated? Yes No No Samples Inspection: Date/time inspected: All samples intact? Yes No Comments: Bottle labels/COCs agree? Yes No Comments:	Ву:
on cents. rend 15:50	The state of the s
COC/container discrepancies form initiated? Yes No NA	
Containers/volumes received appropriate for analysis? Yes No	Comments:
Do VOA vials have visible headspace? Yes No NA X	
Water samples: pH checked: YesNoNApH appropriate? Yes Comments:	No_NA_
Additional information:	
Labeled by: Witness: Cooler Inspected by:	See Project Contact Form: Y
CIP IT	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Tuesday, May 28, 2019
Rob Ede
Hahn and Associates
434 NW 6th Ave. Suite 203
Portland, OR 97209

RE: A9E0677 - Mult 802 Decommissioning - 2708-60F

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9E0677, which was received by the laboratory on 5/21/2019 at 12:09:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

1.5 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 1 of 45

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
2708-190520-006	A9E0677-01	Solid	05/20/19 15:00	05/21/19 12:09

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or	Oil Hydrocar	ons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190520-006 (A9E0677-01)				Matrix: Solid	i	Ва	tch: 9051229	
Diesel	305000		34500	mg/kg	100	05/24/19	NWTPH-Dx	F-17
Oil	132000		69000	mg/kg	100	05/24/19	NWTPH-Dx	F-17
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	100	05/24/19	NWTPH-Dx	S-01

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons	(Benzene tl	nrough Naphtha	lene) by	NWTPH-G	x	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190520-006 (A9E0677-01)				Matrix: Solid		Ва	ntch: 9051092	V-15
Gasoline Range Organics	39200		16000	mg/kg	100000	05/21/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 133 % 101 %	Limits: 50-150 % 50-150 %	1 1	05/21/19 05/21/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190520-006 (A9E0677-01)				Matrix: So	olid	Bat	tch: 9051092	V-15
Acetone	ND		3190000	ug/kg	100000	05/21/19	5035A/8260C	
Acrylonitrile	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
Benzene	114000		31900	ug/kg	100000	05/21/19	5035A/8260C	
Bromobenzene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
Bromochloromethane	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Bromodichloromethane	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
Bromoform	ND		639000	ug/kg	100000	05/21/19	5035A/8260C	
Bromomethane	ND		1600000	ug/kg	100000	05/21/19	5035A/8260C	
2-Butanone (MEK)	ND		1600000	ug/kg	100000	05/21/19	5035A/8260C	
n-Butylbenzene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
sec-Butylbenzene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
ert-Butylbenzene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Carbon disulfide	ND		1600000	ug/kg	100000	05/21/19	5035A/8260C	
Carbon tetrachloride	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
Chlorobenzene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
Chloroethane	ND		1600000	ug/kg	100000	05/21/19	5035A/8260C	
Chloroform	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Chloromethane	ND		799000	ug/kg	100000	05/21/19	5035A/8260C	
2-Chlorotoluene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
1-Chlorotoluene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Dibromochloromethane	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		799000	ug/kg	100000	05/21/19	5035A/8260C	
,2-Dibromoethane (EDB)	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Dibromomethane	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
,2-Dichlorobenzene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
,3-Dichlorobenzene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
4-Dichlorobenzene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
ichlorodifluoromethane	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
1-Dichloroethane	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
2-Dichloroethane (EDC)	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
1-Dichloroethene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
is-1,2-Dichloroethene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
ans-1,2-Dichloroethene	ND		79900	ug/kg ug/kg	100000	05/21/19	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190520-006 (A9E0677-01)				Matrix: So	lid	Bat	tch: 9051092	V-15
1,2-Dichloropropane	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
1,3-Dichloropropane	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
2,2-Dichloropropane	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
1,1-Dichloropropene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
cis-1,3-Dichloropropene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
rans-1,3-Dichloropropene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Ethylbenzene	95500		79900	ug/kg	100000	05/21/19	5035A/8260C	
Hexachlorobutadiene	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
2-Hexanone	ND		1600000	ug/kg	100000	05/21/19	5035A/8260C	
sopropylbenzene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
1-Isopropyltoluene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Methylene chloride	ND		799000	ug/kg	100000	05/21/19	5035A/8260C	
-Methyl-2-pentanone (MiBK)	ND		1600000	ug/kg	100000	05/21/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Vaphthalene	10300000		319000	ug/kg	100000	05/21/19	5035A/8260C	
-Propylbenzene	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
styrene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
,1,1,2-Tetrachloroethane	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
,1,2,2-Tetrachloroethane	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Cetrachloroethene (PCE)	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
Coluene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
,2,3-Trichlorobenzene	ND		799000	ug/kg	100000	05/21/19	5035A/8260C	
,2,4-Trichlorobenzene	ND		799000	ug/kg	100000	05/21/19	5035A/8260C	
,1,1-Trichloroethane	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
,1,2-Trichloroethane	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
richloroethene (TCE)	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
richlorofluoromethane	ND		319000	ug/kg	100000	05/21/19	5035A/8260C	
2,3-Trichloropropane	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
2,4-Trimethylbenzene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
3,5-Trimethylbenzene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
inyl chloride	ND		79900	ug/kg	100000	05/21/19	5035A/8260C	
,p-Xylene	ND		160000	ug/kg	100000	05/21/19	5035A/8260C	
Xylene	ND		79900	ug/kg ug/kg	100000	05/21/19	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic C	ompounds	by EPA	5035A	8260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	U	nits	Dilution	Date Analyzed	Method Ref.	Notes
2708-190520-006 (A9E0677-01)				Matrix: Solid Batch: 9051092			V-15		
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits:	80-120 %	1	05/21/19	5035A/8260C	
Toluene-d8 (Surr)			91 %		80-120 %	1	05/21/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %		80-120 %	1	05/21/19	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 45

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

	g 1	D-4	Danes d'			D-/		_
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
708-190520-006 (A9E0677-01)				Matrix: So	olid	Bat	tch: 9051172	
Acenaphthene	22600000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Acenaphthylene	ND		785000	ug/kg	10000	05/23/19	EPA 8270D	
Anthracene	11700000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Benz(a)anthracene	6200000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Benzo(a)pyrene	6980000		1180000	ug/kg	10000	05/23/19	EPA 8270D	
Benzo(b)fluoranthene	7190000		1180000	ug/kg	10000	05/23/19	EPA 8270D	M-05
Benzo(k)fluoranthene	2850000		1180000	ug/kg	10000	05/23/19	EPA 8270D	M-05
Benzo(g,h,i)perylene	4560000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Chrysene	6140000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Dibenz(a,h)anthracene	ND		785000	ug/kg	10000	05/23/19	EPA 8270D	
Fluoranthene	27500000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Fluorene	11600000		785000	ug/kg	10000	05/23/19	EPA 8270D	
ndeno(1,2,3-cd)pyrene	4470000		785000	ug/kg	10000	05/23/19	EPA 8270D	
-Methylnaphthalene	6420000		1570000	ug/kg	10000	05/23/19	EPA 8270D	
-Methylnaphthalene	13300000		1570000	ug/kg	10000	05/23/19	EPA 8270D	
Naphthalene	36900000		1570000	ug/kg	10000	05/23/19	EPA 8270D	
Phenanthrene	42000000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Pyrene	23400000		785000	ug/kg	10000	05/23/19	EPA 8270D	
Carbazole	5590000		1180000	ug/kg	10000	05/23/19	EPA 8270D	
Dibenzofuran	12500000		785000	ug/kg	10000	05/23/19	EPA 8270D	
-Chloro-3-methylphenol	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
2-Chlorophenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
2,4-Dichlorophenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
,4-Dimethylphenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
2,4-Dinitrophenol	ND		19600000	ug/kg	10000	05/23/19	EPA 8270D	
,6-Dinitro-2-methylphenol	ND		19600000	ug/kg	10000	05/23/19	EPA 8270D	
-Methylphenol	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
+4-Methylphenol(s)	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	Q-42
-Nitrophenol	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
-Nitrophenol	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
entachlorophenol (PCP)	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
henol	ND		1570000	ug/kg	10000	05/23/19	EPA 8270D	
3,4,6-Tetrachlorophenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

	Sem	iivolatile Org	anic Compou	ınas by EPA	4 82/UD			
A	Sample	Detection	Reporting	TT 10	D1 - 1	Date	Malba	** .
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190520-006 (A9E0677-01)				Matrix: So	olid	Ва	tch: 9051172	
2,3,5,6-Tetrachlorophenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
2,4,5-Trichlorophenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
2,4,6-Trichlorophenol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
Bis(2-ethylhexyl)phthalate	ND		11800000	ug/kg	10000	05/23/19	EPA 8270D	
Butyl benzyl phthalate	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
Diethylphthalate	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
Dimethylphthalate	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
Di-n-butylphthalate	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
Di-n-octyl phthalate	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
N-Nitrosodimethylamine	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
N-Nitroso-di-n-propylamine	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
N-Nitrosodiphenylamine	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
Bis(2-Chloroethoxy) methane	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
Bis(2-Chloroethyl) ether	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
2,2'-Oxybis(1-Chloropropane)	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
Hexachlorobenzene	ND		785000	ug/kg	10000	05/23/19	EPA 8270D	
Hexachlorobutadiene	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
Hexachlorocyclopentadiene	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
Hexachloroethane	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
2-Chloronaphthalene	ND		785000	ug/kg	10000	05/23/19	EPA 8270D	
1,2-Dichlorobenzene	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
1,3-Dichlorobenzene	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
1,4-Dichlorobenzene	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
1,2,4-Trichlorobenzene	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
4-Bromophenyl phenyl ether	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
4-Chlorophenyl phenyl ether	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
Aniline	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D	
1-Chloroaniline	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D	
2-Nitroaniline	ND		15700000	ug/kg	10000	05/23/19	EPA 8270D	
3-Nitroaniline	ND		15700000	ug/kg	10000	05/23/19	EPA 8270D	
4-Nitroaniline	ND		15700000	ug/kg	10000	05/23/19	EPA 8270D	
Nitrobenzene	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	
2,4-Dinitrotoluene	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 45

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
2708-190520-006 (A9E0677-01)				Matrix: Solid	t	Ва	tch: 9051172						
2,6-Dinitrotoluene	ND		7850000	ug/kg	10000	05/23/19	EPA 8270D						
Benzoic acid	ND		97900000	ug/kg	10000	05/23/19	EPA 8270D						
Benzyl alcohol	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D						
Isophorone	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D						
Azobenzene (1,2-DPH)	ND		1960000	ug/kg	10000	05/23/19	EPA 8270D						
Bis(2-Ethylhexyl) adipate	ND		19600000	ug/kg	10000	05/23/19	EPA 8270D						
3,3'-Dichlorobenzidine	ND		15700000	ug/kg	10000	05/23/19	EPA 8270D	Q-52					
1,2-Dinitrobenzene	ND		19600000	ug/kg	10000	05/23/19	EPA 8270D						
1,3-Dinitrobenzene	ND		19600000	ug/kg	10000	05/23/19	EPA 8270D						
1,4-Dinitrobenzene	ND		19600000	ug/kg	10000	05/23/19	EPA 8270D						
Pyridine	ND		3910000	ug/kg	10000	05/23/19	EPA 8270D						
Surrogate: Nitrobenzene-d5 (Surr)		Re	ecovery: %	Limits: 37-122 %	10000	05/23/19	EPA 8270D	S-01					
2-Fluorobiphenyl (Surr)			%	44-115 %	10000	05/23/19	EPA 8270D	S-01					
Phenol-d6 (Surr)			%	33-122 %	10000	05/23/19	EPA 8270D	S-01					
p-Terphenyl-d14 (Surr)			136 %	54-127 %	10000	05/23/19	EPA 8270D	S-05					
2-Fluorophenol (Surr)			%	35-115 %	10000	05/23/19	EPA 8270D	S-01					
2,4,6-Tribromophenol (Surr)			%	39-132 %	10000	05/23/19	EPA 8270D	S-01					

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 602	20A (ICPMS)			_
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190520-006 (A9E0677-01)				Matrix: So	lid			
Batch: 9051152								
Aluminum	ND		55.6	mg/kg	10	05/23/19	EPA 6020A	
Antimony	ND		1.11	mg/kg	10	05/23/19	EPA 6020A	
Arsenic	ND		1.11	mg/kg	10	05/23/19	EPA 6020A	
Barium	2.27		1.11	mg/kg	10	05/23/19	EPA 6020A	
Cadmium	0.372		0.222	mg/kg	10	05/23/19	EPA 6020A	
Calcium	ND		111	mg/kg	10	05/23/19	EPA 6020A	
Chromium	ND		1.11	mg/kg	10	05/23/19	EPA 6020A	
Copper	1.78		1.11	mg/kg	10	05/23/19	EPA 6020A	
Iron	1250		55.6	mg/kg	10	05/23/19	EPA 6020A	
Lead	27.9		0.222	mg/kg	10	05/23/19	EPA 6020A	
Magnesium	ND		55.6	mg/kg	10	05/23/19	EPA 6020A	
Manganese	8.74		1.11	mg/kg	10	05/23/19	EPA 6020A	
Mercury	ND		0.0889	mg/kg	10	05/23/19	EPA 6020A	
Nickel	ND		1.11	mg/kg	10	05/23/19	EPA 6020A	
Potassium	ND		111	mg/kg	10	05/23/19	EPA 6020A	
Selenium	ND		1.11	mg/kg	10	05/23/19	EPA 6020A	
Silver	ND		0.222	mg/kg	10	05/23/19	EPA 6020A	
Sodium	160		111	mg/kg	10	05/23/19	EPA 6020A	
Thallium	ND		0.222	mg/kg	10	05/23/19	EPA 6020A	
Vanadium	1.16		1.11	mg/kg	10	05/23/19	EPA 6020A	
Zinc	35.0		4.44	mg/kg	10	05/23/19	EPA 6020A	
708-190520-006 (A9E0677-01RE1)				Matrix: So	lid			
Batch: 9051152								
Beryllium	ND		0.222	mg/kg	10	05/24/19	EPA 6020A	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

ANALYTICAL SAMPLE RESULTS

Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection													
Sample Detection Reporting Date													
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
2708-190520-006 (A9E0677-01RE2)				Matrix: So	olid	Bat	tch: 9051240						
Cyanide, Total	0.846		0.492	mg/kg	5	05/24/19	D7511-12						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	rocarbon	s by NW7	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051229 - EPA 3546 (Fuels)						Soli	d				
Blank (9051229-BLK1)			Prepared	1: 05/23/19	16:37 Anal	lyzed: 05/24	/19 01:14					
NWTPH-Dx												
Diesel	ND		25.0	mg/kg	1							
Oil	ND		50.0	mg/kg	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50	150 %	Dilı	ution: 1x					
LCS (9051229-BS1)			Prepared	1: 05/23/19	16:37 Anal	lyzed: 05/24	/19 01:36					
NWTPH-Dx												
Diesel	120		25.0	mg/kg	1	125		96	70-130%			
Surr: o-Terphenyl (Surr)		Rece	overy: 95 %	Limits: 50	150 %	Dilı	ution: 1x					
Duplicate (9051229-DUP1)			Prepared	1: 05/23/19	16:37 Anal	lyzed: 05/24	/19 02:18					
QC Source Sample: Non-SDG (A9E0672-01)											
Diesel	634		25.0	mg/kg	1		706			11	30%	F-13, F-
0.1			50.0	mg/kg	1		ND				30%	
Oil	ND		30.0	mg/kg	1		ND				3070	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9051092 - EPA 5035A							Soil						
Blank (9051092-BLK1)			Prepared	d: 05/21/19	11:00 Anal	yzed: 05/21/	/19 12:43						
NWTPH-Gx (MS)													
Gasoline Range Organics	ND		3.33	mg/kg	50								
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 116 %	Limits: 50)-150 %	Dilı	ıtion: 1x						
1,4-Difluorobenzene (Sur)			96 %	50	-150 %		"						
LCS (9051092-BS2)			Prepared	d: 05/21/19	11:00 Anal	yzed: 05/21	/19 12:16						
NWTPH-Gx (MS)													
Gasoline Range Organics	27.2		5.00	mg/kg	50	25.0		109	80-120%				
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 115 %	Limits: 50	0-150 %	Dilı	ıtion: 1x						
1,4-Difluorobenzene (Sur)			98 %	50	1-150 %		"						
Duplicate (9051092-DUP1)			Prepared	d: 05/15/19	10:30 Anal	lyzed: 05/21	/19 16:25						
QC Source Sample: Non-SDG (A9	E0515-01)												
Gasoline Range Organics	ND		5.87	mg/kg	50		ND				30%		
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 96 %	Limits: 50	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			90 %	50	-150 %		"						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051092 - EPA 5035A							Soil					
Blank (9051092-BLK1)			Prepared	: 05/21/19	1:00 Anal	yzed: 05/21/	19 12:43					
5035A/8260C												
Acetone	ND		667	ug/kg	50							
Acrylonitrile	ND		66.7	ug/kg	50							
Benzene	ND		6.67	ug/kg	50							
Bromobenzene	ND		16.7	ug/kg	50							
Bromochloromethane	ND		33.3	ug/kg	50							
Bromodichloromethane	ND		66.7	ug/kg	50							
Bromoform	ND		133	ug/kg	50							
Bromomethane	ND		333	ug/kg	50							
2-Butanone (MEK)	ND		333	ug/kg	50							
n-Butylbenzene	ND		33.3	ug/kg	50							
sec-Butylbenzene	ND		33.3	ug/kg	50							
ert-Butylbenzene	ND		33.3	ug/kg	50							
Carbon disulfide	ND		333	ug/kg	50							
Carbon tetrachloride	ND		66.7	ug/kg	50							
Chlorobenzene	ND		16.7	ug/kg	50							
Chloroethane	ND		333	ug/kg	50							
Chloroform	ND		33.3	ug/kg	50							
Chloromethane	ND		167	ug/kg	50							
2-Chlorotoluene	ND		33.3	ug/kg	50							
4-Chlorotoluene	ND		33.3	ug/kg	50							
Dibromochloromethane	ND		66.7	ug/kg	50							
1,2-Dibromo-3-chloropropane	ND		167	ug/kg	50							
1,2-Dibromoethane (EDB)	ND		33.3	ug/kg	50							
Dibromomethane	ND		33.3	ug/kg	50							
1,2-Dichlorobenzene	ND		16.7	ug/kg	50							
1,3-Dichlorobenzene	ND		16.7	ug/kg	50							
1,4-Dichlorobenzene	ND		16.7	ug/kg	50							
Dichlorodifluoromethane	ND		66.7	ug/kg	50							
1,1-Dichloroethane	ND		16.7	ug/kg	50							
1,2-Dichloroethane (EDC)	ND		16.7	ug/kg	50							
1,1-Dichloroethene	ND		16.7	ug/kg	50							
cis-1,2-Dichloroethene	ND		16.7	ug/kg	50							
trans-1,2-Dichloroethene	ND		16.7	ug/kg	50							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051092 - EPA 5035A							Soil					
Blank (9051092-BLK1)			Prepared	: 05/21/19	11:00 Anal	yzed: 05/21/	19 12:43					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
,1-Dichloropropene	ND		33.3	ug/kg	50							
eis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
rans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
Isopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
1-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,1,2-Tetrachloroethane	ND		66.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Trichloroethene (TCE)	ND		16.7	ug/kg	50							
Γrichlorofluoromethane	ND		66.7	ug/kg	50							
,2,3-Trichloropropane	ND		33.3	ug/kg	50							
,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
n,p-Xylene	ND		33.3	ug/kg	50							
o-Xylene	ND		16.7	ug/kg	50							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 45

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051092 - EPA 5035A Soil Blank (9051092-BLK1) Prepared: 05/21/19 11:00 Analyzed: 05/21/19 12:43 Surr: Toluene-d8 (Surr) Recovery: 94% Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 107 % 80-120 % LCS (9051092-BS1) Prepared: 05/21/19 11:00 Analyzed: 05/21/19 11:49 5035A/8260C Acetone 1800 1000 ug/kg 50 2000 90 80-120% Acrylonitrile 1010 100 50 1000 101 80-120% ug/kg Benzene 978 10.0 ug/kg 50 1000 98 80-120% 25.0 1000 Bromobenzene 1060 50 106 80-120% ug/kg ---------Bromochloromethane 1020 50.0 50 1000 102 80-120% ug/kg 1050 100 1000 Bromodichloromethane ug/kg 50 105 80-120% ---Bromoform 1290 200 ug/kg 50 1000 129 80-120% O-56 Bromomethane 1120 500 50 1000 112 80-120% ug/kg 2-Butanone (MEK) 1930 500 50 2000 97 80-120% ug/kg 50.0 50 1000 113 80-120% n-Butylbenzene 1130 ug/kg --------sec-Butylbenzene 1140 50.0 50 1000 114 80-120% ug/kg tert-Butylbenzene 1120 50.0 50 1000 112 80-120% ug/kg Carbon disulfide 966 500 ug/kg 50 1000 97 80-120% Carbon tetrachloride 1230 100 50 1000 123 80-120% Q-56 ug/kg ---Chlorobenzene 957 25.0 ug/kg 50 1000 96 80-120% Chloroethane 836 500 50 1000 84 80-120% ug/kg 1000 80-120% Chloroform 999 50.0 ug/kg 50 100 Chloromethane 1020 250 50 1000 102 80-120% ug/kg 2-Chlorotoluene 1100 50.0 ug/kg 50 1000 110 80-120% 4-Chlorotoluene 1120 50.0 ug/kg 50 1000 112 80-120% Dibromochloromethane 1080 100 ug/kg 50 1000 108 80-120% 1,2-Dibromo-3-chloropropane 1060 250 ug/kg 50 1000 106 80-120% 976 1,2-Dibromoethane (EDB) 1000 98 80-120% 50.0 ug/kg 50 Dibromomethane 1020 50.0 50 1000 102 80-120% ug/kg 1,2-Dichlorobenzene 1030 25.0 ug/kg 50 1000 103 80-120% 1,3-Dichlorobenzene 1040 25.0 ug/kg 50 1000 104 80-120% 1,4-Dichlorobenzene 978 25.0 50 1000 98 80-120% ug/kg 80-120% Q-56 Dichlorodifluoromethane 1220 100 ug/kg 50 1000 122 1,1-Dichloroethane 899 25.0 1000 90 80-120% ug/kg 50

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 17 of 45

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051092 - EPA 5035A							Soil					
LCS (9051092-BS1)			Prepared	1: 05/21/19	11:00 Ana	lyzed: 05/21	/19 11:49					
1,2-Dichloroethane (EDC)	927		25.0	ug/kg	50	1000		93	80-120%			
1,1-Dichloroethene	810		25.0	ug/kg	50	1000		81	80-120%			
cis-1,2-Dichloroethene	999		25.0	ug/kg	50	1000		100	80-120%			
trans-1,2-Dichloroethene	885		25.0	ug/kg	50	1000		89	80-120%			
1,2-Dichloropropane	1000		25.0	ug/kg	50	1000		100	80-120%			
1,3-Dichloropropane	995		50.0	ug/kg	50	1000		99	80-120%			
2,2-Dichloropropane	1250		50.0	ug/kg	50	1000		125	80-120%			Q-56
1,1-Dichloropropene	1010		50.0	ug/kg	50	1000		101	80-120%			
cis-1,3-Dichloropropene	966		50.0	ug/kg	50	1000		97	80-120%			
trans-1,3-Dichloropropene	1010		50.0	ug/kg	50	1000		101	80-120%			
Ethylbenzene	990		25.0	ug/kg	50	1000		99	80-120%			
Hexachlorobutadiene	1020		100	ug/kg	50	1000		102	80-120%			
2-Hexanone	1890		500	ug/kg	50	2000		94	80-120%			
Isopropylbenzene	1120		50.0	ug/kg	50	1000		112	80-120%			
4-Isopropyltoluene	1100		50.0	ug/kg	50	1000		110	80-120%			
Methylene chloride	715		250	ug/kg	50	1000		71	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	1980		500	ug/kg	50	2000		99	80-120%			
Methyl tert-butyl ether (MTBE)	984		50.0	ug/kg	50	1000		98	80-120%			
Naphthalene	917		100	ug/kg	50	1000		92	80-120%			
n-Propylbenzene	1120		25.0	ug/kg	50	1000		112	80-120%			
Styrene	995		50.0	ug/kg	50	1000		100	80-120%			
1,1,1,2-Tetrachloroethane	1160		100	ug/kg	50	1000		116	80-120%			
1,1,2,2-Tetrachloroethane	1180		50.0	ug/kg	50	1000		118	80-120%			
Tetrachloroethene (PCE)	973		25.0	ug/kg	50	1000		97	80-120%			
Toluene	911		50.0	ug/kg	50	1000		91	80-120%			
1,2,3-Trichlorobenzene	1040		250	ug/kg	50	1000		104	80-120%			
1,2,4-Trichlorobenzene	1060		250	ug/kg	50	1000		106	80-120%			
1,1,1-Trichloroethane	1160		25.0	ug/kg	50	1000		116	80-120%			
1,1,2-Trichloroethane	1030		25.0	ug/kg	50	1000		103	80-120%			
Trichloroethene (TCE)	972		25.0	ug/kg	50	1000		97	80-120%			
Trichlorofluoromethane	947		100	ug/kg	50	1000		95	80-120%			
1,2,3-Trichloropropane	1060		50.0	ug/kg	50	1000		106	80-120%			
1,2,4-Trimethylbenzene	1140		50.0	ug/kg	50	1000		114	80-120%			
1,3,5-Trimethylbenzene	1150		50.0	ug/kg	50	1000		115	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9051092 - EPA 5035A							Soil						
LCS (9051092-BS1)			Prepared	1: 05/21/19	11:00 Anal	yzed: 05/21	/19 11:49						
Vinyl chloride	1040		25.0	ug/kg	50	1000		104	80-120%				
n,p-Xylene	2120		50.0	ug/kg	50	2000		106	80-120%				
o-Xylene	1070		25.0	ug/kg	50	1000		107	80-120%				
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 100 %	Limits: 80	-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			95 %	80	-120 %		"						
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"						
Duplicate (9051092-DUP1)			Prepared	1: 05/15/19	10:30 Anal	lyzed: 05/21	/19 16:25						
OC Source Sample: Non-SDG (A9	E0515-01)												
Acetone	ND		1170	ug/kg	50		ND				30%		
Acrylonitrile	ND		117	ug/kg	50		ND				30%		
Benzene	ND		11.7	ug/kg	50		ND				30%		
Bromobenzene	ND		29.4	ug/kg	50		ND				30%		
Bromochloromethane	ND		58.7	ug/kg	50		ND				30%		
Bromodichloromethane	ND		117	ug/kg	50		ND				30%		
Bromoform	ND		235	ug/kg	50		ND				30%		
Bromomethane	ND		587	ug/kg	50		ND				30%		
2-Butanone (MEK)	ND		587	ug/kg	50		ND				30%		
n-Butylbenzene	ND		58.7	ug/kg	50		ND				30%		
sec-Butylbenzene	ND		58.7	ug/kg	50		ND				30%		
ert-Butylbenzene	ND		58.7	ug/kg	50		ND				30%		
Carbon disulfide	ND		587	ug/kg	50		ND				30%		
Carbon tetrachloride	ND		117	ug/kg	50		ND				30%		
Chlorobenzene	ND		29.4	ug/kg	50		ND				30%		
Chloroethane	ND		587	ug/kg	50		ND				30%		
Chloroform	ND		58.7	ug/kg	50		ND				30%		
Chloromethane	ND		294	ug/kg	50		ND				30%		
2-Chlorotoluene	ND		58.7	ug/kg	50		ND				30%		
4-Chlorotoluene	ND		58.7	ug/kg	50		ND				30%		
Dibromochloromethane	ND		117	ug/kg	50		ND				30%		
,2-Dibromo-3-chloropropane	ND		294	ug/kg	50		ND				30%		
1,2-Dibromoethane (EDB)	ND		58.7	ug/kg	50		ND				30%		
Dibromomethane	ND		58.7	ug/kg	50		ND				30%		
,2-Dichlorobenzene	ND		29.4	ug/kg	50		ND				30%		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051092 - EPA 5035A Soil **Duplicate (9051092-DUP1)** Prepared: 05/15/19 10:30 Analyzed: 05/21/19 16:25 QC Source Sample: Non-SDG (A9E0515-01) 1,3-Dichlorobenzene ND 29.4 50 ND 30% ug/kg ND 29.4 1,4-Dichlorobenzene ug/kg 50 ND 30% Dichlorodifluoromethane ND 117 ug/kg 50 ND 30% 1,1-Dichloroethane ND 29.4 ug/kg 50 ND 30% 1,2-Dichloroethane (EDC) ND 29.4 50 ND 30% ug/kg ---ND 29.4 1,1-Dichloroethene ug/kg 50 ND 30% cis-1,2-Dichloroethene ND 29.4 ug/kg 50 ND 30% trans-1,2-Dichloroethene ND 29.4 ND 30% ug/kg 50 ug/kg 1,2-Dichloropropane ND 29.4 50 ND 30% 1,3-Dichloropropane ND 58.7 ug/kg 50 ND 30% 2,2-Dichloropropane ND 58.7 ug/kg 50 ND 30% ND 58.7 ND 30% 1,1-Dichloropropene ug/kg 50 cis-1,3-Dichloropropene ND 58.7 ug/kg 50 ND 30% ND 58.7 ND 30% trans-1,3-Dichloropropene ug/kg 50 29.4 Ethylbenzene ND ug/kg 50 ND 30% Hexachlorobutadiene ND 117 ug/kg 50 ND 30% 2-Hexanone ND 587 ug/kg 50 ND 30% ND ND 30% Isopropylbenzene 58.7 50 ug/kg ---ND 4-Isopropyltoluene 58.7 ug/kg 50 ND 30% 294 Methylene chloride ND 50 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND ND 30% 587 ug/kg 50 Methyl tert-butyl ether (MTBE) ND ---58.7 ug/kg 50 ND ---30% Naphthalene ND 117 ug/kg 50 ND 30% ND 29.4 ND 30% n-Propylbenzene 50 --ug/kg ND 58.7 ND 30% Styrene ug/kg 50 ND 117 ND 30% 1,1,1,2-Tetrachloroethane ug/kg 50 1,1,2,2-Tetrachloroethane ND 58.7 50 ND 30% ug/kg Tetrachloroethene (PCE) ND ---29.4 ug/kg 50 ---ND ------30% ND 58.7 ug/kg 50 ND 30% ND 294 ND 30% 1,2,3-Trichlorobenzene ug/kg 50 ---1,2,4-Trichlorobenzene ND 294 ug/kg 50 ND 30% 29.4 ND 1,1,1-Trichloroethane ND 50 30% ug/kg ------1,1,2-Trichloroethane ND 29.4 ug/kg 50 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 45

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051092 - EPA 5035A							Soil					
Duplicate (9051092-DUP1)			Prepared	d: 05/15/19	10:30 Anal	lyzed: 05/21	/19 16:25					
QC Source Sample: Non-SDG (A9	E0515-01)											
Trichloroethene (TCE)	ND		29.4	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		117	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		58.7	ug/kg	50		ND				30%	
1,2,4-Trimethylbenzene	ND		58.7	ug/kg	50		ND				30%	
1,3,5-Trimethylbenzene	ND		58.7	ug/kg	50		ND				30%	
Vinyl chloride	ND		29.4	ug/kg	50		ND				30%	
m,p-Xylene	ND		58.7	ug/kg	50		ND				30%	
o-Xylene	ND		29.4	ug/kg	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					
QC Source Sample: Non-SDG (A9	E0515-07)											
5035A/8260C												
Acetone	2490		1180	ug/kg	50	2360	ND	105	36-164%			
Acrylonitrile	1240		118	ug/kg	50	1180	ND	105	65-134%			
Benzene	1170		11.8	ug/kg	50	1180	ND	99	77-121%			
Bromobenzene	1230		29.6	ug/kg	50	1180	ND	104	78-121%			
Bromochloromethane	1310		59.1	ug/kg	50	1180	ND	111	78-125%			
Bromodichloromethane	1250		118	ug/kg	50	1180	ND	105	75-127%			
Bromoform	1480		237	ug/kg	50	1180	ND	125	67-132%			Q-54
Bromomethane	1370		591	ug/kg	50	1180	ND	116	53-143%			
2-Butanone (MEK)	2320		591	ug/kg	50	2360	ND	98	51-148%			
n-Butylbenzene	1240		59.1	ug/kg	50	1180	ND	105	70-128%			
sec-Butylbenzene	1280		59.1	ug/kg	50	1180	ND	108	73-126%			
tert-Butylbenzene	1260		59.1	ug/kg	50	1180	ND	107	73-125%			
Carbon disulfide	1140		591	ug/kg	50	1180	ND	96	63-132%			
Carbon tetrachloride	1420		118	ug/kg	50	1180	ND	120	70-135%			Q-54
Chlorobenzene	1120		29.6	ug/kg	50	1180	ND	95	79-120%			
Chloroethane	1170		591	ug/kg	50	1180	ND	99	59-139%			
Chloroform	1190		59.1	ug/kg	50	1180	ND	101	78-123%			
Chloromethane	1290		296	ug/kg	50	1180	ND	109	50-136%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051092 - EPA 5035A Soil Matrix Spike (9051092-MS1) Prepared: 05/15/19 14:15 Analyzed: 05/21/19 18:13 QC Source Sample: Non-SDG (A9E0515-07) 2-Chlorotoluene 1240 59.1 ug/kg 50 1180 ND 105 75-122% 1270 59.1 1180 4-Chlorotoluene ug/kg 50 ND 108 72-124% Dibromochloromethane 1280 118 ug/kg 50 1180 ND 108 74-126% 1,2-Dibromo-3-chloropropane 1270 296 ug/kg 50 1180 ND 107 61-132% 1,2-Dibromoethane (EDB) 1180 59.1 50 1180 ND 100 78-122% ug/kg ---Dibromomethane 59.1 1180 ND 106 78-125% 1250 ug/kg 50 1,2-Dichlorobenzene 1210 29.6 ug/kg 50 1180 ND 102 78-121% 1190 29.6 50 1180 ND 101 77-121% 1,3-Dichlorobenzene ug/kg 1,4-Dichlorobenzene 1130 29.6 ug/kg 50 1180 ND 96 75-120% Dichlorodifluoromethane 1460 118 ug/kg 50 1180 ND 124 29-149% O - 541,1-Dichloroethane 1100 296 ug/kg 50 1180 ND 93 76-125% 1,2-Dichloroethane (EDC) 29.6 50 1180 ND 96 73-128% 1140 ug/kg 979 1180 83 70-131% 1,1-Dichloroethene 29.6 ug/kg 50 ND cis-1,2-Dichloroethene 29.6 102 1210 1180 ND 77-123% ug/kg 50 29.6 trans-1,2-Dichloroethene 1060 ug/kg 50 1180 ND 90 74-125% 1,2-Dichloropropane 1200 296 ug/kg 50 1180 ND 102 76-123% ___ 1,3-Dichloropropane 1230 59.1 ug/kg 50 1180 ND 104 77-121% 59.1 1180 ND 67-133% Q-54b 2,2-Dichloropropane 1310 50 111 ug/kg 1190 59.1 1180 101 76-125% 1,1-Dichloropropene ug/kg 50 ND 59 1 cis-1,3-Dichloropropene 1150 50 1180 ND 97 74-126% ug/kg trans-1,3-Dichloropropene 59.1 50 1180 ND 102 71-130% 1200 ug/kg 29.6 Ethylbenzene 1160 --ug/kg 50 1180 ND 98 76-122% ---Hexachlorobutadiene 1120 118 ug/kg 50 1180 ND 95 61-135% 2-Hexanone 591 2360 ND 97 2300 50 53-145% --ug/kg 59.1 1180 ND 107 68-134% Isopropylbenzene 1270 ug/kg 50 104 1230 59 1 50 1180 ND 73-127% 4-Isopropyltoluene ug/kg Methylene chloride 894 296 50 1180 ND 76 70-128% Q-54d ug/kg 2360 ND 104 4-Methyl-2-pentanone (MiBK) 2460 591 ug/kg 50 65-135%

Apex Laboratories

Philip Manherz

1,1,1,2-Tetrachloroethane

Naphthalene

Styrene

n-Propylbenzene

Methyl tert-butyl ether (MTBE)

1180

1100

1260

1120

1340

59.1

118

29.6

59.1

118

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

50

50

50

50

50

1180

1180

1180

1180

1180

ND

ND

ND

ND

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

100

93

107

94

113

73-125%

62-129%

73-125%

76-124%

78-125%

Philip Nerenberg, Lab Director

Page 22 of 45

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Limit Amount Notes Batch 9051092 - EPA 5035A Soil Matrix Spike (9051092-MS1) Prepared: 05/15/19 14:15 Analyzed: 05/21/19 18:13 QC Source Sample: Non-SDG (A9E0515-07) 1,1,2,2-Tetrachloroethane 1390 59.1 ug/kg 50 1180 ND 118 70-124% 29.6 Tetrachloroethene (PCE) 1180 1160 ug/kg 50 ND 98 73-128% 77-121% Toluene 1110 59.1 ug/kg 50 1180 ND 94 1,2,3-Trichlorobenzene 1200 296 ug/kg 50 1180 ND 102 66-130% 1,2,4-Trichlorobenzene 1220 296 ug/kg 50 1180 ND 103 67-129% 29.6 1180 ND 73-130% 1,1,1-Trichloroethane 1350 ug/kg 50 114 29.6 1,1,2-Trichloroethane 1250 ug/kg 50 1180 ND 106 78-121% 98 Trichloroethene (TCE) 29.6 50 1180 ND 77-123% 1160 ug/kg ug/kg Trichlorofluoromethane 1140 118 50 1180 ND 96 62-140% 1,2,3-Trichloropropane 1270 59 1 ug/kg 50 1180 ND 107 73-125% 1,2,4-Trimethylbenzene 1300 59.1 ug/kg 50 1180 ND 110 75-123% 59.1 50 1,3,5-Trimethylbenzene 1180 ND 110 73-124% 1300 ug/kg 1270 29.6 1180 ND 107 56-135% Vinyl chloride ug/kg 50 2360 104 m,p-Xylene 2450 59.1 ND 77-124% ug/kg 50 29.6 ug/kg 77-123% o-Xylene 1210 50 ND 103 Surr: 1,4-Difluorobenzene (Surr) 100 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 98 % 80-120 % 4-Bromofluorobenzene (Surr) 101 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 45

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Detection Reporting Spike Source % REC RPD Analyte Result Limit Limit Units Dilution Amount Result % REC Limits RPD Limit Notes

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 9051172 - EPA 3546							Soli	d				
Blank (9051172-BLK1)			Prepared	: 05/22/19	16:25 Anal	yzed: 05/23/	/19 12:43					
EPA 8270D												
Acenaphthene	ND		2.67	ug/kg	1							
Acenaphthylene	ND		2.67	ug/kg	1							
Anthracene	ND		2.67	ug/kg	1							
Benz(a)anthracene	ND		2.67	ug/kg	1							
Benzo(a)pyrene	ND		4.00	ug/kg	1							
Benzo(b)fluoranthene	ND		4.00	ug/kg	1							
Benzo(k)fluoranthene	ND		4.00	ug/kg	1							
Benzo(g,h,i)perylene	ND		2.67	ug/kg	1							
Chrysene	ND		2.67	ug/kg	1							
Dibenz(a,h)anthracene	ND		2.67	ug/kg	1							
Fluoranthene	ND		2.67	ug/kg	1							
Fluorene	ND		2.67	ug/kg	1							
Indeno(1,2,3-cd)pyrene	ND		2.67	ug/kg	1							
1-Methylnaphthalene	ND		5.33	ug/kg	1							
2-Methylnaphthalene	ND		5.33	ug/kg	1							
Naphthalene	ND		5.33	ug/kg	1							
Phenanthrene	ND		2.67	ug/kg	1							
Pyrene	ND		2.67	ug/kg	1							
Carbazole	ND		4.00	ug/kg	1							
Dibenzofuran	ND		2.67	ug/kg	1							
4-Chloro-3-methylphenol	ND		26.7	ug/kg	1							
2-Chlorophenol	ND		13.3	ug/kg	1							
2,4-Dichlorophenol	ND		13.3	ug/kg	1							
2,4-Dimethylphenol	ND		13.3	ug/kg	1							
2,4-Dinitrophenol	ND		66.7	ug/kg	1							
4,6-Dinitro-2-methylphenol	ND		66.7	ug/kg	1							
2-Methylphenol	ND		6.67	ug/kg	1							
3+4-Methylphenol(s)	ND		6.67	ug/kg								
2-Nitrophenol	ND		26.7	ug/kg	1							
4-Nitrophenol	ND		26.7	ug/kg	1							
Pentachlorophenol (PCP)	ND		26.7	ug/kg	1							
Phenol	ND		5.33	ug/kg	1							
2,3,4,6-Tetrachlorophenol	ND		13.3	ug/kg	1							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051172 - EPA 3546							Soli	d				
Blank (9051172-BLK1)			Prepared	: 05/22/19	16:25 Anal	lyzed: 05/23/	/19 12:43					
2,3,5,6-Tetrachlorophenol	ND		13.3	ug/kg	1							
2,4,5-Trichlorophenol	ND		13.3	ug/kg	1							
2,4,6-Trichlorophenol	ND		13.3	ug/kg	1							
Bis(2-ethylhexyl)phthalate	ND		40.0	ug/kg	1							
Butyl benzyl phthalate	ND		26.7	ug/kg	1							
Diethylphthalate	ND		26.7	ug/kg	1							
Dimethylphthalate	ND		26.7	ug/kg	1							
Di-n-butylphthalate	ND		26.7	ug/kg	1							
Di-n-octyl phthalate	ND		26.7	ug/kg	1							
N-Nitrosodimethylamine	ND		6.67	ug/kg	1							
N-Nitroso-di-n-propylamine	ND		6.67	ug/kg	1							
N-Nitrosodiphenylamine	ND		6.67	ug/kg	1							
Bis(2-Chloroethoxy) methane	ND		6.67	ug/kg	1							
Bis(2-Chloroethyl) ether	ND		6.67	ug/kg	1							
2,2'-Oxybis(1-Chloropropane)	ND		6.67	ug/kg	1							
Hexachlorobenzene	ND		2.67	ug/kg	1							
Hexachlorobutadiene	ND		6.67	ug/kg	1							
Hexachlorocyclopentadiene	ND		13.3	ug/kg	1							
Hexachloroethane	ND		6.67	ug/kg	1							
2-Chloronaphthalene	ND		2.67	ug/kg	1							
1,2-Dichlorobenzene	ND		6.67	ug/kg	1							
1,3-Dichlorobenzene	ND		6.67	ug/kg	1							
1,4-Dichlorobenzene	ND		6.67	ug/kg	1							
1,2,4-Trichlorobenzene	ND		6.67	ug/kg	1							
4-Bromophenyl phenyl ether	ND		6.67	ug/kg	1							
4-Chlorophenyl phenyl ether	ND		6.67	ug/kg	1							
Aniline	ND		13.3	ug/kg	1							
4-Chloroaniline	ND		6.67	ug/kg	1							
2-Nitroaniline	ND		53.3	ug/kg	1							
3-Nitroaniline	ND		53.3	ug/kg	1							
4-Nitroaniline	ND		53.3	ug/kg	1							
Nitrobenzene	ND		26.7	ug/kg	1							
2,4-Dinitrotoluene	ND		26.7	ug/kg ug/kg	1							
2,6-Dinitrotoluene	ND		26.7	ug/kg ug/kg	1							
2,0-101111111111111111111111111111111111	ND		20.7	ug/Kg	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			mivolatile	J. gaine (- Jinpoull	.ac by EFF	. 521 00					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051172 - EPA 3546							Soli	d				
Blank (9051172-BLK1)			Prepared	1: 05/22/19 1	6:25 Anal	lyzed: 05/23/	19 12:43					
Benzoic acid	ND		333	ug/kg	1							
Benzyl alcohol	ND		13.3	ug/kg	1							
Isophorone	ND		6.67	ug/kg	1							
Azobenzene (1,2-DPH)	ND		6.67	ug/kg	1							
Bis(2-Ethylhexyl) adipate	ND		66.7	ug/kg	1							
3,3'-Dichlorobenzidine	ND		53.3	ug/kg	1							Q-5
1,2-Dinitrobenzene	ND		66.7	ug/kg	1							
1,3-Dinitrobenzene	ND		66.7	ug/kg	1							
1,4-Dinitrobenzene	ND		66.7	ug/kg	1							
Pyridine	ND		13.3	ug/kg	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 80 %	Limits: 37	-122 %	Dilu	ution: 1x					
2-Fluorobiphenyl (Surr)			76 %	44-	-115 %		"					
Phenol-d6 (Surr)			78 %	33-	-122 %		"					
p-Terphenyl-d14 (Surr)			91 %	54-	-127 %		"					
2-Fluorophenol (Surr)			75 %	35-	-115 %		"					
2,4,6-Tribromophenol (Surr)			71 %	39	-132 %		"					
LCS (9051172-BS1)			Prepared	1: 05/22/19 1	6:25 Anal	lyzed: 05/23/	19 13:19					Q-18
EPA 8270D												
Acenaphthene	477		10.7	ug/kg	4	533		90	40-122%			
Acenaphthylene	496		10.7	ug/kg	4	533		93	32-132%			
Anthracene	495		10.7	ug/kg	4	533			47-123%			
Benz(a)anthracene	510		10.7	ug/kg	4	533		96	49-126%			
Benzo(a)pyrene	530		16.0	ug/kg	4	533		99	45-129%			
Benzo(b)fluoranthene	514		16.0	ug/kg	4	533			45-132%			
Benzo(k)fluoranthene	516		16.0	ug/kg	4	533			47-132%			
Benzo(g,h,i)perylene	492		10.7	ug/kg	4	533			43-134%			
Chrysene	506		10.7	ug/kg	4	533			50-124%			
Dibenz(a,h)anthracene	505		10.7	ug/kg	4	533			45-134%			
Fluoranthene	511		10.7	ug/kg	4	533			50-127%			
Fluorene	471		10.7	ug/kg	4	533			43-125%			
Indeno(1,2,3-cd)pyrene	466		10.7	ug/kg	4	533			45-133%			
	100		10.7	~6/ Kg		222		<i>□</i> /	- 100/0			
l-Methylnaphthalene	443		21.3	ug/kg	4	533		83	40-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051172 - EPA 3546	Solid											
LCS (9051172-BS1)			Prepared	: 05/22/19	16:25 Anal	lyzed: 05/23/	/19 13:19					Q-18
Naphthalene	465		21.3	ug/kg	4	533		87	35-123%			
Phenanthrene	488		10.7	ug/kg	4	533		92	50-121%			
Pyrene	515		10.7	ug/kg	4	533		97	47-127%			
Carbazole	510		16.0	ug/kg	4	533		96	50-122%			
Dibenzofuran	470		10.7	ug/kg	4	533		88	44-120%			
4-Chloro-3-methylphenol	469		107	ug/kg	4	533		88	45-122%			
2-Chlorophenol	484		53.2	ug/kg	4	533		91	34-121%			
2,4-Dichlorophenol	495		53.2	ug/kg	4	533		93	40-122%			
2,4-Dimethylphenol	416		53.2	ug/kg	4	533		78	30-127%			
2,4-Dinitrophenol	753		267	ug/kg	4	533		141	5-137%			Q-29, Q-41
4,6-Dinitro-2-methylphenol	751		267	ug/kg	4	533		141	29-132%			Q-41, Q-29
2-Methylphenol	498		26.7	ug/kg	4	533		93	32-122%			Q-41
3+4-Methylphenol(s)	498		26.7	ug/kg	4	533		93	34-120%			
2-Nitrophenol	624		107	ug/kg	4	533		117	36-123%			Q-41
4-Nitrophenol	434		107	ug/kg	4	533		81	30-132%			
Pentachlorophenol (PCP)	422		107	ug/kg	4	533		79	25-133%			
Phenol	470		21.3	ug/kg	4	533		88	34-120%			
2,3,4,6-Tetrachlorophenol	473		53.2	ug/kg	4	533		89	44-125%			
2,3,5,6-Tetrachlorophenol	474		53.2	ug/kg	4	533		89	40-120%			
2,4,5-Trichlorophenol	519		53.2	ug/kg	4	533		97	41-124%			
2,4,6-Trichlorophenol	485		53.2	ug/kg	4	533		91	39-126%			
Bis(2-ethylhexyl)phthalate	513		160	ug/kg	4	533		96	51-133%			
Butyl benzyl phthalate	533		107	ug/kg	4	533		100	48-132%			
Diethylphthalate	510		107	ug/kg	4	533		96	50-124%			
Dimethylphthalate	477		107	ug/kg	4	533		89	48-124%			
Di-n-butylphthalate	551		107	ug/kg	4	533		103	51-128%			
Di-n-octyl phthalate	544		107	ug/kg	4	533		102	44-140%			
N-Nitrosodimethylamine	446		26.7	ug/kg	4	533		84	23-120%			
N-Nitroso-di-n-propylamine	451		26.7	ug/kg	4	533		85	36-120%			
N-Nitrosodiphenylamine	515		26.7	ug/kg	4	533		97	38-127%			
Bis(2-Chloroethoxy) methane	478		26.7	ug/kg	4	533		90	36-121%			
Bis(2-Chloroethyl) ether	465		26.7	ug/kg	4	533		87	31-120%			Q-41
2,2'-Oxybis(1-Chloropropane)	436		26.7	ug/kg	4	533		82	33-131%			
Hexachlorobenzene	467		10.7	ug/kg	4	533		88	44-122%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051172 - EPA 3546							Soli	id				
LCS (9051172-BS1)	Prepared: 05/22/19 16:25 Analyzed: 05/23/19 13:19										Q-18	
Hexachlorobutadiene	471		26.7	ug/kg	4	533		88	32-123%			
Hexachlorocyclopentadiene	592		53.2	ug/kg	4	533		111	5-140%			Q-41
Hexachloroethane	514		26.7	ug/kg	4	533		96	28-120%			
2-Chloronaphthalene	516		10.7	ug/kg	4	533		97	41-120%			
1,2-Dichlorobenzene	456		26.7	ug/kg	4	533		86	33-120%			
1,3-Dichlorobenzene	450		26.7	ug/kg	4	533		84	30-120%			
1,4-Dichlorobenzene	451		26.7	ug/kg	4	533		85	31-120%			
1,2,4-Trichlorobenzene	486		26.7	ug/kg	4	533		91	34-120%			
4-Bromophenyl phenyl ether	482		26.7	ug/kg	4	533		90	46-124%			
4-Chlorophenyl phenyl ether	453		26.7	ug/kg	4	533		85	45-121%			
Aniline	274		53.2	ug/kg	4	533		51	7-120%			Q-31
4-Chloroaniline	325		26.7	ug/kg	4	533		61	16-120%			
2-Nitroaniline	513		213	ug/kg	4	533		96	44-127%			
3-Nitroaniline	417		213	ug/kg	4	533		78	33-120%			
4-Nitroaniline	489		213	ug/kg	4	533		92	35-120%			
Nitrobenzene	499		107	ug/kg	4	533		94	34-122%			Q-41
2,4-Dinitrotoluene	511		107	ug/kg	4	533		96	48-126%			
2,6-Dinitrotoluene	533		107	ug/kg	4	533		100	46-124%			
Benzoic acid	805		668	ug/kg	4	1070		75	5-140%			
Benzyl alcohol	473		53.2	ug/kg	4	533		89	29-122%			
Isophorone	458		26.7	ug/kg	4	533		86	30-122%			
Azobenzene (1,2-DPH)	510		26.7	ug/kg	4	533		96	39-125%			
Bis(2-Ethylhexyl) adipate	587		267	ug/kg	4	533		110	60-121%			Q-41
3,3'-Dichlorobenzidine	1960		213	ug/kg	4	1070		184	22-121%			Q-29, Q-41
1,2-Dinitrobenzene	488		267	ug/kg	4	533		92	44-120%			
1,3-Dinitrobenzene	570		267	ug/kg	4	533		107	42-127%			Q-41
1,4-Dinitrobenzene	617		267	ug/kg	4	533		116	37-132%			Q-41
Pyridine	371		53.2	ug/kg	4	533		70	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 86 %	Limits: 37	-122 %	Dilt	ution: 4x					
2-Fluorobiphenyl (Surr)			90 %	44	-115 %		"					
Phenol-d6 (Surr)			86 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			94 %	54	-127 %		"					
2-Fluorophenol (Surr)			86 %	35	-115 %		"					
2,4,6-Tribromophenol (Surr)			92 %	39	-132 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051172 - EPA 3546							Solid	ı				
Duplicate (9051172-DUP1)			Prepared:	05/22/19	16:25 Ana	lyzed: 05/23	3/19 14:34					
QC Source Sample: 2708-190520	-006 (A9E067	<u>7-01)</u>										
EPA 8270D												
Acenaphthene	24100000)	801000	ug/kg	10000		22600000			6	30%	
Acenaphthylene	ND		801000	ug/kg	10000		ND				30%	
Anthracene	12800000)	801000	ug/kg	10000		11700000			9	30%	
Benz(a)anthracene	6410000		801000	ug/kg	10000		6200000			3	30%	
Benzo(a)pyrene	7340000		1200000	ug/kg	10000		6980000			5	30%	
Benzo(b)fluoranthene	7530000		1200000	ug/kg	10000		7190000			5	30%	M-0:
Benzo(k)fluoranthene	3440000		1200000	ug/kg	10000		2850000			18	30%	M-0:
Benzo(g,h,i)perylene	4820000		801000	ug/kg	10000		4560000			6	30%	
Chrysene	6450000		801000	ug/kg	10000		6140000			5	30%	
Dibenz(a,h)anthracene	ND		801000	ug/kg	10000		575000			***	30%	
Fluoranthene	29600000)	801000	ug/kg	10000		27500000			7	30%	
Fluorene	13000000)	801000	ug/kg	10000		11600000			12	30%	
Indeno(1,2,3-cd)pyrene	4790000		801000	ug/kg	10000		4470000			7	30%	
1-Methylnaphthalene	6880000		1600000	ug/kg	10000		6420000			7	30%	
2-Methylnaphthalene	14300000)	1600000	ug/kg	10000		13300000			7	30%	
Naphthalene	37900000)	1600000	ug/kg	10000		36900000			3	30%	
Phenanthrene	44700000)	801000	ug/kg	10000		42000000			6	30%	
Pyrene	25000000)	801000	ug/kg	10000		23400000			7	30%	
Carbazole	6190000		1200000	ug/kg	10000		5590000			10	30%	
Dibenzofuran	13500000)	801000	ug/kg	10000		12500000			8	30%	
4-Chloro-3-methylphenol	ND		8010000	ug/kg	10000		ND				30%	
2-Chlorophenol	ND		3990000	ug/kg	10000		ND				30%	
2,4-Dichlorophenol	ND		3990000	ug/kg	10000		ND				30%	
2,4-Dimethylphenol	ND		3990000	ug/kg	10000		ND				30%	
2,4-Dinitrophenol	ND		20000000	ug/kg	10000		ND				30%	
4,6-Dinitro-2-methylphenol	ND		20000000	ug/kg	10000		ND				30%	
2-Methylphenol	ND		2000000	ug/kg	10000		ND				30%	
3+4-Methylphenol(s)	ND		2000000	ug/kg	10000		ND				30%	Q-1
2-Nitrophenol	ND		8010000	ug/kg	10000		ND				30%	
4-Nitrophenol	ND		8010000	ug/kg	10000		ND				30%	
Pentachlorophenol (PCP)	ND		8010000	ug/kg	10000		ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 45

