AVISTA CORP. RESPONSE TO REQUEST FOR INFORMATION

JURISDICTION:	WASHINGTON	DATE PREPARED:	$06 / 15 / 2015$
CASE NO.:	UE-150204 \& UG-150205	WITNESS:	Bryan Cox
REQUESTER:	UTC Staff - Gomez	RESPONDER:	R.Pickett/K.Sweigart/R. Farley
TYPE:	Data Request	DEPT:	State \& Federal Regulation
REQUEST NO.:	Staff-137 SUPPLEMENTAL TELEPHONE:	(509) 495-2293	
		EMAIL:	karen.schuh@avistacorp.com

REQUEST:

For the Business Case titled; Transmission - Re-conductors and Rebuilds in Schuh’s Exhibit No. (KKS-5), Attachment No. \qquad ETD-11 and DeFelice's Exhibit No. \qquad (DBD-5), Attachment No. \qquad ETD11, the Company makes the following predictions for transfer to plant (data in columns labeled "fcst"). The Company's compliance filing as part of UE-140188 provides expenditure data both actual and forecast for the years 2013-2016.

Transmission - Reconductors and Rebuilds Business Case, Schuh Exhibit No. \qquad (KKS-5), Attachment No. \qquad ETD-11	Transfer to Plant; Last Case UE-140188						Transfer to Plant; This Case UE-150204				
	2013 actual	2014 fcst		2015 fest		2016 fest	2013 actual	2014 actual	2015 fcst		2016 fcst
	\$ 2,282,559	\$11,796,742	S 21,387,946		s	24,636,134	\$ $2,282,559$	\$ 5,687,660	\$14,262,946	S $23,811,135$	
	Total 2013-2016				S 60,103,381		Total 2013-2016 ${ }^{\text {S }}$ \$ $46,044,300$				
Expenditure	2013 actual	2014 actual		2015 fest		2016 fcst					
	\$ 8,791,147	\$ 6,538,020		17,912,946		24,536,134					
	Total 2013-2016					57,778,247					

Figure 1-Transmission Re-conductors and Rebuilds

In its response to ICNU DR 006, the Company provided a document titled; Electric Transmission System 2014 Annual Update, dated March 31, 2014. On Page 19 there is a table showing 30-year planned capital and O\&M recommendations (Figure 2 below).

08M\%	0\%	0\%	0\%	0\%	0\%	100\%	100\%	100\%	100\%	100\%			
Capital \%	100\%	100\%	100\%	100\%	100\%	0\%	0\%	0\%	0\%	0\%	Total Capital	Total O\&M	Total Planned
2013	\$8,785,633	\$3,965,832	\$1,136,787	\$150,556	\$970,036	\$294,000	\$94,595	\$1,100,000	\$200,000	\$100,000	\$15,008,844	\$1,788,595	\$16,797,439
2014	\$14,110,816	\$2,210,000	\$1,159,523	\$264,000	\$1,300,000	\$192,000	\$100,000	\$1,200,000	\$242,000	\$100,000	\$19,044,339	\$1,834,000	\$20,878,339
2015	\$19,436,000	\$3,000,000	\$1,182,713	\$264,000	\$1,300,000	\$192,000	\$100,000	\$1,200,000	\$242,000	\$100,000	\$25,182,713	\$1,834,000	\$27,016,713
2016	\$19,436,000	\$3,000,000	\$1,206,367	\$264,000	\$1,300,000	\$192,000	\$100,000	\$1,200,000	\$242,000	\$100,000	\$25,206,367	\$1,834,000	\$27,040,367
2017	\$19,436,000	\$3,000,000	\$1,230,495	\$264,000	\$1,300,000	\$192,000	\$100,000	\$1,200,000	\$242,000	\$100,000	\$25,230,495	\$1,834,000	\$27,064,495
2018	\$19,436,000	\$3,000,000	\$1,255,105	\$264,000	\$1,300,000	\$192,000	\$100,000	\$1,200,000	\$242,000	\$0	\$25,255,105	\$1,734,000	\$26,989,105
2019-2043	\$19,450,000	\$3,000,000	\$1,280,207	\$250,000	\$1,300,000	\$175,000	\$100,000	\$1,000,000	\$50,000	\$0	\$25,280,207	\$1,325,000	\$26,605,207

Table 10: 30-year Planned Capital and O\&M Recommendations

Figure 2; 2014 Transmission System Annual Update, Table 10

ER Description	BI Proj	BI Description	2014	2015	2016	2017	2014-2017
Benewah-Moscow 230kV	PT305	Reconductor/Rebuild	\$25,000	\$7,815,802	\$8,060,576	\$8,302,393	\$24,203,771
CDA-Pine Creek 115kV Rebuild	CT300	Rebuild Transmission	\$25,000	\$0	\$4,500,000	\$5,750,000	\$10,275,000
Devils Gap-Lind 115kV Rebuild	ST302	Rebuild Transmission	\$2,346,742	\$3,947,144	\$4,050,558	\$0	\$10,344,444
Ben-Oth SS 115 - ReCond/ReBld	FT130	Ben-Oth SS 115 - ReCond/ReBld	\$2,500,000	\$3,600,000	\$3,500,000	\$0	\$9,600,000
Sys - Rebuild Trans - Condition	AMT81	BRX-CAB \& BRX-SCR Rebuild	\$2,500,000	\$2,500,000	\$2,500,000	\$2,000,000	\$9,500,000
Pine Creek-Burke-Thompson Falls	CT101	Rebuild Transmission	\$3,700,000	\$3,500,000	\$0	\$0	\$7,200,000
LP Line Ratings Mitigation Project	CT305	BEN-PIN 115kV Trans Line Mitigatic	\$250,000	\$500,000	\$2,500,000	\$2,500,000	\$5,750,000
			\$11,346,742	\$21,862,946	\$25,111,134	\$18,552,393	\$76,873,215
Table 16: Major Rebuild Projects, 2014-2017							

Figure 3; 2014 Transmission System Annual Update; Table 16

Transmission - Reconductors and Rebuilds Business Case, Schuh Exhibit No. _ (KKS-5), Attachment No. ETD-11	Transfer to Plant; Last Case UE-140188				Transfer to Plant; This Case UE-150204					Deltas			
ER ER_TITLE		014 fcst	2015 fcst	2016 fcst		14 actual		2015 fcst	2016 fcst	2014	2015		2016
2577 Benewah-Moscow 230kV - Structure Replacement	S	-	\$ 7,840,802	\$ 8,060,576	S	-	S	7,815,802	\$ 8,060,576	S	\$ 25,000	S	-
2582 Beacon-Bell-Francis \& Cdr-Waikiki 115kV - Reconfig	S	-	S	S	\$	-	S	-	S	S	S	S	-
2574 Chelan-Stratford 115kV - Rbld Columbia River Xing	S	350,000	S	S	S	-	S	-	S	\$ 350,000	S	S	-
2557 9CE-Sunset 115 kV Transmission Line: Rebuild	\$	-	S	\$ 925,000	\$	-	S	-	\$ 925,000	S	S	S	-
2556 CDA-Pine Creek 115kV Transmission Line: Rebuild	S	-	S	\$ 4,575,000	\$	-	S	-	\$ 150,000	S	S	S	4,425,000
2550 Burke-Thompson A\&B 115kV Transmission Rebuld Proj	S	4,100,000	\$ 3,500,000	\$ -	S	2,238,328	S	-	S	\$ 1,861,672	\$ 3,500,000	S	-
2549 Moscow City to North Lewiston 115 kV Rebuild Proj	S	-	\$ -	\$ -	S	$(250,973)$	S	-	S	\$ 250,973	S	S	-
2457 Benton-Othello 115 Recond	S	2,500,000	\$ 3,600,000	\$ 3,500,000	S	2,285,424	S	-	\$ 7,100,001	\$ 214,576	\$ 3,600,000	S	$(3,600,001)$
2423 System Transmission:Rebuild Condition	S	2,500,000	\$ 2,500,000	\$ 2,500,000	S	446	S	2,500,000	\$ 2,500,000	\$ 2,499,554	S	S	-
2310 West Plains Transmission Reinforce	S	-	S	\$ 1,025,000	S	-	S	-	\$ 1,025,000	S	S	S	-
2564 Devils Gap-Lind 115kV Transmission Rebuild Proj	S	2,346,742	\$ 3,947,144	\$ 4,050,558	S	1,414,434	S	3,947,144	\$ 4,050,558	\$ 932,308	S	S	-
Total	S	11,796,742	\$21,387,946	\$24,636,134	S	5,687,660	S	14,262,946	\$23,811,135	\$ 6,109,082	\$ 7,125,000	S	824,999

Figure 4; Transfers to Plant, Major Rebuilds by ER
A. Please provide the spreadsheet referred to on Page 5, Paragraph 2 of the 2014 Annual Update. Also provide the 2015 Annual Update along with the spreadsheet containing supporting data.
B. Explain the differences in transfer to plant amounts and divergence from the forecasts made only one year ago in UE-140188. Given the significant deviation to plan in major rebuild project completions (transfers to plant), explain why Staff witness Cox makes no mention in his testimony of this fact.
C. Why is Mr. Cox testimony virtually identical to Ms. Rosentrater’s testimony in UE-140188 given the decision in the 2014 Annual Update to significantly ramp up capital spending from previous levels? ${ }^{1}$
D. Explain and reconcile the differences in the 2014 and 2015 report and Staff's Figure 4 above against Ms. Schuh's Exhibit, Attachment No. \qquad ETD-11.1.

RESPONSE:

A. Please see Staff_DR_137 Attachment A, provided electronically only, as this represents the spreadsheet referred to on Page 5, Paragraph 2 of the 2014 Annual Update. The 2015 Annual Update and spreadsheet are not available as they are under development at this time. This data response will be supplemented when it becomes available.

[^0]B. An overall reduction in Transmission Capital expenditures was made during 2015, in order to manage the total Capital Budget in 2015. Avista revisits its Capital Budget on an annual basis and prioritizes accordingly. With a given allowable Capital spend, projects that may be approved to construct in a specific year can be moved to a future year if a higher priority project presents itself. Additionally, the overall Capital Budget is monitored on a monthly basis for expected year-end spending and any change in spending needs. These too can affect the annual spending on a budgeted project.

1. ER 2577 Benewah-Moscow 230kV Transmission Structure Replacement - The 2015 \$25,000 differential is due to a recalculation of the 2015 budgeted amount. This amount is fairly small compared to the overall project costs.
2. ER 2574 Chelan-Stratford 115 kV Columbia River Crossing Rebuild - This project was scheduled to complete late in the year 2014, and was moved into 2015 due to permit delays.
3. ER 2550 Burke-Thompson A\&B 115kV Transmission Rebuild -The change in this ER is due to moving completion of Phase 3 of the Project from 2015 to 2017. The delta of $\$ 1,861,672$ in transfers to plant was due to material purchases taking place 2013, and a construction contract savings of $\$ 700,000$ due to addition of new bidders adding competition to the process. This project budget estimate was based on 2013 spending for similar work, and proved to be too conservative. All planned work was accomplished. The \$3,500,000 transfer to plant delta in 2015 was due to higher priority projects elsewhere in the overall capital budget being funded. This project will start construction in 2017. This reduced spend to the 2015 budget of $\$ 3,500,000$ is offset by expenditures in the remainder of Avista’s Capital Budget.
4. ER 2549 Moscow City-North Lewiston 115kV Transmission Line Rebuild - The delta of $\$ 250,973$ transfers to plant in 2014 was due to a construction invoice accrual credit from budget year 2013.
5. ER 2457 Benton-Othello Reconductor and Rebuild - This project was originally envisioned as a 3-year (3-phase) project closing to plant each year. However, due to a change in the way WECC's Reliability Coordinator (RC) has flexed its influence on real-time outage issues, Avista was no longer able to perform work on this project in the summer months. Instead of completing Phase 2 in the summer of 2015, and Phase 3 in the summer of 2016, the work is being combined into a Phase $2 / 3$ project in the winter of $2015 / 2016$. Although money is being spent in 2015, the combined capital expenditures transfer to plant in 2016. This change in transfers to plant is reflected by a \$3,600,000 reduction in 2015.
6. ER 2556 CDA-Pine Creek 115 kV Reconductor and Rebuild - In 2016 there is a reduction in transfers to plant due to shifting Phase 1 of this 3-phase project from 2016 into 2017. The $\$ 4,425,000$ reduction in transfer to plant in 2016 was due to higher priority projects elsewhere in the overall Capital Budget being funded. Phase 1 of this Project will transfer in 2017.
7. ER 2423 System Transmission Rebuild (Condition) - The $\$ 2,499,554$ reduction in transfer to plant in 2014 was due to higher priority projects elsewhere in the overall Capital Budget being funded. Phase 3 of this Project will transfer to plant in 2015.
8. ER 2564 Devils Gap-Lind 115kV Transmission Rebuild Project - The variation \$932,308 reduction in transfers to plant was due to a portion of the project being shifted to 2015 in order to accommodate redesign (storm strengthening) of a portion of the line susceptible to in-cloud icing (recent structural failures). This portion of work will be added to the work scheduled in 2015.
C. Ms. Rosentrator's testimony and Mr. Cox's testimony in UE-140188 and UE-150204, respectively, reflect the O\&M and Capital Transmission and Distribution projects. The Company witnesses for this area of capital represent the Director that is responsible for the Transmission and Distribution department at the time the rate case is filed. The overall increase in capital spending is not discussed in Mr. Cox’s testimony because the increase to overall capital spending is discussed in Company witness Mr. Thies's testimony. The 2014 Annual Update reflects an analysis and recommendation made by Avista's Asset Management staff. The ultimate approval and decision
resides with the Capital Planning Group (CPG) prioritization process. Overall, the CPG prioritizes all capital project requests in order to balance a total capital budget and meet utility needs.
D. The primary difference is that the ED-11.1 document (Transmission Reconductors and Rebuilds Business Case) reflects the amount of budgeted capital spend on an annual basis. The amounts shown in Figure 4 reflect the amount transferred to plant on an annual basis. For certain projects, the annual budget number and the transfer to plant number can be the same. However, there are projects (e.g. the 2015/2016 Benton-Othello 115kV Reconductor and Rebuild) where they will not be the same, due to when the project becomes used and useful. For example, the Benton-Othello project mentioned above is budgeted to spend $\$ 3,600,000$ in 2015; it will not transfer to plant until 2016 when the project becomes used and useful.

SUPPLEMENTAL:

A. Please see Staff_DR_137 SUPPLEMENTAL Attachment A for the 2015 Annual update and Staff_DR_137 SUPPLEMENTAL Attachment B for the supporting data, provided electronically only, as requested in part A above.

