Collocation Power Issues

- Brief History of Interconnection
- Collocation Power Connection Diagram
- Why ILEC Should Provide Power
- Costs to be Recovered
 - Power Drain Monitoring
- Power Capacity Issues
- Collocation Time Frames
- Power Alarm Access

LUSWEST

Exhibit CA-3
June 14, 2006

1913

Kingsbury Commitment (Interconnection for Independents)

1896 — First Common Battery

Bell Patents Expire

Bell Invents the Telephone

LUSWEST

ntelec '98 🦃

USWEST

riteLec '98

Why ILECs Should Provide Power

- · Floor Loading
 - Bellcore GR-63
- Ventilation
 - IEEE Stds 484 & 1187, & the UFC
- HazMat & Fire Concerns led UFC to Require Containment and Compartmentation
 - VRLAs Overcome this but have a Shorter Life & are Susceptible to Thermal Runaway
- Much Proactive Maintenance Required
 - IEEE Stds 450 & 1188 for Battery Maintenance are Examples
- AC Power Issues
 - ILEC Owns Engine
 - No UPS for CLECs, but Inverters Yes
- Present Telecomm NEC Exemption Might be Lost

Power Cost Recovery

- Costs to be Recovered
 - One-time DC Cabling Costs
 - Power Infrastructure Portion Used by CLEC
 - DC Plant, Primary Cabling, Engine, Building AC
 - CLECs Portion of Maintenance and Monitoring
 - Cost of Electricity Used + Energy to Cool Eqpt.
- Cost-Recovery Methods
 - Up Front (use NPV)
 - Recurring (Amortization)
 - Possibly Use a Combination of Both

LUSWEST

Power Cost Recovery (Continued)

- Additional Possible "Power" Costs
 - Residual Ringing
 - Uninterruptible, Essential, or Convenience AC
 - Power Alarming
- Power Drain Monitoring
 - Power Monitors where Available
 - Manual Periodic "Average" Measurement
 - Predetermined, Contracted Amount
 - Possibly Use a Combination
 - e.g., Power Monitors & Manual for Large Drains, Predetermined for Small

Power Capacity Issues

- CLEC Power Usage May Drive Immediate Addition of Power Backup, or Will Cause Earlier Exhaust for ILEC
- Backup Power Items Subject to Exhaust
 - Rectifiers
 - Batteries (3 or 8 hour backup)
 - BDFBs
 - Engine-Alternator(s)
 - House AC Service Panel/Entrance
 - AC Distribution Infrastructure

Collocation Time Frames

- FCC Suggests Collocation can be Completed in 90 Days from Date of Agreement for a Site
- Unless Capacity is Added to Selected Sites
 Beforehand the Following Can Cause Delays:
 - New BDFB (3 months)
 - Rectifier Addition (3 months)
 - Battery String(s) Addition (4 months)
 - New Engine-Alternator (6 months)
 - New DC Power Plant (6 months)
 - New AC Service Entrance (6 months)

1992						
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	Pa

LUSWEST

ntelec '98 😭

Power Alarm Access by CLECs

- Can be Done but Costs should be Borne by CLECs and Control of "Control Points" should be Maintained by the ILEC
 - Dry Contacts
 - Diode Protection
 - Power Monitors with Dialup Access
 - Can Limit ILEC Access if CLEC Access Given
 - Secure Protocols
 - X.25, SNMP, TCP/IP, etc.

Questions?

LUSWEST

ntelec '98 😭

Docket No. U1-003013
Exhibit CA-3
June 14, 2006