

October 06, 2020 Vista Work Order No. 2002003

Ms. Delaney Peterson Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

Dear Ms. Peterson,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on September 24, 2020 under your Project Name 'A0I0499'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2002003 Case Narrative

Sample Condition on Receipt:

Eight sediment samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in clear glass jars. Samples "PDI-083SC-B-10-12-191022" and "PDI-083SC-A-14-15-191022" were assigned to Vista Work Order No. 2002006.

Analytical Notes:

EPA Method 1613B

Six samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	14
Certifications	15
Sample Receipt	18
Extraction Information	22
Sample Data - EPA Method 1613	28
Initial Calibration	273

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2002003-01	PDI-018SC-A-00-01-190926	26-Sep-19 08:54	24-Sep-20 10:31	Clear Glass Jar, 120mL
2002003-02	PDI-018SC-A-01-02-190926	26-Sep-19 08:54	24-Sep-20 10:31	Clear Glass Jar, 120mL
2002003-03	PDI-018SC-A-02-03-190926	26-Sep-19 08:54	24-Sep-20 10:31	Clear Glass Jar, 120mL
2002003-04	PDI-018SC-A-03-04-190926	26-Sep-19 08:54	24-Sep-20 10:31	Clear Glass Jar, 120mL
2002003-05	PDI-018SC-A-04-05-190926	26-Sep-19 08:54	24-Sep-20 10:31	Clear Glass Jar, 120mL
2002003-06	PDI-018SC-A-05-06-190926	26-Sep-19 08:54	24-Sep-20 10:31	Clear Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Method Blan	ık					EPA Method	l 1613B
Client DataName:Anchor QEAProject:A0I0499Matrix:Solid	A, LLC		Laboratory Dat Lab Sample: QC Batch: Sample Size:	ta B0I0193-BLK1 B0I0193 10.0 g	Date Extracted: Column:	25-Sep-20 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC	1	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0925				30-Sep-20 21:11	1
1,2,3,7,8-PeCDD	ND	0.103				30-Sep-20 21:11	1
1,2,3,4,7,8-HxCDD	ND	0.0979				30-Sep-20 21:11	1
1,2,3,6,7,8-HxCDD	ND	0.100				30-Sep-20 21:11	1
1,2,3,7,8,9-HxCDD	ND	0.104				30-Sep-20 21:11	
1,2,3,4,6,7,8-HpCDD	ND	0.135				30-Sep-20 21:11	
OCDD	ND	0.215	0.0005			30-Sep-20 21:11	
2,3,7,8-TCDF	ND ND	0.0726	0.0905			30-Sep-20 21:11	1
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND	0.0641				30-Sep-20 21:11 30-Sep-20 21:11	1
1,2,3,4,7,8-HxCDF	ND	0.102				30-Sep-20 21:11	
1,2,3,6,7,8-HxCDF	ND	0.0974				30-Sep-20 21:11	1
2,3,4,6,7,8-HxCDF	ND	0.109				30-Sep-20 21:11	
1,2,3,7,8,9-HxCDF	ND		0.150			30-Sep-20 21:11	
1,2,3,4,6,7,8-HpCDF	ND	0.155				30-Sep-20 21:11	
1,2,3,4,7,8,9-HpCDF	ND	0.152				30-Sep-20 21:11	1
OCDF	ND	0.204				30-Sep-20 21:11	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	0.0925					
Total PeCDD	ND	0.103					
Total HxCDD	ND	0.104					
Total HpCDD	ND	0.135	0.0005				
Total TCDF Total PeCDF	ND ND	0.0726	0.0905				
Total HxCDF	ND	0.0720	0.150				
Total HpCDF	ND	0.155	0.150				
Labeled Standards	Туре	% Recov	erv	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	100	cry	25 - 164	Qualifiers	30-Sep-20 21:11	
13C-1,2,3,7,8-PeCDD	IS	99.8		25 - 181		30-Sep-20 21:11 30-Sep-20 21:11	
13C-1,2,3,4,7,8-HxCDD	IS	101		32 - 141		30-Sep-20 21:11	
13C-1,2,3,6,7,8-HxCDD	IS	98.4		28 - 130		30-Sep-20 21:11	
13C-1,2,3,7,8,9-HxCDD	IS	101		32 - 141		30-Sep-20 21:11	
13C-1,2,3,4,6,7,8-HpCDD	IS	94.2		23 - 141		30-Sep-20 21:11	
13C-OCDD	IS	83.4		17 - 157		30-Sep-20 21:11	
13C-2,3,7,8-TCDF	IS	96.3		24 - 169		30-Sep-20 21:11	
13C-1,2,3,7,8-PeCDF	IS	96.2		24 - 185		30-Sep-20 21:11	
13C-2,3,4,7,8-PeCDF	IS	90.2		24 - 185 21 - 178		30-Sep-20 21:11 30-Sep-20 21:11	
13C-1,2,3,4,7,8-HxCDF	IS	92.8		26 - 152		30-Sep-20 21:11 30-Sep-20 21:11	
13C-1,2,3,6,7,8-HxCDF	IS	94.9		26 - 132 26 - 123		30-Sep-20 21:11	
13C-2,3,4,6,7,8-HxCDF	IS	93.5		28 - 123		30-Sep-20 21:11	
13C-1,2,3,7,8,9-HxCDF	IS	93.3		28 - 130		30-Sep-20 21:11	
13C-1,2,3,4,6,7,8-HpCDF	IS	89.8		29 - 147 28 - 143		30-Sep-20 21:11 30-Sep-20 21:11	
	IS	93.6		28 - 143 26 - 138		30-Sep-20 21:11 30-Sep-20 21:11	
							1
13C-1,2,3,4,7,8,9-HpCDF						-	
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF 37Cl-2,3,7,8-TCDD	IS CRS	76.0 118		17 - 157 35 - 197		30-Sep-20 21:11 30-Sep-20 21:11	1

The results are reported in dry weight.

Sample ID: OPR						EPA Method	1613I
Client DataName:Anchor QlProject:A0I0499Matrix:Solid	EA, LLC		Laboratory Data Lab Sample: QC Batch: Sample Size:	B0I0193-BS1 B0I0193 10.0 g	Date Extracted: Column:	25-Sep-20 10:33 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilutio
2,3,7,8-TCDD	22.0	20.0	110	67-158		30-Sep-20 19:40	1
1,2,3,7,8-PeCDD	113	100	113	70-142		30-Sep-20 19:40	1
1,2,3,4,7,8-HxCDD	99.4	100	99.4	70-164		30-Sep-20 19:40	1
1,2,3,6,7,8-HxCDD	96.2	100	96.2	76-134		30-Sep-20 19:40	1
1,2,3,7,8,9-HxCDD	98.3	100	98.3	64-162		30-Sep-20 19:40	1
1,2,3,4,6,7,8-HpCDD	103	100	103	70-140		30-Sep-20 19:40	1
OCDD	202	200	101	78-144		30-Sep-20 19:40	1
2,3,7,8-TCDF	19.3	20.0	96.7	75-158		30-Sep-20 19:40	1
1,2,3,7,8-PeCDF	106	100	106	80-134		30-Sep-20 19:40	1
2,3,4,7,8-PeCDF	111	100	111	68-160		30-Sep-20 19:40	1
1,2,3,4,7,8-HxCDF	118	100	118	72-134		30-Sep-20 19:40	1
1,2,3,6,7,8-HxCDF	120	100	120	84-130		30-Sep-20 19:40	1
2,3,4,6,7,8-HxCDF	118	100	118	70-156		30-Sep-20 19:40	1
1,2,3,7,8,9-HxCDF	116	100	116	78-130		30-Sep-20 19:40	1
1,2,3,4,6,7,8-HpCDF	111	100	111	82-122		30-Sep-20 19:40	1
1,2,3,4,7,8,9-HpCDF	110	100	110	78-138		30-Sep-20 19:40	1
OCDF	243	200	121	63-170		30-Sep-20 19:40	1
Labeled Standards	Туре		% Recovery	Limits	Qualifiers	ť	Dilutio
13C-2,3,7,8-TCDD	IS		102	20-175		30-Sep-20 19:40	1
13C-1,2,3,7,8-PeCDD	IS		102	21-227		30-Sep-20 19:40	1
13C-1,2,3,4,7,8-HxCDD	IS		106	21-193		30-Sep-20 19:40	1
13C-1,2,3,6,7,8-HxCDD	IS		107	25-163		30-Sep-20 19:40	1
13C-1,2,3,7,8,9-HxCDD	IS		106	21-193		30-Sep-20 19:40	1
13C-1,2,3,4,6,7,8-HpCDD	IS		95.3	26-166		30-Sep-20 19:40	1
13C-OCDD	IS		86.0	13-199		30-Sep-20 19:40	1
13C-2,3,7,8-TCDF	IS		99.1	22-152		30-Sep-20 19:40	1
13C-1,2,3,7,8-PeCDF	IS		102	21-192		30-Sep-20 19:40	
13C-2,3,4,7,8-PeCDF	IS		101	13-328		30-Sep-20 19:40	
13C-1,2,3,4,7,8-HxCDF	IS		99.6	19-202		30-Sep-20 19:40	
13C-1,2,3,6,7,8-HxCDF	IS		98.1	21-159		30-Sep-20 19:40	
13C-2,3,4,6,7,8-HxCDF	IS		98.3			30-Sep-20 19:40	
			98.5 99.4	22-176		30-Sep-20 19:40 30-Sep-20 19:40	
13C-1,2,3,7,8,9-HxCDF	IS			17-205		-	
13C-1,2,3,4,6,7,8-HpCDF	IS		97.6	21-158		30-Sep-20 19:40	
13C-1,2,3,4,7,8,9-HpCDF	IS		95.4	20-186		30-Sep-20 19:40	
13C-OCDF	IS		79.9	13-199		30-Sep-20 19:40	1
			122			30-Sep-20 19:40	1

Sample ID. 1 DI-010SC-A	-00-01-190926					EPA Method	I 1613B
Client Data			Laboratory Da	ta			
Name: Anchor QEA,	LLC		Lab Sample:	2002003-01	Date Received:	24-Sep-20 10	0:31
Project: A0I0499	,		QC Batch:	B0I0193	Date Extracted:	25-Sep-20	
Matrix: Sediment			Sample Size:	10.2 g	Column:	ZB-DIOXIN	
Date Collected: 26-Sep-19 08	:54		% Solids:	84.5		22 210121	
Analyte	Conc. (pg/g)	EDL	ЕМРС	1	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.113				30-Sep-20 21:57	1
1,2,3,7,8-PeCDD	ND	0.179				30-Sep-20 21:57	1
1,2,3,4,7,8-HxCDD	ND		0.228			30-Sep-20 21:57	1
1,2,3,6,7,8-HxCDD	0.782				J	30-Sep-20 21:57	
1,2,3,7,8,9-HxCDD	0.416				J	30-Sep-20 21:57	
1,2,3,4,6,7,8-HpCDD	26.0					30-Sep-20 21:57	
OCDD	229					30-Sep-20 21:57	
2,3,7,8-TCDF	0.535				J	30-Sep-20 21:57	
1,2,3,7,8-PeCDF	ND		0.357			30-Sep-20 21:57	
2,3,4,7,8-PeCDF	0.353				J	30-Sep-20 21:57	
1,2,3,4,7,8-HxCDF	0.894				J	30-Sep-20 21:57	
1,2,3,6,7,8-HxCDF	0.409				J	30-Sep-20 21:57	
2,3,4,6,7,8-HxCDF	0.269				J	30-Sep-20 21:57	
1,2,3,7,8,9-HxCDF	0.265 2.13				J	30-Sep-20 21:57	
1,2,3,4,6,7,8-HpCDF	0.412				J	30-Sep-20 21:57 30-Sep-20 21:57	
1,2,3,4,7,8,9-HpCDF OCDF	7.52				J	30-Sep-20 21:57	
Toxic Equivalent	1.52					50-50p-20 21.57	1
TEQMinWHO2005Dioxin	0.819						
ILQMIII WIIO2003DIOAII	0.017						
Totals							
Totals Total TCDD	ND	0.113					
	ND ND	0.113 0.179					
Total TCDD			6.73				
Total TCDD Total PeCDD	ND		6.73				
Total TCDD Total PeCDD Total HxCDD	ND 5.11 60.7 1.66		1.89				
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 5.11 60.7 1.66 1.48						
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF	ND 5.11 60.7 1.66 1.48 4.73		1.89				
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55	0.179	1.89 2.01				
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF	ND 5.11 60.7 1.66 1.48 4.73		1.89 2.01	Limits	Qualifiers	Analyzed	Dilution
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS	0.179 % Reco 96.5	1.89 2.01	25 - 164	Qualifiers	30-Sep-20 21:57	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS	0.179 % Reco 96.5 99.6	1.89 2.01		Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57	' 1 ' 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS	0.179 % Reco 96.5 99.6 101	1.89 2.01	25 - 164	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS	0.179 % Rece 96.5 99.6 101 99.5	1.89 2.01	25 - 164 25 - 181	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1 1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS	0.179 % Reco 96.5 99.6 101	1.89 2.01	25 - 164 25 - 181 32 - 141	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1 1 1 1
Total TCDD Total PeCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS	0.179 % Rece 96.5 99.6 101 99.5	1.89 2.01	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1 1 1 1 1 1
Total TCDD Total PeCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS	0.179 % Rece 96.5 99.6 101 99.5 100	1.89 2.01	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS	0.179 % Rece 96.5 99.6 101 99.5 100 92.8	1.89 2.01	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Tabeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS	0.179 % Reco 96.5 99.6 101 99.5 100 92.8 82.2	1.89 2.01	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Recc 96.5 99.6 101 99.5 100 92.8 82.2 94.4	1.89 2.01	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Tabeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Recc 96.5 99.6 101 99.5 100 92.8 82.2 94.4 94.8	1.89 2.01	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Reco 96.5 99.6 101 99.5 100 92.8 82.2 94.4 94.5 94.5	1.89 2.01	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \end{array}$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Recc 96.5 99.6 101 99.5 100 92.8 82.2 94.4 94.5 94.5 95.3	1.89 2.01	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \end{array}$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Reco 99.5 99.5 100 100 100 100 100 100 100 10	1.89 2.01	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \end{array}$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Tabeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8-9-HxCDD 13C-1,2,3,7,8-9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,6,7,8-HpCDD 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Rece 96.5 99.6 101 99.5 100 92.8 82.2 94.4 94.5 95.3 94.6 93.4	1.89 2.01	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \end{array}$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Tabeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Recc 96.5 99.6 101 99.5 100 92.8 82.2 94.4 94.5 94.5 94.6 93.4 96.4	1.89 2.01	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \\ 28 - 143 \end{array}$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57	1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Tabeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	ND 5.11 60.7 1.66 1.48 4.73 7.55 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.179 % Recc 96.5 99.6 101 99.5 100 92.8 82.2 94.4 94.5 94.5 94.6 94.6 93.4 94.6 93.4 94.6 93.7	1.89 2.01	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	30-Sep-20 21:57 30-Sep-20 21:57	1 1

The results are reported in dry weight.

Sample ID: PDI-018SC-A	A-01-02-190926					EPA Method	l 1613B
Client Data			Laboratory Da				
Name: Anchor QEA	A, LLC		Lab Sample:	2002003-02	Date Received:	24-Sep-20 10	0:31
Project: A0I0499			QC Batch:	B0I0193	Date Extracted:	25-Sep-20	
Matrix: Sediment			Sample Size:	11.7 g	Column:	ZB-DIOXIN	-
Date Collected: 26-Sep-19 08	8:54		% Solids:	83.9			
Analyte	Conc. (pg/g)	EDL	EMPO	2	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0958				30-Sep-20 22:43	1
1,2,3,7,8-PeCDD	ND	0.142				30-Sep-20 22:43	
1,2,3,4,7,8-HxCDD	ND	0.153				30-Sep-20 22:43	
1,2,3,6,7,8-HxCDD	0.445				J	30-Sep-20 22:43	
1,2,3,7,8,9-HxCDD	0.202				J	30-Sep-20 22:43	
1,2,3,4,6,7,8-HpCDD	12.9					30-Sep-20 22:43	
OCDD	144					30-Sep-20 22:43	
2,3,7,8-TCDF	1.07 1.06				т	30-Sep-20 22:43	
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	0.721				J	30-Sep-20 22:43 30-Sep-20 22:43	
1,2,3,4,7,8-HxCDF	2.44				J	30-Sep-20 22:43	
1,2,3,6,7,8-HxCDF	0.844				J	30-Sep-20 22:43	
2,3,4,6,7,8-HxCDF	0.347				J	30-Sep-20 22:43	
1,2,3,7,8,9-HxCDF	0.410				J	30-Sep-20 22:43	
1,2,3,4,6,7,8-HpCDF	3.21					30-Sep-20 22:43	
1,2,3,4,7,8,9-HpCDF	0.595				J	30-Sep-20 22:43	
OCDF	6.34					30-Sep-20 22:43	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	1.0.4						
	1.04						
Totals	-	0.0058					
Totals Total TCDD	ND	0.0958					
Totals Total TCDD Total PeCDD	ND ND	0.0958 0.142	4 10				
Totals Total TCDD Total PeCDD Total HxCDD	ND ND 2.95		4.10				
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 2.95 29.6						
Totals Total TCDD Total PeCDD Total HxCDD	ND ND 2.95		4.10 4.77				
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF	ND ND 2.95 29.6 4.48						
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF	ND ND 2.95 29.6 4.48 5.53						
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF	ND ND 2.95 29.6 4.48 5.53 7.23		4.77	Limits	Qualifiers	Analyzed	Dilution
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01	0.142	4.77 overy	Limits 25 - 164	Qualifiers	Analyzed 30-Sep-20 22:43	
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type	0.142 % Rec	4.77 overy		Qualifiers		8 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS	0.142 % Rec 10.	4.77 overy	25 - 164	Qualifiers	30-Sep-20 22:43	1 5 1
TotalsTotal TCDDTotal PeCDDTotal HxCDDTotal HpCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD13C-1,2,3,7,8-PeCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS	0.142 % Rec 10 10;	4.77 overy 3 5	25 - 164 25 - 181	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43	1 1 1 1
Totals Total TCDD Total PeCDD Total PeCDD Total HxCDD Total TCDF Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS	0.142 % Rec 10 10 10 10	4.77 overy	25 - 164 25 - 181 32 - 141	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	1 1 1 1 1 1
Totals Total TCDD Total PeCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS	0.142 % Rec 10 10 10 10 10	4.77 overy	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	1 1 1 1 1 1 1 1 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 10 10 10 10 10	4.77 overy	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 93.	4.77 overy 3 5 4 3 7 8	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10; 10; 10; 10; 10; 10; 10;	4.77 overy 3 5 4 3 5 4 8 5	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8,9-HxCDD	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 93. 81. 10;	4.77 overy 3 5 4 8 5 7 8 5	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 10 10 10 10 10	4.77 overy 3 5 4 3 7 8 5 1 3 9	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-FxCDD 13C-1,2,3,7,8-HxCDD 13C-1,2,3,7,8-FxCDD 13C-1,2,3,7,8-PeCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 10 10 10 10 10 10 10 10	4.77 overy 3 5 4 3 7 8 5 1 3 9	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 10 10 10 10 10	4.77 overy 4.33 5 4 3 5 4 3 9 5 5	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \end{array}$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 10 10 10 10 10	4.77 overy 3 5 4 3 7 8 5 1 3 9 5 1	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \end{array}$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec 10 10 10 10 10 10 10 93. 81. 10 10 97. 97. 97. 97.	4.77 overy 4.3 5 4 3 5 4 3 5 1 3 9 5 1 3 3	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \end{array}$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total PeCDF Total HpCDF Total ArcDF Total HpCDF Total HpCDF Tabeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS	0.142 % Rec % Rec 100 100 100 100 93. 81. 100 100 100 97. 97. 97. 97. 96.	4.77 overy 3 5 4 3 7 8 5 1 3 9 5 1 3 1	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43	3 1 3 1
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF	ND ND 2.95 29.6 4.48 5.53 7.23 8.01 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	0.142 % Rec % Rec 10 10 10 10 10 93. 81. 10 93. 81. 10 93. 93. 81. 10 93. 93. 81. 10 93. 93. 81. 10 93. 93. 81. 93. 93. 93. 93. 93. 93. 93. 93	4.77 overy 	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \\ 28 - 143 \end{array}$	Qualifiers	30-Sep-20 22:43 30-Sep-20 22:43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The results are reported in dry weight.