ATHETA:

2015

Electric Transmission System 2015 Asset Management Plan

Rendall Farley, Beth Andrews Asset Management
Avista Corp.
05-15-2015

Prepared by:
Rendall Farley, Asset Management Engineer

Reviewed by:

Rodney Pickett, Asset Management Engineering Manager

Ken Sweigart, Transmission Engineering Manager

Approved by:
Scott Waples, Director of Planning and Asset Management

Front cover:
Steel Structures on the Burke - Pine Creek \#4 115kV Line (October, 2013)
1939 Original Construction 2013 Major Rebuild

Table of Contents

Purpose 6
Executive Summary 6
Assets 9
Key Performance Indicators (KPIs) 11
Capital Replacement and Maintenance Investment. 13
Process Capability 19
Risk Prioritization 19
Unplanned Spending 23
Outages 25
Programs 29

1. Major Rebuilds 29
2. Minor Rebuilds 31
3. Air Switch Replacements 31
4. Structural Ground Inspections (Wood Pole Management) 34
5. Structural Aerial Patrols 35
6. Vegetation Aerial Patrols and Follow-up Work 35
7. Fire Retardant Coatings 36
8. 230kV Foundation Grouting 36
9. Polymer Insulators. 36
10. Conductor \& Compression Sleeves 37
Benchmarking 38
Data Integrity 40
Material Usage 42
Root Cause Analysis (RCA) 42
System Planning Projects 43
Area Work Plans 45
References 49
Appendix A -Transmission Probability, Consequence \& Risk Index 50
Appendix B - Transmission System Outage Data 52
Figure 1: Example Transmission Asset Components and Expected Service Life 10
Figure 2: Transmission and Distribution System Replacement Values, Average Service Life, and Levelized Replacement Spending 14
Figure 3: Replacement Cost vs. Remaining Service Life 15
Figure 4: 2014 Planned Capital, O\&M, and Emergency Spending 17
Figure 5: Transmission outage causes affecting customers in 2014 29
Figure 6: Air Switch Replacement Value vs. Remaining Service Life 32
Figure 7: 3-year Transmission Lines Replacement Capital Spending per Asset (First Quartile Consulting, 2008) 38
Figure 8: Idaho Power Long-term Replacement Costs 39
Figure 9: Maintenance Benchmarking: Aerial Patrols (left) and Pole Inspections (right) 40
Table 1: Primary Assets of the Electric Transmission System - Circuits 9
Table 2: Component Assets and Quantities 9
Table 3: Transmission Structures and Poles 10
Table 4: 115kV vs 230kV Pole Materials 11
Table 5: Transmission KPIs and Unity Box Metrics 12
Table 6: Additional Performance Measures, 2009-2014 13
Table 7: Levelized Replacement Spending Options 16
Table 8: 2014 Transmission Spending 17
Table 9: 2014 Planned Capital Projects (Non-Reimburseable) 17
Table 10: 30-year Planned Capital and O\&M Recommendations 18
Table 11: Probability Index Criteria and Weightings 20
Table 12: Consequence Index Criteria 21
Table 13: Top 20 Most at Risk Circuits according to the Reliability Risk Index 22
Table 14: Transmission Unplanned and Emergency Spending, 2006-2014 24
Table 15: Transmission lines with the most unplanned outages in 2014 26
Table 16: Transmission lines that caused the most customer hours lost in 2014 26
Table 17: Transmission Lines causing the most customer outages greater than 3 hours in 2014 27
Table 18: Transmission Outage Causes, 2009-2014. 28
Table 19: Major Rebuild Projects, 2015-2018 30
Table 20: Minor Rebuild and Switch Upgrade Budget, 2015 - 2018 31
Table 21: Airswitch Priority List for Repairs and Replacements 33
Table 22: Avista Transmission Lines Replacement Capital Spending per Asset 38
Table 23: Transmission Asset Data Integrity 41
Table 24: Relative Material Purchases, 10/2010 - 10/2012 42
Table 25: Corrective System Planning Projects (Big Bend, CDA \& Lewiston/Clarkston) 43
Table 26: Corrective System Planning Projects (Palouse, Spokane and System) 44
Table 27: Non-Corrective System Planning Projects (Big Bend, CDA \& Lewiston/Clarkston) 44
Table 28: Non-Corrective System Planning Projects (Palouse, Spokane and System) 45
Table 29: Project Type Key 46
Table 30: Area Work Plans - Major Projects 46
Table 31: Area Work Plans - Major Projects (continued) 47
Table 32: Minor Rebuilds 48
Table 33: Ground Inspection Plan 48

Purpose

System asset management plans are meant to serve a general audience from the perspective of long-term, balanced optimization of lifecycle costs, performance, and risk management. The intent is to help the reader become rapidly familiar with the system's physical assets, performance, risks, operational plans, and primary replacement and maintenance programs. Consistent annual updates of this plan provide the continuity required for useful historical information and continuous improvement of asset management practices.

For easy reference, a "Quick Facts" sheet is used to highlight key information and recommendations of this system-level asset management plan. At the individual program and project level, additional "Quick Facts" sheets may also be available. For more details, please visit the Asset Management Sharepoint site at Asset Management Plans.

This update reflects the best available information as of December 31, 2014.

Executive Summary

Consistent with last year's assessment, the primary message of this asset management plan is that the company must commit itself to sustainably replace the bulk of the aging transmission system over the next three decades. This is essential to achieve the company's strategic objectives of maintaining reliability levels while minimizing total lifecycle costs, requiring over $\$ 624$ million in capital replacement investment. As this represents a significant increase in capital investment as well as internal and external workloads from recent years, success demands strong company support and management. In order to be most effective and beneficial to customers and the company, it also requires fact-based prioritization and targeting of available funds to the riskiest elements of the system.

Key performance indicators for the transmission system showed a moderately worse result than targeted for 2014. Completed ground inspections were better than planned, and aerial inspections were on-track. Aging 115 kV pole replacements were 51% below target, while aging 230 kV pole replacements were 39% above target. Customer outages were 50% higher than targeted, while emergency spending was 130% higher than targeted. Finally, the follow-up repair backlog increased, ending the year with eight category 4 items overdue and the oldest item in the backlog at 23 months. Much of this may be due to improved identification and tracking methods that were recently implemented.

Replacement budget recommendations remain relatively unchanged at $\$ 12$ million for 115 kV and $\$ 9$ million for 230kV. Planned budgets for 2015 and 2016 are relatively close to this recommendation. Additional
mandated, growth and reimbursable capital projects, as well as O\&M work puts the total planned budget for Transmission Engineering at $\$ 29$ million for 2015, and is expected to remain at this level or increase for many years. This output level is nearly triple that of just a few years ago, while dedicated staff have only increased from five to six in the transmission engineering group. In order to reduce operational risks, it is strongly recommended that management consider assigning additional dedicated staff members, as well as proper equipment for safe and effective fieldwork.

Outages and unplanned spending nearly doubled in 2014 to over $\$ 3$ million, mostly as the result of a fire on Lolo-Oxbow 230 kV which cost $\$ 895 \mathrm{k}$, and severe summer wind storms in Washington that raised overall unplanned spending on the 115 kV system by over $\$ 500 \mathrm{k}$ from last year.

Notable achievements in 2014 include:

1. Design and project management of an expanded number of mandated and system planning projects including LiDAR mitigation, at \$7.5 million in 2014 compared to $\$ 4.0$ million in 2013.
2. Completion of technically difficult work on Burke - Pine Creek \#4 115kV, and cost effective work on Benton - Othello 115 kV .
3. Approved 2015 budget closely matching the recommended replacement budget of $\$ 12$ million for 115 kV and $\$ 9$ million for 230 kV .
4. Effective transition of administrative maintenance work from departing staff, as well as hiring and productive output of new engineering staff.
5. Published a comprehensive set of construction standards for transmission engineering and effectively integrated the use of PLS-CADD software. Consistently using both as a baseline for continuous improvement, as a collaborative team effort.
6. Confirmation of system pole data including material and location, allowing for detailed expected service life information on each transmission line.
7. Development of relative probability, consequence, and risk indices for the system on a line-by line basis. This included detailed acquisition of new power delivery and outage data on each line.
8. Completed simulation studies for Cabinet - Noxon 230kV, Benewah - Pine Creek 230kV, and Hot Springs - Noxon \#2 230kV circuits.
9. In cooperation with other utilities, initiated a major project to determine best design, construction, inspection and maintenance of self-weathering steel structures.

Beyond execution of approved construction, below is a list of recommended initiatives to further improve the long-term performance and stewardship of transmission assets.

1. Provide additional dedicated staff as appropriate, to handle long-term increased workloads in the Transmission Engineering group and support processes. Provide a dedicated truck and ATV for safe and effective fieldwork. Reduce end-to-end lead time from project initiation to project closeout.
2. Engage asset stakeholders within each major region of the transmission system in order to develop a comprehensive, prioritized capital project plan for the next 20 years.
3. Continue improving the transmission construction standards to reflect best practices in design and construction work. Engage line crews and regional staff.
4. Monitor the lead time for as-built construction updates to AFM, Plan and Profile (P\&P) drawings, and the engineering vault files, with a target of six months. Carry out periodic quality audits of construction in the field and recorded data.
5. Develop a comprehensive inspection and planned maintenance program for steel transmission structures.
6. Develop a systematic air switch risk ranking method, replacement schedule, and inspection and maintenance program.
7. Complete rebuild simulation studies and business cases for Lolo - Oxbow 230 kV and Noxon - Pine Creek 230 kV circuits.
8. Determine the risks and appropriate mitigation work resulting from structural loads of distribution underbuild.
9. Complete a system-wide simulation study to support optimal Transmission asset inspection intervals as well as planned and unplanned replacement budget targets, including annual minor vs. major rebuild budgets.
10. Implement transmission outage software which will allow for accurate and efficient analysis of outages and causes on each transmission line.

Assets

The tables and charts below provide a high-level summary of physical assets in the transmission system, replacement values, and expected service lives. Replacement values represent the cost to replace existing assets with equivalent new equipment in 2015 dollars, not including right-of-way purchases, capacity or ratings upgrades, mandated projects, and other work associated with growth-related installations.

Table 1: Primary Assets of the Electric Transmission System - Circuits

	Quantity			
Asset Category	$230 k V$	$115 k V$	Total	Expected Service Life (years)
Structures	4990	16483	21473	65
Poles	9021	27401	36422	70
Air switches	2	188	190	40
Conductor (miles)	2055	4602	6657	100
Compression sleeves	1370	3068	4438	50
Insulators	22978	60202	83180	70

Table 2: Component Assets and Quantities

Figure 1: Example Transmission Asset Components and Expected Service Life

Table 3: Transmission Structures and Poles

pole material	larch	cedar	steel	other

Table 4: 115 kV vs $\mathbf{2 3 0 k V}$ Pole Materials

Key Performance Indicators (KPIs)

The table below shows overall KPI results for 2014, which are monitored and recorded on a monthly basis throughout the year. The first four are leading indicators over which we have direct operational control. The final two KPIs are lagging indicators of system performance, which should have a causal link to the leading indicators. In other words, if we consistently execute well as demonstrated by the leading indicators, over time we should see satisfactory outcomes as manifested by the lagging indicators, and vice versa. When this does not occur, deeper investigation and root-cause analysis is justified, as something other than the expected causal relationship is potentially at play.

By these measures, performance was much better than planned for structural ground inspections. Aerial patrol inspections remained on-track overall. System-wide follow-up repairs from ground and aerial patrol inspections were significantly worse than planned for category 4 and 5 items. This may be primarily due to improved tracking methods. Aging infrastructure replacement was less than the levelized investment required to maintain system reliability over the long term for 115 kV , but more than that required for 230 kV , as roughly indicated by the number of older poles replaced.

Reliability performance was worse than planned and emergency spending significantly worse than the target average of the past few years.

Unity Box Metrics	Weighting	2014 Result
Completed Structural Ground Inspections	$\mathbf{2 0 . 0 0 \%}$	0.70
Completed Structural Aerial Inspections	$\mathbf{2 0 . 0 0 \%}$	1.00
Followup Repair Backlog	$\mathbf{1 5 . 0 0 \%}$	4.52
Aging Infrastructure Replacement	$\mathbf{1 5 . 0 0 \%}$	1.45
Reliability Performance	$\mathbf{1 5 . 0 0 \%}$	1.66
Emergency Spending	$\mathbf{1 5 . 0 0 \%}$	2.30
Sum of Weight * Value	$\mathbf{1 0 0 . 0 0 \%}$	1.83

Results
$1=$ Planned/On-Track
$1=$ Better than Planned
$>1=$ Worse than Planned

Table 5: Transmission KPIs and Unity Box Metrics

It is strongly recommended that $\$ 21$ million per year over a 30-year timeframe is allocated for worn-out infrastructure replacements - $\$ 12$ million for 115 kV , and $\$ 9$ million for 230 kV . As we ramp up
replacement construction in the years ahead, we expect to meet or exceed these goals. We will continue to replace equipment primarily on the basis of recent inspection and condition assessments, however the age and respective service life of the system at a high-level provides a strong leading indicator of long-term system reliability.

Additional performance measures are tabulated below since 2009:

Performance Measure	Goal	2009	2010	2011	2012	2013	2014	Remarks
due to transmission issues	113142	129,780	255,426	64,453	82,908	238,861	200,977	
greater than 3 hrs	10182	12,197	16,478	6,644	5,409	17,135	17,609	
Tx emergency repair costs	\$1,321,019	\$1,401,539	\$1,442,969	\$1,029,597	\$1,409,972	\$1,630,943	\$3,040,313	
Avista crew safety: \# recordable injuries from Transmission work	0	not avail	Unable to isolate to Transmission					
Top 10 highest risk circuits	TBD	not avail	not avail	not avail	not avail	in progress	completed	
Top 10 worst performing components - by failures	NA	not avail	Not available from OMT data					
Top 10 worst performing circuits by \# of component failures	NA	not avail	Not available from OMT data					

Table 6: Additional Performance Measures, 2009-2014

Note that important performance measures currently cannot be evaluated due to inadequate data availability. This includes safety incidents from transmission work, the total number of annual failures and respective failure modes for various transmission lines and system-wide asset components such as poles, air switches, crossarms, insulators, splice connections, and so forth. An ongoing, long-term effort is necessary to make this information available and assimilate into our set of KPIs and circuit risk rankings. It is also essential to taking the next steps in evaluating the benefit and value of asset management programs and projects for continuous improvement.

Capital Replacement and Maintenance Investment

Levelized replacement spending is the annual spending required to replace the asset category in a perfectly level form over the asset's service life in 2015 dollars, not including inflation. Prior to adjusting for uneven service life profiles, this provides a simple, rough-cut measure to compare against actual
replacement spending each year, i.e. the minimum needed to keep up with aging infrastructure that places reliability at risk. This currently stands at $\$ 16.3$ million per year for the transmission system. Relative to other major areas of the transmission and distribution (T\&D) system, transmission assets have a longer service life, and the total replacement value of $\$ 1.1$ billion is on par with substation's $\$ 0.9$ billion and about half of distribution's $\$ 2.0$ billion. All together, levelized replacement spending is roughly $\$ 84$ million per year in perpetuity for Avista's T\&D system (2014 dollars). However, as shorter lived wood materials are replaced with steel in the decades ahead, we expect overall service life to increase from 70 years to over 100 years for the transmission system. Assuming all other factors being equal, this in turn would reduce the minimum levelized spending to under $\$ 12$ million/year, roughly 50 years from now.

Figure 2: Transmission and Distribution System Replacement Values, Average Service Life, and Levelized Replacement Spending

The next step is to look more closely at the replacement cost of actual installed assets compared to remaining service life. This provides the basis for levelized replacement budgets given actual remaining service life profiles, as summarized in the following chart.

Figure 3: Replacement Cost vs. Remaining Service Life

Note that field assets costing \$234 million to replace are currently beyond expected service life, based on their age and statistical predictions of mean time to failure (everything to the left of 0 years in Figure 3 above). The oldest and greatest quantities of these assets are 115 kV transmission lines. This represents a significant risk to the continued reliability of the transmission system, particularly for those 115 kV circuits with more than 10 years past normal service life.

To address this issue, several alternatives present themselves in terms of long-term replacement policies, as shown in the table below. The 30-year replacement period is recommended at $\$ 21.1$ million per year, split between $\$ 11.3$ million for 115 kV and $\$ 9.8$ million for 230 kV . This policy, when coupled with an ongoing, annual risk assessment and targeting of funds, over the long term will effectively reduce risks and minimize total lifecycle costs.

The table below presents a simple levelization that reduces the volatility and operational business risk of ramping up and down construction work from year-to-year, while responsibly maintaining system performance. Again, it should be emphasized that in order to be most effective, this level of
replacement spending must be targeted at those assets that pose the greatest overall risk, as discussed in the Risk Prioritization section of this report.

		Cumulative Replacement Costs (\$)			
Tx Capital Assets Service Life (yrs)	Levelized Replacement Period (yrs)				Annual Levelized Replacement Spending ($\mathbf{~})$
-10 or less		$\mathbf{1 1 5 k V}$	$\mathbf{2 3 0 k V}$		Total

Table 7: Levelized Replacement Spending Options

A variety of data uncertainties result in $+/-5 \%$ confidence in the stated figures. In terms of replacement costs, the most significant uncertainty from year to year involves the volatility of contract labor. Extensive work was recently completed to confirm 115 kV and 230 kV pole data, most importantly the identification of pole material and respective expected service life, which has greatly improved confidence levels.

The recommended $\$ 21.1$ million per year in levelized replacement spending over the next 30 years compares to $\$ 7.9$ actual replacement spending in 2014 . Significant effort is underway to ramp up replacement construction in 2015 and sustain it over ensuing years. Other project categories include growth, mandated, and reimburseable capital projects, operations and maintenance (O\&M) programs, and unplanned/emergency work. These figures are tabulated below for 2014. Spending associated with liability claims and the underground network are not included, due to data uncertainty. Please note that many construction projects involve a combination of replacement, growth, and mandated work, therefore these figures are rough approximations. Historically, upwards of 90% of transmission construction is through contractors.