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051172 - EPA 3546 Solid **Duplicate (9051172-DUP1)** Prepared: 05/22/19 16:25 Analyzed: 05/23/19 14:34 QC Source Sample: 2708-190520-006 (A9E0677-01) *** Phenol ND 1600000 ug/kg 10000 1150000 30% ND 3990000 2,3,4,6-Tetrachlorophenol ug/kg 10000 ND 30% ug/kg 2,3,5,6-Tetrachlorophenol ND 3990000 10000 ND 30% 2,4,5-Trichlorophenol ND 3990000 ug/kg 10000 ND 30% 2,4,6-Trichlorophenol ND 3990000 10000 ND 30% ug/kg ------ND ND 30% Bis(2-ethylhexyl)phthalate 12000000 ug/kg 10000 Butyl benzyl phthalate ND 8010000 ug/kg 10000 ND 30% Diethylphthalate ND 8010000 ND 30% --ug/kg 10000 ug/kg Dimethylphthalate ND ---8010000 10000 ND 30% Di-n-butylphthalate ND 8010000 ug/kg 10000 ND 30% Di-n-octyl phthalate ND 8010000 ug/kg 10000 ND 30% N-Nitrosodimethylamine ND 2000000 ND 30% ug/kg 10000 N-Nitroso-di-n-propylamine ND 2000000 ug/kg 10000 ND 30% N-Nitrosodiphenylamine ND 2000000 10000 ND 30% ug/kg 2000000 Bis(2-Chloroethoxy) methane ND ug/kg 10000 ND 30% Bis(2-Chloroethyl) ether ND ___ 2000000 ug/kg 10000 ND ___ 30% 2,2'-Oxybis(1-Chloropropane) ND 2000000 ug/kg 10000 ND 30% ND ND 30% Hexachlorobenzene 801000 10000 ug/kg ---ND Hexachlorobutadiene 2000000 ug/kg 10000 ND 30% 3990000 Hexachlorocyclopentadiene ND 10000 ND 30% ug/kg ND 2000000 ND 30% Hexachloroethane ug/kg 10000 2-Chloronaphthalene ND ---801000 ug/kg 10000 ND ------30% 1,2-Dichlorobenzene ND 2000000 ug/kg 10000 ND 30% ND 2000000 ND 30% 1,3-Dichlorobenzene ug/kg 10000 ---ND 2000000 ND 30% 1,4-Dichlorobenzene ug/kg 10000 ND 30% 1,2,4-Trichlorobenzene 2000000 10000 ND ug/kg ---4-Bromophenyl phenyl ether ND 2000000 10000 ND 30% ug/kg ND 2000000 ND 4-Chlorophenyl phenyl ether --ug/kg 10000 ---------30% Aniline ND 3990000 ug/kg 10000 ND 30% 4-Chloroaniline ND 2000000 10000 ND 30% ug/kg ---2-Nitroaniline ND 16000000 ug/kg 10000 ND 30% ND 16000000 ND 30% 3-Nitroaniline 10000 ug/kg ------

Apex Laboratories

Philip Merenberg

ND

4-Nitroaniline

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 30 of 45

10000

ug/kg

16000000

S-01

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Amount Result % REC Limits RPD Limit Limit Notes Batch 9051172 - EPA 3546 Solid **Duplicate (9051172-DUP1)** Prepared: 05/22/19 16:25 Analyzed: 05/23/19 14:34 QC Source Sample: 2708-190520-006 (A9E0677-01) ug/kg Nitrobenzene ND 8010000 10000 ND 30% 2,4-Dinitrotoluene ND 8010000 10000 30% ug/kg ND ND 8010000 2,6-Dinitrotoluene ug/kg 10000 ND 30% Benzoic acid ND 99900000 ug/kg 10000 ND 30% Benzyl alcohol ND 3990000 ug/kg 10000 ND 30% 30% ND 2000000 10000 ND Isophorone ug/kg 2000000 Azobenzene (1,2-DPH) ND ug/kg 10000 ND 30% Bis(2-Ethylhexyl) adipate ND 20000000 ND 30% ug/kg 10000 Q-52 3,3'-Dichlorobenzidine ND 16000000 ug/kg 10000 ND 30% 1,2-Dinitrobenzene ND 20000000 ug/kg 10000 ND 30% 1,3-Dinitrobenzene ND 20000000 ug/kg 10000 ND 30% 20000000 1,4-Dinitrobenzene ND 10000 ND 30% --ug/kg ND 3990000 10000 ND 30% Pyridine ug/kg Surr: Nitrobenzene-d5 (Surr) Recovery: % Limits: 37-122 % Dilution: 10000x S-01 2-Fluorobiphenyl (Surr) 44-115 % % S-01 Phenol-d6 (Surr) % 33-122 % S-01 p-Terphenyl-d14 (Surr) 232 % 54-127 % S-05 2-Fluorophenol (Surr) 35-115 % % S-01

39-132 %

%

Apex Laboratories

Philip Nevenberg

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	A (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051152 - EPA 3051A							Soli	d				
Blank (9051152-BLK1)			Prepared	: 05/22/19	11:59 Anal	yzed: 05/23/	/19 16:15					
EPA 6020A												
Aluminum	ND		50.0	mg/kg	10							
Antimony	ND		1.00	mg/kg	10							
Arsenic	ND		1.00	mg/kg	10							
Barium	ND		1.00	mg/kg	10							
Cadmium	ND		0.200	mg/kg	10							
Calcium	ND		100	mg/kg	10							
Chromium	ND		1.00	mg/kg	10							
Copper	ND		1.00	mg/kg	10							
Iron	ND		50.0	mg/kg	10							
Lead	ND		0.200	mg/kg	10							
Magnesium	ND		50.0	mg/kg	10							
Manganese	ND		1.00	mg/kg	10							
Mercury	ND		0.0800	mg/kg	10							
Nickel	ND		1.00	mg/kg	10							
Potassium	ND		100	mg/kg	10							
Selenium	ND		1.00	mg/kg	10							
Silver	ND		0.200	mg/kg	10							
Sodium	ND		100	mg/kg	10							
Thallium	ND		0.200	mg/kg	10							
Vanadium	ND		1.00	mg/kg	10							
Zinc	ND		4.00	mg/kg	10							
Blank (9051152-BLK2)			Prepared	: 05/22/19	11:59 Anal	yzed: 05/24	/19 11:31					
EPA 6020A												
Beryllium	ND		0.200	mg/kg	10							Q-1
LCS (9051152-BS1)			Prepared	: 05/22/19 1	11:59 Anal	yzed: 05/23/	/19 16:20					
EPA 6020A												
Aluminum	2410		50.0	mg/kg	10	2500		96	80-120%			
Antimony	22.7		1.00	mg/kg	10	25.0			80-120%			
Arsenic	48.5		1.00	mg/kg	10	50.0		97	80-120%			
Barium	52.0		1.00	mg/kg	10	50.0			80-120%			
Cadmium	46.8		0.200	mg/kg	10	50.0			80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020A (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051152 - EPA 3051	4						Soli	id				
LCS (9051152-BS1)			Prepared	: 05/22/19	11:59 Anal	yzed: 05/23/	/19 16:20					
Calcium	2440		100	mg/kg	10	2500		98	80-120%			
Chromium	48.5		1.00	mg/kg	10	50.0		97	80-120%			
Copper	50.1		1.00	mg/kg	10	50.0		100	80-120%			
Iron	2460		50.0	mg/kg	10	2500		98	80-120%			
Lead	47.1		0.200	mg/kg	10	50.0		94	80-120%			
Magnesium	2370		50.0	mg/kg	10	2500		95	80-120%			
Manganese	48.8		1.00	mg/kg	10	50.0		98	80-120%			
Mercury	0.909		0.0800	mg/kg	10	1.00		91	80-120%			
Nickel	50.6		1.00	mg/kg	10	50.0		101	80-120%			
Potassium	2490		100	mg/kg	10	2500		100	80-120%			
Selenium	22.7		1.00	mg/kg	10	25.0		91	80-120%			
Silver	23.5		0.200	mg/kg	10	25.0		94	80-120%			
Sodium	2420		100	mg/kg	10	2500		97	80-120%			
Thallium	23.1		0.200	mg/kg	10	25.0		93	80-120%			
Vanadium	47.6		1.00	mg/kg	10	50.0		95	80-120%			
Zinc	49.2		4.00	mg/kg	10	50.0		98	80-120%			
LCS (9051152-BS2)			Prepared	: 05/22/19	11:59 Anal	yzed: 05/24	/19 11:35					
EPA 6020A												
Beryllium	22.5		0.200	mg/kg	10	25.0		90	80-120%			Q-1
Duplicate (9051152-DUP1)			Prepared	: 05/22/19 1	11:59 Anal	yzed: 05/23/	/19 16:45					
QC Source Sample: Non-SDG	(A9E0672-01)											
Aluminum	361		53.3	mg/kg	10		519			36	40%	
Antimony	ND		1.07	mg/kg	10		ND				40%	
Arsenic	3.73		1.07	mg/kg	10		4.43			17	40%	
Barium	39.9		1.07	mg/kg	10		60.7			41	40%	Q-0-
Cadmium	ND		0.213	mg/kg			ND				40%	•
Calcium	3380		107	mg/kg	10		4170			21	40%	
Chromium	2.60		1.07	mg/kg	10		3.85			39	40%	
Copper	15.9		1.07	mg/kg	10		16.9			6	40%	
Iron	6220		53.3	mg/kg	10		7660			21	40%	
Lead	1.29		0.213	mg/kg	10		1.48			14	40%	
Magnesium	402		53.3		10		453			12	40%	
wagnesium	402		33.3	mg/kg	10		433			12	40/0	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	OA (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051152 - EPA 3051A							Soli	d				
Duplicate (9051152-DUP1)			Prepared	: 05/22/19	11:59 Anal	lyzed: 05/23/	/19 16:45					
QC Source Sample: Non-SDG (AS	9E0672-01)											
Manganese	684		1.07	mg/kg	10		788			14	40%	
Mercury	ND		0.0853	mg/kg	10		ND				40%	
Nickel	8.64		1.07	mg/kg	10		19.4			77	40%	Q-0-
Potassium	ND		107	mg/kg	10		59.1			***	40%	
Selenium	ND		1.07	mg/kg	10		ND				40%	
Silver	ND		0.213	mg/kg	10		ND				40%	
Sodium	141		107	mg/kg	10		189			29	40%	
Thallium	ND		0.213	mg/kg	10		ND				40%	
Vanadium	5.40		1.07	mg/kg	10		5.78			7	40%	
Zinc	180		4.26	mg/kg	10		217			18	40%	
Duplicate (9051152-DUP2) OC Source Sample: Non-SDG (As	9E0672-01R	E1)	Prepared	: 05/22/19	11:59 Anal	lyzed: 05/24/	/19 11:45					
Beryllium	ND		0.213	mg/kg	10		ND				40%	Q-05, Q-10
Matrix Spike (9051152-MS1)			Prepared	: 05/22/19	11:59 Anal	lyzed: 05/23/	/19 16:50					
QC Source Sample: Non-SDG (AS	9E0672-01)											
EPA 6020A												
Aluminum	3060		54.1	mg/kg	10	2710	519	94	75-125%			
Antimony	22.3		1.08	mg/kg	10	27.1	ND	82	75-125%			
Arsenic	56.6		1.08	mg/kg	10	54.1	4.43	96	75-125%			
Barium	98.0		1.08	mg/kg	10	54.1	60.7	69	75-125%			Q-04
Cadmium	52.3		0.216	mg/kg	10	54.1	ND	97	75-125%			
Calcium	6600		108	mg/kg	10	2710	4170	90	75-125%			
Chromium	54.5		1.08	mg/kg	10	54.1	3.85	94	75-125%			
Cinomium			1.00	/1	10	54.1	16.9	100	75-125%			
	70.8		1.08	mg/kg	10							
Copper Iron	70.8 9360		1.08 54.1	mg/kg mg/kg	10	2710	7660	63	75-125%			Q-04
Copper Iron						2710 54.1	7660 1.48	63 94	75-125% 75-125%			Q-04
Copper Iron Lead	9360		54.1	mg/kg	10							Q-04
Copper	9360 52.5		54.1 0.216	mg/kg mg/kg	10 10	54.1	1.48	94	75-125%			Q-04 Q-05
Copper Iron Lead Magnesium	9360 52.5 3020	 	54.1 0.216 54.1	mg/kg mg/kg mg/kg	10 10 10	54.1 2710	1.48 453	94 95	75-125% 75-125%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020A (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051152 - EPA 3051A							Soli	d				
Matrix Spike (9051152-MS1)			Prepared	: 05/22/19	11:59 Ana	lyzed: 05/23	/19 16:50					
QC Source Sample: Non-SDG (A9	E0672-01)											
Potassium	2730		108	mg/kg	10	2710	59.1	99	75-125%			
Selenium	25.8		1.08	mg/kg	10	27.1	ND	95	75-125%			
Silver	25.4		0.216	mg/kg	10	27.1	ND	94	75-125%			
Sodium	2760		108	mg/kg	10	2710	189	95	75-125%			
Thallium	21.8		0.216	mg/kg	10	27.1	ND	81	75-125%			
Vanadium	56.8		1.08	mg/kg	10	54.1	5.78	94	75-125%			
Zinc	248		4.33	mg/kg	10	54.1	217	57	75-125%			Q-04
Matrix Spike (9051152-MS2)			Prepared	: 05/22/19	11:59 Ana	lyzed: 05/24	/19 11:49					
QC Source Sample: Non-SDG (A9	E0672-01RI	E1)										
EPA 6020A												
Beryllium	24.9		0.216	mg/kg	10	27.1	ND	92	75-125%			Q-16

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051240 - ASTM D7511-	12mod (S)					Soli	d				
Blank (9051240-BLK1)			Prepared	: 05/24/19 (07:10 Ana	lyzed: 05/24	/19 13:07					
<u>D7511-12</u>												
Cyanide, Total	ND		0.100	mg/kg	1							
LCS (9051240-BS1)			Prepared	: 05/24/19 (07:10 Ana	lyzed: 05/24	/19 13:09					
<u>D7511-12</u>												
Cyanide, Total	0.388		0.100	mg/kg	1	0.400		97	84-116%			
Matrix Spike (9051240-MS3)			Prepared	: 05/24/19 (07:10 Ana	lyzed: 05/24	/19 14:24					
QC Source Sample: 2708-190520-0	06 (A9E06	77-01RE2)										
<u>D7511-12</u>												
Cyanide, Total	1.07		0.484	mg/kg	5	0.387	0.846	57	64-136%			Q-04, Q-10
Matrix Spike Dup (9051240-M	SD3)		Prepared	: 05/24/19 (07:10 Ana	lyzed: 05/24	/19 14:28					
OC Source Sample: 2708-190520-0	006 (A9E06	77-01RE2)			·							
<u>D7511-12</u>												
Cyanide, Total	1.44		0.482	mg/kg	5	0.386	0.846	154	64-136%	30	47%	Q-04, Q-10

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	ls)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051229							
A9E0677-01	Solid	NWTPH-Dx	05/20/19 15:00	05/23/19 16:37	0.58g/5mL	10g/5mL	17.20
	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051092 A9E0677-01	Solid	NWTPH-Gx (MS)	05/20/19 15:00	05/21/19 13:35	3.13g/5mL	5g/5mL	1.60
		Volatile Orga	anic Compounds by	EPA 5035A/8260C			
Prep: EPA 5035A			,		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051092	Matrix	Mctilod	Sampled	Терагеи			
A9E0677-01	Solid	5035A/8260C	05/20/19 15:00	05/21/19 13:35	3.13g/5mL	5g/5mL	1.60
		Semivolatil	e Organic Compour	ds by EPA 8270D			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051172 A9E0677-01	Solid	EPA 8270D	05/20/19 15:00	05/22/19 16:25	0.51g/2mL	15g/2mL	29.40
		Total	Metals by EPA 602	OA (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051152							
A9E0677-01	Solid	EPA 6020A	05/20/19 15:00	05/22/19 11:59	0.45 g/50 mL	0.5g/50mL	1.11
A9E0677-01RE1	Solid	EPA 6020A	05/20/19 15:00	05/22/19 11:59	0.45g/50mL	0.5g/50mL	1.11
		Total Cyanide by UV I	Digestion/Gas Diffus	sion/Amperometric D	Detection		
Prep: ASTM D7511-12	2mod (S)				Sample	Default	RL Prep
Lab Number Batch: 9051240	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Apex Laboratories			The westles	in this report apply to the sa	wantee an aloned in access	udan oo wish sho oh ain	of.

Apex Laboratories

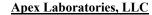
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635


SAMPLE PREPARATION INFORMATION

Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection											
Prep: ASTM D7511-1	12mod (S)	Sample	Default	RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A9E0677-01RE2	Solid	D7511-12	05/20/19 15:00	05/24/19 07:10	2.5415g/50mL	2.5g/50mL	0.98				

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

ex Laborato	ories .
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-17	No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-17	RPD between original and duplicate sample is outside of established control limits.
Q-18	Matrix Spike results for this extraction batch are not reported due to the high dilution necessary for analysis of the source sample.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to erratic or low blank spike recoveries, results for this analyte are considered Estimated Values.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +1.9%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +2.9%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +5.1%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +9.2%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -8.5%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 45

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

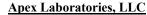
"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.


Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 45

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 45

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

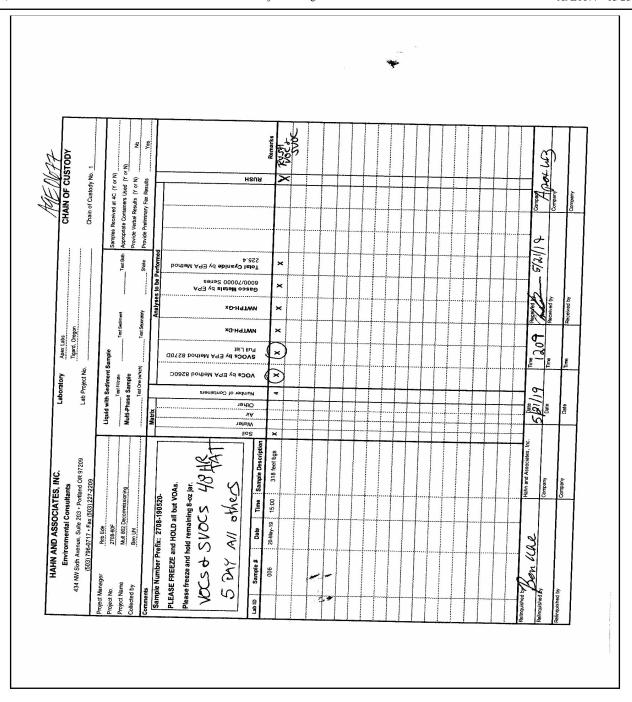
Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 45



Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0677 - 05 28 19 1635

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

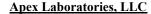
Page 44 of 45

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates
434 NW 6th Ave. Suite 203
Portland, OR 97209

Project: Mult 802 Decommissioning

Project Number: **2708-60F**Project Manager: **Rob Ede**


Report ID: A9E0677 - 05 28 19 1635

Client: Henh	
	DElement WO#: A9
Project/Project #:	101+ 802 Decommissioning 2708-60F
Delivery Info:	-
	21/19@ 1209 By: CFH
Delivered by: Apex X	Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Da	vate/time inspected: $\frac{5}{21/19@1303}$ By: $\frac{555}{19}$ Gives
Chain of Custody include	ed? Yes × No Custody seals? Yes No ×
Signed/dated by client?	Yes X No
Signed/dated by Apex?	
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler
Temperature (°C)	1,5
Received on ice? (Y/N)	
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other)	
Condition:	Cook
	No Comments:
Bottle labels/COCs agree?	Yes No Comments:
OC/container discrepancie	es form initiated? Yes No NA
COC/container discrepancie Containers/volumes receive	es form initiated? Yes No NA No Comments:
Containers/volumes receive	ed appropriate for analysis? Yes \(\sum_ \) No Comments:
Containers/volumes receive	headspace? Yes No NA L
Containers/volumes receive	headspace? Yes No NA L
Containers/volumes receive Oo VOA vials have visible Comments Vater samples: pH checked	headspace? Yes No NA
Containers/volumes receive Oo VOA vials have visible Comments Vater samples: pH checked	headspace? Yes No NA L
Containers/volumes receive Oo VOA vials have visible Comments Vater samples: pH checked comments:	headspace? Yes No NA
Containers/volumes receive Oo VOA vials have visible Comments Vater samples: pH checked comments:	headspace? Yes No NA NA headspace? Yes No NA headspace? Yes No NA headspace? No NA headspace? Yes No NA headspace?
Containers/volumes receive Oo VOA vials have visible comments Vater samples: pH checked omments: dditional information:	headspace? Yes No NA L l: Yes No NA Ph appropriate? Yes No NA
Containers/volumes receive Do VOA vials have visible Comments Vater samples: pH checked comments: dditional information:	headspace? Yes No NA NA headspace? Yes No NA headspace? Yes No NA headspace? No NA headspace? Yes No NA headspace?
Containers/volumes receive Oo VOA vials have visible comments Vater samples: pH checked omments: dditional information:	headspace? Yes No NA L I: Yes No NA PH appropriate? Yes No NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Monday, June 24, 2019 Rob Ede Hahn and Associates 434 NW 6th Ave. Suite 203 Portland, OR 97209

RE: A9E0723 - Mult 802 Decommissioning - 2708-60F

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9E0723, which was received by the laboratory on 5/22/2019 at 12:41:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

0.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 1 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION										
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
2708-190521-007	A9E0723-01	Solid	05/21/19 10:55	05/22/19 12:41							
2708-190521-008	A9E0723-02	Solid	05/21/19 11:00	05/22/19 12:41							
2708-190521-009	A9E0723-03	Solid	05/21/19 11:55	05/22/19 12:41							
2708-190521-010	A9E0723-04	Solid	05/21/19 15:30	05/22/19 12:41							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL CASE NARRATIVE

Work Order: A9E0723

Preservation Nonconformance

A temperature excursion occurred during sample storage. Sample 2708-190521-009 (A9E0723-03) analyzed for EPA Method 8260 and NWTPH-Gx was stored out of EPA recommended storage temp (>6C) reaching 17C for a period of approximately 48 hours. No other analysis was affected.

Mark Zehr Organics Manager 6/5/2019

Amended Report Revision 1:

This report supersedes all previous reports.

Analyses, except for full list 8260 VOCs, were added after the previous report version had been completed.

Philip Nerenberg Lab Director 6/24/19

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 3 of 118

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
2708-190521-009 (A9E0723-03)				Matrix: Solid Batch: 9060517						
Diesel	116000		35700	mg/kg	100	06/04/19 06:13	NWTPH-Dx	F-17		
Oil	ND		71400	mg/kg	100	06/04/19 06:13	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	100	06/04/19 06:13	NWTPH-Dx	S-01		

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

Gaso	line Range Hy	drocarbons	(Benzene ti	hrough Naphtha	lene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190521-009 (A9E0723-03)		Matrix: Solid Batch: 9060533					V-16, X	
Gasoline Range Organics	35000		4270	mg/kg	10000	06/04/19 18:42	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 90 % 83 %	Limits: 50-150 % 50-150 %	1 1	06/04/19 18:42 06/04/19 18:42	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch:	9051139	V-15
Acetone	ND		5650000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Acrylonitrile	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Benzene	164000		56500	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Bromobenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Bromochloromethane	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Bromodichloromethane	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Bromoform	ND		1130000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Bromomethane	ND		2820000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
2-Butanone (MEK)	ND		2820000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
n-Butylbenzene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
sec-Butylbenzene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
tert-Butylbenzene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Carbon disulfide	ND		2820000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Carbon tetrachloride	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Chlorobenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Chloroethane	ND		2820000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Chloroform	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Chloromethane	ND		1410000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
2-Chlorotoluene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
4-Chlorotoluene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Dibromochloromethane	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		1410000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Dibromomethane	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,2-Dichlorobenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,3-Dichlorobenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,4-Dichlorobenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Dichlorodifluoromethane	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
,1-Dichloroethane	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
,2-Dichloroethane (EDC)	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
,1-Dichloroethene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
is-1,2-Dichloroethene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
ans-1,2-Dichloroethene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch:	9051139	V-15
1,2-Dichloropropane	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,3-Dichloropropane	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
2,2-Dichloropropane	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,1-Dichloropropene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
cis-1,3-Dichloropropene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
trans-1,3-Dichloropropene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Ethylbenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Hexachlorobutadiene	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
2-Hexanone	ND		2820000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Isopropylbenzene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
4-Isopropyltoluene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Methylene chloride	ND		1410000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		2820000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Naphthalene	10500000		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
n-Propylbenzene	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Styrene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Tetrachloroethene (PCE)	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Toluene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,2,3-Trichlorobenzene	ND		1410000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,2,4-Trichlorobenzene	ND		1410000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,1,1-Trichloroethane	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,1,2-Trichloroethane	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Trichloroethene (TCE)	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
Trichlorofluoromethane	ND		565000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
1,2,3-Trichloropropane	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
,2,4-Trimethylbenzene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
,3,5-Trimethylbenzene	ND		282000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
/inyl chloride	ND		141000	ug/kg	100000	05/22/19 19:27	5035A/8260C	
n,p-Xylene	ND		282000	ug/kg ug/kg	100000	05/22/19 19:27	5035A/8260C	
-Xylene	ND		141000	ug/kg ug/kg	100000	05/22/19 19:27	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
2708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch:	9051139	V-15
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 103 %	Limits: 80-120	% 1	05/22/19 19:27	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120	% 1	05/22/19 19:27	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120	% 1	05/22/19 19:27	5035A/8260C	
2708-190521-008 (A9E0723-02)				Matrix: So	lid	Batch:	9051139	V-15
Acetone	ND		8260000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Acrylonitrile	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Benzene	111000		82600	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Bromobenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Bromochloromethane	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Bromodichloromethane	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Bromoform	ND		1650000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Bromomethane	ND		4130000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
2-Butanone (MEK)	ND		4130000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
n-Butylbenzene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
sec-Butylbenzene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
tert-Butylbenzene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Carbon disulfide	ND		4130000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Carbon tetrachloride	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Chlorobenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Chloroethane	ND		4130000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Chloroform	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Chloromethane	ND		2070000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
2-Chlorotoluene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
4-Chlorotoluene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Dibromochloromethane	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		2070000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Dibromomethane	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2-Dichlorobenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,3-Dichlorobenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,4-Dichlorobenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Dichlorodifluoromethane	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1-Dichloroethane	ND		207000	ug/kg ug/kg	100000	05/22/19 19:54	5035A/8260C	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic (Compounds b	y EPA 5035	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190521-008 (A9E0723-02)				Matrix: So	lid	Batch:	9051139	V-15
1,2-Dichloroethane (EDC)	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1-Dichloroethene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
cis-1,2-Dichloroethene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
rans-1,2-Dichloroethene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2-Dichloropropane	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,3-Dichloropropane	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
2,2-Dichloropropane	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1-Dichloropropene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
cis-1,3-Dichloropropene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
rans-1,3-Dichloropropene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Ethylbenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Hexachlorobutadiene	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
2-Hexanone	ND		4130000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
sopropylbenzene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1-Isopropyltoluene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Methylene chloride	ND		2070000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		4130000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Naphthalene	6640000		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
n-Propylbenzene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Styrene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Tetrachloroethene (PCE)	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Toluene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2,3-Trichlorobenzene	ND		2070000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2,4-Trichlorobenzene	ND		2070000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1,1-Trichloroethane	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,1,2-Trichloroethane	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Trichloroethene (TCE)	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Trichlorofluoromethane	ND		826000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
1,2,3-Trichloropropane	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
,=,= IIIemoropropune	ND		413000	ug/Ng	100000	05/22/19 19:54	5035A/8260C	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	voiai	iie Organic C	ompounds	by EPA 5035A	7020UC			
	Sample	Detection	Reporting	YY **	D'1 - '	Date	Malana	NY .
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
2708-190521-008 (A9E0723-02)				Matrix: Soli	d	Batch:	9051139	V-15
1,3,5-Trimethylbenzene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Vinyl chloride	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
m,p-Xylene	ND		413000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
o-Xylene	ND		207000	ug/kg	100000	05/22/19 19:54	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	6 I	05/22/19 19:54	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %	6 I	05/22/19 19:54	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	6 I	05/22/19 19:54	5035A/8260C	
2708-190521-009 (A9E0723-03)				Matrix: Soli	d	Batch:	9060533	V-16, X
Acetone	ND		855000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Acrylonitrile	ND		85500	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Benzene	128000		8550	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Bromobenzene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Bromochloromethane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Bromodichloromethane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Bromoform	ND		85500	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Bromomethane	ND		427000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
2-Butanone (MEK)	ND		427000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
n-Butylbenzene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
sec-Butylbenzene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
tert-Butylbenzene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Carbon disulfide	ND		427000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Carbon tetrachloride	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Chlorobenzene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Chloroethane	ND		427000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Chloroform	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Chloromethane	ND		214000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
2-Chlorotoluene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
4-Chlorotoluene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Dibromochloromethane	ND		85500	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		214000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Dibromomethane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2-Dichlorobenzene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 10 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
708-190521-009 (A9E0723-03)				Matrix: So	lid	Batch:	9060533	V-16, X
1,3-Dichlorobenzene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,4-Dichlorobenzene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Dichlorodifluoromethane	ND		85500	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,1-Dichloroethane	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,1-Dichloroethene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
cis-1,2-Dichloroethene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
trans-1,2-Dichloroethene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2-Dichloropropane	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,3-Dichloropropane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
2,2-Dichloropropane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,1-Dichloropropene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
cis-1,3-Dichloropropene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
trans-1,3-Dichloropropene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Ethylbenzene	144000		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Hexachlorobutadiene	ND		85500	ug/kg	10000	06/04/19 18:42	5035A/8260C	
2-Hexanone	ND		427000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Isopropylbenzene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
4-Isopropyltoluene	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Methylene chloride	ND		214000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		427000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
n-Propylbenzene	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Styrene	53800		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Tetrachloroethene (PCE)	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
oluene	185000		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
,2,3-Trichlorobenzene	ND		214000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
,2,4-Trichlorobenzene	ND		214000	ug/kg	10000	06/04/19 18:42	5035A/8260C	
,1,1-Trichloroethane	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
,1,2-Trichloroethane	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
richloroethene (TCE)	ND		21400	ug/kg ug/kg	10000	06/04/19 18:42	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

			•	by EPA 5035A/				
Amaluta	Sample	Detection Limit	Reporting Limit	T In it-	Dibution	Date	Moth-JD C	NT-4
Analyte	Result	Limit	rimit	Units	Dilution	Analyzed	Method Ref.	
2708-190521-009 (A9E0723-03)				Matrix: Solid		Batch:	9060533	V-16, X
Trichlorofluoromethane	ND		85500	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2,3-Trichloropropane	ND		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,2,4-Trimethylbenzene	80800		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
1,3,5-Trimethylbenzene	54700		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Vinyl chloride	ND		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
m,p-Xylene	220000		42700	ug/kg	10000	06/04/19 18:42	5035A/8260C	
o-Xylene	74800		21400	ug/kg	10000	06/04/19 18:42	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 91 %	Limits: 80-120 %	1	06/04/19 18:42	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	06/04/19 18:42	5035A/8260C	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	I	06/04/19 18:42	5035A/8260C	
2708-190521-009 (A9E0723-03RE1)				Matrix: Solid		Batch: 9060582		H-01, V-16, X
Naphthalene	15400000		855000	ug/kg	100000	06/05/19 18:01	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 89 %	Limits: 80-120 %	1	06/05/19 18:01	5035A/8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	06/05/19 18:01	5035A/8260C	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	06/05/19 18:01	5035A/8260C	
2708-190521-010 (A9E0723-04RE1)				Matrix: Solid	l	Batch:	9051198	V-15
Acetone	ND		1800000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Acrylonitrile	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Benzene	48400		18000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Bromobenzene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Bromochloromethane	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Bromodichloromethane	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Bromoform	ND		360000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Bromomethane	ND		901000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
2-Butanone (MEK)	ND		901000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
n-Butylbenzene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
sec-Butylbenzene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
tert-Butylbenzene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Carbon disulfide	ND		901000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Carbon tetrachloride	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Chlorobenzene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190521-010 (A9E0723-04RE1)				Matrix: So	lid	Batch:	9051198	V-15
Chloroform	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Chloromethane	ND		450000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
2-Chlorotoluene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
4-Chlorotoluene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Dibromochloromethane	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		450000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Dibromomethane	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,2-Dichlorobenzene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,3-Dichlorobenzene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,4-Dichlorobenzene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Dichlorodifluoromethane	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,1-Dichloroethane	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,1-Dichloroethene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
cis-1,2-Dichloroethene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
trans-1,2-Dichloroethene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,2-Dichloropropane	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,3-Dichloropropane	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
2,2-Dichloropropane	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
1,1-Dichloropropene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
cis-1,3-Dichloropropene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
trans-1,3-Dichloropropene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Ethylbenzene	56900		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Hexachlorobutadiene	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
2-Hexanone	ND		901000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Isopropylbenzene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
4-Isopropyltoluene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Methylene chloride	ND		450000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		901000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C	
Naphthalene	7940000		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C	
n-Propylbenzene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic C	ompounds	by EPA 5035A/	8260C				
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
2708-190521-010 (A9E0723-04RE1)				Matrix: Solid	1	Batch:	Batch: 9051198		
Styrene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,1,1,2-Tetrachloroethane	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,1,2,2-Tetrachloroethane	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
Tetrachloroethene (PCE)	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
Toluene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,2,3-Trichlorobenzene	ND		450000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,2,4-Trichlorobenzene	ND		450000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,1,1-Trichloroethane	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,1,2-Trichloroethane	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
Trichloroethene (TCE)	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
Trichlorofluoromethane	ND		180000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,2,3-Trichloropropane	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,2,4-Trimethylbenzene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
1,3,5-Trimethylbenzene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
Vinyl chloride	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
m,p-Xylene	ND		90100	ug/kg	20000	05/23/19 12:55	5035A/8260C		
o-Xylene	ND		45000	ug/kg	20000	05/23/19 12:55	5035A/8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	I	05/23/19 12:55	5035A/8260C		
Toluene-d8 (Surr)			101 %	80-120 %	1	05/23/19 12:55	5035A/8260C		
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	05/23/19 12:55	5035A/8260C		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 14 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch:	9051445	
Acetone	ND		1.00	mg/L	50	06/05/19 11:37	1311/8260C	
Benzene	3.15		0.0125	mg/L	50	06/05/19 11:37	1311/8260C	
Bromobenzene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Bromochloromethane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Bromodichloromethane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Bromoform	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Bromomethane	ND		0.250	mg/L	50	06/05/19 11:37	1311/8260C	
2-Butanone (MEK)	ND		0.500	mg/L	50	06/05/19 11:37	1311/8260C	
n-Butylbenzene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
sec-Butylbenzene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
tert-Butylbenzene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Carbon tetrachloride	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Chlorobenzene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Chloroethane	ND		0.250	mg/L	50	06/05/19 11:37	1311/8260C	
Chloroform	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Chloromethane	ND		0.250	mg/L	50	06/05/19 11:37	1311/8260C	
2-Chlorotoluene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
4-Chlorotoluene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,2-Dibromo-3-chloropropane	ND		0.250	mg/L	50	06/05/19 11:37	1311/8260C	
Dibromochloromethane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,2-Dibromoethane (EDB)	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Dibromomethane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,2-Dichlorobenzene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,3-Dichlorobenzene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,4-Dichlorobenzene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Dichlorodifluoromethane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,1-Dichloroethane	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,1-Dichloroethene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,2-Dichloroethane (EDC)	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
cis-1,2-Dichloroethene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
rans-1,2-Dichloroethene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,2-Dichloropropane	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
,3-Dichloropropane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
708-190521-007 (A9E0723-01)				Matrix: Solid		Batch:	9051445	
2,2-Dichloropropane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,1-Dichloropropene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
cis-1,3-Dichloropropene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
trans-1,3-Dichloropropene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Ethylbenzene	0.383		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Hexachlorobutadiene	ND		0.250	mg/L	50	06/05/19 11:37	1311/8260C	
2-Hexanone	ND		0.500	mg/L	50	06/05/19 11:37	1311/8260C	
Isopropylbenzene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
4-Isopropyltoluene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50	06/05/19 11:37	1311/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Methylene chloride	ND		0.250	mg/L	50	06/05/19 11:37	1311/8260C	
n-Propylbenzene	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Styrene	0.183		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Toluene	1.56		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,2,3-Trichlorobenzene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50	06/05/19 11:37	1311/8260C	
1,1,1-Trichloroethane	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
1,1,2-Trichloroethane	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Trichloroethene (TCE)	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Trichlorofluoromethane	ND		0.100	mg/L	50	06/05/19 11:37	1311/8260C	
1,2,3-Trichloropropane	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,2,4-Trimethylbenzene	0.0570		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
1,3,5-Trimethylbenzene	ND		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
Vinyl chloride	ND		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
n,p-Xylene	0.524		0.0500	mg/L	50	06/05/19 11:37	1311/8260C	
o-Xylene	0.175		0.0250	mg/L	50	06/05/19 11:37	1311/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 101 %	Limits: 80-120 %	1	06/05/19 11:37	1311/8260C	
Toluene-d8 (Surr)			101 %	80-120 %	I	06/05/19 11:37	1311/8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	06/05/19 11:37	1311/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 118

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
2708-190521-007 (A9E0723-01RE1)				Matrix: Solid Batch: 9051445						
Naphthalene	11.2		1.00	mg/L	500	06/05/19 15:24	1311/8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 104 %	Limits: 80-120 %	1	06/05/19 15:24	1311/8260C			
Toluene-d8 (Surr)			102 %	80-120 %	1	06/05/19 15:24	1311/8260C			
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	06/05/19 15:24	1311/8260C			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 17 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190521-007 (A9E0723-01)				Matrix: Solid		Batch: 9060589		
Acetone	ND		2.00	mg/L	100	06/05/19 13:33	1312/8260C	
Benzene	3.40		0.0250	mg/L	100	06/05/19 13:33	1312/8260C	
Bromobenzene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Bromochloromethane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Bromodichloromethane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Bromoform	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Bromomethane	ND		0.500	mg/L	100	06/05/19 13:33	1312/8260C	
2-Butanone (MEK)	ND		1.00	mg/L	100	06/05/19 13:33	1312/8260C	
n-Butylbenzene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
sec-Butylbenzene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
tert-Butylbenzene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Carbon tetrachloride	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Chlorobenzene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Chloroethane	ND		0.500	mg/L	100	06/05/19 13:33	1312/8260C	
Chloroform	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Chloromethane	ND		0.500	mg/L	100	06/05/19 13:33	1312/8260C	
2-Chlorotoluene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
4-Chlorotoluene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,2-Dibromo-3-chloropropane	ND		0.500	mg/L	100	06/05/19 13:33	1312/8260C	
Dibromochloromethane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,2-Dibromoethane (EDB)	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Dibromomethane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,2-Dichlorobenzene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,3-Dichlorobenzene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,4-Dichlorobenzene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Dichlorodifluoromethane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,1-Dichloroethane	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,2-Dichloroethane (EDC)	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,1-Dichloroethene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
cis-1,2-Dichloroethene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
trans-1,2-Dichloroethene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,2-Dichloropropane	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,3-Dichloropropane	ND		0.100	mg/L mg/L	100	06/05/19 13:33	1312/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 18 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
2708-190521-007 (A9E0723-01)				Matrix: Solid		Batch:	9060589	
2,2-Dichloropropane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,1-Dichloropropene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
cis-1,3-Dichloropropene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
trans-1,3-Dichloropropene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Ethylbenzene	0.310		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Hexachlorobutadiene	ND		0.500	mg/L	100	06/05/19 13:33	1312/8260C	
2-Hexanone	ND		1.00	mg/L	100	06/05/19 13:33	1312/8260C	
Isopropylbenzene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
4-Isopropyltoluene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
4-Methyl-2-pentanone (MiBK)	ND		1.00	mg/L	100	06/05/19 13:33	1312/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Methylene chloride	ND		0.500	mg/L	100	06/05/19 13:33	1312/8260C	
Naphthalene	13.9		0.200	mg/L	100	06/05/19 13:33	1312/8260C	
n-Propylbenzene	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Styrene	0.136		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Tetrachloroethene (PCE)	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Toluene	1.46		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,2,3-Trichlorobenzene	ND		0.200	mg/L	100	06/05/19 13:33	1312/8260C	
1,2,4-Trichlorobenzene	ND		0.200	mg/L	100	06/05/19 13:33	1312/8260C	
1,1,1-Trichloroethane	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
1,1,2-Trichloroethane	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Trichloroethene (TCE)	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Trichlorofluoromethane	ND		0.200	mg/L	100	06/05/19 13:33	1312/8260C	
1,2,3-Trichloropropane	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,2,4-Trimethylbenzene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
1,3,5-Trimethylbenzene	ND		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
Vinyl chloride	ND		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
m,p-Xylene	0.419		0.100	mg/L	100	06/05/19 13:33	1312/8260C	
o-Xylene	0.135		0.0500	mg/L	100	06/05/19 13:33	1312/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	06/05/19 13:33	1312/8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	06/05/19 13:33	1312/8260C	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	SPLP Volatile Organic Compounds by EPA 1312/8260C											
Analyte	Sample Detection Reporting Date Alyte Result Limit Limit Units Dilution Analyzed Method Ref.											
2708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch: 9	9060589					
Surrogate: 4-Bromofluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120	% 1	06/05/19 13:33	1312/8260C					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch:	9060759	
Acenaphthene	0.856		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	B-02
Acenaphthylene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Anthracene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Azobenzene (1,2-DPH)	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
Benz(a)anthracene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Benzo(a)pyrene	ND		0.300	mg/L	1000	06/11/19 13:43	1312/8270D	
Benzo(b)fluoranthene	ND		0.300	mg/L	1000	06/11/19 13:43	1312/8270D	
Benzo(k)fluoranthene	ND		0.300	mg/L	1000	06/11/19 13:43	1312/8270D	
Benzo(g,h,i)perylene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Benzoic acid	ND		20.0	mg/L	1000	06/11/19 13:43	1312/8270D	
Benzyl alcohol	ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D	
Bis(2-Chloroethoxy) methane	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
Bis(2-Chloroethyl) ether	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
2,2'-Oxybis(1-Chloropropane)	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
Bis(2-Ethylhexyl) adipate	ND		5.00	mg/L	1000	06/11/19 13:43	1312/8270D	
Bis(2-ethylhexyl)phthalate	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D	
4-Bromophenyl phenyl ether	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
Butyl benzyl phthalate	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D	
Carbazole	0.739		0.300	mg/L	1000	06/11/19 13:43	1312/8270D	
4-Chloroaniline	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
4-Chloro-3-methylphenol	ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D	
2-Chloronaphthalene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
2-Chlorophenol	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D	
4-Chlorophenyl phenyl ether	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
Chrysene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Dibenz(a,h)anthracene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Dibenzofuran	0.385		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
1,2-Dichlorobenzene	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
1,3-Dichlorobenzene	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
1,4-Dichlorobenzene	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
2,4-Dichlorophenol	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D	
Di-n-butylphthalate	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D	
Diethylphthalate	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Sample Datection Penarting Date								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
708-190521-007 (A9E0723-01)				Matrix: So	lid	Batch:	9060759		
Dimethylphthalate	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D		
2,4-Dimethylphenol	2.93		1.00	mg/L	1000	06/11/19 13:43	1312/8270D		
1,2-Dinitrobenzene	ND		5.00	mg/L	1000	06/11/19 13:43	1312/8270D		
1,3-Dinitrobenzene	ND		5.00	mg/L	1000	06/11/19 13:43	1312/8270D		
1,4-Dinitrobenzene	ND		5.00	mg/L	1000	06/11/19 13:43	1312/8270D		
4,6-Dinitro-2-methylphenol	ND		5.00	mg/L	1000	06/11/19 13:43	1312/8270D		
2,4-Dinitrophenol	ND		5.00	mg/L	1000	06/11/19 13:43	1312/8270D		
2,4-Dinitrotoluene	ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D		
2,6-Dinitrotoluene	ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D		
Di-n-octyl phthalate	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D		
Fluoranthene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D		
Fluorene	0.211		0.200	mg/L	1000	06/11/19 13:43	1312/8270D		
Hexachlorobenzene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D		
Hexachlorobutadiene	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D		
Hexachlorocyclopentadiene	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D		
Hexachloroethane	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D		
Indeno(1,2,3-cd)pyrene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D		
Isophorone	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D		
1-Methylnaphthalene	0.577		0.400	mg/L	1000	06/11/19 13:43	1312/8270D		
2-Methylnaphthalene	0.805		0.400	mg/L	1000	06/11/19 13:43	1312/8270D	B-02	
2-Methylphenol	8.84		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	В	
3+4-Methylphenol(s)	23.9		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	В	
Naphthalene	9.36		0.400	mg/L	1000	06/11/19 13:43	1312/8270D	В	
2-Nitroaniline	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D		
3-Nitroaniline	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D		
4-Nitroaniline	ND		4.00	mg/L	1000	06/11/19 13:43	1312/8270D		
Nitrobenzene	ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D		
2-Nitrophenol	ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D		
4-Nitrophenol	ND		2.00	mg/L mg/L	1000	06/11/19 13:43	1312/8270D		
N-Nitrosodimethylamine	ND		0.500	mg/L mg/L	1000	06/11/19 13:43	1312/8270D		
N-Nitroso-di-n-propylamine	ND		0.500	mg/L mg/L	1000	06/11/19 13:43	1312/8270D		
N-Nitrosodiphenylamine	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D		
Pentachlorophenol (PCP)	ND ND		2.00	mg/L	1000	06/11/19 13:43	1312/8270D		

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 118

Hahn and Associates Project: Mult 802 Decommissioning

434 NW 6th Ave. Suite 203

Project Number: 2708-60F

Portland, OR 97209

Project Manager: Rob Ede

Report ID: A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	SPLP Sen	nivolatile Org	janic Comp	ounds by EPA	1312/827	0D		
	Sample	Detection	Reporting	YY ''	Dil di	Date	M.d. ID.C	N.
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
2708-190521-007 (A9E0723-01)				Matrix: Solid	t	Batch:	9060759	
Phenanthrene	0.273		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	B-02
Phenol	16.4		4.00	mg/L	1000	06/11/19 13:43	1312/8270D	В
Pyrene	ND		0.200	mg/L	1000	06/11/19 13:43	1312/8270D	
Pyridine	2.31		2.00	mg/L	1000	06/11/19 13:43	1312/8270D	B-02
2,3,4,6-Tetrachlorophenol	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D	
2,3,5,6-Tetrachlorophenol	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D	
1,2,4-Trichlorobenzene	ND		0.500	mg/L	1000	06/11/19 13:43	1312/8270D	
2,4,5-Trichlorophenol	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D	
2,4,6-Trichlorophenol	ND		1.00	mg/L	1000	06/11/19 13:43	1312/8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 173 %	Limits: 44-120 %	1000	06/11/19 13:43	1312/8270D	S-05
2-Fluorobiphenyl (Surr)			81 %	44-120 %	1000	06/11/19 13:43	1312/8270D	S-05
Phenol-d6 (Surr)			%	10-120 %	1000	06/11/19 13:43	1312/8270D	S-01
p-Terphenyl-d14 (Surr)			91 %	50-133 %	1000	06/11/19 13:43	1312/8270D	S-05
2-Fluorophenol (Surr)			%	19-120 %	1000	06/11/19 13:43	1312/8270D	S-01
2,4,6-Tribromophenol (Surr)			%	43-140 %	1000	06/11/19 13:43	1312/8270D	S-01
2708-190521-007 (A9E0723-01RE1)				Matrix: Solid	k	Batch:	9060759	
Aniline	7.23		1.00	mg/L	1000	06/12/19 14:24	1312/8270D	M-04

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270D												
	Sample	Detection	Reporting	_ _		Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
2708-190521-007 (A9E0723-01RE1)				Matrix: So	olid	Batch:	9060490						
Acenaphthene	17300000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Acenaphthylene	ND		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Anthracene	8870000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Benz(a)anthracene	4390000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Benzo(a)pyrene	4700000		1420000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Benzo(b)fluoranthene	5100000		1420000	ug/kg	10000	06/04/19 12:14	EPA 8270D	M-05					
Benzo(k)fluoranthene	2120000		1420000	ug/kg	10000	06/04/19 12:14	EPA 8270D	M-05					
Benzo(g,h,i)perylene	3150000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Chrysene	4520000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Dibenz(a,h)anthracene	ND		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Fluoranthene	21300000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Fluorene	9280000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Indeno(1,2,3-cd)pyrene	3540000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
1-Methylnaphthalene	4900000		1890000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2-Methylnaphthalene	10400000		1890000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Naphthalene	27600000		1890000	ug/kg	10000	06/04/19 12:14	EPA 8270D	Q-29					
Phenanthrene	33600000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Pyrene	18500000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Carbazole	4200000		1420000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Dibenzofuran	10400000		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
4-Chloro-3-methylphenol	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2-Chlorophenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2,4-Dichlorophenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2,4-Dimethylphenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2,4-Dinitrophenol	ND		23600000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
4,6-Dinitro-2-methylphenol	ND		23600000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2-Methylphenol	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
3+4-Methylphenol(s)	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2-Nitrophenol	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
4-Nitrophenol	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Pentachlorophenol (PCP)	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
Phenol	ND		1890000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
2,3,4,6-Tetrachlorophenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D						
-													

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
2708-190521-007 (A9E0723-01RE1)				Matrix: So	lid	Batch:	9060490					
2,3,5,6-Tetrachlorophenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
2,4,5-Trichlorophenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
2,4,6-Trichlorophenol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Bis(2-ethylhexyl)phthalate	ND		14200000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Butyl benzyl phthalate	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Diethylphthalate	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Dimethylphthalate	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Di-n-butylphthalate	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Di-n-octyl phthalate	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
N-Nitrosodimethylamine	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
N-Nitroso-di-n-propylamine	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
N-Nitrosodiphenylamine	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Bis(2-Chloroethoxy) methane	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Bis(2-Chloroethyl) ether	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
2,2'-Oxybis(1-Chloropropane)	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Hexachlorobenzene	ND		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Hexachlorobutadiene	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Hexachlorocyclopentadiene	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Hexachloroethane	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
2-Chloronaphthalene	ND		945000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
1,2-Dichlorobenzene	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
1,3-Dichlorobenzene	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
1,4-Dichlorobenzene	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
1,2,4-Trichlorobenzene	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
4-Bromophenyl phenyl ether	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
4-Chlorophenyl phenyl ether	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Aniline	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
4-Chloroaniline	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
2-Nitroaniline	ND		18900000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
3-Nitroaniline	ND		18900000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
4-Nitroaniline	ND		18900000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Nitrobenzene	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
2,4-Dinitrotoluene	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
2708-190521-007 (A9E0723-01RE1)				Matrix: Solid	t	Batch:	9060490					
2,6-Dinitrotoluene	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Benzoic acid	ND		118000000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Benzyl alcohol	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Isophorone	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Azobenzene (1,2-DPH)	ND		2360000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Bis(2-Ethylhexyl) adipate	ND		23600000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
3,3'-Dichlorobenzidine	ND		9450000	ug/kg	10000	06/04/19 12:14	EPA 8270D	Q-52				
1,2-Dinitrobenzene	ND		23600000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
1,3-Dinitrobenzene	ND		23600000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
1,4-Dinitrobenzene	ND		23600000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Pyridine	ND		4710000	ug/kg	10000	06/04/19 12:14	EPA 8270D					
Surrogate: Nitrobenzene-d5 (Surr)		Recovery:	345 %	Limits: 37-122 %	10000	06/04/19 12:14	EPA 8270D	S-05				
2-Fluorobiphenyl (Surr)			%	44-115 %	10000	06/04/19 12:14	EPA 8270D	S-01				
Phenol-d6 (Surr)			%	33-122 %	10000	06/04/19 12:14	EPA 8270D	S-01				
p-Terphenyl-d14 (Surr)			147 %	54-127 %	10000	06/04/19 12:14	EPA 8270D	S-05				
2-Fluorophenol (Surr)			621 %	35-115 %	10000	06/04/19 12:14	EPA 8270D	S-05				
2,4,6-Tribromophenol (Surr)			%	39-132 %	10000	06/04/19 12:14	EPA 8270D	S-01				

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 602	20A (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190521-007 (A9E0723-01)				Matrix: So	olid			
Batch: 9060676								
Aluminum	ND		238	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Antimony	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Arsenic	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Barium	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	Q-17, R-04
Beryllium	ND		0.952	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Cadmium	ND		0.952	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Calcium	ND		476	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Chromium	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Copper	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Iron	1130		238	mg/kg	10	06/07/19 14:17	EPA 6020A	Q-39, Q-42
Lead	13.1		0.952	mg/kg	10	06/07/19 14:17	EPA 6020A	Q-17, Q-39
Magnesium	ND		238	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Manganese	16.7		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	
Mercury	ND		0.381	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Nickel	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Potassium	ND		476	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Selenium	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Silver	ND		0.952	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Sodium	ND		476	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Thallium	ND		0.952	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Vanadium	ND		4.76	mg/kg	10	06/07/19 14:17	EPA 6020A	R-04
Zinc	ND		19.0	mg/kg	10	06/07/19 14:17	EPA 6020A	Q-39, Q-42, R-04

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 118

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

ANALYTICAL SAMPLE RESULTS

	SPLP Extraction by EPA 1312 (ZHE)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
2708-190521-007 (A9E0723-01)				Matrix: Solid Batch: 9060554								
TCLP ZHE Extraction	PREP			N/A	1	06/04/19 15:58	EPA 1312 ZHE					
TCLP ZHE Extraction	PREP			N/A	1	06/04/19 15:58	EPA 1311 ZHE					
SPLP Extraction	PREP			N/A	1	06/05/19 17:15	EPA 1312	H-08				

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hyd	rocarbor	s by NW	TPH-Dx						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Not	tes
Batch 9060517 - EPA 3546 (F	uels)						Soli	d					
Blank (9060517-BLK1)			Prepared	d: 06/03/19	16:03 Ana	lyzed: 06/04	/19 05:28						
NWTPH-Dx													
Diesel	ND		25.0	mg/kg	1								
Oil	ND		50.0	mg/kg	1								
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	-150 %	Dil	ution: 1x						
LCS (9060517-BS1)			Prepared	1: 06/03/19	16:03 Ana	lyzed: 06/04	1/19 05:50						
NWTPH-Dx													
Diesel	116		25.0	mg/kg	1	125		93	70-130%				
Surr: o-Terphenyl (Surr)		Rece	overy: 93 %	Limits: 50	-150 %	Dil	ution: 1x						
Duplicate (9060517-DUP1)			Prepared	1: 06/03/19	16:03 Ana	lyzed: 06/04	1/19 06:36						
QC Source Sample: 2708-190521- NWTPH-Dx	-009 (A9E07	23-03)											
Diesel	114000		37700	mg/kg	100		116000			2	30%		F-1
Oil	ND		75500	mg/kg	100		51400			***	30%		
Surr: o-Terphenyl (Surr)		R	ecovery: %	Limits: 50	-150 %	Dil	ution: 100x					S-01	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ons (Benz	zene thro	igh Naph	thalene)	by NWT	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Blank (9060533-BLK1)			Prepared	d: 06/04/19	09:03 Ana	yzed: 06/04	/19 11:23					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 95 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			89 %	50	0-150 %		"					
LCS (9060533-BS2)			Prepared	d: 06/04/19	09:03 Ana	yzed: 06/04	/19 10:56					
NWTPH-Gx (MS)												
Gasoline Range Organics	23.4		5.00	mg/kg	50	25.0		94	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 95 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	50	0-150 %		"					
Duplicate (9060533-DUP1)			Prepared	d: 05/29/19	11:20 Anal	yzed: 06/04	/19 20:32					
QC Source Sample: Non-SDG (A9	F0057-03)											
Gasoline Range Organics	581		17.8	mg/kg	200		ND				30%	Q-0
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50)-150 %		"					
Duplicate (9060533-DUP2)			Prepared	d: 05/29/19	11:00 Anal	yzed: 06/04	/19 21:27					
QC Source Sample: Non-SDG (A9	F0057-02)											
Gasoline Range Organics	12900		192	mg/kg	2000		9940			26	30%	
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 80 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			112 %	50	0-150 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 9051139 - EPA 5035A Soil Blank (9051139-BLK1) Prepared: 05/22/19 10:00 Analyzed: 05/22/19 11:40 5035A/8260C ND 667 50 Acetone ug/kg ND 50 Acrylonitrile 66.7 ug/kg Benzene ND 6.67 ug/kg 50 Bromobenzene ND 16.7 ug/kg 50 Bromochloromethane ND 33.3 50 ug/kg Bromodichloromethane ND 66.7 50 ug/kg Bromoform ND 133 50 ug/kg Bromomethane ND 333 ug/kg 50 2-Butanone (MEK) ND 333 ug/kg 50 n-Butylbenzene ND 33.3 50 ug/kg ---