Sample ID: PDI-018SC-A-	-02-03-190926					EPA Method	l 1613B
Client Data			Laboratory Da	ta			
Name: Anchor QEA,	UC		Lab Sample:	2002003-03	Date Received:	24-Sep-20 10):31
Project: A0I0499	, LLC		QC Batch:	B0I0193	Date Extracted:	25-Sep-20	
Matrix: Sediment			Sample Size:	10.2 g	Column:	ZB-DIOXIN	
Date Collected: 26-Sep-19 08:	:54		% Solids:	64.1		2D-DIOMIN	
Analyte	Conc. (pg/g)	EDL	EMPC	4	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.178				30-Sep-20 23:29	1
1,2,3,7,8-PeCDD	ND	0.188				30-Sep-20 23:29	1
1,2,3,4,7,8-HxCDD	ND	0.292				30-Sep-20 23:29	
1,2,3,6,7,8-HxCDD	0.548				J	30-Sep-20 23:29	
1,2,3,7,8,9-HxCDD	ND		0.280			30-Sep-20 23:29	
1,2,3,4,6,7,8-HpCDD	9.08					30-Sep-20 23:29	
OCDD	118		0.000			30-Sep-20 23:29	
2,3,7,8-TCDF	ND	0.110	0.220			30-Sep-20 23:29	
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND	0.118	0.688			30-Sep-20 23:29 30-Sep-20 23:29	
1,2,3,4,7,8-HxCDF	0.421		0.088		J	30-Sep-20 23:29	
1,2,3,6,7,8-HxCDF	1.55				J	30-Sep-20 23:29 30-Sep-20 23:29	
2,3,4,6,7,8-HxCDF	ND		0.588		J	30-Sep-20 23:29	
1,2,3,7,8,9-HxCDF	ND	0.242	0.200			30-Sep-20 23:29	
1,2,3,4,6,7,8-HpCDF	8.60					30-Sep-20 23:29	
1,2,3,4,7,8,9-HpCDF	ND	0.264				30-Sep-20 23:29	
OCDF	5.74				J	30-Sep-20 23:29	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.466						
Totals							
Total TCDD	ND	0.178					
Total PeCDD Total HxCDD	ND 2.74	0.188	4.66				
Total HpCDD			4.00				
Total HPCDD	22.6						
	23.6		4.12				
Total TCDF	3.54		4.12				
Total TCDF Total PeCDF	3.54 6.36		8.11				
Total TCDF Total PeCDF Total HxCDF	3.54 6.36 12.8						
Total TCDF Total PeCDF	3.54 6.36 12.8 17.2	% Reco	8.11 13.4	Limits	Qualifiers	Analyzed	Dilution
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards	3.54 6.36 12.8 17.2 Type	% Reco 96.2	8.11 13.4		Qualifiers	Analyzed 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	3.54 6.36 12.8 17.2 Type IS	96.2	8.11 13.4	25 - 164	Qualifiers	30-Sep-20 23:29	1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	3.54 6.36 12.8 17.2 Type IS IS	96.2 95.9	8.11 13.4	25 - 164 25 - 181	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	3.54 6.36 12.8 17.2 Type IS IS IS	96.2 95.9 102	8.11 13.4	25 - 164 25 - 181 32 - 141	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	1 1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	3.54 6.36 12.8 17.2 Type IS IS IS IS	96.2 95.9 102 97.9	8.11 13.4	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	1 1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9	8.11 13.4	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	1 1 1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2	8.11 13.4	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	1 1 1 1 1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9	8.11 13.4	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	1 1 1 1 1 1 1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,2,3,7,8-TCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2	8.11 13.4	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6	8.11 13.4	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	1 1 1 1 1 1 1 1 1 1 1 1
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3	8.11 13.4	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3 93.1	8.11 13.4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \end{array}$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3 93.1 91.2	8.11 13.4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \end{array}$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3 93.1 91.2 89.0	8.11 13.4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \end{array}$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3 93.1 91.2 89.0 92.0	8.11 13.4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3 93.1 91.2 89.0 92.0 87.9	8.11 13.4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \\ 28 - 143 \end{array}$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	
Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8,9-HxCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	3.54 6.36 12.8 17.2 Type IS IS IS IS IS IS IS IS IS IS	96.2 95.9 102 97.9 97.9 91.2 72.4 99.2 98.6 93.3 93.1 91.2 89.0 92.0	8.11 13.4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	30-Sep-20 23:29 30-Sep-20 23:29	

The results are reported in dry weight.

Sample ID: PDI-018SC-A-	03-04-190926					EPA Method	1 1613B
Client Data			Laboratory Da	ta			
Name: Anchor QEA, I	ПС		Lab Sample:	2002003-04	Date Received:	24-Sep-20 1	0:31
Project: A0I0499			QC Batch:	B0I0193	Date Extracted:	25-Sep-20	
Matrix: Sediment			Sample Size:	11.5 g	Column:	ZB-DIOXIN	ſ
Date Collected: 26-Sep-19 08:5	54		% Solids:	67.4		2D-DIOMIN	
Analyte	Conc. (pg/g)	EDL	ЕМРС	1	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.140				01-Oct-20 00:15	1
1,2,3,7,8-PeCDD	ND	0.180				01-Oct-20 00:15	1
1,2,3,4,7,8-HxCDD	ND	0.191				01-Oct-20 00:15	1
1,2,3,6,7,8-HxCDD	0.583				J	01-Oct-20 00:15	
1,2,3,7,8,9-HxCDD	0.339				J	01-Oct-20 00:15	
1,2,3,4,6,7,8-HpCDD	9.30					01-Oct-20 00:15	
OCDD	189					01-Oct-20 00:15	
2,3,7,8-TCDF	ND		0.238			01-Oct-20 00:15	
1,2,3,7,8-PeCDF	ND	0.148	0.000			01-Oct-20 00:15	
2,3,4,7,8-PeCDF	ND		0.883		т	01-Oct-20 00:15	
1,2,3,4,7,8-HxCDF	0.516				J	01-Oct-20 00:15	
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.09 0.872				J	01-Oct-20 00:15 01-Oct-20 00:15	
1,2,3,7,8,9-HxCDF	0.348				J	01-Oct-20 00:15	
1,2,3,4,6,7,8-HpCDF	14.7				J	01-Oct-20 00:15	
1,2,3,4,7,8,9-HpCDF	0.332				J	01-Oct-20 00:15	
OCDF	6.79				5	01-Oct-20 00:15	
Toxic Equivalent	0.17					01 000 20 00.15	-
TEQMinWHO2005Dioxin	0.677						
Totals	0.077						
Total TCDD	ND	0.140					
Total PeCDD	0.510						
Total HxCDD	2.88		3.94				
Total HpCDD	23.9						
Total TCDF	4.41		4.84				
Total PeCDF	9.53		10.4				
T (111 CDF							
Total HxCDF	16.9						
Total HpCDF	16.9 28.6						
	16.9	% Rec		Limits	Qualifiers	Analyzed	Dilution
Total HpCDF	16.9 28.6	% Rec 96.	covery	Limits 25 - 164	Qualifiers	Analyzed 01-Oct-20 00:15	
Total HpCDF Labeled Standards	16.9 28.6 Type		covery 3		Qualifiers		5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	16.9 28.6 Туре IS	96.	covery 3 2	25 - 164	Qualifiers	01-Oct-20 00:15	5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	16.9 28.6 Type IS IS	96. 91.	2 8	25 - 164 25 - 181	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	16.9 28.6 Type IS IS IS	96. 91. 84.	covery 3 2 8 1	25 - 164 25 - 181 32 - 141	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1 5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	16.9 28.6 Type IS IS IS IS	96. 91. 84. 82.	2 2 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1 5 1 5 1 5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	16.9 28.6 Type IS IS IS IS IS IS	96. 91. 84. 82. 80.	2 8 1 2 5	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1 5 1 5 1 5 1 5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	16.9 28.6 Type IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68.	2 8 1 2 5 6	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 141	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD	16.9 28.6 Type IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42.	2 8 1 2 5 6 2	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90.	2 3 2 8 1 2 5 6 2 8 8	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85.	20very 3 2 8 1 2 5 6 2 8 3	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,6,7,8-PeCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85. 82.	20very 3 2 8 1 2 5 6 2 8 3 2	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85. 82. 79.	20very 3 2 8 1 2 5 6 2 8 3 2 6	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \end{array}$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85. 82. 79. 77.	2 2 8 1 2 5 6 2 8 3 2 6 2 2	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \end{array}$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85. 82. 79. 77. 71.	2 2 8 1 2 5 6 2 8 3 2 6 2 7	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \end{array}$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15	5 1 5 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85. 82. 79. 77. 71. 71.	Sovery 3 2 8 1 2 5 6 2 8 3 2 6 2 7 4	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \\ 28 - 143 \end{array}$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	16.9 28.6 Type IS IS IS IS IS IS IS IS IS IS	96. 91. 84. 82. 80. 68. 42. 90. 85. 82. 79. 77. 71. 71. 71. 65.	Eovery 3 2 8 1 2 5 6 2 8 3 2 6 2 7 4 7	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	01-Oct-20 00:15 01-Oct-20 00:15	5 1 $ 5 1 $ $ 5 1$

The results are reported in dry weight.

	4-05-190926					EPA Method	1 1613B
Client DataName:Anchor QEA, LiProject:A0I0499Matrix:SedimentDate Collected:26-Sep-19 08:54			Laboratory Dat Lab Sample: QC Batch: Sample Size: % Solids:	a 2002003-05 B0I0193 10.1 g 70.5	Date Received: Date Extracted: Column:	24-Sep-20 10 25-Sep-20 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.121				01-Oct-20 01:01	1
1,2,3,7,8-PeCDD	ND	0.211				01-Oct-20 01:01	1
1,2,3,4,7,8-HxCDD	ND	0.161				01-Oct-20 01:01	1
1,2,3,6,7,8-HxCDD	0.593				J	01-Oct-20 01:01	1
1,2,3,7,8,9-HxCDD	0.258				J	01-Oct-20 01:01	1
1,2,3,4,6,7,8-HpCDD	10.7					01-Oct-20 01:01	1
OCDD	166					01-Oct-20 01:01	1
2,3,7,8-TCDF	ND		0.204			01-Oct-20 01:01	1
1,2,3,7,8-PeCDF	ND	0.142				01-Oct-20 01:01	1
2,3,4,7,8-PeCDF	1.11				J	01-Oct-20 01:01	1
1,2,3,4,7,8-HxCDF	0.555				J	01-Oct-20 01:01	1
1,2,3,6,7,8-HxCDF	2.60				J	01-Oct-20 01:01	
2,3,4,6,7,8-HxCDF	1.07				J	01-Oct-20 01:01	
1,2,3,7,8,9-HxCDF	ND	0.240				01-Oct-20 01:01	1
1,2,3,4,6,7,8-HpCDF	18.3					01-Oct-20 01:01	1
1,2,3,4,7,8,9-HpCDF	ND		0.245			01-Oct-20 01:01	1
OCDF	6.61				J	01-Oct-20 01:01	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	1.18						
Totals							
	ND	0.121					
Totals Total TCDD Total PeCDD		0.121					
Total TCDD	0.573	0.121	4.68				
Total TCDD Total PeCDD Total HxCDD	0.573 4.40	0.121	4.68				
Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.573 4.40 29.6	0.121					
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF	0.573 4.40 29.6 4.05	0.121	4.50				
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF	0.573 4.40 29.6 4.05 9.98	0.121					
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF	0.573 4.40 29.6 4.05 9.98 21.5	0.121	4.50 10.3				
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0		4.50 10.3 34.3	Limits	Qualifiers	Analyzed	Dilutior
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type	% Recover	4.50 10.3 34.3		Qualifiers	Analyzed 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS	% Recover 101	4.50 10.3 34.3	25 - 164	Qualifiers	01-Oct-20 01:01	. 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS	% Recover 101 96.6	4.50 10.3 34.3	25 - 164 25 - 181	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01	1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS	% Recover 101 96.6 102	4.50 10.3 34.3	25 - 164 25 - 181 32 - 141	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	1 1
Total TCDD Total PeCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS	% Recover 101 96.6 102 97.9	4.50 10.3 34.3	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	. 1 . 1 . 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0	4.50 10.3 34.3	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	1 1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2	4.50 10.3 34.3	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	1 1 1 1 1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1	4.50 10.3 34.3	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	1 1 1 1 1 1 1 1 1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103	4.50 10.3 34.3	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	1 1 1 1 1 1 1 1 1 1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6	4.50 10.3 34.3	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	1 1 1 1 1 1 1 1 1 1 1 1 1
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2	4.50 10.3 34.3	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7	4.50 10.3 34.3	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$ $26 - 152$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-0CDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7 90.2	4.50 10.3 34.3	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-0CDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7	4.50 10.3 34.3	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $32 - 141$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$ $26 - 152$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7 90.2	4.50 10.3 34.3	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 123 \end{array}$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7 90.2 89.2	4.50 10.3 34.3	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Total HpCDF Tabeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7 90.2 89.2 94.6 84.5	4.50 10.3 34.3	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \\ 28 - 143 \end{array}$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	0.573 4.40 29.6 4.05 9.98 21.5 34.0 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recover 101 96.6 102 97.9 98.0 92.2 71.1 103 97.6 97.2 92.7 90.2 89.2 94.6	4.50 10.3 34.3	$\begin{array}{c} 25 - 164 \\ 25 - 181 \\ 32 - 141 \\ 28 - 130 \\ 32 - 141 \\ 23 - 140 \\ 17 - 157 \\ 24 - 169 \\ 24 - 185 \\ 21 - 178 \\ 26 - 152 \\ 26 - 152 \\ 26 - 123 \\ 28 - 136 \\ 29 - 147 \end{array}$	Qualifiers	01-Oct-20 01:01 01-Oct-20 01:01	

The results are reported in dry weight.

Sample ID: PDI-018SC-A	-05-06-190926					EPA Method	l 1613B
Client Data			Laboratory Da	ta			
Name: Anchor QEA,	LLC		Lab Sample:	2002003-06	Date Received:	24-Sep-20 10	0:31
Project: A0I0499	, 220		QC Batch:	B0I0193	Date Extracted:	25-Sep-20	
Matrix: Sediment			Sample Size:	10.3 g	Column:	ZB-DIOXIN	
Date Collected: 26-Sep-19 08	:54		% Solids:	74.7			
Analyte	Conc. (pg/g)	EDL	EMPC	n 	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.136				01-Oct-20 01:46	1
1,2,3,7,8-PeCDD	0.748				J	01-Oct-20 01:46	1
1,2,3,4,7,8-HxCDD	0.601				J	01-Oct-20 01:46	1
1,2,3,6,7,8-HxCDD	4.37					01-Oct-20 01:46	1
1,2,3,7,8,9-HxCDD	1.51				J	01-Oct-20 01:46	1
1,2,3,4,6,7,8-HpCDD	95.4					01-Oct-20 01:46	
OCDD	1680					01-Oct-20 01:46	
2,3,7,8-TCDF	ND		0.511			01-Oct-20 01:46	
1,2,3,7,8-PeCDF	0.602				J	01-Oct-20 01:46	
2,3,4,7,8-PeCDF	5.25					01-Oct-20 01:46	
1,2,3,4,7,8-HxCDF	3.77					01-Oct-20 01:46	
1,2,3,6,7,8-HxCDF	7.56					01-Oct-20 01:46	
2,3,4,6,7,8-HxCDF	5.80					01-Oct-20 01:46	
1,2,3,7,8,9-HxCDF	0.806				J	01-Oct-20 01:46	
1,2,3,4,6,7,8-HpCDF	223					01-Oct-20 01:46	
1,2,3,4,7,8,9-HpCDF	2.22				J	01-Oct-20 01:46	
OCDF	112					01-Oct-20 01:46	1
Toxic Equivalent							
TEQMinWHO2005Dioxin Totals	8.53						
Total TCDD	1.74		2.58				
Total PeCDD	7.45						
Total HxCDD	33.1		33.4				
Total HpCDD	231						
Total TCDF	23.2		24.9				
Total PeCDF	62.7		63.0				
Total HxCDF	165						
Total HpCDF	406						
Labeled Standards	Туре	% Recover	v	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	103	,	25 - 164		01-Oct-20 01:46	1
13C-1,2,3,7,8-PeCDD	IS	106		25 - 181		01-Oct-20 01:46	
13C-1,2,3,4,7,8-HxCDD	IS	100		32 - 141		01-Oct-20 01:46	
13C-1,2,3,6,7,8-HxCDD	IS	105		28 - 130		01-Oct-20 01:46	
13C-1,2,3,7,8,9-HxCDD	IS	106		32 - 141		01-Oct-20 01:46	
13C-1,2,3,4,6,7,8-HpCDD	IS	96.8		23 - 141		01-Oct-20 01:46	
13C-OCDD	IS	84.3				01-Oct-20 01:46	
				17 - 157			
13C-2,3,7,8-TCDF	IS	104		24 - 169		01-Oct-20 01:46	
13C-1,2,3,7,8-PeCDF	IS	102		24 - 185		01-Oct-20 01:46	
13C-2,3,4,7,8-PeCDF	IS	102		21 - 178		01-Oct-20 01:46	
13C-1,2,3,4,7,8-HxCDF	IS	99.9		26 - 152		01-Oct-20 01:46	
13C-1,2,3,6,7,8-HxCDF	IS	99.0		26 - 123		01-Oct-20 01:46	
13C-2,3,4,6,7,8-HxCDF	IS	96.8		28 - 136		01-Oct-20 01:46	
120 1 2 2 7 0 0 H ODE	IS	99.5		29 - 147		01-Oct-20 01:46	
13C-1,2,3,7,8,9-HxCDF						01 Oat 20 01.46	1
	IS	91.5		28 - 143		01-Oct-20 01:46	· •
13C-1,2,3,4,6,7,8-HpCDF	IS IS	91.5 93.9		28 - 143 26 - 138		01-Oct-20 01:46	
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF							1

The results are reported in dry weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
E	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl
	ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water						
Description of Test	Method					
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA					
	1613/1613B					
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009					