\$7,877,719	Replacement
\$7,499,457	Growth/Upgrade
\$3,040,313	Unplanned/Emergency
\$1,300,000	O\&M - Veg Management
\$455,000	O\&M - Other
\$150,000	Reimburseable work completed
\$20,322,489	Total
\$17,132,176	Total Planned non-reimburseable
\$17,282,176	Total Planned Capital (including reimburseable)
\$1,755,000	Total Planned O\&M
\$3,040,313	Total Unplanned/Emergency Capital
unknown	Total Unplanned O\&M

Table 8: 2014 Transmission Spending

2014 Tx Project Spend	Program/Project Description	ER	BI	Type
\$4,027,819	Asset Mgmt Trans Minor Rebuilds WA	2057	AMT12	Replacement
\$2,542,534	Benton-Othello 115 Recond	2457	FT130	Growth/Upgrade
\$2,239,224	Burke-Thompson A\&B 115kV Transmission Reb	2550	CT101	Replacement
\$1,976,969	LiDAR Mitigation Projects, Med Priority	2560	CT203, variol	Growth/Upgrade
\$1,398,420	Devils Gap-Lind 115kV Transmission Rebuild P	2564	ST302	Replacement
\$1,193,697	Benewah-Pine Creek 115kV - Low Priority Rtgs	'2579	CT304	Growth/Upgrade
\$687,777	Lewiston Mill Rd. 115 kV Substation Integration	1107	LT403	Growth/Upgrade
\$392,534	Xsmn Asset Management	2423	AMT81	Growth/Upgrade
\$252,634	Clearwater 115 kV Transmission Line Upgrade	2571	LT402	Growth/Upgrade
\$210,211	Chelan-Stratford 115kV - Rbld Columbia River X	'2574	BT304	Growth/Upgrade
\$163,495	Stratford Sub - 115kV Transm Integration	2563	BS302	Growth/Upgrade
\$135,493	Asset Mgmt Transmission Switch Upgrade	2254	AMT10	Replacement
\$76,152	Asset Mgmt Trans Minor Rebuilds ID	2057	AMT13	Replacement
\$28,359	Greenacres 115 Sub New Cons:Transmission In	2443	ST203	Growth/Upgrade
\$26,767	Moscow 230 Sub Rebuild: Transmission Integra	2484	PT002	Growth/Upgrade
\$11,464	Irvin 115kV Switching Stn: Transmission Integra	2446	ST102	Growth/Upgrade
\$6,070	Benewah-Moscow 230kV - Structure Replacem	+2577	PT305	Growth/Upgrade
\$5,480	Noxon 230 kV Stn Rebuild:Transmission Integra	2532	AT300	Growth/Upgrade
\$1,467	Opportunity Sub 115kV Breaker Add - Tx Integr	(2552	ST307	Growth/Upgrade
\$611	Asset Mgmt Transmission Wood Sub Rebuild	2204	AMT08	Replacement

Table 9: 2014 Planned Capital Projects (Non-Reimburseable)

Figure 4: 2014 Planned Capital, O\&M, and Emergency Spending

This shows that approximately 85% of spending was planned, vs. 15% unplanned in 2014. The percent of planned work should increase as planned replacements ramp up and unplanned/emergency spending is held constant or reduced. Growth and mandated projects (e.g. LiDAR projects) of \$7.5 million
resulted in 38% of total Transmission spending in 2014. Although the spending in this category is highly variable from year to year, a constant value of $\$ 3$ million is assumed for the future. A small increase of 2\% per year is assumed for reimbursable projects such as road moves. O\&M dollars may be reduced over the long-term, due to expected lower inspection costs of steel poles as they are used to replace existing wood poles, however this was not accounted for as it is somewhat uncertain and represents a relatively insignificant sum. Other figures represent recommendations for planned replacement and maintenance programs as specified in the Programs section of this report. Optimal planned spending may vary considerably after making adjustments for actual condition assessments as inspections are completed, capturing economies of scale opportunities when rebuilding larger sections of line, and taking into account cost of capital considerations from year to year. Notwithstanding these variables, the numbers below represent the minimum recommended investment for consistent, planned transmission work in the years ahead.

											Capital	Growth, Mandated \&		
O\&M\%	0\%	0\%	0\%	0\%	0\%	100\%	100\%	100\%	100\%	100\%	Replacement	Reimburseable		
Capital \%	100\%	100\%	100\%	100\%	100\%	0\%	0\%	0\%	0\%	0\%	Projects	Capital Projects	Total 0\&M	Total Planned
2013 actual	\$8,785,633	\$3,965,832	\$1,136,787	\$150,556	\$970,036	\$294,000	\$94,595	\$1,100,000	\$200,000	\$100,000	\$9,906,225	\$5,102,619 ${ }^{\prime \prime}$	\$1,788,595	\$16,797,439
2014 recommended	\$14,110,816	\$2,210,000	\$1,159,523	\$264,000	\$1,300,000	\$192,000	\$100,000	\$1,200,000	\$242,000	\$100,000	\$15,674,816	\$3,369,523 ${ }^{\prime \prime}$	\$1,834,000	\$20,878,339
2014 actual	\$3,638,255	\$7,499,457	\$150,000	\$135,493	\$4,103,971	\$317,790	\$103,154	\$1,300,000	\$188,111	\$181,405	\$7,877,719	\$7,649,457 ${ }^{\circ}$	\$2,090,460	\$17,617,636
2015 recommended	\$18,667,888	\$3,000,000	\$1,870,600	\$392,507	\$1,700,000	\$216,000	\$100,000	\$1,200,000	\$242,000	\$100,000	\$20,760,395	\$4,870,600	\$1,858,000	\$27,488,995
2015 budget	\$18,111,134	\$5,524,000	\$1,870,600	\$220,000	\$1,514,000	\$216,000	\$100,000	\$1,200,000	\$200,000	\$100,000	\$19,845,134	\$7,394,600	\$1,816,000	\$29,055,734
2016-2020 recommended	\$18,496,395	\$3,000,000	\$1,908,012	\$264,000	\$2,000,000	\$216,000	\$103,154	\$1,200,000	\$242,000	\$100,000	\$20,760,395	\$4,908,012	\$1,861,154	\$27,529,561
2021-2045 recommended	\$18,496,395	\$3,000,000	\$1,946,172	\$264,000	\$2,000,000	\$216,000	\$103,154	\$1,200,000	\$242,000	\$0	\$20,760,395	\$4,946,172	\$1,761,154	\$27,467,721

Table 10: 30-year Planned Capital and O\&M Recommendations

In short, in order to minimize lifecycle costs and maintain system performance, the bulk of the transmission system needs to be rebuilt over the next three decades, if not sooner. This is no small

Sharepoint - Asset Management Plans
endeavor, entailing significant financial and operational risk. Although construction and even design work may be contracted out, internal workloads will in all cases rise substantially in the years ahead for the Transmission Engineering group and supporting departments. A successful transition and sustained production of high quality design work and construction in the field - that will last well into the $22^{\text {nd }}$ century - requires careful management and strong support across the company.

Process Capability

As of 2010, total planned design, project management, and construction capital and O\&M work for the Transmission system originating from the Transmission Engineering group was less than $\$ 10$ million per year. At that time, Transmission Engineering had a dedicated staff of five members - one manager, three engineers, and one technician - equivalent to roughly $\$ 2.0$ million per staff member. In 2015, total planned work amounts to $\$ 29,055,734$ with a dedicated staff of six members - one manager and five engineers - equivalent to $\$ 4.8$ million per staff member. This represents an output productivity increase of 242% in only a few years time. Hidden workloads such as mandated reporting and analysis from regulatory bodies such as NERC are also on the rise. In order to remedy operational risks and achieve management objectives, the need for additional staff, equipment and improved support processes should be considered a very high priority, seriously investigated and remedied as appropriate. A strong case can be made for example, for a dedicated field truck and ATV for the group, to avoid the use of personal vehicles on customer property and in dangerous, remote conditions that are routinely visited on-site. This will help ensure safer operations in the field and effective use of valuable engineering staff time.

Other opportunities for improved process capability include reducing overall project lead times, particularly from the time of internal project initiation to the beginning of construction, which has increased substantially. Construction timelines and total costs may also be reduced, for example by completing line projects in one or two years instead of three to five.

Continued engagement and integration with internal and contracted line crews to communicate and improve construction standards is also recommended as a way to improve overall process capability.

Risk Prioritization

According to Wikipedia, risk is defined as "...1. The probability of something happening multiplied by the resulting cost or benefit if it does. (This concept is more properly known as the 'Expectation Value' and is used to compare levels of risk)"

- from http://en.wikipedia.org/wiki/Risk

In mathematical form, this is expressed as:

$$
\text { Risk/Benefit }=\sum_{i=1}^{n} \quad(\text { Event Probability) } i * \text { (Event Consequence) } i
$$

The transmission system's major circuits were ranked by this formulation. The rankings will be used as a starting point for further deliberation among internal stakeholders, with the goal of allocating resources where they will have the most significant risk reduction. The rankings may also be used to justify inspection and follow-up work earlier than normally scheduled (currently a 15-year inspection cycle on each line). At minimum, the rankings will be used to prioritize the commissioning of detailed studies, simulations and development of business cases for major line rebuild projects.

The first component of risk for our transmission lines is the probability of a failure event, which we will refer to as the asset's "Probability Index". This is a normalized relative score from 1 (low unplanned event probability) to 100 (high unplanned event probability). The factors and respective weighting for the Probability Index are as follows, derived from a combination of the line's condition, track record, and severity of operating environment. Each factor is scored from 1 (low) to 5 (high), based on a set of objective measures collaboratively developed by representatives in Asset Management, Transmission Design, System Planning, and System Operations groups. In the future, improved data and analysis may allow for actual probability estimates rather than relative scoring methods.

\% Weight	Criteria
25	Unplanned outages/spending
20	Remaining service life
20	Time since last minor rebuild, \# items identified for replacement
20	\# of miles
15	Severity of terrain \& operating environment (soil conditions, weather intensity, vegetation, relative probability of vehicle/equip. impacts, etc)

Table 11: Probability Index Criteria and Weightings

The second component of risk (event consequence), we will refer to as the asset's "Consequence
Index". It is a measure of the severity of consequences should an unplanned failure event occur. This is also a normalized relative score from 1 (low severity = low event consequence) to 5 (high severity = high event consequence). The factors and respective weighting for the Consequence Index are as follows,
derived from the relative importance of the line in terms of power flow, its effect on the system should it become unavailable, the relative time and cost to effect repairs, and potential secondary damage based on safety, environmental issues and its proximity to other company and private property. In the future, improved data and analysis may allow consequences to be financially quantified, rather than relative scoring methods.
\(\left.$$
\begin{array}{|c|c|}\hline \text { \% weight } & \text { criteria } \\
\hline 40 & \text { power delivery } \\
\hline 20 & \begin{array}{c}\text { potential damages } \\
\text { (company/private/environmental) }\end{array}
$$

\hline 15 \& access

\hline 15 \& system stability, voltage control and thermal

problems\end{array}\right\}\)| voltage \& configuration |
| :---: |
| 10 |

Table 12: Consequence Index Criteria
With these indices in hand, we have the ability to prioritize lines based on comparable risk levels, which we refer to as the line's "Reliability Risk Index", where

Reliability Risk Index $=($ Probability Index $) *($ Consequence Index $)$
This is also normalized from a score of 1 (low risk) to 100 (high risk). In order to be worthwhile, it is essential that the risk index is useful to making practical business decisions. It must produce credible results to a wide variety of experts and decision makers, and it must be reliably reproduced each year without a great burden of effort. Over time, improvement in our ability to collect and use data may allow us to evaluate shorter segments of lines with greater ease, providing a refined view of system risk at the line segment or even structure level. This would facilitate a more detailed view of system risks and optimized mitigation efforts. The development and use of aids that help visualize results (e.g. colorcoded system maps), may also be worthwhile.

The top 20 highest risk transmission lines are shown in the table below, and the complete list is included as Appendix A. This iteration only includes transmission lines and taps that are longer than one mile. An additional 37 short lines and taps not included in the risk index account for 14.3 additional miles, representing less than 0.7% of total Transmission system mileage.

Table 13: Top 20 Most at Risk Circuits according to the Reliability Risk Index

Note that the two underground 115 kV circuits, Post Street $-3^{\text {rd }} \&$ Hatch, and Metro - Post Street both have a 100 consequence rating and probability ratings of 70 and 60 , respectively. The consequence of unplanned outages on these lines is arguably much larger than those of any other line on the system as they serve the high density core of downtown Spokane. In other words, the risks listed above may be understated for these two lines. A strong recommendation for full replacement of both lines is advised in the near future - realistically within 5 to 10 years.

It is important to recognize that the risk index does not yet provide an absolute priority order for replacement and maintenance decisions - option costs to reduce risks must first be factored in. Specifically, cost option analyses must be performed to determine which project options result in the highest reduction of risk per dollar spent. According to best practice asset management principles, this analyses results in a system "Criticality Index" for each line in priority order, where each line would be ranked according to:

Criticality Index $=($ Original Risk - Residual Risk) $/($ Option Cost)
Finally, other opportunities and benefits are factored in, also known as "bundling" in asset management parlance, to arrive at a final priority order for replacement and maintenance projects. These opportunities and benefits may come from various areas such as system planning for capacity and growth requirements, system operations, regulatory compliance, protection engineering and communications, operations, and power supply. After factoring in these priorities, a comprehensive

Sharepoint - Asset Management Plans
replacement and maintenance plan for 20 years may be developed, sequenced according to system operations restrictions and with higher levels of detail for projects within the 10 year timeframe. A good start in this direction may be accomplished through the concept of area mitigation plans which involve and integrate stakeholders within each major transmission area of the system (e.g. Big Bend, Spokane, Lewis-Clark, etc).

Ultimately, objective rankings must be useful and effective, helping the organization to arrive at the right business decisions with less effort. Asset management staff will continue to facilitate and support this collaborative undertaking, striving for improvement and strong results.

Unplanned Spending

Unplanned spending represents capital replacement of those transmission assets that have unexpectedly failed and require prompt attention, typically by Avista crews (e.g. storm response events). Despite the variability that is correlated with fluctuations in weather intensity, unplanned spending is an especially important lagging indicator of system performance, trends, and the effectiveness of asset management programs. In addition to cost premiums incurred from overtime labor, unplanned work typically presents greater safety risks to the public and on-site Avista employees, as well as other risks including property damage, environmental, general liability, planned work delays, and additional rework costs following the event. We have set annual goals at the average of unplanned spending from 2009 through 2012, reflecting a desire to maintain system reliability. This results in "targets" of $\$ 1.1$ million for 115 kV and $\$ 210 \mathrm{k}$ for 230 kV , for a total of $\$ 1.3$ million per year. Note that in past years we have consistently spent a much greater amount of total unplanned dollars on the 115kV system, at roughly four times the proportional value of capital assets when compared to the 230kV system. This is consistent with the fact that 230 kV assets are felt to pose a higher potential consequence should they fail, and therefore we maintain them accordingly - deliberately effecting a lower frequency of unplanned events on the 230 kV system, relative to 115 kV . While this may be the case, it remains that the optimal target of unplanned spending has not been quantitatively determined for either system. This is a desired output from a future system model and analysis, involving the quantification and simulation of all significant risks and costs associated with unplanned events, maintenance and replacement work. Note that zero emergency spending is actually sub-optimal unless
there is zero tolerance for any risk - otherwise, it represents over-investment in the design configuration and actual condition of physical assets.