50

50

50

50

50

50

50

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ND 167 Chloromethane 50 ug/kg ---2-Chlorotoluene ND 33.3 ug/kg 50 ug/kg 4-Chlorotoluene ND 33.3 50 Dibromochloromethane ND 66.7 ug/kg 50 1,2-Dibromo-3-chloropropane ND 167 ug/kg 50 1,2-Dibromoethane (EDB) ND 33.3 ug/kg 50 ug/kg Dibromomethane ND 33.3 50 1,2-Dichlorobenzene ND 16.7 ug/kg 50 1,3-Dichlorobenzene ND 16.7 ug/kg 50 1,4-Dichlorobenzene ND 16.7 ug/kg 50 Dichlorodifluoromethane ND 66.7 ug/kg 50 ---1,1-Dichloroethane ND 16.7 ug/kg 50 1,2-Dichloroethane (EDC) ND 16.7 ug/kg 50 1,1-Dichloroethene ND 50 16.7 ug/kg cis-1,2-Dichloroethene ND 16.7 ug/kg 50

ug/kg

33.3

33.3

333

66.7

16.7

333

33.3

16.7

Apex Laboratories

Philip Marenberg

trans-1,2-Dichloroethene

sec-Butylbenzene

tert-Butylbenzene

Carbon disulfide

Chlorobenzene

Chloroethane

Chloroform

Carbon tetrachloride

ND

ND

ND

ND

ND

ND

ND

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 31 of 118

50

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051139 - EPA 5035A							Soil					
Blank (9051139-BLK1)			Prepared	: 05/22/19	10:00 Anal	yzed: 05/22	/19 11:40					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
1,1-Dichloropropene	ND		33.3	ug/kg	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
trans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
Isopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
4-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,2-Tetrachloroethane	ND		66.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Trichloroethene (TCE)	ND		16.7	ug/kg	50							
Trichlorofluoromethane	ND		66.7	ug/kg	50							
1,2,3-Trichloropropane	ND		33.3	ug/kg	50							
1,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
1,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
m,p-Xylene	ND		33.3	ug/kg	50							
o-Xylene	ND		16.7	ug/kg	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco		Limits: 80		Dilı	tion: 1x					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Namberg

Apex Laboratories

Philip Nerenberg, Lab Director

Page 32 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 503	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051139 - EPA 5035A							Soil					
Blank (9051139-BLK1)			Prepared	1: 05/22/19	10:00 Ana	lyzed: 05/22	/19 11:40					
Surr: Toluene-d8 (Surr)		Reco	very: 103 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (9051139-BS1)			Prepared	1: 05/22/19	10:00 Ana	lyzed: 05/22	/19 10:46					
5035A/8260C												
Acetone	1870		1000	ug/kg	50	2000		94	80-120%			
Acrylonitrile	1050		100	ug/kg	50	1000		105	80-120%			
Benzene	980		10.0	ug/kg	50	1000		98	80-120%			
Bromobenzene	1040		25.0	ug/kg	50	1000		104	80-120%			
Bromochloromethane	1080		50.0	ug/kg	50	1000		108	80-120%			
Bromodichloromethane	1060		100	ug/kg	50	1000		106	80-120%			
Bromoform	1290		200	ug/kg	50	1000		129	80-120%			Q-5
Bromomethane	1080		500	ug/kg	50	1000		108	80-120%			
2-Butanone (MEK)	1990		500	ug/kg	50	2000		100	80-120%			
n-Butylbenzene	1070		50.0	ug/kg	50	1000		107	80-120%			
sec-Butylbenzene	1100		50.0	ug/kg	50	1000		110	80-120%			
tert-Butylbenzene	1080		50.0	ug/kg	50	1000		108	80-120%			
Carbon disulfide	947		500	ug/kg	50	1000		95	80-120%			
Carbon tetrachloride	1190		100	ug/kg	50	1000		119	80-120%			
Chlorobenzene	939		25.0	ug/kg	50	1000		94	80-120%			
Chloroethane	862		500	ug/kg	50	1000		86	80-120%			
Chloroform	1010		50.0	ug/kg	50	1000		101	80-120%			
Chloromethane	1100		250	ug/kg	50	1000		110	80-120%			
2-Chlorotoluene	1070		50.0	ug/kg	50	1000		107	80-120%			
4-Chlorotoluene	1080		50.0	ug/kg	50	1000		108	80-120%			
Dibromochloromethane	1090		100	ug/kg	50	1000		109	80-120%			
1,2-Dibromo-3-chloropropane	1060		250	ug/kg	50	1000		106	80-120%			
1,2-Dibromoethane (EDB)	984		50.0	ug/kg	50	1000		98	80-120%			
Dibromomethane	1050		50.0	ug/kg	50	1000		105	80-120%			
1,2-Dichlorobenzene	1020		25.0	ug/kg	50	1000		102	80-120%			
1,3-Dichlorobenzene	1030		25.0	ug/kg	50	1000		103	80-120%			
1,4-Dichlorobenzene	968		25.0	ug/kg	50	1000		97	80-120%			
Dichlorodifluoromethane	1180		100	ug/kg	50	1000		118	80-120%			
1,1-Dichloroethane	915		25.0	ug/kg	50	1000		91	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051139 - EPA 5035A							Soil					
LCS (9051139-BS1)			Prepared	: 05/22/19	10:00 Anal	lyzed: 05/22	/19 10:46					
1,2-Dichloroethane (EDC)	952		25.0	ug/kg	50	1000		95	80-120%			
1,1-Dichloroethene	800		25.0	ug/kg	50	1000		80	80-120%			
cis-1,2-Dichloroethene	1010		25.0	ug/kg	50	1000		101	80-120%			
trans-1,2-Dichloroethene	887		25.0	ug/kg	50	1000		89	80-120%			
1,2-Dichloropropane	1020		25.0	ug/kg	50	1000		102	80-120%			
1,3-Dichloropropane	1020		50.0	ug/kg	50	1000		102	80-120%			
2,2-Dichloropropane	1240		50.0	ug/kg	50	1000		124	80-120%			Q-56
1,1-Dichloropropene	997		50.0	ug/kg	50	1000		100	80-120%			
cis-1,3-Dichloropropene	947		50.0	ug/kg	50	1000		95	80-120%			
trans-1,3-Dichloropropene	1010		50.0	ug/kg	50	1000		101	80-120%			
Ethylbenzene	978		25.0	ug/kg	50	1000		98	80-120%			
Hexachlorobutadiene	1020		100	ug/kg	50	1000		102	80-120%			
2-Hexanone	1910		500	ug/kg	50	2000		95	80-120%			
Isopropylbenzene	1070		50.0	ug/kg	50	1000		107	80-120%			
4-Isopropyltoluene	1060		50.0	ug/kg	50	1000		106	80-120%			
Methylene chloride	742		250	ug/kg	50	1000		74	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	2030		500	ug/kg	50	2000		102	80-120%			
Methyl tert-butyl ether (MTBE)	987		50.0	ug/kg	50	1000		99	80-120%			
Naphthalene	930		100	ug/kg	50	1000		93	80-120%			
n-Propylbenzene	1090		25.0	ug/kg	50	1000		109	80-120%			
Styrene	930		50.0	ug/kg	50	1000		93	80-120%			
1,1,1,2-Tetrachloroethane	1150		100	ug/kg	50	1000		115	80-120%			
1,1,2,2-Tetrachloroethane	1220		50.0	ug/kg	50	1000		122	80-120%			Q-56
Tetrachloroethene (PCE)	972		25.0	ug/kg	50	1000		97	80-120%			
Toluene	924		50.0	ug/kg	50	1000		92	80-120%			
1,2,3-Trichlorobenzene	1040		250	ug/kg	50	1000		104	80-120%			
1,2,4-Trichlorobenzene	1060		250	ug/kg	50	1000		106	80-120%			
1,1,1-Trichloroethane	1140		25.0	ug/kg	50	1000		114	80-120%			
1,1,2-Trichloroethane	1030		25.0	ug/kg	50	1000		103	80-120%			
Trichloroethene (TCE)	957		25.0	ug/kg	50	1000		96	80-120%			
Trichlorofluoromethane	932		100	ug/kg	50	1000		93	80-120%			
1,2,3-Trichloropropane	1100		50.0	ug/kg	50	1000		110	80-120%			
1,2,4-Trimethylbenzene	1100		50.0	ug/kg	50	1000		110	80-120%			
1,3,5-Trimethylbenzene	1110		50.0	ug/kg	50	1000		111	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C	;				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051139 - EPA 5035A							Soil	l				
LCS (9051139-BS1)			Prepared	d: 05/22/19	10:00 Anal	lyzed: 05/22	/19 10:46					
Vinyl chloride	1020		25.0	ug/kg	50	1000		102	80-120%			
m,p-Xylene	2030		50.0	ug/kg	50	2000		101	80-120%			
o-Xylene	1010		25.0	ug/kg	50	1000		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Duplicate (9051139-DUP1)			Prepared	1: 05/20/19	12:50 Anal	lyzed: 05/22	/19 13:34					
OC Source Sample: Non-SDG (A9	E0680-09)											
Acetone	ND		982	ug/kg	50		ND				30%	
Acrylonitrile	ND		344	ug/kg	50		ND				30%	R-0
Benzene	ND		9.82	ug/kg	50		ND				30%	
Bromobenzene	ND		24.6	ug/kg	50		ND				30%	
Bromochloromethane	ND		49.1	ug/kg	50		ND				30%	
Bromodichloromethane	ND		98.2	ug/kg	50		ND				30%	
Bromoform	ND		196	ug/kg	50		ND				30%	
Bromomethane	ND		491	ug/kg	50		ND				30%	
2-Butanone (MEK)	ND		2950	ug/kg	50		ND				30%	R-0
n-Butylbenzene	449		49.1	ug/kg	50		179			86	30%	Q-04, M-0
sec-Butylbenzene	541		49.1	ug/kg	50		265			68	30%	Q-0
tert-Butylbenzene	ND		49.1	ug/kg	50		ND				30%	Q-0
Carbon disulfide	ND		491	ug/kg	50		ND				30%	
Carbon tetrachloride	ND		98.2	ug/kg	50		ND				30%	
Chlorobenzene	ND		24.6	ug/kg	50		ND				30%	
Chloroethane	ND		491	ug/kg	50		ND				30%	
Chloroform	ND		49.1	ug/kg	50		ND				30%	
Chloromethane	ND		246	ug/kg	50		ND				30%	
2-Chlorotoluene	ND		49.1	ug/kg	50		ND				30%	
4-Chlorotoluene	ND		49.1	ug/kg	50		ND				30%	
Dibromochloromethane	ND		98.2	ug/kg	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND		246	ug/kg	50		ND				30%	
1,2-Dibromoethane (EDB)	ND		49.1	ug/kg	50		ND				30%	
Dibromomethane	ND		49.1	ug/kg	50		ND				30%	
1,2-Dichlorobenzene	ND		24.6	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051139 - EPA 5035A Soil **Duplicate (9051139-DUP1)** Prepared: 05/20/19 12:50 Analyzed: 05/22/19 13:34 QC Source Sample: Non-SDG (A9E0680-09) 1,3-Dichlorobenzene ND 24.6 50 ND 30% ug/kg ND 24.6 1,4-Dichlorobenzene ug/kg 50 ND 30% Dichlorodifluoromethane ND 98.2 ug/kg 50 ND 30% 1,1-Dichloroethane ND 24.6 ug/kg 50 ND 30% 1,2-Dichloroethane (EDC) ND 24.6 50 ND 30% ug/kg ---ND 24.6 1,1-Dichloroethene ug/kg 50 ND 30% cis-1,2-Dichloroethene ND 24.6 ug/kg 50 ND 30% trans-1,2-Dichloroethene ND ND 30% 24.6 ug/kg 50 1,2-Dichloropropane ND 24.6 ug/kg 50 ND 30% 1,3-Dichloropropane ND 49 1 ug/kg 50 ND 30% 2,2-Dichloropropane ND 49 1 ug/kg 50 ND 30% 49.1 ND ND 30% 1,1-Dichloropropene ug/kg 50 cis-1,3-Dichloropropene ND 49.1 ug/kg 50 ND 30% ---ND 49.1 ND 30% trans-1,3-Dichloropropene ug/kg 50 *** Ethylbenzene ND 24.6 ug/kg 50 13.1 30% Hexachlorobutadiene ND 98.2 ug/kg 50 ND ---30% 2-Hexanone ND 491 ug/kg 50 ND 30% 49.1 73.5 O-05 Isopropylbenzene 162 50 75 30% ug/kg 49.1 73 30% M-02, Q-05 4-Isopropyltoluene 143 ug/kg 50 66.8 Methylene chloride ND 246 50 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND 491 ND 30% ug/kg 50 Methyl tert-butyl ether (MTBE) ND ---49.1 ug/kg 50 ND ---30% Naphthalene ND 98.2 ug/kg 50 ND 30% 24.6 294 30% Q-04 n-Propylbenzene 686 50 80 --ug/kg ND 49.1 30% Styrene ug/kg 50 ND ND 98.2 30% ND 1,1,1,2-Tetrachloroethane ug/kg 50 ---1,1,2,2-Tetrachloroethane ND 49.1 50 ND 30% ug/kg Tetrachloroethene (PCE) ND 24.6 ug/kg 50 ---ND ------30% ND 49.1 ug/kg 50 ND 30% ND 246 ND 30% 1,2,3-Trichlorobenzene ug/kg 50 ---1,2,4-Trichlorobenzene ND 246 ug/kg 50 ND 30% 24.6 1,1,1-Trichloroethane ND 50 ND 30% ug/kg ---1,1,2-Trichloroethane ND 24.6 ug/kg 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051139 - EPA 5035A							Soil					
Duplicate (9051139-DUP1)			Prepared	d: 05/20/19	12:50 Ana	lyzed: 05/22	/19 13:34					
QC Source Sample: Non-SDG (A9	E0680-09)											
Trichloroethene (TCE)	ND		24.6	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		98.2	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		49.1	ug/kg	50		ND				30%	
1,2,4-Trimethylbenzene	ND		49.1	ug/kg	50		ND				30%	
1,3,5-Trimethylbenzene	56.7		49.1	ug/kg	50		26.0			74	30%	Q-0
Vinyl chloride	ND		24.6	ug/kg	50		ND				30%	
m,p-Xylene	ND		49.1	ug/kg	50		ND				30%	
o-Xylene	ND		24.6	ug/kg	50		16.1			***	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
QC Source Sample: Non-SDG (A9 5035A/8260C	E0680-09)											
5035A/8260C												
Acetone	2060		1030	ug/kg	50	2070	ND	100	36-164%			
Acrylonitrile	1310		103	ug/kg	50	1030	ND	109	65-134%			
Benzene	1030		10.3	ug/kg	50	1030	ND	100	77-121%			
Bromobenzene	1070		25.7	ug/kg	50	1030	ND	103	78-121%			
Bromochloromethane	1150		51.4	ug/kg	50	1030	ND	111	78-125%			
Bromodichloromethane	1160		103	ug/kg	50	1030	ND	113	75-127%			
Bromoform	1240		206	ug/kg	50	1030	ND	120	67-132%			Q-54
Bromomethane	1180		514	ug/kg	50	1030	ND	114	53-143%			
2-Butanone (MEK)	3420		514	ug/kg	50	2070	ND	100	51-148%			
n-Butylbenzene	1370		51.4	ug/kg	50	1030	179	115	70-128%			
sec-Butylbenzene	1430		51.4	ug/kg	50	1030	265	112	73-126%			
tert-Butylbenzene	1140		51.4	ug/kg	50	1030	ND	110	73-125%			
Carbon disulfide	1010		514	ug/kg	50	1030	ND	98	63-132%			
Carbon tetrachloride	1260		103	ug/kg	50	1030	ND	122	70-135%			
Chlorobenzene	947		25.7	ug/kg	50	1030	ND	92	79-120%			
Chloroethane	1020		514	ug/kg	50	1030	ND	98	59-139%			
Chloroform	1080		51.4	ug/kg	50	1030	ND	104	78-123%			
Chloromethane	1170		257	ug/kg	50	1030	ND	113	50-136%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 37 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Limit Amount Result Limits Notes Batch 9051139 - EPA 5035A Soil Matrix Spike (9051139-MS1) Prepared: 05/20/19 12:50 Analyzed: 05/22/19 14:01 QC Source Sample: Non-SDG (A9E0680-09) 2-Chlorotoluene 1100 51.4 ug/kg 50 1030 ND 107 75-122% 1130 51.4 1030 4-Chlorotoluene ug/kg 50 ND 109 72-124% ug/kg 1030 Dibromochloromethane 1090 103 50 ND 105 74-126% 1,2-Dibromo-3-chloropropane 1170 257 ug/kg 50 1030 ND 113 61-132% 1,2-Dibromoethane (EDB) 1010 51.4 50 1030 ND 97 78-122% ug/kg ---Dibromomethane 51.4 1030 ND 111 78-125% 1140 ug/kg 50 1,2-Dichlorobenzene 1050 25.7 ug/kg 50 1030 ND 102 78-121% 1040 25.7 50 1030 ND 101 77-121% 1,3-Dichlorobenzene ug/kg 1,4-Dichlorobenzene 981 25.7 ug/kg 50 1030 ND 95 75-120% Dichlorodifluoromethane 1270 103 ug/kg 50 1030 ND 123 29-149% 1,1-Dichloroethane 977 25.7 ug/kg 50 1030 ND 95 76-125% 1030 98 1,2-Dichloroethane (EDC) 1010 25.7 50 ND 73-128% ug/kg 1030 70-131% 1,1-Dichloroethene 845 25.7 ug/kg 50 ND 82 cis-1,2-Dichloroethene 1030 1060 25.7 50 ND 102 77-123% ug/kg 25.7 trans-1,2-Dichloroethene 925 ug/kg 50 1030 ND 90 74-125% 1,2-Dichloropropane 1090 25.7 ug/kg 50 1030 ND 106 76-123% ___ 1,3-Dichloropropane 1030 51.4 ug/kg 50 1030 ND 100 77-121% 51.4 1030 ND 67-133% O-54f 2,2-Dichloropropane 1260 50 122 ug/kg ---50 1030 ND 104 76-125% 1,1-Dichloropropene 1080 51.4 ug/kg 51.4 1030 99 cis-1,3-Dichloropropene 1020 50 ND 74-126% ug/kg trans-1,3-Dichloropropene 50 1030 ND 99 71-130% 1020 51.4 ug/kg 1030 Ethylbenzene 1010 ---25.7 ug/kg 50 13.1 97 76-122% ---Hexachlorobutadiene 1050 103 ug/kg 50 1030 ND 101 61-135% 2-Hexanone 514 50 2070 ND 103 2120 53-145% --ug/kg 51.4 1030 73.5 111 68-134% Isopropylbenzene 1220 ug/kg 50 1030 1200 514 50 66.8 110 73-127% 4-Isopropyltoluene ug/kg Methylene chloride 881 257 50 1030 ND 85 70-128% Q-54r ug/kg 2070 ND 119 4-Methyl-2-pentanone (MiBK) 2460 514 ug/kg 50 65-135% Methyl tert-butyl ether (MTBE) 1080 51.4 ug/kg 50 1030 ND 105 73-125% Naphthalene 1070 103 50 1030 ND 104 62-129% ug/kg n-Propylbenzene 1430 25.7 ug/kg 50 1030 294 110 73-125%

Apex Laboratories

Philip Manherz

1,1,1,2-Tetrachloroethane

Styrene

1030

1120

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99

109

76-124%

78-125%

ND

ND

Philip Nerenberg, Lab Director

Page 38 of 118

50

50

ug/kg

ug/kg

1030

1030

51.4

103

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC Limits RPD Limit Limit Amount Result Notes Batch 9051139 - EPA 5035A Soil Matrix Spike (9051139-MS1) Prepared: 05/20/19 12:50 Analyzed: 05/22/19 14:01 QC Source Sample: Non-SDG (A9E0680-09) 1030 Q-54a 1,1,2,2-Tetrachloroethane 1170 51.4 ug/kg 50 ND 113 70-124% Tetrachloroethene (PCE) 944 25.7 1030 ug/kg 50 ND 91 73-128% 914 1030 77-121% Toluene 51.4 ug/kg 50 ND 88 1,2,3-Trichlorobenzene 1060 257 ug/kg 50 1030 ND 103 66-130% 1,2,4-Trichlorobenzene 1140 257 ug/kg 50 1030 ND 110 67-129% 1200 25.7 1030 ND 73-130% 1,1,1-Trichloroethane ug/kg 50 116 25.7 1030 1,1,2-Trichloroethane 1160 ug/kg 50 ND 112 78-121% Trichloroethene (TCE) 1040 25.7 50 1030 ND 100 77-123% ug/kg ug/kg 1030 Trichlorofluoromethane 1080 103 50 ND 105 62-140% 51.4 1,2,3-Trichloropropane 1080 ug/kg 50 1030 ND 105 73-125% 1,2,4-Trimethylbenzene 1140 51.4 ug/kg 50 1030 ND 110 75-123% 1030 1,3,5-Trimethylbenzene 51.4 50 26.0 111 73-124% 1170 ug/kg 25.7 1030 ND 108 56-135% Vinyl chloride 1110 ug/kg 50 2070 ND m,p-Xylene 2120 51.4 103 77-124% ug/kg 50 25.7 ug/kg 1030 77-123% o-Xylene 1110 50 16.1 106 Surr: 1,4-Difluorobenzene (Surr) 104 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 96 % 80-120 % 4-Bromofluorobenzene (Surr) 103 % 80-120 %

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 9051198 - EPA 5035A Soil Blank (9051198-BLK1) Prepared: 05/23/19 09:32 Analyzed: 05/23/19 12:18 5035A/8260C ND 667 50 Acetone ug/kg ND 50 Acrylonitrile 66.7 ug/kg Benzene ND 6.67 ug/kg 50 Bromobenzene ND 16.7 ug/kg 50 Bromochloromethane ND 33.3 50 ug/kg Bromodichloromethane ND 66.7 50 ug/kg Bromoform ND 133 50 ug/kg Bromomethane ND 333 ug/kg 50 2-Butanone (MEK) ND 333 ug/kg 50 n-Butylbenzene ND 33.3 50 ug/kg --sec-Butylbenzene ND 33.3 50 ug/kg ND 33.3 tert-Butylbenzene 50 ug/kg Carbon disulfide ND 333 ug/kg 50 Carbon tetrachloride ND 66.7 50 ug/kg Chlorobenzene ND 16.7 ug/kg 50 Chloroethane ND 333 ug/kg 50 ------------Chloroform ND 33.3 ug/kg 50 ND 167 Chloromethane 50 ug/kg ---2-Chlorotoluene ND 33.3 ug/kg 50 ug/kg 4-Chlorotoluene ND 33.3 50 Dibromochloromethane ND 66.7 ug/kg 50 1,2-Dibromo-3-chloropropane ND 167 ug/kg 50 1,2-Dibromoethane (EDB) ND 33.3 ug/kg 50 ug/kg Dibromomethane ND 33.3 50 1,2-Dichlorobenzene ND 16.7 ug/kg 50 1,3-Dichlorobenzene ND 16.7 ug/kg 50

Apex Laboratories

Philip Marenberg

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

1,2-Dichloroethane (EDC)

ND

ND

ND

ND

ND

ND

ND

16.7

66.7

16.7

16.7

16.7

16.7

16.7

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

50

50

50

50

50

50

50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 40 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051198 - EPA 5035A							Soil					
Blank (9051198-BLK1)			Prepared	: 05/23/19	09:32 Anal	yzed: 05/23/	19 12:18					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
,1-Dichloropropene	ND		33.3	ug/kg	50							
eis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
rans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
sopropylbenzene	ND		33.3	ug/kg	50							
1-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
1-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,1,2-Tetrachloroethane	ND		66.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg	50							
,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Trichloroethene (TCE)	ND		16.7	ug/kg	50							
Trichlorofluoromethane	ND		66.7	ug/kg	50							
,2,3-Trichloropropane	ND		33.3	ug/kg	50							
,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
1,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
n,p-Xylene	ND		33.3	ug/kg	50							
o-Xylene	ND		16.7	ug/kg	50							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 100 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 118

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051198 - EPA 5035A Soil Blank (9051198-BLK1) Prepared: 05/23/19 09:32 Analyzed: 05/23/19 12:18 Surr: Toluene-d8 (Surr) Recovery: 99% Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 106 % 80-120 % LCS (9051198-BS1) Prepared: 05/23/19 09:32 Analyzed: 05/23/19 11:24 5035A/8260C Acetone 1880 1000 ug/kg 50 2000 94 80-120% Acrylonitrile 1060 100 50 1000 106 80-120% ug/kg Benzene 974 10.0 ug/kg 50 1000 97 80-120% 25.0 1000 Bromobenzene 1030 50 103 80-120% ug/kg ---------Bromochloromethane 1020 50.0 50 1000 102 80-120% ug/kg 100 1000 Bromodichloromethane 1060 ug/kg 50 106 80-120% ---Bromoform 1330 200 ug/kg 50 1000 133 80-120% O-56 Bromomethane 978 500 50 1000 98 80-120% ug/kg 2-Butanone (MEK) 2050 500 50 2000 103 80-120% ug/kg 1090 50.0 50 1000 109 80-120% n-Butylbenzene ug/kg --------sec-Butylbenzene 1090 50.0 50 1000 109 80-120% ug/kg tert-Butylbenzene 1060 50.0 50 1000 106 80-120% ug/kg Carbon disulfide 959 500 ug/kg 50 1000 96 80-120% Carbon tetrachloride 1230 100 50 1000 123 80-120% Q-56 ug/kg ---Chlorobenzene 933 25.0 ug/kg 50 1000 93 80-120% Chloroethane 717 500 50 1000 72 80-120% Q-55 ug/kg 1000 80-120% Chloroform 1010 50.0 ug/kg 50 101 Chloromethane 1020 250 50 1000 102 80-120% ug/kg 2-Chlorotoluene 1030 50.0 ug/kg 50 1000 103 80-120% 4-Chlorotoluene 1060 50.0 ug/kg 50 1000 106 80-120% Dibromochloromethane 1150 100 ug/kg 50 1000 115 80-120% 1,2-Dibromo-3-chloropropane 1130 250 ug/kg 50 1000 113 80-120% 80-120% 1,2-Dibromoethane (EDB) 1050 1000 50.0 ug/kg 50 105 Dibromomethane 1060 50.0 50 1000 106 80-120% ug/kg 1,2-Dichlorobenzene 1030 25.0 ug/kg 50 1000 103 80-120% 1,3-Dichlorobenzene 1020 25.0 ug/kg 50 1000 102 80-120% 1,4-Dichlorobenzene 964 25.0 50 1000 96 80-120% ug/kg Dichlorodifluoromethane 1130 100 ug/kg 50 1000 113 80-120% 1,1-Dichloroethane 889 25.0 1000 89 80-120% ug/kg 50

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051198 - EPA 5035A							Soil					
LCS (9051198-BS1)			Prepared	: 05/23/19	09:32 Ana	lyzed: 05/23	/19 11:24					_
1,2-Dichloroethane (EDC)	938		25.0	ug/kg	50	1000		94	80-120%			
1,1-Dichloroethene	789		25.0	ug/kg	50	1000		79	80-120%			Q-55
cis-1,2-Dichloroethene	1000		25.0	ug/kg	50	1000		100	80-120%			
trans-1,2-Dichloroethene	871		25.0	ug/kg	50	1000		87	80-120%			
1,2-Dichloropropane	1010		25.0	ug/kg	50	1000		101	80-120%			
1,3-Dichloropropane	1080		50.0	ug/kg	50	1000		108	80-120%			
2,2-Dichloropropane	1250		50.0	ug/kg	50	1000		125	80-120%			Q-56
1,1-Dichloropropene	997		50.0	ug/kg	50	1000		100	80-120%			
cis-1,3-Dichloropropene	1040		50.0	ug/kg	50	1000		104	80-120%			
trans-1,3-Dichloropropene	1070		50.0	ug/kg	50	1000		107	80-120%			
Ethylbenzene	971		25.0	ug/kg	50	1000		97	80-120%			
Hexachlorobutadiene	996		100	ug/kg	50	1000		100	80-120%			
2-Hexanone	2040		500	ug/kg	50	2000		102	80-120%			
Isopropylbenzene	1080		50.0	ug/kg	50	1000		108	80-120%			
4-Isopropyltoluene	1050		50.0	ug/kg	50	1000		105	80-120%			
Methylene chloride	789		250	ug/kg	50	1000		79	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	2120		500	ug/kg	50	2000		106	80-120%			
Methyl tert-butyl ether (MTBE)	1020		50.0	ug/kg	50	1000		102	80-120%			
Naphthalene	1010		100	ug/kg	50	1000		101	80-120%			
n-Propylbenzene	1060		25.0	ug/kg	50	1000		106	80-120%			
Styrene	944		50.0	ug/kg	50	1000		94	80-120%			
1,1,1,2-Tetrachloroethane	1180		100	ug/kg	50	1000		118	80-120%			
1,1,2,2-Tetrachloroethane	1220		50.0	ug/kg	50	1000		122	80-120%			O-56
Tetrachloroethene (PCE)	1010		25.0	ug/kg	50	1000		101	80-120%			
Toluene	941		50.0	ug/kg	50	1000		94	80-120%			
1,2,3-Trichlorobenzene	1070		250	ug/kg	50	1000		107	80-120%			
1,2,4-Trichlorobenzene	1100		250	ug/kg	50	1000		110	80-120%			
1,1,1-Trichloroethane	1140		25.0	ug/kg	50	1000		114	80-120%			
1,1,2-Trichloroethane	1090		25.0	ug/kg	50	1000		109	80-120%			
Trichloroethene (TCE)	979		25.0	ug/kg	50	1000		98	80-120%			
Trichlorofluoromethane	832		100	ug/kg	50	1000		83	80-120%			
1,2,3-Trichloropropane	1080		50.0	ug/kg	50	1000		108	80-120%			
1,2,4-Trimethylbenzene	1090		50.0	ug/kg ug/kg	50	1000		109	80-120%			
1,3,5-Trimethylbenzene	1080		50.0	ug/kg	50	1000		108	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 118

Hahn and Associates Project: **Mult 802 Decommissioning**

434 NW 6th Ave. Suite 203 Project Number: 2708-60F Report ID: Portland, OR 97209 Project Manager: Rob Ede A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vola	atile Organ	ic Compo	ounds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051198 - EPA 5035A							Soil					
LCS (9051198-BS1)			Prepared	1: 05/23/19	09:32 Ana	lyzed: 05/23	/19 11:24					
Vinyl chloride	926		25.0	ug/kg	50	1000		93	80-120%			
n,p-Xylene	2010		50.0	ug/kg	50	2000		100	80-120%			
o-Xylene	1010		25.0	ug/kg	50	1000		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Ouplicate (9051198-DUP1)			Prepared	l: 05/22/19 2	22:00 Anal	yzed: 05/23	/19 17:54					V-10
OC Source Sample: Non-SDG (A9	E0747-01)											
Acetone	ND		1020	ug/kg	50		ND				30%	
Acrylonitrile	ND		102	ug/kg	50		ND				30%	
Benzene	ND		10.2	ug/kg	50		ND				30%	
Bromobenzene	ND		25.5	ug/kg	50		ND				30%	
Bromochloromethane	ND		51.0	ug/kg	50		ND				30%	
Bromodichloromethane	ND		102	ug/kg	50		ND				30%	
Bromoform	ND		204	ug/kg	50		ND				30%	
Bromomethane	ND		510	ug/kg	50		ND				30%	
2-Butanone (MEK)	ND		510	ug/kg	50		ND				30%	
n-Butylbenzene	ND		51.0	ug/kg	50		ND				30%	
ec-Butylbenzene	ND		51.0	ug/kg	50		ND				30%	
ert-Butylbenzene	ND		51.0	ug/kg	50		ND				30%	
Carbon disulfide	ND		510	ug/kg	50		ND				30%	
Carbon tetrachloride	ND		102	ug/kg	50		ND				30%	
Chlorobenzene	ND		25.5	ug/kg	50		ND				30%	
Chloroethane	ND		510	ug/kg	50		ND				30%	
Chloroform	ND		51.0	ug/kg	50		ND				30%	
Chloromethane	ND		255	ug/kg	50		ND				30%	
-Chlorotoluene	ND		51.0	ug/kg	50		ND				30%	
l-Chlorotoluene	ND		51.0	ug/kg	50		ND				30%	
Dibromochloromethane	ND		102	ug/kg	50		ND				30%	
,2-Dibromo-3-chloropropane	ND		255	ug/kg	50		ND				30%	
,2-Dibromoethane (EDB)	ND		51.0	ug/kg	50		ND				30%	
Dibromomethane	ND		51.0	ug/kg	50		ND				30%	
,2-Dichlorobenzene	ND		25.5	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 44 of 118 Philip Nerenberg, Lab Director

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting Spike Source % REC RPD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051198 - EPA 5035A							Soil					
Duplicate (9051198-DUP1)			Prepared	: 05/22/19	22:00 Ana	lyzed: 05/23	/19 17:54					V-16
QC Source Sample: Non-SDG (A9	E0747-01)											
1,3-Dichlorobenzene	ND		25.5	ug/kg	50		ND				30%	
1,4-Dichlorobenzene	ND		25.5	ug/kg	50		ND				30%	
Dichlorodifluoromethane	ND		102	ug/kg	50		ND				30%	
1,1-Dichloroethane	ND		25.5	ug/kg	50		ND				30%	
1,2-Dichloroethane (EDC)	ND		25.5	ug/kg	50		ND				30%	
1,1-Dichloroethene	ND		25.5	ug/kg	50		ND				30%	
cis-1,2-Dichloroethene	ND		25.5	ug/kg	50		ND				30%	
trans-1,2-Dichloroethene	ND		25.5	ug/kg	50		ND				30%	
1,2-Dichloropropane	ND		25.5	ug/kg	50		ND				30%	
1,3-Dichloropropane	ND		51.0	ug/kg	50		ND				30%	
2,2-Dichloropropane	ND		51.0	ug/kg	50		ND				30%	
1,1-Dichloropropene	ND		51.0	ug/kg	50		ND				30%	
cis-1,3-Dichloropropene	ND		51.0	ug/kg	50		ND				30%	
trans-1,3-Dichloropropene	ND		51.0	ug/kg	50		ND				30%	
Ethylbenzene	ND		25.5	ug/kg	50		ND				30%	
Hexachlorobutadiene	ND		102	ug/kg	50		ND				30%	
2-Hexanone	ND		510	ug/kg	50		ND				30%	
Isopropylbenzene	ND		51.0	ug/kg	50		ND				30%	
4-Isopropyltoluene	ND		51.0	ug/kg	50		ND				30%	
Methylene chloride	ND		255	ug/kg	50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		510	ug/kg	50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		51.0	ug/kg	50		ND				30%	
Naphthalene	ND		102	ug/kg	50		ND				30%	
n-Propylbenzene	ND		25.5	ug/kg	50		ND				30%	
Styrene	ND		51.0	ug/kg	50		ND				30%	
1,1,1,2-Tetrachloroethane	ND		102	ug/kg	50		ND				30%	
1,1,2,2-Tetrachloroethane	ND		51.0	ug/kg	50		ND				30%	
Tetrachloroethene (PCE)	ND		25.5	ug/kg	50		ND				30%	
Toluene	ND		51.0	ug/kg	50		ND				30%	
1,2,3-Trichlorobenzene	ND		255	ug/kg	50		ND				30%	
1,2,4-Trichlorobenzene	ND		255	ug/kg	50		ND				30%	
1,1,1-Trichloroethane	ND		25.5	ug/kg	50		ND				30%	
1,1,2-Trichloroethane	ND		25.5	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 45 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 503	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051198 - EPA 5035A							Soil					
Duplicate (9051198-DUP1)			Prepared	1: 05/22/19	22:00 Ana	lyzed: 05/23	/19 17:54					V-16
QC Source Sample: Non-SDG (A9	E0747-01)											
Trichloroethene (TCE)	ND		25.5	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		102	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		51.0	ug/kg	50		ND				30%	
1,2,4-Trimethylbenzene	ND		51.0	ug/kg	50		ND				30%	
1,3,5-Trimethylbenzene	ND		51.0	ug/kg	50		ND				30%	
Vinyl chloride	ND		25.5	ug/kg	50		ND				30%	
m,p-Xylene	ND		51.0	ug/kg	50		ND				30%	
o-Xylene	ND		25.5	ug/kg	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80	-120 %		"					
QC Source Sample: Non-SDG (A9 5035A/8260C	<u>)E0747-06)</u>											
5035A/8260C												
Acetone	101000		44100	ug/kg	2000	88200	ND	115	36-164%			
Acrylonitrile	56100		4410	ug/kg	2000	44100	ND	127	65-134%			
Benzene	46300		441	ug/kg	2000	44100	ND	105	77-121%			
Bromobenzene	50200		1100	ug/kg	2000	44100	ND	114	78-121%			
Bromochloromethane	49300		2210	ug/kg	2000	44100	ND	112	78-125%			
Bromodichloromethane	53100		4410	ug/kg	2000	44100	ND	120	75-127%			
Bromoform	57700		8830	ug/kg	2000	44100	ND	131	67-132%			Q-54
Bromomethane	53800		22100	ug/kg	2000	44100	ND	122	53-143%			
2-Butanone (MEK)	106000		22100	ug/kg	2000	88200	ND	120	51-148%			
n-Butylbenzene	61700		2210	ug/kg	2000	44100	7400	123	70-128%			
sec-Butylbenzene	55200		2210	ug/kg	2000	44100	4160	116	73-126%			
tert-Butylbenzene	50800		2210	ug/kg	2000	44100	ND	115	73-125%			
Carbon disulfide	41200		22100	ug/kg	2000	44100	ND	93	63-132%			
Carbon tetrachloride	54400		4410	ug/kg	2000	44100	ND	123	70-135%			Q-54
Chlorobenzene	41800		1100	ug/kg	2000	44100	ND	95	79-120%			
Chloroethane	40400		22100	ug/kg	2000	44100	ND	92	59-139%			Q-54
Chloroform	48200		2210	ug/kg	2000	44100	ND	109	78-123%			
Chloromethane	46900		11000	ug/kg	2000	44100	ND	106	50-136%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting Spike Source % REC RPD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051198 - EPA 5035A							Soil	l				
Matrix Spike (9051198-MS1)			Prepared	: 05/22/19 2	22:00 Ana	lyzed: 05/23	/19 20:36					V-16
QC Source Sample: Non-SDG (A9	E0747-06)											
2-Chlorotoluene	50500		2210	ug/kg	2000	44100	ND	114	75-122%			
4-Chlorotoluene	49800		2210	ug/kg	2000	44100	ND	113	72-124%			
Dibromochloromethane	51900		4410	ug/kg	2000	44100	ND	118	74-126%			
1,2-Dibromo-3-chloropropane	48500		11000	ug/kg	2000	44100	ND	110	61-132%			
1,2-Dibromoethane (EDB)	48000		2210	ug/kg	2000	44100	ND	109	78-122%			
Dibromomethane	54000		2210	ug/kg	2000	44100	ND	122	78-125%			
1,2-Dichlorobenzene	45200		1100	ug/kg	2000	44100	ND	102	78-121%			
1,3-Dichlorobenzene	46400		1100	ug/kg	2000	44100	ND	105	77-121%			
1,4-Dichlorobenzene	43400		1100	ug/kg	2000	44100	ND	98	75-120%			
Dichlorodifluoromethane	53300		4410	ug/kg	2000	44100	ND	121	29-149%			
1,1-Dichloroethane	42600		1100	ug/kg	2000	44100	ND	97	76-125%			
1,2-Dichloroethane (EDC)	47300		1100	ug/kg	2000	44100	ND	107	73-128%			
1,1-Dichloroethene	35000		1100	ug/kg	2000	44100	ND	79	70-131%			Q-54m
cis-1,2-Dichloroethene	48000		1100	ug/kg	2000	44100	ND	109	77-123%			
trans-1,2-Dichloroethene	39700		1100	ug/kg	2000	44100	ND	90	74-125%			
1,2-Dichloropropane	50200		1100	ug/kg	2000	44100	ND	114	76-123%			
1,3-Dichloropropane	48400		2210	ug/kg	2000	44100	ND	110	77-121%			
2,2-Dichloropropane	48400		2210	ug/kg	2000	44100	ND	110	67-133%			Q-54g
1,1-Dichloropropene	45300		2210	ug/kg	2000	44100	ND	103	76-125%			
cis-1,3-Dichloropropene	44400		2210	ug/kg	2000	44100	ND	101	74-126%			
trans-1,3-Dichloropropene	46900		2210	ug/kg	2000	44100	ND	106	71-130%			
Ethylbenzene	43500		1100	ug/kg	2000	44100	1160	96	76-122%			
Hexachlorobutadiene	44700		4410	ug/kg	2000	44100	ND	101	61-135%			
2-Hexanone	80200		22100	ug/kg	2000	88200	ND	91	53-145%			
Isopropylbenzene	49200		2210	ug/kg	2000	44100	1430	108	68-134%			
4-Isopropyltoluene	58600		2210	ug/kg	2000	44100	2790	127	73-127%			
Methylene chloride	34600		11000	ug/kg	2000	44100	ND	79	70-128%			Q-54m
4-Methyl-2-pentanone (MiBK)	91100		22100	ug/kg	2000	88200	ND	103	65-135%			
Methyl tert-butyl ether (MTBE)	51700		2210	ug/kg	2000	44100	ND	117	73-125%			
Naphthalene	51900		4410	ug/kg	2000	44100	4870	107	62-129%			
n-Propylbenzene	55600		1100	ug/kg	2000	44100	5360	114	73-125%			
Styrene	43400		2210	ug/kg	2000	44100	ND	98	76-124%			
1,1,1,2-Tetrachloroethane	52800		4410	ug/kg	2000	44100	ND	120	78-125%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 118

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC Limits RPD Limit Limit Amount Result Notes Batch 9051198 - EPA 5035A Soil Matrix Spike (9051198-MS1) Prepared: 05/22/19 22:00 Analyzed: 05/23/19 20:36 V-16 QC Source Sample: Non-SDG (A9E0747-06) 1,1,2,2-Tetrachloroethane 52300 2210 ug/kg 2000 44100 ND 119 70-124% Q-54 40000 1100 44100 Tetrachloroethene (PCE) ug/kg 2000 ND 91 73-128% 44100 Toluene 39600 2210 ug/kg 2000 ND 90 77-121% 1,2,3-Trichlorobenzene 47300 11000 ug/kg 2000 44100 ND 107 66-130% 1,2,4-Trichlorobenzene 48400 11000 ug/kg 2000 44100 ND 110 67-129% 1100 44100 ND 73-130% 1,1,1-Trichloroethane 51700 ug/kg 2000 117 1,1,2-Trichloroethane 50100 1100 ug/kg 2000 44100 ND 113 78-121% Trichloroethene (TCE) 2000 44100 ND 103 77-123% 45300 1100 ug/kg ug/kg Trichlorofluoromethane 43200 4410 2000 44100 ND 98 62-140% 1,2,3-Trichloropropane 48900 2210 ug/kg 2000 44100 ND 107 73-125% 1,2,4-Trimethylbenzene 93400 2210 ug/kg 2000 44100 40500 120 75-123% 1,3,5-Trimethylbenzene 618002210 44100 10100 117 73-124% ug/kg 2000 44100 ND 105 56-135% Vinyl chloride 46300 1100 ug/kg 2000 88200 4840 m,p-Xylene 94000 2210 2000 101 77-124% ug/kg 50200 1100 44100 77-123% o-Xylene ug/kg 2000 3510 106 Surr: 1,4-Difluorobenzene (Surr) 106 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 93% 80-120 % 4-Bromofluorobenzene (Surr) 108 % 80-120 %

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 48 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil Blank (9060533-BLK1) Prepared: 06/04/19 09:03 Analyzed: 06/04/19 11:23 5035A/8260C ND 667 50 Acetone ug/kg ND 50 Acrylonitrile 66.7 ug/kg Benzene ND 6.67 ug/kg 50 Bromobenzene ND 16.7 ug/kg 50 Bromochloromethane ND 33.3 50 ug/kg Bromodichloromethane ND 33.3 50 ug/kg Bromoform ND 50 66.7 ug/kg Bromomethane 333 ND ug/kg 50 2-Butanone (MEK) ND 333 ug/kg 50 n-Butylbenzene ND 33.3 50 ug/kg --sec-Butylbenzene ND 33.3 50 ug/kg ND 33.3 tert-Butylbenzene 50 --ug/kg Carbon disulfide ND 333 ug/kg 50 Carbon tetrachloride ND 33.3 50 ug/kg Chlorobenzene ND 16.7 ug/kg 50 Chloroethane ND 333 ug/kg 50 ------------Chloroform ND 33.3 ug/kg 50 ND 167 Chloromethane 50 ug/kg ---2-Chlorotoluene ND 33.3 ug/kg 50 ug/kg 4-Chlorotoluene ND 33.3 50 Dibromochloromethane ND 66.7 ug/kg 50 1,2-Dibromo-3-chloropropane ND 167 ug/kg 50 1,2-Dibromoethane (EDB) ND 33.3 ug/kg 50 ug/kg Dibromomethane ND 33.3 50

Apex Laboratories

Philip Merenberg

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

1,2-Dichloroethane (EDC)

ND

ND

ND

ND

ND

ND

ND

ND

ND

16.7

16.7

16.7

66.7

16.7

16.7

16.7

16.7

16.7

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

50

50

50

50

50

50

50

50

50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 49 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Blank (9060533-BLK1)			Prepared	1: 06/04/19	09:03 Anal	yzed: 06/04	/19 11:23					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
1,1-Dichloropropene	ND		33.3	ug/kg	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
trans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
Isopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
4-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,2-Tetrachloroethane	ND		16.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Trichloroethene (TCE)	ND		16.7	ug/kg	50							
Trichlorofluoromethane	ND		66.7	ug/kg	50							
1,2,3-Trichloropropane	ND		33.3	ug/kg	50							
1,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
1,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
m,p-Xylene	ND		33.3	ug/kg	50							
o-Xylene	ND		16.7	ug/kg	50							
Surr: 1,4-Difluorobenzene (Surr)			overy: 94 %	Limits: 80			ution: 1x					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 50 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Blank (9060533-BLK1)			Prepared	: 06/04/19 (09:03 Anal	yzed: 06/04	/19 11:23					
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80	-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (9060533-BS1)			Prepared	: 06/04/19 (09:03 Anal	yzed: 06/04	/19 10:28					
5035A/8260C												
Acetone	1860		1000	ug/kg	50	2000		93	80-120%			
Acrylonitrile	998		100	ug/kg	50	1000		100	80-120%			
Benzene	962		10.0	ug/kg	50	1000		96	80-120%			
Bromobenzene	1120		25.0	ug/kg	50	1000		112	80-120%			
Bromochloromethane	1040		50.0	ug/kg	50	1000		104	80-120%			
Bromodichloromethane	1040		50.0	ug/kg	50	1000		104	80-120%			
Bromoform	902		100	ug/kg	50	1000		90	80-120%			
Bromomethane	955		500	ug/kg	50	1000		96	80-120%			
2-Butanone (MEK)	1860		500	ug/kg	50	2000		93	80-120%			
n-Butylbenzene	1110		50.0	ug/kg	50	1000		111	80-120%			
sec-Butylbenzene	1120		50.0	ug/kg	50	1000		112	80-120%			
ert-Butylbenzene	1100		50.0	ug/kg	50	1000		110	80-120%			
Carbon disulfide	980		500	ug/kg	50	1000		98	80-120%			
Carbon tetrachloride	1050		50.0	ug/kg	50	1000		105	80-120%			
Chlorobenzene	1030		25.0	ug/kg	50	1000		103	80-120%			
Chloroethane	858		500	ug/kg	50	1000		86	80-120%			
Chloroform	966		50.0	ug/kg	50	1000		97	80-120%			
Chloromethane	902		250	ug/kg	50	1000		90	80-120%			
2-Chlorotoluene	1090		50.0	ug/kg	50	1000		109	80-120%			
4-Chlorotoluene	1080		50.0	ug/kg	50	1000		108	80-120%			
Dibromochloromethane	922		100	ug/kg	50	1000		92	80-120%			
1,2-Dibromo-3-chloropropane	975		250	ug/kg	50	1000		98	80-120%			
1,2-Dibromoethane (EDB)	1120		50.0	ug/kg	50	1000		112	80-120%			
Dibromomethane	986		50.0	ug/kg	50	1000		99	80-120%			
1,2-Dichlorobenzene	1030		25.0	ug/kg	50	1000		103	80-120%			
1,3-Dichlorobenzene	1030		25.0	ug/kg	50	1000		103	80-120%			
1,4-Dichlorobenzene	1030		25.0	ug/kg	50	1000		103	80-120%			
Dichlorodifluoromethane	984		100	ug/kg	50	1000		98	80-120%			
1,1-Dichloroethane	1030		25.0	ug/kg	50	1000		103	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 51 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
LCS (9060533-BS1)			Prepared	: 06/04/19	09:03 Anal	yzed: 06/04	/19 10:28					
1,2-Dichloroethane (EDC)	988		25.0	ug/kg	50	1000		99	80-120%			
1,1-Dichloroethene	1040		25.0	ug/kg	50	1000		104	80-120%			
cis-1,2-Dichloroethene	988		25.0	ug/kg	50	1000		99	80-120%			
trans-1,2-Dichloroethene	1020		25.0	ug/kg	50	1000		102	80-120%			
1,2-Dichloropropane	992		25.0	ug/kg	50	1000		99	80-120%			
1,3-Dichloropropane	1060		50.0	ug/kg	50	1000		106	80-120%			
2,2-Dichloropropane	1140		50.0	ug/kg	50	1000		114	80-120%			
1,1-Dichloropropene	970		50.0	ug/kg	50	1000		97	80-120%			
cis-1,3-Dichloropropene	1120		50.0	ug/kg	50	1000		112	80-120%			
trans-1,3-Dichloropropene	1110		50.0	ug/kg	50	1000		111	80-120%			
Ethylbenzene	1050		25.0	ug/kg	50	1000		105	80-120%			
Hexachlorobutadiene	1200		100	ug/kg	50	1000		120	80-120%			
2-Hexanone	1980		500	ug/kg	50	2000		99	80-120%			
Isopropylbenzene	1070		50.0	ug/kg	50	1000		107	80-120%			
4-Isopropyltoluene	1120		50.0	ug/kg	50	1000		112	80-120%			
Methylene chloride	712		250	ug/kg	50	1000		71	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	1900		500	ug/kg	50	2000		95	80-120%			
Methyl tert-butyl ether (MTBE)	947		50.0	ug/kg	50	1000		95	80-120%			
Naphthalene	1070		100	ug/kg	50	1000		107	80-120%			
n-Propylbenzene	1090		25.0	ug/kg	50	1000		109	80-120%			
Styrene	1100		50.0	ug/kg	50	1000		110	80-120%			
1,1,2-Tetrachloroethane	1130		25.0	ug/kg	50	1000		113	80-120%			
1,1,2,2-Tetrachloroethane	1050		50.0	ug/kg	50	1000		105	80-120%			
Tetrachloroethene (PCE)	1000		25.0	ug/kg	50	1000		100	80-120%			
Toluene	1020		50.0	ug/kg	50	1000		102	80-120%			
1,2,3-Trichlorobenzene	1120		250	ug/kg	50	1000		112	80-120%			
1,2,4-Trichlorobenzene	1080		250	ug/kg	50	1000		108	80-120%			
1,1,1-Trichloroethane	1030		25.0	ug/kg	50	1000		103	80-120%			
1,1,2-Trichloroethane	1100		25.0	ug/kg	50	1000		110	80-120%			
Trichloroethene (TCE)	930		25.0	ug/kg	50	1000		93	80-120%			
Trichlorofluoromethane	982		100	ug/kg	50	1000		98	80-120%			
1,2,3-Trichloropropane	1050		50.0	ug/kg	50	1000		105	80-120%			
1,2,4-Trimethylbenzene	1110		50.0	ug/kg	50	1000		111	80-120%			
1,3,5-Trimethylbenzene	1120		50.0	ug/kg	50	1000		112	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 52 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 5035A/8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
LCS (9060533-BS1)			Prepared	1: 06/04/19	09:03 Ana	lyzed: 06/04	/19 10:28					
Vinyl chloride	910		25.0	ug/kg	50	1000		91	80-120%			
m,p-Xylene	2160		50.0	ug/kg	50	2000		108	80-120%			
o-Xylene	1070		25.0	ug/kg	50	1000		107	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 95 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (9060533-DUP1)			Prepared	1: 05/29/19	11:20 Ana	lyzed: 06/04	/19 20:32					
OC Source Sample: Non-SDG (A9	F0057-03)											
Acetone	ND		3560	ug/kg	200		ND				30%	
Acrylonitrile	ND		1070	ug/kg	200		ND				30%	R-0
Benzene	ND		35.6	ug/kg	200		ND				30%	
Bromobenzene	ND		88.9	ug/kg	200		ND				30%	
Bromochloromethane	ND		178	ug/kg	200		ND				30%	
Bromodichloromethane	ND		178	ug/kg	200		ND				30%	
Bromoform	ND		356	ug/kg	200		ND				30%	
Bromomethane	ND		1780	ug/kg	200		ND				30%	
2-Butanone (MEK)	ND		2670	ug/kg	200		ND				30%	R-0
n-Butylbenzene	1210		178	ug/kg	200		ND				30%	M-02, Q-0
sec-Butylbenzene	407		178	ug/kg	200		ND				30%	Q-04
tert-Butylbenzene	ND		178	ug/kg	200		ND				30%	
Carbon disulfide	ND		1780	ug/kg	200		ND				30%	
Carbon tetrachloride	ND		178	ug/kg	200		ND				30%	
Chlorobenzene	ND		88.9	ug/kg	200		ND				30%	
Chloroethane	ND		1780	ug/kg	200		ND				30%	
Chloroform	ND		178	ug/kg	200		ND				30%	
Chloromethane	ND		889	ug/kg	200		ND				30%	
2-Chlorotoluene	ND		178	ug/kg	200		ND				30%	
4-Chlorotoluene	ND		178	ug/kg	200		ND				30%	
Dibromochloromethane	ND		356	ug/kg	200		ND				30%	
1,2-Dibromo-3-chloropropane	ND		889	ug/kg	200		ND				30%	
1,2-Dibromoethane (EDB)	ND		178	ug/kg	200		ND				30%	
Dibromomethane	ND		178	ug/kg	200		ND				30%	
1,2-Dichlorobenzene	ND		88.9	ug/kg	200		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 53 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil **Duplicate (9060533-DUP1)** Prepared: 05/29/19 11:20 Analyzed: 06/04/19 20:32 QC Source Sample: Non-SDG (A9F0057-03) 1,3-Dichlorobenzene ND 88.9 ug/kg 200 ND 30% ND 88.9 200 1,4-Dichlorobenzene ug/kg ND 30% Dichlorodifluoromethane ND 356 ug/kg 200 ND 30% 1,1-Dichloroethane ND 88.9 ug/kg 200 ND 30% 1,2-Dichloroethane (EDC) ND 88.9 200 ND 30% ug/kg ---ND 88.9 ND 1,1-Dichloroethene ug/kg 200 30% cis-1,2-Dichloroethene ND 88.9 ug/kg 200 ND 30% trans-1,2-Dichloroethene ND 88.9 ND 30% ug/kg 200 1,2-Dichloropropane ND 88.9 ug/kg 200 ND 30% 1,3-Dichloropropane ND 178 ug/kg 200 ND 30% 2,2-Dichloropropane ND 178 ug/kg 200 ND 30% ND 178 ND 30% 1,1-Dichloropropene ug/kg 200 ug/kg cis-1,3-Dichloropropene ND 178 200 ND 30% ND 178 200 ND 30% trans-1,3-Dichloropropene ug/kg 88.9 Q-04 Ethylbenzene 1440 ug/kg 200 ND 30% Hexachlorobutadiene ND 356 ug/kg 200 ND 30% 2-Hexanone ND 1780 ug/kg 200 ND 30% 200 ND O-04 Isopropylbenzene 919 178 30% ug/kg 181 30% M-02, Q-04 4-Isopropyltoluene 178 ug/kg 200 ND 889 Methylene chloride ND 200 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND ND 30% 1780 ug/kg 200 30% Methyl tert-butyl ether (MTBE) ND ---178 ug/kg 200 ND Naphthalene 1370 356 ug/kg 200 ND 30% Q-04 4220 ND 30% Q-04 n-Propylbenzene 88.9 200 --ug/kg ND 178 ND 30% Styrene ug/kg 200 ND 30% 88.9 200 ND 1,1,1,2-Tetrachloroethane ug/kg 1,1,2,2-Tetrachloroethane ND 178 200 ND 30% ug/kg ND Tetrachloroethene (PCE) ---88.9 ug/kg 200 ---ND ------30% ND 178 ug/kg 200 ND 30% ND 889 200 ND 30% 1,2,3-Trichlorobenzene ug/kg ---1,2,4-Trichlorobenzene ND 889 ug/kg 200 ND 30% 88.9 1,1,1-Trichloroethane ND 200 ND 30% ug/kg ---