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

SUBCONTRACT ORDER

Apex Laboratories

an ghin A010499

2002003 1.0%

Ð

Sample Name: PDI-083SC-B-10-12	-191022	Sedimen	Sampled:	Composited -19, -20 into -21 10/22/19 14:07	(A0I0499-21)
Analysis	Due	Expires		Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	10/13/20 17:00	04/19/20 14:	07		
Sample Name: PDI-083SC-A-14-15	-191022	Sedimen	Sampled:	Relogged From A9J0861-30 10/22/19 14:07	(A0I0499-22)
Analysis	Due	Expires	Sumptour	Comments	(10101) (1)
1613B Dioxins and Furans (SUB) Containers Supplied: (C)4 oz Glass Jar	10/13/20 17:00	04/19/20 14:	07		
Sample Name: PDI-018SC-A-00-01	-190926	Sedimen	Sampled:	Relogged From A9I0890-11 09/26/19 08:54	(A0I0499-23)
Analysis	Due	Expires	Sampieu.	Comments	(A010499-23)
1613B Dioxins and Furans (SUB) Containers Supplied: (C)4 oz Glass Jar	10/13/20 17:00	03/24/20 08:	54		
				Relogged From A910890-12	
Sample Name: PDI-018SC-A-01-02		Sedimen	Sampled:		(A0I0499-24)
Analysis 1613B Dioxins and Furans (SUB) Containers Supplied:	Due 10/13/20 17:00	Expires 03/24/20 08:	54	Comments	
(C)4 oz Glass Jar				D.L	
Sample Name: PDI-018SC-A-02-03	-190926	Sedimen	Sampled:	Relogged From A910890-13 09/26/19 08:54	(A0I0499-25)
Analysis	Due	Expires		Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (C)4 oz Glass Jar	10/13/20 17:00	03/24/20 08:	54		
				Relogged From A910890-14	
Sample Name: PDI-018SC-A-03-04	-190926	Sedimen	Sampled:		(A0I0499-26)
Analysis	Due	Expires		Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (C)4 oz Glass Jar	10/13/20 17:00	03/24/20 08:	54		
	Standard	- 747	*w	0 # 2002004	6
ax. q	123)20		Fed H	Ex (Shipper)	
Released By Fed Ex (Shipper)	Date	Received By		Date	6.101
Released By	Date	Received By	ught	09/21/20 Date	10:31
		Terestou By		Duc	Page 3 of 4

Work Order 2002003

Page 18 of 419

SUBCONTRACT ORDER

Apex Laboratories

OBgpino A010499

2002003

Ø

Sample Name: PDI-018SC-A-04-05-1	90926	Sedimen Sample	Relogged From A910890-15 d: 09/26/19 08:54	(A0I0499-27)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (C)4 oz Glass Jar	10/13/20 17:00	03/24/20 08:54		
	_		Relogged From A910890-16	
Sample Name: PDI-018SC-A-05-06-1	90926	Sedimen Sample	d:09/26/19 08:54	(A0I0499-28)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (C)4 oz Glass Jar	10/13/20 17:00	03/24/20 08:54		

Standard TAT

æ.	9123120	Fed Ex (Sh	ipper)	
Released By	Date	Received By	Date	
Fed Ex (Shipper))	WellankWight	09/24/20	10:31
Released By	Date	Received By	Date	
				D 4 64

Work Order 2002003

Page 4 of 4 Page 19 of 419

Sample Log-In Checklist

Vista Work Orde	r #: c	20020	003			ge # _	Rus	of	_
Samples	Date/Time		Initials:		Locat	tion:	u	12:2	
Arrival:	09/24/20	10:31	we	ف	Shelf	/Rack		JA	
Delivered By:	FedEx UP	S On Tra	ac GLS	DHI	- [Hand Deliver		Oth	ner
Preservation:	Ice	Bl	ue ice	Teo Io	chni ce	Dry	lce	e None	
Temp °C: /.C	(uncorrected)	Drahawa			There	nome		IR	-3
Temp °C: /.0	(corrected)	Probe us	ed: Y 🕐		iner	nome	ter ID:		_
		440 mm 44 mm		21-12-10			VEC		
Objector Constain		19 2	ng - 27 - 200 - Con-	and the second			YES	NO	NA
Shipping Contain							V	-	$\mathbf{\nabla}$
Shipping Custody		7 - 1 - 11		12 - 22				+	X
Airbill -	Trk #	1716 11	52 12	80			V	-	
Shipping Docume	entation Present	?					V		
Shipping Contain	er	Vista	Client	R	etain	Re	eturn	Disp	pose
Chain of Custody	/ Sample Docur	nentation P	resent?				V	1	
Chain of Custody	Chain of Custody / Sample Documentation Complete?								
	Holding Time Acceptable?								
	Date/Time		Initials:		Loca	tion:	WR	-2	
Logged In:	09/24/20	1204	ND	3	Shell	/Rack	D	7	

COC Anomaly/Sample Acceptance Form completed?

Comments: NA

Shelf/Rack:

CoC/Label Reconciliation Report WO# 2002003

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time	1	Container	Sample BaseMatrix Comments
2002003-01	A PDI-018SC-A-00-01-190926	d.	A010499-23	26-Sep-19 08:54	D	Clear Glass Jar, 120mL	Solid
2002003-02	A PDI-018SC-A-01-02-190926		A010499-24	26-Scp-19 08:54	D	Clear Glass Jar, 120mL	Solid
2002003-03	A PDI-018SC-A-02-03-190926	Q,	A0I0499-25	26-Sep-19 08:54	12	Clear Glass Jar, 120mL	Solid
2002003-04	A PDI-018SC-A-03-04-190926		A0I0499-26	26-Sep-19 08:54	Ø	Clear Glass Jar, 120mL	Solid
2002003-05	A PDI-018SC-A-04-05-190926		A0I0499-27	26-Sep-19 08:54	R.	Clear Glass Jar, 120mL	Solid
2002003-06	A PDI-018SC-A-05-06-190926		A010499-28	26-Sep-19 08:54	1 I I	Clear Glass Jar, 120mL	Solid

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments
Sample Container Intact?	V			Ţ
Sample Custody Seals Intact?			/	
Adequate Sample Volume?	\checkmark			1
Container Type Appropriate for Analysis(es)		\checkmark		Ī
Preservation Documented: Na2S2O3 Trizma None Other			1	1
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			V	Ì

Verifed by/Date: 100/24/20

EXTRACTION INFORMATION

Process Sheet Workorder: 2002003

Workorder Due:05-Oct-20 00:00 **TAT: 11**

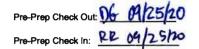
Client: Anchor QEA, LLC

Method: 1613 Full List Matrix: Solid **Client Matrix: Sediment** Also run: Percent Solids

V

Prep Expiration: 2020-09-25

2002003-06


WR-2 D-7

Prep Batch: BOIO19 Prep Data Entered:

SOI 0090 Initial Sequence: LabSampleID Recon ClientSampleID Location Comments **Date Received** \checkmark PDI-018SC-A-00-01-190926 2002003-01 4 24-Sep-20 10:31 WR-2 D-7 V 2002003-02 PDI-018SC-A-01-02-190926 24-Sep-20 10:31 WR-2 D-7 1 PDI-018SC-A-02-03-190926 2002003-03 24-Sep-20 10:31 WR-2 D-7 V PDI-018SC-A-03-04-190926 2002003-04 24-Sep-20 10:31 WR-2 D-7 V 2002003-05 PDI-018SC-A-04-05-190926 24-Sep-20 10:31 WR-2 D-7

24-Sep-20 10:31

PDI-018SC-A-05-06-190926

Prep Check Out: DG 09 25/20 Prep Check In: RR 09/25/2

Prep Reconciled Initals/Date: 09/25/20
Spike Reconciled Initals/Date: RP 09/25/20
VialBoxID: SPOOKY

Page 1 of 1

PREPARATION BENCH SHEET

Matrix: Solid

B0I0193

Chemist: **EP**

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

Prep Date/Time: 25-Sep-20 10:33

G Eqv N/A ↓ II.83	Sample Amt. (g) (10.00) (10.00) [0.15	CHEN DA	NS M/WIT ATE	Cł	CRS/PS HEM/WIT DATE 10_09/17/10	AP CHEM/ DATE	EW	ABSG CHEM/ DATE		AA CHEM/ DATE X912712D		Florisil CHEM/ DATE 09 28/20	R CHEN DA	A/WIT TE
1	(10.00)	RP. MEC	pilospo	EUL O	10 09/17/20	NA	EW	09127120	Ell	X9127120	IM (09/28/20	IM POMO	9/28/20
	(10.00)		-		T- '-''									1 1
11.83	10.15				1	1			-	T		T	٦	
								VELLOW /						1
11,92	11.65											T		
15.59	10.16									1		1		
14.84	11.50													
14.19	10.00													
13.38	10.33				J	7			-	\checkmark		V	N	V
>	14.84 14.19 13.38 I forme	14.84 11.00 14.19 10.06 13.38 10.33 I formed on	14.84 11.00 14.19 10.06 13.38 10.33	14.84 11.00 14.19 10.06 13.38 10.33 I formed on sides of v	14.84 11.00 14.19 10.06 13.38 10.33 L formed on sides of vound	14.84 11.00 14.19 10.06 13.38 10.33 V L formed on sides of voundbottom	14.84 11.00 14.19 10.06 13.38 10.33 V L formed on sides of voundbottom after a	14.84 11.00 14.19 10.06 13.38 10.33 V L formed on sides of voundbottom after exch	14.84 11.00 14.19 10.06 13.38 10.33 Le formed on sides of voundbottom after exchanging	14.84 11.00 14.19 10.06 13.38 10.33 J L formed on sides of voundbottom after exchanging 2x	14.84 11.00 14.19 10.06 13.38 10.33 Le formed on sides of voundbottom after exchanging 2x w/ w	14.84 11.00 14.19 10.06 13.38 10.33 / / / / / / / / / / / / / / / / / /	14.84 11.00 14.19 10.00 13.38 10.33	14.84 11.00 14.19 10.06 13.38 10.33 J L formed on sides of voundbottom after exchanging 2x w/ Wixanp. Was up

to transfer all of this residue to ABSG column tem 09/27/20

$(v_{\overline{s}})$					
13.	Cycle Time	APP: SEFUN SOX SDS	Check Out: Chemist/Date: No. 09/22/20	Soxhlet Siphoned	Notes:
NS: 20FOIDT, IDANS	Start Date/Time	SOLV: Toluene		FP 09/25/20	
PS/CRS: 20E0701, 10ML 3	09/25/20	Other NA	Check In: Chemist/Date: PR 09/25/20	FR 09125100	
\sim		Final Volume(s) C14	Balance ID: HRMS - 8	Vial Transfer Chemist/Date:	
No. Lovigina	09/26/20	ZOML	Duranto 1D. 11		
Diox/ PCB PAH PEST PBDE HCB	1100	UML		IM 09 28/20	

Comments:

- 1 = Sample approached dryness on rotovap
- 2 = Sample bumped on rotovap; lost < 5%
- 3 = Sample poured through Na2SO4 to remove water
- 4 = Precipitate present at Final Volume

Work Order 2002003

- 5 = Sample homogenized in secondary container
- 6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

7 = Sohxlet approached dryness

10

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
2002003-01	10.15 🧹	84.53159	8.5800	20 🧹	25-Sep-20 10:33	/ RR 🗸			Sediment	1613 Full List
2002003-02	11.65 🗸	83.91608	9.7762	20	25-Sep-20 10:33	TRRT			Sediment	1613 Full List
2002003-03	10.16 🗸	64.12777	6.5154	20	25-Sep-20 10:33	RR			Sediment	1613 Full List
2002003-04	11.5 🗸	67.40088	7.7511	20	25-Sep-20 10:33	RR			Sediment	1613 Full List
2002003-05	10.06 🧹	70.47244	7.0895	20	25-Sep-20 10:33	RR			Sediment	1613 Full List
2002003-06	10.33 🗸	74.74332	7.7210	20	25-Sep-20 10:33	RR			Sediment	1613 Full List
B010193-BLK1	10 🧹			20	25-Sep-20 10:33	RR				QC
B0I0193-BS1	10 🧹			20 🗸	25-Sep-20 10:33	RRV	20F0107 🗸	10 /		QC

All bolded data on report verified against written benchsheet by (initial/date) IM 09/29/20 Work Order 2002003 Printed: 9/29/2020 6:28:10AM Page 1 of 1

Page 25 of 419

	and the second second second second	Perce	nt Moisture/ Perce	ent Solids	St. San Val
			D2216-90	BATCH ID B0I0192	
ĺ	Analyst: DG	Test Code: %Moist/%Solids		Data Entry Verified by:	
-	Analyte: Dried at 110°C+/-5°C	Units: %		Data Entry Verified by; (Initial and Date) M 09/29/20	
	Oven ID: <u>01</u> 02				

inst	HRMS-9 🧹		Date/Time IN: 09/25/20 1108	Date/Time OUT 09/29/20 0605]									
	В	C	D	E	F	G	н	L	ĸ	L	M	N	0	Р
					DG 09/25/20 🏒	IM 09/29/20 🗸			DG 09/25/20			N/A		DG 09/25/20
Particle Size	SampiD	_	Samp Type	Pan Tare Wt. (gms)	Wet Pan and Sample Weight (g)	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Visual Inspection	CI-	Before	pH After	Acid Added	Sample Homogenized*
	2002003-01	А 🗹	Sample	1.2800 🗸	5.8700 🖌	5.1600	3.8800	84.53	SOIL	N/A	N/A	N/A	N/A	x
	2002003-02	A 🖌	Sample	1.2800 🗸	5.5700 🖌	4.8800 🧹	3.6000	83.92	SOIL	N/A	N/A	N/A	N/A	x 🔽
	2002003-03	A 🦯	Sample	1.2800 🗸	5.3500 🧭	3.8900 🗹	2.6100	64.13	SOIL 🟒			N/A	N/A	X Z
	2002003-04	A 🖌	Sample	1.2800 🖌	5.8200 🖌	4.3400 🧹	3.0600	67.40	SOIL	N/A	N/A	N/A	N/A	x _
	2002003-05	A	Sample	1.2900 -	6.3700 🧭	4.8700 🖌	3,5800	70.47	SOIL	N/A	N/A	N/A	N/A	x 🖍
	2002003-06	A J	Sample	1.2900 🗸	6.1600 🗸	4.9300 🖌	3.6400	74.74	SOIL	N/A	N/A	N/A	N/A	х 🗸
											_			
	1					-								
	1													
	1													
	1													
	1													
	+													
	+													
												$\left \right $		
										<u> </u>				
										<u> </u>				

*Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B0I0192.xls

10 10 10 10		Perc	ent moisture/ Per	cent Solids	A STATE - SAUGAR
			D2216-90	BATCH ID B0I0192	
	Analyst: DG	Test Code: %Moist/%Solids		Data Entry Verified by:	
~	Analyte: Dried at 110°C+/-5°C	Units: %		(Initial and Date)	
	Oven ID: 01 02				

ALL THE REAL

Inst H2MS-9 Date/Time IN: Date/Time OUT 100 25/20 09/29/20 100 0605

	В	С	libe	E	F	G	H		ĸ	L	85	N O	Р
4	ь	C C	U	Lintial and Datas	De calasian	ILL AGIOGIAG			DG 09/2	200		NA	DG 09/25/20
Particle Size	SampiD		SampType	Pan	Wet Pan and Sample	IM 09/29/20 Dry Pan and Sample Weight (g)	Dry Sample	%Solids	Visual	CI-	DH	pH Acid	Sample
	Gampio		02p.13p0	Tare WL (gms)	Weight (g)	Weight (g)	Dry Sample Weight (g)	RawVal	Inspection	Ē	Before /	fter Added	Sample' Homogenized*
	2002003-01	A	Sample	1.28	5.87	5.16		/	Soil			/	×
	2002003-02		Sample	1.28	5.57	4.88							×
	2002003-03		Sample	1.28	535	3.89					It		X
	2002003-04		Sample	1.28	5.82 6.31	4.34					1		×
	2002003-05		Sample	1.29	6.37	4.87					/		x
	2002003-06	4	Sample	1.29	6.16	4.93	/		V	/			x
				<u>ne.</u>			<u> </u>						
	-												
				1									
	_												
	_												
										-			
	_												
										_			
			_										
										_			
			·							_			
	-												
	-					I		I	I I				

*Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B0I0192

SAMPLE DATA – EPA METHOD 1613

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1		
Dataset:	U:\VG7.PRO\Results\20	0930D2\200930D2_12.qld		
Last Altered: Printed:		020 11:37:51 Pacific Daylight Time 020 11:41:06 Pacific Daylight Time	DB	10/1/20

C7 10/08/2020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

2123	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	10.000	25.821		1.001				0.0925	
2	2 1,2,3,7,8-PeCDD			NO	0.935	10.000	30.166		1.001				0.103	
3	3 1,2,3,4,7,8-HxCDD			NO	1.15	10.000	33.393		1.000				0.0979	
4	4 1,2,3,6,7,8-HxCDD			NO	1.02	10.000	33.503		1.000				0.100	
5	5 1,2,3,7,8,9-HxCDD			NO	1.06	10.000	33.823		1.001				0.104	
6	6 1,2,3,4,6,7,8-HpCDD			NO	1.00	10.000	37.190		1.000				0.135	Í
7	7 OCDD			NO	0.952	10.000	40.372		1.000				0.215	
8	8 2,3,7,8-TCDF	2.00e2	1.16	YES	1.01	10.000	25.158	25.12	1.001	0.999	0.11960		0.0278	0.0905
9	9 1,2,3,7,8-PeCDF			NO	0.998	10.000	29.018		1.001				0.0726	
10	10 2,3,4,7,8-PeCDF			NO	1.07	10.000	29.974		1.001				0.0641	
11	11 1,2,3,4,7,8-HxCDF			NO	1.05	10.000	32.494		1.000				0.102	
12	12 1,2,3,6,7,8-HxCDF			NO	1.10	10.000	32.635		1.000				0.0974	
13	13 2,3,4,6,7,8-HxCDF			NO	1.09	10.000	33.306		1.001				0.109	
14	14 1,2,3,7,8,9-HxCDF	1.68e2	0.99	YES	1.08	10.000	34.271	34.29	1.000	1.001	0.16614		0.07.87	0.150
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.13	10.000	35.953		1.001				0.155	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.29	10.000	37.827		1.000				0.152	
17	17 OCDF			NO	0.953	10.000	40.680		1.000				0.204	
18	18 13C-2,3,7,8-TCDD	2.38e5	0.78	NO	1.17	10.000	25.771	25.79	1.026	1.027	200.93	100	0.471	
19	19 13C-1,2,3,7,8-PeCDD	1.84e5	0.62	NO	0.914	10.000	29.956	30.15	1.193	1.200	199.69	99.8	0.314	
20	20 13C-1,2,3,4,7,8-HxCDD	1.49e5	1.29	NO	0.634	10.000	33.383	33.38	1.014	1.014	201.80	101	0.715	
21	21 13C-1,2,3,6,7,8-HxCDD	1.66 e 5	1.26	NO	0.724	10.000	33.492	33.50	1.017	1.018	196.83	98.4	0.626	
22	22 13C-1,2,3,7,8,9-HxCDD	1.68e5	1.32	NO	0.716	10.000	33.758	33.79	1.025	1.026	201.99	101	0.633	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.45e5	1.04	NO	0.660	10.000	37.169	37.18	1.129	1.129	188.33	94.2	1.00	
24	24 13C-OCDD	2.28e5	0.88	NO	0.587	10.000	40.145	40.37	1.219	1.226	333.66	83.4	0.576	
25	25 13C-2,3,7,8-TCDF	3.58e5	0.73	NO	1.02	10.000	24.867	25.13	0.990	1.001	192.66	96.3	0.443	
26	26 13C-1,2,3,7,8-PeCDF	2.94e5	1.57	NO	0.842	10.000	29.029	29.00	1.156	1.154	192.33	96.2	0.789	
27	27 13C-2,3,4,7,8-PeCDF	2.70e5	1.63	NO	0.802	10.000	29.916	29.94	1.191	1.192	185.56	92.8	0.828	
28	28 13C-1,2,3,4,7,8-HxCDF	2.20e5	0.52	NO	1.00	10.000	32.527	32.49	0.988	0.987	188.23	94.1	0.831	
29	29 13C-1,2,3,6,7,8-HxCDF	2.25e5	0.53	NO	1.02	10.000	32.659	32.63	0.992	0.991	189.85	94.9	0.818	
30	30 13C-2,3,4,6,7,8-HxCDF	2.08e5	0.53	NO	0.955	10.000	33.222	33.27	1.009	1.011	187.07	93.5	0.873	
31	31_13C-1,2,3,7,8,9-HxCDF	1.87e5	0.50	NO	0.851	10.000	34.285	34.27	1.041	1.041	188.39	94.2	0.979	

Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

Last Altered:	Thursday, October 01, 2020 11:37:51 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 11:41:06 Pacific Daylight Time

5

Name: 200930D2_12, Date: 30-Sep-2020, Time: 21:11:54, ID: B0I0193-BLK1 Method Blank 10, Description: Method Blank

a la	# Name	Resp	RA	n/y	RRF	wt/vo!	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.78e5	0.43	NO	0.848	10.000	35.786	35.92	1.087	1.091	179.68	89.8	0.883	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.36e5	0.44	NO	0.624	10.000	37.762	37.83	1.147	1.149	187.14	93.6	1.20	
34	34 13C-OCDF	2.58e5	0.90	NO	0.730	10.000	40.297	40.68	1.224	1.236	303.87	76.0	0.415	
35	35 37CI-2,3,7,8-TCDD	1.15e5			1.21	10.000	25.769	25.81	1.026	1.027	94.464	118	0.111	
36	36 13C-1,2,3,4-TCDD	2.02e5	0.79	NO	1.00	10.000	25.260	25.12	1.000	1.000	200.00	100	0.552	
37	37 13C-1,2,3,4-TCDF	3.63e5	0.77	NO	1.00	10.000	23.930	23.77	1.000	1.000	200.00	100	0.453	
38	38 13C-1,2,3,4,6,9-HxCDF	2.33e5	0.52	NO	1.00	10.000	32.990	32.92	1.000	1.000	200.00	100	0.834	
39	39 Total Tetra-Dioxins				1.00	10.000	24.620		0.000				0.0598	1
40	40 Total Penta-Dioxins				0.935	10.000	29.960		0.000				0.0541	
41	41 Total Hexa-Dioxins				1.02	10.000	33.635		0.000				0.0598	
42	42 Total Hepta-Dioxins				1.00	10.000	37.640		0.000				0.0710	
43	43 Total Tetra-Furans				1.01	10.000	23.610		0.000		0.00000		0.0278	0.0905
44	44 1st Func. Penta-Furans				0.998	10.000	26.750		0.000				0.0179	
45	45 Total Penta-Furans				0.998	10.000	29.275		0.000				0.0291	
46	46 Total Hexa-Furans				1.09	10.000	33.555		0.000		0.00000		0.0610	0.150
47	47 Total Hepta-Furans				1.13	10.000	37.835		0.000				0.0824	

5

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_12.qld
`	

Last Altered:	Thursday, October 01, 2020 11:37:51 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 11:41:06 Pacific Daylight Time

•

ý.

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_12, Date: 30-Sep-2020, Time: 21:11:54, ID: B0I0193-BLK1 Method Blank 10, Description: Method Blank

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
the second s								

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Hexa-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1 The local P								

Hepta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1.								

Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	2,3,7,8-TCDF	25.12	1.718e3	1.443e3	1.078e2	9.269e1	1.16	YES	2.004e2	0.00000	0.090522	0.0278

Penta-Furans function 1

	Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1											

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

Last Altered: Thursday, October 01, 2020 11:37:51 Pacific Daylight Time Printed: Thursday, October 01, 2020 11:41:06 Pacific Daylight Time

.í

Name: 200930D2_12, Date: 30-Sep-2020, Time: 21:11:54, ID: B0I0193-BLK1 Method Blank 10, Description: Method Blank

Penta-Furans

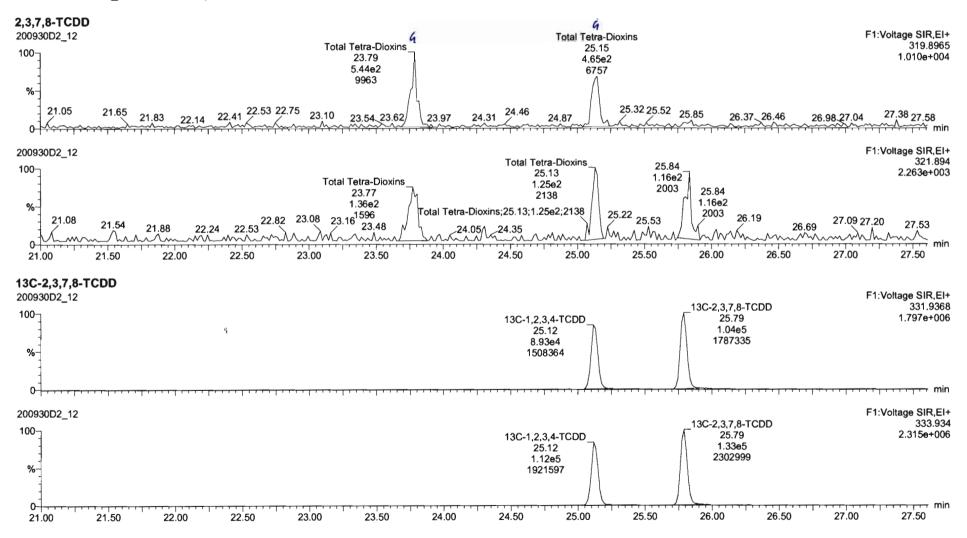
N	ame	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1 1 1 1 1										

Hexa-Furans

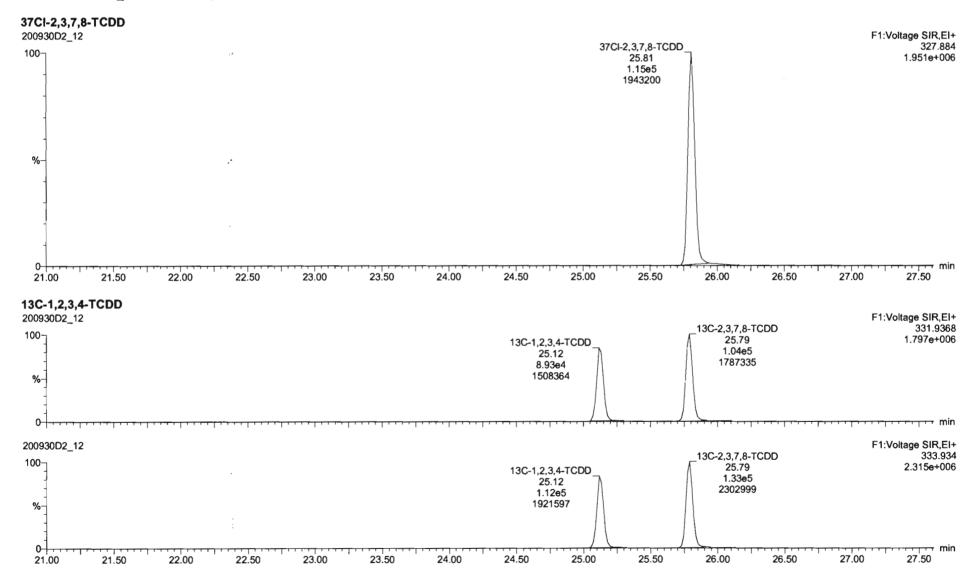
and the second	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,7,8,9-HxCDF	34.29	1.654e3	9.370e2	8.365e1	8.414e1	0.99	YES	1.678e2	0.00000	0.14962	0.0757

Hepta-Furans

۰.

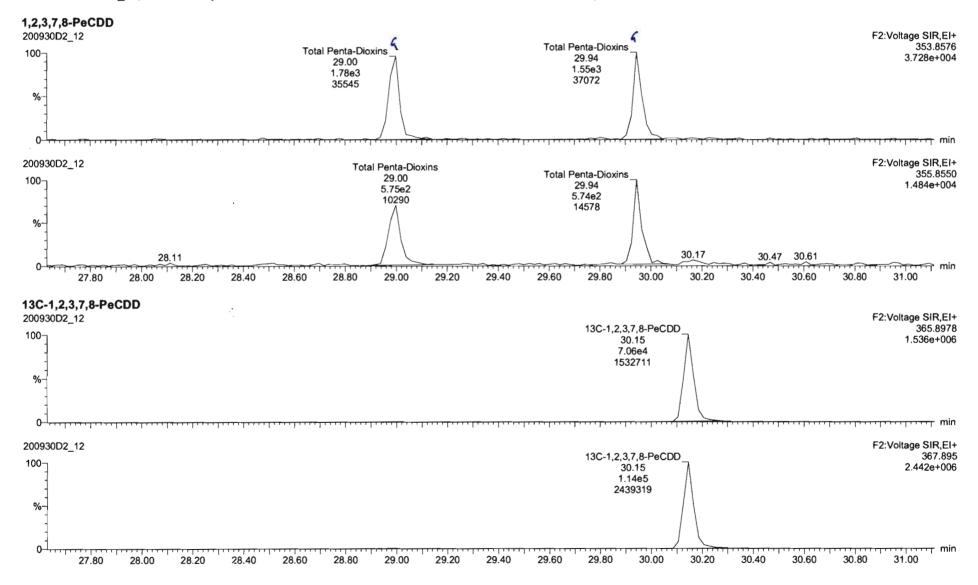

.

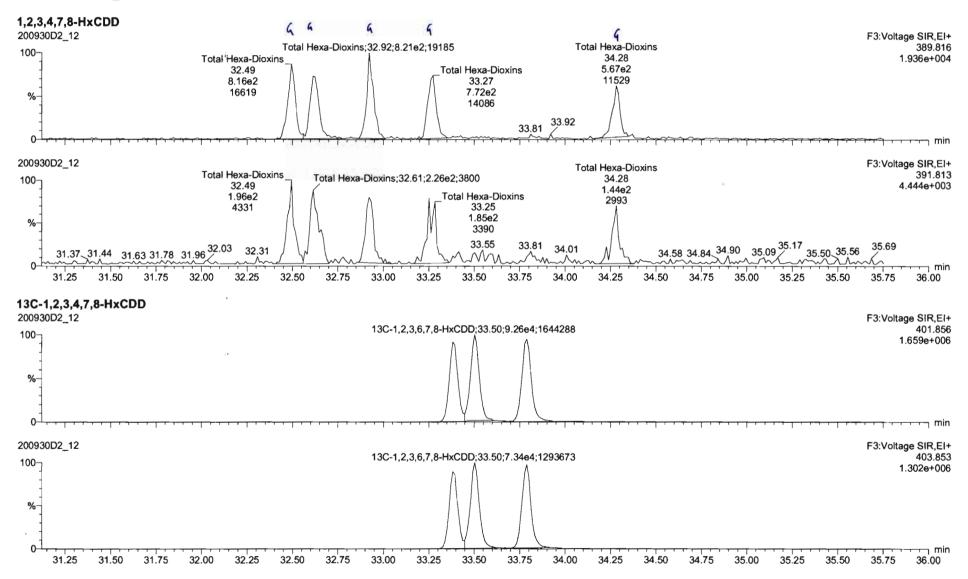
Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								


-9 ...'

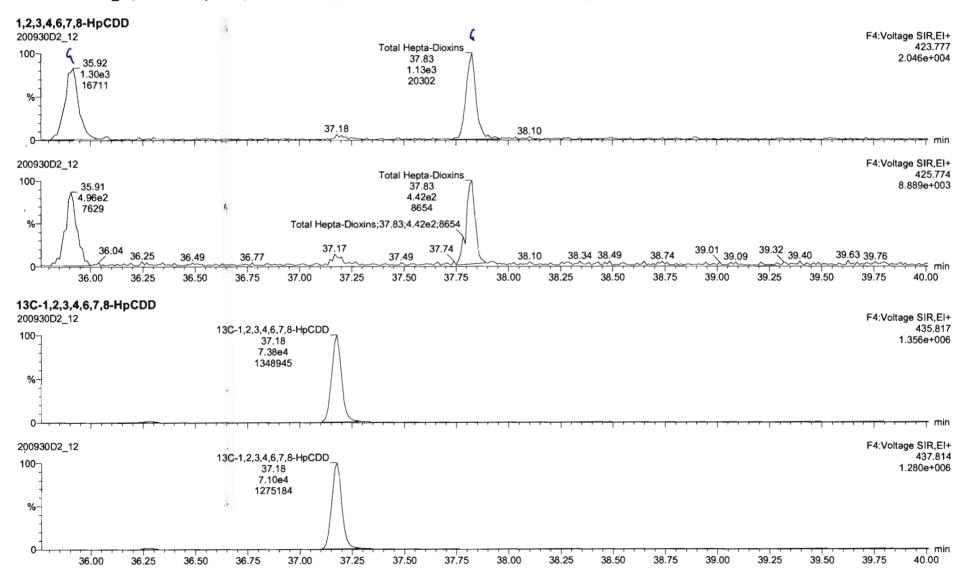
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_12.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time Thursday, October 01, 2020 10:51:11 Pacific Daylight Time	

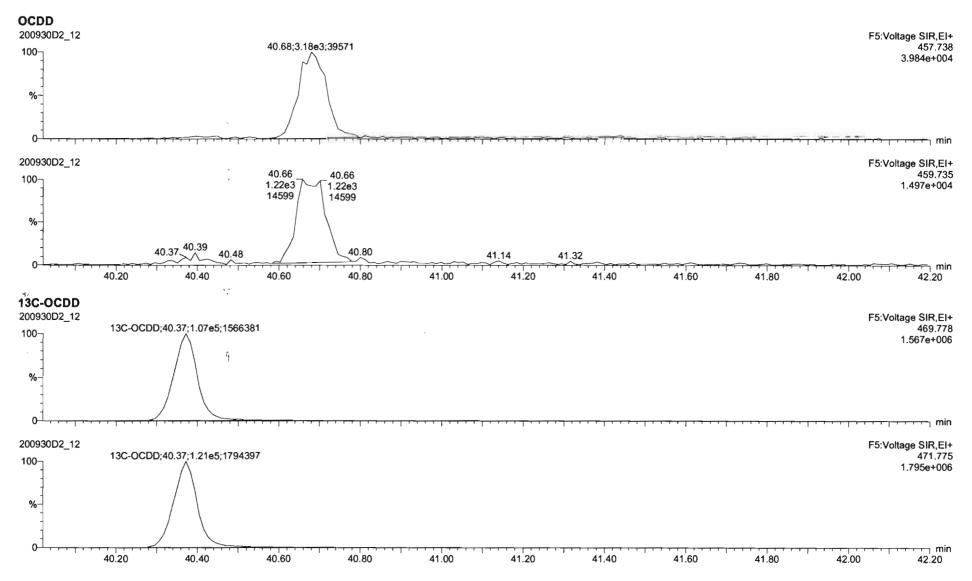
Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37


Quantify San Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_12.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time Thursday, October 01, 2020 10:51:11 Pacific Daylight Time	


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

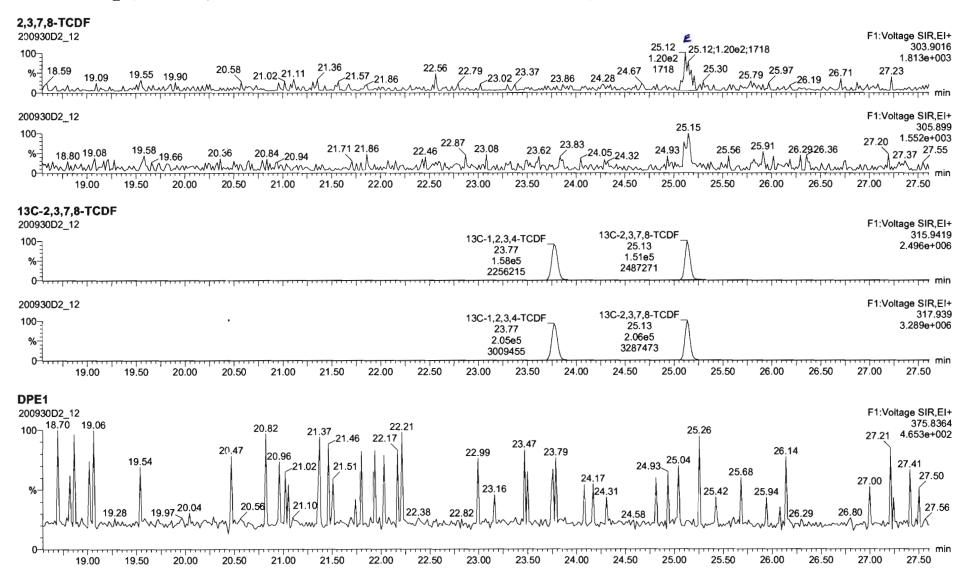
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

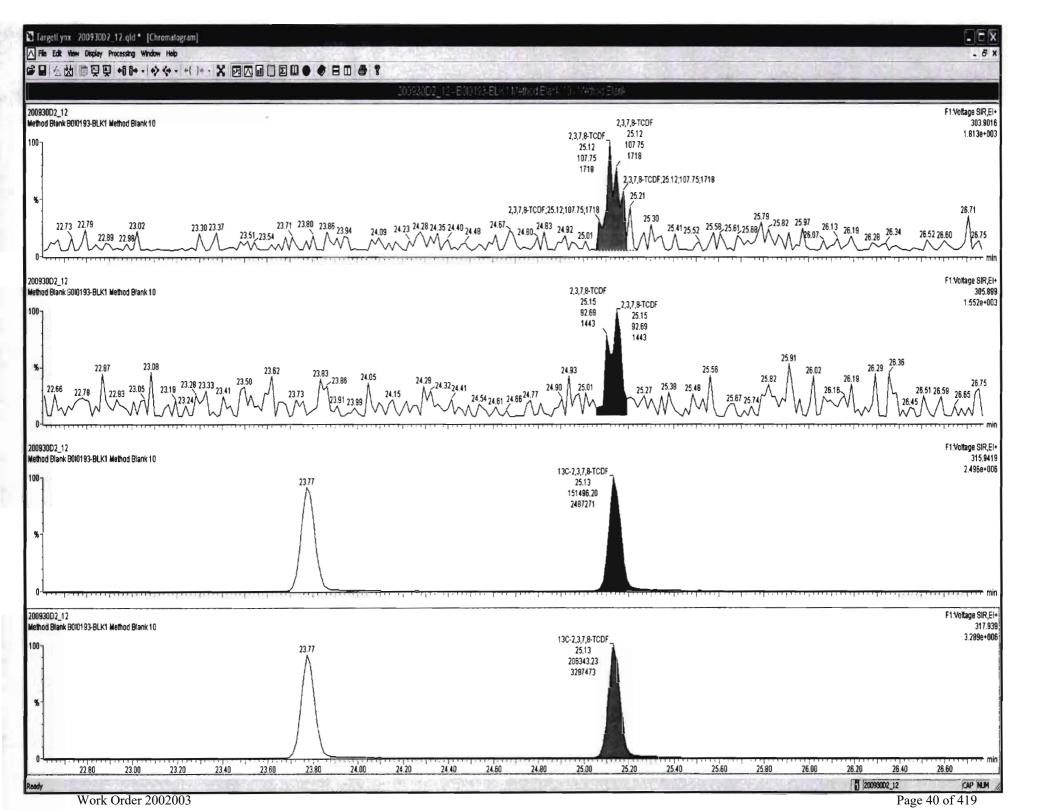

Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time


Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_12.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time Thursday, October 01, 2020 10:51:11 Pacific Daylight Time	