Electric Transmission 115kV and 230kV Total Unplanned Capital Spending from XXX01050 account info

	2006	2007	2008	2009	2010	2011	2012	2013	2014
115kV - WA	\$312,958	\$609,438	\$265,221	\$874,996	\$649,760	\$585,250	\$499,341	\$1,123,122	\$1,640,237
115kV - ID	\$406,111	\$161,470	\$221,343	\$349,459	\$626,503	\$274,517	\$608,163	\$389,492	\$437,978
115kV - all	\$719,070	\$770,908	\$486,564	\$1,224,455	\$1,276,263	\$859,767	\$1,107,505	\$1,512,614	\$2,078,216
230kV - WA	\$215,228	\$97,946	\$215,416	\$57,721	\$73,482	\$156,491	\$58,976	\$89,984	\$13,286
230kV - ID	\$74,783	\$32,856	\$120,056	\$89,364	\$79,950	\$12,979	\$228,681	-\$134,091	\$945,631
230kV - MT w/ Colstrip	\$0	\$286,338	\$257,879	\$249,429	\$368,855	\$574,428	\$298,059	\$436,991	\$0
230kV - MT w/o Colstrip	\$0	\$1,590	\$59,590	\$27,525	\$13,275	\$0	\$72	\$18,910	\$0
230kV - OR	\$12,273	\$0	\$0	\$2,475	\$0	\$360	\$14,738	\$9,435	\$3,181
230kV - all w/o Colstrip	\$302,285	\$132,392	\$395,062	\$177,085	\$166,706	\$169,830	\$302,467	\$118,329	\$962,097
115kV and 230kV (all)	\$1,021,354	\$903,300	\$881,625	\$1,401,539	\$1,442,969	\$1,029,597	\$1,409,972	\$1,630,943	\$3,040,313

Table 14: Transmission Unplanned and Emergency Spending, 2006-2014

Total unplanned spending increased in 2014 to $\$ 3.04$ million, significantly higher than in any year recorded since 2006, and well above the target of $\$ 1.3$ million per year. This was due to major fire damage on Lolo-Oxbow 230 kV , totaling $\$ 895 \mathrm{k}$, and major storm responses in Washington on the 115 kV system.

Unfortunately, the use of 115 kV blanket accounts does not allow for ready analysis of unplanned spending on individual 115 kV circuits. This is necessary to get a better understanding of risk and asset prioritization on a line-by-line basis. New software is in the process of implementation by System Operations. This should be complete by 2016 with annual data available for analysis starting in 2017.

The figures above do not include spending on the 11% Avista ownership of the roughly 500 miles of 500kV Colstrip transmission and substation assets.

Outages

Outages are a strong lagging indicator of system reliability and are highly correlated with unplanned and emergency spending. It is also the principle source of emerging trends and problem root cause analysis that is critical to maintaining system reliability over the long term. A full list of outage information for 2014 on a line-by-line basis is provided in Appendix B. Below are highlights of this information.

Primary data was obtained from both the annual Reliability Reports created by Operations Management and the Transmission Outage Reports (TOR) created by System Operations. The Reliability Report includes data on sustained outages (longer than five minutes) for Transmission related events that affect customers - it does not include any outages that do not affect customers. The TOR on the other hand, includes any transmission event (sustained or momentary), but it does not contain information about customer outages. Utilizing the TOR, System Operations compiles the Transmission Adequacy Database System (TADS), and associated mandated NERC reports for 230 kV lines, but not for 115 kV lines. It is important to analyze both the Reliability and TOR reports because they each contain different but important information regarding outages on the transmission system. This is currently a laborious process, as neither the Reliability nor TOR reports consistently list transmission lines that apply to each event. The Reliability Reports indicate substations and feeders associated with customer outages related to a transmission line outage, but not which transmission line that applies. Breaker identification is provided on the TOR and must be used to cross reference other information, in some cases multiple sources, to identify the applicable transmission line. New software is being implemented that will help identify outage events on each transmission line, greatly improving analysis capability. This data is expected to be available for analysis by 2017.

Based on the TOR data, there were 492 transmission line outages recorded in 2014, 180 of which were planned, 159 that were trip and recloses that lasted less than a minute, and 153 unplanned outages over one minute. Of these outages, only 51 caused an actual customer outage. The Transmission lines with the most sustained, unplanned outage occurrences are as follows (regardless if a line outage caused a customer outage):

| Line Name | \# Outages |
| :--- | :--- | :--- |
| 1. Devils Gap-Stratford 115 kV | |
| 2. Coulee-Westside 230 kV | 22 |
| 3. Devils Gap-Lind 115 kV | 12 |
| 4. Benewah-Pine Creek 115 kV | 12 |
| 5. Burke-Thompson Falls A 115 kV | 10 |
| 6. Latah-Moscow 230115 kV | 10 |
| 7. Moscow $230-$ Orofino 115 kV | 10 |
| 8. Sunset-Westside 115 kV | 9 |
| 9. Lind-Shawnee 115 kV | 9 |
| 10. Shawnee-Sunset 115 kV | 8 |

Table 15: Transmission lines with the most unplanned outages in 2014
Based on the Reliability Report, over 200,000 hours of unplanned customer outages were recorded in 2014. The transmission lines with the most unplanned customer-hours outage are as follows:

| Line Name | Customer Hours |
| :--- | :--- | :--- |
| | |
| 1. Mead Tap 115 kV | |
| 2. Addy-Devils Gap 115 kV | 33823 |
| 3. Bronx-Cabinet 115 kV | 283488 |
| 4. Colbert Tap 115 kV | 16192 |
| 5. Shawnee-Terre View 115 kV | 13487 |
| 6. Benton-Othello Sw Sta 115 kV | 10965 |
| 7. Benewah-Pine Creek 115 kV | 10267 |
| 8. Devils Gap-Stratford 115 kV | 7553 |
| 9. Post Falls-Ramsey 115 kV | 6401 |
| 10. Devils Gap-Lind 115 kV | 3155 |

Table 16: Transmission lines that caused the most customer hours lost in 2014
Over 17,000 customers experienced an outage that lasted longer than three hours, representing a slight increase from last year. The Transmission lines with the highest number of customers experiencing outages greater than 3 hours are as follows:

Line Name

1. Colbert Tap 115 kV 4093
2. Addy-Devils Gap 115 kV 3206
3. Benton-Othello Sw Sta 115 kV 2556
4. Mead Tap 115 kV 2324
5. Shawnee-Terre View 115 kV 2270
6. Bronx-Cabinet 115 kV 1585
7. Devils Gap-Stratford 115 kV 1150
8. Cabinet-Rathdrum 230 kV 402
9. Hot Springs-Noxon \#1 230 kV 21
10. Benewah-Pine Creek 115 kV 2

Table 17: Transmission Lines causing the most customer outages greater than 3 hours in 2014
Overall, the data shows that the 115 kV system is significantly less reliable than the 230 kV system in terms of total outages and customers directly affected.

The causes for customer outages lasting longer than three hours increased for rotten crossarms, insulators, switch/disconnect, pole fires, cars hitting poles, and snow/ice events. These types of outages should be monitored closely as surveys indicate that outages lasting longer than three hours are the most important reliability factor driving customer satisfaction. Appropriate steps should be taken to prevent these outages in the future and to reduce repair time should an outage occur. Weather related outages caused the most customer-hours lost per occurrence.

It should be noted that two lines appear on all three of the 'worst transmission line' lists described above:

1. Benewah-Pine Creek 115 kV
2. Devils Gap-Stratford 115 kV

Extending the above lists to include the worst 20 lines, four other lines would appear on all three indices:

3. Benton-Othello Sw Sta 115 kV

4. Bronx-Cabinet 115 kV
5. Cabinet-Rathdrum 230 kV
6. Addy-Devils Gap 115 kV

Based on this information, closer monitoring for these lines is warranted. Benton-Othello 115 kV is in the process of a major rebuild/reconductor that will be completed in 2017. Bronx-Cabinet 115kV is in the middle of a 5 -year rebuild scheduled to be completed in 2017. Devils Gap-Stratford 115 kV is scheduled for a minor rebuild in 2016 and should be considered for full rebuild. A rebuild/reconductor is planned for 2017-2018 on Addy - Devils Gap 115kV. A thorough rebuild analysis was completed for

[^1]Benewah-Pine Creek 230kV lines, recommending a \$27 million full rebuild of structures, no reconductor in 2018-2020. Cabinet - Rathdrum 230kV is a steel line in excellent condition, however trees that fell on the line on two separate occasions in December caused over 12 hours of outage time on the line with over 3 hours outage to 402 customers.

The outage causes for the last six years are summarized in the table below. In 2014 there were 172 feeder outages, but only 51 unique transmission events that caused those outages. Data for 2009 through 2013 previously analyzed indicated individual feeder outages stemming from a transmission outage (in many cases the same transmission outage caused more than one feeder outage), while the 2014 data was analyzed to indicate only the number of unique transmission outages for each subreason. For this reason the available data from 2009 to 2013 is not directly comparable to what is presented for 2014 at the current time.

Reason	Subreason	2014
Animal	Bird	
Animal	Animal - Other	
Animal	Squirrel	
Company	Company - Other	2
Equipment OH	Conductor - Pri	1
Equipment OH	Connector - Pri	
Equipment OH	Crossarm - Rotten	1
Equipment OH	Insulator	1
Equipment OH	Cutout/Fuse	
Equipment OH	Switch/Disconnect	4
Equipment Sub	Highside Breaker	1
Equipment Sub	Relay Misoperation	
Equipment Sub	Transformer	2
Equipment	Equipment - Other	2
Miscellaneous	See Remarks	
Planned	Planned - Forced Outage	1
Planned	Planned - Maint/Upgrade	5
Pole Fire	Pole Fire	1
Public	Car Hit Pole	1
Public	Public - Tree	
Public	Public - Other	3
Tree Fell	Tree Fell	
Undetermined	Undetermined	12
Weather	Weather - Lightning	3
Weather	Weather - Snow/Ice	8
Weather	Weather - Tree	
Weather	Weather - Wind	3
	Grand Total	51

Table 18: Transmission Outage Causes, 2009-2014

Weather related outages continue to dominate both in terms of number of occurrences and customerhour outages. At over 60,000 hours, wind had the highest number of customer-hour outages. This
number is slightly higher than last year (55,000 customer-hours) and is mostly due to two back-to-back storms that hit in late July and early August. These wind storms not only caused the most customer outages for the year, but also caused widespread damage to the system, particularly in northern Spokane and Sandpoint where the storms hit the hardest.

The nine largest outage events for the year include three due to weather, one due to pole fires, three due to equipment failures, one because a car hit a pole, and one resulting from planned maintenance \& upgrades. The pole fire event caused 29,000 hours in customer outages, but it was the only pole fire incident of the year to affect customers. The Milan Tap, Colbert Tap, and Mead Tap which tap off of BPA's Addy-Bell \#1 115 KV line, all sustained long outages due to this single pole fire incident. Another notable outage due to pole fires occurred on the Lolo-Oxbow 230 KV line. While this occurrence did not leave any customers without power, it did burn about 20 poles, resulting in a line outage lasting 24 days. Despite these two incidents, the lack of other pole fires in 2014 is a positive indicator of the system-wide fire protective coating program.

Figure 5: Transmission outage causes affecting customers in 2014

Programs

1. Major Rebuilds

Out of the $\$ 15,527,176$ million in planned capital replacement projects in $2014, \$ 3,637,644$ was spent on major rebuilds, $\$ 4,103,971$ on minor rebuilds and $\$ 135,493$ on switch replacements, for a total of $\$ 7,877,108$. The recommended level is a minimum of $\$ 18.5$ million for major rebuilds, $\$ 2.0$ million for minor rebuilds and $\$ 264 \mathrm{k}$ for switch replacements, for a total of $\$ 21$ million replacement spending per year for 30 years. As stated previously, replacement projects do not include additional capital projects

Sharepoint - Asset Management Plans
that are mandated, growth related, reimbursable, or otherwise do not address aging infrastructure. Furthermore, the recommended spending is the minimum levelized spending over the entire 30 year period, which in the shorter term may need to be increased to minimize lifecycle costs - given inspection results, risk analysis, cost of capital, and economies of scale opportunities.

The most significant major rebuild and reconductor projects currently planned through 2017 are listed below, with rough estimates of budget dollars allocated for each year. Please note that these plans are subject to change and projects for 2018 and 2019 in particular are only partially complete.

Description	BI	Description	2015	2016	2017	2018	2019
Pine Creek-Burke-Thompson Falls	CT101	Rebuild Transmission	\$0	\$0	\$3,500,000	\$0	\$0
9CE-Sunset 115kV Transmission	ST503	Reconductor/Rebuild	\$25,000	\$900,000	\$0	\$0	\$0
Garden Springs - Silver Lake 115kV	ST304	Recon/Rebld H\&W to S Fairchild Ta	\$0	\$0	\$25,000	\$2,000,000	\$0
Addy-Devils Gap 115kV	ST306	Reconductor/Rebuild near Ford Sul	\$0	\$0	\$25,000	\$2,000,000	\$0
Benewah-Moscow 230kV	PT305	Reconductor/Rebuild	\$7,815,802	\$8,060,576	\$8,302,393	\$0	\$0
Cabinet-Noxon 230 kV	AT700	Reconductor/Rebuild	\$0	\$0	\$0	\$7,500,000	\$7,500,000
Benewah-Pine Creek 230kV	CT908	Reconductor/Rebuild	\$0	\$0	\$0	\$0	\$0
Lolo-Oxbow 230kV	LT900	Reconductor/Rebuild	\$0	\$0	\$0	\$0	\$0
Transmission Reconductor/Rebuild	XT703	High Resistance Conductor Replace	\$0	\$0	\$0	\$2,000,000	\$0
West Plains Trans Reinforcement	ST305	Garden Springs - Sunset	\$25,000	\$1,000,000	\$0	\$0	\$0
CDA-Pine Creek 115kV Rebuild	CT300	Rebuild Transmission	\$0	\$0	\$4,500,000	\$5,000,000	\$2,500,000
Devils Gap-Lind 115kV Rebuild	ST302	Rebuild Transmission	\$3,947,144	\$4,050,558	\$0	\$0	\$0
Chelan-Stratford 115kV	BT304	Rebuild Columbia River Crossing	\$400,000	\$0	\$0	\$0	\$0
Sys - Rebuild Trans - Condition	AMT81	BRX-CAB \& BRX-SCR Rebuild	\$2,500,000	\$2,500,000	\$2,500,000	\$2,500,000	\$2,000,000
Ben-Oth SS 115-ReCond/ReBld	FT130	Ben-Oth SS 115-ReCond/ReBld	\$3,600,000	\$3,500,000	\$0	\$0	\$0
		sum	\$18,312,946	\$20,011,134	\$18,852,393	\$21,000,000	\$12,000,000

Table 19: Major Rebuild Projects, 2015-2018

Effort will continue to be applied to prioritize replacement spending according to risk and criticality rankings, using detailed analysis where appropriate and engaging various stakeholders to arrive at optimized business decisions. In the last several years, detailed simulation studies have repeatedly shown major rebuilds as the optimal rebuild option for those lines with older assets and relatively higher risk rankings, rather than sectional or partial rebuilds, or minor rebuild options. Due to the infrequency of conductor failures, unless system planning determines a need or benefit for increased capacity, these studies indicate rebuilding structures and re-using the existing conductor as optimal. Calculated Customer Internal Rate of Return (CIRR) are typically at 8\% or higher, with strong business risk reduction and final assessment scores of 90 or more, placing them in the top 25% of competing capital project business cases across the company. Accordingly, similar simulation studies in the future are expected to generate comparable results, i.e. analysis of old, high risk lines will continue to show major rebuilds as
the optimal rebuild decision from the standpoint of lowest lifecycle costs, including reduced business risk and lowest consequence costs for the customer.

2. Minor Rebuilds

The information collected by aerial patrols is used in conjunction with inspection reports to prioritize and budget minor rebuild capital projects, where a major rebuild is not justified. Our goal is to complete repairs and replacements for high-risk issues from 0 to 6 months after identification by aerial or ground inspection, and for all other moderate risk issues by the end of the year following the inspection year.

Planned inspections and follow-up work in the form of minor rebuilds is effective in maintaining service levels while minimizing near-term capital and O\&M costs. Where warranted and on a line-by-line basis, detailed simulation modeling helps ascertain the optimal rebuild approach and support a business case to compete with others in the company's capital projects selection and budgeting process. A systemwide simulation model or other method is needed to help validate and/or provide adjustment recommendations to our inspection intervals, minor rebuild target budgets, and fact-based policies on minor vs. sectional vs. full rebuild thresholds. Current policy is to conduct detailed ground inspections every 15 years, following up with minor or major rebuilds as condition assessments justify. Current budget plans for minor rebuilds and air switch replacements are listed below, subject to changes. Given the large number of old lines due for inspection, the age profile of air switches and an expected life of 40 years for each air switch, it is recommended to increase the minor rebuild budget to $\$ 2.0$ million per year and air switch replacements at $\$ 264,000$ per year.