Apex Laboratories

Philip Manherz

1,1,2-Trichloroethane

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 54 of 118

200

ug/kg

88.9

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Duplicate (9060533-DUP1)			Prepared	d: 05/29/19	11:20 Anal	yzed: 06/04/	/19 20:32					
QC Source Sample: Non-SDG (A9	F0057-03)											
Trichloroethene (TCE)	ND		88.9	ug/kg	200		ND				30%	
Trichlorofluoromethane	ND		356	ug/kg	200		ND				30%	
1,2,3-Trichloropropane	ND		178	ug/kg	200		ND				30%	
1,2,4-Trimethylbenzene	11600		178	ug/kg	200		ND				30%	Q-04
1,3,5-Trimethylbenzene	6560		178	ug/kg	200		ND				30%	Q-04
Vinyl chloride	ND		88.9	ug/kg	200		ND				30%	
m,p-Xylene	3010		178	ug/kg	200		ND				30%	Q-04
o-Xylene	197		88.9	ug/kg	200		ND				30%	Q-04
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 91 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
QC Source Sample: Non-SDG (A9			20500		2000		N.D.				200/	
QC Source Sample: Non-SDG (A9	PF0057-02)											
Acetone	ND		38500	ug/kg	2000		ND				30%	R-02
Acrylonitrile	ND		15400	ug/kg	2000		ND				30%	K-02
Benzene	ND		385	ug/kg	2000		ND				30%	
Bromobenzene	ND		962	ug/kg	2000		ND				30%	
Bromochloromethane	ND		1920	ug/kg	2000		ND				30%	
Bromodichloromethane	ND		1920	ug/kg	2000		ND				30%	
Bromoform	ND		3850	ug/kg	2000		ND				30%	
Bromomethane	ND		19200	ug/kg	2000		ND				30%	R-02
2-Butanone (MEK)	ND		44200	ug/kg	2000		ND			25	30%	
n-Butylbenzene	24000		1920	ug/kg	2000		18700			25	30%	M-02
sec-Butylbenzene	7980		1920	ug/kg	2000		6190			25	30%	
tert-Butylbenzene	ND		1920	ug/kg	2000		ND				30%	
Carbon disulfide	ND		19200	ug/kg	2000		ND				30%	
Carbon tetrachloride	ND		1920	ug/kg	2000		ND				30%	
Chlorobenzene	ND		962	ug/kg	2000		ND				30%	
Chloroethane	ND		19200	ug/kg	2000		ND				30%	
Chloroform	ND		1920	ug/kg	2000		ND				30%	
Chloromethane	ND		9620	ug/kg	2000		ND				30%	
2-Chlorotoluene	ND		1920	ug/kg	2000		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil **Duplicate (9060533-DUP2)** Prepared: 05/29/19 11:00 Analyzed: 06/04/19 21:27 QC Source Sample: Non-SDG (A9F0057-02) 4-Chlorotoluene ND 1920 ug/kg 2000 ND 30% 3850 ND Dibromochloromethane ug/kg 2000 ND 30% 1,2-Dibromo-3-chloropropane ND 9620 ug/kg 2000 ND 30% 1,2-Dibromoethane (EDB) ND 1920 ug/kg 2000 ND 30% Dibromomethane ND 1920 2000 ND 30% ug/kg ---ND 962 ND 30% 1,2-Dichlorobenzene ug/kg 2000 1,3-Dichlorobenzene ND 962 ug/kg 2000 ND 30% ND ND 30% 1,4-Dichlorobenzene 962 ug/kg 2000 ug/kg Dichlorodifluoromethane ND 3850 2000 ND 30% 1,1-Dichloroethane ND 962 ug/kg 2000 ND 30% 1,2-Dichloroethane (EDC) ND 962 ug/kg 2000 ND 30% 1,1-Dichloroethene ND 962 ND 30% ug/kg 2000 cis-1,2-Dichloroethene ND 962 ug/kg 2000 ND 30% ND 962 2000 ND 30% trans-1,2-Dichloroethene ug/kg 1,2-Dichloropropane ND 962 ug/kg 2000 ND 30% 1,3-Dichloropropane ND 1920 ug/kg 2000 ND ___ 30% 2,2-Dichloropropane ND 1920 ug/kg 2000 ND 30% ND 1920 ND 30% 1,1-Dichloropropene 2000 ug/kg ---ND cis-1,3-Dichloropropene 1920 ug/kg 2000 ND 30% 1920 trans-1,3-Dichloropropene ND 2000 ND 30% ug/kg ---62300 22 30% Ethylbenzene 78100 962 ug/kg 2000 Hexachlorobutadiene ND ---3850 ug/kg 2000 ND ---30% 2-Hexanone ND 19200 ug/kg 2000 ND 30% 30% Isopropylbenzene 19100 1920 2000 15100 23 --ug/kg 2900 1920 2080 33 30% M-02, Q-04 4-Isopropyltoluene ug/kg 2000 ND 30% 9620 2000 ND Methylene chloride ug/kg ---4-Methyl-2-pentanone (MiBK) ND 19200 2000 ND 30% ug/kg Methyl tert-butyl ether (MTBE) ND 1920 ug/kg 2000 ---ND ------30% Naphthalene 52000 3850 ug/kg 2000 43200 19 30% 98100 962 2000 78300 22 30% n-Propylbenzene ug/kg Styrene ND 1920 ug/kg 2000 ND 30% ND 962 2000 ND 30% 1,1,1,2-Tetrachloroethane ug/kg ------

Apex Laboratories

Philip Nevenberg

1,1,2,2-Tetrachloroethane

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

R-02

ND

Philip Nerenberg, Lab Director

Page 56 of 118

2000

ug/kg

5770

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Duplicate (9060533-DUP2)			Prepared	: 05/29/19	11:00 Anal	yzed: 06/04/	/19 21:27					
QC Source Sample: Non-SDG (A9	F0057-02)											
Tetrachloroethene (PCE)	ND		962	ug/kg	2000		ND				30%	
Toluene	ND		1920	ug/kg	2000		ND				30%	
,2,3-Trichlorobenzene	ND		9620	ug/kg	2000		ND				30%	
,2,4-Trichlorobenzene	ND		9620	ug/kg	2000		ND				30%	
,1,1-Trichloroethane	ND		962	ug/kg	2000		ND				30%	
,1,2-Trichloroethane	ND		962	ug/kg	2000		ND				30%	
Trichloroethene (TCE)	ND		962	ug/kg	2000		ND				30%	
Trichlorofluoromethane	ND		3850	ug/kg	2000		ND				30%	
,2,3-Trichloropropane	ND		1920	ug/kg	2000		ND				30%	
,2,4-Trimethylbenzene	348000		1920	ug/kg	2000		285000			20	30%	
,3,5-Trimethylbenzene	160000		1920	ug/kg	2000		128000			22	30%	
Vinyl chloride	ND		962	ug/kg	2000		ND				30%	
n,p-Xylene	141000		1920	ug/kg	2000		113000			22	30%	
o-Xylene	8790		962	ug/kg	2000		7010			23	30%	
Gurr: 1,4-Difluorobenzene (Surr)		Rec	overy: 92 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
Matrix Spike (9060533-MS1)			Prepared	: 05/29/19	11:00 Anal	yzed: 06/04/	/19 14:33					
QC Source Sample: Non-SDG (A9	E0932-01)											
5035A/8260C												
Acetone	1760		928	ug/kg	50	1860	ND	95	36-164%			
Acrylonitrile	918		92.8	ug/kg	50	929	ND		65-134%			
Benzene	851		9.28	ug/kg	50	929	ND	92	77-121%			
Bromobenzene	1040		23.2	ug/kg	50	929	ND	112	78-121%			
Bromochloromethane	869		46.4	ug/kg	50	929	ND	94	78-125%			
Bromodichloromethane	855		46.4	ug/kg	50	929	ND		75-127%			
Bromoform	832		92.8	ug/kg	50	929	ND	90	67-132%			
Bromomethane	821		464	ug/kg	50	929	ND	88	53-143%			
-Butanone (MEK)	1740		464	ug/kg	50	1860	ND		51-148%			
-Butylbenzene	977		46.4	ug/kg	50	929	ND	105	70-128%			
ec-Butylbenzene	990		46.4	ug/kg	50	929	ND		73-126%			
ert-Butylbenzene	943		46.4	ug/kg	50	929	ND	101	73-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 5035A/8260C

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil Matrix Spike (9060533-MS1) Prepared: 05/29/19 11:00 Analyzed: 06/04/19 14:33 X QC Source Sample: Non-SDG (A9E0932-01) Carbon disulfide 821 464 50 929 ND 88 63-132% ug/kg 847 929 Carbon tetrachloride 46.4 ug/kg 50 ND 91 70-135% 947 Chlorobenzene 23.2 ug/kg 50 929 ND 102 79-120% Chloroethane 691 464 ug/kg 50 929 ND 74 59-139% Chloroform 833 46.4 50 929 ND 90 78-123% ug/kg 759 232 929 ND 82 Chloromethane ug/kg 50 50-136% 2-Chlorotoluene 982 46.4 ug/kg 50 929 ND 106 75-122% 929 964 46.4 ND 104 4-Chlorotoluene ug/kg 50 72-124% Dibromochloromethane 869 92.8 ug/kg 50 929 ND 94 74-126% 1,2-Dibromo-3-chloropropane 934 232 ug/kg 50 929 ND 101 61-132% 1,2-Dibromoethane (EDB) 1050 46.4 ug/kg 50 929 ND 113 78-122% 901 46.4 929 ND 97 78-125% Dibromomethane ug/kg 50 943 929 1,2-Dichlorobenzene 23.2 ug/kg 50 ND 102 78-121% 929 947 23.2 ND 102 77-121% 1,3-Dichlorobenzene ug/kg 50 23.2 1,4-Dichlorobenzene 945 ug/kg 50 929 ND 102 75-120% Dichlorodifluoromethane 840 92.8 ug/kg 50 929 ND 90 29-149% ___ 1,1-Dichloroethane 889 23.2 ug/kg 50 929 ND 96 76-125% 818 23.2 929 ND 88 73-128% 1,2-Dichloroethane (EDC) 50 ug/kg 873 23.2 929 ND 94 70-131% 1,1-Dichloroethene ug/kg 50 cis-1,2-Dichloroethene 23.2 929 92 850 50 ND 77-123% ug/kg 878 929 ND 94 74-125% trans-1,2-Dichloroethene 23.2 ug/kg 50 1,2-Dichloropropane 864 ---23.2 ug/kg 50 929 ND 93 76-123% 1,3-Dichloropropane 988 46.4 ug/kg 50 929 ND 106 77-121% 915 46.4 929 ND 99 67-133% 2,2-Dichloropropane 50 --ug/kg 842 46.4 929 ND 91 76-125% 1,1-Dichloropropene ug/kg 50 46.4 1020 929 74-126% ND 110 cis-1,3-Dichloropropene ug/kg 50 trans-1,3-Dichloropropene 985 46.4 50 929 ND 106 71-130% ug/kg 929 ND 76-122% Ethylbenzene 960 23.2 ug/kg 50 103 Hexachlorobutadiene 1120 92.8 ug/kg 50 929 ND 120 61-135%

Apex Laboratories

Philip Merenberg

1850

984

1010

634

464

46.4

46.4

232

ug/kg

ug/kg

ug/kg

ug/kg

50

50

50

50

2-Hexanone

Isopropylbenzene

4-Isopropyltoluene

Methylene chloride

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99

106

109

68

53-145%

68-134%

73-127%

70-128%

Q-54t

Philip Nerenberg, Lab Director

Page 58 of 118

1860

929

929

929

ND

ND

ND

ND

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil Matrix Spike (9060533-MS1) Prepared: 05/29/19 11:00 Analyzed: 06/04/19 14:33 X QC Source Sample: Non-SDG (A9E0932-01) 4-Methyl-2-pentanone (MiBK) 1790 464 ug/kg 50 1860 ND 96 65-135% Methyl tert-butyl ether (MTBE) 929 847 46.4 ug/kg 50 ND 91 73-125% 929 Naphthalene 1060 92.8 ug/kg 50 ND 115 62-129% n-Propylbenzene 968 23.2 ug/kg 50 929 ND 104 73-125% 1050 46.4 ug/kg 50 929 ND 113 76-124% Styrene 1,1,1,2-Tetrachloroethane 1030 23.2 929 ND 111 78-125% ug/kg 50 1,1,2,2-Tetrachloroethane 928 46.4 ug/kg 50 929 ND 100 70-124% 929 Tetrachloroethene (PCE) 950 23.2 ND 102 73-128% ug/kg 50 ug/kg 929 Toluene 936 46.4 50 ND 101 77-121% 232 1,2,3-Trichlorobenzene 1040 ug/kg 50 929 ND 112 66-130% 1,2,4-Trichlorobenzene 1020 232 ug/kg 50 929 ND 109 67-129% 1,1,1-Trichloroethane 23.2 929 ND 93 73-130% 860 ug/kg 50 1030 929 ND 78-121% 1,1,2-Trichloroethane 23.2 ug/kg 50 111 929 Trichloroethene (TCE) 888 23.2 ND 96 77-123% ug/kg 50 92.8 929 62-140% Trichlorofluoromethane 628 ug/kg 50 ND 68 1,2,3-Trichloropropane 973 46.4 ug/kg 50 929 ND 105 73-125% ___ 1,2,4-Trimethylbenzene 988 46.4 ug/kg 50 929 ND 106 75-123% 1,3,5-Trimethylbenzene 1010 46.4 929 ND 108 73-124% 50 ug/kg Vinyl chloride 819 23.2 929 ND 88 56-135% ug/kg 50 1940 46.4 104 m,p-Xylene 50 1860 ND 77-124% ug/kg o-Xylene 960 23.2 929 ND 103 77-123% ug/kg 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 92 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 99 % 80-120 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 59 of 118

80-120 %

102 %

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 9060582 - EPA 5035A Soil Blank (9060582-BLK1) Prepared: 06/05/19 13:00 Analyzed: 06/05/19 14:47 5035A/8260C ND 667 50 Acetone ug/kg ND 50 Acrylonitrile 66.7 ug/kg Benzene ND 6.67 ug/kg 50 Bromobenzene ND 16.7 ug/kg 50 Bromochloromethane ND 33.3 50 ug/kg Bromodichloromethane ND 33.3 50 ug/kg Bromoform ND 50 66.7 ug/kg Bromomethane 333 ND ug/kg 50 2-Butanone (MEK) ND 333 ug/kg 50 n-Butylbenzene ND 33.3 50 ug/kg --sec-Butylbenzene ND 33.3 50 ug/kg ND 33.3 tert-Butylbenzene 50 ug/kg Carbon disulfide ND 333 ug/kg 50 Carbon tetrachloride ND 33.3 50 ug/kg Chlorobenzene ND 16.7 ug/kg 50 Chloroethane ND 333 ug/kg 50 ---------Chloroform ND 33.3 ug/kg 50 ND 167 Chloromethane 50 ug/kg ---2-Chlorotoluene ND 33.3 ug/kg 50 ug/kg 4-Chlorotoluene ND 33.3 50 Dibromochloromethane ND 66.7 ug/kg 50 1,2-Dibromo-3-chloropropane ND 167 ug/kg 50 1,2-Dibromoethane (EDB) ND 33.3 ug/kg 50 ug/kg Dibromomethane ND 33.3 50 1,2-Dichlorobenzene ND 16.7 ug/kg 50 1,3-Dichlorobenzene ND 16.7 ug/kg 50 1,4-Dichlorobenzene ND 16.7 ug/kg 50 Dichlorodifluoromethane ND 66.7 ug/kg 50 ---1,1-Dichloroethane ND 16.7 ug/kg 50 1,2-Dichloroethane (EDC) ND 16.7 ug/kg 50 1,1-Dichloroethene ND 50 16.7 ug/kg cis-1,2-Dichloroethene ND 16.7 ug/kg 50

Apex Laboratories

Philip Manherg

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 60 of 118

50

ug/kg

16.7

ND

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
Blank (9060582-BLK1)			Prepared	: 06/05/19	13:00 Anal	yzed: 06/05/	19 14:47					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
,1-Dichloropropene	ND		33.3	ug/kg	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
rans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
sopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
1-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,1,2-Tetrachloroethane	ND		16.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND ND		167	ug/kg ug/kg	50							
1,1,1-Trichloroethane	ND ND		16.7	ug/kg ug/kg	50							
1,1,2-Trichloroethane	ND ND		16.7	ug/kg ug/kg	50							
Frichloroethene (TCE)	ND ND		16.7		50							
` /			66.7	ug/kg								
Frichlorofluoromethane	ND			ug/kg	50							
,2,3-Trichloropropane	ND		33.3	ug/kg	50							
,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
n,p-Xylene	ND		33.3	ug/kg	50							
o-Xylene	ND		16.7	ug/kg	50							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 61 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
Blank (9060582-BLK1)			Prepared	: 06/05/19	13:00 Ana	lyzed: 06/05	/19 14:47					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			103 %	80	0-120 %		"					
LCS (9060582-BS1)			Prepared	: 06/05/19	13:00 Ana	lyzed: 06/05	/19 13:52					
5035A/8260C												
Acetone	1680		1000	ug/kg	50	2000		84	80-120%			
Acrylonitrile	893		100	ug/kg	50	1000		89	80-120%			
Benzene	867		10.0	ug/kg	50	1000		87	80-120%			
Bromobenzene	1060		25.0	ug/kg	50	1000		106	80-120%			
Bromochloromethane	894		50.0	ug/kg	50	1000		89	80-120%			
Bromodichloromethane	899		50.0	ug/kg	50	1000		90	80-120%			
Bromoform	864		100	ug/kg	50	1000		86	80-120%			
Bromomethane	884		500	ug/kg	50	1000		88	80-120%			
2-Butanone (MEK)	1700		500	ug/kg	50	2000		85	80-120%			
n-Butylbenzene	1060		50.0	ug/kg	50	1000		106	80-120%			
sec-Butylbenzene	1060		50.0	ug/kg	50	1000		106	80-120%			
tert-Butylbenzene	1020		50.0	ug/kg	50	1000		102	80-120%			
Carbon disulfide	872		500	ug/kg	50	1000		87	80-120%			
Carbon tetrachloride	925		50.0	ug/kg	50	1000		92	80-120%			
Chlorobenzene	1010		25.0	ug/kg	50	1000		101	80-120%			
Chloroethane	658		500	ug/kg	50	1000		66	80-120%			Ç
Chloroform	830		50.0	ug/kg	50	1000		83	80-120%			
Chloromethane	782		250	ug/kg	50	1000		78	80-120%			Ç
2-Chlorotoluene	1040		50.0	ug/kg	50	1000		104	80-120%			
4-Chlorotoluene	1000		50.0	ug/kg	50	1000		100	80-120%			
Dibromochloromethane	906		100	ug/kg	50	1000		91	80-120%			
1,2-Dibromo-3-chloropropane	942		250	ug/kg	50	1000		94	80-120%			
1,2-Dibromoethane (EDB)	1060		50.0	ug/kg	50	1000		106	80-120%			
Dibromomethane	874		50.0	ug/kg	50	1000		87	80-120%			
1,2-Dichlorobenzene	980		25.0	ug/kg	50	1000		98	80-120%			
1,3-Dichlorobenzene	996		25.0	ug/kg	50	1000		100	80-120%			
1,4-Dichlorobenzene	988		25.0	ug/kg	50	1000		99	80-120%			
Dichlorodifluoromethane	843		100	ug/kg	50	1000		84	80-120%			
1,1-Dichloroethane	883		25.0	ug/kg	50	1000		88	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 62 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
LCS (9060582-BS1)			Prepared	: 06/05/19 1	13:00 Anal	yzed: 06/05/	/19 13:52					
1,2-Dichloroethane (EDC)	862		25.0	ug/kg	50	1000		86	80-120%			
1,1-Dichloroethene	924		25.0	ug/kg	50	1000		92	80-120%			
cis-1,2-Dichloroethene	886		25.0	ug/kg	50	1000		89	80-120%			
trans-1,2-Dichloroethene	913		25.0	ug/kg	50	1000		91	80-120%			
1,2-Dichloropropane	886		25.0	ug/kg	50	1000		89	80-120%			
1,3-Dichloropropane	1040		50.0	ug/kg	50	1000		104	80-120%			
2,2-Dichloropropane	1000		50.0	ug/kg	50	1000		100	80-120%			
1,1-Dichloropropene	886		50.0	ug/kg	50	1000		89	80-120%			
cis-1,3-Dichloropropene	1100		50.0	ug/kg	50	1000		110	80-120%			
trans-1,3-Dichloropropene	1060		50.0	ug/kg	50	1000		106	80-120%			
Ethylbenzene	1000		25.0	ug/kg	50	1000		100	80-120%			
Hexachlorobutadiene	1120		100	ug/kg	50	1000		112	80-120%			
2-Hexanone	1900		500	ug/kg	50	2000		95	80-120%			
Isopropylbenzene	1040		50.0	ug/kg	50	1000		104	80-120%			
4-Isopropyltoluene	1110		50.0	ug/kg	50	1000		111	80-120%			
Methylene chloride	560		250	ug/kg	50	1000		56	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	1830		500	ug/kg	50	2000		91	80-120%			
Methyl tert-butyl ether (MTBE)	863		50.0	ug/kg	50	1000		86	80-120%			
Naphthalene	1050		100	ug/kg	50	1000		105	80-120%			
n-Propylbenzene	1040		25.0	ug/kg	50	1000		104	80-120%			
Styrene	1060		50.0	ug/kg	50	1000		106	80-120%			
1,1,2-Tetrachloroethane	1080		25.0	ug/kg	50	1000		108	80-120%			
1,1,2,2-Tetrachloroethane	1000		50.0	ug/kg	50	1000		100	80-120%			
Tetrachloroethene (PCE)	1030		25.0	ug/kg	50	1000		103	80-120%			
Toluene	981		50.0	ug/kg	50	1000		98	80-120%			
1,2,3-Trichlorobenzene	1100		250	ug/kg	50	1000		110	80-120%			
1,2,4-Trichlorobenzene	1080		250	ug/kg	50	1000		108	80-120%			
1,1,1-Trichloroethane	904		25.0	ug/kg	50	1000		90	80-120%			
1,1,2-Trichloroethane	1050		25.0	ug/kg	50	1000		105	80-120%			
Trichloroethene (TCE)	878		25.0	ug/kg	50	1000		88	80-120%			
Trichlorofluoromethane	714		100	ug/kg	50	1000		71	80-120%			Q-55
1,2,3-Trichloropropane	984		50.0	ug/kg	50	1000		98	80-120%			200
1,2,4-Trimethylbenzene	1030		50.0	ug/kg	50	1000		103	80-120%			
1,3,5-Trimethylbenzene	1080		50.0	ug/kg	50	1000		108	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 63 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Orgar	nic Compo	ounds by	EPA 5035	5A/8260C	;				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil	l				
LCS (9060582-BS1)			Prepared	d: 06/05/19	13:00 Anal	yzed: 06/05	/19 13:52					
Vinyl chloride	821		25.0	ug/kg	50	1000		82	80-120%			
m,p-Xylene	2030		50.0	ug/kg	50	2000		102	80-120%			
o-Xylene	1010		25.0	ug/kg	50	1000		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 90 %	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
Duplicate (9060582-DUP1)			Prepared	d: 05/29/19	16:30 Ana	lyzed: 06/05	/19 21:14					
OC Source Sample: Non-SDG (A9	F0057-09)											
Acetone	ND		836	ug/kg	50		ND				30%	
Acrylonitrile	ND		167	ug/kg	50		ND				30%	R-0
Benzene	ND		8.36	ug/kg	50		ND				30%	Q-0
Bromobenzene	ND		20.9	ug/kg	50		ND				30%	
Bromochloromethane	ND		41.8	ug/kg	50		ND				30%	
Bromodichloromethane	ND		41.8	ug/kg	50		ND				30%	
Bromoform	ND		83.6	ug/kg	50		ND				30%	
Bromomethane	ND		418	ug/kg	50		ND				30%	
2-Butanone (MEK)	ND		418	ug/kg	50		ND				30%	
n-Butylbenzene	96.6		41.8	ug/kg	50		73.9			27	30%	M-0
sec-Butylbenzene	ND		41.8	ug/kg	50		28.9			***	30%	
tert-Butylbenzene	ND		41.8	ug/kg	50		ND				30%	
Carbon disulfide	ND		418	ug/kg	50		ND				30%	
Carbon tetrachloride	ND		41.8	ug/kg	50		ND				30%	
Chlorobenzene	ND		20.9	ug/kg	50		ND				30%	
Chloroethane	ND		418	ug/kg	50		ND				30%	
Chloroform	ND		41.8	ug/kg	50		ND				30%	
Chloromethane	ND		209	ug/kg	50		ND				30%	
2-Chlorotoluene	ND		41.8	ug/kg	50		ND				30%	
4-Chlorotoluene	ND		41.8	ug/kg	50		ND				30%	
Dibromochloromethane	ND		83.6	ug/kg	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND		209	ug/kg	50		ND				30%	
1,2-Dibromoethane (EDB)	ND		41.8	ug/kg	50		ND				30%	
Dibromomethane	ND		41.8	ug/kg	50		ND				30%	
1,2-Dichlorobenzene	ND		20.9	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 64 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060582 - EPA 5035A Soil **Duplicate (9060582-DUP1)** Prepared: 05/29/19 16:30 Analyzed: 06/05/19 21:14 QC Source Sample: Non-SDG (A9F0057-09) 1,3-Dichlorobenzene ND 20.9 50 ND 30% ug/kg ND 20.9 1,4-Dichlorobenzene ug/kg 50 ND 30% Dichlorodifluoromethane ND 83.6 ug/kg 50 ND 30% 1,1-Dichloroethane ND 20.9 ug/kg 50 ND 30% 1,2-Dichloroethane (EDC) ND 20.9 50 ND 30% ug/kg ---ND 20.9 1,1-Dichloroethene ug/kg 50 ND 30% cis-1,2-Dichloroethene ND 20.9 ug/kg 50 ND 30% trans-1,2-Dichloroethene ND 20.9 ND 30% ug/kg 50 ug/kg 1,2-Dichloropropane ND 20.9 50 ND 30% 1,3-Dichloropropane ND 41.8 ug/kg 50 ND 30% 2,2-Dichloropropane ND 41.8 ug/kg 50 ND 30% ND 41.8 ND 30% 1,1-Dichloropropene ug/kg 50 cis-1,3-Dichloropropene ND 41.8 ug/kg 50 ND 30% ND 41.8 ND 30% trans-1,3-Dichloropropene ug/kg 50 20.9 Ethylbenzene 472 ug/kg 50 413 13 30% Hexachlorobutadiene ND 83.6 ug/kg 50 ND ___ 30% 2-Hexanone ND 418 ug/kg 50 ND 30% 41.8 78.8 30% Isopropylbenzene 99.1 50 23 ug/kg 41.8 4-Isopropyltoluene ND ug/kg 50 ND 30% 209 Methylene chloride ND 50 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND ND 418 ug/kg 50 30% Methyl tert-butyl ether (MTBE) ND ---41.8 ug/kg 50 ND ---30% Naphthalene 473 83.6 ug/kg 50 367 25 30% 490 20.9 378 30% n-Propylbenzene 50 26 --ug/kg ND 41.8 30% Styrene ug/kg 50 ND ND 30% 20.9 ND 1,1,1,2-Tetrachloroethane ug/kg 50 ---1,1,2,2-Tetrachloroethane ND 41.8 50 ND 30% ug/kg Tetrachloroethene (PCE) ND ---20.9 ug/kg 50 ---ND ------30% ND 41.8 ug/kg 50 ND 30% ND 209 ND 30% 1,2,3-Trichlorobenzene ug/kg 50 ---1,2,4-Trichlorobenzene ND 209 ug/kg 50 ND 30% 20.9 1,1,1-Trichloroethane ND 50 ND 30% ug/kg ------

Apex Laboratories

Philip Nevenberg

1,1,2-Trichloroethane

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 65 of 118

50

ug/kg

20.9

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
Duplicate (9060582-DUP1)			Prepared	1: 05/29/19	16:30 Anal	lyzed: 06/05	/19 21:14					
QC Source Sample: Non-SDG (A9	F0057-09)											
Trichloroethene (TCE)	ND		20.9	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		83.6	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		41.8	ug/kg	50		ND				30%	
,2,4-Trimethylbenzene	2620		41.8	ug/kg	50		2030			25	30%	
1,3,5-Trimethylbenzene	898		41.8	ug/kg	50		685			27	30%	
Vinyl chloride	ND		20.9	ug/kg	50		ND				30%	
n,p-Xylene	1350		41.8	ug/kg	50		1170			14	30%	
o-Xylene	269		20.9	ug/kg	50		250			7	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 90 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80-	-120 %		"					
QC Source Sample: Non-SDG (A9 5035A/8260C	<u>F0057-10)</u>											
Acetone	1980		1050	ug/kg	50	2100	ND	94	36-164%			
Acrylonitrile	1000		105	ug/kg	50	1050	ND		65-134%			
Benzene	937		10.5	ug/kg	50	1050	ND		77-121%			
Bromobenzene	1160		26.3	ug/kg	50	1050	ND		78-121%			
Bromochloromethane	988		52.5	ug/kg	50	1050	ND		78-125%			
Bromodichloromethane	944		52.5	ug/kg	50	1050	ND		75-127%			
Bromoform	871		105	ug/kg	50	1050	ND	83	67-132%			
Bromomethane	919		525	ug/kg	50	1050	ND	87	53-143%			
2-Butanone (MEK)	1900		525	ug/kg	50	2100	ND	90	51-148%			
n-Butylbenzene	1110		52.5	ug/kg	50	1050	ND	105	70-128%			
ec-Butylbenzene	1120		52.5	ug/kg	50	1050	ND	106	73-126%			
ert-Butylbenzene	1110		52.5	ug/kg	50	1050	ND	105	73-125%			
Carbon disulfide	906		525	ug/kg	50	1050	ND	86	63-132%			
Carbon tetrachloride	968		52.5	ug/kg	50	1050	ND	92	70-135%			
Chlorobenzene	1090		26.3	ug/kg	50	1050	ND	104	79-120%			
Chloroethane	822		525	ug/kg	50	1050	ND	78	59-139%			(
Chloroform	941		52.5	ug/kg	50	1050	ND	90	78-123%			
Chloromethane	848		263	ug/kg	50	1050	ND	81	50-136%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Limit Amount Limits Notes Batch 9060582 - EPA 5035A Soil Matrix Spike (9060582-MS1) Prepared: 05/29/19 17:30 Analyzed: 06/05/19 22:09 QC Source Sample: Non-SDG (A9F0057-10) 2-Chlorotoluene 1100 52.5 ug/kg 50 1050 ND 105 75-122% 1090 52.5 1050 4-Chlorotoluene ug/kg 50 ND 104 72-124% ug/kg 1050 Dibromochloromethane 950 105 50 ND 90 74-126% 1,2-Dibromo-3-chloropropane 935 263 ug/kg 50 1050 ND 89 61-132% 1,2-Dibromoethane (EDB) 1120 52.5 50 1050 ND 107 78-122% ug/kg ---Dibromomethane 954 52.5 1050 ND 91 78-125% ug/kg 50 1,2-Dichlorobenzene 1050 26.3 ug/kg 50 1050 ND 100 78-121% 1060 26.3 50 1050 ND 101 77-121% 1,3-Dichlorobenzene ug/kg 1,4-Dichlorobenzene 1040 26.3 ug/kg 50 1050 ND 99 75-120% Dichlorodifluoromethane 966 105 ug/kg 50 1050 ND 92 29-149% 1,1-Dichloroethane 1030 26.3 ug/kg 50 1050 ND 98 76-125% 1050 1,2-Dichloroethane (EDC) 974 26.3 50 ND 93 73-128% ug/kg 1020 1050 97 1,1-Dichloroethene 26.3 ug/kg 50 ND 70-131% cis-1,2-Dichloroethene 1050 988 26.3 ND 94 77-123% ug/kg 50 26.3 97 trans-1,2-Dichloroethene 1020 ug/kg 50 1050 ND 74-125% 1,2-Dichloropropane 958 26.3 ug/kg 50 1050 ND 91 76-123% ___ 1,3-Dichloropropane 1100 52.5 ug/kg 50 1050 ND 105 77-121% 954 52.5 1050 ND 91 67-133% 2,2-Dichloropropane 50 ug/kg 963 52.5 1050 ND 92 76-125% 1,1-Dichloropropene ug/kg 50 52.5 1050 109 cis-1,3-Dichloropropene 1140 50 ND 74-126% ug/kg trans-1,3-Dichloropropene 50 1050 ND 105 71-130% 1100 52.5 ug/kg 1050 Ethylbenzene 1070 ---26.3 ug/kg 50 ND 102 76-122% ---Hexachlorobutadiene 1130 105 ug/kg 50 1050 ND 107 61-135% 2-Hexanone 2010 525 50 2100 ND 96 53-145% --ug/kg 52.5 1050 105 68-134% Isopropylbenzene 1110 ug/kg 50 ND 1050 1150 52.5 50 ND 109 73-127% 4-Isopropyltoluene ug/kg Methylene chloride 649 263 50 1050 ND 62 70-128% Q-54q ug/kg 1970 2100 ND 94 4-Methyl-2-pentanone (MiBK) 525 ug/kg 50 65-135% Methyl tert-butyl ether (MTBE) 923 52.5 ug/kg 50 1050 ND 88 73-125% Naphthalene 1070 105 50 1050 ND 101 62-129% ug/kg --n-Propylbenzene 1110 26.3 ug/kg 50 1050 ND 106 73-125% 52.5 50 1050 ND 107 76-124% Styrene 1120 ug/kg ------1,1,1,2-Tetrachloroethane 1130 26.3 ug/kg 50 1050 ND 108 78-125%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 67 of 118

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units % REC Limits RPD Limit Limit Amount Result Notes Batch 9060582 - EPA 5035A Soil Matrix Spike (9060582-MS1) Prepared: 05/29/19 17:30 Analyzed: 06/05/19 22:09 QC Source Sample: Non-SDG (A9F0057-10) 1050 1,1,2,2-Tetrachloroethane 963 52.5 ug/kg 50 ND 92 70-124% 73-128% 1090 1050 104 Tetrachloroethene (PCE) 26.3 ug/kg 50 ND 1050 77-121% Toluene 1070 52.5 ug/kg 50 ND 101 1,2,3-Trichlorobenzene 1110 263 ug/kg 50 1050 ND 106 66-130% 1,2,4-Trichlorobenzene 1100 263 ug/kg 50 1050 ND 105 67-129% 984 26.3 1050 ND 94 73-130% 1,1,1-Trichloroethane ug/kg 50 26.3 1,1,2-Trichloroethane 1120 ug/kg 50 1050 ND 106 78-121% Trichloroethene (TCE) 988 26.3 50 1050 ND 94 77-123% ug/kg ug/kg Q-54t Trichlorofluoromethane 807 105 50 1050 ND 77 62-140% 1040 1,2,3-Trichloropropane 52.5 ug/kg 50 1050 ND 99 73-125% 1,2,4-Trimethylbenzene 1120 52.5 ug/kg 50 1050 ND 106 75-123% 52.5 1050 1,3,5-Trimethylbenzene 1150 50 ND 109 73-124% ug/kg 919 1050 ND 87 56-135% Vinyl chloride 26.3 ug/kg 50 2100 104 m,p-Xylene 2180 52.5 ND 77-124% ug/kg 50 26.3 ug/kg 77-123% o-Xylene 1080 50 ND 103 Surr: 1,4-Difluorobenzene (Surr) 90 % Limits: 80-120 % Dilution: 1x Recovery: 101 % Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 103 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 68 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051445 - EPA 1311/503	30B TCLP	Volatiles					Wat	er				
Blank (9051445-BLK1)			Prepared	: 06/05/19	08:59 Anal	yzed: 06/05/	/19 11:08					TCLP
1311/8260C												
Acetone	ND		1.00	mg/L	50							
Benzene	ND		0.0125	mg/L	50							
Bromobenzene	ND		0.0250	mg/L	50							
Bromochloromethane	ND		0.0500	mg/L	50							
Bromodichloromethane	ND		0.0500	mg/L	50							
Bromoform	ND		0.0500	mg/L	50							
Bromomethane	ND		0.250	mg/L	50							
2-Butanone (MEK)	ND		0.500	mg/L	50							
n-Butylbenzene	ND		0.0500	mg/L	50							
sec-Butylbenzene	ND		0.0500	mg/L	50							
tert-Butylbenzene	ND		0.0500	mg/L	50							
Carbon tetrachloride	ND		0.0500	mg/L	50							
Chlorobenzene	ND		0.0250	mg/L	50							
Chloroethane	ND		0.250	mg/L	50							
Chloroform	ND		0.0500	mg/L	50							
Chloromethane	ND		0.250	mg/L	50							
2-Chlorotoluene	ND		0.0500	mg/L	50							
4-Chlorotoluene	ND		0.0500	mg/L	50							
1,2-Dibromo-3-chloropropane	ND		0.250	mg/L	50							
Dibromochloromethane	ND		0.0500	mg/L	50							
1,2-Dibromoethane (EDB)	ND		0.0250	mg/L	50							
Dibromomethane	ND		0.0500	mg/L	50							
1,2-Dichlorobenzene	ND		0.0250	mg/L	50							
1,3-Dichlorobenzene	ND		0.0250	mg/L	50							
1,4-Dichlorobenzene	ND		0.0250	mg/L	50							
Dichlorodifluoromethane	ND		0.0500	mg/L	50							
1,1-Dichloroethane	ND		0.0250	mg/L	50							
1,1-Dichloroethene	ND		0.0250	mg/L	50							
1,2-Dichloroethane (EDC)	ND		0.0250	mg/L	50							
cis-1,2-Dichloroethene	ND		0.0500	mg/L	50							
trans-1,2-Dichloroethene	ND		0.0250	mg/L	50							
1,2-Dichloropropane	ND		0.0250	mg/L	50							
1,3-Dichloropropane	ND		0.0500	mg/L	50							
				-								

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 69 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051445 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
Blank (9051445-BLK1)			Prepared	: 06/05/19	08:59 Ana	lyzed: 06/05/	/19 11:08					TCLP
2,2-Dichloropropane	ND		0.0500	mg/L	50							
1,1-Dichloropropene	ND		0.0500	mg/L	50							
cis-1,3-Dichloropropene	ND		0.0500	mg/L	50							
trans-1,3-Dichloropropene	ND		0.0500	mg/L	50							
Ethylbenzene	ND		0.0250	mg/L	50							
Hexachlorobutadiene	ND		0.250	mg/L	50							
2-Hexanone	ND		0.500	mg/L	50							
Isopropylbenzene	ND		0.0500	mg/L	50							
4-Isopropyltoluene	ND		0.0500	mg/L	50							
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50							
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50							
Methylene chloride	ND		0.250	mg/L	50							
Naphthalene	ND		0.100	mg/L	50							
n-Propylbenzene	ND		0.0250	mg/L	50							
Styrene	ND		0.0500	mg/L	50							
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50							
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50							
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50							
Toluene	ND		0.0500	mg/L	50							
1,2,3-Trichlorobenzene	ND		0.0500	mg/L	50							
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50							
1,1,1-Trichloroethane	ND		0.0250	mg/L	50							
1,1,2-Trichloroethane	ND		0.0250	mg/L	50							
Trichloroethene (TCE)	ND		0.0250	mg/L	50							
Trichlorofluoromethane	ND		0.100	mg/L	50							
1,2,3-Trichloropropane	ND		0.0500	mg/L	50							
1,2,4-Trimethylbenzene	ND		0.0500	mg/L	50							
1,3,5-Trimethylbenzene	ND		0.0500	mg/L	50							
Vinyl chloride	ND		0.0250	mg/L	50							
m,p-Xylene	ND		0.0500	mg/L	50							
o-Xylene	ND		0.0250	mg/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			102 %		-120 %		"					
4-Bromofluorobenzene (Surr)			103 %		-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Batch 9051445 - EPA 1311/503	0B TCLP Vol	atiles					Wa	ter			
LCS (9051445-BS1)			Prepared:	06/05/19 08	:59 Ana	yzed: 06/05/	19 10:40				TCLP
1311/8260C											
Acetone	1.96		1.00	mg/L	50	2.00		98	80-120%	 	
Benzene	1.07		0.0125	mg/L	50	1.00		107	80-120%	 	
Bromobenzene	1.06		0.0250	mg/L	50	1.00		106	80-120%	 	
Bromochloromethane	1.27		0.0500	mg/L	50	1.00		127	80-120%	 	Q-5
Bromodichloromethane	1.22		0.0500	mg/L	50	1.00		122	80-120%	 	Q-50
Bromoform	1.29		0.0500	mg/L	50	1.00		129	80-120%	 	Q-5
Bromomethane	1.33		0.250	mg/L	50	1.00		133	80-120%	 	E-05, Q-50
2-Butanone (MEK)	2.01		0.500	mg/L	50	2.00		101	80-120%	 	
n-Butylbenzene	1.14		0.0500	mg/L	50	1.00		114	80-120%	 	
sec-Butylbenzene	1.16		0.0500	mg/L	50	1.00		116	80-120%	 	
tert-Butylbenzene	1.10		0.0500	mg/L	50	1.00		110	80-120%	 	
Carbon tetrachloride	1.26		0.0500	mg/L	50	1.00		126	80-120%	 	Q-5
Chlorobenzene	1.07		0.0250	mg/L	50	1.00		107	80-120%	 	
Chloroethane	0.910		0.250	mg/L	50	1.00		91	80-120%	 	
Chloroform	1.14		0.0500	mg/L	50	1.00		114	80-120%	 	
Chloromethane	0.701		0.250	mg/L	50	1.00		70	80-120%	 	Q-5
2-Chlorotoluene	1.07		0.0500	mg/L	50	1.00		107	80-120%	 	
4-Chlorotoluene	1.13		0.0500	mg/L	50	1.00		113	80-120%	 	
1,2-Dibromo-3-chloropropane	0.963		0.250	mg/L	50	1.00		96	80-120%	 	
Dibromochloromethane	1.15		0.0500	mg/L	50	1.00		115	80-120%	 	
1,2-Dibromoethane (EDB)	1.08		0.0250	mg/L	50	1.00		108	80-120%	 	
Dibromomethane	1.15		0.0500	mg/L	50	1.00		115	80-120%	 	
1,2-Dichlorobenzene	1.07		0.0250	mg/L	50	1.00		107	80-120%	 	
1,3-Dichlorobenzene	1.10		0.0250	mg/L	50	1.00		110	80-120%	 	
1,4-Dichlorobenzene	1.07		0.0250	mg/L	50	1.00		107	80-120%	 	
Dichlorodifluoromethane	1.25		0.0500	mg/L	50	1.00		125	80-120%	 	Q-5
1,1-Dichloroethane	1.06		0.0250	mg/L	50	1.00		106	80-120%	 	
1,1-Dichloroethene	0.940		0.0250	mg/L	50	1.00		94	80-120%	 	
1,2-Dichloroethane (EDC)	1.14		0.0250	mg/L	50	1.00		114	80-120%	 	
cis-1,2-Dichloroethene	1.13		0.0500	mg/L	50	1.00		113	80-120%	 	
trans-1,2-Dichloroethene	1.02		0.0250	mg/L	50	1.00		102	80-120%	 	
1,2-Dichloropropane	1.10		0.0250	mg/L	50	1.00		110	80-120%	 	
1,3-Dichloropropane	1.10		0.0500	mg/L	50	1.00		110	80-120%	 	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 71 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051445 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
LCS (9051445-BS1)			Prepared	: 06/05/19 (08:59 Ana	lyzed: 06/05/	19 10:40					TCLP
2,2-Dichloropropane	1.06		0.0500	mg/L	50	1.00		106	80-120%			
1,1-Dichloropropene	1.11		0.0500	mg/L	50	1.00		111	80-120%			
cis-1,3-Dichloropropene	1.01		0.0500	mg/L	50	1.00		101	80-120%			
trans-1,3-Dichloropropene	1.09		0.0500	mg/L	50	1.00		109	80-120%			
Ethylbenzene	1.13		0.0250	mg/L	50	1.00		113	80-120%			
Hexachlorobutadiene	1.12		0.250	mg/L	50	1.00		112	80-120%			
2-Hexanone	1.97		0.500	mg/L	50	2.00		99	80-120%			
Isopropylbenzene	1.11		0.0500	mg/L	50	1.00		111	80-120%			
4-Isopropyltoluene	1.13		0.0500	mg/L	50	1.00		113	80-120%			
4-Methyl-2-pentanone (MiBK)	1.99		0.500	mg/L	50	2.00		99	80-120%			
Methyl tert-butyl ether (MTBE)	0.992		0.0500	mg/L	50	1.00		99	80-120%			
Methylene chloride	0.996		0.250	mg/L	50	1.00		100	80-120%			
Naphthalene	0.843		0.100	mg/L	50	1.00		84	80-120%			
n-Propylbenzene	1.15		0.0250	mg/L	50	1.00		115	80-120%			
Styrene	1.15		0.0500	mg/L	50	1.00		115	80-120%			
1,1,1,2-Tetrachloroethane	1.20		0.0250	mg/L	50	1.00		120	80-120%			
1,1,2,2-Tetrachloroethane	1.12		0.0250	mg/L	50	1.00		112	80-120%			
Tetrachloroethene (PCE)	1.12		0.0250	mg/L	50	1.00		112	80-120%			
Toluene	1.07		0.0500	mg/L	50	1.00		107	80-120%			
1,2,3-Trichlorobenzene	0.964		0.0500	mg/L	50	1.00		96	80-120%			
1,2,4-Trichlorobenzene	0.966		0.100	mg/L	50	1.00		97	80-120%			
1,1,1-Trichloroethane	1.13		0.0250	mg/L	50	1.00		113	80-120%			
1,1,2-Trichloroethane	1.09		0.0250	mg/L	50	1.00		109	80-120%			
Trichloroethene (TCE)	1.09		0.0250	mg/L	50	1.00		109	80-120%			
Trichlorofluoromethane	1.05		0.100	mg/L	50	1.00		105	80-120%			
1,2,3-Trichloropropane	1.13		0.0500	mg/L	50	1.00		113	80-120%			
1,2,4-Trimethylbenzene	1.15		0.0500	mg/L	50	1.00		115	80-120%			
1,3,5-Trimethylbenzene	1.13		0.0500	mg/L	50	1.00		113	80-120%			
Vinyl chloride	0.905		0.0250	mg/L	50	1.00		90	80-120%			
m,p-Xylene	2.27		0.0500	mg/L	50	2.00		113	80-120%			
o-Xylene	1.07		0.0250	mg/L	50	1.00		107	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80	-120 %	Dilu	tion: 1x					_
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 72 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C Detection Reporting Spike % REC RPD Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9051445 - EPA 1311/5030B TCLP Volatiles Water **Duplicate (9051445-DUP1)** Prepared: 06/05/19 08:59 Analyzed: 06/05/19 12:05 QC Source Sample: 2708-190521-007 (A9E0723-01) 1311/8260C ND 1.00 50 ND 30% mg/L Acetone Benzene 3.08 0.0125 mg/L 50 3.15 2 30% Bromobenzene ND 0.0250 30% mg/L 50 ND ---------Bromochloromethane ND 0.0500 mg/L 50 ND 30% Bromodichloromethane ND 0.0500 50 ND 30% --mg/L Bromoform ND 0.0500 mg/L 50 ND 30% Bromomethane ND 0.250 50 ND 30% mg/L ------2-Butanone (MEK) ND 0.500 mg/L 50 ND 30% n-Butylbenzene ND 0.0500 50 ND 30% mg/L sec-Butylbenzene ND 0.0500 mg/L 50 ND 30% tert-Butvlbenzene ND 0.0500 mg/L 50 ND 30% Carbon tetrachloride ND 0.0500 mg/L 50 ND 30% Chlorobenzene ND 0.0250 50 ND 30% mg/L ---Chloroethane ND 0.250 mg/L 50 ND 30% Chloroform ND 0.0500 mg/L 50 ND 30% Chloromethane ND 0.250 mg/L 50 ND 30% 2-Chlorotoluene ND 0.0500 50 ND 30% mg/L 4-Chlorotoluene ND 0.0500 mg/L 50 ND 30% 1,2-Dibromo-3-chloropropane ND 0.250 mg/L 50 ND 30% 0.0500 30% Dibromochloromethane ND mg/L 50 ND 1,2-Dibromoethane (EDB) ND 0.0250 mg/L 50 ND 30% Dibromomethane ND ND 30% 0.0500 mg/L 50 1,2-Dichlorobenzene ND 0.0250 mg/L 50 ND 30% 1,3-Dichlorobenzene ND 0.0250 mg/L 50 ND 30% 1,4-Dichlorobenzene ND 0.0250 mg/L 50 ND 30% ND 30% Dichlorodifluoromethane 0.0500 50 ND mg/L 1,1-Dichloroethane ND 0.0250 mg/L 50 ND 30% ND 0.0250 50 ND 30% 1,1-Dichloroethene mg/L ND ND 1,2-Dichloroethane (EDC) 0.0250 mg/L 50 30% cis-1,2-Dichloroethene ND ---0.0500 mg/L 50 ND 30% trans-1,2-Dichloroethene ND 0.0250 mg/L 50 ND 30%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 73 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051445 - EPA 1311/503	0B TCLP	Volatiles					Wat	er				
Duplicate (9051445-DUP1)			Prepared	06/05/19	08:59 Ana	lyzed: 06/05	/19 12:05					
QC Source Sample: 2708-190521-0	007 (A9E07	23-01)										
1,2-Dichloropropane	ND		0.0250	mg/L	50		ND				30%	
1,3-Dichloropropane	ND		0.0500	mg/L	50		ND				30%	
2,2-Dichloropropane	ND		0.0500	mg/L	50		ND				30%	
1,1-Dichloropropene	ND		0.0500	mg/L	50		ND				30%	
cis-1,3-Dichloropropene	ND		0.0500	mg/L	50		ND				30%	
trans-1,3-Dichloropropene	ND		0.0500	mg/L	50		ND				30%	
Ethylbenzene	0.366		0.0250	mg/L	50		0.383			5	30%	
Hexachlorobutadiene	ND		0.250	mg/L	50		ND				30%	
2-Hexanone	ND		0.500	mg/L	50		ND				30%	
Isopropylbenzene	ND		0.0500	mg/L	50		ND				30%	
4-Isopropyltoluene	ND		0.0500	mg/L	50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50		ND				30%	
Methylene chloride	ND		0.250	mg/L	50		ND				30%	
Naphthalene	16.5		0.100	mg/L	50		15.7			5	30%	E
n-Propylbenzene	ND		0.0250	mg/L	50		ND				30%	
Styrene	0.171		0.0500	mg/L	50		0.183			7	30%	
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50		ND				30%	
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50		ND				30%	
Toluene	1.52		0.0500	mg/L	50		1.56			3	30%	
1,2,3-Trichlorobenzene	ND		0.0500	mg/L	50		ND				30%	
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50		ND				30%	
1,1,1-Trichloroethane	ND		0.0250	mg/L	50		ND				30%	
1,1,2-Trichloroethane	ND		0.0250	mg/L	50		ND				30%	
Trichloroethene (TCE)	ND		0.0250	mg/L	50		ND				30%	
Trichlorofluoromethane	ND		0.100	mg/L	50		ND				30%	
1,2,3-Trichloropropane	ND		0.0500	mg/L	50		ND				30%	
1,2,4-Trimethylbenzene	0.0557		0.0500	mg/L	50		0.0570			2	30%	
1,3,5-Trimethylbenzene	ND		0.0500	mg/L	50		0.0344			***	30%	
Vinyl chloride	ND		0.0250	mg/L	50		ND				30%	
m,p-Xylene	0.504		0.0500	mg/L	50		0.524			4	30%	
o-Xylene	0.166		0.0250	mg/L	50		0.175			5	30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 74 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP	Volatile Or	ganic Co	mpounds	s by EPA	1311/8260	oc				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9051445 - EPA 1311/503	OB TCLP	Volatiles					Wat	er				
Duplicate (9051445-DUP1)			Prepared	l: 06/05/19	08:59 Ana	lyzed: 06/05	/19 12:05					
QC Source Sample: 2708-190521-	007 (A9E07	23-01)										
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 8	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
Matrix Spike (9051445-MS1)			Prepared	1: 06/05/19	08:59 Ana	lyzed: 06/05	/19 13:59					
QC Source Sample: Non-SDG (A9	PF0033-01)											
<u>1311/8260C</u>												
Acetone	2.11		1.00	mg/L	50	2.00	ND	106	70-130%			
Benzene	1.95		0.0125	mg/L	50	1.00	0.822	112	70-130%			
Bromobenzene	1.07		0.0250	mg/L	50	1.00	ND	107	70-130%			
Bromochloromethane	1.27		0.0500	mg/L	50	1.00	ND	127	70-130%			Q-54
Bromodichloromethane	1.21		0.0500	mg/L	50	1.00	ND	121	70-130%			Q-54
Bromoform	1.23		0.0500	mg/L	50	1.00	ND	123	70-130%			Q-54
Bromomethane	1.36		0.250	mg/L	50	1.00	ND	136	70-130%			E-05, Q-54
2-Butanone (MEK)	2.07		0.500	mg/L	50	2.00	ND	103	70-130%			
n-Butylbenzene	1.24		0.0500	mg/L	50	1.00	ND	124	70-130%			
sec-Butylbenzene	1.19		0.0500	mg/L	50	1.00	ND	119	70-130%			
tert-Butylbenzene	1.11		0.0500	mg/L	50	1.00	ND	111	70-130%			
Carbon tetrachloride	1.22		0.0500	mg/L	50	1.00	ND	122	70-130%			Q-54
Chlorobenzene	1.07		0.0250	mg/L	50	1.00	ND	107	70-130%			
Chloroethane	0.979		0.250	mg/L	50	1.00	ND	98	70-130%			
Chloroform	1.13		0.0500	mg/L	50	1.00	ND	113	70-130%			
Chloromethane	0.746		0.250	mg/L	50	1.00	ND	75	70-130%			Q-54
2-Chlorotoluene	1.09		0.0500	mg/L	50	1.00	ND	109	70-130%			
4-Chlorotoluene	1.12		0.0500	mg/L	50	1.00	ND	112	70-130%			
1,2-Dibromo-3-chloropropane	1.01		0.250	mg/L	50	1.00	ND	101	70-130%			
Dibromochloromethane	1.11		0.0500	mg/L	50	1.00	ND	111	70-130%			
1,2-Dibromoethane (EDB)	1.07		0.0250	mg/L	50	1.00	ND	107	70-130%			
Dibromomethane	1.15		0.0500	mg/L	50	1.00	ND	115	70-130%			
1,2-Dichlorobenzene	1.07		0.0250	mg/L	50	1.00	ND	107	70-130%			
1,3-Dichlorobenzene	1.10		0.0250	mg/L	50	1.00	ND	110	70-130%			
1,4-Dichlorobenzene	1.09		0.0250	mg/L	50	1.00	ND	109	70-130%			
Dichlorodifluoromethane	1.26		0.0500	mg/L	50	1.00	ND	126	70-130%			Q-54