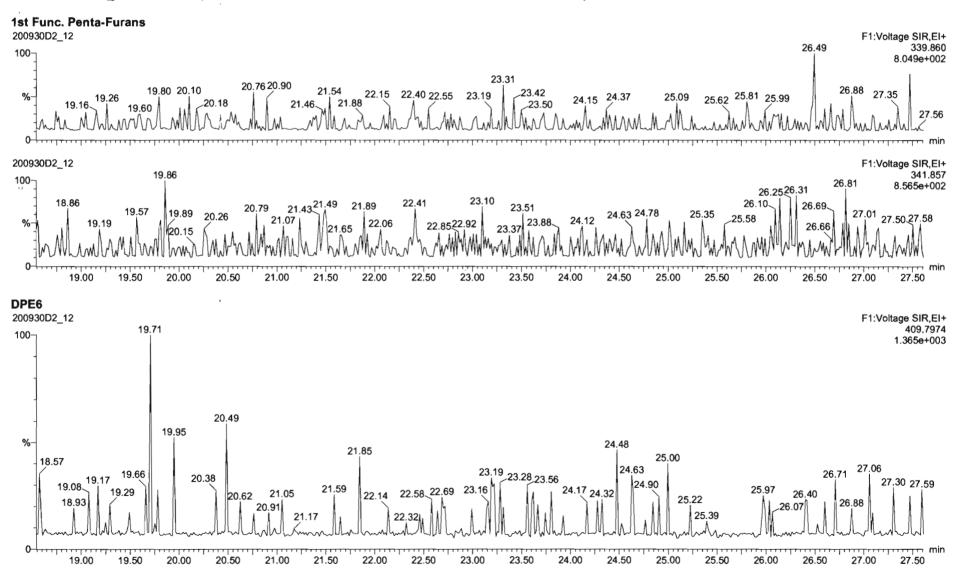
Quantify San Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_12.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time Thursday, October 01, 2020 10:51:11 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_12.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time Thursday, October 01, 2020 10:51:11 Pacific Daylight Time	

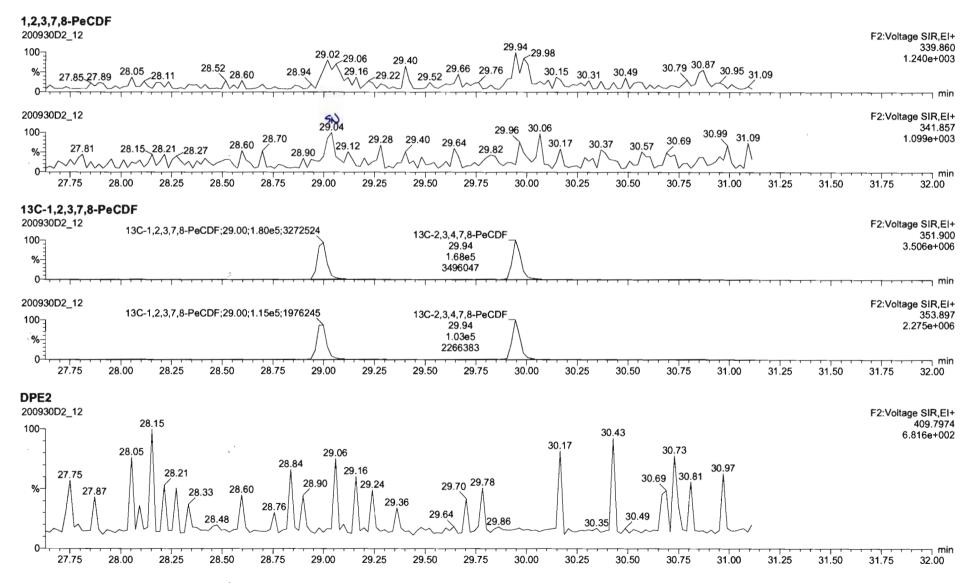



Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

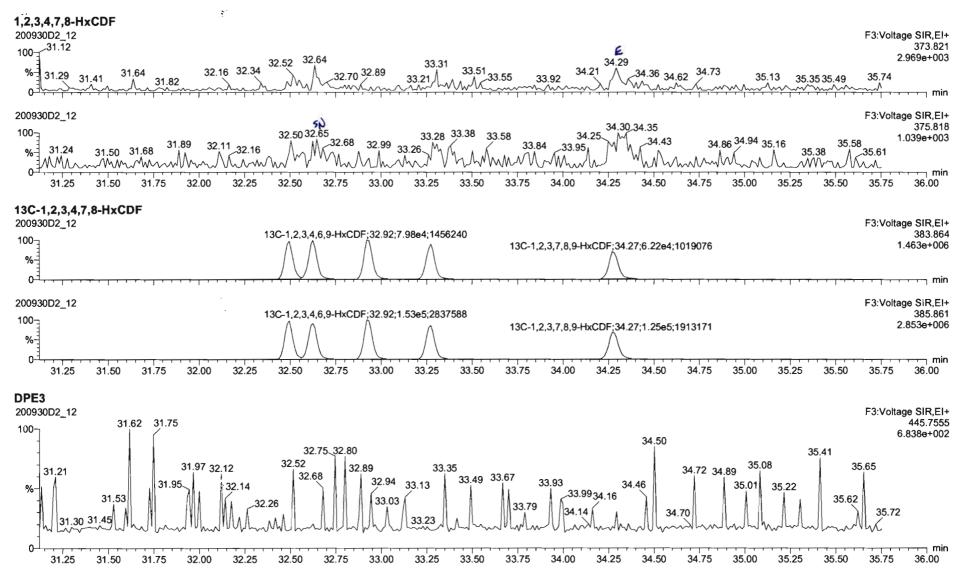
Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time

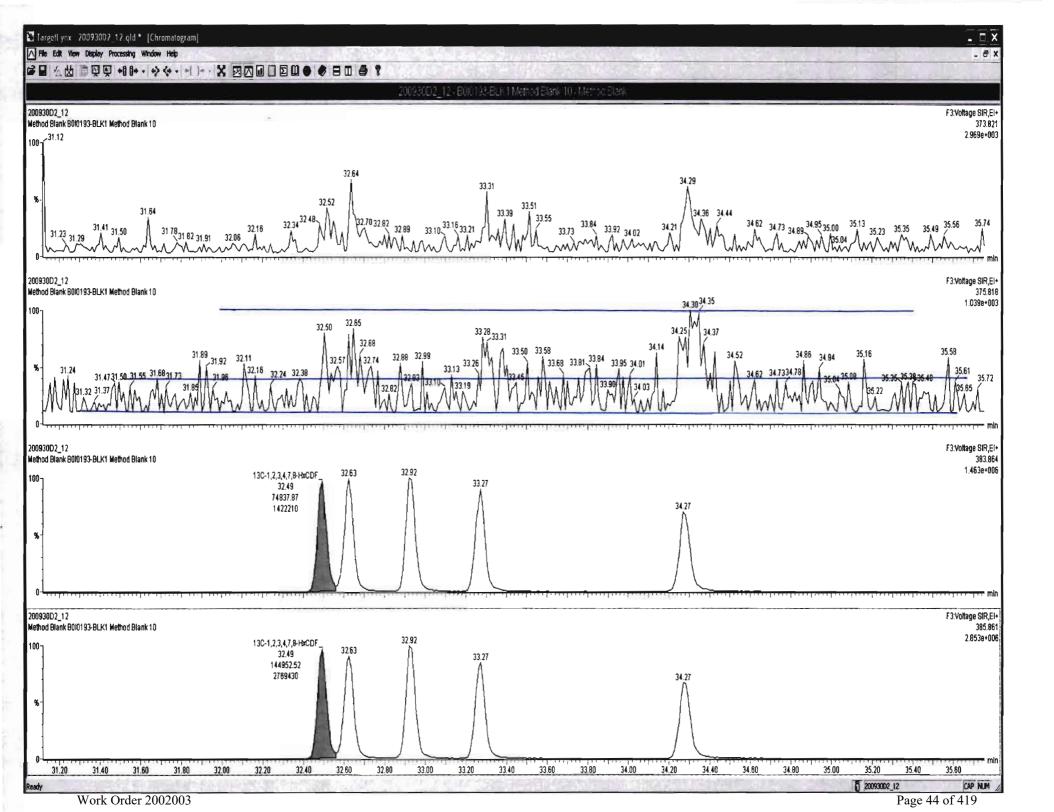

Quantify Sample Report MassLynx 4.1 Page 8 of 13 Vista Analytical Laboratory Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld Last Altered: Thursday, October 01, 2020 10:50:07 Pacific Daylight Time Thursday, October 01, 2020 10:51:11 Pacific Daylight Time

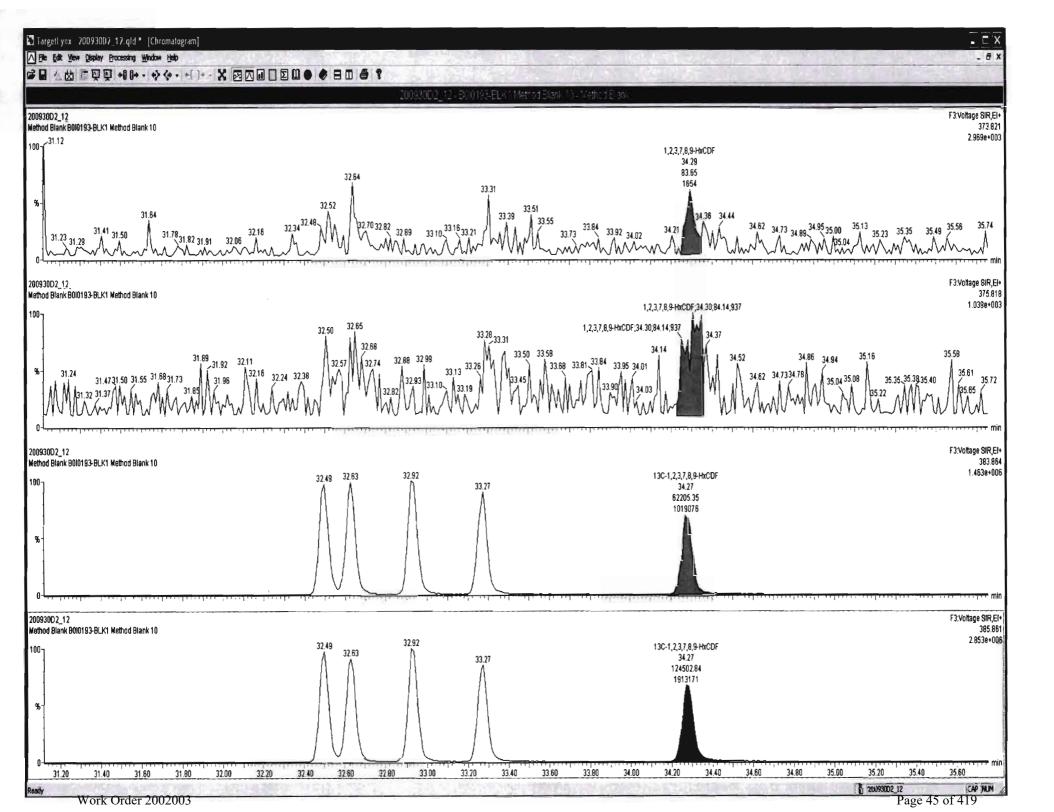
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time

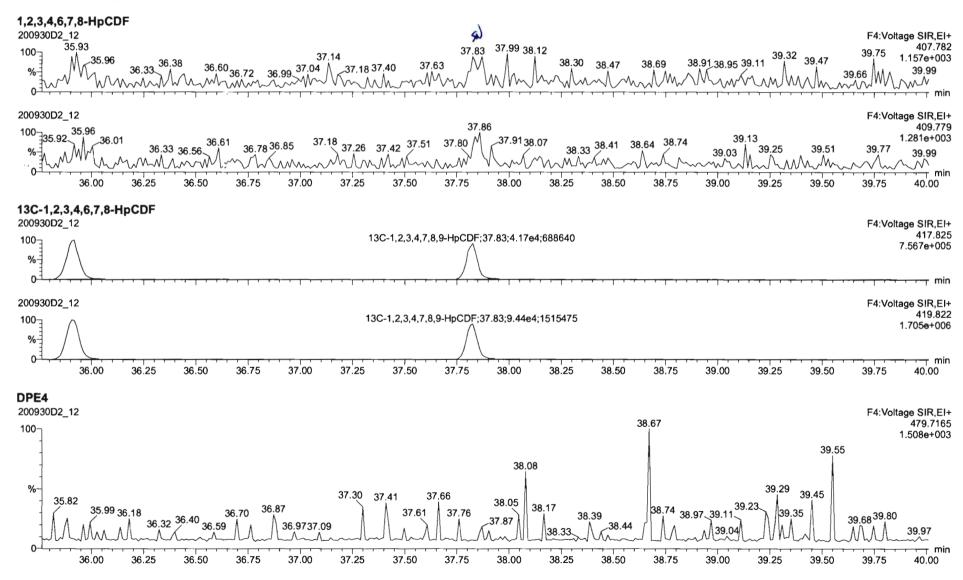



Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

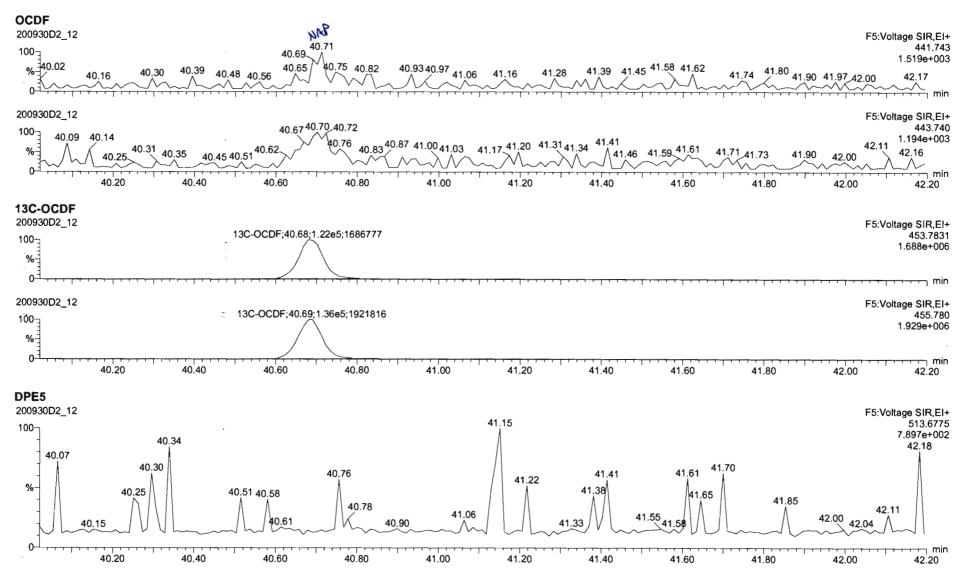
Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

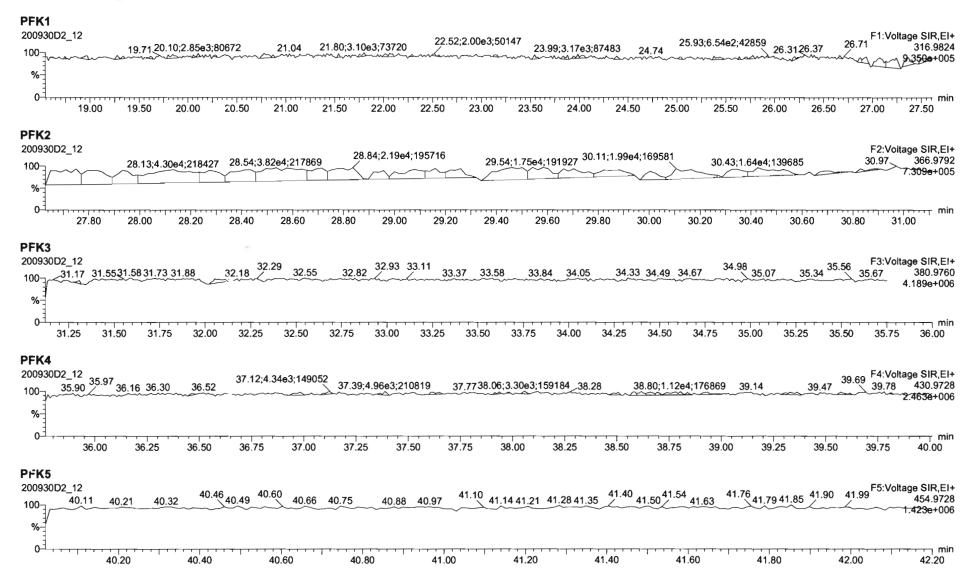
Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld


Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_12.qld

Last Altered:	Thursday, October 01, 2020 10:50:07 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:51:11 Pacific Daylight Time

•	nple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\20	0930D2\200930D2_10.qld	
Last Altered: Printed:		020 10:48:55 Pacific Daylight Time 020 11:28:02 Pacific Daylight Time	DB 101

1/20 CT 10/05/2020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

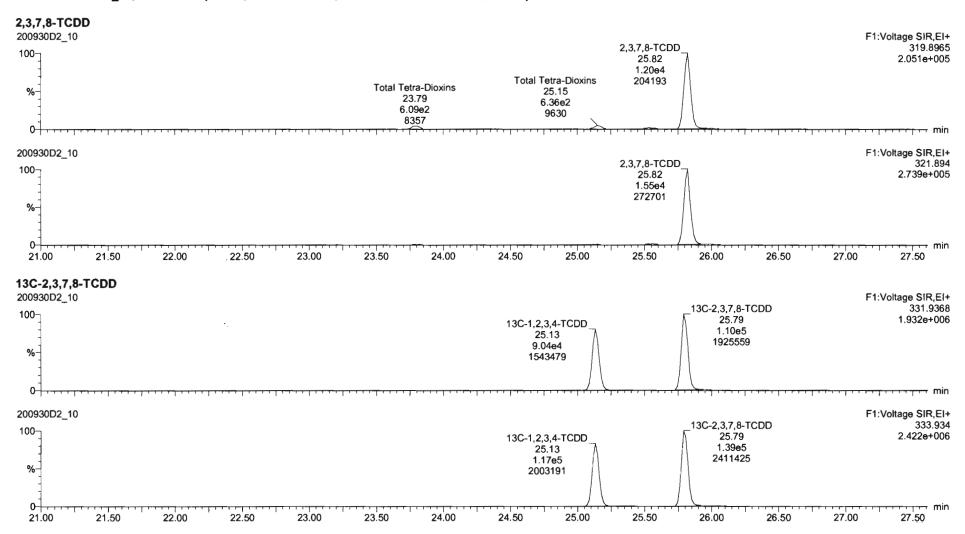
Name: 200930D2_10, Date: 30-Sep-2020, Time: 19:40:20, ID: B0I0193-BS1 OPR 10, Description: OPR