Description	BI	Description	2015	2016	2017	2018	2019
Transmission Minor Rebuilds	AMT12	Xsmn Minor Rebuild - WA	\$750,000	\$775,000	\$775,000	\$800,000	\$825,000
Transmission Minor Rebuilds	AMT13	Xsmn Minor Rebuild - ID	\$739,455	\$772,262	\$780,249	\$813,420	\$848,117
Sys - Trans Air Switch Upgrade	AMT10	Asset Man Trans Switch Upgrade	\$220,000	\$225,000	\$225,000	\$230,000	\$230,000
sum			\$1,709,455	\$1,772,262	\$1,780,249	\$1,843,420	\$1,903,117

Table 20: Minor Rebuild and Switch Upgrade Budget, 2015-2018

See the Area Work Plans section at the end of this report for a detailed list of minor rebuild projects in 2015.

3. Air Switch Replacements

Transmission Air Switches (TAS) are used to sectionalize transmission lines during outages or when performing maintenance. The frequency of operation varies greatly depending on location. Some TAS may not be operated for years.

TAS may not operate properly when opened and flashover, possibly tripping the line out. This can be the result of a component failure (whips and vac-rupters) or the TAS may be out of adjustment. Most TAS mis-operations could be avoided with regular inspection and maintenance, however we currently have no planned inspection or maintenance program. Inspections could range from systematic visual
inspection to infrared scanning and inspections for corona discharge. Maintenance could consist of exercising switches, lubrication, blade adjustment, replacement of live parts such as contacts and whips, and repair of ground mats and platforms.

Ground grids and platforms are installed at the base of each switch to provide equal potential between an operator's hands and feet in the event of a flashover of the air switch. The typical ground grid is buried copper wire attached to ground rods covered with fine gravel. Over time the ground grids may be damaged by machinery, cattle and erosion, or even theft. In 2008, 80 TAS were fitted with grounding platforms for worker safety. During this process a new worm gear handle was installed and disconnecting whips were adjusted. Operating pivot joints of the switch mechanisms are not affected by this work. Thus, the 2008 work was safety related, not switch mechanism related. Remaining switches in the system requiring new platforms need to be confirmed and upgraded. It is estimated that close to 100 switches require new platforms.

With radial switching of the 115 kV transmission system, many TAS are operated remotely. In these instances, company personnel are not present to observe the opening of the switch and some problems therefore remain hidden. A small problem could progress to the point where a major failure occurs. A small amount of material is maintained in the warehouse and Beacon yard for emergency repairs, but many of the switches are old and parts are often difficult to locate.

Typically three to four TAS are replaced each year. A detailed inventory of 115 kV TAS outside substations was completed in 2013, including determination of age where formerly 20% of the assets were unknown. TAS inventory includes 180 switches of various types and configurations, as shown below according to remaining service life. Based on this profile, levelized replacement should increase to five replacements per year, requiring an increase to $\$ 264,000$ from the current $\$ 220,000$ annual budget and recent spending in 2013-2014 of $\$ 151,556$ and $\$ 135,493$, respectively. Annual budgets should be prioritized according to a rational condition assessment and quantitative risk assessment, rather than ad-hoc requests from field personnel and anecdotal observation which is the current method.

Figure 6: Air Switch Replacement Value vs. Remaining Service Life

Thorough investigation of industry best-practices regarding inspection and planned maintenance of air switches, with follow-up recommendations is recommended. At minimum, a reasonable condition assessment program is envisioned, such as visual inspection at least every two years, possibly annual inspection for those more critical switches, and annual performance evaluation based on System Operations input. Below is a prioritized list of switches due for repairs or replacement in the next few years, with those switches exhibiting operational problems listed first.

SW \#	Problems	Age (yrs)	LINEISUBSTATION
A-70	Problem Switch	84	Chelan-Stratford
A-336	Old KPF, Needs Replaced	49	Grangeville-Nez Perce \#1: Cottonwood Tap
A-355	Old KPF on a broken pole	48	Jaype-Orofino
A-346	Wood in Switching Mech. Is bowed	47	Grangeville-Nez Perce \#2
A-376	Old KPF, Needs Replaced	43	Grangeville-Nez Perce \#2
A-298	Needs whips; Center 0 and North 0 gone, South Bent	38	115kv Boulder-Rathdrum
A-158	Doesn't work properly, drop load on both sides then use switch, mat ground straps need repair	31	Beacon-Francis \& Cedar
A-345	Pole Needs Structure \# Tag	30	Grangeville-Nez Perce \#2
A-442	Broken Whip	26	Dworshak-Orofino
A-377	Scott paper tap; Engerized to Switch	21	Grangeville-Nez Perce \#2 : Scott Paper Tap
A-176	Mat ground straps need repair	18	Bell-Northeast
A-679	Difficult to Close	15	Othello-Warden \#2
A-680	Motor Operator is too slow - it arcs	15	Othello-Warden \#2
A-358	Old KPF, Needs Replaced	10	Jaype-Orofino
A-407	Broken Crossarms ??	4	Grangeville-Nez Perce \#1
A-421	Ground Cables and Strands cut, NEEDS REPAIR	4	Ramsey-Rathdrum \#1
A-184		61	Shawnee-Sunset
A-19		59	Pine Street-Rathdrum: Oldtown Tap
A-26		59	Burke-Pine Creek \# 3
A-220		57	Lolo-Nez Perce
A-221		57	Lolo-Nez Perce
A-173		47	Moscow 230-Orofino
A-58		46	Chelan-Stratford
A-295		46	Benewah-Pine Creek : St Maries Tap
A-49		44	Devils Gap-Stratford
A-126		40	8th \& Fancher-Latah 115 kV
A-127		40	8th \& Fancher-Latah 115 kV

Table 21: Airswitch Priority List for Repairs and Replacements

Finally, transmission outage cause tracking needs to be improved in order to ascertain failure trends for the air switch population and to justify long-term replacement policy, e.g. improved data for line outage
durations and affected customers that result from failed air switch operations. In reading through notes on the TOR, Asset Management was able to determine that there were 122 outages from 1975 through 2007, resulting in an average of 3.7 outages per year caused by switches. The durations and quantified consequences of these outages, however are unknown and difficult to model.

4. Structural Ground Inspections (Wood Pole Management)

Avista wood transmission structures are predominately butt-treated Western Red Cedar poles. Most of the service territory is in a semi-arid climate. The most common failure mode for wood poles is internal and external decay at or near the ground line. Transmission Wood Pole Management (WPM) measures this decay and determines which poles must be reinforced or replaced. Details describing inspection techniques are in the company's "Specification for Inspection and Treatment of Wood Poles, S-622".

The testing program is valuable in identification of poles needing replacement or reinforcement, as well as identifying other structure components requiring repair or replacement. Compared to the pre-1987 method of solely visual inspections for pole integrity, the testing program replaces about 15% as many poles.

Wood transmission poles are on a 15-year inspection cycle. We are currently targeting inspection of 2400 wood transmission poles annually out of 36,422 wood poles installed. At this pace, by 2019 we will reach the 15 -year cycle for all transmission lines. See the Area Work Plans section of this report for a list of future planned inspections.

In recent years, prioritization and scheduling of ground inspections has been based on the time since the last ground inspection. Results of these inspections provide the basis for case-by-case analysis and the scope of subsequent minor and major rebuild projects on each line. While it is important that we maintain a maximum 15 -year ground inspection cycle, it is recommended that future inspection scheduling includes consideration of the risk index, which may justify earlier inspection. As a general rule, critical assets that exhibit age-related failures should be inspected to verify condition and justify service extension or removal near the end of their expected service lives. We currently have many 115 kV lines with assets 10 or more years past expected service life, that have not been inspected for nearly 20 years. This poses a significant unknown risk.

If actual condition assessment warrants service extension, shorter inspection intervals are prudent when the time to failure characteristics worsen with age - as is the case with much of our transmission wood infrastructure. Approximately 17% of the system is beyond its expected life, with a large portion of those assets over 15 years since the last ground inspection. The scattered age profile on many lines that results over many decades from periodic minor rebuilds and one-off replacements, makes this situation difficult to remedy - one must choose between the pros and cons of spotty replacements when failure occurs on one end of the spectrum, to larger line section replacements and full rebuilds on the other. Regardless, for those lines that have significant sections or quantities of older assets that demonstrate higher relative risks, out-of-cycle inspection and a shorter inspection interval may be warranted (e.g. 10 years instead of 15).

5. Structural Aerial Patrols

The Avista transmission system covers a large geographical area that has all types of terrain. Some parts of the system are so remote and difficult to access that they only get inspected from the ground when company personnel are in the area due to a failure or a major reconstruction project. Transmission Aerial Patrols (TAP) have been utilized to provide a quick above-ground inspection to identify significant problems that require immediate attention, such as lightning damage, cracked or sagging crossarms, fire damage, bird nests and danger trees.

In addition, aerial patrols can identify improper uses of the transmission Right-of-Way (R/W), such as dwellings, grain bins, and other types of clearance problems that must be addressed. Typically, the patrol will be performed in the spring. Identified repairs, depending on severity, are scheduled to be performed within 6 months.

TAP inspects 100% of 230 kV lines and 70% of 115 kV lines annually. The remaining 30% of 115 kV lines are located in urban areas that are frequently viewed by line personnel for potential problems. The Transmission Design group schedules patrols for each service territory. The TAP areas are: Spokane (includes Othello, Davenport and Colville), Coeur d’Alene (includes Kellogg and St. Maries), Pullman, and Lewiston/Clarkston (includes Grangeville and Orofino).

Aerial patrols are performed by qualified personnel from Transmission Design, often accompanied by local office personnel. Inspection forms have been developed that contain a weighting system to identify the severity of defects. This information can then be utilized to make recommendations for necessary repairs.

6. Vegetation Aerial Patrols and Follow-up Work

The Transmission Vegetation Management (TVM) program maintains the transmission system clear of trees and other vegetation, in order to provide safe clearance from trees and reduce outages caused by trees, weather, snow, ice and wind.

The entire 230 kV system is annually inspected with a combination of aerial and ground patrols by the System Forester, who solely manages the overall program. Select 115 kV lines are also patrolled according to criticality. In addition, vegetation issues noted during structural aerial patrols on the 115 kV system, as well as fielding of transmission line projects by Transmission Engineering are relayed to the System Forester. Based on this information, follow-up work plans are adjusted and executed with contract crews over the course of the year.

Over the next ten years, annual budgets of $\$ 1.2$ million are recommended to allow for optimal completion of major re-clearing work and a transition to Integrated Vegetation Management. It is expected that annual budgets will be evaluated and fine tuned to fit workloads as appropriate.

See the Transmission Vegetation Management Program reference (Avista Utilities, 2012) for more details on the program.

7. Fire Retardant Coatings

After several fires and a 2008 study to initiate systematic remediation, fire retardant coating has been applied to the base of wood transmission poles system-wide. At this point the entire 230 kV system has been deemed adequately protected and the 115 kV system is approximately 34% complete. Given the fire event of last year, the Lolo-Oxbow 230 kV line is planned for early recoating in 2015 to reduce risk (coatings are expected to remain effective for 12 years, Lolo-Oxbow was coated in 2007). Targeted areas include those subject to grassland fires and in close proximity to railroads. Protective coating is not applied to heavily forested areas as it is deemed inadequate in these areas to merit the cost of application.

It is estimated that approximately 4,390 poles remain to be coated in the 115 kV system. Following the current plan to coat 714 poles in 2015 (179 115 kV poles and 535230 kV poles repainting the Lolo Oxbow line), it recommended to coat 1000 poles per year for the following five years to complete the work by 2020. At a total labor and materials cost of $\$ 242 /$ pole, this equates to $\$ 242,000 /$ year. Beyond this, regular maintenance and upkeep will only be required, at an unknown amount depending on the longevity of the coatings. Until better information is obtained, $\$ 50 \mathrm{k} /$ year for ongoing coating maintenance is estimated. Performance metrics could be considered to monitor performance of this program, possibly in terms of \% of the system protected, maintenance spending and actual fire damage costs. As noted in the Outages section, pole fire incidents have dramatically decreased, however monitoring and adjustment of this program remains a necessity.

See Whicker (2013) for more details and history of this program, which is now administered by the Transmission Design group.

8. 230 kV Foundation Grouting

The Noxon-Pine Creek and Cabinet - Rathdrum 230 kV circuits have unique steel structures where the interface between the steel sleeve in the foundation and above-ground structure requires re-grouting after approximately 30 years, to avoid destructive corrosion. This work has been completed on the Noxon-Pine Creek 230kV line. Approximately $\$ 250 \mathrm{k}$ out of $\$ 500 \mathrm{k}$ of foundation grouting work on Cabinet - Rathdrum 230 kV was completed through 2014. Another $\$ 83 \mathrm{k} /$ year is planned through project completion in 2017.

9. Polymer Insulators

Transmission Line Polymer Insulators (TPI) provide insulation at the connection points for transmission lines to the supporting structure. Other types of insulators include toughened glass and older porcelain types. Although no significant problems have been noted on 115 kV lines, there were numerous faults on 230 kV lines from 1998 to 2008 attributable to poly insulators causing line outages, and five mechanical failures that caused the line to fall.

In 2008 a plan was initiated to replace TPIs and install corona rings on dead-end TPI insulators on various 230kV lines (without corona rings, TPIs are expected to fail in the $10-15$ year timeframe, with corona rings the expected service life is extended to an unknown age).

Work was completed primarily in 2009 on N. Lewiston - Shawnee 230kV and Dry Creek - N. Lewiston 230kV, and in 2011 all suspension and dead-end TPIs on the Hatwai - N. Lewiston 230kV were replaced with toughened glass insulators.

This work appears to have been effective. From 2009 to 2012, only 2 sustained outage occurances involving insulators are recorded. However, the degree to which TPIs exist on the remainder of the system, and the prediction of current and future risk is unknown.

For this reason, it is recommended that at least on 230 kV lines, future ground inspections include information gathering on the insulator type, so that an analysis of risk and optimal mitigation actions may be made in a short time period should that become necessary.

Current transmission engineering standards use toughened glass insulators for 230 kV , and either toughened glass or poly insulators for 115 kV . Due to the lighter weight of polymer insulators, they are generally preferred by Avista crews. However, given the problems experienced on 230kV lines and anecdotal evidence of high scrap rates for TPIs on 115 kV projects, their use on 115 kV lines poses some unknown risks and a systematic monitoring program may be advisable.

10. Conductor \& Compression Sleeves

Credible condition and failure characteristics of conductor and compression sleeves, and the location and age of thousands of compression sleeves in the system are currently unknown. Provided proper installation, protection, and service conditions, most conductor will last over 100 years, if not indefinitely. The compression sleeves, however, are expected to last between 40 and 50 years, posing a more immediate reliability risk.

Between 2008 and 2010, an effective risk mitigation program was carried out for in-line compression sleeves on 230 kV AAC lines, following several years of one to two failures per year. Since then, no known in-line compression sleeve failures have occurred. However, at some point we should expect failures to resurface. Until that time, an effort to determine sleeve locations and confirmation of reliable reporting of conductor and sleeve failures system-wide is advisable. Proactive reinforcement of sleeves may also be justified, pending more detailed study. See Whicker (2009) for more details on the 230kV in-line sleeve mitigation project.

In December of 2014, two separate incidents of dead-end compression sleeve failures occurred on the Noxon - Pine Creek 230kV line. Preliminary analysis indicates these failures were probably the result of poor installation workmanship, where the internal inhibitor material was removed to allow for easier installation. The lack of inhibitor thus fails to seal the sleeve, allowing water to intrude and corrode the conductor, leading to early failure of steel and aluminum strands. A thorough investigation and is in progress to determine appropriate remedial actions.

Sharepoint - Asset Management Plans

Benchmarking

Asset replacement spending relative to other utilities is one area of particular interest. A 2008 study performed by First Quartile Consulting gathered data from 17 utilities of various sizes and geographic service territories in the U.S. and Canada, providing the 3 -year average transmission line replacement capital spending per asset as shown in the figure below.