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 75 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS TCLP Volatile Organic Compounds by EPA 1311/8260C

Detection Reporting Spike Source % REC RPD

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 9051445 - EPA 1311/503	OB TCLP \	Volatiles					Wat	er				
Matrix Spike (9051445-MS1)			Prepared	06/05/19	08:59 Ana	yzed: 06/05/	/19 13:59					
QC Source Sample: Non-SDG (A9	PF0033-01)											
1,1-Dichloroethane	1.05		0.0250	mg/L	50	1.00	ND	105	70-130%			
1,1-Dichloroethene	0.952		0.0250	mg/L	50	1.00	ND	95	70-130%			
1,2-Dichloroethane (EDC)	1.12		0.0250	mg/L	50	1.00	ND	112	70-130%			
cis-1,2-Dichloroethene	1.13		0.0500	mg/L	50	1.00	ND	113	70-130%			
trans-1,2-Dichloroethene	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,2-Dichloropropane	1.12		0.0250	mg/L	50	1.00	ND	112	70-130%			
1,3-Dichloropropane	1.08		0.0500	mg/L	50	1.00	ND	108	70-130%			
2,2-Dichloropropane	1.07		0.0500	mg/L	50	1.00	ND	107	70-130%			
1,1-Dichloropropene	1.12		0.0500	mg/L	50	1.00	ND	112	70-130%			
cis-1,3-Dichloropropene	0.996		0.0500	mg/L	50	1.00	ND	100	70-130%			
trans-1,3-Dichloropropene	1.09		0.0500	mg/L	50	1.00	ND	109	70-130%			
Ethylbenzene	2.52		0.0250	mg/L	50	1.00	1.34	118	70-130%			
Hexachlorobutadiene	1.11		0.250	mg/L	50	1.00	ND	111	70-130%			
2-Hexanone	2.08		0.500	mg/L	50	2.00	ND	104	70-130%			
Isopropylbenzene	1.19		0.0500	mg/L	50	1.00	0.0532	114	70-130%			
4-Isopropyltoluene	1.16		0.0500	mg/L	50	1.00	ND	116	70-130%			
4-Methyl-2-pentanone (MiBK)	2.03		0.500	mg/L	50	2.00	ND	102	70-130%			
Methyl tert-butyl ether (MTBE)	1.00		0.0500	mg/L	50	1.00	ND	100	70-130%			
Methylene chloride	1.00		0.250	mg/L	50	1.00	ND	100	70-130%			
Naphthalene	1.19		0.100	mg/L	50	1.00	0.153	104	70-130%			
n-Propylbenzene	1.33		0.0250	mg/L	50	1.00	0.158	117	70-130%			
Styrene	1.20		0.0500	mg/L	50	1.00	ND	120	70-130%			
1,1,1,2-Tetrachloroethane	1.18		0.0250	mg/L	50	1.00	ND	118	70-130%			
1,1,2,2-Tetrachloroethane	1.12		0.0250	mg/L	50	1.00	ND	112	70-130%			
Tetrachloroethene (PCE)	1.09		0.0250	mg/L	50	1.00	ND	109	70-130%			
Toluene	10.3		0.0500	mg/L	50	1.00	9.33	94	70-130%			
1,2,3-Trichlorobenzene	1.01		0.0500	mg/L	50	1.00	ND	101	70-130%			
1,2,4-Trichlorobenzene	1.02		0.100	mg/L	50	1.00	ND	102	70-130%			
1,1,1-Trichloroethane	1.11		0.0250	mg/L	50	1.00	ND	111	70-130%			
1,1,2-Trichloroethane	1.07		0.0250	mg/L	50	1.00	ND	107	70-130%			
Trichloroethene (TCE)	1.10		0.0250	mg/L	50	1.00	ND	110	70-130%			
Trichlorofluoromethane	1.02		0.100	mg/L	50	1.00	ND	102	70-130%			
1,2,3-Trichloropropane	1.13		0.0500	mg/L	50	1.00	ND	113	70-130%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 76 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP V	olatile Or	ganic Co	mpounds	s by EPA	1311/8260	C			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD Limit	Notes
Batch 9051445 - EPA 1311/503	OB TCLP	/olatiles					Wat	er			
Matrix Spike (9051445-MS1)			Prepared	l: 06/05/19 (08:59 Ana	lyzed: 06/05	/19 13:59				
QC Source Sample: Non-SDG (A9	F0033-01)										
1,2,4-Trimethylbenzene	2.54		0.0500	mg/L	50	1.00	1.26	128	70-130%	 	
1,3,5-Trimethylbenzene	1.50		0.0500	mg/L	50	1.00	0.320	118	70-130%	 	
Vinyl chloride	0.953		0.0250	mg/L	50	1.00	ND	95	70-130%	 	
n,p-Xylene	7.99		0.0500	mg/L	50	2.00	5.66	116	70-130%	 	
o-Xylene	4.28		0.0250	mg/L	50	1.00	3.10	118	70-130%	 	
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 104 %	Limits: 80)-120 %	Dilt	ution: 1x				
Toluene-d8 (Surr)			98 %	80	-120 %		"				
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 77 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/50	30B SPLP	Volatiles					Wat	er				
Blank (9060589-BLK1)			Prepared:	06/05/19 (09:09 Anal	yzed: 06/05	/19 11:45					
1312/8260C												
Acetone	ND		0.0200	mg/L	1							
Benzene	ND		0.000250	mg/L	1							
Bromobenzene	ND		0.000500	mg/L	1							
Bromochloromethane	ND		0.00100	mg/L	1							
Bromodichloromethane	ND		0.00100	mg/L	1							
Bromoform	ND		0.00100	mg/L	1							
Bromomethane	ND		0.00500	mg/L	1							
2-Butanone (MEK)	ND		0.0100	mg/L	1							
n-Butylbenzene	ND		0.00100	mg/L	1							
sec-Butylbenzene	ND		0.00100	mg/L	1							
tert-Butylbenzene	ND		0.00100	mg/L	1							
Carbon tetrachloride	ND		0.00100	mg/L	1							
Chlorobenzene	ND		0.000500	mg/L	1							
Chloroethane	ND		0.00500	mg/L	1							
Chloroform	ND		0.00100	mg/L	1							
Chloromethane	ND		0.00500	mg/L	1							
2-Chlorotoluene	ND		0.00100	mg/L	1							
4-Chlorotoluene	ND		0.00100	mg/L	1							
1,2-Dibromo-3-chloropropane	ND		0.00500	mg/L	1							
Dibromochloromethane	ND		0.00100	mg/L	1							
1,2-Dibromoethane (EDB)	ND		0.000500	mg/L	1							
Dibromomethane	ND		0.00100	mg/L	1							
1,2-Dichlorobenzene	ND		0.000500	mg/L	1							
1,3-Dichlorobenzene	ND		0.000500	mg/L	1							
1,4-Dichlorobenzene	ND		0.000500	mg/L	1							
Dichlorodifluoromethane	ND		0.00100	mg/L	1							
1,1-Dichloroethane	ND		0.000500	mg/L	1							
1,2-Dichloroethane (EDC)	ND		0.000500	mg/L	1							
1,1-Dichloroethene	ND ND		0.000500	mg/L	1							
cis-1,2-Dichloroethene	ND ND		0.000500	mg/L	1							
trans-1,2-Dichloroethene	ND ND		0.000500	mg/L mg/L	1							
1,2-Dichloropropane	ND ND			_	1							
			0.000500 0.00100	mg/L								
1,3-Dichloropropane	ND		0.00100	mg/L	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 78 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Blank (9060589-BLK1)			Prepared:	06/05/19	09:09 Anal	yzed: 06/05	/19 11:45					
2,2-Dichloropropane	ND		0.00100	mg/L	1							
1,1-Dichloropropene	ND		0.00100	mg/L	1							
cis-1,3-Dichloropropene	ND		0.00100	mg/L	1							
trans-1,3-Dichloropropene	ND		0.00100	mg/L	1							
Ethylbenzene	ND		0.000500	mg/L	1							
Hexachlorobutadiene	ND		0.00500	mg/L	1							
2-Hexanone	ND		0.0100	mg/L	1							
Isopropylbenzene	ND		0.00100	mg/L	1							
4-Isopropyltoluene	ND		0.00100	mg/L	1							
4-Methyl-2-pentanone (MiBK)	ND		0.0100	mg/L	1							
Methyl tert-butyl ether (MTBE)	ND		0.00100	mg/L	1							
Methylene chloride	ND		0.00500	mg/L	1							
Naphthalene	ND		0.00200	mg/L	1							
n-Propylbenzene	ND		0.000500	mg/L	1							
Styrene	ND		0.00100	mg/L	1							
1,1,2-Tetrachloroethane	ND		0.000500	mg/L	1							
1,1,2,2-Tetrachloroethane	ND		0.000500	mg/L	1							
Tetrachloroethene (PCE)	ND		0.000500	mg/L	1							
Toluene	ND		0.00100	mg/L	1							
1,2,3-Trichlorobenzene	ND		0.00200	mg/L	1							
1,2,4-Trichlorobenzene	ND		0.00200	mg/L	1							
1,1,1-Trichloroethane	ND		0.000500	mg/L	1							
1,1,2-Trichloroethane	ND		0.000500	mg/L	1							
Trichloroethene (TCE)	ND		0.000500	mg/L	1							
Trichlorofluoromethane	ND		0.00200	mg/L	1							
1,2,3-Trichloropropane	ND		0.00100	mg/L	1							
1,2,4-Trimethylbenzene	ND		0.00100	mg/L	1							
1,3,5-Trimethylbenzene	ND		0.00100	mg/L	1							
Vinyl chloride	ND		0.000500	mg/L	1							
m,p-Xylene	ND		0.00100	mg/L	1							
o-Xylene	ND		0.000500	mg/L mg/L	1							
Surr: 1,4-Difluorobenzene (Surr)	1112		very: 106 %	Limits: 80		D:l-	ution: 1x					
Toluene-d8 (Surr)		кесо	very: 100 % 101 %		-120 %	Diii	uton: 1x					
` ,			101 % 100 %		-120 % -120 %		,,					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		**					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 79 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Reporting Detection Spike Source % REC **RPD** Dilution % REC Analyte Result Limit Units Amount Result Limits RPD Limit Notes Limit

Batch 9060589 - EPA 1312/503	30B SPLP Vola	atiles					Wat	er		
LCS (9060589-BS1)			Prepared: 0	6/05/19 09	:09 Ana	lyzed: 06/05/1	19 10:51			
1312/8260C										
Acetone	0.0403		0.0200	mg/L	1	0.0400		101	70-130%	
Benzene	0.0203		0.000250	mg/L	1	0.0200		101	70-130%	
Bromobenzene	0.0204		0.000500	mg/L	1	0.0200		102	70-130%	
Bromochloromethane	0.0231		0.00100	mg/L	1	0.0200		116	70-130%	
Bromodichloromethane	0.0225		0.00100	mg/L	1	0.0200		113	70-130%	
Bromoform	0.0246		0.00100	mg/L	1	0.0200		123	70-130%	
Bromomethane	0.0233		0.00500	mg/L	1	0.0200		117	70-130%	
2-Butanone (MEK)	0.0427		0.0100	mg/L	1	0.0400		107	70-130%	
n-Butylbenzene	0.0197		0.00100	mg/L	1	0.0200		99	70-130%	
sec-Butylbenzene	0.0189		0.00100	mg/L	1	0.0200		94	70-130%	
tert-Butylbenzene	0.0178		0.00100	mg/L	1	0.0200		89	70-130%	
Carbon tetrachloride	0.0206		0.00100	mg/L	1	0.0200		103	70-130%	
Chlorobenzene	0.0203		0.000500	mg/L	1	0.0200		102	70-130%	
Chloroethane	0.0151		0.00500	mg/L	1	0.0200		76	70-130%	
Chloroform	0.0211		0.00100	mg/L	1	0.0200		106	70-130%	
Chloromethane	0.0229		0.00500	mg/L	1	0.0200		114	70-130%	
2-Chlorotoluene	0.0191		0.00100	mg/L	1	0.0200		95	70-130%	
4-Chlorotoluene	0.0190		0.00100	mg/L	1	0.0200		95	70-130%	
1,2-Dibromo-3-chloropropane	0.0199		0.00500	mg/L	1	0.0200		99	70-130%	
Dibromochloromethane	0.0202		0.00100	mg/L	1	0.0200		101	70-130%	
1,2-Dibromoethane (EDB)	0.0208		0.000500	mg/L	1	0.0200		104	70-130%	
Dibromomethane	0.0224		0.00100	mg/L	1	0.0200		112	70-130%	
1,2-Dichlorobenzene	0.0202		0.000500	mg/L	1	0.0200		101	70-130%	
1,3-Dichlorobenzene	0.0201		0.000500	mg/L	1	0.0200		100	70-130%	
1,4-Dichlorobenzene	0.0198		0.000500	mg/L	1	0.0200		99	70-130%	
Dichlorodifluoromethane	0.0195		0.00100	mg/L	1	0.0200		97	70-130%	
1,1-Dichloroethane	0.0201		0.000500	mg/L	1	0.0200		100	70-130%	
1,2-Dichloroethane (EDC)	0.0217		0.000500	mg/L	1	0.0200		109	70-130%	
1,1-Dichloroethene	0.0183		0.000500	mg/L	1	0.0200		92	70-130%	
cis-1,2-Dichloroethene	0.0205		0.000500	mg/L	1	0.0200		102	70-130%	
trans-1,2-Dichloroethene	0.0200		0.000500	mg/L	1	0.0200		100	70-130%	
1,2-Dichloropropane	0.0211		0.000500	mg/L	1	0.0200		106	70-130%	
1,3-Dichloropropane	0.0202		0.00100	mg/L	1	0.0200		101	70-130%	

Apex Laboratories

Philip Namberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 80 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wate	er				
LCS (9060589-BS1)			Prepared:	06/05/19 0	9:09 Anal	yzed: 06/05/	/19 10:51					
2,2-Dichloropropane	0.0167		0.00100	mg/L	1	0.0200		83	70-130%			
1,1-Dichloropropene	0.0192		0.00100	mg/L	1	0.0200		96	70-130%			
cis-1,3-Dichloropropene	0.0191		0.00100	mg/L	1	0.0200		96	70-130%			
trans-1,3-Dichloropropene	0.0182		0.00100	mg/L	1	0.0200		91	70-130%			
Ethylbenzene	0.0189		0.000500	mg/L	1	0.0200		95	70-130%			
Hexachlorobutadiene	0.0197		0.00500	mg/L	1	0.0200		99	70-130%			
2-Hexanone	0.0402		0.0100	mg/L	1	0.0400		101	70-130%			
Isopropylbenzene	0.0187		0.00100	mg/L	1	0.0200		94	70-130%			
4-Isopropyltoluene	0.0190		0.00100	mg/L	1	0.0200		95	70-130%			
4-Methyl-2-pentanone (MiBK)	0.0392		0.0100	mg/L	1	0.0400		98	70-130%			
Methyl tert-butyl ether (MTBE)	0.0174		0.00100	mg/L	1	0.0200		87	70-130%			
Methylene chloride	0.0187		0.00500	mg/L	1	0.0200		94	70-130%			
Naphthalene	0.0170		0.00200	mg/L	1	0.0200		85	70-130%			
n-Propylbenzene	0.0183		0.000500	mg/L	1	0.0200		92	70-130%			
Styrene	0.0207		0.00100	mg/L	1	0.0200		104	70-130%			
1,1,1,2-Tetrachloroethane	0.0200		0.000500	mg/L	1	0.0200		100	70-130%			
1,1,2,2-Tetrachloroethane	0.0219		0.000500	mg/L	1	0.0200		109	70-130%			
Tetrachloroethene (PCE)	0.0195		0.000500	mg/L	1	0.0200		97	70-130%			
Toluene	0.0188		0.00100	mg/L	1	0.0200		94	70-130%			
1,2,3-Trichlorobenzene	0.0204		0.00200	mg/L	1	0.0200		102	70-130%			
1,2,4-Trichlorobenzene	0.0188		0.00200	mg/L	1	0.0200		94	70-130%			
1,1,1-Trichloroethane	0.0193		0.000500	mg/L	1	0.0200		97	70-130%			
1,1,2-Trichloroethane	0.0215		0.000500	mg/L	1	0.0200		108	70-130%			
Trichloroethene (TCE)	0.0205		0.000500	mg/L	1	0.0200		102	70-130%			
Trichlorofluoromethane	0.0243		0.00200	mg/L	1	0.0200		121	70-130%			
1,2,3-Trichloropropane	0.0198		0.00100	mg/L	1	0.0200		99	70-130%			
1,2,4-Trimethylbenzene	0.0195		0.00100	mg/L	1	0.0200		97	70-130%			
1,3,5-Trimethylbenzene	0.0191		0.00100	mg/L	1	0.0200		95	70-130%			
Vinyl chloride	0.0195		0.000500	mg/L	1	0.0200		97	70-130%			
m,p-Xylene	0.0384		0.00100	mg/L	1	0.0400		96	70-130%			
o-Xylene	0.0182		0.000500	mg/L	1	0.0200		91	70-130%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %		-120 %		"					
4-Bromofluorobenzene (Surr)			92 %		-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 81 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060589 - EPA 1312/5030B SPLP Volatiles Water **Duplicate (9060589-DUP2)** Prepared: 06/05/19 12:17 Analyzed: 06/05/19 14:00 QC Source Sample: 2708-190521-007 (A9E0723-01) 1312/8260C ND 2.00 100 ND 30% mg/L Acetone Benzene 3.20 0.0250 mg/L 100 3.40 6 30% Bromobenzene ND 0.0500 100 30% mg/L ND ---------Bromochloromethane ND 0.100 mg/L 100 ND 30% Bromodichloromethane ND 0.100 100 ND 30% --mg/L Bromoform ND 0.100 mg/L 100 ND 30% Bromomethane ND 0.500 100 ND 30% mg/L ------2-Butanone (MEK) ND 1.00 mg/L 100 ND 30% n-Butylbenzene ND 0.100 mg/L 100 ND 30% sec-Butylbenzene ND 0.100 mg/L 100 ND 30% tert-Butvlbenzene ND 0.100 mg/L 100 ND 30% Carbon tetrachloride ND 0.100 mg/L 100 ND 30% Chlorobenzene ND 0.0500 100 ND 30% mg/L ---Chloroethane ND 0.500 mg/L 100 ND 30% Chloroform ND 0.100 mg/L 100 ND 30% Chloromethane ND 0.500 mg/L 100 ND 30% 2-Chlorotoluene ND 0.100 mg/L 100 ND 30% 4-Chlorotoluene ND 0.100 mg/L 100 ND 30% 1,2-Dibromo-3-chloropropane ND 0.500 mg/L 100 ND 30% 0.100 30% Dibromochloromethane ND mg/L 100 ND 1,2-Dibromoethane (EDB) ND 0.0500 mg/L 100 ND 30% Dibromomethane ND ND 30% 0.100mg/L 100 1,2-Dichlorobenzene ND 0.0500 mg/L 100 ND 30% 1,3-Dichlorobenzene ND 0.0500 mg/L 100 ND 30% 1,4-Dichlorobenzene ND 0.0500 mg/L 100 ND 30% ND 100 30% Dichlorodifluoromethane 0.100 ND mg/L 1,1-Dichloroethane ND 0.0500 mg/L 100 ND 30% 0.0500 1,2-Dichloroethane (EDC) ND 100 ND 30% mg/L ND ND 1,1-Dichloroethene 0.0500 mg/L 100 30% cis-1,2-Dichloroethene ND ---0.0500 mg/L 100 ND 30% trans-1,2-Dichloroethene ND 0.0500 mg/L 100 ND 30%

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 82 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Duplicate (9060589-DUP2)			Prepared	06/05/19	12:17 Ana	yzed: 06/05/	19 14:00					
QC Source Sample: 2708-190521-0	007 (A9E07	23-01)										
1,2-Dichloropropane	ND		0.0500	mg/L	100		ND				30%	
1,3-Dichloropropane	ND		0.100	mg/L	100		ND				30%	
2,2-Dichloropropane	ND		0.100	mg/L	100		ND				30%	
1,1-Dichloropropene	ND		0.100	mg/L	100		ND				30%	
cis-1,3-Dichloropropene	ND		0.100	mg/L	100		ND				30%	
trans-1,3-Dichloropropene	ND		0.100	mg/L	100		ND				30%	
Ethylbenzene	0.302		0.0500	mg/L	100		0.310			3	30%	
Hexachlorobutadiene	ND		0.500	mg/L	100		ND				30%	
2-Hexanone	ND		1.00	mg/L	100		ND				30%	
Isopropylbenzene	ND		0.100	mg/L	100		ND				30%	
4-Isopropyltoluene	ND		0.100	mg/L	100		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		1.00	mg/L	100		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.100	mg/L	100		ND				30%	
Methylene chloride	ND		0.500	mg/L	100		ND				30%	
Naphthalene	12.8		0.200	mg/L	100		13.9			8	30%	
n-Propylbenzene	ND		0.0500	mg/L	100		ND				30%	
Styrene	0.128		0.100	mg/L	100		0.136			6	30%	
1,1,1,2-Tetrachloroethane	ND		0.0500	mg/L	100		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.0500	mg/L	100		ND				30%	
Tetrachloroethene (PCE)	ND		0.0500	mg/L	100		ND				30%	
Toluene	1.37		0.100	mg/L	100		1.46			6	30%	
1,2,3-Trichlorobenzene	ND		0.200	mg/L	100		ND				30%	
1,2,4-Trichlorobenzene	ND		0.200	mg/L	100		ND				30%	
1,1,1-Trichloroethane	ND		0.0500	mg/L	100		ND				30%	
1,1,2-Trichloroethane	ND		0.0500	mg/L	100		ND				30%	
Trichloroethene (TCE)	ND		0.0500	mg/L	100		ND				30%	
Trichlorofluoromethane	ND		0.200	mg/L	100		ND				30%	
1,2,3-Trichloropropane	ND		0.100	mg/L	100		ND				30%	
1,2,4-Trimethylbenzene	ND		0.100	mg/L	100		ND				30%	
1,3,5-Trimethylbenzene	ND		0.100	mg/L	100		ND				30%	
Vinyl chloride	ND		0.0500	mg/L	100		ND				30%	
m,p-Xylene	0.390		0.100	mg/L	100		0.419			7	30%	
o-Xylene	0.125		0.0500	mg/L	100		0.135			7	30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 83 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		SPLP	Volatile Or	ganic Co	mpounds	by EPA 1	1312/826	0C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Duplicate (9060589-DUP2)			Prepared	: 06/05/19	12:17 Ana	lyzed: 06/05/	/19 14:00					
QC Source Sample: 2708-190521-0	007 (A9E07	23-01)										
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80)-120 %		"					
Matrix Spike (9060589-MS2)			Prepared	: 06/05/19	12:17 Ana	lyzed: 06/05/	/19 15:48					
QC Source Sample: Non-SDG (A9	E0832-02)											
<u>1312/8260C</u>												
Acetone	18.8		10.0	mg/L	500	20.0	ND	94	70-130%			
Benzene	12.9		0.125	mg/L	500	10.0	2.31	106	70-130%			
Bromobenzene	10.2		0.250	mg/L	500	10.0	ND	102	70-130%			
Bromochloromethane	11.7		0.500	mg/L	500	10.0	ND	117	70-130%			
Bromodichloromethane	11.2		0.500	mg/L	500	10.0	ND	112	70-130%			
Bromoform	12.4		0.500	mg/L	500	10.0	ND	124	70-130%			
Bromomethane	12.5		2.50	mg/L	500	10.0	ND	125	70-130%			
2-Butanone (MEK)	20.4		5.00	mg/L	500	20.0	ND	102	70-130%			
n-Butylbenzene	10.5		0.500	mg/L	500	10.0	ND	105	70-130%			
sec-Butylbenzene	9.98		0.500	mg/L	500	10.0	ND	100	70-130%			
ert-Butylbenzene	9.14		0.500	mg/L	500	10.0	ND	91	70-130%			
Carbon tetrachloride	11.1		0.500	mg/L	500	10.0	ND	111	70-130%			
Chlorobenzene	10.7		0.250	mg/L	500	10.0	ND	107	70-130%			
Chloroethane	7.49		2.50	mg/L	500	10.0	ND	75	70-130%			
Chloroform	10.8		0.500	mg/L	500	10.0	ND	108	70-130%			
Chloromethane	11.0		2.50	mg/L	500	10.0	ND	110	70-130%			
2-Chlorotoluene	10.1		0.500	mg/L	500	10.0	ND	101	70-130%			
l-Chlorotoluene	9.63		0.500	mg/L	500	10.0	ND	96	70-130%			
,2-Dibromo-3-chloropropane	9.58		2.50	mg/L	500	10.0	ND	96	70-130%			
Dibromochloromethane	10.4		0.500	mg/L	500	10.0	ND	104	70-130%			
,2-Dibromoethane (EDB)	10.6		0.250	mg/L	500	10.0	ND	106	70-130%			
Dibromomethane	11.2		0.500	mg/L	500	10.0	ND	112	70-130%			
,2-Dichlorobenzene	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			
,3-Dichlorobenzene	10.2		0.250	mg/L	500	10.0	ND	102	70-130%			
,4-Dichlorobenzene	10.2		0.250	mg/L	500	10.0	ND	102	70-130%			
Dichlorodifluoromethane	10.6		0.500	mg/L	500	10.0	ND	106	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 84 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Matrix Spike (9060589-MS2)			Prepared	: 06/05/19	12:17 Anal	yzed: 06/05/	/19 15:48					
QC Source Sample: Non-SDG (A9	E0832-02)											
1,1-Dichloroethane	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			
1,2-Dichloroethane (EDC)	10.6		0.250	mg/L	500	10.0	ND	106	70-130%			
1,1-Dichloroethene	9.78		0.250	mg/L	500	10.0	ND	98	70-130%			
cis-1,2-Dichloroethene	10.4		0.250	mg/L	500	10.0	ND	104	70-130%			
trans-1,2-Dichloroethene	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			
1,2-Dichloropropane	10.6		0.250	mg/L	500	10.0	ND	106	70-130%			
1,3-Dichloropropane	10.4		0.500	mg/L	500	10.0	ND	104	70-130%			
2,2-Dichloropropane	8.60		0.500	mg/L	500	10.0	ND	86	70-130%			
1,1-Dichloropropene	10.3		0.500	mg/L	500	10.0	ND	103	70-130%			
cis-1,3-Dichloropropene	9.75		0.500	mg/L	500	10.0	ND	97	70-130%			
trans-1,3-Dichloropropene	9.23		0.500	mg/L	500	10.0	ND	92	70-130%			
Ethylbenzene	10.2		0.250	mg/L	500	10.0	0.180	100	70-130%			
Hexachlorobutadiene	10.7		2.50	mg/L	500	10.0	ND	107	70-130%			
2-Hexanone	19.5		5.00	mg/L	500	20.0	ND	97	70-130%			
Isopropylbenzene	10.3		0.500	mg/L	500	10.0	ND	103	70-130%			
4-Isopropyltoluene	9.92		0.500	mg/L	500	10.0	ND	99	70-130%			
4-Methyl-2-pentanone (MiBK)	19.2		5.00	mg/L	500	20.0	ND	96	70-130%			
Methyl tert-butyl ether (MTBE)	8.66		0.500	mg/L	500	10.0	ND	87	70-130%			
Methylene chloride	9.28		2.50	mg/L	500	10.0	ND	93	70-130%			
Naphthalene	16.9		1.00	mg/L	500	10.0	6.62	102	70-130%			
n-Propylbenzene	9.66		0.250	mg/L	500	10.0	ND	97	70-130%			
Styrene	11.1		0.500	mg/L	500	10.0	ND	111	70-130%			
1,1,1,2-Tetrachloroethane	10.5		0.250	mg/L	500	10.0	ND	105	70-130%			
1,1,2,2-Tetrachloroethane	10.5		0.250	mg/L	500	10.0	ND	105	70-130%			
Tetrachloroethene (PCE)	10.7		0.250	mg/L	500	10.0	ND	107	70-130%			
Toluene	11.1		0.500	mg/L	500	10.0	1.05	100	70-130%			
1,2,3-Trichlorobenzene	10.7		1.00	mg/L	500	10.0	ND	107	70-130%			
1,2,4-Trichlorobenzene	9.61		1.00	mg/L	500	10.0	ND	96	70-130%			
1,1,1-Trichloroethane	10.1		0.250	mg/L	500	10.0	ND	101	70-130%			
1,1,2-Trichloroethane	11.0		0.250	mg/L	500	10.0	ND	110	70-130%			
Trichloroethene (TCE)	11.0		0.250	mg/L	500	10.0	ND	110	70-130%			
Trichlorofluoromethane	13.3		1.00	mg/L	500	10.0	ND	133	70-130%			Q-0
1,2,3-Trichloropropane	9.64		0.500	mg/L	500	10.0	ND	96	70-130%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 85 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C Detection Reporting Spike Source % REC RPD														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er						
Matrix Spike (9060589-MS2)			Prepared	: 06/05/19 1	2:17 Anal	yzed: 06/05/	/19 15:48							
QC Source Sample: Non-SDG (A9	E0832-02)													
,2,4-Trimethylbenzene	9.77		0.500	mg/L	500	10.0	ND	98	70-130%					
,3,5-Trimethylbenzene	9.89		0.500	mg/L	500	10.0	ND	99	70-130%					
/inyl chloride	10.3		0.250	mg/L	500	10.0	ND	103	70-130%					
n,p-Xylene	21.0		0.500	mg/L	500	20.0	0.268	104	70-130%					
-Xylene	9.79		0.250	mg/L	500	10.0	ND	98	70-130%					
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	-120 %	Dilu	ution: 1x					_		
Toluene-d8 (Surr)			100 %	80-	-120 %		"							
4-Bromofluorobenzene (Surr)			91 %	80-	-120 %		"							
Matrix Spike (9060589-MS3)			Prepared	: 06/05/19 1	2:17 Anal	yzed: 06/05/	/19 22:07							
QC Source Sample: Non-SDG (A9	E0832-02RI	E1)												
1312/8260C														
Acetone	1.86		1.00	mg/L	50	2.00	ND	93	70-130%					
Benzene	3.41		0.0125	mg/L	50	1.00	2.42	98	70-130%					
Bromobenzene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%					
Bromochloromethane	1.15		0.0500	mg/L	50	1.00	ND	115	70-130%					
Bromodichloromethane	1.11		0.0500	mg/L	50	1.00	ND	111	70-130%					
Bromoform	1.23		0.0500	mg/L	50	1.00	ND	123	70-130%					
Bromomethane	1.27		0.250	mg/L	50	1.00	ND	127	70-130%					
-Butanone (MEK)	1.96		0.500	mg/L	50	2.00	ND	98	70-130%					
-Butylbenzene	1.10		0.0500	mg/L	50	1.00	ND	110	70-130%					
ec-Butylbenzene	0.995		0.0500	mg/L	50	1.00	ND	99	70-130%					
ert-Butylbenzene	0.902		0.0500	mg/L	50	1.00	ND	90	70-130%					
Carbon tetrachloride	1.08		0.0500	mg/L	50	1.00	ND	108	70-130%					
Chlorobenzene	1.04		0.0250	mg/L	50	1.00	ND	104	70-130%					
Chloroethane	0.850		0.250	mg/L	50	1.00	ND	85	70-130%					
Chloroform	1.05		0.0500	mg/L	50	1.00	ND	105	70-130%					
Chloromethane	1.10		0.250	mg/L	50	1.00	ND	110	70-130%					
-Chlorotoluene	0.987		0.0500	mg/L	50	1.00	ND	99	70-130%					
-Chlorotoluene	0.946		0.0500	mg/L	50	1.00	ND	95	70-130%					
,2-Dibromo-3-chloropropane	0.995		0.250	mg/L	50	1.00	ND	100	70-130%					
Dibromochloromethane	1.03		0.0500	mg/L	50	1.00	ND	103	70-130%					
,2-Dibromoethane (EDB)	1.03		0.0300	mg/L	50	1.00	ND ND	103	70-130%					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 86 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/5030	0B SPLP	Volatiles					Wat	er				
Matrix Spike (9060589-MS3)			Prepared:	06/05/19	12:17 Ana	lyzed: 06/05	/19 22:07					
QC Source Sample: Non-SDG (A9)	E0832-02R1	E1)										
Dibromomethane	1.08		0.0500	mg/L	50	1.00	ND	108	70-130%			
1,2-Dichlorobenzene	1.02		0.0250	mg/L	50	1.00	ND	102	70-130%			
1,3-Dichlorobenzene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
1,4-Dichlorobenzene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
Dichlorodifluoromethane	1.05		0.0500	mg/L	50	1.00	ND	105	70-130%			
1,1-Dichloroethane	0.999		0.0250	mg/L	50	1.00	ND	100	70-130%			
1,2-Dichloroethane (EDC)	1.02		0.0250	mg/L	50	1.00	ND	102	70-130%			
1,1-Dichloroethene	0.966		0.0250	mg/L	50	1.00	ND	97	70-130%			
cis-1,2-Dichloroethene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
trans-1,2-Dichloroethene	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,2-Dichloropropane	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,3-Dichloropropane	1.00		0.0500	mg/L	50	1.00	ND	100	70-130%			
2,2-Dichloropropane	0.793		0.0500	mg/L	50	1.00	ND	79	70-130%			
1,1-Dichloropropene	1.00		0.0500	mg/L	50	1.00	ND	100	70-130%			
cis-1,3-Dichloropropene	0.930		0.0500	mg/L	50	1.00	ND	93	70-130%			
trans-1,3-Dichloropropene	0.897		0.0500	mg/L	50	1.00	ND	90	70-130%			
Ethylbenzene	1.17		0.0250	mg/L	50	1.00	0.196	97	70-130%			
Hexachlorobutadiene	1.05		0.250	mg/L	50	1.00	ND	105	70-130%			
2-Hexanone	1.90		0.500	mg/L	50	2.00	ND	95	70-130%			
Isopropylbenzene	1.01		0.0500	mg/L	50	1.00	ND	101	70-130%			
4-Isopropyltoluene	0.993		0.0500	mg/L	50	1.00	ND	99	70-130%			
4-Methyl-2-pentanone (MiBK)	1.85		0.500	mg/L	50	2.00	ND	93	70-130%			
Methyl tert-butyl ether (MTBE)	0.830		0.0500	mg/L	50	1.00	ND	83	70-130%			
Methylene chloride	0.892		0.250	mg/L	50	1.00	ND	89	70-130%			
Naphthalene	9.89		0.100	mg/L	50	1.00	10.1	-20	70-130%			E, Q-03
n-Propylbenzene	0.951		0.0250	mg/L	50	1.00	ND	95	70-130%			
Styrene	1.23		0.0500	mg/L	50	1.00	0.107	113	70-130%			
1,1,1,2-Tetrachloroethane	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
1,1,2,2-Tetrachloroethane	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
Tetrachloroethene (PCE)	1.02		0.0250	mg/L	50	1.00	ND	102	70-130%			
Toluene	2.00		0.0500	mg/L	50	1.00	1.09	91	70-130%			
1,2,3-Trichlorobenzene	1.14		0.100	mg/L	50	1.00	ND	114	70-130%			
1,2,4-Trichlorobenzene	1.01		0.100	mg/L	50	1.00	ND	101	70-130%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 87 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Limit Amount Notes Batch 9060589 - EPA 1312/5030B SPLP Volatiles Water Matrix Spike (9060589-MS3) Prepared: 06/05/19 12:17 Analyzed: 06/05/19 22:07 QC Source Sample: Non-SDG (A9E0832-02RE1) 1.00 1,1,1-Trichloroethane 0.990 0.0250 mg/L 50 ND 99 70-130% 1,1,2-Trichloroethane 1.05 0.0250 1.00 70-130% mg/L 50 ND 105 50 70-130% Trichloroethene (TCE) 1.08 0.0250 mg/L 1.00 ND 108 Trichlorofluoromethane 1.30 0.100mg/L 50 1.00 ND 130 70-130% 1,2,3-Trichloropropane 0.954 0.0500 mg/L 50 1.00 ND 95 70-130% 1,2,4-Trimethylbenzene 0.05001.00 0.0424 102 70-130% 1.06 mg/L 50 0.0500 70-130% 1,3,5-Trimethylbenzene 1.01 mg/L 50 1.00 ND 101 Vinyl chloride 1.03 0.0250 50 1.00 ND 103 70-130% mg/L 2.39 2.00 104 70-130% m,p-Xylene 0.0500 mg/L 50 0.307 o-Xylene 1.09 0.0250 mg/L 50 1.00 0.106 98 70-130% Surr: 1,4-Difluorobenzene (Surr) 104 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 99 % 80-120 % 91% 80-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 88 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060759 - EPA 1312/35	10C (BNA	Extraction)					Soli	d				
Blank (9060759-BLK1)			Prepared:	06/10/19	10:22 Anal	lyzed: 06/11	/19 11:52					
1312/8270D												
Acenaphthene	ND		0.000200	mg/L	1							B-02
Acenaphthylene	ND		0.000200	mg/L	1							
Aniline	ND		0.00100	mg/L	1							
Anthracene	ND		0.000200	mg/L	1							
Azobenzene (1,2-DPH)	ND		0.000500	mg/L	1							
Benz(a)anthracene	ND		0.000200	mg/L	1							
Benzo(a)pyrene	ND		0.000300	mg/L	1							
Benzo(b)fluoranthene	ND		0.000300	mg/L	1							
Benzo(k)fluoranthene	ND		0.000300	mg/L	1							
Benzo(g,h,i)perylene	ND		0.000200	mg/L	1							
Benzoic acid	ND		0.0200	mg/L	1							
Benzyl alcohol	ND		0.00200	mg/L	1							
Bis(2-Chloroethoxy) methane	ND		0.000500	mg/L	1							
Bis(2-Chloroethyl) ether	ND		0.000500	mg/L	1							
2,2'-Oxybis(1-Chloropropane)	ND		0.000500	mg/L	1							
Bis(2-Ethylhexyl) adipate	ND		0.00500	mg/L	1							
Bis(2-ethylhexyl)phthalate	ND		0.00400	mg/L	1							
4-Bromophenyl phenyl ether	ND		0.000500	mg/L	1							
Butyl benzyl phthalate	ND		0.00400	mg/L	1							
Carbazole	ND		0.000300	mg/L	1							
4-Chloroaniline	ND		0.000500	mg/L	1							
4-Chloro-3-methylphenol	ND		0.00200	mg/L	1							
2-Chloronaphthalene	ND		0.000200	mg/L	1							
2-Chlorophenol	ND		0.00100	mg/L	1							
4-Chlorophenyl phenyl ether	ND		0.000500	mg/L	1							
Chrysene	ND		0.000200	mg/L	1							
Dibenz(a,h)anthracene	ND		0.000200	mg/L	1							
Dibenzofuran	ND		0.000200	mg/L	1							
1,2-Dichlorobenzene	ND		0.000500	mg/L	1							
1,3-Dichlorobenzene	ND		0.000500	mg/L	1							
1,4-Dichlorobenzene	ND		0.000500	mg/L	1							
2,4-Dichlorophenol	ND		0.000300	mg/L	1							
Di-n-butylphthalate	ND		0.00100	mg/L	1							
Di-n-outyrphthalate	ND		0.00400	mg/L	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 89 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060759 - EPA 1312/35	510C (BNA Extraction) Solid											
Blank (9060759-BLK1)			Prepared:	06/10/19	10:22 Anal	lyzed: 06/11	/19 11:52					
Diethylphthalate	ND		0.00400	mg/L	1							
Dimethylphthalate	ND		0.00400	mg/L	1							
2,4-Dimethylphenol	ND		0.00100	mg/L	1							
1,2-Dinitrobenzene	ND		0.00500	mg/L	1							
1,3-Dinitrobenzene	ND		0.00500	mg/L	1							
1,4-Dinitrobenzene	ND		0.00500	mg/L	1							
4,6-Dinitro-2-methylphenol	ND		0.00500	mg/L	1							
2,4-Dinitrophenol	ND		0.00500	mg/L	1							
2,4-Dinitrotoluene	ND		0.00200	mg/L	1							
2,6-Dinitrotoluene	ND		0.00200	mg/L	1							
Di-n-octyl phthalate	ND		0.00400	mg/L	1							
Fluoranthene	ND		0.000200	mg/L	1							
Fluorene	ND		0.000200	mg/L	1							
Hexachlorobenzene	ND		0.000200	mg/L	1							
Hexachlorobutadiene	ND		0.000500	mg/L	1							
Hexachlorocyclopentadiene	ND		0.00100	mg/L	1							
Hexachloroethane	ND		0.000500	mg/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.000200	mg/L	1							
Isophorone	ND		0.000500	mg/L	1							
1-Methylnaphthalene	ND		0.000400	mg/L	1							
2-Methylnaphthalene	ND		0.000400	mg/L	1							B-02
2-Methylphenol	0.00152		0.000500	mg/L	1							В
3+4-Methylphenol(s)	0.00313		0.000500	mg/L	1							В
Naphthalene	0.00306		0.000400	mg/L	1							В
2-Nitroaniline	ND		0.00400	mg/L	1							
3-Nitroaniline	ND		0.00400	mg/L	1							
4-Nitroaniline	ND		0.00400	mg/L	1							
Nitrobenzene	ND		0.00200	mg/L	1							
2-Nitrophenol	ND		0.00200	mg/L	1							
4-Nitrophenol	ND		0.00200	mg/L	1							
N-Nitrosodimethylamine	ND		0.000500	mg/L	1							
N-Nitroso-di-n-propylamine	ND		0.000500	mg/L	1							
N-Nitrosodiphenylamine	ND		0.000500	mg/L	1							
Pentachlorophenol (PCP)	ND		0.00200	mg/L	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 90 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060759 - EPA 1312/351	IOC (BNA E	extraction)					Soli	d				
Blank (9060759-BLK1)			Prepared:	06/10/19 1	0:22 Anal	yzed: 06/11/	19 11:52					
Phenanthrene	ND		0.000200	mg/L	1							B-0
Phenol	0.00431		0.00400	mg/L	1							
Pyrene	ND		0.000200	mg/L	1							
Pyridine	ND		0.00200	mg/L	1							B-0
2,3,4,6-Tetrachlorophenol	ND		0.00100	mg/L	1							
2,3,5,6-Tetrachlorophenol	ND		0.00100	mg/L	1							
1,2,4-Trichlorobenzene	ND		0.000500	mg/L	1							
2,4,5-Trichlorophenol	ND		0.00100	mg/L	1							
2,4,6-Trichlorophenol	ND		0.00100	mg/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 72 %	Limits: 44-	120 %	Dilu	tion: 1x					
2-Fluorobiphenyl (Surr)			72 %	44-	120 %		"					
Phenol-d6 (Surr)			22 %	10-	120 %		"					
p-Terphenyl-d14 (Surr)			83 %	50-	133 %		"					
2-Fluorophenol (Surr)			39 %	19-	120 %		"					
2,4,6-Tribromophenol (Surr)			95 %	43-	140 %		"					
LCS (9060759-BS1)			Prepared:	06/10/19 1	0:22 Anal	yzed: 06/11/	19 12:29					
1312/8270D												
Acenaphthene	0.0314											
	0.0514		0.000400	mg/L	2	0.0400		79	47-122%			B-0
Acenaphthylene	0.0314		0.000400 0.000400	mg/L mg/L	2 2	0.0400 0.0400		79 79	47-122% 41-130%			B-0
Acenaphthylene Aniline				-								B-0 Q-3
1 ,	0.0314		0.000400	mg/L	2	0.0400		79	41-130%			
Aniline	0.0314 0.0255		0.000400 0.00200	mg/L mg/L	2 2	0.0400 0.0400		79 64	41-130% 6-120%			
Aniline Anthracene	0.0314 0.0255 0.0359		0.000400 0.00200 0.000400	mg/L mg/L mg/L	2 2 2	0.0400 0.0400 0.0400	 	79 64 90	41-130% 6-120% 57-123%		 	
Aniline Anthracene Azobenzene (1,2-DPH)	0.0314 0.0255 0.0359 0.0377	 	0.000400 0.00200 0.000400 0.00100	mg/L mg/L mg/L mg/L	2 2 2 2	0.0400 0.0400 0.0400 0.0400	 	79 64 90 94	41-130% 6-120% 57-123% 61-120%	 	 	
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene	0.0314 0.0255 0.0359 0.0377 0.0383	 	0.000400 0.00200 0.000400 0.00100 0.000400	mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96	41-130% 6-120% 57-123% 61-120% 58-125%	 	 	
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392	 	0.000400 0.00200 0.000400 0.00100 0.000400 0.000600	mg/L mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96 98	41-130% 6-120% 57-123% 61-120% 58-125% 54-128%		 	
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392 0.0398	 	0.000400 0.00200 0.000400 0.00100 0.000400 0.000600	mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96 98 100	41-130% 6-120% 57-123% 61-120% 58-125% 54-128% 53-131%	 	 	
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392 0.0398 0.0388	 	0.000400 0.00200 0.000400 0.00100 0.000400 0.000600 0.000600	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96 98 100 97	41-130% 6-120% 57-123% 61-120% 58-125% 54-128% 53-131% 57-129%	 		
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392 0.0398 0.0388	 	0.000400 0.00200 0.000400 0.00100 0.000400 0.000600 0.000600 0.000600 0.000400	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96 98 100 97	41-130% 6-120% 57-123% 61-120% 58-125% 54-128% 53-131% 57-129% 50-134%	 	 	Q-3
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzoic acid Benzyl alcohol	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392 0.0398 0.0388 0.0389 0.0281 0.0304	 	0.000400 0.00200 0.000400 0.00100 0.000400 0.000600 0.000600 0.000600 0.000400 0.0200	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96 98 100 97 97 35	41-130% 6-120% 57-123% 61-120% 58-125% 54-128% 53-131% 57-129% 50-134% 5-120%	 		Q-3
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzoic acid Benzyl alcohol Bis(2-Chloroethoxy) methane	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392 0.0398 0.0388 0.0389 0.0281 0.0304 0.0336	 	0.000400 0.00200 0.000400 0.00100 0.000600 0.000600 0.000600 0.000600 0.000400 0.0200	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	 	79 64 90 94 96 98 100 97 97 76	41-130% 6-120% 57-123% 61-120% 58-125% 54-128% 53-131% 57-129% 50-134% 5-120% 48-120%	 		Q-3
Aniline Anthracene Azobenzene (1,2-DPH) Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzoic acid Benzyl alcohol	0.0314 0.0255 0.0359 0.0377 0.0383 0.0392 0.0398 0.0388 0.0389 0.0281 0.0304	 	0.000400 0.00200 0.000400 0.00100 0.000600 0.000600 0.000600 0.000400 0.00200 0.00400 0.00100	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0800 0.0400	 	79 64 90 94 96 98 100 97 97 35 76 84	41-130% 6-120% 57-123% 61-120% 58-125% 54-128% 53-131% 57-129% 50-134% 5-120% 31-120%	 		Q-3

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 91 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060759 - EPA 1312/35	10C (BNA E	Extraction)					Soli	d				
LCS (9060759-BS1)			Prepared:	06/10/19	10:22 Anal	lyzed: 06/11	/19 12:29					
Bis(2-ethylhexyl)phthalate	0.0419		0.00800	mg/L	2	0.0400		105	55-135%			
4-Bromophenyl phenyl ether	0.0373		0.00100	mg/L	2	0.0400		93	54-124%			
Butyl benzyl phthalate	0.0411		0.00800	mg/L	2	0.0400		103	53-134%			
Carbazole	0.0362		0.000600	mg/L	2	0.0400		90	60-122%			
4-Chloroaniline	0.0259		0.00100	mg/L	2	0.0400		65	33-120%			
4-Chloro-3-methylphenol	0.0335		0.00400	mg/L	2	0.0400		84	52-120%			
2-Chloronaphthalene	0.0279		0.000400	mg/L	2	0.0400		70	40-120%			
2-Chlorophenol	0.0316		0.00200	mg/L	2	0.0400		79	38-120%			
4-Chlorophenyl phenyl ether	0.0326		0.00100	mg/L	2	0.0400		82	53-121%			
Chrysene	0.0383		0.000400	mg/L	2	0.0400		96	59-123%			
Dibenz(a,h)anthracene	0.0401		0.000400	mg/L	2	0.0400		100	51-134%			
Dibenzofuran	0.0333		0.000400	mg/L	2	0.0400		83	53-120%			
1,2-Dichlorobenzene	0.0166		0.00100	mg/L	2	0.0400		42	32-120%			
1,3-Dichlorobenzene	0.0148		0.00100	mg/L	2	0.0400		37	28-120%			
1,4-Dichlorobenzene	0.0158		0.00100	mg/L	2	0.0400		40	29-120%			
2,4-Dichlorophenol	0.0366		0.00200	mg/L	2	0.0400		92	47-121%			
Di-n-butylphthalate	0.0385		0.00800	mg/L	2	0.0400		96	59-127%			
Diethylphthalate	0.0338		0.00800	mg/L	2	0.0400		85	55-125%			
Dimethylphthalate	0.0360		0.00800	mg/L	2	0.0400		90	45-127%			
2,4-Dimethylphenol	0.0303		0.00200	mg/L	2	0.0400		76	31-124%			
1,2-Dinitrobenzene	0.0358		0.0100	mg/L	2	0.0400		90	59-120%			
1,3-Dinitrobenzene	0.0375		0.0100	mg/L	2	0.0400		94	49-128%			
1,4-Dinitrobenzene	0.0362		0.0100	mg/L	2	0.0400		91	40-120%			
4,6-Dinitro-2-methylphenol	0.0377		0.0100	mg/L	2	0.0400		94	44-137%			
2,4-Dinitrophenol	0.0357		0.0100	mg/L	2	0.0400		89	23-143%			
2,4-Dinitrotoluene	0.0371		0.00400	mg/L	2	0.0400		93	57-128%			
2,6-Dinitrotoluene	0.0402		0.00400	mg/L	2	0.0400		100	57-124%			
Di-n-octyl phthalate	0.0420		0.00800	mg/L	2	0.0400		105	51-140%			
Fluoranthene	0.0358		0.000400	mg/L	2	0.0400		90	57-128%			
Fluorene	0.0322		0.000400	mg/L	2	0.0400		80	52-124%			
Hexachlorobenzene	0.0364		0.000400	mg/L	2	0.0400		91	52-125%			
Hexachlorobutadiene	0.0142		0.00100	mg/L	2	0.0400		36	22-124%			
Hexachlorocyclopentadiene	0.0142		0.00200	mg/L	2	0.0400		34	5-127%			
Hexachloroethane	0.0133		0.00200	mg/L	2	0.0400		33	21-120%			
110/40/110/100 tildile	0.0132		0.00100	mg/L	2	0.0700		55	21 120/0	_		

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 92 of 118

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Detection Reporting Spike % REC RPD Source Analyte Result Limit Units Dilution % REC Limits RPD Limit Limit Amount Result Notes Batch 9060759 - EPA 1312/3510C (BNA Extraction) Solid LCS (9060759-BS1) Prepared: 06/10/19 10:22 Analyzed: 06/11/19 12:29 Indeno(1,2,3-cd)pyrene 0.0370 0.000400 2 0.0400 93 52-133% mg/L Isophorone 0.0332 0.00100 mg/L 2 0.0400 83 42-124% ---------2 1-Methylnaphthalene 0.0244 0.000800mg/L 0.040061 41-120% 2-Methylnaphthalene 0.0237 0.000800mg/L 2 0.0400 59 40-121% B-02 2 82 В 2-Methylphenol 0.0329 0.001000.040030-120% mg/L 2 29-120% В 3+4-Methylphenol(s) 0.0341 0.00100 mg/L 0.0400 85 В Naphthalene 0.0283 ---0.000800 mg/L 2 0.040071 40-121% 0.00800 2 96 54-127% 2-Nitroaniline 0.0385 mg/L 0.0400 0.008002 76 3-Nitroaniline 0.0304 --mg/L 0.0400 41-128% 4-Nitroaniline 0.0251 0.00800mg/L 2 0.0400 63 35-120% 2 Nitrobenzene 0.0322 0.004000.040081 45-121% mg/L 0.00400 2 47-123% 2-Nitrophenol 0.0349 mg/L 0.0400 87 5-120% 0.00400 2 32 4-Nitrophenol 0.0127 --mg/L 0.0400 ------N-Nitrosodimethylamine 0.0197 0.00100 mg/L 2 0.0400 49 6-120% 2 0.0335 0.00100 0.0400 84 49-120% N-Nitroso-di-n-propylamine --mg/L N-Nitrosodiphenylamine 0.0371 0.00100 mg/L 2 0.0400 93 51-123% Pentachlorophenol (PCP) 0.00400 2 35-138% 0.03360.040084 mg/L Phenanthrene 0.0362 0.000400 2 0.0400 91 59-120% B-02 mg/L 2 В Phenol 0.0221 0.0080055 5-120% --mg/L 0.0400 ------Pyrene 0.0354 0.000400 mg/L 2 0.0400 88 57-126% Pyridine 0.0219 0.00400 2 0.0400 55 5-120% B-02 --mg/L ---2,3,4,6-Tetrachlorophenol 0.0354 0.00200 mg/L 2 0.0400 88 50-128% 2,3,5,6-Tetrachlorophenol 0.0336 0.00200 2 0.0400 84 50-121% mg/L 1,2,4-Trichlorobenzene 0.0175 0.00100mg/L 2 0.0400 44 29-120%

2,4,6-Tribromophenol (Surr) 100 % 43-140 %

0.00200

0.00200

81%

31%

99 %

49 %

Recovery: 80 %

0.0396

0.0383

Prepared: 06/10/19 10:22 Analyzed: 06/11/19 13:06

2

2

mg/L

mg/L

Limits: 44-120 %

44-120 %

10-120 %

50-133 %

19-120 %

0.0400

0.0400

Q-19

Apex Laboratories

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Surr: Nitrobenzene-d5 (Surr)

Phenol-d6 (Surr)

2-Fluorobiphenyl (Surr)

p-Terphenyl-d14 (Surr) 2-Fluorophenol (Surr)

LCS Dup (9060759-BSD1)