1200	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.74e4	0.77	NO	1.00	10.000 -	25.821	25.82	1.001	1.001	22.016	11067-158	0.114	22.0
2	2 1,2,3,7,8-PeCDD	1.01e5	0.62	NO	0.935	10.000	30.166	30.17	1.001	1.001	112.59	11370-142		113
3	3 1,2,3,4,7,8-HxCDD	9.03e4	1.27	NO	1.15	10.000	33.404	33.40	1.000	1.000	99.397	99.4 70 - 164		99.4
4	4 1,2,3,6,7,8-HxCDD	8.95e4	1.25	NO	1.02	10.000	33.514	33.53	1.000	1.000	96.214	96.276 - 134	0.248	96.2
5	5 1,2,3,7,8,9-HxCDD	9.31e4	1.27	NO	1.06	10.000	33.833	33.81	1.001	1.000	98.343	98.364 - 162	0.261	98.3
6	6 1,2,3,4,6,7,8-HpCDD	7.60e4	1.03	NO	1.00	10.000	37.201	37.20	1.000	1.000	102.55	103 70 -140	0.468	103
7	7 OCDD	1.14e5	0.88	NO	0.952	10.000	40.394	40.40	1.000	1.000	201.82	101 78 - 144		202
8	8 2,3,7,8-TCDF	3.57e4	0.82	NO	1.01	10.000	25.173	25.16	1.001	1.001	19.346	96.775 - 158		19.3
9	9 1,2,3,7,8-PeCDF	1.63e5	1.61	NO	0.998	10.000	29.019	29.02	1.001	1.001	105.58	106 80 - 134	0.211	106
10	10 2,3,4,7,8-PeCDF	1.73e5	1.60	NO	1.07	10.000	29.994	29.96	1.001	1.000	110.99	111 68 - 160	0.222	111
11	11 1,2,3,4,7,8-HxCDF	1.46e5	1.25	NO	1.05	10.000	32.505	32.52	1.000	1.000	118.23	118 72 - 134	0.332	118
12	12 1,2,3,6,7,8-HxCDF	1.55e5	1.27	NO	1.10	10.000	32.635	32.65	1.000	1.001	119.98	120 84 - 130	0.336	120
13	13 2,3,4,6,7,8-HxCDF	1.42e5	1.26	NO	1.09	10.000	33.317	33.29	1.001	1.000	118.12	118 70-156	0.365	118
14	14 1,2,3,7,8,9-HxCDF	1.24e5	1.25	NO	1.08	10.000	34.293	34.31	1.000	1.000	115.71	116 78-150	0.463	116
15	15 1,2,3,4,6,7,8-HpCDF	1.22e5	1.04	NO	1.13	10.000	35.964	35.94	1.001	1.000	110.75	111 82-122	0.539	111
16	16 1,2,3,4,7,8,9-HpCDF	9.89e4	1.03	NO	1.29	10.000	37.838	37.85	1.000	1.000	109.83	110 78-158		110
17	17 OCDF	1.59e5	0.90	NO	0.953	10.000	40.702	40.72	1.000	1.000	242.75	121 63-170		243
18	18 13C-2,3,7,8-TCDD	2.49e5	0.79	NO	1.17	10.000	25.786	25.79	1.026	1.026	204. 5 2	102 20 -175		
19	19 13C-1,2,3,7,8-PeCDD	1.93e5	0.62	NO	0.914	10.000	29.974	30.15	1.193	1.199	203.47	102 21 - 227	0.302	
20	20 13C-1,2,3,4,7,8-HxCDD	1.58e5	1.29	NO	0.634	10.000	33.394	33.39	1.014	1.014	211.80	10621-193	0.598	
21	21 13C-1,2,3,6,7,8-HxCDD	1.82e5	1.29	NO	0.724	10.000	33.503	33.51	1.017	1.018	213.39	107 25-163	0.523	ļ
22	22 13C-1,2,3,7,8,9-HxCDD	1.78e5	1.24	NO	0.716	10.000	33.769	33.80	1.025	1.026	212.09	106 21-193	0.530	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.48e5	1.05	NO	0.660	10.000	37.181	37.19	1.129	1.129	190.66	95.3 26 -166	0.973	
24	24 13C-OCDD	2.37e5	0.88	NO	0.587	10.000	40.158	40.39	1.219	1.227	344.01	86.0 13 - 198	0.619	
25	25 13C-2,3,7,8-TCDF	3.64e5	0.77	NO	1.02	10.000	24.882	25.15	0.990	1.001	198.21	99.1 22-152	0.454	
26	26 13C-1,2,3,7,8-PeCDF	3.09e5	1.60	NO	0.842	10.000	29.046	29.00	1.156	1.154	204.18	102 21 - 192	0.487	
27	27 13C-2,3,4,7,8-PeCDF	2.90e5	1.56	NO	0.802	10.000	29.933	29.96	1.191	1.192	201.18	101 13 -328	0.511	
28	28 13C-1,2,3,4,7,8-HxCDF	2.35e5	0.51	NO	1.00	10.000	32.538	32.51	0.988	0.987	199.29	99.6 19 - 202	0.709	
29	29 13C-1,2,3,6,7,8-HxCDF	2.35e5	0.53	NO	1.02	10.000	32.669	32.63	0.992	0.991	196.22	98.1 21 - 159	0.698	
30	30 13C-2,3,4,6,7,8-HxCDF	2.21e5	0.52	NO	0.955	10.000	33.233	33.28	1.009	1.011	196.55	98.322-176	0.744	
31	31_13C-1,2,3,7,8,9-HxCDF	1.99e5	0.53	NO	0.851	10.000	34.296	34.2 9	1.041	1.041	198.77	99.4 17 - 205	0.835	

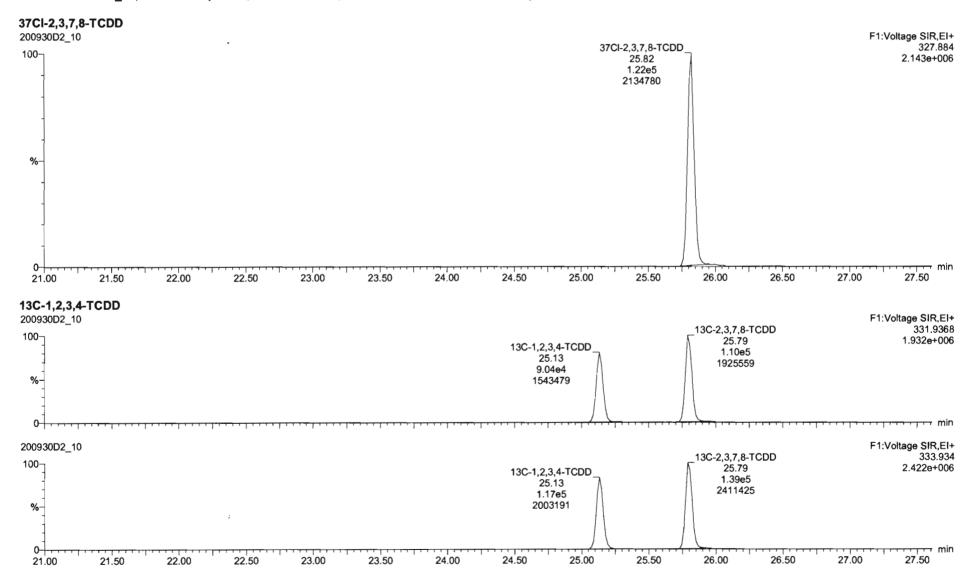
Page 1 of 2

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Page 2 of 2

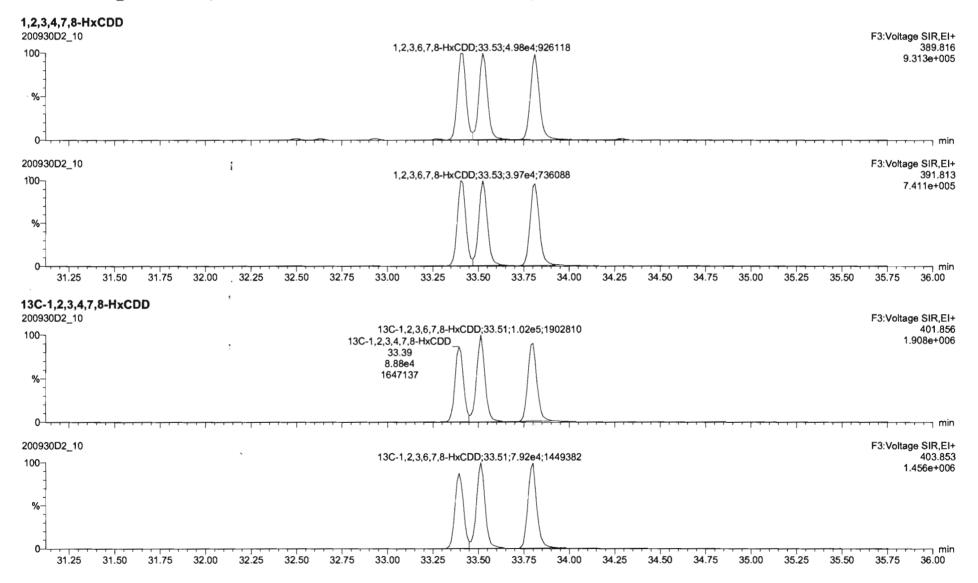

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_10.qld

Last Altered:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 11:28:02 Pacific Daylight Time

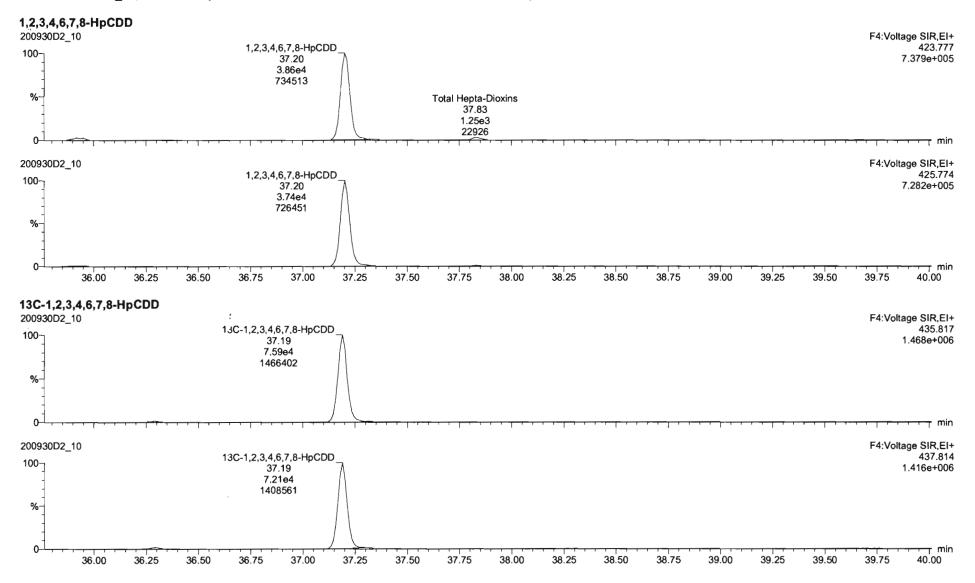

ARE END	# Name	Resp	RA	n/y	RRF	wt/voi	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.95e5	0.43	NO	0.848	10.000	35.798	35.93	1.087	1.091	195.12	97.6 21 - 158	0.782	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.40e5	0.45	NO	0.624	10.000	37.774	37.84	1.147	1.149	190.89	95.4 20 - 186	1.06	
34	34 13C-OCDF	2.74e5	0.87	NO	0.730	10.000	40.310	40.70	1.224	1.236	319.65	79.9 13 - 198	0.609	
35	35 37CI-2,3,7,8-TCDD	1.22e5			1.21	10.000	25.784	25.82	1.026	1.027	97.309	122 31 - 191	0.159	
36	36 13C-1,2,3,4-TCDD	2.07e5	0.77	NO	1.00	10.000	25.260	25.13	1.000	1.000	200.00	100	0.563	
37	37 13C-1,2,3,4-TCDF	3.59e5	0.78	NO	1.00	10.000	23.930	23.79	1.000	1.000	200.00	100	0.464	
38	38 13C-1,2,3,4,6,9-HxCDF	2.35e5	0.53	NO	1.00	10.000	32.990	32.93	1.000	1.000	200.00	100	0.711	

Quantify San Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	

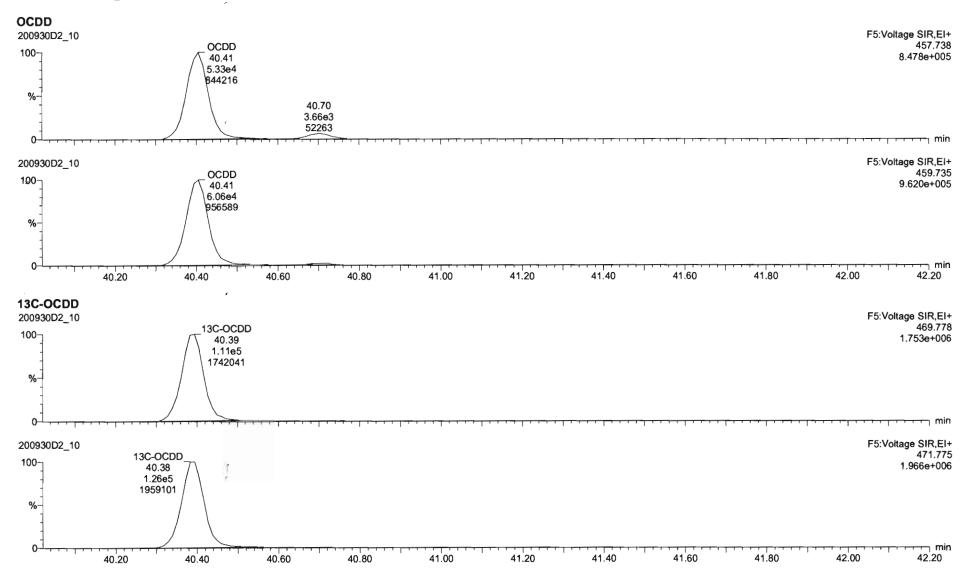
Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37


Quantify Sample Report Massi ynx 4.1 Pa Vista Analytical Laboratory Pa		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	

Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	



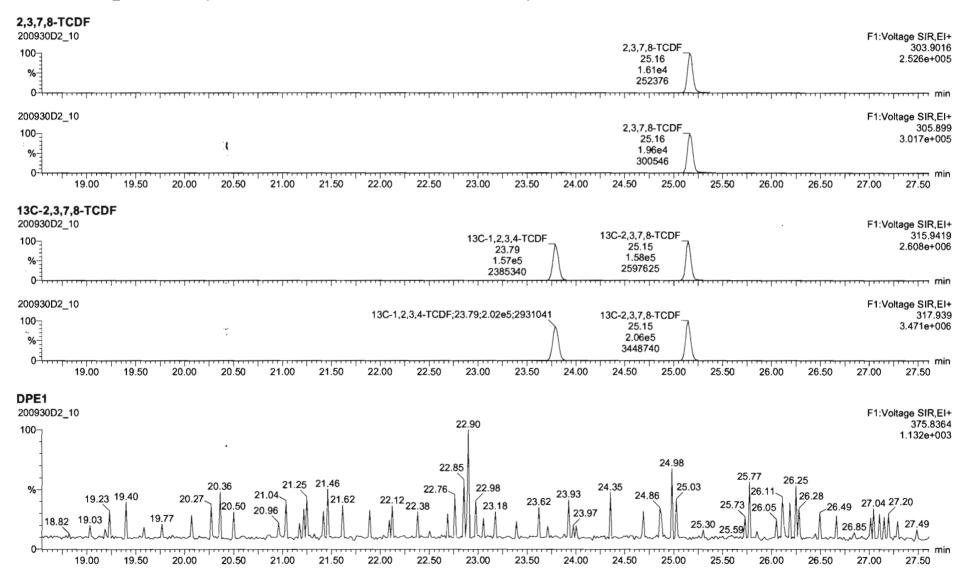
Quantify San Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	

1

Quantify San Vista Analytica	······································	Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1

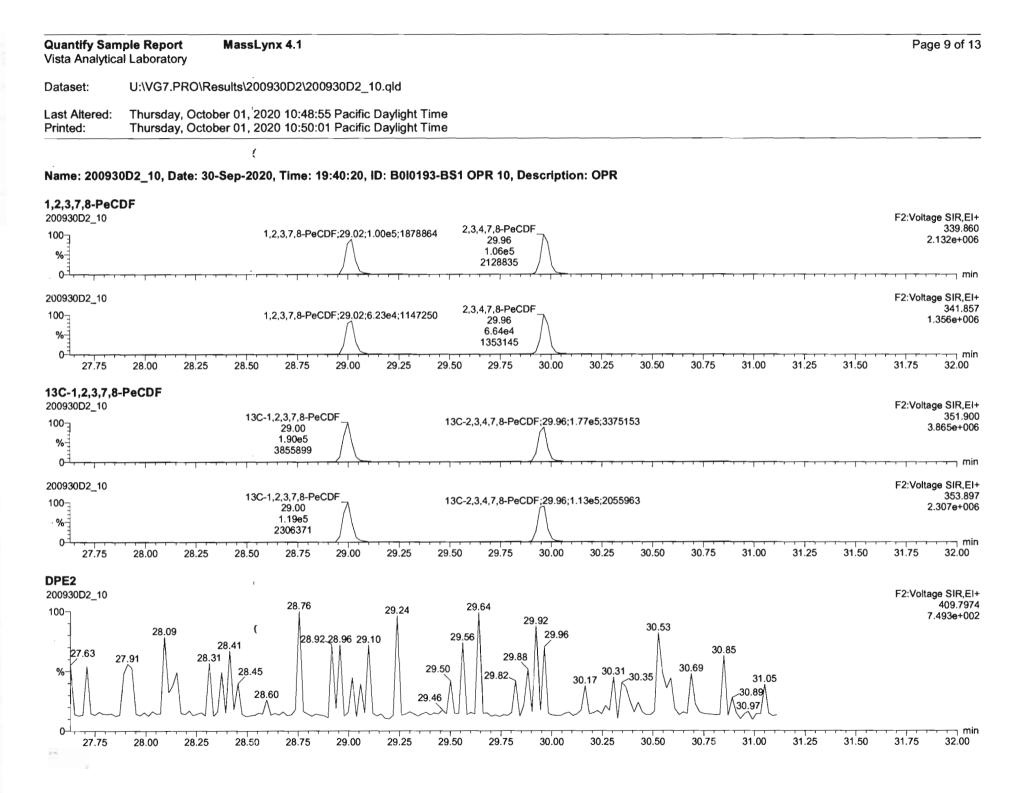
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_10.qld

Last Altered:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:50:01 Pacific Daylight Time

Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

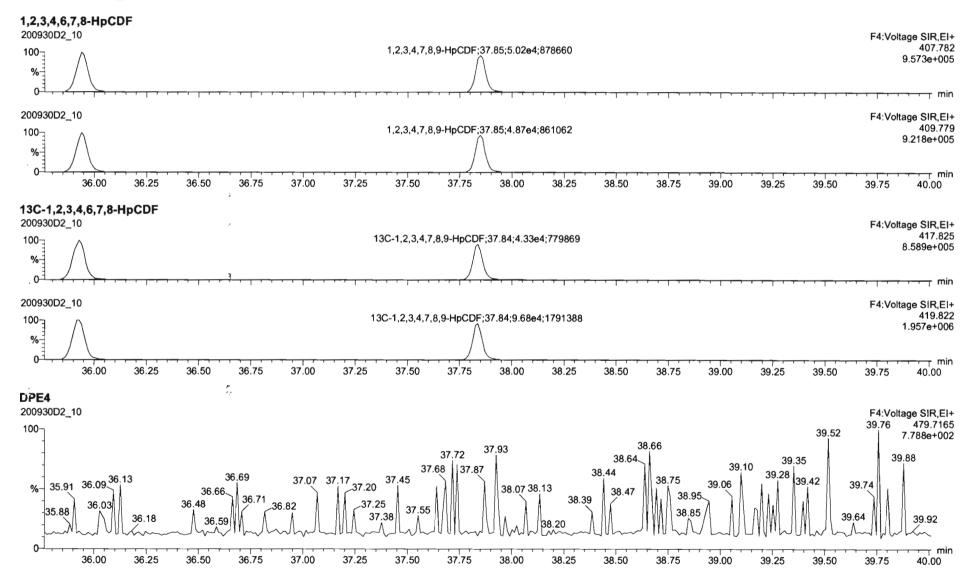

.