Figure 7: 3-year Transmission Lines Replacement Capital Spending per Asset (First Quartile Consulting, 2008)

This shows that out of seven companies providing data, the median was 1.93% and the mean was 2.41% over a three year period. Avista's comparable replacement spending over the last two years and the recommended annual replacement spending over a 30-year period are shown in the table below.

| $\$ 9,906,225$ | 2013 planned replacement spending |
| ---: | ---: | :--- |
| $\$ 1,630,943$ | 2013 unplanned/emergency replacement spending |
| $\$ 11,537,168$ | 2013 total replacement capital spending |
| $\$ 1,140,319,249$ | Transmission asset replacement value |
| $\mathbf{0 . 8 7 \%}$ | 2013 replacement spending capital per asset |
| | |
| $\$ 7,877,719$ | 2014 planned replacement spending |
| | 2014 unplanned/emergency replacement spending |
| $\$ 7,877,719$ | 2014 total replacement capital spending |
| $\$ 1,140,319,249$ | Transmission asset replacement value |
| $\mathbf{0 . 6 9 \%}$ | 2014 replacement spending capital per asset |
| $\$ 21,135,371$ | |
| $\$ 1,321,019$ | recommended planned annual replacement spending (30 year plan) |
| $\$ 22,456,390$ | targeted total replacement capital spending (30 year plan) |
| $\$ 1,140,319,249$ | Transmission asset replacement value |
| $\mathbf{1 . 9 7 \%}$ | recommended replacement spending capital per asset |

Table 22: Avista Transmission Lines Replacement Capital Spending per Asset This shows that Avista's capital replacement spending over the last two years is significantly lower than the study's average, close to the lowest of the seven reported utilities. Comparably, the recommended
capital replacement spending as part of a levelized 30 -year plan of $\$ 21.1$ million (planned work) plus an assumed $\$ 1.3$ million unplanned emergency work results in 1.97%, very near the study's median and less than the average.

Idaho Power is a very good benchmark utility for Avista in terms of size, operating environment and electric transmission component and system similarities. In discussions with their staff, thorough transmission structure ground inspections are conducted every 10 years, with quick visual inspections (drive-bys) every 2 years. It is also clear that in general, Idaho Power spends considerably more time and effort on O\&M maintenance activities relative to Avista, at least in areas of transmission and substation systems.

Idaho Power is also projecting a significant rise in capital replacement of aging infrastructure in the next several decades, as shown below. Over just the next 10 years, this indicates a total capital spend for Idaho Power of $\$ 211$ million for replacement of wood poles alone, or $\$ 21$ million per year levelized. This is similar in magnitude to the recommended replacement of aging wood infrastructure at Avista over the next several decades.

Figure 8: Idaho Power Long-term Replacement Costs

As stated previously, investigation of air switch maintenance practices of various utilities indicates that most utilities perform a much greater degree of maintenance than Avista.

In terms of broader maintenance benchmarking, a study through a CEATI report (excerpts below) show that Avista is among the majority of peers conducting aerial patrols once per year, but that of all 15 utilities responding, we have the longest ground inspection interval at 15 years, as compared to the most common interval of 10 years.

This does not necessarily mean that our inspection interval needs to be shortened. However, it does at least indicate where we stand relative to other utilities participating in the survey, and at minimum would tend to discourage extending our inspection interval any further.

Figure 9: Maintenance Benchmarking: Aerial Patrols (left) and Pole Inspections (right)

Data Integrity

The following table lists the various sources of information used for Asset Management purposes. Data gathering from non-electronic sources, as well as mining and cleaning of available information makes up a disproportionately large amount of current work for Asset Management staff, on the order of 80% of total work. Long term, in order to provide the most value to Avista this needs to be reversed with 80% applied to analyzing data and 20\% to gathering and cleaning data.

Table 23: Transmission Asset Data Integrity

We are 100% complete processing updates to a backlog of 459 transmission jobs dated from 1992 to the present in our GIS/AFM database and on plan and profile (P\&P) drawings. WPM inspection records in handnote form have been entered electronically. Pole material type, location and installation dates have been synchronized with updated AFM information. However, this clean dataset now exists in spreadsheet form and needs to be uploaded to AFM. Line history binders are in the process of being updated and converted to electronic files. Engineers are following the construction as-built recording process, however prompt updates continue to be problematic. A realistic goal of 6 -months from the completion of construction to records updating complete and project close-out has been established. Maximo implementation is in progress. It appears that many years will be needed to obtain quality data that may be effectively used for asset management purposes. The new transmission construction
standards are a major accomplishment and are being used as a baseline for improvement on a regular basis.

Material Usage

According to Supply Chain staff, a definitive list of parts, quantities and funds spent on transmission work is currently unavailable. The following list of materials was tabulated from a query of the Oracle database for those projects listed as Transmission from October 2010 to October 2012. This should not be taken as complete costing information, but may be reasonably considered accurate for the relative use of material categories.

Category	Total Amount	\%
steel poles	$\$ 1,770,582$	44%
other	$\$ 466,378$	12%
fire retardant coating	$\$ 445,514$	11%
crossarms	$\$ 349,709$	9%
air switches	$\$ 293,131$	7%
conductor	$\$ 259,622$	6%
insulators	$\$ 228,702$	6%
crossbraces	$\$ 96,212$	2%
vibration dampers	$\$ 78,916$	2%
wood poles	$\$ 52,927$	1%
total	$\$ 4,050,929$	100%

Table 24: Relative Material Purchases, 10/2010-10/2012

Root Cause Analysis (RCA)

Following the Othello storm in September 2013, a team was formed to study the causes of the event and develop effective solutions to prevent recurrence, as appropriate. Representatives from Transmission Design, Asset Management, Distribution Engineering, Construction Services, and Spokane Electric participated. In addition to technical forensics, a rigorous methodology was followed known as the "Apollo Root Cause Analysis method ${ }^{T M}$ ", requiring evidence and team consensus to develop effective solutions. Not only the root causes, but also the significance of the event and the more severe consequences that were narrowly avoided were unexpectedly discovered through the team's deliberations. A summary report was generated and a number of significant action items initiated to prevent or mitigate similar events in the future.

Unexpected events such as the Othello storm, while undesirable, in many cases offer rare opportunities to learn and improve. No single formula or approach is generically applicable to all problems. However, the Apollo RCA method or close variant is applicable to many, and it is hoped that it may be used to greater effect in the future. Lessons learned from this effort will inform the next RCA effort if/when it arises.

System Planning Projects

The tables below list substation and transmission projects at various stages from study through construction. This list is a snapshot of current plans and is subject to frequent change. For more details, see the System Planning Assessment (Avista, 2014). The first two tables below list projects classified as corrective action plans in order to mitigate performance issues. The last two tables contain projects that are not categorized as corrective action plans.

Overall, customer and load growth is low at about 1\%, and is expected to remain stagnant for many years. Customer loads may even decrease over the next few years, due to continued conservation and efficiency trends such as the conversion to LED lighting. One exception to this is in the West Plains area, which is forecasted to grow at a higher rate in both the residential and business sectors for several years. Major system planning needs include adding transformer capacity, and improved redundancy around the Spokane area. This will most likely be best accomplished by the addition of new, looped 230kV transmission lines around Spokane.

Clear, objective ranking and decision criteria and its consistent use in the company's capital project selection and budgeting process is recommended, in order to reduce the time and effort required to develop, review, approve, prioritize, and execute construction projects.

	Year Issue Starts	Construction Start	Construction End	Priority	Cost Estimate
Big Bend				77.25	\$82,125,000
1 -Completed 178,					
Chelan - Stratford 115 kV Transmission Line River Crossing				0.01	
Stratford 115 kV Station Rebuild				0.01	
2-Planned					
Addy - Devils Gap 115 kV Transmission Line Reconductor	Present	2017	2018	4.16	\$2,025,000
Benton - Othello SS 115 kV Transmission Line Rebuild	Present	2015	2016	77.25	\$7,100,000
3-Needs Further Analysis					
Chelan - Stratford 115 kV Transmission Line Rebuild	Present			2.48	\$13,000,000
Lind - Warden 115 kV Transmission Line Rebuild	2033			0.14	\$9,000,000
Saddle Mountain Integration	Present			23.18	\$16,400,000
4-New Proposal					
Addy - Kettle Falls Protection Scheme	Present			45.00	\$1,000,000
Devils Gap - Stratford 115 kV Transmisison Line Rebuild	2019			1.40	\$30,100,000
Devils Gap Station Reconfiguration	Present			16.00	\$3,000,000
Kettle Falls Capacitor Bank	2024			0.02	\$500,000
Coeur d'Alene				90.30	\$46,300,000
1-Completed					
Lancaster Interconnection					
2-Planned					
Cabinet - Bronx - Sand Creek 115 kV Transmission Line Rebuild	Present	2015	2017	76.88	\$7,500,000
Coeur d'Alene - Pine Creek 115 kV Transmission Line Rebuild	Present	2016	2018	90.30	\$12,750,000
Pine Creek Transformer Replacement	2034			0.01	\$500,000
4-New Proposal					
Cabinet 230/115 kV Transformer Automatic LTC	2019			0.21	\$50,000
Rathdrum 115 kV Bus Reconfiguration	2034			1.29	\$5,000,000
Sandpoint Reinforcement	Present			16.31	\$20,000,000
St. Maries Cap Bank	Present			3.13	\$500,000
Lewiston/Clarkston				150.00	\$15,325,000
3-Needs Further Analysis					
North Lewiston Reactors	Present	2015	2016	150.00	\$4,900,000
4-New Proposal					
Hatwai - Lolo \#2 230 KV Transmission Line	Present	2017	2019	7.97	\$8,025,000
Lolo Transformer Replacement	Present			0.13	\$1,000,000
South Lewiston Station Rebuild	2030	2015	2016	0.06	\$1,400,000

Table 25: Corrective System Planning Projects (Big Bend, CDA \& Lewiston/Clarkston)

	Year Issue Starts	Construction Start	Construction End	Priority	Cost Estimate
Palouse				107.25	\$2,500,000
1-Completed					
Moscow 230 Station Rebuild			0.01		
4-New Proposal					
Shawnee \#2 230/115 kV Transformer	Present			107.25	\$2,500,000
Spokane				157.50	\$146,965,000
2-Planned					
Garden Springs 115 kV Station Integration	Present	2017	2019	12.50	\$8,200,000
Ninth \& Central - Sunset 115 kV Transmisison Line Rebuild	2023	2015	2016	0.05	\$925,000
Spokane Valley Transmission Reinforcement	Present	2015	2016	157.50	\$8,890,000
Westside Transformer Replacement	Present	2015	2016	1.38	\$1,750,000
3-Needs Further Analysis					
Bell Second Tranformer	Present			128.25	So
Garden Springs 230 kV station integration	2032			0.14	\$15,000,000
Nine Mile - Westside Protection Upgrade	Present			26.00	\$200,000
4-New Proposal					
Beacon - Francis \& Cedar 115 kV Transmission Line Reconductor	2032			0.01	\$1,500,000
Beacon 230 kV Capacitor	Present			25.00	\$1,500,000
Garden Springs - Ninth \& Central 230 kV Transmission Line	2034			1.25	\$30,000,000
Garden Springs - Thornton 230 kV Transmission Line	Present			5.63	\$30,000,000
Ninth \& Central 230 kV integration	Present			56.25	\$15,000,000
Rathdrum - Westside 230 kV Transmission Line	2034			0.09	\$30,000,000
Silver take Switching Station	2032			0.01	\$4,000,000
System	Present			600.00	\$220,000
3-Needs Further Analysis					
230 kV Capacitor Automatic Switching	Present			25.00	\$20,000
RAS Update	Present			600.00	\$200,000
Grand Total					\$293,435,000

Table 26: Corrective System Planning Projects (Palouse, Spokane and System)

	Construction Start	Construction End	Cost Estimate
Big Bend	2019	2019	\$18,747,700
1-Completed			
Odessa Cap Bank			
2-Planned			
Devils Gap - Lind 115 kV Transmission Line Rebuild	2015	2016	\$7,997,700
Ford Station Rebuild	2018	2019	\$1,275,000
Gifford Station Rebuild	2015	2015	\$1,200,000
Harrington Station Rebuild	2015	2016	\$3,000,000
Little Falls Station Rebuild	2015	2017	\$4,275,000
Valley Station Rebuild	2019	2019	\$1,000,000
3 -Needs Further Analysis			
49 Degrees Station			
Bruce Siding Station			
Lee and Reynolds Transformation			
Couur d'Alene	2019	2019	\$44,625,000
1-Completed			
Blue Creek Station Rebuild			
Julia Street			
Noxon Construction Station			
2-Planned			
Beck Road Station	2015	2014	
Benewah - Pine Creek 230 kV Transmision Line Rebuild	2018	2019	\$15,000,000
Big Creek Station Rebuild	2016	2017	\$1,300,000
Burke - Pine Creek \#3 \& \#4 115 kV Transmission Line Rebuild	2015	2015	\$3,500,000
Cabinet - Noxon 230 kV Transmission Line Rebuild	2017	2018	\$1,500,000
Noxon Rapids 230 kV Switchyard Rebuild	2015	2019	\$21,075,000
Priest River Station			
Sandpoint, Sagle, and Oden Grid Modernization			
St. Maries SCADA Upgrade/Add Feeder	2018	2018	\$750,000
3-Needs Further Analysis			
Bronx Station	2019	2019	\$1,500,000
Cabinet Gorge Switching Station			
Carlin Bay Station			
Noxon - Pine Creek \#2 230 kV Transmision Line			
Lewiston/Clarkston	2018	2019	\$5,625,000
1-Completed			
10th \& Stewart Station Rebuild			
Lewiston Mill Road Station			
North Lewiston Distribution Station Relocation			
2-Planned			
Clearwater Station Upgrade	2015	2016	\$1,000,000
Grangeville Station Rebuild	2018	2019	\$2,025,000
Kamiah Wood Station Rebuild	2017	2018	\$1,300,000
Kooskia Transformer Replacement			
Pound Land Station Rebuild	2017	2018	\$1,300,000
3-Needs Further Analysis			
Wheatland Station			\$0

Table 27: Non-Corrective System Planning Projects (Big Bend, CDA \& Lewiston/Clarkston)

	Construction Start	Construction End	Cost Estimate
Palouse	2018	2019	\$29,053,800
2-Planned			
Benewah - Moscow 230 kV Transmission Line Rebuild	2015	2017	\$24,178,800
Diamond Station Minor Rebuild			
Moscow City 115 SCADA/Minor Rebuild			
North Moscow Transformation	2018	2019	\$1,800,000
Potlatch Transformer Replacement			
Tekoa SCADA Upgrade/Minor Rebuild			
3-Needs Further Analysis			
Deary - Potlatch 115 kV Transmission Line			
Tamarack Station	2018	2019	\$3,075,000
Spokane	2017	2019	\$39,785,000
2.-Planned			
Chester Station Rebuild	2017	2018	\$1,460,000
Deer Park Partial Rebuild	2015	2015	\$750,000
Downtown West Station	2016	2018	\$2,275,000
Greenacres/Otis Orchards Stations	2015	2015	\$1,375,000
Hallett \& White - Siver Lake 115 KV Transmission Line Rebuild	2017	2018	\$2,025,000
Irvin Distribution	2016	2017	\$1,875,000
Metro Station Rebuild	2016	2019	\$13,150,000
Ninth \& Central Station Upgrade	2015	2017	\$2,950,000
Northwest Station Rebuild	2016	2017	\$1,675,000
Ross Park Station Rebuild	2015	2017	\$6,000,000
Southeast Capacity Increase	2016	2016	5450,000
Sunset Station Rebuild	2017	2019	\$3,775,000
3-Needs Further Analysis			
Beacon - Bell - Francis \& Cedar - Waikiki Reconfiguration	2016	2017	\$2,025,000
Beacon Station Rebuild			
College and Wailnut Consolidation/Rebuild			
Downtown East Station			
Hallett \& White Capacitor Bank			
Hawthorne Station			
Hillyard Station			
Westside Station Rebuild			
System	2015	2017	\$9,794,000
2-Planned			
Line Ratings Mirigation	2015	2017	\$8,794,000
Spokane - Coeur d'Alene 115 KV Relay Upgrades	2015	2015	\$1,000,000
Grand Total	2019	2019	\$147,630,500

Table 28: Non-Corrective System Planning Projects (Palouse, Spokane and System)

Area Work Plans

The following transmission projects are scheduled for work based on a variety of factors including changing system and operational requirements, remaining service life, asset condition, and performance. This list is provided for planning and reference purposes only. It represents current plans and is subject to frequent change. See the Transmission Engineering Manager for the latest revision. Those items with no marks for any year represent tentative projects under consideration.