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99

96

Dilution: 2x

53-123%

50-125%

Philip Nerenberg, Lab Director

Page 93 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060759 - EPA 1312/35	10C (BNA I	Extraction)					Soli	d				
LCS Dup (9060759-BSD1)			Prepared:	06/10/19	10:22 Anal	yzed: 06/11	/19 13:06					Q-19
1312/8270D												
Acenaphthene	0.0332		0.000400	mg/L	2	0.0400		83	47-122%	5	30%	B-02
Acenaphthylene	0.0332		0.000400	mg/L	2	0.0400		83	41-130%	5	30%	
Aniline	0.0260		0.00200	mg/L	2	0.0400		65	6-120%	2	30%	Q-31
Anthracene	0.0350		0.000400	mg/L	2	0.0400		88	57-123%	3	30%	
Azobenzene (1,2-DPH)	0.0371		0.00100	mg/L	2	0.0400		93	61-120%	2	30%	
Benz(a)anthracene	0.0378		0.000400	mg/L	2	0.0400		95	58-125%	1	30%	
Benzo(a)pyrene	0.0374		0.000600	mg/L	2	0.0400		93	54-128%	5	30%	
Benzo(b)fluoranthene	0.0385		0.000600	mg/L	2	0.0400		96	53-131%	3	30%	
Benzo(k)fluoranthene	0.0378		0.000600	mg/L	2	0.0400		95	57-129%	3	30%	
Benzo(g,h,i)perylene	0.0382		0.000400	mg/L	2	0.0400		95	50-134%	2	30%	
Benzoic acid	0.0294		0.0200	mg/L	2	0.0800		37	5-120%	5	30%	Q-31
Benzyl alcohol	0.0302		0.00400	mg/L	2	0.0400		76	31-120%	0.8	30%	
Bis(2-Chloroethoxy) methane	0.0332		0.00100	mg/L	2	0.0400		83	48-120%	1	30%	
Bis(2-Chloroethyl) ether	0.0347		0.00100	mg/L	2	0.0400		87	43-120%	3	30%	
2,2'-Oxybis(1-Chloropropane)	0.0316		0.00100	mg/L	2	0.0400		79	37-130%	3	30%	
Bis(2-Ethylhexyl) adipate	0.0403		0.0100	mg/L	2	0.0400		101	40-125%	1	30%	
Bis(2-ethylhexyl)phthalate	0.0413		0.00800	mg/L	2	0.0400		103	55-135%	1	30%	
4-Bromophenyl phenyl ether	0.0374		0.00100	mg/L	2	0.0400		94	54-124%	0.2	30%	
Butyl benzyl phthalate	0.0412		0.00800	mg/L	2	0.0400		103	53-134%	0.2	30%	
Carbazole	0.0364		0.000600	mg/L	2	0.0400		91	60-122%	0.5	30%	
4-Chloroaniline	0.0278		0.00100	mg/L	2	0.0400		70	33-120%	7	30%	
4-Chloro-3-methylphenol	0.0338		0.00400	mg/L	2	0.0400		85	52-120%	1	30%	
2-Chloronaphthalene	0.0313		0.000400	mg/L	2	0.0400		78	40-120%	12	30%	
2-Chlorophenol	0.0326		0.00200	mg/L	2	0.0400		82	38-120%	3	30%	
4-Chlorophenyl phenyl ether	0.0333		0.00100	mg/L	2	0.0400		83	53-121%	2	30%	
Chrysene	0.0377		0.000400	mg/L	2	0.0400		94	59-123%	2	30%	
Dibenz(a,h)anthracene	0.0375		0.000400	mg/L	2	0.0400		94	51-134%	7	30%	
Dibenzofuran	0.0345		0.000400	mg/L	2	0.0400		86	53-120%	3	30%	
1,2-Dichlorobenzene	0.0221		0.00100	mg/L	2	0.0400		55	32-120%	28	30%	
1,3-Dichlorobenzene	0.0206		0.00100	mg/L	2	0.0400		51	28-120%	33	30%	Q-24
1,4-Dichlorobenzene	0.0219		0.00100	mg/L	2	0.0400		55	29-120%	32	30%	Q-24
2,4-Dichlorophenol	0.0373		0.00200	mg/L	2	0.0400		93	47-121%	2	30%	
Di-n-butylphthalate	0.0381		0.00800	mg/L	2	0.0400		95	59-127%	0.8	30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 94 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060759 - EPA 1312/35	10C (BNA E	Extraction)					Soli	d				
LCS Dup (9060759-BSD1)			Prepared:	06/10/19	10:22 Anal	lyzed: 06/11/	/19 13:06					Q-19
Diethylphthalate	0.0339		0.00800	mg/L	2	0.0400		85	55-125%	0.2	30%	
Dimethylphthalate	0.0360		0.00800	mg/L	2	0.0400		90	45-127%	0.08	30%	
2,4-Dimethylphenol	0.0339		0.00200	mg/L	2	0.0400		85	31-124%	11	30%	
1,2-Dinitrobenzene	0.0367		0.0100	mg/L	2	0.0400		92	59-120%	2	30%	
1,3-Dinitrobenzene	0.0375		0.0100	mg/L	2	0.0400		94	49-128%	0.2	30%	
1,4-Dinitrobenzene	0.0367		0.0100	mg/L	2	0.0400		92	40-120%	1	30%	
4,6-Dinitro-2-methylphenol	0.0419		0.0100	mg/L	2	0.0400		105	44-137%	11	30%	
2,4-Dinitrophenol	0.0394		0.0100	mg/L	2	0.0400		98	23-143%	10	30%	
2,4-Dinitrotoluene	0.0371		0.00400	mg/L	2	0.0400		93	57-128%	0.03	30%	
2,6-Dinitrotoluene	0.0392		0.00400	mg/L	2	0.0400		98	57-124%	2	30%	
Di-n-octyl phthalate	0.0402		0.00800	mg/L	2	0.0400		100	51-140%	4	30%	
Fluoranthene	0.0362		0.000400	mg/L	2	0.0400		90	57-128%	1	30%	
Fluorene	0.0319		0.000400	mg/L	2	0.0400		80	52-124%	0.7	30%	
Hexachlorobenzene	0.0358		0.000400	mg/L	2	0.0400		90	52-125%	2	30%	
Hexachlorobutadiene	0.0215		0.00100	mg/L	2	0.0400		54	22-124%	41	30%	Q-24
Hexachlorocyclopentadiene	0.0215		0.00200	mg/L	2	0.0400		54	5-127%	46	30%	Q-24
Hexachloroethane	0.0205		0.00100	mg/L	2	0.0400		51	21-120%	43	30%	Q-24
Indeno(1,2,3-cd)pyrene	0.0359		0.000400	mg/L	2	0.0400		90	52-133%	3	30%	
Isophorone	0.0331		0.00100	mg/L	2	0.0400		83	42-124%	0.2	30%	
1-Methylnaphthalene	0.0278		0.000800	mg/L	2	0.0400		69	41-120%	13	30%	
2-Methylnaphthalene	0.0281		0.000800	mg/L	2	0.0400		70	40-121%	17	30%	B-02
2-Methylphenol	0.0302		0.00100	mg/L	2	0.0400		76	30-120%	9	30%	В
3+4-Methylphenol(s)	0.0287		0.00100	mg/L	2	0.0400		72	29-120%	17	30%	В
Naphthalene	0.0288		0.000800	mg/L	2	0.0400		72	40-121%	2	30%	В
2-Nitroaniline	0.0387		0.00800	mg/L	2	0.0400		97	54-127%	0.6	30%	
3-Nitroaniline	0.0351		0.00800	mg/L	2	0.0400		88	41-128%	14	30%	
4-Nitroaniline	0.0280		0.00800	mg/L	2	0.0400		70	35-120%	11	30%	
Nitrobenzene	0.0325		0.00400	mg/L	2	0.0400		81	45-121%	0.9	30%	
2-Nitrophenol	0.0381		0.00400	mg/L	2	0.0400		95	47-123%	9	30%	
4-Nitrophenol	0.0128		0.00400	mg/L	2	0.0400		32	5-120%	0.9	30%	
N-Nitrosodimethylamine	0.0191		0.00100	mg/L	2	0.0400		48	6-120%	3	30%	
N-Nitroso-di-n-propylamine	0.0342		0.00100	mg/L	2	0.0400		86	49-120%	2	30%	
N-Nitrosodiphenylamine	0.0363		0.00100	mg/L	2	0.0400		91	51-123%	2	30%	
Pentachlorophenol (PCP)	0.0342		0.00400	mg/L	2	0.0400		86	35-138%	2	30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 95 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS SPLP Semivolatile Organic Compounds by EPA 1312/8270D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Batch 9060759 - EPA 1312/351	0C (BNA Exti	raction)					Soli	d				
LCS Dup (9060759-BSD1)			Prepared:	06/10/19 10	:22 An	alyzed: 06/11/1	19 13:06					Q-19
Phenanthrene	0.0354		0.000400	mg/L	2	0.0400		89	59-120%	2	30%	B-0
Phenol	0.0157		0.00800	mg/L	2	0.0400		39	5-120%	34	30%	Q-24, I
Pyrene	0.0356		0.000400	mg/L	2	0.0400		89	57-126%	0.6	30%	
Pyridine	0.0187		0.00400	mg/L	2	0.0400		47	5-120%	16	30%	B-0
2,3,4,6-Tetrachlorophenol	0.0357		0.00200	mg/L	2	0.0400		89	50-128%	0.8	30%	
2,3,5,6-Tetrachlorophenol	0.0349		0.00200	mg/L	2	0.0400		87	50-121%	4	30%	
1,2,4-Trichlorobenzene	0.0237		0.00100	mg/L	2	0.0400		59	29-120%	30	30%	
2,4,5-Trichlorophenol	0.0397		0.00200	mg/L	2	0.0400		99	53-123%	0.2	30%	
2,4,6-Trichlorophenol	0.0376		0.00200	mg/L	2	0.0400		94	50-125%	2	30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 79 %	Limits: 44-1	20 %	Dilut	tion: 2x					_
2-Fluorobiphenyl (Surr)			83 %	44-1.	20 %		"					
Phenol-d6 (Surr)			29 %	10-1.	20 %		"					
p-Terphenyl-d14 (Surr)			97 %	50-1.	33 %		"					
2-Fluorophenol (Surr)			47 %	19-1.	20 %		"					
2,4,6-Tribromophenol (Surr)			100 %	43-1	40 %		"					

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 96 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units % REC RPD Limit Limit Amount Result Limits Notes Batch 9060490 - EPA 3546 Solid Blank (9060490-BLK2) Prepared: 06/03/19 10:10 Analyzed: 06/04/19 10:24 EPA 8270D Acenaphthene ND 2.67 ug/kg 1 ND 1 Acenaphthylene 2.67 ug/kg Anthracene ND 2.67 ug/kg 1 ND 2.67 Benz(a)anthracene ug/kg 1 ND 4.00 Benzo(a)pyrene ug/kg 1 4.00 Benzo(b)fluoranthene ND 1 ug/kg ------Benzo(k)fluoranthene ND 4.00 1 ug/kg 2.67 ND Benzo(g,h,i)perylene ug/kg 1 Chrysene ND 2.67 ug/kg 1 Dibenz(a,h)anthracene ND 2.67 1 ug/kg ---Fluoranthene ND 2.67 ug/kg 1 ND Fluorene 2.67 1 ug/kg Indeno(1,2,3-cd)pyrene ND 2.67 ug/kg 1 1-Methylnaphthalene ND 5.33 ug/kg 1 2-Methylnaphthalene ND 5.33 ug/kg 1 Naphthalene ND 5.33 ug/kg 1 ---------------Phenanthrene ND 2.67 ug/kg 1 Pyrene ND 2.67 1 ug/kg ---Carbazole ND 4.00 ug/kg 1 ug/kg Dibenzofuran ND 2.67 1 4-Chloro-3-methylphenol ND 26.7 ug/kg 1 2-Chlorophenol ND 13.3 ug/kg 1 2,4-Dichlorophenol ND 13.3 ug/kg 1 ug/kg 2,4-Dimethylphenol ND 13.3 1 2,4-Dinitrophenol ND 66.7 ug/kg 1 4,6-Dinitro-2-methylphenol ND 66.7 ug/kg 1 2-Methylphenol ND 6.67 ug/kg 1 3+4-Methylphenol(s) ND 6.67 ug/kg 1 ---2-Nitrophenol ND 26.7 ug/kg 1 4-Nitrophenol ND 26.7 ug/kg 1 Pentachlorophenol (PCP) ND 26.7 ug/kg 1 Phenol ND 5.33 ug/kg 1

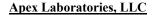
Apex Laboratories

Philip Menterg

2,3,4,6-Tetrachlorophenol

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Philip Nerenberg, Lab Director

Page 97 of 118

1

ug/kg

13.3

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060490 - EPA 3546							Soli	d				
Blank (9060490-BLK2)			Prepared	: 06/03/19	10:10 Anal	yzed: 06/04/	/19 10:24					
2,3,5,6-Tetrachlorophenol	ND		13.3	ug/kg	1							
2,4,5-Trichlorophenol	ND		13.3	ug/kg	1							
2,4,6-Trichlorophenol	ND		13.3	ug/kg	1							
Bis(2-ethylhexyl)phthalate	ND		40.0	ug/kg	1							
Butyl benzyl phthalate	ND		26.7	ug/kg	1							
Diethylphthalate	ND		26.7	ug/kg	1							
Dimethylphthalate	ND		26.7	ug/kg	1							
Di-n-butylphthalate	ND		26.7	ug/kg	1							
Di-n-octyl phthalate	ND		26.7	ug/kg	1							
N-Nitrosodimethylamine	ND		6.67	ug/kg	1							
N-Nitroso-di-n-propylamine	ND		6.67	ug/kg	1							
N-Nitrosodiphenylamine	ND		6.67	ug/kg	1							
Bis(2-Chloroethoxy) methane	ND		6.67	ug/kg	1							
Bis(2-Chloroethyl) ether	ND		6.67	ug/kg	1							
2,2'-Oxybis(1-Chloropropane)	ND		6.67	ug/kg	1							
Hexachlorobenzene	ND		2.67	ug/kg	1							
Hexachlorobutadiene	ND		6.67	ug/kg	1							
Hexachlorocyclopentadiene	ND		13.3	ug/kg	1							
Hexachloroethane	ND		6.67	ug/kg	1							
2-Chloronaphthalene	ND		2.67	ug/kg	1							
1,2-Dichlorobenzene	ND		6.67	ug/kg	1							
1,3-Dichlorobenzene	ND		6.67	ug/kg	1							
1,4-Dichlorobenzene	ND		6.67	ug/kg	1							
1,2,4-Trichlorobenzene	ND		6.67	ug/kg	1							
4-Bromophenyl phenyl ether	ND		6.67	ug/kg	1							
4-Chlorophenyl phenyl ether	ND		6.67	ug/kg	1							
Aniline	ND		13.3	ug/kg	1							
4-Chloroaniline	ND		6.67	ug/kg	1							
2-Nitroaniline	ND		53.3	ug/kg	1							
3-Nitroaniline	ND		53.3	ug/kg	1							
4-Nitroaniline	ND		53.3	ug/kg	1							
Nitrobenzene	ND		26.7	ug/kg	1							
2,4-Dinitrotoluene	ND		26.7	ug/kg	1							
2,6-Dinitrotoluene	ND		26.7	ug/kg	1							
2,0-Dilliuototuciic	ND		20.7	ug/kg	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 98 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile	Organic (Compour	ids by EP	A 8270D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	No	tes
Batch 9060490 - EPA 3546							Soli	id					
Blank (9060490-BLK2)			Prepared	1: 06/03/19	10:10 Ana	lyzed: 06/04	/19 10:24						
Benzoic acid	ND		333	ug/kg	1								
Benzyl alcohol	ND		13.3	ug/kg	1								
Isophorone	ND		6.67	ug/kg	1								
Azobenzene (1,2-DPH)	ND		6.67	ug/kg	1								
Bis(2-Ethylhexyl) adipate	ND		66.7	ug/kg	1								
3,3'-Dichlorobenzidine	ND		26.7	ug/kg	1								Q-5
1,2-Dinitrobenzene	ND		66.7	ug/kg	1								
1,3-Dinitrobenzene	ND		66.7	ug/kg	1								
1,4-Dinitrobenzene	ND		66.7	ug/kg	1								
Pyridine	ND		13.3	ug/kg	1								
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 75 %	Limits: 37	7-122 %	Dilı	ution: 1x					Q-41	
2-Fluorobiphenyl (Surr)			75 %	44	-115 %		"						
Phenol-d6 (Surr)			76 %	33	-122 %		"						
p-Terphenyl-d14 (Surr)			92 %	54	-127 %		"						
2-Fluorophenol (Surr)			71 %	35	-115 %		"						
2,4,6-Tribromophenol (Surr)			77 %	39	-132 %		"					Q-41	
LCS (9060490-BS2)			Prepared	d: 06/03/19	10:10 Ana	lyzed: 06/04	/19 11:00						Q-18
EPA 8270D													
Acenaphthene	553		5.34	ug/kg	2	533		104	40-122%				
Acenaphthylene	538		5.34	ug/kg	2	533		101	32-132%				
Anthracene	537		5.34	ug/kg	2	533		101	47-123%				
Benz(a)anthracene	530		5.34	ug/kg	2	533		99	49-126%				
Benzo(a)pyrene	647		8.00	ug/kg	2	533		121	45-129%				
Benzo(b)fluoranthene	608		8.00	ug/kg	2	533		114	45-132%				
Benzo(k)fluoranthene	624		8.00	ug/kg	2	533		117	47-132%				
Benzo(g,h,i)perylene	520		5.34	ug/kg	2	533		98	43-134%				
Chrysene	537		5.34	ug/kg	2	533		101	50-124%				
Dibenz(a,h)anthracene	563		5.34	ug/kg	2	533		106	45-134%				
Fluoranthene	610		5.34	ug/kg	2	533		114	50-127%				
Fluorene	549		5.34	ug/kg	2	533		103	43-125%				
Indeno(1,2,3-cd)pyrene	508		5.34	ug/kg	2	533		95	45-133%				
1-Methylnaphthalene	521		10.7	ug/kg	2	533		98	40-120%				
2-Methylnaphthalene	582		10.7	ug/kg	2	533		109	38-122%				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060490 - EPA 3546							Soli	d				
LCS (9060490-BS2)			Prepared	: 06/03/19	10:10 Anal	yzed: 06/04	/19 11:00					Q-18
Naphthalene	869		10.7	ug/kg	2	533		163	35-123%			Q-29
Phenanthrene	534		5.34	ug/kg	2	533		100	50-121%			
Pyrene	624		5.34	ug/kg	2	533		117	47-127%			
Carbazole	572		8.00	ug/kg	2	533		107	50-122%			
Dibenzofuran	539		5.34	ug/kg	2	533		101	44-120%			
4-Chloro-3-methylphenol	524		53.4	ug/kg	2	533		98	45-122%			
2-Chlorophenol	526		26.6	ug/kg	2	533		99	34-121%			
2,4-Dichlorophenol	570		26.6	ug/kg	2	533		107	40-122%			
2,4-Dimethylphenol	546		26.6	ug/kg	2	533		102	30-127%			
2,4-Dinitrophenol	696		133	ug/kg	2	533		131	5-137%			Q-41
4,6-Dinitro-2-methylphenol	764		133	ug/kg	2	533		143	29-132%			Q-29, Q-41
2-Methylphenol	539		13.3	ug/kg	2	533		101	32-122%			
3+4-Methylphenol(s)	551		13.3	ug/kg	2	533		103	34-120%			
2-Nitrophenol	575		53.4	ug/kg	2	533		108	36-123%			Q-41
4-Nitrophenol	645		53.4	ug/kg	2	533		121	30-132%			
Pentachlorophenol (PCP)	587		53.4	ug/kg	2	533		110	25-133%			
Phenol	576		10.7	ug/kg	2	533		108	34-120%			
2,3,4,6-Tetrachlorophenol	568		26.6	ug/kg	2	533		107	44-125%			
2,3,5,6-Tetrachlorophenol	608		26.6	ug/kg	2	533		114	40-120%			Q-41
2,4,5-Trichlorophenol	607		26.6	ug/kg	2	533		114	41-124%			
2,4,6-Trichlorophenol	625		26.6	ug/kg	2	533		117	39-126%			Q-41
Bis(2-ethylhexyl)phthalate	518		80.0	ug/kg	2	533		97	51-133%			
Butyl benzyl phthalate	511		53.4	ug/kg	2	533		96	48-132%			
Diethylphthalate	567		53.4	ug/kg	2	533		106	50-124%			
Dimethylphthalate	517		53.4	ug/kg	2	533		97	48-124%			
Di-n-butylphthalate	569		53.4	ug/kg	2	533		107	51-128%			
Di-n-octyl phthalate	574		53.4	ug/kg	2	533		108	44-140%			
N-Nitrosodimethylamine	499		13.3	ug/kg	2	533		93	23-120%			
N-Nitroso-di-n-propylamine	518		13.3	ug/kg	2	533		97	36-120%			
N-Nitrosodiphenylamine	509		13.3	ug/kg	2	533		95	38-127%			
Bis(2-Chloroethoxy) methane	506		13.3	ug/kg	2	533		95	36-121%			
Bis(2-Chloroethyl) ether	495		13.3	ug/kg	2	533		93	31-120%			
2,2'-Oxybis(1-Chloropropane)	540		13.3	ug/kg	2	533		101	33-131%			
Hexachlorobenzene	501		5.34	ug/kg	2	533		94	44-122%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 100 of 118

Q-41

Q-41

Hahn and Associates Project: Mult 802 Decommissioning

Recovery:

88 %

88 %

83 %

86 %

81%

95 %

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270D

Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 9060490 - EPA 3546 Solid LCS (9060490-BS2) Prepared: 06/03/19 10:10 Analyzed: 06/04/19 11:00 Q-18 541 13.3 2 533 101 32-123% Hexachlorobutadiene ug/kg Hexachlorocyclopentadiene 549 26.6 2 533 103 5-140% ug/kg ---------2 Hexachloroethane 487 13.3 ug/kg 533 91 28-120% 2-Chloronaphthalene 543 5.34 ug/kg 2 533 102 41-120% 2 1,2-Dichlorobenzene 481 13.3 533 90 33-120% ug/kg 475 2 30-120% 1,3-Dichlorobenzene 13.3 ug/kg 533 89 1,4-Dichlorobenzene 486 133 ug/kg 2 533 91 31-120% 2 533 95 34-120% 1,2,4-Trichlorobenzene 508 13.3 ug/kg 13.3 2 4-Bromophenyl phenyl ether 521 ug/kg 533 98 46-124% 4-Chlorophenyl phenyl ether 550 13.3 ug/kg 2 533 103 45-121% 2 88 Aniline 472 26.6 533 7-120% ug/kg 482 13.3 2 90 16-120% 4-Chloroaniline ug/kg 533 550 2-Nitroaniline 107 2 533 103 44-127% ug/kg 3-Nitroaniline 510 107 ug/kg 2 533 96 33-120% 2 Q-29 4-Nitroaniline 107 533 683 ug/kg 128 35-120% Nitrobenzene 545 53.4 ug/kg 2 533 102 34-122% 53 4 2 533 2,4-Dinitrotoluene 592 111 48-126% ug/kg 2,6-Dinitrotoluene 549 53.4 2 533 103 46-124% ug/kg 2 Q-41 Benzoic acid 1070 91 5-140% 967 ---666 ug/kg ------Benzyl alcohol 534 26.6 ug/kg 2 533 100 29-122% 508 13.3 2 533 95 30-122% Isophorone ug/kg Azobenzene (1,2-DPH) 503 13.3 ug/kg 2 533 94 39-125% Bis(2-Ethylhexyl) adipate 480 133 2 533 90 60-121% ug/kg 3,3'-Dichlorobenzidine 1020 53.4 2 1070 95 22-121% ug/kg 2 533 105 44-120% 1,2-Dinitrobenzene 562 133 ug/kg ---------1,3-Dinitrobenzene 585 133 ug/kg 2 533 110 42-127% 1,4-Dinitrobenzene 633 133 2 533 119 37-132% Q-41 ug/kg ------Pyridine 414 26.6 ug/kg 2 533 78 5-120%

Apex Laboratories

Surr: Nitrobenzene-d5 (Surr)

Phenol-d6 (Surr)

2-Fluorobiphenyl (Surr)

p-Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2,4,6-Tribromophenol (Surr)

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 2x

Philip Nerenberg, Lab Director

Page 101 of 118

Limits: 37-122 %

44-115 %

33-122 %

54-127 %

35-115 %

39-132 %

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile C	Organic (Compoun	ds by EP	A 8270D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060490 - EPA 3546							Solid	l				
Duplicate (9060490-DUP2)			Prepared:	06/03/19	10:10 Anal	lyzed: 06/04	/19 14:04					
QC Source Sample: Non-SDG (A	9E0785-01RE	<u> </u>										
Acenaphthene	9810000		902000	ug/kg	10000		9640000			2	30%	
Acenaphthylene	ND		902000	ug/kg	10000		ND				30%	
Anthracene	5370000		902000	ug/kg	10000		5530000			3	30%	
Benz(a)anthracene	4700000		902000	ug/kg	10000		5340000			13	30%	
Benzo(a)pyrene	5610000		1350000	ug/kg	10000		6700000			18	30%	
Benzo(b)fluoranthene	6330000		1350000	ug/kg	10000		7160000			12	30%	M-0
Benzo(k)fluoranthene	2190000		1350000	ug/kg	10000		3260000			39	30%	M-05, Q-1
Benzo(g,h,i)perylene	3710000		902000	ug/kg	10000		4290000			14	30%	
Chrysene	5320000		902000	ug/kg	10000		6020000			12	30%	
Dibenz(a,h)anthracene	ND		902000	ug/kg	10000		631000			***	30%	
Fluoranthene	19100000)	902000	ug/kg	10000		19800000			4	30%	
Fluorene	4990000		902000	ug/kg	10000		5130000			3	30%	
Indeno(1,2,3-cd)pyrene	4130000		902000	ug/kg	10000		4670000			12	30%	
1-Methylnaphthalene	2840000		1800000	ug/kg	10000		2860000			0.7	30%	
2-Methylnaphthalene	5790000		1800000	ug/kg	10000		5990000			3	30%	
Naphthalene	15400000)	1800000	ug/kg	10000		15500000			1	30%	Q-2
Phenanthrene	21800000)	902000	ug/kg	10000		22100000			1	30%	
Pyrene	17400000)	902000	ug/kg	10000		18300000			5	30%	
Carbazole	3020000		1350000	ug/kg	10000		3060000			1	30%	
Dibenzofuran	5710000		902000	ug/kg	10000		5510000			4	30%	
4-Chloro-3-methylphenol	ND		9020000	ug/kg	10000		ND				30%	
2-Chlorophenol	ND		4490000	ug/kg	10000		ND				30%	
2,4-Dichlorophenol	ND		4490000	ug/kg	10000		ND				30%	
2,4-Dimethylphenol	ND		4490000	ug/kg	10000		ND				30%	
2,4-Dinitrophenol	ND		22500000	ug/kg	10000		ND				30%	
4,6-Dinitro-2-methylphenol	ND		22500000	ug/kg	10000		ND				30%	
2-Methylphenol	ND		2250000	ug/kg	10000		ND				30%	
3+4-Methylphenol(s)	ND		2250000	ug/kg	10000		ND				30%	
2-Nitrophenol	ND		9020000	ug/kg	10000		ND				30%	
4-Nitrophenol	ND		9020000	ug/kg	10000		ND				30%	
Pentachlorophenol (PCP)	ND		9020000	ug/kg	10000		ND				30%	
Phenol	ND		1800000	ug/kg	10000		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 102 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060490 - EPA 3546 Solid **Duplicate (9060490-DUP2)** Prepared: 06/03/19 10:10 Analyzed: 06/04/19 14:04 QC Source Sample: Non-SDG (A9E0785-01RE1) 2,3,4,6-Tetrachlorophenol ND 4490000 ug/kg 10000 ND 30% 30% ND 4490000 2,3,5,6-Tetrachlorophenol ug/kg 10000 ND ug/kg 2,4,5-Trichlorophenol ND 4490000 10000 ND 30% 2,4,6-Trichlorophenol ND 4490000 ug/kg 10000 ND 30% Bis(2-ethylhexyl)phthalate ND 13500000 10000 ND 30% ug/kg ---------ND ND 30% Butyl benzyl phthalate 9020000 ug/kg 10000 Diethylphthalate ND 9020000 ug/kg 10000 ND 30% Dimethylphthalate ND ND 30% ---9020000 ug/kg 10000 ug/kg Di-n-butylphthalate ND 9020000 10000 ND 30% Di-n-octyl phthalate ND 9020000 ug/kg 10000 ND 30% N-Nitrosodimethylamine ND 2250000 ug/kg 10000 ND 30% ND 2250000 ND 30% N-Nitroso-di-n-propylamine ug/kg 10000 N-Nitrosodiphenylamine ND 2250000 ug/kg 10000 ND 30% Bis(2-Chloroethoxy) methane ND 2250000 10000 ND 30% ug/kg Bis(2-Chloroethyl) ether ND 2250000 ug/kg 10000 ND 30% 2,2'-Oxybis(1-Chloropropane) ND ___ 2250000 ug/kg 10000 ND ___ 30% Hexachlorobenzene ND 902000 ug/kg 10000 ND 30% ND 2250000 ND 30% Hexachlorobutadiene 10000 ug/kg ---ND 4490000 Hexachlorocyclopentadiene ug/kg 10000 ND 30% 2250000 Hexachloroethane ND 10000 ND 30% ug/kg ND 902000 ND 30% 2-Chloronaphthalene ug/kg 10000 1,2-Dichlorobenzene ND ---2250000 ug/kg 10000 ND ------30% 1,3-Dichlorobenzene ND 2250000 ug/kg 10000 ND 30% ND ND 30% 1,4-Dichlorobenzene 2250000 ug/kg 10000 ---ND 2250000 ND 30% 1,2,4-Trichlorobenzene ug/kg 10000 ND 30% 4-Bromophenyl phenyl ether 2250000 10000 ND ug/kg ---4-Chlorophenyl phenyl ether ND 2250000 10000 ND 30% ug/kg ND 4490000 ND Aniline ug/kg 10000 ------------30% 4-Chloroaniline ND 2250000 ug/kg 10000 ND 30% 2-Nitroaniline ND 18000000 10000 ND 30% ug/kg ---3-Nitroaniline ND 18000000 ug/kg 10000 ND 30% ND 18000000 ND 30% 4-Nitroaniline 10000 ug/kg ------

Apex Laboratories

Philip Merenberg

ND

Nitrobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 103 of 118

10000

9020000

ug/kg

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units % REC Limits RPD Limit Limit Amount Result Notes Batch 9060490 - EPA 3546 Solid **Duplicate (9060490-DUP2)** Prepared: 06/03/19 10:10 Analyzed: 06/04/19 14:04 QC Source Sample: Non-SDG (A9E0785-01RE1) ug/kg 2,4-Dinitrotoluene ND 9020000 10000 ND 30% ND 9020000 10000 2,6-Dinitrotoluene ug/kg ND 30% Benzoic acid ND 112000000 ug/kg 10000 ND 30% Benzyl alcohol ND 4490000 ug/kg 10000 ND 30% Isophorone ND 2250000 ug/kg 10000 ND 30% Azobenzene (1,2-DPH) ND 10000 ND 30% 2250000 ug/kg 22500000 Bis(2-Ethylhexyl) adipate ND ug/kg 10000 ND 30% Q-52 3,3'-Dichlorobenzidine ND ND 30% 9020000 ug/kg 10000 ug/kg 1,2-Dinitrobenzene ND 22500000 10000 ND 30% 1,3-Dinitrobenzene ND 22500000 ug/kg 10000 ND 30% 1,4-Dinitrobenzene ND 22500000 ug/kg 10000 ND 30% 4490000 Pyridine ND 10000 ND 30% --ug/kg ---Limits: 37-122 % Surr: Nitrobenzene-d5 (Surr) Recovery: 298 % Dilution: 10000x S-05 2-Fluorobiphenyl (Surr) 44-115 % S-01 Phenol-d6 (Surr) % 33-122 % S-01 p-Terphenyl-d14 (Surr) 251 % 54-127 % S-05 2-Fluorophenol (Surr) 35-115 % % S-01 2,4,6-Tribromophenol (Surr) % 39-132 % S-01

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 104 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	A (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060676 - EPA 3051A							Soli	d				
Blank (9060676-BLK1)			Prepared	06/06/19	15:18 Anal	yzed: 06/07/	/19 14:08					
EPA 6020A												
Aluminum	ND		48.1	mg/kg	10							
Antimony	ND		0.962	mg/kg	10							
Arsenic	ND		0.962	mg/kg	10							
Barium	ND		0.962	mg/kg	10							
Beryllium	ND		0.192	mg/kg	10							
Cadmium	ND		0.192	mg/kg	10							
Calcium	ND		96.2	mg/kg	10							
Chromium	ND		0.962	mg/kg	10							
Copper	ND		0.962	mg/kg	10							
ron	ND		48.1	mg/kg	10							
Lead	ND		0.192	mg/kg	10							
Magnesium	ND		48.1	mg/kg	10							
Manganese	ND		0.962	mg/kg	10							
Mercury	ND		0.0769	mg/kg	10							
Nickel	ND		0.962	mg/kg	10							
Potassium	ND		96.2	mg/kg	10							
Selenium	ND		0.962	mg/kg	10							
Silver	ND		0.192	mg/kg	10							
Sodium	ND		96.2	mg/kg	10							
Thallium	ND		0.192	mg/kg	10							
Vanadium	ND		0.962	mg/kg	10							
Zinc	ND		3.85	mg/kg	10							
LCS (9060676-BS1)			Prepared	: 06/06/19	15:18 Anal	yzed: 06/07/	/19 14:13					
EPA 6020A												
Aluminum	2650		50.0	mg/kg	10	2500		106	80-120%			
Antimony	23.4		1.00	mg/kg	10	25.0		93	80-120%			
Arsenic	52.6		1.00	mg/kg	10	50.0			80-120%			
Barium	52.5		1.00	mg/kg	10	50.0			80-120%			
Beryllium	24.5		0.200	mg/kg	10	25.0			80-120%			
Cadmium	49.7		0.200	mg/kg	10	50.0			80-120%			
Calcium	2680		100	mg/kg	10	2500			80-120%			
Chromium	54.6		1.00	mg/kg	10	50.0			80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	A (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060676 - EPA 3051A							Soli	d				
LCS (9060676-BS1)			Prepared	: 06/06/19	15:18 Anal	lyzed: 06/07	/19 14:13					
Copper	57.5		1.00	mg/kg	10	50.0		115	80-120%			
Iron	2740		50.0	mg/kg	10	2500		110	80-120%			
Lead	52.0		0.200	mg/kg	10	50.0		104	80-120%			
Magnesium	2600		50.0	mg/kg	10	2500		104	80-120%			
Manganese	53.7		1.00	mg/kg	10	50.0		107	80-120%			
Mercury	0.991		0.0800	mg/kg	10	1.00		99	80-120%			
Nickel	56.1		1.00	mg/kg	10	50.0		112	80-120%			
Potassium	2770		100	mg/kg	10	2500		111	80-120%			
Selenium	24.4		1.00	mg/kg	10	25.0		97	80-120%			
Silver	24.6		0.200	mg/kg	10	25.0		99	80-120%			
Sodium	2910		100	mg/kg	10	2500		116	80-120%			
Thallium	24.1		0.200	mg/kg	10	25.0		96	80-120%			
Vanadium	52.9		1.00	mg/kg	10	50.0		106	80-120%			
Zinc	54.8		4.00	mg/kg	10	50.0		110	80-120%			
Duplicate (9060676-DUP1) OC Source Sample: 2708-190521-	007 (A9E07	23-01)	Prepared	: 06/06/19 1	15:18 Anal	lyzed: 06/07	/19 14:22					
EPA 6020A												
Aluminum	ND		231	mg/kg	10		ND				40%	R-0
Antimony	ND		4.63	mg/kg	10		ND				40%	R-0
Arsenic	ND		4.63	mg/kg	10		ND				40%	R-0
Barium	ND		4.63	mg/kg	10		ND				40%	Q-05, R-0
Beryllium	ND		0.926	mg/kg	10		ND				40%	R-0
Cadmium	ND		0.926	mg/kg	10		ND				40%	R-0
Calcium	ND		463	mg/kg	10		ND				40%	R-0
Chromium	ND		4.63	mg/kg	10		ND				40%	R-0
Copper	ND		4.63	mg/kg	10		ND				40%	R-0
Iron	2260		231	mg/kg	10		1130			67	40%	Q-0
Lead	23.8		0.926	mg/kg	10		13.1			58	40%	Q-0
Magnesium	ND		231	mg/kg	10		ND				40%	R-0
Manganese	19.9		4.63	mg/kg	10		16.7			17	40%	
Mercury	ND		0.370	mg/kg	10		ND				40%	R-0
Nickel	ND		4.63	mg/kg	10		ND				40%	R-0
Potassium	ND		463	mg/kg	10		ND				40%	R-0

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 106 of 118

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	A (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060676 - EPA 3051A							Soli	id				
Duplicate (9060676-DUP1)			Prepared	: 06/06/19	15:18 Anal	lyzed: 06/07	/19 14:22					
QC Source Sample: 2708-190521-0	07 (A9E07	23-01)										
Selenium	ND		4.63	mg/kg	10		ND				40%	R-04
Silver	ND		0.926	mg/kg	10		ND				40%	R-04
Sodium	ND		463	mg/kg	10		ND				40%	R-04
Thallium	ND		0.926	mg/kg	10		ND				40%	R-04
Vanadium	ND		4.63	mg/kg	10		ND				40%	R-04
Zinc	30.4		18.5	mg/kg	10		14.6			70	40%	Q-05
Matrix Spike (9060676-MS1)			Prepared	: 06/06/19	15:18 Anal	lyzed: 06/07	/19 14:27					
QC Source Sample: 2708-190521-0	007 (A9E07	23-01)										
EPA 6020A												
Aluminum	8110		144	mg/kg	10	7180	ND	113	75-125%			
Antimony	69.6		2.87	mg/kg	10	71.8	ND	97	75-125%			
Arsenic	161		2.87	mg/kg	10	144	ND	112	75-125%			
Barium	157		2.87	mg/kg	10	144	ND	108	75-125%			
Beryllium	73.2		0.575	mg/kg	10	71.8	ND	102	75-125%			
Cadmium	149		0.575	mg/kg	10	144	ND	103	75-125%			
Calcium	8220		287	mg/kg	10	7180	ND	114	75-125%			
Chromium	165		2.87	mg/kg	10	144	ND	115	75-125%			
Copper	177		2.87	mg/kg	10	144	ND	123	75-125%			
Iron	11100		144	mg/kg	10	7180	1130	138	75-125%			Q-04
Lead	184		0.575	mg/kg	10	144	13.1	119	75-125%			
Magnesium	7740		144	mg/kg	10	7180	ND	108	75-125%			
Manganese	180		2.87	mg/kg	10	144	16.7	114	75-125%			
Mercury	2.95		0.230	mg/kg	10	2.87	ND	103	75-125%			
Nickel	172		2.87	mg/kg	10	144	ND	120	75-125%			
Potassium	8380		287	mg/kg	10	7180	ND	117	75-125%			
Selenium	72.7		2.87	mg/kg	10	71.8	ND	101	75-125%			
Silver	73.2		0.575	mg/kg	10	71.8	ND	102	75-125%			
Sodium	8970		287	mg/kg	10	7180	ND	125	75-125%			
Thallium	67.5		0.575	mg/kg	10	71.8	ND	94	75-125%			
Vanadium	162		2.87	mg/kg	10	144	ND	112	75-125%			
Zinc	201		11.5	mg/kg	10	144	14.6	130	75-125%			Q-04

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	ls)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060517			*	*			
A9E0723-03	Solid	NWTPH-Dx	05/21/19 11:55	06/03/19 16:03	0.56g/5mL	10g/5mL	17.90
	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060533							
A9E0723-03	Solid	NWTPH-Gx (MS)	05/21/19 11:55	05/31/19 15:40	1.17g/5mL	5g/5mL	4.27
		Volatile Orga	anic Compounds by	EPA 5035A/8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9051139			1	1			
A9E0723-01	Solid	5035A/8260C	05/21/19 10:55	05/22/19 15:02	1.77g/5mL	5g/5mL	2.82
A9E0723-02	Solid	5035A/8260C	05/21/19 11:00	05/22/19 15:02	1.21g/5mL	5g/5mL	4.13
Batch: 9051198							
A9E0723-04RE1	Solid	5035A/8260C	05/21/19 15:30	05/22/19 15:02	1.11g/5mL	5g/5mL	4.50
Batch: 9060533							
A9E0723-03	Solid	5035A/8260C	05/21/19 11:55	05/31/19 15:40	1.17g/5mL	5g/5mL	4.27
Batch: 9060582							
A9E0723-03RE1	Solid	5035A/8260C	05/21/19 11:55	05/31/19 15:40	1.17g/5mL	5g/5mL	4.27
Dram, EDA 4244/5020	TOLD Voletile		Organic Compound	s by EPA 1311/8260		D. C. Iv	DY D
Prep: EPA 1311/5030					Sample Initial/Final	Default Initial/Einel	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initiai/Finai	Initial/Final	Factor
Batch: 9051445 A9E0723-01	Solid	1311/8260C	05/21/19 10:55	06/05/19 09:08	5mL/5mL	5mL/5mL	1.00
A9E0723-01RE1	Solid	1311/8260C 1311/8260C	05/21/19 10:55	06/05/19 09:08	5mL/5mL	5mL/5mL	1.00
TO DO (25 VIKL)	Jonu	1311/02000	05/21/17 10.55	00/03/17 07:00	JIIL/JIIL	JIIL/JIIL	1.00
			Organic Compound	s by EPA 1312/8260	С		
Prep: EPA 1312/5030	B SPLP Volatile	<u>s</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates
434 NW 6th Ave. Suite 203

Portland, OR 97209

Project: Mult 802 Decommissioning

Project Number: **2708-60F**Project Manager: **Rob Ede**

Report ID: A9E0723 - 06 24 19 1133

SAMPLE PREPARATION INFORMATION

		SPLP Volatile	Organic Compounds	s by EPA 1312/8260	OC		
Prep: EPA 1312/5030	B SPLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060589							
A9E0723-01	Solid	1312/8260C	05/21/19 10:55	06/05/19 12:17	5mL/5mL	5mL/5mL	1.00
		SPLP Semivolati	ile Organic Compour	nds by EPA 1312/82	270D		
Prep: EPA 1312/3510	C (BNA Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060759				*			
A9E0723-01	Solid	1312/8270D	05/21/19 10:55	06/10/19 10:22	200mL/2mL	200mL/2mL	1.00
A9E0723-01RE1	Solid	1312/8270D	05/21/19 10:55	06/10/19 10:22	200mL/2mL	200mL/2mL	1.00
		Semivolati	le Organic Compour	ds by EPA 8270D			
<u>Prep: EPA 3546</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060490				-			
A9E0723-01RE1	Solid	EPA 8270D	05/21/19 10:55	06/03/19 12:46	1.06g/5mL	15g/2mL	35.40
		Tota	l Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060676							
A9E0723-01	Solid	EPA 6020A	05/21/19 10:55	06/06/19 15:18	0.105g/50mL	0.5g/50mL	4.76
		S	SPLP Extraction by E	PA 1312			
Prep: EPA 1312 (SPL	<u>P)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060621			F	F			
A9E0723-01	Solid	EPA 1312	05/21/19 10:55	06/05/19 17:15	100g/2000mL	100g/2000mL	NA
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060554			*				
A9E0723-01	Solid	EPA 1312 ZHE	05/21/19 10:55	06/04/19 15:58	25.04g/500mL	25g/500mL	NA

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 109 of 118

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

SAMPLE PREPARATION INFORMATION

		TCLI	P Extraction by EPA	1311 (ZHE)			
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060587							
A9E0723-01	Solid	EPA 1311 ZHE	05/21/19 10:55	06/04/19 15:58	20.07g/500mL	25g/500mL	NA

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 110 of 118

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

ex Laborato	<u>ories</u>
В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
E	Estimated Value. The result is above the calibration range of the instrument.
E-05	Estimated Result. Initial Calibration Verification (ICV) failed high. No affect on non-detect results.
F-17	No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
H-01	This sample was analyzed outside the recommended holding time.
H-08	Sample hold time extended by freezing at -18 degrees C. Total time at 4 degrees C was less than the standard hold time.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
M-04	Due to matrix interference, this analyte cannot be accurately quantified. The reported result may contain a high bias.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-17	RPD between original and duplicate sample is outside of established control limits.
Q-18	Matrix Spike results for this extraction batch are not reported due to the high dilution necessary for analysis of the source sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-24	The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-39	Results for sample duplicate are significantly higher than the sample results. See duplicate results in QC section of the report.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to erratic or low blank spike recoveries, results for this analyte are considered Estimated Values.

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

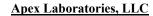
Page 111 of 118

 Hahn and Associates
 Project:
 Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number:
 2708-60F
 Report ID:

 Portland. OR 97209
 Project Manager:
 Rob Ede
 A9E0723 - 06 24 19 1133

Portland, OR	97209	Project Manager: Rob Ede	A9E0723 - 06 24 19 1
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +1.6%.
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method $8260C/$	8270D by +1.8%.
-	Daily Continuing Calibration Verification recovery +12.6%. The results are reported as Estimated Valu	for this analyte failed the +/-20% criteria listed in EPA method 8260C/ees.	8270D by
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +13%.
_	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +2%.
_	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +3.2%.
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +3.8%.
- 0	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +4.9%.
_	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +5%.
-	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +6%.
-	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +7%.
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the $\pm -20\%$ criteria listed in EPA method $8260C/6$	8270D by +9%.
-	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by +9.0%.
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by -1.1%.
-	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method $8260C/$	8270D by -10%.
	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by -14%.
_	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by -2%.
· 1	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by -24%.
_	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method $8260C/$	8270D by -5.8%.
-	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/	8270D by -8.3%.


Apex Laboratories

Philip Nevemberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 112 of 118

Hahn and AssociatesProject:Mult 802 Decommissioning434 NW 6th Ave. Suite 203Project Number:2708-60FReport ID:Portland, OR 97209Project Manager:Rob EdeA9E0723 - 06 24 19 1133

ortland, OR	3 97209	Project Manager: Rob Ede	A9E0723 - 06 24 19
Q-54t	Daily Continuing Calibration Verification recovery The results are reported as Estimated Values.	for this analyte failed the +/-20% criteria listed in EPA method 8260C/s	8270D by -9%.
Q-55	Daily CCV/LCS recovery for this analyte was belongered ensure detection at the reporting level.	ow the +/-20% criteria listed in EPA 8260C, however there is adequate so	ensitivity to
Q-56	Daily CCV/LCS recovery for this analyte was abo	ve the +/-20% criteria listed in EPA 8260C	
R-02	The Reporting Limit for this analyte has been raise	ed to account for interference from coeluting organic compounds presen	t in the sample.
R-04	Reporting levels elevated due to preparation and/o	r analytical dilution necessary for analysis.	
S-01	Surrogate recovery for this sample is not available interference.	due to sample dilution required from high analyte concentration and/or	matrix
S-05	Surrogate recovery is estimated due to sample dilu	tion required for high analyte concentration and/or matrix interference.	
TCLP	This batch QC sample was prepared with TCLP or	SPLP fluid from preparation batch 906587.	
V-15	Sample aliquot was subsampled from the sample c sampling.	ontainer. The subsampled aliquot was preserved in the laboratory within	1 48 hours of
V-16	Sample aliquot was subsampled from the sample c sampling.	ontainer in the laboratory. The subsampled aliquot was not preserved w	ithin 48 hours of
X	See Case Narrative.		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 113 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 114 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 115 of 118

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 116 of 118

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0723 - 06 24 19 1133

oth Avenue	Environmental Consultants ixth Avenue, Suite 203 • Portland C	Environmental Consultants 434 NW Sixth Avenue, Suite 203 • Portland OR 97209			Laboratory		Apex Labs Tigard, Oregon	6			- 1	CHAIN	F CUST(CHAIN OF CUSTODY
503) 796-07	(503) 796-0717 • Fax (503) 227-2209	227-2209	ŀ		do Lagranda	, ON INC.)	hain of Cu.	Chain of Custody No. 1	
22 22	Rob Ede 2708-60F			Liquid v	vith Sedimen	Liquid with Sediment Sample			la constant			ceived at 4C	Samples Received at 4C (Y or N)	
2 8	Mult 802 Decommissioning Rob Ede / Ben Uhi	Ssioning		Multi-Ph	Multi-Phase Sample	3				5 5		Appropriate Containers Used (Y of Provide Verbal Results (Y or N)	ō	92
			+				89	1 681 Separately		Shake	Provide Pre	Provide Preliminary Fax Results	- 1	Yes
nber Prefix	Sample Number Prefix: 2708-190521-	521-	L	YI DE	T		-	E .	Analyses to be Perform	Perform	9	-		
EEZE and ce and hold	PLEASE FREEZE and HOLD (Archive) Please freeze and hold remaining 8-oz jars.	iive) 8-oz jars.			gnenistnoO	EPA Method 8260C	G01S8 bodiseM A93 v		AGB to PPA senes 00	nide by EPA Method				
			lio		ther ther of	OCe pì	الا النائد	D-H9TV D-H9TV					HS	
Sample #	Date Tir	Time Sample Description	s	١٨			n ₃		••••••	οī		······	กล	
21	21-May-19 10	10:55 352 feet bgs	×	-	2	×	+	+		1		-	+	Remarks
008 21	21-May-19 11	11:00 358 feet bgs	1		2	×	 	-		_		-	+	24 hour IAT
	21-May-19 11	11:55 368 feet bgs		<u> </u>	4	·		-		_	-		-	24 HOUR 1A1
010 21	21-May-19 15	15:30 380 feet bgs		-	9	×	+	+		-			-	
	ļ					-	-	+			-		+	24 Hour TAT
				-			+-	-	-				+	***************************************
							-				_	-	+	
							-	-		ļ		1		
							_	_	-	ļ	-	<u> </u>		
	-								-	<u> </u>	_	-		***************************************
									ļ					***************************************
												-		
1				_										***************************************
			1				+							
					1		-	+						
	-		-		1		-	+	_	_	1	+	+	
				-			+-	+						-
1	9		H				-	-	-		1	+		
7	*	Hahn and Associates, Inc	s, Inc.	<u></u>	124/13	Г	120	Received by	ed by	TI	FI. Child	1	100	Company ADEN 527-19 1711
		Company		E .	e e		e <u>u</u>	Received by	ed by		***		2	5
	60 S	Company		Date	e e	Time.		Received by	sd by			Company	Á	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates
434 NW 6th Ave. Suite 203
Portland, OR 97209

Project: Mult 802 Decommissioning

Project Number: **2708-60F**Project Manager: **Rob Ede**

Report ID: A9E0723 - 06 24 19 1133

APEX LABS COOLER RECEIPT FORM
Client: Hahn + Associates Element WO#: A9 E0723
Project/Project #: Mult 802 Decommissioning 2708-60F
Delivery Info:
Date/time received: 5-22-19 @ 124) By: <u>E5</u>
Delivered by: Apex Client ESS FedEy LIBS 0 :0
Date time inspected: $3-22-9$ @ 1375
Chain of Custody included? Yes No Custody seals? Yes No No
Signed/dated by client? Yes X No No
Signed/dated by Apex? Yes \times No
Temperature (°C) Received on ice? (VA): Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
received on ree? (Y/N)
Temp. blanks? (Y/N)
Ice type: (Gel/Real/Other) Rea
Cooler out of temp? (YN) Possible reason why:
Samples Inspection: Date/time inspected: 5 W 9 @ W By: All samples intact? Yes No Comments:
Bottle labels/COCs agree? Yes No Comments:
COC/container discrepancies form initiated? Ves No. No. No.
Containers/volumes received appropriate for analysis? Yes No Comments:
Do VOA vials have visible headspace? Yes No NA Comments
Water samples: pH checked: YesNoNA pH appropriate? YesNoNA Comments:NoNANONA
Additional information:
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Wednesday, June 19, 2019 Rob Ede Hahn and Associates 434 NW 6th Ave. Suite 203 Portland, OR 97209

RE: A9E0785 - Mult 802 Decommissioning - 2708-60F

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9E0785, which was received by the laboratory on 5/23/2019 at 1:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

4.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 1 of 61

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
2708-190522-011	A9E0785-01	Solid	05/22/19 16:30	05/23/19 13:55

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL CASE NARRATIVE

Work Order: A9E0785

Preservation Nonconformance

A temperature excursion occurred during sample storage. Sample 2708-190522-011 (A9E0785-01) analyzed for EPA Method 8260 and NWTPH-Gx was stored out of EPA recommended storage temp (>6C) reaching 17C for a period of approximately 48 hours. No other analysis was affected.