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_10.qld

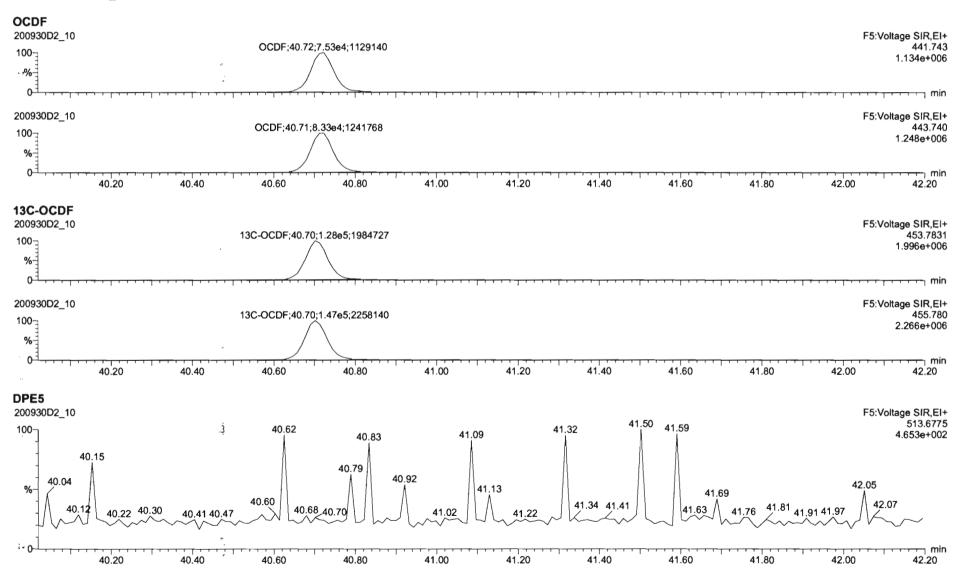
Last Altered:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:50:01 Pacific Daylight Time

Name: 200930D2_10, Date: 30-Sep-2020, Time: 19:40:20, ID: B0I0193-BS1 OPR 10, Description: OPR

1st Func. Penta-Furans 200930D2 10 F1:Voltage SIR,EI+ 339.860 19.86 25.61 100-26.54 5.722e+002 21.02 21.34 22.87 24.78 ^{27.23}27.49 18.97 19.90 20.52 25.12 25.88 26.20 26.68 22.3222.46 23.30 23.50 24.09 24.22 24.60 21.66 25.36 18.70 19.03 19.54 22.18 24 96 26.16 20.13 20.85 % 21.85 0+--, min 200930D2_10 F1:Voltage SIR,EI+ 24.58 341.857 100-8.237e+002 24.63 24.48 25.68 20.91 21.08 26.14 23.45 ^{23,85} 27.58 20.55 26.45 26.62 22.78 22.93 19.92 19.03 19.43 24.77 25.44 25.55 26.95 24.20 21.39 21.9722.03 23.28 20.07 % 20.88 26.00 18.97 0min ריין 20.00 20.50 21.00 21.50 22.00 22.50 23.50 24.00 24,50 25.00 25.50 26.00 26.50 27.00 27.50 19.00 19.50 23.00 10 DPE6 200930D2_10 F1:Voltage SIR,EI+ 409.7974 19.20 100-9.710e+002 24.14 20.27 24.05 20.85 19.16 24.51 24.61 19.83 25.10 23.83 25.16 26.33 20.58 25.70 23.18 23.41 % 22.06 19.00 19.23 26.89 22.90 21.43 24.80 26.81 23 44 24.35 26.26 26.92 27.59 21.28 21.83 26.45 18.76 22.17 25.56 25.82 20.01 21.66 19.64 27.23 26.05 22.75 22 64 19.38 min ריד 1111 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 19.00

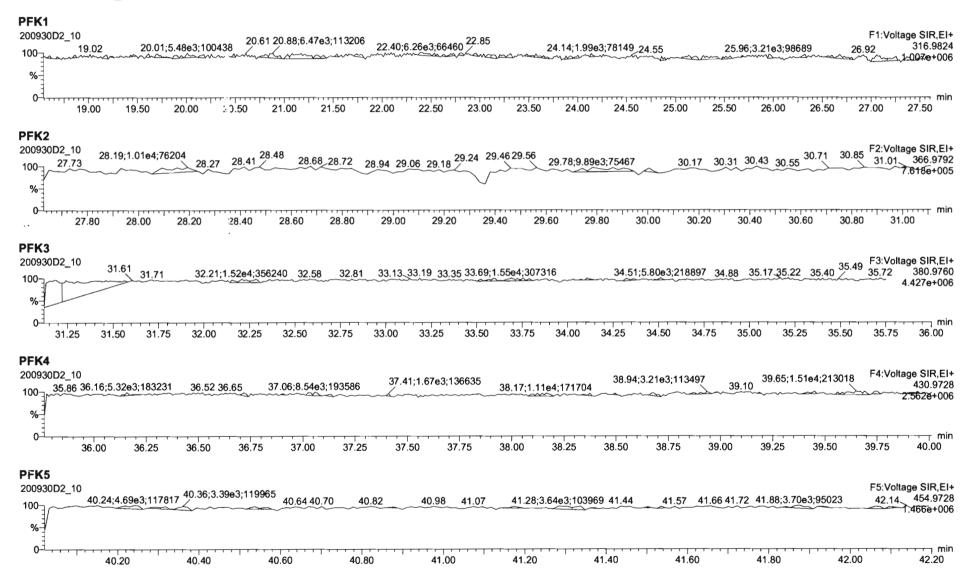

Quantify San Vista Analytica		Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	

£



Work Order 2002003

Quantify San Vista Analytica	1 · · · · 1 · · · · · 3 · · · · · · · 3 · · · · · ·	Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	


Quantify San Vista Analytic		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_10.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time Thursday, October 01, 2020 10:50:01 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_10.qld

Last Altered:	Thursday, October 01, 2020 10:48:55 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:50:01 Pacific Daylight Time

Quantify Sam Vista Analytica	al Laboratory MassLynx 4.1
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld
Last Altered: Printed:	Thursday, October 01, 2020 14:13:37 Pacific Daylight Time Thursday, October 01, 2020 14:15:36 Pacific Daylight Time

DB 10/1/20 CT 10/06/2020

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926

100 3 3	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Fred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	8.580 🦯	25.837		1.001				0.113	
2	2 1,2,3,7,8-PeCDD			NO	0.935	8.580	30.187		1.001				0.179	
3	3 1,2,3,4,7,8-HxCDD	1.90e2	1.50	YES	1.15	8.580	33.415	33.43	1.000	1.001	0.25266		0,194	0.228
4	4 1,2,3,6,7,8-HxCDD	5.89e2	1.28	NO	1.02	8.580	33.525	33.55	1.000	1.001	0.78249		0.188	0.782
5	5 1,2,3,7,8,9-HxCDD	3.21e2	1.35	NO	1.06	8.580	33.845	33.82	1.001	1.000	0.41575		0.192	0.416
6	6 1,2,3,4,6,7,8-HpCDD	1.62e4	1.12	NO	1.00	8.580	37.212	37.21	1.000	1.000	26.021		0.595	26.0
7	7 OCDD	1.07e5	0.88	NO	0.952	8.580	40.394	40.42	1.000	1.001	229.08		0.407	229
8	8 2,3,7,8-TCDF	8.29e2	0.88	NO	1.01	8.580	25.173	25.16	1.001	1.001	0.53470		0.102	0.535
9	9 1,2,3,7,8-PeCDF	5.13e2	1.14	YES	0.998	8.580	29.018	29.02	1.001	1.001	0.40609		0.107	0.357
10	10 2,3,4,7,8-PeCDF	4.55e2	1.63	NO	1.07	8.580	29.994	29.98	1.001	1.001	0.35257		0.0890	0.353
11	11 1,2,3,4,7,8-HxCDF	9.13e2	1.19	NO	1.05	8.580	32.516	32.54	1.000	1.001	0.89437		0.134	0.894
12	12 1,2,3,6,7,8-HxCDF	4.37e2	1.21	NO	1.10	8.580	32.657	32.67	1.000	1.001	0.40864		0.134	0.409
13	13 2,3,4,6,7,8-HxCDF	2.65e2	1.25	NO	1.09	8.580	33.317	33.32	1.001	1.001	0.26905		0.148	0.269
14	14 1,2,3,7,8,9-HxCDF	2.39e2	1.32	NO	1.08	8.580	34.305	34.34	1.000	1.001	0.26526		0.182	0.265
15	15 1,2,3,4,6,7,8-HpCDF	1.95e3	1.05	NO	1.13	8.580	35.975	35.96	1.001	1.001	2.1338		0.180	2.13
16	16 1,2,3,4,7,8,9-HpCDF	3.19e2	1.04	NO	1.29	8.580	37.849	37.86	1.000	1.000	0.41219		0.187	0.412
17	17 OCDF	4.03e3	0.91	NO	0.953	8.580	40.713	40.73	1.000	1.001	7.5174		0.205	7.52
18	18 13C-2,3,7,8-TCDD	2.34e5	0.75	NO	1.17	8.580	25.802	25.81	1.026	1.026	224.99	96.5	0.565	
19	19 13C-1,2,3,7,8-PeCDD	1.88e5	0.63	NO	0.914	8.580	29.992	30.17	1.193	1.200	232.22	99.6	0.599	Í
20	20 13C-1,2,3,4,7,8-HxCDD	1.52e5	1.30	NO	0.634	8.580	33.405	33.40	1.014	1.014	235.89	101	0.794	
21	21 13C-1,2,3,6,7,8-HxCDD	1.71e5	1.25	NO	0.724	8.580	33.514	33.53	1.017	1.018	232.90	99.9	0.695	
22	22 13C-1,2,3,7,8,9-HxCDD	1.70e5	1.27	NO	0.716	8.580	33.781	33.81	1.025	1.026	233.33	100	0.703	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.45e5	1.07	NO	0.660	8.580	37.194	37.20	1.129	1.129	216.30	92.8	1.02	
24	24 13C-OCDD	2.28e5	0.89	NO	0.587	8.580	40.172	40.39	1.219	1.226	383.11	82.2	0.597	
25	25 13C-2,3,7,8-TCDF	3.57e5	0.74	NO	1.02	8.580	24.897	25.15	0.990	1.000	220.00	94.4	0.446	
26	26 13C-1,2,3,7,8-PeCDF	2.95e5	1.61	NO	0.842	8.580	29.064	29.00	1.156	1.153	220.89	94.8	0.573	
27	27 13C-2,3,4,7,8-PeCDF	2.80e5	1.63	NO	0.802	8.580	29.951	29.96	1.191	1.192	220.30	94.5	0.602	
28	28 13C-1,2,3,4,7,8-HxCDF	2.26e5	0.52	NO	1.00	8.580	32.549	32.52	0.988	0.987	222.11	95.3	0.740	
29	29 13C-1,2,3,6,7,8-HxCDF	2.27e5	0.51	NO	1.02	8.580	32.680	32.65	0.992	0.991	219.07	94.0	0.728	1
30	30 13C-2,3,4,6,7,8-HxCDF	2.11e5	0.52	NO	0.955	8.580	33.244	33.28	1.009	1.010	217.66	93.4	0.777	
31	31 13C-1,2,3,7,8,9-HxCDF	1.94e5	0.51	NO	0.851	8.580	34.308	34.31	1.041	1.041	224.70	96.4	0.872	

Page 1 of 2

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Page 2 of 2

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

Last Altered:	Thursday, October 01, 2020 14:13:37 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 14:15:36 Pacific Daylight Time

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926

14	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.88e5	0.43	NO	0.848	8.580	35.810	35.94	1.087	1.091	218.31	93.7	0.931	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.40e5	0.43	NO	0.624	8.580	37.787	37.85	1.147	1.149	221.39	95.0	1.27	
34	34 13C-OCDF	2.62e5	0.89	NO	0.730	8.580	40.323	40.71	1.224	1.236	353.42	75.8	0.494	ļ
35	35 37CI-2,3,7,8-TCDD	1.19e5			1.21	8.580	25.799	25.82	1.026	1.027	111.46	120	0.122	
36	36 13C-1,2,3,4-TCDD	2.06e5	0.79	NO	1.00	8.580	25.260	25.15	1.000	1.000	233.10	100	0.663	
37	37 13C-1,2,3,4-TCDF	3.70e5	0.78	NO	1.00	8.580	23.930	23.80	1.000	1.000	233.10	100	0.456	
38	38 13C-1,2,3,4,6,9-HxCDF	2.37e5	0.52	NO	1.00	8.580	32.990	32.94	1.000	1.000	233.10	100	0.742	
39	39 Total Tetra-Dioxins				1.00	8.580	24.620		0.000				0.0673	
40	40 Total Penta-Dioxins				0.935	8.580	29.960		0.000				0.0987	
41	41 Total Hexa-Dioxins				1.02	8.580	33.635		0.000		5.1108		0.201	6.73
42	42 Total Hepta-Dioxins				1.00	8.580	37.640		0.000		60.656		0.595	60.7
43	43 Total Tetra-Furans				1.01	8.580	23.610		0.000		1.6614		0.102	1.89
4.7	44 1st Func. Penta-Furans -				0.998	8.580	26.750		0.000		0.61185		0.0550	0.612
45	45 Total Penta-Furans				0.998	8.580	29.275		0.000		0.86427		0.101	1.40
46	46 Total Hexa-Furans				1.09	8.580	33.555		0.000		4.7302		0.147	4.73
47	47 Total Hepta-Furans				1.13	8.580	37.835		0.000		7.5499		0.194	7.55

\$

15

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Page 1 of 3

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

Last Altered:	Thursday, October 01, 2020 14:13:37 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 14:15:36 Pacific Daylight Time

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926

Tetra-Dioxins

....

Name	RT	m1 Height m2 Height	m1 Resp n	n2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									and an an age	

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Hexa-Dioxins

30. Cen	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	31.80	2.458e4	1.870e4	1.224e3	1.002e3	1.22	NO	2.226e3	3.0857	3.0857	0.201
2	Total Hexa-Dioxins	32.38	3.449e3	3.373e3	1.854e2	1.553e2	1.19	NO	3.406e2	0.47207	0.47207	0.201
3	Total Hexa-Dioxins	32.68	1.804e4	1.186e4	5.791e2	3.758e2	1.54	YES	0.000e0	0.00000	1.1666	0.201
4	Total Hexa-Dioxins	32.77	2.103e3	2.965e3	1.370e2	1.189e2	1.15	NO	2.560e2	0.35478	0.35478	0.201
5.	1,2,3,4,7,8-HxCDD	., 33.43	2.170e3	1.662e3	1.14 1e 2	7.621e1	1.50	YES	1.903e2	0.00000	0.22751	0.194
6	1,2,3,6,7,8-HxCDD	33.55	4.979e3	4.406e3	3.303e2	2.586e2	1.28	NO	5.890e2	0.78249	0.78249	0.188
7	Total Hexa-Dioxins	33.71	2.835e3	1.301e3	1.076e2	7.406e1	1.45	YES	0.000e0	0.00000	0.22991	0.201
8	1,2,3,7,8,9-HxCDD	33.82	3.191e3	2.228e3	1.845e2	1.366e2	1.35	NO	3.211e2	0.41575	0.41575	0.192

Hepta-Dioxins

145 4 1 2 3	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.31	1.795e5	1.750e5	1.100e4	1.060e4	1.04	NO	2.159e4	34.635	34.635	0.595
2	1,2,3,4,6,7,8-HpCDD	37.21	1.574e5	1.403e5	8.564e3	7.659 e 3	1.12	NO	1.622e4	26.021	26.021	0.595

Quantify Totals Report MassLynx 4.1

U:\VG7.PRO\Results\200930D2\200930D2 13.qld Dataset:

Last Altered:	Thursday, October 01, 2020 14:13:37 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 14:15:36 Pacific Daylight Time

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926

Tetra-Furans

10	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	21.65	2.047e3	2.475e3	1.556e2	2.058e2	0.76	NO	0.000e0	0.00000	0.23312	0.102
2	Total Tetra-Furans	22.46	1.934e3	2.728e3	1.937e2	2.230e2	0.87	NO	4.167e2	0.26881	0.26881	0.102
3	Total Tetra-Furans	23.86	1.631e3	3.028e3	1.899e2	2.882e2	0.66	NO	4.781e2	0.30846	0.30846	0.102
4	Total Tetra-Furans	24.28	4.215e3	4.334e3	2.745e2	3.575e2	0.77	NO	6.319e2	0.40768	0.40768	0.102
5	Total Tetra-Furans	25.09	1.392e3	1.963e3	9.443e1	1.253e2	0.75	NO	2.198e2	0.14179	0.14179	0.102
6	2,3,7,8-TCDF	25.16	5.695e3	5.806e3	3.879e2	4.409e2	0.88	NO	8.288e2	0.53470	0.53470	0.102

Penta-Furans function 1

10000	Name	RT	rn1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	26.62	8.315e3	4.390e3	4.778e2	2.753e2	1.74	NO	7.531e2	0.61185	0.61185	0.0550

Penta-Furans

-	Name	RT	m1 Height	m2 Hleight	m1 Resp	m2 Resp	FIA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.09	5.374e3	4.411e3	3.678e2	2.620e2	1.40	NO	6.298e2	0.51170	0.51170	0.101
2	1,2,3,7,8-PeCDF	29.02	6.604e3	6.911e3	2.737e2	2.391e2	1.14	YES	5.128e2	0.00000	0.35654	0.107
3	Total Penta-Furans	29.26	1.895e3	2.335e3	1.315e2	1.202e2	1.09	YES	0.000e0	0.00000	0.17576	0.101
4	2,3,4,7,8-PeCDF	29.98	4.437e3	2.567e3	2.819e2	1.732e2	1.63	NO	4.551e2	0.35257	0.35257	0.0890

Hexa-Furans

÷.,

and a	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.29	3.980e3	3.899e3	1.901e2	1.580e2	1.20	NO	3.481e2	0.34765	0.34765	0.147
2	Total Hexa-Furans	31.44	1.009e4	8.536e3	5.169e2	4.212e2	1.23	NO	9.380e2	0.93679	0.93679	0.147
3	Total Hexa-Furans	32.07	1.627e4	1.316e4	9.132e2	6.974e2	1.31	NO	1.611e3	1.6085	1.6085	0.147
4	1,2,3,4,7,8-HxCDF	32.54	8.801e3	7.584e3	4.952e2	4.177e2	1.19	NO	9.129e2	0.89437	0.89437	0.134
5	1,2,3,6,7,8-HxCDF	32.67	3.914e3	3.382e3	2.396e2	1.975e2	1.21	NO	4.371e2	0.40864	0.40864	0.134
6	2,3,4,6,7,8-HxCDF	33.32	2.116e3	2.222e3	1.473e2	1.178e2	1.25	NO	2.651e2	0.26905	0.26905	0.148
7	1,2,3,7,8,9-HxCDF	34.34	3.033e3	2.069e3	1.361e2	1.032e2	1.32	NO	2.392e2	0.26526	0.26526	0.182

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

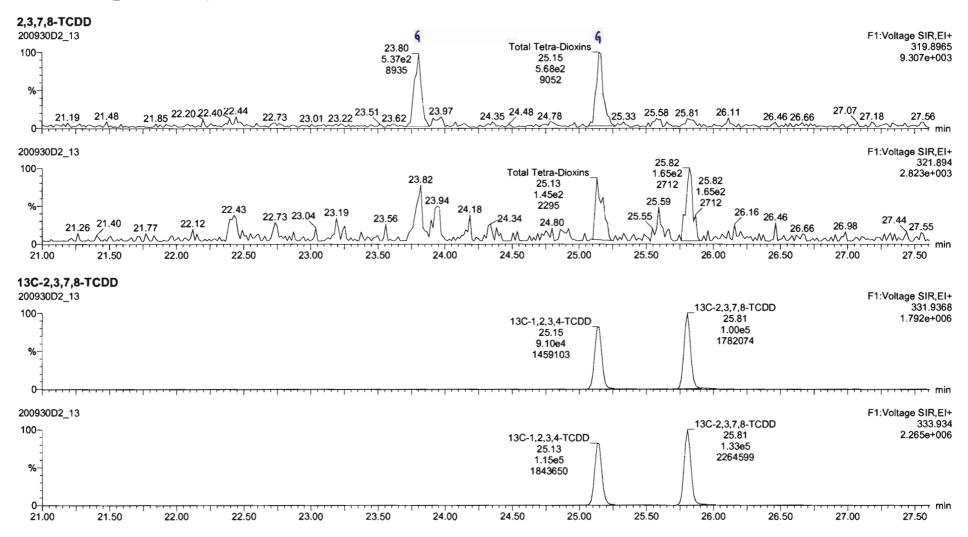
Last Altered:	Thursday, October 01, 2020 14:13:37 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 14:15:36 Pacific Daylight Time

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926

Hepta-Furans

.....