See the end of the list for the current minor rebuild and ground inspection schedule, which typically drives follow-up repairs and minor rebuilds the following year (when a major rebuild is not justified based on condition assessment).

EFA $=$ Reimburseable or Growth
HPRM $=$ High Priority Line Ratings Mitigation Program Business Case
IAA = Other
LPRM = Low Priority Line Ratings Mitigation Program Business Case
MPRM = Medium Priority Line Ratings Mitigation Program Business Case
NG = New Growth
NT = New Transmission Program Business Case
PS = Project Specific Business Case
SDSR = Substation - Distribution Station Rebuild Program Business Case
SNDS = Substation - New Distribution Stations Program Business Case
SVTR = Spokane Valley Transmission Reinforcement Program Business Case
TAM = Transmission Asset Management Program Business Case
TRR = Transmission Rebuild/Reconductor Program Business Case

Table 29: Project Type Key

Business Case	Area	ER Description	2015	2016	2017	2018	2019
MPRM	Big Bend	Devils Gap-Stratford Line Mitigation	X				
PS	Big Bend	Harrington $115-4 \mathrm{kV}$ - Integration	X				
LPRM	Big Bend	Othello-Warden \#1/\#2 Line Mitigation	X				
SDSR	Big Bend	Little Falls 115kV Sub - Integration	X	X	X		
NT	Big Bend	Coulee - Westside 230 - Construct - acquire Right-of-Way					
SDSR	Big Bend	Ford 115-13kV Sub - Integration				X	X
TRR	Big Bend	Devils Gap-Lind 115kV Rebuild	X	X			
TRR	Big Bend	Ben-Oth SS 115 - ReCond/ReBld	X	X			
TRR	Big Bend	Addy-Devils Gap 115kV - Reconductor/Rebuild near Ford Sub			X	X	
TRR	Big Bend	Chelan-Stratford 115kV - Rebuild Columbia River Crossing					
SNDS	Big Bend	Bruce Siding 115 Sub - New - Tap to Sub					
SNDS	Big Bend	49 Deg North 115-21 Feeder - Integration					
MPRM	CDA	Noxon-Hot Springs \#2 Line Mitigation	X				
PS	CDA	Noxon 230kV SS - Rebuild - Integration	X	X	X	X	X
SDSR	CDA	Bronx 115-21 Sub - Construct - Integration					
NT	CDA	Carlin Bay 115-13 Sub - New - Integration					
PS	CDA	Cabinet Gorge 230kV Switchyard - Integration					
TRR	CDA	BRX-CAB \& BRX-SCR Rebuild	X	X	X	X	X
TRR	CDA	Pine Creek-Burke-Thompson Falls - Rebuild			X		
TRR	CDA	CDA-Pine Creek 115kV Rebuild			X	X	X
TRR	CDA	Cabinet-Noxon 230kV - Reconductor/Rebuild				X	X
TRR	CDA	Benewah-Pine Creek 230kV - Reconductor/Rebuild					
BLKT	CDA	Government Way Road Widening (CDA) - Reimbursable	X				
BLKT	CDA	15th Street Road Widening (CDA) - Reimbursable					

Table 30: Area Work Plans - Major Projects

Business Case	Area	ER Description	2015	2016	2017	2018	2019
LPRM	Lewis-Clark	Moscow-Orofino (Julietta-Orofino) 115 Mitigation	X				
SNDS	Lewis-Clark	Wheatland 115 Sub - Construct - Tap to Sub					
SDSR	Lewis-Clark	Grangeville 115-13-34.5kV - Integration					
NT	Lewis-Clark	Hatwai-Lolo \#2 230kV - New Transmission			X	X	X
TRR	Lewis-Clark	Lolo-Oxbow 230kV - Reconductor/Rebuild					
NT	Lewis-Clark	Hatwai- Lolo 230 Casino	X				
SNDS	Palouse	Tamarack 115 Sub - Construct - Integration				X	X
SDSR	Palouse	N. Moscow Add Transformer - Integration				X	X
SDSR	Palouse	N. Moscow Add Transformer - Upgrade					X
SNDS	Palouse	Bovill 115kV Substation - New - Integration					
TRR	Palouse	Benewah-Moscow 230kV - Reconductor/Rebuild	X	X	X		
SVTR	Spokane	Irvin SS 115 - Construct - Integration	X	X			
SDSR	Spokane	9CE 115 Sub - Rebuild/Expand	X				
SVTR	Spokane	Opportunity Sub 115-13kV - Integration	X				
SNDS	Spokane	Greenacres 115 Sub - Construct - Integration	X				
TRR	Spokane	Garden Springs - Sunset - West Plains Trans Reinforcement	X	X			
SVTR	Spokane	BEA-BLD \#2 115- Upgrd 140MVA	X	X			
	Spokane	Hawthorne 115 Sub - Construct - Integration					
SDSR	Spokane	Beacon 230-2X2-Integration					
SDSR	Spokane	Sunset 115kV Sub - Rebuild - Integration			X	X	
SNDS	Spokane	Downtown East 115 Sub- New - Tap to Sub					
SNDS	Spokane	Downtown West 115 Sub- New - Tap to Sub		X	X		
SNDS	Spokane	Hillyard 115-13 Sub - Construct - Integration					
PS	Spokane	Westside 230kV Sub - Rebuild - Integration					
PS	Spokane	Garden Springs 230-115-13 Sub - Integration			X	X	X
SDSR	Spokane	Northwest 115-13kV Sub - Integration		X	X		
SDSR	Spokane	Chester 115-13kV Sub - Integration			X	x	
SDSR	Spokane	Metro 115-13kV Sub - Integration				X	X
TRR	Spokane	BEA-BEL-F\&C-WAI 115kV - Reconfiguration		X	X		
PS	Spokane	Beacon 230 kV Sub - 115kV Rebuild - Integration					
PS	Spokane	9CE Sub - New 230kV Transformation - New Transmission \& Integration					
NT	Spokane	Westside/Garden Springs 230/115-New Transmission					
TRR	Spokane	Garden Springs - Silver Lake 115kV - Recon/Rebld H\&W to S Fairchild Tap			X	X	
TRR	Spokane	9CE-Sunset 115kV Transmission - Reconductor/Rebuild	X	X			
BLKT	Spokane	MLK New Road Relocation - Reimbursable	X				
TAM	All	Sys - Trans Air Switch Upgrade	X	X	X	X	X
TAM	All	Trans Air Switch Platform Grd Mat					
SDSR	All	Sys - Wood Sub Rebuilds	X	X	X	X	X
LPRM	All	LP Line Ratings Mitigation Project		X	X		
MPRM	All	MP Line Ratings Mitigation Project		X			
TRR	All	High Resistance Conductor Replace				X	
TAM	All	Transmission Minor Rebuilds - WA	X	X	X	X	X
TAM	All	Transmission Minor Rebuilds - ID	X	X	X	X	X

Table 31: Area Work Plans - Major Projects (continued)

2015 Minor Rebuilds (following previous ground inspections)			
Area	Transmission Line		
Big Bend	Addy Devils Gap	115 kV	
Big Bend	Devils Gap-Stratford	115 kV	
Big Bend	Othello-Warden \#1	115 kV	
Big Bend	Othello-Warden \#2	115 kV	
CDA	Burke-Pine Creek \#3	115 kV	
CDA	Cabinet-Noxon	230 kV	
CDA	Hot Springs-Noxon \#2	230 kV	
CDA	St Maries Tap	115 kV	
CDA/Spokane	Benewah-Boulder	230 kV	
Lewis-Clark	Dry Creek-Lolo	230 kV	
Lewis-Clark	Dry Creek-Pound Lane	115 kV	
Lewis-Clark	Jaype-Orofino	115 kV	
Lewis-Clark	Moscow-Orofino	115 kV	
Palouse	Moscow-South Pullman	115 kV	
Spokane	Beacon-Ross Park	115 kV	

Table 32: Minor Rebuilds

2015-2018 Ground Inspections			\# Wood Poles	
Area	Transmission Line			
Lewis-Clark	Lolo-Oxbow	230 kV	657	
Lewis-Clark	Dry Creek-N Lewiston	230 kV	13	
Big Bend	Devils Gap-Stratford*	115 kV	582	
Big Bend	Addy-Gifford	115 kV	271	
Palouse	Latah-Moscow	115 kV	706	
Spokane	Boulder-Rathdrum	115 kV	241	
Spokane	Beacon-Boulder \#2	115 kV	146	
			2616	Year 2015 Total
*Odessa to Stratford only				
Spokane	Boulder- Otis Orchards \#1	115 kV	55	
Spokane	Post Falls-Ramsey	115 kV	161	
Lewis-Clark	Jaype-Orofino	115 kV	540	
Big Bend	Chelan-Stratford	115 kV	1197	
Lewis-Clark	Clearwater-North Lewiston	115 kV	50	
Palouse	Shawnee-South Pullman	115 kV	191	
Spokane	Francis \& Cedar-Ross Park	115 kV	85	
Spokane	Airway Heights-Sunset	115 kV	129	
Spokane	College \& Walnut-Post Street	115 kV	3	
			2411	Year 2016 Total
Spokane	College \& Walnut-Westside	115 kV	135	
Spokane	Francis \& Cedar-Northwest	115 kV	52	
Spokane	Nineth \& Central-Sunset	115 kV	184	
Spokane	Beacon-Bell \#1	115 kV	158	
Big Bend	Lind-Warden	115 kV	498	
Big Bend	Lind-Washtucna	115 kV	362	
CDA	Bronx-Cabinet	115 kV	319	
Lewis-Clark	Lolo-Nez Perce	115 kV	692	
			2400	Year 2017 Total
Spokane	Metro-Sunset	115 kV	53	
Spokane	Beacon-Ninth \& Central	115 kV	70	
Lewis-Clark	Lolo-Pound Lane	115 kV	242	
Spokane	Boulder-Otis Orchards \#2	115 kV	55	
Lewis-Clark	Hatwai-Lolo	230 kV	146	
Palouse	Moscow-Terre View	115 kV	TBD	
Palouse	Shawnee-Terre View	115 kV	TBD	
Big Bend	Devils Gap-Stratford*	115 kV	621	
TBD	TBD	115 kV	TBD	
			TBD	Year 2018 Total
*partial insp	tion Odessa to Stratford only			

Table 33: Ground Inspection Plan

References

Avista (2015). Transmission Vegetation Management Program.
Avista (2014). Avista System Planning Assessment.
Avista (2014). Specification for Inspection and Treatment of Wood Poles, S-622.
Avista (2013). 2013 Electric Integrated Resource Plan.
Dan Whicker (2013). Fire Guard Coating for Wood Transmission Poles. April 16, 2013
Dan Whicker (2009). 230kV Transmission Compression Sleeve Couplings.

Dean Spratt (2015). Transmission Outage Report 2014.

First Quartile Consulting (2008). Hydro One Update of Transmission Benchmark Study. September 19, 2008

Ken Sweigart (2014). Transmission Capital Budget 5-Year Plan.

Rendall Farley and Valerie Petty (2013). 2012 Transmission System Review. April 15, 2013.

Rendall Farley and Tia Benjamin (2014). Electric Transmission System 2014 Annual Update. March 31, 2014

Reuben Arts (2015). Reliability Data 2014.

Appendix A -Transmission Probability, Consequence \& Risk Index

Transmission Line Name	Voltage (kV)	Tap Name	Length (miles)		eplacement Value	Probability Index	Consequence Index	Risk Inde ${ }^{-}$	Recent and Planned Work Description
Lolo- Oxbow	230		63.41	\$	\$ 45,655,200	85.4	100.0	100.0	2015 Inspection and Rebuild Analysis
Noxon - Pine Creek	230		43.51	\$	\$ 31,327,200	80.5	87.8	82.8	2015 Rebuild Analysis
Benewah - Pine Creek	230		42.77	\$	\$ 30,794,400	68.3	87.8	70.3	Rebuild 2018-20, no reconductor \$27M
Walla Walla - Wanapum	230		77.78	\$	\$ 56,001,600	68.4	83.7	67.1	2014 Minor Rebuild
Benewah - Boulder	230		26.15	\$	\$ 18,828,000	67.1	72.9	57.3	2015 Minor Rebuild
Hot Springs - Noxon \#2	230		70.05	\$	\$ 50,436,000	66.0	68.8	53.2	2015 Minor Rebuild
Dry Creek - Talbot	230		28.27	\$	\$ 20,354,400	51.4	78.3	47.1	2015 LiDAR mitigation
Latah - Moscow	115		51.41	\$	\$ 21,592,200	96.0	41.7	47.0	2015 Inspection, may want to segment
Devils Gap - Stratford	115		86.19	\$	\$ 36,199,800	100.0	39.0	45.6	2015-6 Minor Rebuild
Post Street - 3rd \& Hatch	115		1.76	\$	3,696,000	70	100	43	
Benewah - Moscow	230		44.28	\$	\$ 31,881,600	61.1	59.3	42.5	Structure rebuild 2015-18 \$25M
Cabinet - Rathdrum	230		52.3	\$	\$ 37,656,000	41.7	86.4	42.3	
Bronx - Cabinet	115		32.38	\$	\$ 13,599,600	59.4	55.2	38.4	middle of 5yr rebuild more for capacity
Metro - Post Street	115		0.5	\$	1,890,000	60	100	38	
Ninth \& Central - Sunset	115		8.63	\$	3,624,600	39.0	75.6	34.7	investigate for segmentation
Burke - Pine Creek \#3	115		23.79	\$	9,991,800	67.0	44.4	34.6	2015 Minor Rebuild, addn rebuild 2017
Shawnee - Sunset	115		61.51	\$	\$ 25,834,200	79.0	36.3	33.4	2013-14 Minor Rebuild Completed
Sunset - Westside	115		10.03	\$	\$ 4,212,600	53.0	53.9	33.2	
Hatwai - Lolo	230		8.27	\$	5 5,954,400	28.9	93.2	31.6	major rebuild 2014
Burke - Pine Creek \#4	115		23.13	\$	\$ 9,714,600	69.0	37.6	30.4	addn rebuild 2017
Beacon-Boulder \#2	115		13.73	\$	5 5,766,600	38.7	66.1	29.9	planned rebuild 2016 Beacon-Irvin section
Addy - Devil's Gap	115		43.31	\$	\$ 18,190,200	58.0	43.0	29.3	
Othello Sw. Sta - Warden \#2	115		16.56	\$	\$ 6,955,200	53.7	45.8	28.8	storm replacements 2013, minor rebuild 2014
Pine Street-Rathdrum	115		33.24	\$	\$ 13,960,800	47.0	51.2	28.3	
Benton - Othello Switch Station	115		26.07	\$	10,949,400	64.0	37.6	28.3	
CdA 15th St - Pine Creek	115		29.75	\$	\$ 12,495,000	83.0	28.1	27.3	Full rebuild 2016-18
Cabinet - Noxon	230		18.51	\$	13,327,200	31.3	71.5	26.3	Rebuild \& reconductor 2017-18 \$14M
Chelan - Stratford	115		49.44	\$	\$ 20,764,800	66.6	32.2	25.1	Rebuild Columbia River Crossing
Moscow 230-Orofino	115		41.59	\$	\$ 17,467,800	84.0	25.4	25.0	Minor Rebuild
Boulder - Rathdrum	115		19.07	\$	\$ 8,009,400	58.6	36.3	24.9	
Benewah - Pine Creek	115		45.02	\$	\$ 18,908,400	67.0	29.5	23.2	
Jaype - Orofino	115		34.64	\$	\$ 14,548,800	66.6	29.5	23.0	2015 Minor Rebuild
Clearwater - N. Lewiston	115		3.21	\$	\$ 1,348,200	30.7	63.4	22.8	
Ninth \& Central - Otis Orchards	115		16.31	\$	\$ 6,850,200	28.9	66.1	22.4	
N L Lewiston - Shawnee	230		34.28	\$	\$ 24,681,600	33.2	56.6	22.0	
Burke - Thompson Falls A	115		3.96	\$	\$ 1,663,200	34.4	53.9	21.7	
College \& Walnut - Post Street	115		0.54	\$	\$ 2,041,200	2.8	100	21	
Beacon-Bell \#4	230		6.3	\$	\$ 4,536,000	22.8	78.3	20.9	
Devil's Gap - Lind	115		73.74	\$	\$ 30,970,800	95.1	18.6	20.8	
Dry Creek - Lolo	230		11.23	\$	\$ 8,085,600	29.5	59.3	20.5	
Eighth \& Fancher - Latah	115		26.27	\$	\$ 11,033,400	55.6	30.8	20.1	
Coulee - Westside	230		1.99	\$	\$ 1,432,800	27.1	62.0	19.7	
Benewah - Thornton	230		32.2	\$	\$ 23,184,000	27.1	60.7	19.3	
Shawnee - Thornton	230		27.83	\$	\$ 20,037,600	27.1	60.7	19.3	
Hatwai - Moscow	230		18.05	\$	\$ 12,996,000	27.7	59.3	19.2	
Grangeville - Nez Perce \#2	115		37.17	\$	\$ 15,611,400	53.0	29.5	18.4	
Bell - Northeast	115		1.53	\$	\$ 642,600	42.2	48.5	18.1	
Addy - Kettle Falls	115		27.11	\$	\$ 11,386,200	27.7	55.2	17.9	
Burke - Thompson Falls B	115		3.97	\$	\$ 1,667,400	28.3	53.9	17.9	
Bell - Northeast	115	Waikiki Tap	2.83	\$	\$ 1,188,600	31.9	34.9	17.3	
Francis \& Cedar - Northwest	115		2.12	\$	\$ 890,400	30.7	47.1	16.9	
Grangeville - Nez Perce \#1	115		26.9	\$	\$ 11,298,000	48.0	29.5	16.7	
Lolo - Nez Perce	115		41.2	\$	\$ 17,304,000	55.7	25.4	16.6	
Lolo - Pound Lane	115		10.25	\$	\$ 4,305,000	40.0	34.9	16.5	
Beacon-Bell \#5	230		6.04	\$	\$ 4,348,800	18.0	78.3	16.5	
Dworshak - Orofino	115		3.62	\$	\$ 1,520,400	21.6	64.7	16.4	
Airway Heights - Devils Gap	115		20.6	\$	\$ 8,652,000	22.8	60.7	16.2	2015 Minor Rebuild
Beacon - Ross Park	115		2.06	\$	\$ 865,200	20.4	67.5	16.1	
Lind - Warden	115		21.71	\$	\$ 9,118,200	44.5	30.8	16.1	Rebuild no reconductor 2014-16 \$11M
Hatwai - N. Lewiston	230		6.99	\$	\$ 5,032,800	18.0	75.6	15.9	
Metro - Sunset	115		2.87	\$	\$ 1,205,400	24.6	52.5	15.1	
Devils Gap - Ninemile	115		18.78	\$	\$ 7,887,600	28.9	44.4	15.0	
Beacon - Boulder \#1	115		13.07	\$	5 5,489,400	38.7	32.2	14.6	