Mark Zehr Organics Manager 6/5/2019

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 3 of 61

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or	Oil Hydrocar	ons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190522-011 (A9E0785-01)				Matrix: Solid	i	Ba	tch: 9060517	
Diesel	162000		33900	mg/kg	100	06/04/19	NWTPH-Dx	F-17
Oil	133000		67800	mg/kg	100	06/04/19	NWTPH-Dx	F-17
Surrogate: o-Terphenyl (Surr)		i	Recovery: %	Limits: 50-150 %	100	06/04/19	NWTPH-Dx	S-01

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

Gaso	ine Range Hy	drocarbons	(Benzene tl	hrough Naphtha	lene) by	NWTPH-G	x	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190522-011 (A9E0785-01)			Matrix: Solid		Ва	atch: 9060533	V-16, X	
Gasoline Range Organics	21800		3500	mg/kg	10000	06/04/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 89 % 83 %	Limits: 50-150 % 50-150 %	1 1	06/04/19 06/04/19	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date	_ _	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190522-011 (A9E0785-01)				Matrix: So	lid	Bat	tch: 9060533	V-16,)
Acetone	ND		699000	ug/kg	10000	06/04/19	5035A/8260C	
Acrylonitrile	ND		69900	ug/kg	10000	06/04/19	5035A/8260C	
Benzene	114000		6990	ug/kg	10000	06/04/19	5035A/8260C	
Bromobenzene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Bromochloromethane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Bromodichloromethane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Bromoform	ND		69900	ug/kg	10000	06/04/19	5035A/8260C	
Bromomethane	ND		350000	ug/kg	10000	06/04/19	5035A/8260C	
2-Butanone (MEK)	ND		350000	ug/kg	10000	06/04/19	5035A/8260C	
n-Butylbenzene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
sec-Butylbenzene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
tert-Butylbenzene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Carbon disulfide	ND		350000	ug/kg	10000	06/04/19	5035A/8260C	
Carbon tetrachloride	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Chlorobenzene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Chloroethane	ND		350000	ug/kg	10000	06/04/19	5035A/8260C	
Chloroform	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Chloromethane	ND		175000	ug/kg	10000	06/04/19	5035A/8260C	
2-Chlorotoluene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
4-Chlorotoluene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Dibromochloromethane	ND		69900	ug/kg	10000	06/04/19	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		175000	ug/kg	10000	06/04/19	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Dibromomethane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
1,2-Dichlorobenzene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
,3-Dichlorobenzene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
,4-Dichlorobenzene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Dichlorodifluoromethane	ND		69900	ug/kg	10000	06/04/19	5035A/8260C	
,1-Dichloroethane	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
,2-Dichloroethane (EDC)	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
,1-Dichloroethene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
is-1,2-Dichloroethene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
rans-1,2-Dichloroethene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

	g 1		•	oy EPA 5035A		D /		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
708-190522-011 (A9E0785-01)	-100411			Matrix: Solid			tch: 9060533	V-16, X
· · · · · ·								V-10, A
1,2-Dichloropropane	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
1,3-Dichloropropane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
2,2-Dichloropropane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
1,1-Dichloropropene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
eis-1,3-Dichloropropene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
rans-1,3-Dichloropropene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Ethylbenzene	104000		17500	ug/kg	10000	06/04/19	5035A/8260C	
Hexachlorobutadiene	ND		69900	ug/kg	10000	06/04/19	5035A/8260C	
2-Hexanone	ND		350000	ug/kg	10000	06/04/19	5035A/8260C	
sopropylbenzene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
1-Isopropyltoluene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Methylene chloride	ND		175000	ug/kg	10000	06/04/19	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		350000	ug/kg	10000	06/04/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
n-Propylbenzene	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Styrene	39500		35000	ug/kg	10000	06/04/19	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
Tetrachloroethene (PCE)	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Toluene	145000		35000	ug/kg	10000	06/04/19	5035A/8260C	
1,2,3-Trichlorobenzene	ND		175000	ug/kg	10000	06/04/19	5035A/8260C	
1,2,4-Trichlorobenzene	ND		175000	ug/kg	10000	06/04/19	5035A/8260C	
1,1,1-Trichloroethane	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
1,1,2-Trichloroethane	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Γrichloroethene (TCE)	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
Trichlorofluoromethane	ND		69900	ug/kg	10000	06/04/19	5035A/8260C	
1,2,3-Trichloropropane	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
,2,4-Trimethylbenzene	58000		35000	ug/kg	10000	06/04/19	5035A/8260C	
,3,5-Trimethylbenzene	ND		35000	ug/kg	10000	06/04/19	5035A/8260C	
/inyl chloride	ND		17500	ug/kg	10000	06/04/19	5035A/8260C	
n,p-Xylene	156000		35000	ug/kg ug/kg	10000	06/04/19	5035A/8260C	
n,p-xytene p-Xylene	50300		17500	ug/kg ug/kg	10000	06/04/19	5035A/8260C	

Apex Laboratories

Philip Meinberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C												
	Sample	Detection 1	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
2708-190522-011 (A9E0785-01)		Matrix: Solid Batch: 9060533						V-16, X				
Surrogate: Toluene-d8 (Surr)		Recovery	: 98 %	Limits: 80-120 %	1	06/04/19	5035A/8260C					
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	06/04/19	5035A/8260C					
2708-190522-011 (A9E0785-01RE1)			Matrix: Solid			Ва	V-16, X					
Naphthalene	9020000		699000	ug/kg	100000	06/05/19	5035A/8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 90 %	Limits: 80-120 %	1	06/05/19	5035A/8260C					
Toluene-d8 (Surr)			100 %	80-120 %	1	06/05/19	5035A/8260C					
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	06/05/19	5035A/8260C					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number:
 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager:
 Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
708-190522-011 (A9E0785-01RE1)				Matrix: So	Matrix: Solid		Batch: 9060589				
Acetone	ND		1.00	mg/L	50	06/05/19	1312/8260C				
Benzene	1.17		0.0125	mg/L	50	06/05/19	1312/8260C				
Bromobenzene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
Bromochloromethane	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
Bromodichloromethane	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
Bromoform	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
Bromomethane	ND		0.250	mg/L	50	06/05/19	1312/8260C				
2-Butanone (MEK)	ND		0.500	mg/L	50	06/05/19	1312/8260C				
n-Butylbenzene	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
sec-Butylbenzene	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
tert-Butylbenzene	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
Carbon tetrachloride	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
Chlorobenzene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
Chloroethane	ND		0.250	mg/L	50	06/05/19	1312/8260C				
Chloroform	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
Chloromethane	ND		0.250	mg/L	50	06/05/19	1312/8260C				
2-Chlorotoluene	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
4-Chlorotoluene	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
1,2-Dibromo-3-chloropropane	ND		0.250	mg/L	50	06/05/19	1312/8260C				
Dibromochloromethane	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
1,2-Dibromoethane (EDB)	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
Dibromomethane	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
1,2-Dichlorobenzene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
1,3-Dichlorobenzene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
1,4-Dichlorobenzene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
Dichlorodifluoromethane	ND		0.0500	mg/L	50	06/05/19	1312/8260C				
1,1-Dichloroethane	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
1,2-Dichloroethane (EDC)	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
1,1-Dichloroethene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
cis-1,2-Dichloroethene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
trans-1,2-Dichloroethene	ND		0.0250	mg/L	50	06/05/19	1312/8260C				
1,2-Dichloropropane	ND		0.0250	mg/L mg/L	50	06/05/19	1312/8260C				
1,3-Dichloropropane	ND		0.0500	mg/L mg/L	50	06/05/19	1312/8260C				

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
708-190522-011 (A9E0785-01RE1)				Matrix: Solid	<u> </u>	Bat	tch: 9060589	
2,2-Dichloropropane	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
1,1-Dichloropropene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
cis-1,3-Dichloropropene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
trans-1,3-Dichloropropene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
Ethylbenzene	0.213		0.0250	mg/L	50	06/05/19	1312/8260C	
Hexachlorobutadiene	ND		0.250	mg/L	50	06/05/19	1312/8260C	
2-Hexanone	ND		0.500	mg/L	50	06/05/19	1312/8260C	
Isopropylbenzene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
4-Isopropyltoluene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/L	50	06/05/19	1312/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
Methylene chloride	ND		0.250	mg/L	50	06/05/19	1312/8260C	
Naphthalene	9.71		0.100	mg/L	50	06/05/19	1312/8260C	
n-Propylbenzene	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
Styrene	0.0830		0.0500	mg/L	50	06/05/19	1312/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
Tetrachloroethene (PCE)	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
Toluene	0.724		0.0500	mg/L	50	06/05/19	1312/8260C	
,2,3-Trichlorobenzene	ND		0.100	mg/L	50	06/05/19	1312/8260C	
1,2,4-Trichlorobenzene	ND		0.100	mg/L	50	06/05/19	1312/8260C	
1,1,1-Trichloroethane	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
1,1,2-Trichloroethane	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
Trichloroethene (TCE)	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
Trichlorofluoromethane	ND		0.100	mg/L	50	06/05/19	1312/8260C	
,2,3-Trichloropropane	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
,2,4-Trimethylbenzene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
,3,5-Trimethylbenzene	ND		0.0500	mg/L	50	06/05/19	1312/8260C	
inyl chloride	ND		0.0250	mg/L	50	06/05/19	1312/8260C	
n,p-Xylene	0.277		0.0500	mg/L	50	06/05/19	1312/8260C	
-Xylene	0.0916		0.0250	mg/L	50	06/05/19	1312/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	06/05/19	1312/8260C	
Toluene-d8 (Surr)			100 %	80-120 %		06/05/19	1312/8260C	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

	SPLP V	olatile Orgar	nic Compou	nds by EPA 1	312/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
2708-190522-011 (A9E0785-01RE1)				Matrix: So	lid	Bat	tch: 9060589	
Surrogate: 4-Bromofluorobenzene (Surr)		Reco	very: 97%	Limits: 80-120	% 1	06/05/19	1312/8260C	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

	<u> </u>		`	AHs) by EPA 82				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
708-190522-011 (A9E0785-01)				Matrix: Solid		Ва	atch: 9060490	
Acenaphthene	9320000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Acenaphthylene	ND		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Anthracene	6230000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Benz(a)anthracene	5750000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	M-05
Benzo(a)pyrene	6830000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Benzo(b)fluoranthene	7020000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	M-05
Benzo(k)fluoranthene	2840000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	M-05
Benzo(g,h,i)perylene	4250000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Chrysene	5980000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	M-05
Dibenz(a,h)anthracene	904000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	Q-42
Dibenzofuran	5590000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Fluoranthene	19300000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Fluorene	5240000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	4670000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
1-Methylnaphthalene	2960000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
2-Methylnaphthalene	5650000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Naphthalene	16200000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	Q-29
Phenanthrene	20600000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Pyrene	18100000		877000	ug/kg	10000	06/04/19	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		F	Recovery: %	Limits: 44-120 %	10000	06/04/19	EPA 8270D (SIM)	S-01
p-Terphenyl-d14 (Surr)			%	54-127 %	10000	06/04/19	EPA 8270D (SIM)	S-01

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

ANALYTICAL SAMPLE RESULTS

		SPLP PAI	l by EPA 13	12/8270D SIM				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190522-011 (A9E0785-01)				Matrix: Solid	I	Ва	atch: 9060758	
Acenaphthene	0.733		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Acenaphthylene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Anthracene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Benz(a)anthracene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Benzo(a)pyrene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Benzo(b)fluoranthene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Benzo(k)fluoranthene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.400	mg/L	1000	06/11/19	1312/8270D (SIM)	
Chrysene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Fluoranthene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Fluorene	0.228		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Naphthalene	9.95		0.400	mg/L	1000	06/11/19	1312/8270D (SIM)	В
Phenanthrene	0.267		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Pyrene	ND		0.200	mg/L	1000	06/11/19	1312/8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 99 %	Limits: 44-120 %	1000	06/11/19	1312/8270D (SIM)	S-01
p-Terphenyl-d14 (Surr)			114 %	50-133 %	1000	06/11/19	1312/8270D (SIM)	S-01

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644


ANALYTICAL SAMPLE RESULTS

		SPLP Extr	action by EP	A 1312 (ZHE	≣)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
2708-190522-011 (A9E0785-01)				Matrix: So	olid	Bat	tch: 9060554	
TCLP ZHE Extraction	PREP			N/A	1	06/04/19	EPA 1312 ZHE	
SPLP Extraction	PREP			N/A	1	06/05/19	EPA 1312	

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	or Oil Hyd	rocarbon	s by NW7	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060517 - EPA 3546	(Fuels)						Solid	l				
Blank (9060517-BLK1)			Prepared	d: 06/03/19	16:03 Anal	yzed: 06/04	/19 05:28					
NWTPH-Dx												
Diesel	ND		25.0	mg/kg	1							
Oil	ND		50.0	mg/kg	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 95 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (9060517-BS1)			Prepared	d: 06/03/19	16:03 Anal	yzed: 06/04/	/19 05:50					
NWTPH-Dx												
Diesel	116		25.0	mg/kg	1	125		93	70-130%			
Surr: o-Terphenyl (Surr)		Rec	overy: 93 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (9060517-DUP1)			Prepared	d: 06/03/19 1	16:03 Anal	yzed: 06/04	/19 06:36					
Duplicate (9060517-DUP1) OC Source Sample: Non-SDG			Prepared	1: 06/03/19	16:03 Anal	yzed: 06/04	/19 06:36					
Duplicate (9060517-DUP1) OC Source Sample: Non-SDG Diesel			Prepared	d: 06/03/19 i		yzed: 06/04	/19 06:36 116000			2	30%	F-
QC Source Sample: Non-SDG	(A9E0723-03)				100	<u>-</u>		 		2	30% 30%	F-

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	ydrocarbo	ons (Ben	zene thro	ıgh Naph	thalene) l	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Blank (9060533-BLK1)			Prepared	d: 06/04/19	09:03 Ana	yzed: 06/04	/19 11:23					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg	g 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 95 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			89 %	5(0-150 %		"					
LCS (9060533-BS2)			Prepared	d: 06/04/19	09:03 Anal	yzed: 06/04	/19 10:56					
NWTPH-Gx (MS)												
Gasoline Range Organics	23.4		5.00	mg/kg	g 50	25.0		94	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 95 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	5(0-150 %		"					
Duplicate (9060533-DUP1)			Prepared	d: 05/29/19	11:20 Anal	yzed: 06/04/	/19 20:32					
QC Source Sample: Non-SDG (A9	F0057-03)											
Gasoline Range Organics	581		17.8	mg/kg	g 200		ND				30%	Q-(
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 93 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
Duplicate (9060533-DUP2)			Prepared	d: 05/29/19	11:00 Anal	yzed: 06/04/	/19 21:27					
QC Source Sample: Non-SDG (A9	PF0057-02)											
Gasoline Range Organics	12900		192	mg/kg	g 2000		9940			26	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 80 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			112 %	50	0-150 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 5035A/8260C

Detection Reporting Spike Source % REC RPD

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Blank (9060533-BLK1)			Prepared	: 06/04/19 (09:03 Anal	lyzed: 06/04/	/19 11:23					
5035A/8260C												
Acetone	ND		667	ug/kg	50							
Acrylonitrile	ND		66.7	ug/kg	50							
Benzene	ND		6.67	ug/kg	50							
Bromobenzene	ND		16.7	ug/kg	50							
Bromochloromethane	ND		33.3	ug/kg	50							
Bromodichloromethane	ND		33.3	ug/kg	50							
Bromoform	ND		66.7	ug/kg	50							
Bromomethane	ND		333	ug/kg	50							
-Butanone (MEK)	ND		333	ug/kg	50							
ı-Butylbenzene	ND		33.3	ug/kg	50							
ec-Butylbenzene	ND		33.3	ug/kg	50							
ert-Butylbenzene	ND		33.3	ug/kg	50							
Carbon disulfide	ND		333	ug/kg	50							
Carbon tetrachloride	ND		33.3	ug/kg	50							
Chlorobenzene	ND		16.7	ug/kg	50							
Chloroethane	ND		333	ug/kg	50							
Chloroform	ND		33.3	ug/kg	50							
Chloromethane	ND		167	ug/kg	50							
-Chlorotoluene	ND		33.3	ug/kg	50							
-Chlorotoluene	ND		33.3	ug/kg	50							
Dibromochloromethane	ND		66.7	ug/kg	50							
,2-Dibromo-3-chloropropane	ND		167	ug/kg	50							
,2-Dibromoethane (EDB)	ND		33.3	ug/kg	50							
Dibromomethane	ND		33.3	ug/kg	50							
,2-Dichlorobenzene	ND		16.7	ug/kg	50							
,3-Dichlorobenzene	ND		16.7	ug/kg	50							
,4-Dichlorobenzene	ND		16.7	ug/kg	50							
Dichlorodifluoromethane	ND		66.7	ug/kg	50							
,1-Dichloroethane	ND		16.7	ug/kg	50							
,2-Dichloroethane (EDC)	ND		16.7	ug/kg	50							
,1-Dichloroethene	ND		16.7	ug/kg	50							
is-1,2-Dichloroethene	ND		16.7	ug/kg	50							
rans-1,2-Dichloroethene	ND		16.7	ug/kg	50							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 17 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Blank (9060533-BLK1)			Prepared	: 06/04/19 (09:03 Anal	yzed: 06/04/	19 11:23					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
1,1-Dichloropropene	ND		33.3	ug/kg	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
trans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
Isopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
4-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,1,2-Tetrachloroethane	ND		16.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Trichloroethene (TCE)	ND		16.7	ug/kg	50							
Trichlorofluoromethane	ND		66.7	ug/kg	50							
1,2,3-Trichloropropane	ND		33.3	ug/kg	50							
1,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
1,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
m,p-Xylene	ND		33.3	ug/kg	50							
	ND ND		33.3 16.7		50 50							
o-Xylene Surr: 1,4-Difluorobenzene (Surr)	ND		overy: 94 %	ug/kg Limits: 80			tion: Ix					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil Blank (9060533-BLK1) Prepared: 06/04/19 09:03 Analyzed: 06/04/19 11:23 Surr: Toluene-d8 (Surr) Recovery: 99 % Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 101 % 80-120 % LCS (9060533-BS1) Prepared: 06/04/19 09:03 Analyzed: 06/04/19 10:28 5035A/8260C Acetone 1860 1000 ug/kg 50 2000 93 80-120% Acrylonitrile 998 100 50 1000 100 80-120% ug/kg Benzene 962 10.0 ug/kg 50 1000 96 80-120% 25.0 1000 Bromobenzene 1120 50 112 80-120% ug/kg ------Bromochloromethane 1040 50.0 50 1000 104 80-120% ug/kg 80-120% 1040 50.0 1000 104 Bromodichloromethane ug/kg 50 Bromoform 902 100 ug/kg 50 1000 90 80-120% Bromomethane 955 500 50 1000 96 80-120% ug/kg 2-Butanone (MEK) 1860 500 50 2000 93 80-120% ug/kg 50.0 50 1000 111 80-120% n-Butylbenzene 1110 ug/kg -----sec-Butylbenzene 1120 50.0 50 1000 112 80-120% ug/kg tert-Butylbenzene 1100 50.0 50 1000 110 80-120% ug/kg Carbon disulfide 980 500 ug/kg 50 1000 98 80-120% Carbon tetrachloride 1050 50.0 50 1000 105 80-120% ug/kg ---Chlorobenzene 1030 25.0 ug/kg 50 1000 103 80-120% Chloroethane 858 500 50 1000 80-120% 86 ug/kg 1000 97 80-120% Chloroform 966 50.0 ug/kg 50 Chloromethane 902 250 50 1000 90 80-120% ug/kg 2-Chlorotoluene 1090 50.0 ug/kg 50 1000 109 80-120% 4-Chlorotoluene 1080 50.0 ug/kg 50 1000 108 80-120% Dibromochloromethane 922 100 ug/kg 50 1000 92 80-120% 1,2-Dibromo-3-chloropropane 975 250 ug/kg 50 1000 98 80-120% 1,2-Dibromoethane (EDB) 1000 80-120% 1120 50.0 ug/kg 50 112 Dibromomethane 986 50.0 50 1000 99 80-120% ug/kg 1,2-Dichlorobenzene 1030 25.0 ug/kg 50 1000 103 80-120% 1,3-Dichlorobenzene 1030 25.0 ug/kg 50 1000 103 80-120% 1,4-Dichlorobenzene 1030 25.0 50 1000 103 80-120% ug/kg Dichlorodifluoromethane 984 100 ug/kg 50 1000 98 80-120% 1,1-Dichloroethane 1030 25.0 1000 103 80-120% ug/kg 50

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
LCS (9060533-BS1)			Prepared	: 06/04/19	09:03 Anal	lyzed: 06/04/	/19 10:28					
1,2-Dichloroethane (EDC)	988		25.0	ug/kg	50	1000		99	80-120%			
1,1-Dichloroethene	1040		25.0	ug/kg	50	1000		104	80-120%			
cis-1,2-Dichloroethene	988		25.0	ug/kg	50	1000		99	80-120%			
trans-1,2-Dichloroethene	1020		25.0	ug/kg	50	1000		102	80-120%			
1,2-Dichloropropane	992		25.0	ug/kg	50	1000		99	80-120%			
1,3-Dichloropropane	1060		50.0	ug/kg	50	1000		106	80-120%			
2,2-Dichloropropane	1140		50.0	ug/kg	50	1000		114	80-120%			
1,1-Dichloropropene	970		50.0	ug/kg	50	1000		97	80-120%			
cis-1,3-Dichloropropene	1120		50.0	ug/kg	50	1000		112	80-120%			
trans-1,3-Dichloropropene	1110		50.0	ug/kg	50	1000		111	80-120%			
Ethylbenzene	1050		25.0	ug/kg	50	1000		105	80-120%			
Hexachlorobutadiene	1200		100	ug/kg	50	1000		120	80-120%			
2-Hexanone	1980		500	ug/kg	50	2000		99	80-120%			
Isopropylbenzene	1070		50.0	ug/kg	50	1000		107	80-120%			
4-Isopropyltoluene	1120		50.0	ug/kg	50	1000		112	80-120%			
Methylene chloride	712		250	ug/kg	50	1000		71	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	1900		500	ug/kg	50	2000		95	80-120%			
Methyl tert-butyl ether (MTBE)	947		50.0	ug/kg	50	1000		95	80-120%			
Naphthalene	1070		100	ug/kg	50	1000		107	80-120%			
n-Propylbenzene	1090		25.0	ug/kg	50	1000		109	80-120%			
Styrene	1100		50.0	ug/kg	50	1000		110	80-120%			
1,1,1,2-Tetrachloroethane	1130		25.0	ug/kg	50	1000		113	80-120%			
1,1,2,2-Tetrachloroethane	1050		50.0	ug/kg	50	1000		105	80-120%			
Tetrachloroethene (PCE)	1000		25.0	ug/kg	50	1000		100	80-120%			
Toluene	1020		50.0	ug/kg	50	1000		102	80-120%			
1,2,3-Trichlorobenzene	1120		250	ug/kg	50	1000		112	80-120%			
1,2,4-Trichlorobenzene	1080		250	ug/kg	50	1000		108	80-120%			
1,1,1-Trichloroethane	1030		25.0	ug/kg	50	1000		103	80-120%			
1,1,2-Trichloroethane	1100		25.0	ug/kg	50	1000		110	80-120%			
Trichloroethene (TCE)	930		25.0	ug/kg	50	1000		93	80-120%			
Trichlorofluoromethane	982		100	ug/kg	50	1000		98	80-120%			
1,2,3-Trichloropropane	1050		50.0	ug/kg	50	1000		105	80-120%			
1,2,4-Trimethylbenzene	1110		50.0	ug/kg	50	1000		111	80-120%			
1,3,5-Trimethylbenzene	1120		50.0	ug/kg	50	1000		112	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: **Mult 802 Decommissioning**

434 NW 6th Ave. Suite 203 Project Number: 2708-60F Report ID: Portland, OR 97209 Project Manager: Rob Ede A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 503	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
LCS (9060533-BS1)			Prepared	l: 06/04/19 (09:03 Anal	lyzed: 06/04	/19 10:28					
Vinyl chloride	910		25.0	ug/kg	50	1000		91	80-120%			
m,p-Xylene	2160		50.0	ug/kg	50	2000		108	80-120%			
o-Xylene	1070		25.0	ug/kg	50	1000		107	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (9060533-DUP1)			Prepared	1: 05/29/19	11:20 Anal	lyzed: 06/04	/19 20:32					
OC Source Sample: Non-SDG (A9	F0057-03)											
Acetone	ND		3560	ug/kg	200		ND				30%	
Acrylonitrile	ND		1070	ug/kg	200		ND				30%	R-02
Benzene	ND		35.6	ug/kg	200		ND				30%	
Bromobenzene	ND		88.9	ug/kg	200		ND				30%	
Bromochloromethane	ND		178	ug/kg	200		ND				30%	
Bromodichloromethane	ND		178	ug/kg	200		ND				30%	
Bromoform	ND		356	ug/kg	200		ND				30%	
Bromomethane	ND		1780	ug/kg	200		ND				30%	
2-Butanone (MEK)	ND		2670	ug/kg	200		ND				30%	R-02
n-Butylbenzene	1210		178	ug/kg	200		ND				30%	M-02, Q-04
sec-Butylbenzene	407		178	ug/kg	200		ND				30%	Q-04
tert-Butylbenzene	ND		178	ug/kg	200		ND				30%	
Carbon disulfide	ND		1780	ug/kg	200		ND				30%	
Carbon tetrachloride	ND		178	ug/kg	200		ND				30%	
Chlorobenzene	ND		88.9	ug/kg	200		ND				30%	
Chloroethane	ND		1780	ug/kg	200		ND				30%	
Chloroform	ND		178	ug/kg	200		ND				30%	
Chloromethane	ND		889	ug/kg	200		ND				30%	
2-Chlorotoluene	ND		178	ug/kg	200		ND				30%	
4-Chlorotoluene	ND		178	ug/kg	200		ND				30%	
Dibromochloromethane	ND		356	ug/kg	200		ND				30%	
1,2-Dibromo-3-chloropropane	ND		889	ug/kg	200		ND				30%	
1,2-Dibromoethane (EDB)	ND		178	ug/kg	200		ND				30%	
Dibromomethane	ND		178	ug/kg	200		ND				30%	
1,2-Dichlorobenzene	ND		88.9	ug/kg	200		ND				30%	

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 21 of 61 Philip Nerenberg, Lab Director

Hahn and Associates Project: **Mult 802 Decommissioning**

ND

ND

ND

ND

ND

434 NW 6th Ave. Suite 203 Project Number: 2708-60F Report ID: Portland, OR 97209 Project Manager: Rob Ede A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 5035A/8260C

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil **Duplicate (9060533-DUP1)** Prepared: 05/29/19 11:20 Analyzed: 06/04/19 20:32 QC Source Sample: Non-SDG (A9F0057-03) 1,3-Dichlorobenzene ND 88.9 ug/kg 200 ND 30% ND 88.9 200 1,4-Dichlorobenzene ug/kg ND 30% Dichlorodifluoromethane ND 356 ug/kg 200 ND 30% 1,1-Dichloroethane ND 88.9 ug/kg 200 ND 30% 1,2-Dichloroethane (EDC) ND 88.9 200 ND 30% ug/kg ---ND 88.9 ND 1,1-Dichloroethene ug/kg 200 30% cis-1,2-Dichloroethene ND 88.9 ug/kg 200 ND 30% trans-1,2-Dichloroethene ND 88.9 ND 30% ug/kg 200 1,2-Dichloropropane ND 88.9 ug/kg 200 ND 30% 1,3-Dichloropropane ND 178 ug/kg 200 ND 30% 2,2-Dichloropropane ND 178 ug/kg 200 ND 30% ND 178 ND 30% 1,1-Dichloropropene ug/kg 200 ug/kg cis-1,3-Dichloropropene ND 178 200 ND 30% ND 178 200 ND 30% trans-1,3-Dichloropropene ug/kg 88.9 Q-04 Ethylbenzene 1440 ug/kg 200 ND 30% 356 Hexachlorobutadiene ND ug/kg 200 ND 30% 2-Hexanone ND 1780 ug/kg 200 ND 30% 200 ND O-04 Isopropylbenzene 919 178 30% ug/kg 181 30% M-02, Q-04 4-Isopropyltoluene 178 ug/kg 200 ND 889 Methylene chloride ND 200 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND ND 30% 1780 ug/kg 200 30% Methyl tert-butyl ether (MTBE) ND ---178 ug/kg 200 ND Naphthalene 1370 356 ug/kg 200 ND 30% Q-04 4220 ND 30% Q-04 n-Propylbenzene 88.9 200 --ug/kg ND 178 ND 30% Styrene ug/kg 200 ND 30% 88.9 200 ND 1,1,1,2-Tetrachloroethane ug/kg 1,1,2,2-Tetrachloroethane ND 178 200 ND 30% ug/kg Tetrachloroethene (PCE) ND 88.9 200 ND 30%

Apex Laboratories

Philip Manherz

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

30%

30%

30%

30%

Page 22 of 61 Philip Nerenberg, Lab Director

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

200

200

200

200

200

178

889

889

88.9

88.9

ND

ND

ND

ND

ND

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Comp	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Duplicate (9060533-DUP1)			Prepared	d: 05/29/19	11:20 Anal	yzed: 06/04/	/19 20:32					
QC Source Sample: Non-SDG (A9	F0057-03)											
Trichloroethene (TCE)	ND		88.9	ug/kg	200		ND				30%	
Trichlorofluoromethane	ND		356	ug/kg	200		ND				30%	
1,2,3-Trichloropropane	ND		178	ug/kg	200		ND				30%	
1,2,4-Trimethylbenzene	11600		178	ug/kg	200		ND				30%	Q-04
1,3,5-Trimethylbenzene	6560		178	ug/kg	200		ND				30%	Q-04
Vinyl chloride	ND		88.9	ug/kg	200		ND				30%	
m,p-Xylene	3010		178	ug/kg	200		ND				30%	Q-04
o-Xylene	197		88.9	ug/kg	200		ND				30%	Q-04
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 91%	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
QC Source Sample: Non-SDG (A9			20500		•						• • • • •	
QC Source Sample: Non-SDG (A9	PF0057-02)											
Acetone	ND		38500	ug/kg	2000		ND				30%	D 0
Acrylonitrile	ND		15400	ug/kg	2000		ND				30%	R-02
Benzene	ND		385	ug/kg	2000		ND				30%	
Bromobenzene	ND		962	ug/kg	2000		ND				30%	
Bromochloromethane	ND		1920	ug/kg	2000		ND				30%	
Bromodichloromethane	ND		1920	ug/kg	2000		ND				30%	
Bromoform	ND		3850	ug/kg	2000		ND				30%	
Bromomethane	ND		19200	ug/kg	2000		ND				30%	D 0
2-Butanone (MEK)	ND		44200	ug/kg	2000		ND				30%	R-02
n-Butylbenzene	24000		1920	ug/kg	2000		18700			25	30%	M-02
sec-Butylbenzene	7980		1920	ug/kg	2000		6190			25	30%	
tert-Butylbenzene	ND		1920	ug/kg	2000		ND				30%	
Carbon disulfide	ND		19200	ug/kg	2000		ND				30%	
Carbon tetrachloride	ND		1920	ug/kg	2000		ND				30%	
Chlorobenzene	ND		962	ug/kg	2000		ND				30%	
Chloroethane	ND		19200	ug/kg	2000		ND				30%	
Chloroform	ND		1920	ug/kg	2000		ND				30%	
Chloromethane	ND		9620	ug/kg	2000		ND				30%	
2-Chlorotoluene	ND		1920	ug/kg	2000		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil **Duplicate (9060533-DUP2)** Prepared: 05/29/19 11:00 Analyzed: 06/04/19 21:27 QC Source Sample: Non-SDG (A9F0057-02) 4-Chlorotoluene ND 1920 ug/kg 2000 ND 30% 3850 30% ND Dibromochloromethane ug/kg 2000 ND ug/kg 1,2-Dibromo-3-chloropropane ND 9620 2000 ND 30% 1,2-Dibromoethane (EDB) ND 1920 ug/kg 2000 ND 30% Dibromomethane ND 1920 2000 ND 30% ug/kg ---ND 962 ND 30% 1,2-Dichlorobenzene ug/kg 2000 1,3-Dichlorobenzene ND 962 ug/kg 2000 ND 30% ND ND 30% 1,4-Dichlorobenzene 962 ug/kg 2000 ug/kg Dichlorodifluoromethane ND 3850 2000 ND 30% 1,1-Dichloroethane ND 962 ug/kg 2000 ND 30% 1,2-Dichloroethane (EDC) ND 962 ug/kg 2000 ND 30% 1,1-Dichloroethene ND 962 ND 30% ug/kg 2000 cis-1,2-Dichloroethene ND 962 ug/kg 2000 ND 30% ND 962 2000 ND 30% trans-1,2-Dichloroethene ug/kg 1,2-Dichloropropane ND 962 ug/kg 2000 ND 30% 1,3-Dichloropropane ND 1920 ug/kg 2000 ND ___ 30% 2,2-Dichloropropane ND 1920 ug/kg 2000 ND 30% ND 1920 ND 30% 1,1-Dichloropropene 2000 ug/kg ---ND 1920 cis-1,3-Dichloropropene ug/kg 2000 ND 30% 1920 trans-1,3-Dichloropropene ND 2000 ND 30% ug/kg ---62300 22 30% Ethylbenzene 78100 962 ug/kg 2000 Hexachlorobutadiene ND ---3850 ug/kg 2000 ND ---30% 2-Hexanone ND 19200 ug/kg 2000 ND 30% 19100 30% Isopropylbenzene 1920 ug/kg 2000 15100 23 ---2900 1920 2080 33 30% M-02, Q-04 4-Isopropyltoluene ug/kg 2000 ND 30% Methylene chloride 9620 2000 ND ug/kg ---4-Methyl-2-pentanone (MiBK) ND 19200 2000 ND 30% ug/kg Methyl tert-butyl ether (MTBE) ND ND 1920 ug/kg 2000 ---------30% Naphthalene 52000 3850 ug/kg 2000 43200 19 30% 98100 962 2000 78300 22 30% n-Propylbenzene ug/kg Styrene ND 1920 ug/kg 2000 ND 30% ND 962 2000 ND 30% 1,1,1,2-Tetrachloroethane ug/kg ------1,1,2,2-Tetrachloroethane ND 5770 ug/kg 2000 ND 30% R-02

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060533 - EPA 5035A							Soil					
Duplicate (9060533-DUP2)			Prepared	: 05/29/19	11:00 Anal	yzed: 06/04/	/19 21:27					
QC Source Sample: Non-SDG (A9	F0057-02)											
Tetrachloroethene (PCE)	ND		962	ug/kg	2000		ND				30%	
Гoluene	ND		1920	ug/kg	2000		ND				30%	
1,2,3-Trichlorobenzene	ND		9620	ug/kg	2000		ND				30%	
1,2,4-Trichlorobenzene	ND		9620	ug/kg	2000		ND				30%	
1,1,1-Trichloroethane	ND		962	ug/kg	2000		ND				30%	
1,1,2-Trichloroethane	ND		962	ug/kg	2000		ND				30%	
Trichloroethene (TCE)	ND		962	ug/kg	2000		ND				30%	
Trichlorofluoromethane	ND		3850	ug/kg	2000		ND				30%	
1,2,3-Trichloropropane	ND		1920	ug/kg	2000		ND				30%	
1,2,4-Trimethylbenzene	348000		1920	ug/kg	2000		285000			20	30%	
1,3,5-Trimethylbenzene	160000		1920	ug/kg	2000		128000			22	30%	
Vinyl chloride	ND		962	ug/kg	2000		ND				30%	
n,p-Xylene	141000		1920	ug/kg	2000		113000			22	30%	
o-Xylene	8790		962	ug/kg	2000		7010			23	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 92 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %		-120 %		"					
4-Bromofluorobenzene (Surr)			102 %		-120 %		,,					
, Bromojino occinzente (Siliri)			10270		120 / 0							
Matrix Spike (9060533-MS1)			Prepared	: 05/29/19	11:00 Anal	yzed: 06/04/	/19 14:33					2
QC Source Sample: Non-SDG (A9	E0932-01)											
5035A/8260C												
Acetone	1760		928	ug/kg	50	1860	ND	95	36-164%			
Acrylonitrile	918		92.8	ug/kg	50	929	ND	99	65-134%			
Benzene	851		9.28	ug/kg	50	929	ND	92	77-121%			
Bromobenzene	1040		23.2	ug/kg	50	929	ND	112	78-121%			
Bromochloromethane	869		46.4	ug/kg	50	929	ND	94	78-125%			
Bromodichloromethane	855		46.4	ug/kg	50	929	ND	92	75-127%			
Bromoform	832		92.8	ug/kg	50	929	ND	90	67-132%			
Bromomethane	821		464	ug/kg	50	929	ND	88	53-143%			
2-Butanone (MEK)	1740		464	ug/kg	50	1860	ND	94	51-148%			
n-Butylbenzene	977		46.4	ug/kg	50	929	ND	105	70-128%			
,												
sec-Butylbenzene	990		46.4	ug/kg	50	929	ND	107	73-126%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil Matrix Spike (9060533-MS1) Prepared: 05/29/19 11:00 Analyzed: 06/04/19 14:33 X QC Source Sample: Non-SDG (A9E0932-01) Carbon disulfide 821 464 50 929 ND 88 63-132% ug/kg 847 929 Carbon tetrachloride 46.4 ug/kg 50 ND 91 70-135% 947 Chlorobenzene 23.2 ug/kg 50 929 ND 102 79-120% Chloroethane 691 464 ug/kg 50 929 ND 74 59-139% Chloroform 833 46.4 50 929 ND 90 78-123% ug/kg 759 232 929 ND 82 Chloromethane ug/kg 50 50-136% 2-Chlorotoluene 982 46.4 ug/kg 50 929 ND 106 75-122% 929 964 46.4 ND 104 4-Chlorotoluene ug/kg 50 72-124% Dibromochloromethane 869 92.8 ug/kg 50 929 ND 94 74-126% 1,2-Dibromo-3-chloropropane 934 232 ug/kg 50 929 ND 101 61-132% 1,2-Dibromoethane (EDB) 1050 46.4 ug/kg 50 929 ND 113 78-122% 901 46.4 929 ND 97 78-125% Dibromomethane ug/kg 50 943 929 1,2-Dichlorobenzene 23.2 ug/kg 50 ND 102 78-121% 929 947 23.2 ND 102 77-121% 1,3-Dichlorobenzene ug/kg 50 23.2 1,4-Dichlorobenzene 945 ug/kg 50 929 ND 102 75-120% Dichlorodifluoromethane 840 92.8 ug/kg 50 929 ND 90 29-149% ___ 1,1-Dichloroethane 889 23.2 ug/kg 50 929 ND 96 76-125% 818 23.2 929 ND 88 73-128% 1,2-Dichloroethane (EDC) 50 ug/kg 873 23.2 929 ND 94 70-131% 1,1-Dichloroethene ug/kg 50 cis-1,2-Dichloroethene 23.2 929 92 850 50 ND 77-123% ug/kg 878 929 ND 94 74-125% trans-1,2-Dichloroethene 23.2 ug/kg 50 1,2-Dichloropropane 864 ---23.2 ug/kg 50 929 ND 93 76-123% 1,3-Dichloropropane 988 46.4 ug/kg 50 929 ND 106 77-121% 915 46.4 929 ND 99 67-133% 2,2-Dichloropropane 50 --ug/kg 842 46.4 929 ND 91 76-125% 1,1-Dichloropropene ug/kg 50 46.4 1020 929 74-126% ND 110 cis-1,3-Dichloropropene ug/kg 50 trans-1,3-Dichloropropene 985 46.4 50 929 ND 106 71-130% ug/kg 929 ND 76-122% Ethylbenzene 960 23.2 ug/kg 50 103 Hexachlorobutadiene 1120 92.8 ug/kg 50 929 ND 120 61-135% 2-Hexanone 1850 464 1860 ND 99 53-145% ug/kg 50 Isopropylbenzene 984 46.4 ug/kg 50 929 ND 106 68-134% 1010 46.4 929 ND 109 4-Isopropyltoluene 50 73-127% ug/kg ------

Apex Laboratories

Philip Merenberg

634

Methylene chloride

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

68

70-128%

Q-54c

ND

Philip Nerenberg, Lab Director

Page 26 of 61

50

929

232

ug/kg

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060533 - EPA 5035A Soil Matrix Spike (9060533-MS1) Prepared: 05/29/19 11:00 Analyzed: 06/04/19 14:33 X QC Source Sample: Non-SDG (A9E0932-01) 4-Methyl-2-pentanone (MiBK) 1790 464 ug/kg 50 1860 ND 96 65-135% Methyl tert-butyl ether (MTBE) 929 847 46.4 ug/kg 50 ND 91 73-125% 929 Naphthalene 1060 92.8 ug/kg 50 ND 115 62-129% n-Propylbenzene 968 23.2 ug/kg 50 929 ND 104 73-125% Styrene 1050 46.4 ug/kg 50 929 ND 113 76-124% 929 1,1,1,2-Tetrachloroethane 1030 23.2 ND 111 78-125% ug/kg 50 1,1,2,2-Tetrachloroethane 928 46.4 ug/kg 50 929 ND 100 70-124% 929 Tetrachloroethene (PCE) 950 23.2 ND 102 73-128% ug/kg 50 ug/kg 929 Toluene 936 46.4 50 ND 101 77-121% 232 1,2,3-Trichlorobenzene 1040 ug/kg 50 929 ND 112 66-130% 1,2,4-Trichlorobenzene 1020 232 ug/kg 50 929 ND 109 67-129% 929 1,1,1-Trichloroethane 23.2 ND 93 73-130% 860 ug/kg 50 1030 929 ND 78-121% 1,1,2-Trichloroethane 23.2 ug/kg 50 111 929 Trichloroethene (TCE) 888 23.2 ND 96 77-123% ug/kg 50 92.8 929 62-140% Trichlorofluoromethane 628 ug/kg 50 ND 68 1,2,3-Trichloropropane 973 46.4 ug/kg 50 929 ND 105 73-125% ___ 1,2,4-Trimethylbenzene 988 46.4 ug/kg 50 929 ND 106 75-123% 1,3,5-Trimethylbenzene 1010 46.4 929 ND 108 73-124% 50 ug/kg Vinyl chloride 819 23.2 929 ND 88 56-135% ug/kg 50 1940 46.4 104 m,p-Xylene 50 1860 ND 77-124% ug/kg o-Xylene 960 23.2 929 ND 103 77-123% ug/kg 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 92 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 99 % 80-120 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 61

80-120 %

102 %

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
Blank (9060582-BLK1)			Prepared	: 06/05/19 1	13:00 Anal	yzed: 06/05/	19 14:47					
5035A/8260C												
Acetone	ND		667	ug/kg	50							
Acrylonitrile	ND		66.7	ug/kg	50							
Benzene	ND		6.67	ug/kg	50							
Bromobenzene	ND		16.7	ug/kg	50							
Bromochloromethane	ND		33.3	ug/kg	50							
Bromodichloromethane	ND		33.3	ug/kg	50							
Bromoform	ND		66.7	ug/kg	50							
Bromomethane	ND		333	ug/kg	50							
2-Butanone (MEK)	ND		333	ug/kg	50							
n-Butylbenzene	ND		33.3	ug/kg	50							
sec-Butylbenzene	ND		33.3	ug/kg	50							
ert-Butylbenzene	ND		33.3	ug/kg	50							
Carbon disulfide	ND		333	ug/kg	50							
Carbon tetrachloride	ND		33.3	ug/kg	50							
Chlorobenzene	ND		16.7	ug/kg	50							
Chloroethane	ND		333	ug/kg	50							
Chloroform	ND		33.3	ug/kg	50							
Chloromethane	ND		167	ug/kg	50							
2-Chlorotoluene	ND		33.3	ug/kg	50							
1-Chlorotoluene	ND		33.3	ug/kg	50							
Dibromochloromethane	ND		66.7	ug/kg	50							
,2-Dibromo-3-chloropropane	ND		167	ug/kg	50							
,2-Dibromoethane (EDB)	ND		33.3	ug/kg	50							
Dibromomethane	ND		33.3	ug/kg	50							
,2-Dichlorobenzene	ND		16.7	ug/kg	50							
,3-Dichlorobenzene	ND		16.7	ug/kg	50							
,4-Dichlorobenzene	ND		16.7	ug/kg	50							
Dichlorodifluoromethane	ND		66.7	ug/kg	50							
,1-Dichloroethane	ND		16.7	ug/kg	50							
,2-Dichloroethane (EDC)	ND		16.7	ug/kg	50							
,1-Dichloroethene	ND		16.7	ug/kg	50							
eis-1,2-Dichloroethene	ND		16.7	ug/kg	50							
rans-1,2-Dichloroethene	ND		16.7	ug/kg	50							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
Blank (9060582-BLK1)			Prepared	: 06/05/19	13:00 Ana	yzed: 06/05/	19 14:47					
1,2-Dichloropropane	ND		16.7	ug/kg	50							
1,3-Dichloropropane	ND		33.3	ug/kg	50							
2,2-Dichloropropane	ND		33.3	ug/kg	50							
1,1-Dichloropropene	ND		33.3	ug/kg	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg	50							
trans-1,3-Dichloropropene	ND		33.3	ug/kg	50							
Ethylbenzene	ND		16.7	ug/kg	50							
Hexachlorobutadiene	ND		66.7	ug/kg	50							
2-Hexanone	ND		333	ug/kg	50							
Isopropylbenzene	ND		33.3	ug/kg	50							
4-Isopropyltoluene	ND		33.3	ug/kg	50							
Methylene chloride	ND		167	ug/kg	50							
4-Methyl-2-pentanone (MiBK)	ND		333	ug/kg	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg	50							
Naphthalene	ND		66.7	ug/kg	50							
n-Propylbenzene	ND		16.7	ug/kg	50							
Styrene	ND		33.3	ug/kg	50							
1,1,2-Tetrachloroethane	ND		16.7	ug/kg	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg	50							
Toluene	ND		33.3	ug/kg	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg	50							
Trichloroethene (TCE)	ND		16.7	ug/kg	50							
Trichlorofluoromethane	ND		66.7	ug/kg	50							
1,2,3-Trichloropropane	ND		33.3	ug/kg	50							
1,2,4-Trimethylbenzene	ND		33.3	ug/kg	50							
1,3,5-Trimethylbenzene	ND		33.3	ug/kg	50							
Vinyl chloride	ND		16.7	ug/kg	50							
m,p-Xylene	ND		33.3	ug/kg	50							
o-Xylene	ND		16.7	ug/kg	50							
Surr: 1,4-Difluorobenzene (Surr)			overy: 90 %	Limits: 80			tion: Ix					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 61

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060582 - EPA 5035A Soil Blank (9060582-BLK1) Prepared: 06/05/19 13:00 Analyzed: 06/05/19 14:47 Surr: Toluene-d8 (Surr) Recovery: 102 % Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 103 % 80-120 % LCS (9060582-BS1) Prepared: 06/05/19 13:00 Analyzed: 06/05/19 13:52 5035A/8260C Acetone 1680 1000 ug/kg 50 2000 84 80-120% Acrylonitrile 893 100 50 1000 89 80-120% ug/kg Benzene 867 10.0 ug/kg 50 1000 87 80-120% 25.0 Bromobenzene 1060 50 1000 106 80-120% ug/kg ------Bromochloromethane 894 50.0 50 1000 89 80-120% ug/kg 50.0 1000 80-120% Bromodichloromethane 899 ug/kg 50 90 Bromoform 864 100 ug/kg 50 1000 86 80-120% Bromomethane 884 500 50 1000 88 80-120% ug/kg 2-Butanone (MEK) 1700 500 50 2000 85 80-120% ug/kg 50.0 50 1000 106 80-120% n-Butylbenzene 1060 ug/kg -----sec-Butylbenzene 1060 50.0 50 1000 106 80-120% ug/kg tert-Butylbenzene 1020 50.0 50 1000 102 80-120% ug/kg Carbon disulfide 872 500 ug/kg 50 1000 87 80-120% Carbon tetrachloride 925 50.0 50 1000 92 80-120% ug/kg ---Chlorobenzene 1010 25.0 ug/kg 50 1000 101 80-120% Chloroethane 658 500 50 1000 80-120% Q-55 ug/kg 66 1000 80-120% Chloroform 830 50.0 ug/kg 50 83 Chloromethane 782 250 50 1000 78 80-120% O-55 ug/kg 2-Chlorotoluene 1040 50.0 ug/kg 50 1000 104 80-120% 4-Chlorotoluene 1000 50.0 ug/kg 50 1000 100 80-120% Dibromochloromethane 906 100 ug/kg 50 1000 91 80-120% 1,2-Dibromo-3-chloropropane 942 250 ug/kg 50 1000 94 80-120% 1,2-Dibromoethane (EDB) 1060 1000 80-120% 50.0 ug/kg 50 106 Dibromomethane 874 50.0 50 1000 87 80-120% ug/kg 1,2-Dichlorobenzene 980 25.0 ug/kg 50 1000 98 80-120% 1,3-Dichlorobenzene 996 25.0 ug/kg 50 1000 100 80-120% 1,4-Dichlorobenzene 988 25.0 50 1000 99 80-120% ug/kg 80-120% Dichlorodifluoromethane 843 100 ug/kg 50 1000 84 1,1-Dichloroethane 883 25.0 1000 88 80-120% ug/kg 50

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
LCS (9060582-BS1)			Prepared	: 06/05/19	13:00 Ana	lyzed: 06/05/	/19 13:52					_
1,2-Dichloroethane (EDC)	862		25.0	ug/kg	50	1000		86	80-120%			
1,1-Dichloroethene	924		25.0	ug/kg	50	1000		92	80-120%			
cis-1,2-Dichloroethene	886		25.0	ug/kg	50	1000		89	80-120%			
trans-1,2-Dichloroethene	913		25.0	ug/kg	50	1000		91	80-120%			
1,2-Dichloropropane	886		25.0	ug/kg	50	1000		89	80-120%			
1,3-Dichloropropane	1040		50.0	ug/kg	50	1000		104	80-120%			
2,2-Dichloropropane	1000		50.0	ug/kg	50	1000		100	80-120%			
1,1-Dichloropropene	886		50.0	ug/kg	50	1000		89	80-120%			
cis-1,3-Dichloropropene	1100		50.0	ug/kg	50	1000		110	80-120%			
trans-1,3-Dichloropropene	1060		50.0	ug/kg	50	1000		106	80-120%			
Ethylbenzene	1000		25.0	ug/kg	50	1000		100	80-120%			
Hexachlorobutadiene	1120		100	ug/kg	50	1000		112	80-120%			
2-Hexanone	1900		500	ug/kg	50	2000		95	80-120%			
Isopropylbenzene	1040		50.0	ug/kg	50	1000		104	80-120%			
4-Isopropyltoluene	1110		50.0	ug/kg	50	1000		111	80-120%			
Methylene chloride	560		250	ug/kg	50	1000		56	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	1830		500	ug/kg	50	2000		91	80-120%			
Methyl tert-butyl ether (MTBE)	863		50.0	ug/kg	50	1000		86	80-120%			
Naphthalene	1050		100	ug/kg	50	1000		105	80-120%			
n-Propylbenzene	1040		25.0	ug/kg	50	1000		104	80-120%			
Styrene	1060		50.0	ug/kg	50	1000		106	80-120%			
1,1,1,2-Tetrachloroethane	1080		25.0	ug/kg	50	1000		108	80-120%			
1,1,2,2-Tetrachloroethane	1000		50.0	ug/kg	50	1000		100	80-120%			
Tetrachloroethene (PCE)	1030		25.0	ug/kg	50	1000		103	80-120%			
Toluene	981		50.0	ug/kg	50	1000		98	80-120%			
1,2,3-Trichlorobenzene	1100		250	ug/kg	50	1000		110	80-120%			
1,2,4-Trichlorobenzene	1080		250	ug/kg	50	1000		108	80-120%			
1,1,1-Trichloroethane	904		25.0	ug/kg	50	1000		90	80-120%			
1,1,2-Trichloroethane	1050		25.0	ug/kg	50	1000		105	80-120%			
Trichloroethene (TCE)	878		25.0	ug/kg	50	1000		88	80-120%			
Trichlorofluoromethane	714		100	ug/kg	50	1000		71	80-120%			Q-55
1,2,3-Trichloropropane	984		50.0	ug/kg	50	1000		98	80-120%			
1,2,4-Trimethylbenzene	1030		50.0	ug/kg	50	1000		103	80-120%			
1,3,5-Trimethylbenzene	1080		50.0	ug/kg	50	1000		108	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	A/8260C	;				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
LCS (9060582-BS1)			Prepared	1: 06/05/19	13:00 Ana	lyzed: 06/05	/19 13:52					
Vinyl chloride	821		25.0	ug/kg	50	1000		82	80-120%			
m,p-Xylene	2030		50.0	ug/kg	50	2000		102	80-120%			
o-Xylene	1010		25.0	ug/kg	50	1000		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 90 %	Limits: 80)-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
Duplicate (9060582-DUP1)			Prepared	1: 05/29/19	16:30 Ana	lyzed: 06/05	/19 21:14					
OC Source Sample: Non-SDG (A9	F0057-09)											
Acetone	ND		836	ug/kg	50		ND				30%	
Acrylonitrile	ND		167	ug/kg	50		ND				30%	R-0
Benzene	ND		8.36	ug/kg	50		ND				30%	Q-0
Bromobenzene	ND		20.9	ug/kg	50		ND				30%	
Bromochloromethane	ND		41.8	ug/kg	50		ND				30%	
Bromodichloromethane	ND		41.8	ug/kg	50		ND				30%	
Bromoform	ND		83.6	ug/kg	50		ND				30%	
Bromomethane	ND		418	ug/kg	50		ND				30%	
2-Butanone (MEK)	ND		418	ug/kg	50		ND				30%	
n-Butylbenzene	96.6		41.8	ug/kg	50		73.9			27	30%	M-0
sec-Butylbenzene	ND		41.8	ug/kg	50		28.9			***	30%	
tert-Butylbenzene	ND		41.8	ug/kg	50		ND				30%	
Carbon disulfide	ND		418	ug/kg	50		ND				30%	
Carbon tetrachloride	ND		41.8	ug/kg	50		ND				30%	
Chlorobenzene	ND		20.9	ug/kg	50		ND				30%	
Chloroethane	ND		418	ug/kg	50		ND				30%	
Chloroform	ND		41.8	ug/kg	50		ND				30%	
Chloromethane	ND		209	ug/kg	50		ND				30%	
2-Chlorotoluene	ND		41.8	ug/kg	50		ND				30%	
4-Chlorotoluene	ND		41.8	ug/kg	50		ND				30%	
Dibromochloromethane	ND		83.6	ug/kg	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND		209	ug/kg	50		ND				30%	
1,2-Dibromoethane (EDB)	ND		41.8	ug/kg	50		ND				30%	
Dibromomethane	ND		41.8	ug/kg	50		ND				30%	
1,2-Dichlorobenzene	ND		20.9	ug/kg	50		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 9060582 - EPA 5035A Soil **Duplicate (9060582-DUP1)** Prepared: 05/29/19 16:30 Analyzed: 06/05/19 21:14 QC Source Sample: Non-SDG (A9F0057-09) 1,3-Dichlorobenzene ND 20.9 50 ND 30% ug/kg ND 20.9 1,4-Dichlorobenzene ug/kg 50 ND 30% Dichlorodifluoromethane ND 83.6 ug/kg 50 ND 30% 1,1-Dichloroethane ND 20.9 ug/kg 50 ND 30% 1,2-Dichloroethane (EDC) ND 20.9 50 ND 30% ug/kg ---ND 20.9 1,1-Dichloroethene ug/kg 50 ND 30% cis-1,2-Dichloroethene ND 20.9 ug/kg 50 ND 30% trans-1,2-Dichloroethene ND 20.9 ND 30% ug/kg 50 ug/kg 1,2-Dichloropropane ND 20.9 50 ND 30% 1,3-Dichloropropane ND 41.8 ug/kg 50 ND 30% 2,2-Dichloropropane ND 41.8 ug/kg 50 ND 30% 41.8 ND ND 30% 1,1-Dichloropropene ug/kg 50 cis-1,3-Dichloropropene ND 41.8 ug/kg 50 ND 30% ND 41.8 ND 30% trans-1,3-Dichloropropene ug/kg 50 20.9 Ethylbenzene 472 ug/kg 50 413 13 30% Hexachlorobutadiene ND 83.6 ug/kg 50 ND ___ 30% 2-Hexanone ND 418 ug/kg 50 ND 30% 41.8 78.8 30% Isopropylbenzene 99.1 50 23 ug/kg 41.8 4-Isopropyltoluene ND ug/kg 50 ND 30% 209 Methylene chloride ND 50 ND 30% ug/kg 4-Methyl-2-pentanone (MiBK) ND ND 418 ug/kg 50 30% Methyl tert-butyl ether (MTBE) ND ---41.8 ug/kg 50 ND ---30% Naphthalene 473 83.6 ug/kg 50 367 25 30% 490 20.9 378 30% n-Propylbenzene 50 26 --ug/kg ND 41.8 30% Styrene ug/kg 50 ND ND 30% 20.9 ND 1,1,1,2-Tetrachloroethane ug/kg 50 ---1,1,2,2-Tetrachloroethane ND 41.8 50 ND 30% ug/kg Tetrachloroethene (PCE) ND ---20.9 ug/kg 50 ---ND ------30% ND 41.8 ug/kg 50 ND 30% ND 209 ND 30% 1,2,3-Trichlorobenzene ug/kg 50 ---1,2,4-Trichlorobenzene ND 209 ug/kg 50 ND 30% 20.9 ND 1,1,1-Trichloroethane ND 50 30% ug/kg ------

Apex Laboratories

Philip Nevenberg

1,1,2-Trichloroethane

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 33 of 61

50

20.9

ug/kg

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060582 - EPA 5035A							Soil					
Duplicate (9060582-DUP1)			Prepared	d: 05/29/19	16:30 Anal	yzed: 06/05	/19 21:14					
QC Source Sample: Non-SDG (A9	F0057-09)											
Trichloroethene (TCE)	ND		20.9	ug/kg	50		ND				30%	
Trichlorofluoromethane	ND		83.6	ug/kg	50		ND				30%	
1,2,3-Trichloropropane	ND		41.8	ug/kg	50		ND				30%	
1,2,4-Trimethylbenzene	2620		41.8	ug/kg	50		2030			25	30%	
1,3,5-Trimethylbenzene	898		41.8	ug/kg	50		685			27	30%	
Vinyl chloride	ND		20.9	ug/kg	50		ND				30%	
m,p-Xylene	1350		41.8	ug/kg	50		1170			14	30%	
o-Xylene	269		20.9	ug/kg	50		250			7	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 90 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
QC Source Sample: Non-SDG (A9 5035A/8260C	<u>/F0057-10)</u>											
5035A/8260C												
Acetone	1980		1050	ug/kg	50	2100	ND	94	36-164%			
Acrylonitrile	1000		105	ug/kg	50	1050	ND	95	65-134%			
Benzene	937		10.5	ug/kg	50	1050	ND	89	77-121%			
Bromobenzene	1160		26.3	ug/kg	50	1050	ND	110	78-121%			
Bromochloromethane	988		52.5	ug/kg	50	1050	ND	94	78-125%			
Bromodichloromethane	944		52.5	ug/kg	50	1050	ND	90	75-127%			
Bromoform	871		105	ug/kg	50	1050	ND	83	67-132%			
Bromomethane	919		525	ug/kg	50	1050	ND	87	53-143%			
2-Butanone (MEK)	1900		525	ug/kg	50	2100	ND	90	51-148%			
n-Butylbenzene	1110		52.5	ug/kg	50	1050	ND	105	70-128%			
sec-Butylbenzene	1120		52.5	ug/kg	50	1050	ND	106	73-126%			
ert-Butylbenzene	1110		52.5	ug/kg	50	1050	ND	105	73-125%			
Carbon disulfide	906		525	ug/kg	50	1050	ND	86	63-132%			
Carbon tetrachloride	968		52.5	ug/kg	50	1050	ND	92	70-135%			
Chlorobenzene	1090		26.3	ug/kg	50	1050	ND	104	79-120%			
Chloroethane	822		525	ug/kg	50	1050	ND	78	59-139%			
Chloroform	941		52.5	ug/kg	50	1050	ND	90	78-123%			
Chloromethane	848		263	ug/kg	50	1050	ND	81	50-136%			Ç