Transmission Line Name	Voltage (kV)	Tap Name	Length (miles)		eplacement Value	Probability Index	Consequence Index	Risk Index
Moscow 230- Terre View	115		11.94	\$	5,014,800	40.4	30.8	14.6
Bronx - Sand Creek	115		6.62	\$	2,780,400	30.7	40.3	14.5
Beacon - Ninth \& Central \#2	115		3.5	\$	1,470,000	22.8	53.9	14.4
Beacon-Bell \#1	115		6.86	\$	2,881,200	29.5	41.7	14.4
Lind - Shawnee	115		75.81	\$	31,840,200	83.6	14.6	14.3
Moscow 230-Orofino	115	Deary Tap	21.33	\$	8,958,600	50.0	24.1	14.1
College \& Walnut - Westside	115		8.79	\$	3,691,800	24.0	49.8	14.0
Northwest - Westside	115		1.95	\$	819,000	24.0	49.8	14.0
Ross Park - Third \& Hatch	115		2.19	\$	919,800	19.2	60.7	13.6
Beacon - Northeast	115		5.25	\$	2,205,000	30.7	41.7	13.5
Ninemile - Westside	115		6.8	\$	2,856,000	22.8	49.8	13.3
Nez Perce - Orofino	115		17.28	\$	7,257,600	27.7	40.3	13.1
Post Falls - Ramsey	115		9.01	\$	3,784,200	28.9	36.3	12.3
Addy - Gifford	115		20.68	\$	8,685,600	51.9	20.0	12.2
Ramsey - Rathdrum \#1	115		8.42	\$	3,536,400	24.0	41.7	11.7
Beacon-Boulder	230		11.95	\$	8,604,000	17.4	56.6	11.5
Beacon - Ninth \& Central \#1	115		3.73	\$	1,566,600	18.0	53.9	11.3
Stratford - Summer Falls	115		6.3	\$	2,646,000	18.0	53.9	11.3
Beacon - Francis \& Cedar	115		11.56	\$	4,855,200	34.3	28.1	11.3
Appleway - Rathdrum	115		11.77	\$	4,943,400	20.4	47.1	11.2
Shawnee - Terre View	115		10.05	\$	4,221,000	30.1	30.8	10.9
Dry Creek - N. Lewiston	230		8.06	\$	5,803,200	13.1	70.2	10.7
CdA 15th St - Rathdrum	115		12.67	\$	5,321,400	19.2	47.1	10.6
Milan Tap	115		8.22	\$	3,452,400	30.1	29.5	10.4
Shawnee - South Pullman	115		12.7	\$	5,334,000	35.0	25.4	10.4
Beacon-Rathdrum	230		25.36	\$	18,259,200	16.2	53.9	10.2
Airway Heights - Silver Lake	115		10.77	\$	4,523,400	24.0	36.3	10.2
Boulder - Lancaster	230		13.29	\$	9,568,800	11.3	76.9	10.2
Libby - Noxon	230		0.79	\$	568,800	12.5	68.8	10.1
Moscow 230 - South Pullman	115		12.07	\$	5,069,400	23.0	36.3	9.7
Colbert Tap	115		3.19	\$	1,339,800	34.3	24.1	9.7
Clearwater - Lolo \#2	115		8.56	\$	3,595,200	24.0	33.5	9.4
Otis Orchards - Post Falls	115		7.62	\$	3,200,400	24.0	30.8	8.7
Ninth \& Central - Third \& Hatch	115		4.34	\$	1,822,800	24.0	29.5	8.3
Lind - Washtucna	115		28.78	\$	12,087,600	30.1	22.7	8.0
Benewah - Pine Creek	115	St Maries Tap	7.06	\$	2,965,200	27.0	24.1	7.6
Burke - Pine Creek \#3	115	Lucky Friday Tap	4.58	\$	1,923,600	23.0	28.1	7.5
Shawnee - Sunset	115	Chambers Tap	7.12	\$	2,990,400	37.0	15.9	6.8
Devils Gap - Long Lake \#2	115		1.03	\$	432,600	13.1	41.7	6.4
Albeni Falls - Pine Street	115		2.27	\$	953,400	13.1	40.3	6.2
Francis \& Cedar - Ross Park	115		5.16	\$	2,167,200	14.3	36.3	6.1
Clearwater - Lolo \#1	115		8.63	\$	3,624,600	24.0	20.0	5.6
Dry Creek - Pound Lane	115		3.89	\$	1,633,800	12.5	36.3	5.3
Airway Heights - Sunset	115		9.52	\$	3,998,400	18.0	25.4	5.3
Sunset-Westside	115	South Fairchild Tap	11.97	\$	5,027,400	22.0	21.3	5.2
Latah - Moscow	115	Potlatch Tap	10.37	\$	4,355,400	17.0	25.4	5.0
Dry Creek - N. Lewiston	115		8.17	\$	3,431,400	13.1	30.8	4.7
Devils Gap - Little Falls \#2	115		3.9	\$	1,638,000	24.0	15.9	4.5
Othello Sw. Sta - Warden \#1	115		8.28	\$	3,477,600	36.1	10.5	4.4
CdA 15th St - Ramsey	115		3.17	\$	1,331,400	9.4	36.3	4.0
Moscow City - N. Lewiston	115		22.19	\$	9,319,800	16.2	21.3	4.0
Devils Gap - Little Falls \#1	115		3.42	\$	1,436,400	19.2	14.6	3.3
Critchfield - Dry Creek	115		1.58	\$	663,600	13.1	20.0	3.1
Benewah - Latah	115		6.68	\$	2,805,600	5.9	40.3	3.0
Lolo - Pound Lane	115	North Lewiston Tap	2.94	\$	1,234,800	12.0	20.0	2.8
Bell - Westside	230		1.99	\$	1,432,800	2.8	72.9	2.4

Appendix B - Transmission System Outage Data

Transmission Line Name	Voltage (kV)	\# Line Outages	\#Planned Outages	\#Unplanned Outages	Transmission Line Name	Voltage (kV)	\# Line Outages	\#Planned Outages	\#Unplanned Outages
Devils Gap - Stratford	115	31	9	22	Grangeville - Nez Perce \#1	115	3	2	1
AVISTA DOES NOT OWN		14	1	13	Kettle Falls Tap	115	1	0	1
Coulee - Westside	230	13	1	12	Moscow 230-Terre View	115	3	2	1
Devil's Gap - Lind	115	17	5	12	Ninth \& Central - Otis Orchards	115	3	2	1
Benewah - Pine Creek	115	14	4	10	Ninth \& Central - Sunset	115	3	2	1
Burke - Thompson Falls A	115	15	5	10	North Lewiston - Walla Walla	115	1	0	1
Latah - Moscow	115	12	2	10	Northwest - Westside	115	4	3	1
Moscow 230-Orofino	115	10	1	9	Othello Sw. Sta - Warden \#2	115	4	3	1
Sunset - Westside	115	10	1	9	Otis Orchards - Post Falls	115	4	3	1
Lind - Shawnee	115	9	1	8	Ramsey - Rathdrum \#1	115	5	4	1
Shawnee - Sunset	115	9	1	8	Rathdrum C.T. - Rathdrum \#1	115	1	0	1
Burke - Thompson Falls B	115	9	2	7	Ross Park - Third \& Hatch	115	3	2	1
Benton - Othello Switch Stati	i115	10	4	6	Beacon - Rathdrum	230	0	0	0
Bronx - Cabinet	115	9	3	6	Beacon-Bell \#4	230	1	1	0
CdA 15th St - Pine Creek	115	12	6	6	Beacon-Bell \#5	230	0	0	0
Lolo - Nez Perce	115	8	2	6	Bell - Westside	230	2	2	0
Cabinet - Rathdrum	230	5	0	5	Boulder - Lancaster	230	0	0	0
Addy - Devil's Gap	115	8	3	5	Cabinet - Noxon	230	0	0	0
Grangeville - Nez Perce \#2	115	6	1	5	Dry Creek - Lolo	230	0	0	0
Jaype - Orofino	115	6	1	5	Dry Creek - N. Lewiston	230	0	0	0
Dry Creek - Talbot	230	5	1	4	Hatwai - Moscow	230	0	0	0
Lolo- Oxbow	230	5	1	4	Hatwai - N. Lewiston	230	1	1	0
N. Lewiston - Shawnee	230	4	0	4	Hot Springs - Noxon \#1	230	3	3	0
Burke - Pine Creek \#3	115	8	4	4	Lancaster - Rathdrum	230	0	0	0
Shawnee - South Pullman	115	5	1	4	Noxon Construction Tap	230	0	0	0
Benewah - Moscow	230	3	0	3	Addy - Kettle Falls	115	1	1	0
Benewah - Pine Creek	230	4	1	3	Airway Heights - Devils Gap	115	1	1	0
Hot Springs - Noxon \#2	230	3	0	3	Airway Heights - Sunset	115	1	1	0
Noxon - Pine Creek	230	3	0	3	Albeni Falls - Pine Street	115	0	0	0
Walla Walla - Wanapum	230	5	2	3	Appleway - Ramsey	115	0	0	0
Burke - Pine Creek \#4	115	5	2	3	Beacon - Bell \#1	115	0	0	0
Milan Tap	115	3	0	3	Beacon - Francis \& Cedar	115	2	2	0
Shawnee - Terre View	115	3	0	3	Beacon - Ninth \& Central \#1	115	0	0	0
Beacon - Boulder	230	2	0	2	Beacon - Ninth \& Central \#2	115	0	0	0
Hatwai - Lolo	230	3	1	2	Benewah - Latah	115	0	0	0
Libby - Noxon	230	3	1	2	Boulder - Boulder Park	115	0	0	0
Shawnee - Thornton	230	2	0	2	Boulder - Otis Orchards \#1	115	0	0	0
Airway Heights - Silver Lake	115	2	0	2	Boulder - Otis Orchards \#2	115	1	1	0
Appleway - Rathdrum	115	2	0	2	Bronx Tap	115	0	0	0
Bell - Northeast	115	2	0	2	CdA 15th St - Ramsey	115	0	0	0
Boulder - Rathdrum	115	3	1	2	CdA 15th St - Rathdrum	115	1	1	0
Devils Gap - Little Falls \#2	115	3	1	2	College \& Walnut - Post Street	115	0	0	0
Devils Gap - Ninemile	115	3	1	2	Critchfield - Dry Creek	115	0	0	0
Lind - Washtucna	115	2	0	2	Devils Gap - Long Lake \#1	115	0	0	0
Lolo - Pound Lane	115	8	6	2	Devils Gap - Long Lake \#2	115	0	0	0
Ninth \& Central - Third \& Hat	115	3	1	2	Dower - Post Falls	115	1	1	0
Pine Street - Rathdrum	115	2	0	2	Dry Creek - N. Lewiston	115	0	0	0
Post Falls - Ramsey	115	3	1	2	Dworshak - Orofino	115	1	1	0
Millwood - Paper Mill	60	2	0	2	Eighth \& Fancher - Latah	115	0	0	0
Benewah - Boulder	230	1	0	1	Francis \& Cedar - Ross Park	115	2	2	0
Benewah - Thornton	230	1	0	1	Kettle Falls - KF Generator	115	0	0	0
Addy - Gifford	115	1	0	1	Lind - Warden	115	1	1	0
Beacon-Boulder \#1	115	1	0	1	LOON LAKE TAP	115	0	0	0
Beacon - Boulder \#2	115	2	1	1	Mead Tap	115	0	0	0
Beacon - Northeast	115	1	0	1	Metro - Post Street	115	1	1	0
Beacon - Ross Park	115	5	4	1	Metro - Sunset	115	1	1	0
Bronx - Sand Creek	115	3	2	1	Moscow 230-South Pullman	115	2	2	0
Chelan - Stratford	115	3	2	1	Moscow City - N. Lewiston	115	2	2	0
Clearwater - Lolo \#1	115	4	3	1	NE-NE Turbine Generator	115	0	0	0
Clearwater - Lolo \#2	115	6	5	1	Nez Perce - Orofino	115	3	3	0
Clearwater - N. Lewiston	115	3	2	1	Ninemile - Westside	115	1	1	0
Colbert Tap	115	1	0	1	Othello Sw. Sta - Warden \#1	115	1	1	0
College \& Walnut - Westside	115	6	5	1	Post Street - 3rd \& Hatch	115	0	0	0
Devils Gap - Little Falls \#1	115	1	0	1	Priest River Tap	115	0	0	0
Dry Creek - Pound Lane	115	1	0	1	Rathdrum C.T. - Rathdrum \#2	115	0	0	0
Francis \& Cedar - Northwest	115	1	0	1	Sagle Tap	115	0	0	0
					Stratford - Summer Falls	115	1	1	0

[^0]: ${ }^{1}$ In the last case, Ms. Rosentrater's testimony was largely identical to the electric transmission and distribution capital spending testimony filed in the 2012 rate case by Mr. Kinney. Comparison of Rosentrater Exhibit No. \qquad (HLR-1T), Pages 17 (at 19-23) through 20 and Utilities and Transp. Comm'n v. Avista Corp., Cause Nos. UE-120436 and UG-120437 (consolidated), Kinney Exhibit _ (SJK-1T), Pages 17-19.

[^1]: 27
 2015 Electric Transmission System Asset Management Plan
 Sharepoint - Asset Management Plans