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Limit Amount Limits Notes Batch 9060582 - EPA 5035A Soil Matrix Spike (9060582-MS1) Prepared: 05/29/19 17:30 Analyzed: 06/05/19 22:09 QC Source Sample: Non-SDG (A9F0057-10) 2-Chlorotoluene 1100 52.5 ug/kg 50 1050 ND 105 75-122% 1090 52.5 50 1050 4-Chlorotoluene ug/kg ND 104 72-124% ug/kg 1050 Dibromochloromethane 950 105 50 ND 90 74-126% 1,2-Dibromo-3-chloropropane 935 263 ug/kg 50 1050 ND 89 61-132% 1,2-Dibromoethane (EDB) 1120 52.5 50 1050 ND 107 78-122% ug/kg ---Dibromomethane 954 52.5 1050 ND 91 78-125% ug/kg 50 1,2-Dichlorobenzene 1050 26.3 ug/kg 50 1050 ND 100 78-121% 1060 26.3 50 1050 ND 101 77-121% 1,3-Dichlorobenzene ug/kg 1,4-Dichlorobenzene 1040 26.3 ug/kg 50 1050 ND 99 75-120% Dichlorodifluoromethane 966 105 ug/kg 50 1050 ND 92 29-149% 1,1-Dichloroethane 1030 26.3 ug/kg 50 1050 ND 98 76-125% 1050 1,2-Dichloroethane (EDC) 974 26.3 50 ND 93 73-128% ug/kg 1020 1050 97 1,1-Dichloroethene 26.3 ug/kg 50 ND 70-131% cis-1,2-Dichloroethene 1050 988 26.3 50 ND 94 77-123% ug/kg 26.3 97 trans-1,2-Dichloroethene 1020 ug/kg 50 1050 ND 74-125% 1,2-Dichloropropane 958 26.3 ug/kg 50 1050 ND 91 76-123% ___ 1,3-Dichloropropane 1100 52.5 ug/kg 50 1050 ND 105 77-121% 954 52.5 1050 ND 91 67-133% 2,2-Dichloropropane 50 ug/kg 963 52.5 50 1050 ND 92 76-125% 1,1-Dichloropropene ug/kg 52.5 1050 109 cis-1,3-Dichloropropene 1140 50 ND 74-126% ug/kg trans-1,3-Dichloropropene 50 1050 ND 105 71-130% 1100 52.5 ug/kg 1050 Ethylbenzene 1070 ---26.3 ug/kg 50 ND 102 76-122% ---Hexachlorobutadiene 1130 105 ug/kg 50 1050 ND 107 61-135% 2-Hexanone 2010 525 50 2100 ND 96 53-145% --ug/kg 52.5 1050 105 68-134% Isopropylbenzene 1110 ug/kg 50 ND 1050 1150 52.5 50 ND 109 73-127% 4-Isopropyltoluene ug/kg Methylene chloride 649 263 50 1050 ND 62 70-128% Q-54b ug/kg 1970 2100 ND 94 4-Methyl-2-pentanone (MiBK) 525 ug/kg 50 65-135% Methyl tert-butyl ether (MTBE) 923 52.5 ug/kg 50 1050 ND 88 73-125% Naphthalene 1070 105 50 1050 ND 101 62-129% ug/kg --n-Propylbenzene 1110 26.3 ug/kg 50 1050 ND 106 73-125% 52.5 50 1050 ND 107 76-124% Styrene 1120 ug/kg ------

Apex Laboratories

Philip Manherz

1,1,1,2-Tetrachloroethane

1130

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

108

78-125%

Philip Nerenberg, Lab Director

Page 35 of 61

50

1050

ND

ug/kg

26.3

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Limit Amount Notes Batch 9060582 - EPA 5035A Soil Matrix Spike (9060582-MS1) Prepared: 05/29/19 17:30 Analyzed: 06/05/19 22:09 QC Source Sample: Non-SDG (A9F0057-10) 1050 1,1,2,2-Tetrachloroethane 963 52.5 ug/kg 50 ND 92 70-124% 73-128% Tetrachloroethene (PCE) 1090 1050 104 26.3 ug/kg 50 ND 1070 1050 77-121% Toluene 52.5 ug/kg 50 ND 101 1,2,3-Trichlorobenzene 1110 263 ug/kg 50 1050 ND 106 66-130% 1,2,4-Trichlorobenzene 1100 263 ug/kg 50 1050 ND 105 67-129% 984 26.3 1050 ND 94 73-130% 1,1,1-Trichloroethane ug/kg 50 26.3 1,1,2-Trichloroethane 1120 ug/kg 50 1050 ND 106 78-121% Trichloroethene (TCE) 988 26.3 50 1050 ND 94 77-123% ug/kg ug/kg Q-54c Trichlorofluoromethane 807 105 50 1050 ND 77 62-140% 1040 1,2,3-Trichloropropane 52.5 ug/kg 50 1050 ND 99 73-125% 1,2,4-Trimethylbenzene 1120 52.5 ug/kg 50 1050 ND 106 75-123% 52.5 1050 1,3,5-Trimethylbenzene 1150 50 ND 109 73-124% ug/kg 919 1050 ND 87 56-135% Vinyl chloride 26.3 ug/kg 50 2100 104 m,p-Xylene 2180 52.5 50 ND 77-124% ug/kg 26.3 ug/kg 77-123% o-Xylene 1080 50 ND 103 Surr: 1,4-Difluorobenzene (Surr) 90 % Limits: 80-120 % Dilution: 1x Recovery: 101 % Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 103 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/50	30B SPLP	Volatiles					Wat	er				
Blank (9060589-BLK1)			Prepared:	06/05/19 (09:09 Anal	yzed: 06/05	/19 11:45					
1312/8260C												
Acetone	ND		0.0200	mg/L	1							
Benzene	ND		0.000250	mg/L	1							
Bromobenzene	ND		0.000500	mg/L	1							
Bromochloromethane	ND		0.00100	mg/L	1							
Bromodichloromethane	ND		0.00100	mg/L	1							
Bromoform	ND		0.00100	mg/L	1							
Bromomethane	ND		0.00500	mg/L	1							
2-Butanone (MEK)	ND		0.0100	mg/L	1							
n-Butylbenzene	ND		0.00100	mg/L	1							
sec-Butylbenzene	ND		0.00100	mg/L	1							
tert-Butylbenzene	ND		0.00100	mg/L	1							
Carbon tetrachloride	ND		0.00100	mg/L	1							
Chlorobenzene	ND		0.000500	mg/L	1							
Chloroethane	ND		0.00500	mg/L	1							
Chloroform	ND		0.00100	mg/L	1							
Chloromethane	ND		0.00500	mg/L	1							
2-Chlorotoluene	ND		0.00100	mg/L	1							
4-Chlorotoluene	ND		0.00100	mg/L	1							
1,2-Dibromo-3-chloropropane	ND		0.00500	mg/L	1							
Dibromochloromethane	ND		0.00100	mg/L	1							
1,2-Dibromoethane (EDB)	ND		0.000500	mg/L	1							
Dibromomethane	ND		0.00100	mg/L	1							
1,2-Dichlorobenzene	ND		0.000500	mg/L	1							
1,3-Dichlorobenzene	ND		0.000500	mg/L	1							
1,4-Dichlorobenzene	ND		0.000500	mg/L	1							
Dichlorodifluoromethane	ND		0.00100	mg/L	1							
1,1-Dichloroethane	ND		0.000500	mg/L	1							
1,2-Dichloroethane (EDC)	ND		0.000500	mg/L	1							
1,1-Dichloroethene	ND ND		0.000500	mg/L	1							
cis-1,2-Dichloroethene	ND ND		0.000500	mg/L	1							
trans-1,2-Dichloroethene	ND ND		0.000500	mg/L mg/L	1							
1,2-Dichloropropane	ND ND			_	1							
			0.000500 0.00100	mg/L								
1,3-Dichloropropane	ND		0.00100	mg/L	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Blank (9060589-BLK1)			Prepared:	06/05/19 0	9:09 Anal	yzed: 06/05/	19 11:45					
2,2-Dichloropropane	ND		0.00100	mg/L	1							
1,1-Dichloropropene	ND		0.00100	mg/L	1							
cis-1,3-Dichloropropene	ND		0.00100	mg/L	1							
trans-1,3-Dichloropropene	ND		0.00100	mg/L	1							
Ethylbenzene	ND		0.000500	mg/L	1							
Hexachlorobutadiene	ND		0.00500	mg/L	1							
2-Hexanone	ND		0.0100	mg/L	1							
Isopropylbenzene	ND		0.00100	mg/L	1							
4-Isopropyltoluene	ND		0.00100	mg/L	1							
4-Methyl-2-pentanone (MiBK)	ND		0.0100	mg/L	1							
Methyl tert-butyl ether (MTBE)	ND		0.00100	mg/L	1							
Methylene chloride	ND		0.00500	mg/L	1							
Naphthalene	ND		0.00200	mg/L	1							
n-Propylbenzene	ND		0.000500	mg/L	1							
Styrene	ND		0.00100	mg/L	1							
1,1,1,2-Tetrachloroethane	ND		0.000500	mg/L	1							
1,1,2,2-Tetrachloroethane	ND		0.000500	mg/L	1							
Tetrachloroethene (PCE)	ND		0.000500	mg/L	1							
Toluene	ND		0.00100	mg/L	1							
1,2,3-Trichlorobenzene	ND		0.00200	mg/L	1							
1,2,4-Trichlorobenzene	ND		0.00200	mg/L	1							
1,1,1-Trichloroethane	ND		0.000500	mg/L	1							
1,1,2-Trichloroethane	ND		0.000500	mg/L	1							
Trichloroethene (TCE)	ND		0.000500	mg/L	1							
Trichlorofluoromethane	ND		0.00200	mg/L	1							
1,2,3-Trichloropropane	ND		0.00100	mg/L	1							
1,2,4-Trimethylbenzene	ND		0.00100	mg/L	1							
1,3,5-Trimethylbenzene	ND		0.00100	mg/L	1							
Vinyl chloride	ND		0.000500	mg/L	1							
m,p-Xylene	ND		0.00100	mg/L	1							
o-Xylene	ND		0.000500	mg/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80-	-120 %	Dilu	tion: 1x					_
Toluene-d8 (Surr)			101 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80-	-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Detection Reporting Spike Source % REC RPD

Analyte Result Limit Units Dilution Amount % REC RPD Limit Limit Result Limits Notes Batch 9060589 - EPA 1312/5030B SPLP Volatiles Water LCS (9060589-BS1) Prepared: 06/05/19 09:09 Analyzed: 06/05/19 10:51 1312/8260C 0.0403 Acetone 0.0200 mg/L 1 0.0400 101 70-130% Benzene 0.0203 0.000250 mg/L 1 0.0200 101 70-130% ------Bromobenzene 0.02040.000500mg/L 1 0.0200102 70-130% Bromochloromethane 0.0231 0.00100 1 0.0200 116 70-130% mg/L ---------Bromodichloromethane 0.02250.001001 0.0200113 70-130% mg/L Bromoform 0.0246 0.00100 mg/L 1 0.0200 123 70-130% 0.00500 Bromomethane 0.0233 mg/L 1 0.0200 117 70-130% 2-Butanone (MEK) 70-130% 0.0427 ---0.0100 mg/L 1 0.0400 107 99 n-Butylbenzene 0.0197 0.00100mg/L 1 0.020070-130% sec-Butylbenzene 0.0189 0.00100 1 0.0200 94 70-130% mg/L ---0.00100 tert-Butylbenzene 0.0178 mg/L 1 0.0200 89 70-130% Carbon tetrachloride 0.0206 0.00100mg/L 1 0.0200 103 70-130% 0.0005000.0200 102 70-130% Chlorobenzene 0.0203 mg/L 1 mg/L Chloroethane 0.0151 0.00500 1 0.0200 76 70-130% 0.00100 70-130% Chloroform 0.0211 mg/L 1 0.0200106 Chloromethane 0.0229 0.00500 mg/L 1 0.0200 114 70-130% 2-Chlorotoluene 0.0191 0.00100mg/L 1 0.0200 95 70-130% 4-Chlorotoluene 0.0190 0.00100mg/L 1 0.0200 95 70-130% 99 0.00500 70-130% 1,2-Dibromo-3-chloropropane 0.0199 --mg/L 1 0.0200 0.00100 Dibromochloromethane 0.0202 mg/L 1 0.0200 101 70-130% 1,2-Dibromoethane (EDB) 0.0208 0.000500 0.0200 104 70-130% mg/L 1 0.00100 Dibromomethane 0.0224 mg/L 1 0.0200 112 70-130% 0.000500 101 70-130% 1,2-Dichlorobenzene 0.0202mg/L 1 0.02001,3-Dichlorobenzene 0.0201 0.000500 mg/L 1 0.0200 100 70-130% 0.000500 99 1,4-Dichlorobenzene 0.0198 1 0.0200 70-130% mg/L Dichlorodifluoromethane 0.0195 0.00100 0.0200 97 70-130% mg/L 1 1.1-Dichloroethane 0.0201 0.000500 mg/L 1 0.0200 100 70-130% ---------1,2-Dichloroethane (EDC) 0.0217 0.000500 0.0200 109 70-130% mg/L 1 0.000500 0.0200 92 70-130% 1,1-Dichloroethene 0.0183 --mg/L 1 --cis-1,2-Dichloroethene 0.02050.000500 mg/L 1 0.0200102 70-130% trans-1,2-Dichloroethene 0.0200 0.000500 0.0200 100 70-130% mg/L 1 1,2-Dichloropropane 0.0211 0.000500 1 0.0200 106 70-130% mg/L 0.00100 101 70-130% 1,3-Dichloropropane 0.0202 mg/L 1 0.0200 ---

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
LCS (9060589-BS1)			Prepared:	06/05/19 0	9:09 Ana	lyzed: 06/05/	/19 10:51					
2,2-Dichloropropane	0.0167		0.00100	mg/L	1	0.0200		83	70-130%			
1,1-Dichloropropene	0.0192		0.00100	mg/L	1	0.0200		96	70-130%			
cis-1,3-Dichloropropene	0.0191		0.00100	mg/L	1	0.0200		96	70-130%			
trans-1,3-Dichloropropene	0.0182		0.00100	mg/L	1	0.0200		91	70-130%			
Ethylbenzene	0.0189		0.000500	mg/L	1	0.0200		95	70-130%			
Hexachlorobutadiene	0.0197		0.00500	mg/L	1	0.0200		99	70-130%			
2-Hexanone	0.0402		0.0100	mg/L	1	0.0400		101	70-130%			
Isopropylbenzene	0.0187		0.00100	mg/L	1	0.0200		94	70-130%			
4-Isopropyltoluene	0.0190		0.00100	mg/L	1	0.0200		95	70-130%			
4-Methyl-2-pentanone (MiBK)	0.0392		0.0100	mg/L	1	0.0400		98	70-130%			
Methyl tert-butyl ether (MTBE)	0.0174		0.00100	mg/L	1	0.0200		87	70-130%			
Methylene chloride	0.0187		0.00500	mg/L	1	0.0200		94	70-130%			
Naphthalene	0.0170		0.00200	mg/L	1	0.0200		85	70-130%			
n-Propylbenzene	0.0183		0.000500	mg/L	1	0.0200		92	70-130%			
Styrene	0.0207		0.00100	mg/L	1	0.0200		104	70-130%			
1,1,1,2-Tetrachloroethane	0.0200		0.000500	mg/L	1	0.0200		100	70-130%			
1,1,2,2-Tetrachloroethane	0.0219		0.000500	mg/L	1	0.0200		109	70-130%			
Tetrachloroethene (PCE)	0.0195		0.000500	mg/L	1	0.0200		97	70-130%			
Toluene	0.0188		0.00100	mg/L	1	0.0200		94	70-130%			
1,2,3-Trichlorobenzene	0.0204		0.00200	mg/L	1	0.0200		102	70-130%			
1,2,4-Trichlorobenzene	0.0188		0.00200	mg/L	1	0.0200		94	70-130%			
1,1,1-Trichloroethane	0.0193		0.000500	mg/L	1	0.0200		97	70-130%			
1,1,2-Trichloroethane	0.0215		0.000500	mg/L	1	0.0200		108	70-130%			
Trichloroethene (TCE)	0.0205		0.000500	mg/L	1	0.0200		102	70-130%			
Trichlorofluoromethane	0.0243		0.00200	mg/L	1	0.0200		121	70-130%			
1,2,3-Trichloropropane	0.0198		0.00100	mg/L	1	0.0200		99	70-130%			
1,2,4-Trimethylbenzene	0.0195		0.00100	mg/L	1	0.0200		97	70-130%			
1,3,5-Trimethylbenzene	0.0191		0.00100	mg/L	1	0.0200		95	70-130%			
Vinyl chloride	0.0195		0.000500	mg/L	1	0.0200		97	70-130%			
m,p-Xylene	0.0384		0.00100	mg/L	1	0.0400		96	70-130%			
o-Xylene	0.0182		0.000500	mg/L	1	0.0200		91	70-130%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80-	-120 %		ition: 1x					
Toluene-d8 (Surr)			99 %		-120 %		"					
4-Bromofluorobenzene (Surr)			92 %		120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Batch 9060589 - EPA 1312/503	0B SPLP Vol	atiles					Wat	er		
Duplicate (9060589-DUP2)			Prepared: (06/05/19 12	2:17 Analy	zed: 06/05/	/19 14:00			
QC Source Sample: Non-SDG (A9)	E0723-01)									
Acetone	ND		2.00	mg/L	100		ND		 	30%
Benzene	3.20		0.0250	mg/L	100		3.40		 6	30%
Bromobenzene	ND		0.0500	mg/L	100		ND		 	30%
Bromochloromethane	ND		0.100	mg/L	100		ND		 	30%
Bromodichloromethane	ND		0.100	mg/L	100		ND		 	30%
Bromoform	ND		0.100	mg/L	100		ND		 	30%
Bromomethane	ND		0.500	mg/L	100		ND		 	30%
2-Butanone (MEK)	ND		1.00	mg/L	100		ND		 	30%
n-Butylbenzene	ND		0.100	mg/L	100		ND		 	30%
sec-Butylbenzene	ND		0.100	mg/L	100		ND		 	30%
ert-Butylbenzene	ND		0.100	mg/L	100		ND		 	30%
Carbon tetrachloride	ND		0.100	mg/L	100		ND		 	30%
Chlorobenzene	ND		0.0500	mg/L	100		ND		 	30%
Chloroethane	ND		0.500	mg/L	100		ND		 	30%
Chloroform	ND		0.100	mg/L	100		ND		 	30%
Chloromethane	ND		0.500	mg/L	100		ND		 	30%
2-Chlorotoluene	ND		0.100	mg/L	100		ND		 	30%
1-Chlorotoluene	ND		0.100	mg/L	100		ND		 	30%
,2-Dibromo-3-chloropropane	ND		0.500	mg/L	100		ND		 	30%
Dibromochloromethane	ND		0.100	mg/L	100		ND		 	30%
1,2-Dibromoethane (EDB)	ND		0.0500	mg/L	100		ND		 	30%
Dibromomethane	ND		0.100	mg/L	100		ND		 	30%
,2-Dichlorobenzene	ND		0.0500	mg/L	100		ND		 	30%
1,3-Dichlorobenzene	ND		0.0500	mg/L	100		ND		 	30%
,4-Dichlorobenzene	ND		0.0500	mg/L	100		ND		 	30%
Dichlorodifluoromethane	ND		0.100	mg/L	100		ND		 	30%
,1-Dichloroethane	ND		0.0500	mg/L	100		ND		 	30%
,2-Dichloroethane (EDC)	ND		0.0500	mg/L	100		ND		 	30%
,1-Dichloroethene	ND		0.0500	mg/L	100		ND		 	30%
is-1,2-Dichloroethene	ND		0.0500	mg/L	100		ND		 	30%
rans-1,2-Dichloroethene	ND		0.0500	mg/L	100		ND		 	30%
,2-Dichloropropane	ND		0.0500	mg/L	100		ND		 	30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Duplicate (9060589-DUP2)			Prepared	06/05/19	12:17 Ana	yzed: 06/05/	19 14:00					
QC Source Sample: Non-SDG (A9	DE0723-01)											
1,3-Dichloropropane	ND		0.100	mg/L	100		ND				30%	
2,2-Dichloropropane	ND		0.100	mg/L	100		ND				30%	
,1-Dichloropropene	ND		0.100	mg/L	100		ND				30%	
eis-1,3-Dichloropropene	ND		0.100	mg/L	100		ND				30%	
rans-1,3-Dichloropropene	ND		0.100	mg/L	100		ND				30%	
Ethylbenzene	0.302		0.0500	mg/L	100		0.310			3	30%	
Iexachlorobutadiene	ND		0.500	mg/L	100		ND				30%	
2-Hexanone	ND		1.00	mg/L	100		ND				30%	
sopropylbenzene	ND		0.100	mg/L	100		ND				30%	
1-Isopropyltoluene	ND		0.100	mg/L	100		ND				30%	
l-Methyl-2-pentanone (MiBK)	ND		1.00	mg/L	100		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.100	mg/L	100		ND				30%	
Methylene chloride	ND		0.500	mg/L	100		ND				30%	
Naphthalene	12.8		0.200	mg/L	100		13.9			8	30%	
n-Propylbenzene	ND		0.0500	mg/L	100		ND				30%	
Styrene	0.128		0.100	mg/L	100		0.136			6	30%	
,1,1,2-Tetrachloroethane	ND		0.0500	mg/L	100		ND				30%	
,1,2,2-Tetrachloroethane	ND		0.0500	mg/L	100		ND				30%	
Tetrachloroethene (PCE)	ND		0.0500	mg/L	100		ND				30%	
Coluene	1.37		0.100	mg/L	100		1.46			6	30%	
,2,3-Trichlorobenzene	ND		0.200	mg/L	100		ND				30%	
,2,4-Trichlorobenzene	ND		0.200	mg/L	100		ND				30%	
,1,1-Trichloroethane	ND		0.0500	mg/L	100		ND				30%	
,1,2-Trichloroethane	ND		0.0500	mg/L	100		ND				30%	
Trichloroethene (TCE)	ND		0.0500	mg/L	100		ND				30%	
Trichlorofluoromethane	ND		0.200	mg/L	100		ND				30%	
,2,3-Trichloropropane	ND		0.100	mg/L	100		ND				30%	
,2,4-Trimethylbenzene	ND		0.100	mg/L	100		ND				30%	
,3,5-Trimethylbenzene	ND		0.100	mg/L	100		ND				30%	
/inyl chloride	ND		0.0500	mg/L	100		ND				30%	
n,p-Xylene	0.390		0.100	mg/L	100		0.419			7	30%	
-Xylene	0.125		0.0500	mg/L	100		0.135			7	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	verv: 103 %	Limits: 80	120 %	Dilı	tion: 1x					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

	•	•										
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	BOB SPLP	Volatiles					Wat	er				
Duplicate (9060589-DUP2)			Prepared	: 06/05/19 1	12:17 Anal	yzed: 06/05	/19 14:00					
QC Source Sample: Non-SDG (AS	9E0723-01)											
urr: Toluene-d8 (Surr)		Recon	very: 100 %	Limits: 80	-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	80-	-120 %		"					
Matrix Spike (9060589-MS2)			Prepared	: 06/05/19 1	12:17 Anal	yzed: 06/05	/19 15:48					
QC Source Sample: Non-SDG (AS	9E0832-02)											
<u>1312/8260C</u>												
Acetone	18.8		10.0	mg/L	500	20.0	ND	94	70-130%			
Benzene	12.9		0.125	mg/L	500	10.0	2.31	106	70-130%			
Bromobenzene	10.2		0.250	mg/L	500	10.0	ND	102	70-130%			
Bromochloromethane	11.7		0.500	mg/L	500	10.0	ND	117	70-130%			
Bromodichloromethane	11.2		0.500	mg/L	500	10.0	ND	112	70-130%			
Bromoform	12.4		0.500	mg/L	500	10.0	ND	124	70-130%			
Bromomethane	12.5		2.50	mg/L	500	10.0	ND	125	70-130%			
-Butanone (MEK)	20.4		5.00	mg/L	500	20.0	ND	102	70-130%			
-Butylbenzene	10.5		0.500	mg/L	500	10.0	ND	105	70-130%			
ec-Butylbenzene	9.98		0.500	mg/L	500	10.0	ND	100	70-130%			
ert-Butylbenzene	9.14		0.500	mg/L	500	10.0	ND	91	70-130%			
Carbon tetrachloride	11.1		0.500	mg/L	500	10.0	ND	111	70-130%			
Chlorobenzene	10.7		0.250	mg/L	500	10.0	ND	107	70-130%			
Chloroethane	7.49		2.50	mg/L	500	10.0	ND	75	70-130%			
Chloroform	10.8		0.500	mg/L	500	10.0	ND	108	70-130%			
Chloromethane	11.0		2.50	mg/L	500	10.0	ND	110	70-130%			
-Chlorotoluene	10.1		0.500	mg/L	500	10.0	ND	101	70-130%			
-Chlorotoluene	9.63		0.500	mg/L	500	10.0	ND	96	70-130%			
,2-Dibromo-3-chloropropane	9.58		2.50	mg/L	500	10.0	ND	96	70-130%			
Dibromochloromethane	10.4		0.500	mg/L	500	10.0	ND	104	70-130%			
,2-Dibromoethane (EDB)	10.6		0.250	mg/L	500	10.0	ND	106	70-130%			
Dibromomethane	11.2		0.500	mg/L	500	10.0	ND	112	70-130%			
,2-Dichlorobenzene	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			
,3-Dichlorobenzene	10.2		0.250	mg/L	500	10.0	ND	102	70-130%			
,4-Dichlorobenzene	10.2		0.250	mg/L	500	10.0	ND	102	70-130%			
Dichlorodifluoromethane	10.6		0.500	mg/L	500	10.0	ND	106	70-130%			
,1-Dichloroethane	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Matrix Spike (9060589-MS2)			Prepared	: 06/05/19	12:17 Ana	lyzed: 06/05	/19 15:48					
QC Source Sample: Non-SDG (A9	E0832-02)											
1,2-Dichloroethane (EDC)	10.6		0.250	mg/L	500	10.0	ND	106	70-130%			
1,1-Dichloroethene	9.78		0.250	mg/L	500	10.0	ND	98	70-130%			
cis-1,2-Dichloroethene	10.4		0.250	mg/L	500	10.0	ND	104	70-130%			
trans-1,2-Dichloroethene	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			
1,2-Dichloropropane	10.6		0.250	mg/L	500	10.0	ND	106	70-130%			
1,3-Dichloropropane	10.4		0.500	mg/L	500	10.0	ND	104	70-130%			
2,2-Dichloropropane	8.60		0.500	mg/L	500	10.0	ND	86	70-130%			
1,1-Dichloropropene	10.3		0.500	mg/L	500	10.0	ND	103	70-130%			
cis-1,3-Dichloropropene	9.75		0.500	mg/L	500	10.0	ND	97	70-130%			
trans-1,3-Dichloropropene	9.23		0.500	mg/L	500	10.0	ND	92	70-130%			
Ethylbenzene	10.2		0.250	mg/L	500	10.0	0.180	100	70-130%			
Hexachlorobutadiene	10.7		2.50	mg/L	500	10.0	ND	107	70-130%			
2-Hexanone	19.5		5.00	mg/L	500	20.0	ND	97	70-130%			
Isopropylbenzene	10.3		0.500	mg/L	500	10.0	ND	103	70-130%			
4-Isopropyltoluene	9.92		0.500	mg/L	500	10.0	ND	99	70-130%			
4-Methyl-2-pentanone (MiBK)	19.2		5.00	mg/L	500	20.0	ND	96	70-130%			
Methyl tert-butyl ether (MTBE)	8.66		0.500	mg/L	500	10.0	ND	87	70-130%			
Methylene chloride	9.28		2.50	mg/L	500	10.0	ND	93	70-130%			
Naphthalene	16.9		1.00	mg/L	500	10.0	6.62	102	70-130%			
n-Propylbenzene	9.66		0.250	mg/L	500	10.0	ND	97	70-130%			
Styrene	11.1		0.500	mg/L	500	10.0	ND	111	70-130%			
1,1,1,2-Tetrachloroethane	10.5		0.250	mg/L	500	10.0	ND	105	70-130%			
1,1,2,2-Tetrachloroethane	10.5		0.250	mg/L	500	10.0	ND	105	70-130%			
Tetrachloroethene (PCE)	10.7		0.250	mg/L	500	10.0	ND	107	70-130%			
Toluene	11.1		0.500	mg/L	500	10.0	1.05	100	70-130%			
1,2,3-Trichlorobenzene	10.7		1.00	mg/L	500	10.0	ND	107	70-130%			
1,2,4-Trichlorobenzene	9.61		1.00	mg/L	500	10.0	ND	96	70-130%			
1,1,1-Trichloroethane	10.1		0.250	mg/L	500	10.0	ND	101	70-130%			
1,1,2-Trichloroethane	11.0		0.250	mg/L	500	10.0	ND	110	70-130%			
Trichloroethene (TCE)	11.0		0.250	mg/L	500	10.0	ND	110	70-130%			
Trichlorofluoromethane	13.3		1.00	mg/L	500	10.0	ND	133	70-130%			Q-
1,2,3-Trichloropropane	9.64		0.500	mg/L	500	10.0	ND	96	70-130%			
1,2,4-Trimethylbenzene	9.77		0.500	mg/L	500	10.0	ND	98	70-130%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 44 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 9060589 - EPA 1312/503	OB SPLP	/olatiles					Wat	er				
Matrix Spike (9060589-MS2)			Prepared	: 06/05/19	12:17 Anal	yzed: 06/05	/19 15:48					
QC Source Sample: Non-SDG (A9)	E0832-02)											
,3,5-Trimethylbenzene	9.89		0.500	mg/L	500	10.0	ND	99	70-130%			
/inyl chloride	10.3		0.250	mg/L	500	10.0	ND	103	70-130%			
n,p-Xylene	21.0		0.500	mg/L	500	20.0	0.268	104	70-130%			
-Xylene	9.79		0.250	mg/L	500	10.0	ND	98	70-130%			
Surr: 1,4-Difluorobenzene (Surr)		Recovery: 104 % Limits: 80-120 %		Dilı	tion: 1x							
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	-120 %		"					
Matrix Spike (9060589-MS3)			Prepared	: 06/05/19	12:17 Anal	yzed: 06/05	/19 22:07					
QC Source Sample: Non-SDG (A9)	E0832-02RF	<u> </u>										
1312/8260C		<u> </u>										
Acetone	1.86		1.00	mg/L	50	2.00	ND	93	70-130%			
Benzene	3.41		0.0125	mg/L	50	1.00	2.42	98	70-130%			
Bromobenzene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
Bromochloromethane	1.15		0.0500	mg/L	50	1.00	ND	115	70-130%			
Bromodichloromethane	1.11		0.0500	mg/L	50	1.00	ND	111	70-130%			
Bromoform	1.23		0.0500	mg/L	50	1.00	ND	123	70-130%			
Bromomethane	1.27		0.250	mg/L	50	1.00	ND	127	70-130%			
-Butanone (MEK)	1.96		0.500	mg/L	50	2.00	ND	98	70-130%			
-Butylbenzene	1.10		0.0500	mg/L	50	1.00	ND	110	70-130%			
ec-Butylbenzene	0.995		0.0500	mg/L	50	1.00	ND	99	70-130%			
ert-Butylbenzene	0.902		0.0500	mg/L	50	1.00	ND	90	70-130%			
Carbon tetrachloride	1.08		0.0500	mg/L	50	1.00	ND	108	70-130%			
Chlorobenzene	1.04		0.0250	mg/L	50	1.00	ND	104	70-130%			
Chloroethane	0.850		0.250	mg/L	50	1.00	ND	85	70-130%			
Chloroform	1.05		0.0500	mg/L	50	1.00	ND	105	70-130%			
Chloromethane	1.10		0.250	mg/L	50	1.00	ND	110	70-130%			
-Chlorotoluene	0.987		0.0500	mg/L	50	1.00	ND	99	70-130%			
-Chlorotoluene	0.946		0.0500	mg/L	50	1.00	ND	95	70-130%			
,2-Dibromo-3-chloropropane	0.995		0.250	mg/L	50	1.00	ND	100	70-130%			
Dibromochloromethane	1.03		0.0500	mg/L	50	1.00	ND	103	70-130%			
,2-Dibromoethane (EDB)	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
Dibromomethane	1.04		0.0230	mg/L	50	1.00	ND ND	104	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060589 - EPA 1312/503	0B SPLP	Volatiles					Wat	er				
Matrix Spike (9060589-MS3)			Prepared	06/05/19	12:17 Ana	lyzed: 06/05	/19 22:07					
QC Source Sample: Non-SDG (A9	E0832-02R1	E1)										
1,2-Dichlorobenzene	1.02		0.0250	mg/L	50	1.00	ND	102	70-130%			
1,3-Dichlorobenzene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
1,4-Dichlorobenzene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
Dichlorodifluoromethane	1.05		0.0500	mg/L	50	1.00	ND	105	70-130%			
1,1-Dichloroethane	0.999		0.0250	mg/L	50	1.00	ND	100	70-130%			
1,2-Dichloroethane (EDC)	1.02		0.0250	mg/L	50	1.00	ND	102	70-130%			
1,1-Dichloroethene	0.966		0.0250	mg/L	50	1.00	ND	97	70-130%			
cis-1,2-Dichloroethene	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
trans-1,2-Dichloroethene	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,2-Dichloropropane	1.03		0.0250	mg/L	50	1.00	ND	103	70-130%			
1,3-Dichloropropane	1.00		0.0500	mg/L	50	1.00	ND	100	70-130%			
2,2-Dichloropropane	0.793		0.0500	mg/L	50	1.00	ND	79	70-130%			
1,1-Dichloropropene	1.00		0.0500	mg/L	50	1.00	ND	100	70-130%			
cis-1,3-Dichloropropene	0.930		0.0500	mg/L	50	1.00	ND	93	70-130%			
trans-1,3-Dichloropropene	0.897		0.0500	mg/L	50	1.00	ND	90	70-130%			
Ethylbenzene	1.17		0.0250	mg/L	50	1.00	0.196	97	70-130%			
Hexachlorobutadiene	1.05		0.250	mg/L	50	1.00	ND	105	70-130%			
2-Hexanone	1.90		0.500	mg/L	50	2.00	ND	95	70-130%			
Isopropylbenzene	1.01		0.0500	mg/L	50	1.00	ND	101	70-130%			
4-Isopropyltoluene	0.993		0.0500	mg/L	50	1.00	ND	99	70-130%			
4-Methyl-2-pentanone (MiBK)	1.85		0.500	mg/L	50	2.00	ND	93	70-130%			
Methyl tert-butyl ether (MTBE)	0.830		0.0500	mg/L	50	1.00	ND	83	70-130%			
Methylene chloride	0.892		0.250	mg/L	50	1.00	ND	89	70-130%			
Naphthalene	9.89		0.100	mg/L	50	1.00	10.1	-20	70-130%			E, Q-03
n-Propylbenzene	0.951		0.0250	mg/L	50	1.00	ND	95	70-130%			
Styrene	1.23		0.0500	mg/L	50	1.00	0.107	113	70-130%			
1,1,1,2-Tetrachloroethane	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
1,1,2,2-Tetrachloroethane	1.01		0.0250	mg/L	50	1.00	ND	101	70-130%			
Tetrachloroethene (PCE)	1.02		0.0250	mg/L	50	1.00	ND	102	70-130%			
Toluene	2.00		0.0500	mg/L	50	1.00	1.09	91	70-130%			
1,2,3-Trichlorobenzene	1.14		0.100	mg/L	50	1.00	ND	114	70-130%			
1,2,4-Trichlorobenzene	1.01		0.100	mg/L	50	1.00	ND	101	70-130%			
1,1,1-Trichloroethane	0.990		0.0250	mg/L	50	1.00	ND	99	70-130%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 46 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

SPLP Volatile Organic Compounds by EPA 1312/8260C Detection Reporting Spike % REC RPD Source Dilution Analyte Result Ĺimit Units Amount Result % REC Limits RPD Limit Limit Notes Water Batch 9060589 - EPA 1312/5030B SPLP Volatiles Matrix Spike (9060589-MS3) Prepared: 06/05/19 12:17 Analyzed: 06/05/19 22:07 QC Source Sample: Non-SDG (A9E0832-02RE1) 1.00 1,1,2-Trichloroethane 1.05 0.0250 mg/L 50 ND 105 70-130% Trichloroethene (TCE) 1.08 0.0250 50 1.00 ND 70-130% mg/L 108 Trichlorofluoromethane 1.30 50 70-130% 0.100 mg/L 1.00 ND 130 1,2,3-Trichloropropane 0.954 0.0500 mg/L50 1.00 ND 95 70-130% 1,2,4-Trimethylbenzene 1.06 0.0500 mg/L 50 1.00 0.0424 102 70-130% 1,3,5-Trimethylbenzene 1.01 0.05001.00 ND 101 70-130% mg/L 50 Vinyl chloride 0.0250 70-130% 1.03 mg/L 50 1.00 ND 103 m,p-Xylene 2.39 0.0500 50 2.00 0.307 104 70-130% mg/L o-Xylene 1.00 0.106 98 70-130% 1.09 0.0250 mg/L 50 1,4-Difluorobenzene (Surr) 104 % 80-120 % Recovery: Limits: Dilution: 1x Toluene-d8 (Surr) 99 % 80-120 % " 4-Bromofluorobenzene (Surr) 91 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 61

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060490 - EPA 3546							Soli	d				
Blank (9060490-BLK1)			Prepared	: 06/03/19	10:10 Anal	lyzed: 06/04	/19 14:03					
EPA 8270D (SIM)												
Acenaphthene	ND		2.67	ug/kg	1							
Acenaphthylene	ND		2.67	ug/kg	1							
Anthracene	ND		2.67	ug/kg	1							
Benz(a)anthracene	ND		2.67	ug/kg	1							
Benzo(a)pyrene	ND		2.67	ug/kg	1							
Benzo(b)fluoranthene	ND		2.67	ug/kg	1							
Benzo(k)fluoranthene	ND		2.67	ug/kg	1							
Benzo(g,h,i)perylene	ND		2.67	ug/kg	1							
Chrysene	ND		2.67	ug/kg	1							
Dibenz(a,h)anthracene	ND		2.67	ug/kg	1							
Dibenzofuran	ND		2.67	ug/kg	1							
Fluoranthene	ND		2.67	ug/kg	1							
Fluorene	ND		2.67	ug/kg	1							
Indeno(1,2,3-cd)pyrene	ND		2.67	ug/kg	1							
I-Methylnaphthalene	ND		2.67	ug/kg	1							
2-Methylnaphthalene	ND		2.67	ug/kg	1							
Naphthalene	ND		2.67	ug/kg	1							
Phenanthrene	ND		2.67	ug/kg	1							
Pyrene	ND		2.67	ug/kg	1							
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 66 %	Limits: 44		Dilı	ution: Ix					
p-Terphenyl-d14 (Surr)			70 %		-127 %		"					
LCS (9060490-BS1)	_		Prepared	: 06/03/19	10:10 Anal	lyzed: 06/04/	/19 14:30	_	_		_	_
EPA 8270D (SIM)			*									
Acenaphthene	499		2.67	ug/kg	1	533		94	40-122%			
Acenaphthylene	482		2.67	ug/kg	1	533		90	32-132%			
Anthracene	475		2.67	ug/kg	1	533		89	47-123%			
Benz(a)anthracene	453		2.67	ug/kg	1	533		85	49-126%			
Benzo(a)pyrene	504		2.67	ug/kg	1	533			45-129%			
Benzo(b)fluoranthene	464		2.67	ug/kg	1	533			45-132%			
Benzo(k)fluoranthene	456		2.67	ug/kg	1	533			47-132%			
	450											
Benzo(g,h,i)perylene	399		2.67	ug/kg	1	533			43-134%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270D SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060490 - EPA 3546							Solid	t				
LCS (9060490-BS1)			Prepared	: 06/03/19	10:10 Ana	yzed: 06/04	1/19 14:30					
Dibenz(a,h)anthracene	489		2.67	ug/kg	1	533		92	45-134%			
Dibenzofuran	501		2.67	ug/kg	1	533		94	44-120%			
Fluoranthene	504		2.67	ug/kg	1	533		95	50-127%			
Fluorene	502		2.67	ug/kg	1	533		94	43-125%			
Indeno(1,2,3-cd)pyrene	430		2.67	ug/kg	1	533		81	45-133%			
1-Methylnaphthalene	496		2.67	ug/kg	1	533		93	40-120%			
2-Methylnaphthalene	541		2.67	ug/kg	1	533		101	38-122%			
Naphthalene	802		2.67	ug/kg	1	533		150	35-123%			Q-2
Phenanthrene	456		2.67	ug/kg	1	533		86	50-121%			
Pyrene	510		2.67	ug/kg	1	533		96	47-127%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 74 %	Limits: 44	!-120 %	Dil	ution: 1x					
p-Terphenyl-d14 (Surr)			65 %	54	-127 %		"					
QC Source Sample: 2708-190522 EPA 8270D (SIM)	2-011 (A9E078	<u>35-01)</u>										
Acenaphthene	9630000		901000	ug/kg	10000		9320000			3	30%	
Acenaphthylene	ND		901000	ug/kg	10000		ND				30%	
Anthracene	6090000		901000	ug/kg	10000		6230000			2	30%	
Benz(a)anthracene	5120000		901000	ug/kg	10000		5750000			12	30%	M-0
Benzo(a)pyrene	5870000		901000	ug/kg	10000		6830000			15	30%	
Benzo(b)fluoranthene	6060000		901000	ug/kg	10000		7020000			15	30%	M-0
Benzo(k)fluoranthene	2470000		901000	ug/kg	10000		2840000			14	30%	M-0
Benzo(g,h,i)perylene	3630000		901000	ug/kg	10000		4250000			16	30%	
Chrysene	5250000		901000	ug/kg	10000		5980000			13	30%	M-0
Dibenz(a,h)anthracene	ND		901000	ug/kg	10000		904000			***	30%	Q-1
Dibenzofuran	5830000		901000	ug/kg	10000		5590000			4	30%	
Fluoranthene	17800000	0	901000	ug/kg	10000		19300000			8	30%	
Fluorene	5420000		901000	ug/kg	10000		5240000			3	30%	
Indeno(1,2,3-cd)pyrene	3880000		901000	ug/kg	10000		4670000			18	30%	
1-Methylnaphthalene	3000000		901000	ug/kg	10000		2960000			1	30%	
2-Methylnaphthalene	5700000		901000	ug/kg	10000		5650000			0.7	30%	
Naphthalene	16000000	0	901000	ug/kg	10000		16200000			1	30%	Q-2

Apex Laboratories

Philip Nevenberg

19900000

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

20600000

3

30%

Philip Nerenberg, Lab Director

Page 49 of 61

10000

901000

ug/kg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarb	ons (PAH	s) by EPA	8270D SI	И				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060490 - EPA 3546							Solid					
Duplicate (9060490-DUP1)			Prepared	: 06/03/19	10:10 Ana	lyzed: 06/04	/19 15:23					
OC Source Sample: 2708-190522	-011 (A9E078	<u>85-01)</u>										
Pyrene	16500000)	901000	ug/kg	10000		18100000			10	30%	
Surr: 2-Fluorobiphenyl (Surr)		R	ecovery: %	Limits: 4	4-120 %	Dilı	ution: 10000x					S-01
p-Terphenyl-d14 (Surr)			%	54	4-127 %		"					S-01

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

			SPLP F	PAH by E	PA 1312/	8270D SIN	И						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9060758 - EPA 1312/3	510C (Acid E	Ext.)					Soli	d					_
Blank (9060758-BLK1)			Prepared:	06/10/19	10:20 Ana	lyzed: 06/11/	/19 10:28						
1312/8270D (SIM)													_
Acenaphthene	ND		0.000200	mg/L	1								
Acenaphthylene	ND		0.000200	mg/L	1								
Anthracene	ND		0.000200	mg/L	1								
Benz(a)anthracene	ND		0.000200	mg/L	1								
Benzo(a)pyrene	ND		0.000200	mg/L	1								
Benzo(b)fluoranthene	ND		0.000200	mg/L	1								
Benzo(k)fluoranthene	ND		0.000200	mg/L	1								
Benzo(g,h,i)perylene	ND		0.000400	mg/L	1								
Chrysene	ND		0.000200	mg/L	1								
Dibenz(a,h)anthracene	ND		0.000200	mg/L	1								
Fluoranthene	ND		0.000200	mg/L	1								
Fluorene	ND		0.000200	mg/L	1								
Indeno(1,2,3-cd)pyrene	ND		0.000200	mg/L	1								
Naphthalene	0.00194		0.000400	mg/L	1								В
Phenanthrene	ND		0.000200	mg/L	1								
Pyrene	ND		0.000200	mg/L	1								
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 79 %	Limits: 44	4-120 %	Dilı	ution: 1x						
p-Terphenyl-d14 (Surr)			78 %	50	0-133 %		"						
													_
LCS (9060758-BS1)			Prepared:	06/10/19	10:20 Ana	lyzed: 06/11/	/19 10:54						_
1312/8270D (SIM)				_									
Acenaphthene	0.0358		0.000200	mg/L	1	0.0400			47-122%				
Acenaphthylene	0.0367		0.000200	mg/L	1	0.0400			41-130%				
Anthracene	0.0375		0.000200	mg/L	1	0.0400			57-123%				
Benz(a)anthracene	0.0377		0.000200	mg/L	1	0.0400			58-125%				
Benzo(a)pyrene	0.0404		0.000200	mg/L	1	0.0400		101	54-128%				
Benzo(b)fluoranthene	0.0376		0.000200	mg/L	1	0.0400			53-131%				
Benzo(k)fluoranthene	0.0391		0.000200	mg/L	1	0.0400		98	57-129%				
Benzo(g,h,i)perylene	0.0344		0.000400	mg/L	1	0.0400		86	50-134%				
Chrysene	0.0374		0.000200	mg/L	1	0.0400		93	59-123%				
Dibenz(a,h)anthracene	0.0405		0.000200	mg/L	1	0.0400		101	51-134%				
Fluoranthene	0.0408		0.000200	mg/L	1	0.0400		102	57-128%				
Fluorene	0.0382		0.000200	mg/L	1	0.0400		96	52-124%				

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

			SPLP F	PAH by E	PA 1312/	8270D SIN	И					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9060758 - EPA 1312/35	10C (Acid E	Ext.)					Soli	d				
LCS (9060758-BS1)			Prepared:	06/10/19	10:20 Anal	lyzed: 06/11/	/19 10:54					
Indeno(1,2,3-cd)pyrene	0.0364		0.000200	mg/L	1	0.0400		91	52-133%			
Naphthalene	0.0355		0.000400	mg/L	1	0.0400		89	40-121%			В
Phenanthrene	0.0365		0.000200	mg/L	1	0.0400		91	59-120%			
Pyrene	0.0419		0.000200	mg/L	1	0.0400		105	57-126%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 84 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			74 %	50	-133 %		"					
LCS Dup (9060758-BSD1)			Prepared:	: 06/10/19	10:20 Ana	lyzed: 06/11	/19 11:21					Q-19
1312/8270D (SIM)												
Acenaphthene	0.0359		0.000200	mg/L	1	0.0400		90	47-122%	0.3	30%	
Acenaphthylene	0.0371		0.000200	mg/L	1	0.0400		93	41-130%	1	30%	
Anthracene	0.0398		0.000200	mg/L	1	0.0400		100	57-123%	6	30%	
Benz(a)anthracene	0.0388		0.000200	mg/L	1	0.0400		97	58-125%	3	30%	
Benzo(a)pyrene	0.0421		0.000200	mg/L	1	0.0400		105	54-128%	4	30%	
Benzo(b)fluoranthene	0.0389		0.000200	mg/L	1	0.0400		97	53-131%	4	30%	
Benzo(k)fluoranthene	0.0402		0.000200	mg/L	1	0.0400		100	57-129%	3	30%	
Benzo(g,h,i)perylene	0.0353		0.000400	mg/L	1	0.0400		88	50-134%	2	30%	
Chrysene	0.0394		0.000200	mg/L	1	0.0400		99	59-123%	5	30%	
Dibenz(a,h)anthracene	0.0418		0.000200	mg/L	1	0.0400		105	51-134%	3	30%	
Fluoranthene	0.0426		0.000200	mg/L	1	0.0400		107	57-128%	4	30%	
Fluorene	0.0385		0.000200	mg/L	1	0.0400		96	52-124%	0.8	30%	
Indeno(1,2,3-cd)pyrene	0.0378		0.000200	mg/L	1	0.0400		94	52-133%	4	30%	
Naphthalene	0.0330		0.000400	mg/L	1	0.0400		83	40-121%	7	30%	В
Phenanthrene	0.0381		0.000200	mg/L	1	0.0400		95	59-120%	4	30%	
Pyrene	0.0436		0.000200	mg/L	1	0.0400		109	57-126%	4	30%	
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 85 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			72 %	50	-133 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Hahn and Associates Project: **Mult 802 Decommissioning**

434 NW 6th Ave. Suite 203 Project Number: 2708-60F Report ID: Portland, OR 97209 Project Manager: Rob Ede A9E0785 - 06 19 19 1644

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	l <u>s)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060517			*	*			
A9E0785-01	Solid	NWTPH-Dx	05/22/19 16:30	06/03/19 16:03	0.59g/5mL	10g/5mL	16.90
	Gas	soline Range Hydrocar	bons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060533			*	•			
A9E0785-01	Solid	NWTPH-Gx (MS)	05/22/19 16:30	05/31/19 15:46	1.43g/5mL	5g/5mL	3.50
		Volatile Orga	anic Compounds by	EPA 5035A/8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060533			1	1			
A9E0785-01	Solid	5035A/8260C	05/22/19 16:30	05/31/19 15:46	1.43g/5mL	5g/5mL	3.50
Batch: 9060582							
A9E0785-01RE1	Solid	5035A/8260C	05/22/19 16:30	05/31/19 15:46	1.43g/5mL	5g/5mL	3.50
		SPLP Volatile	Organic Compounds	s by EPA 1312/8260	С		
Prep: EPA 1312/5030I	B SPLP Volatile	<u>s</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060589	TVIALITY.	Method	Sumpreu	Trepared			
A9E0785-01RE1	Solid	1312/8260C	05/22/19 16:30	06/05/19 12:17	5mL/5mL	5mL/5mL	1.00
		Polyaromatic I	Hydrocarbons (PAHs	s) by EPA 8270D SII	M		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060490			r	- F			
			05/22/19 16:30	06/03/19 10:10	1.14g/5mL	10g/5mL	8.77

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 53 of 61 Philip Nerenberg, Lab Director

<u>Hahn and Associates</u> Project: <u>Mult 802 Decommissioning</u>

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

SAMPLE PREPARATION INFORMATION

		SPLF	PAH by EPA 1312	/8270D SIM			
Prep: EPA 1312/3510	C (Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060758							
A9E0785-01	Solid	1312/8270D (SIM)	05/22/19 16:30	06/10/19 10:20	200mL/2mL	200mL/2mL	1.00
		SI	PLP Extraction by E	PA 1312			
Prep: EPA 1312 (SPL	. <u>P)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060621 A9E0785-01	Solid	EPA 1312	05/22/19 16:30	06/05/19 17:15	100g/2000mL	100g/2000mL	NA
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9060554							
A9E0785-01	Solid	EPA 1312 ZHE	05/22/19 16:30	06/04/19 15:58	15g/300mL	25g/500mL	NA

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)

- E Estimated Value. The result is above the calibration range of the instrument.
- F-17 No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
- M-02 Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- **Q-01** Spike recovery and/or RPD is outside acceptance limits.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-17 RPD between original and duplicate sample is outside of established control limits.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -14%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -2%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -24%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -9%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference
- V-16 Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was not preserved within 48 hours of sampling.
- X See Case Narrative.

Philip Nevenberg

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 55 of 61

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

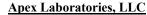
"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.


Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 57 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 58 of 61

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 59 of 61

Hahn and Associates Project: Mult 802 Decommissioning

 434 NW 6th Ave. Suite 203
 Project Number: 2708-60F
 Report ID:

 Portland, OR 97209
 Project Manager: Rob Ede
 A9E0785 - 06 19 19 1644

434 NW Sixth Avenue, Suite 203 • Portland OR 97209	Environmental Consultants WW Sixth Avenue, Suite 203 • Portland OR 97209	Lab Project No.	Apex Labs Tigard, Oregon No.			CHAIN OF CUSTC	CHAIN OF CUSTODY Chain of Custody No. 1
(503) 796-0717 • Fax (503) 227-2209	(503) 227-2209						
ager		Liquid with Sediment Sample	nt Sample			Samples Received at 4C (Y or N)	Y or N)
Project No. 2708-60F		Test Filtrate	-	Test Sediment	Test Both		d (YorN)
	Mult 802 Decommissioning Ben Uhl	Multi-Phase Sample				Provide Verbal Results (Y or N)	
		(est One (wruch)		Test Separately	Shake	Provide Preliminary Fax Results	sults Yes
Comments		Matrix		Analyses	Analyses to be Performed	-	 - -
Cample reminer FIETA. 4/00-	-77cns1-		*****		р		
PLEASE FREEZE and HOLD all but VOAs. Please freeze and hold remaining 8-oz jar.	Il but VOAs. ing 8-oz jar.		20928 borliaM A9		le by EPA Series le by EPA Method		
		iter ner nber of Co		хо-нчт	00007\00 al Cyanio		н
		oe BW IIA IIO IIO	VS Iu7	MN	009		ะกล
*	Time Sar						Remarks
011 22-May-19	16:30 363 feet bgs	у ×					

				-			
			+	+			
			-	-			
			***************************************		-		
elinquished by	Hahn and Associates, In	nc.	Tas	Beceim	1		
Can Che		6/186/9	(355	- Marie Mari	de	8/73/19 PI/EL/2	Company ARX Lass
	Company	Date	<u>e</u>	Received by		Company)
eimquished by	Company	Date	Time	Received by		Company	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Hahn and Associates 434 NW 6th Ave. Suite 203 Portland, OR 97209

Project:

Mult 802 Decommissioning

Project Number: 2708-60F

Project Manager: Rob Ede

Report ID:

A9E0785 - 06 19 19 1644

APEX LABS COOLER RECEIPT FORM
Client: Hahn Element WO#: A9EO785
Project/Project # Mall Class 2
Project/Project #: Mult 802 Decommissing 2709-60F
Denvery 1810:
Date/time received: $\frac{5/23/19}{125}$ By: $C \rightarrow H$
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Cooler Inspection Date/time inspected 5/13/19 Cartillo Senvoy SDS Other Cooler Inspection Cooler Cooler
Custody seals? Vec
res /\lambda No
Signed/dated by Apex? Yes \(\sqrt{No} \)
Temperature (°C) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Received on ice? (Y/N)
Temp. blanks? (Y/N)
Ice type: (Gel/Real/Other) [-c]
Cooler out of temp? (YN) Possible reason why:
Samples Inspection: Date/time inspected: J22/19 @ 1630 By: All samples intact? Yes No Comments:
Bottle labels/COCs agree? Yes No Comments:
COC/container discrepancies form initiated? Yes No NA X
Containers/volumes received appropriate for analysis? Yes No Comments:
No Comments:
Do VOA vials have visible headspace? Yes No NA
Water samples: pH checked: YesNoNApH appropriate? YesNoNA
Comments:NoNANONA
Additional information:
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y
UNI COME COME Y

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Triton Analytics Corp. 16840 Barker Springs, #302 Houston, TX 77084 (281) 578-2289

TAC Reference: 10733 Requested By: R. Ede | Hahn & Associates Date: 07/25/2019 (Original) 10/29/2019 (Updated)

Certificate of Analysis

_	Sample Name (HAI) Sample Name (Apex)	2708-190521-007 A9E0723-01 A	2708-190606-OIL A9F0287-01 A
	Method		
Density @ 60 F, (g/cm3) API Gravity @ 60 F Specific Gravity @ 60 F	ASTM D4052		1.0002 9.8 1.0012
Dynamic Visc @ 10 C, (mPa-s) Kinematic Visc @ 10 C, (mm2/s) Density @ 10 C, (g/cm3)	ASTM D7042		16.1 16.0 1.0040
Dynamic Visc @ 30 C, (mPa-s) Kinematic Visc @ 30 C, (mm2/s) Density @ 30 C, (g/cm3)	ASTM D7042	10096 8432 1.1973	7.43 7.51 0.9896
Dynamic Visc @ 35 C, (mPa-s) Kinematic Visc @ 35 C, (mm2/s) Density @ 35 C, (g/cm3)	ASTM D7042	5262 4406 1.1944	±3.4%
Dynamic Visc @ 40 C, (mPa-s) Kinematic Visc @ 40 C, (mm2/s) Density @ 40 C, (g/cm3)	ASTM D7042	2847 2387 1.1927	
Dynamic Visc @ 45 C, (mPa-s) Kinematic Visc @ 45 C, (mm2/s) Density @ 45 C, (g/cm3)	ASTM D7042	1601 1347 1.1882	±3.2%
Dynamic Visc @ 50 C, (mPa-s) Kinematic Visc @ 50 C, (mm2/s) Density @ 50 C, (g/cm3)	ASTM D7042	964 814 1.1850	±3.1%