₽¢

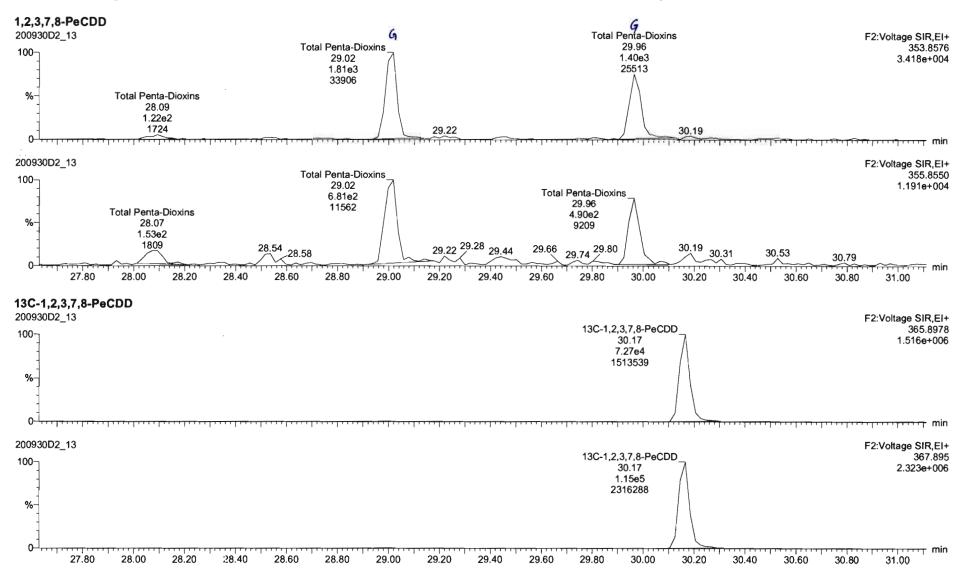

- 77

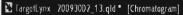
1	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	35.96	1.357e4	1.282e4	9.994e2	9.482e2	1.05	NO	1.948e3	2.1338	2.1338	0.180
2	Total Hepta-Furans	36.61	3.309e4	3.414e4	2.055e3	1.933e3	1.06	NO	3.988e3	5.0040	5.0040	0.194
3	1,2,3,4,7,8,9-HpCDF	37.86	2.911e3	2.217e3	1.631e2	1.562e2	1.04	NO	3.193e2	0.41219	0.41219	0.187

Quantify San Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time Thursday, October 01, 2020 10:53:11 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

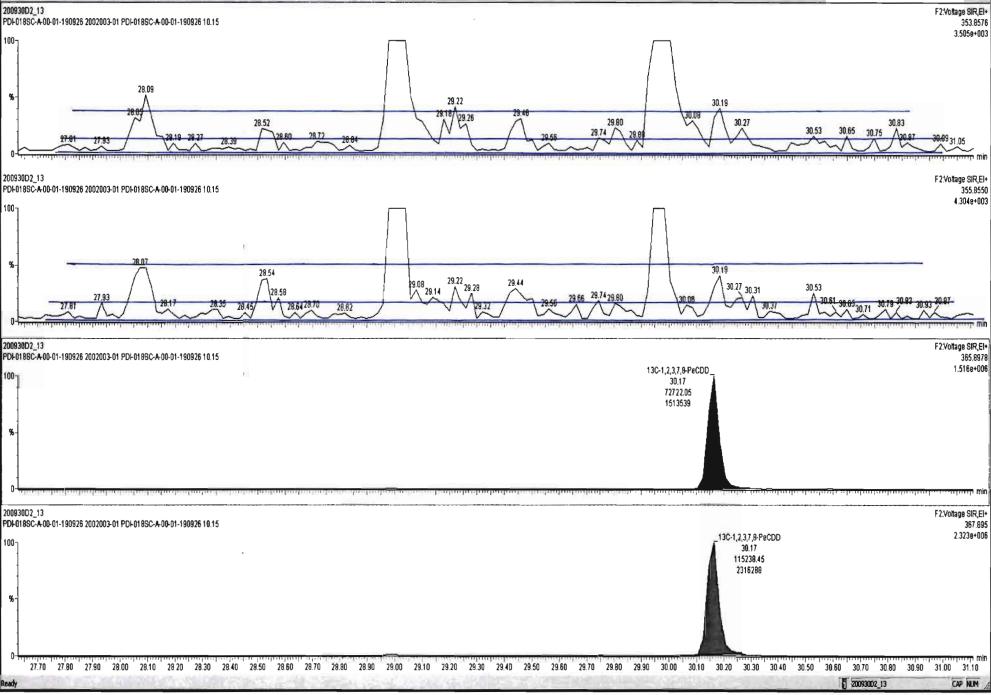
Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926


Quantify San Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time Thursday, October 01, 2020 10:53:11 Pacific Daylight Time	

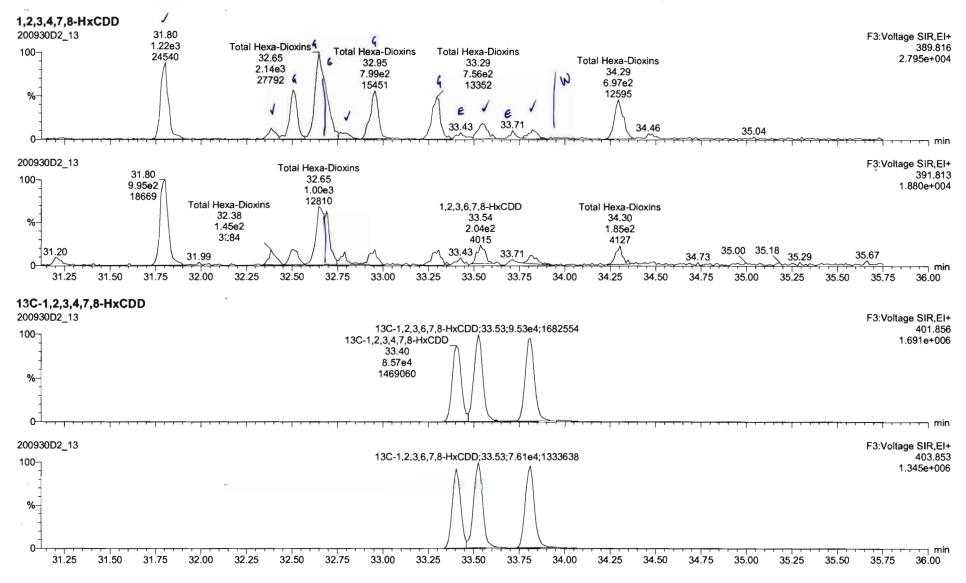

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926

Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time Thursday, October 01, 2020 10:53:11 Pacific Daylight Time	

Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926



A File Edit View Display Processing Window Help


Work Order 2002003

- C ×

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

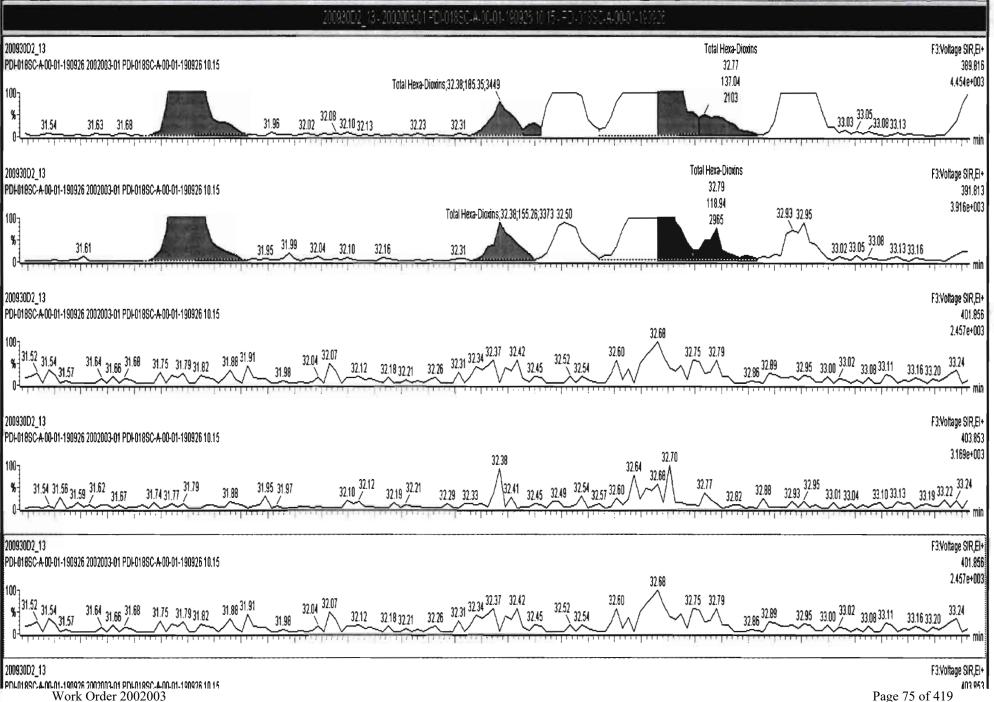
Last Altered:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:53:11 Pacific Daylight Time

TargetLynx - 200930D2_13.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

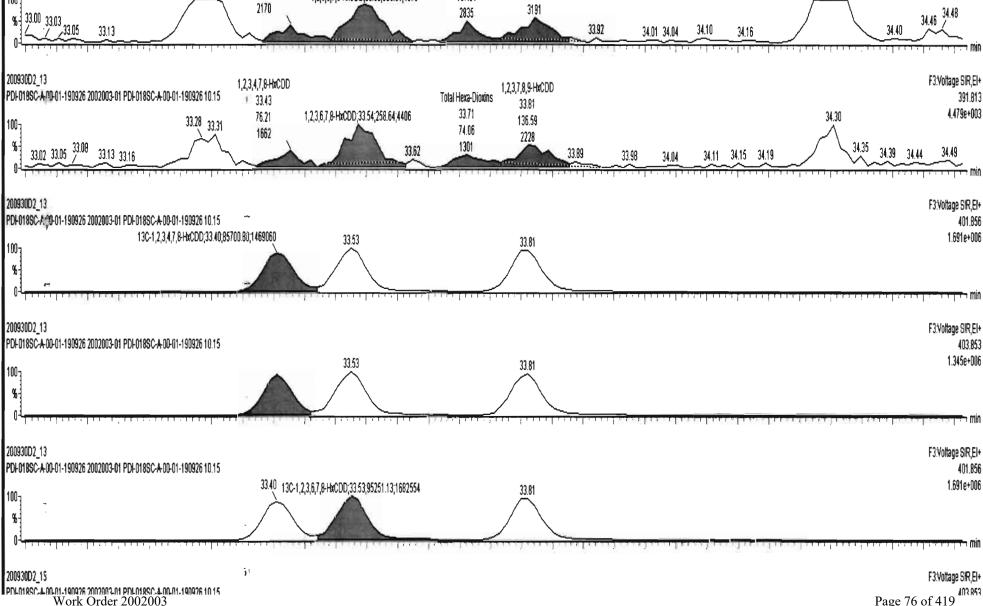
r I | 仏仏 言理理 +1 (+ - ◇ (+ - +1) + - × 図内目目回日● ● 日日 ● ? 200830D2 13-2002003-01 EDI-018SC-A-01-01-19092E 200930D2 13 F3.Voltage SIR,EI+ 389.810 PDF018SC-A-00-01-190926 2002003-01 PDF018SC-A-00-01-190926 10 15 Total Hexa-Dioxins 2.795e+004 32.65 32.38 Total Hexa-Dioxins;31.80;1224.20;24577 100 -32.50 32.95 185.35 % 3449 F3:Voltage SIR,EI+ 200930D2 13 PDF018SC-A00-01-190926 2002003-01 PDF018SC-A00-01-190926 10.15 391.813 Total Hexa-Dioxins 1.880e+004 Total Hexa-Dioxins;31.80;1002.18;18702 32.38 Total Hexa-Dioxins; 32.69; 375.77; 11863 100-32.65 155.26 8 3373 32.50 32.95 31.99 F3 Voltage SIR EI+ 200930D2 13 401.856 PDF018SC-A-00-01-190926 2002003-01 PDF018SC-A-00-01-190926 10.15 2,457e+003 32.68 100 1 <u>32.12</u> <u>32.18</u> <u>32.21</u> <u>32.26</u> <u>32.31</u> <u>32.34</u> <u>32.37</u> <u>32.42</u> 32.75 32.79 32.04 32.07 32.60 31.52 31.54 31.64 31.66 31.68 31.75 31.79 31.82 31.88 31.91 ^{32.52} 32.54 % 32.86 32.89 32.95 33.00 33.02 33.08 33.11 33.16 33.20 33.24 32.45 31.98 31.57 200930D2 13 F3:Voltage SIR EI+ PDF018SC-A00-01-190926 2002003-01 PDF018SC-A00-01-190926 10.15 403,853 3.169e+003 32,70 32.38 1007 32.64 32.68 32.10 ^{32.12} 32.82 32.88 32.93 32.95 33.01 33.04 33.10 33.13 33.19 33.22 33.24 32.41 32.45 32.49 32.54 32.57 32.60 32.77 % 31.54 31.56 31.59 31.62 31.67 31.74 31.77 31.79 31.95 31.97 32.19 32.21 31.88 32.29 32.33 F3:Voltage SIR,EI+ 200930D2 13 401.856 PDF018SC-A-00-01-190926 2002003-01 PDF018SC-A-00-01-190926 10.15 2.457e+003 32.68 1007 <u>3212</u> <u>3218</u> <u>3221</u> <u>3226</u> <u>3231</u> <u>3234</u> <u>3237</u> <u>3242</u> 32.75 32.79 32.60 31.88 31.91 32.04 32.07 %^{31.52} 31.54 32.52 32.86 32.89 32.95 33.00 33.02 33.08 33.11 33.16 33.20 33.24 31.64 31.66 31.68 31.75 31.79 31.82 32.45 32.54 31,98 31.57 F3.Voltage SIR,EI+ 200930D2 13 403 853

PDL018SC-4-00-01-190926 2002003-01 PDL018SC-4-00-01-190926 10 15 Work Order 2002003


Page 74 of 419

. 81

🛓 TargetLynx - 200930D2_13.qld * - [Chromatogram]


A File Edit View Display Processing Window Help

°₽∆₩≈₽₽,+8№+•♦♦•+1+•X ⊠∩∎∎₽₽●● ₽□● ?

- □ X

🖥 TargetLynx - 200930D2_13.qld * - [Chromatogram] A File Edit View Display Processing Window Help 200930D2_13 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9HxCDD Total Hexa-Dioxins PDF018SC-A-00-01-190926 2002003-01 PDF018SC-A-00-01-190926 10 15 33.43 33.82 33.71 114.12 184.47 1,2,3,6,7,8-HxCDD,33.55,330.31,4979 107.64 100, 2170 3191 2835 **%** 33.00 33.03

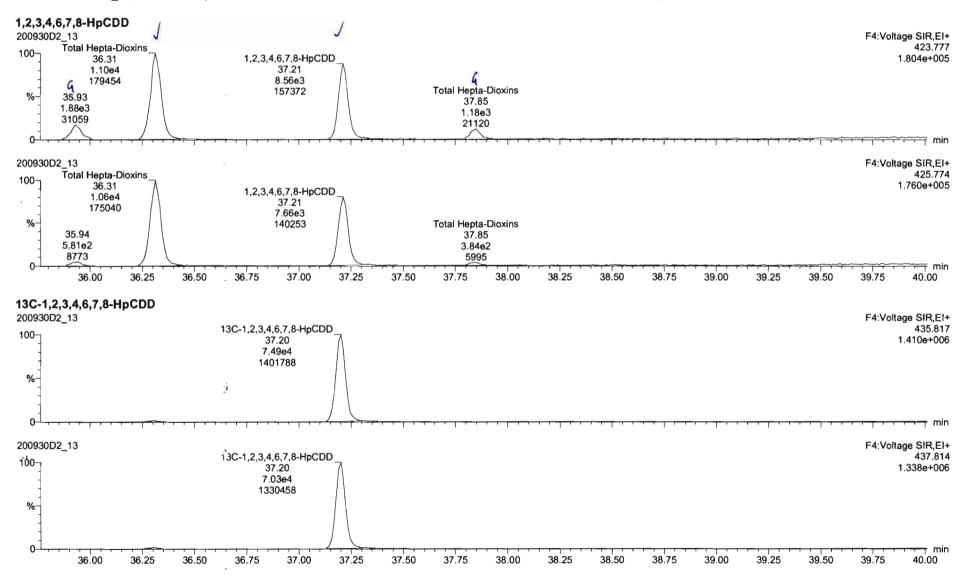
Page 76 of 419

. D:X

F3:Voltage SIR,EH

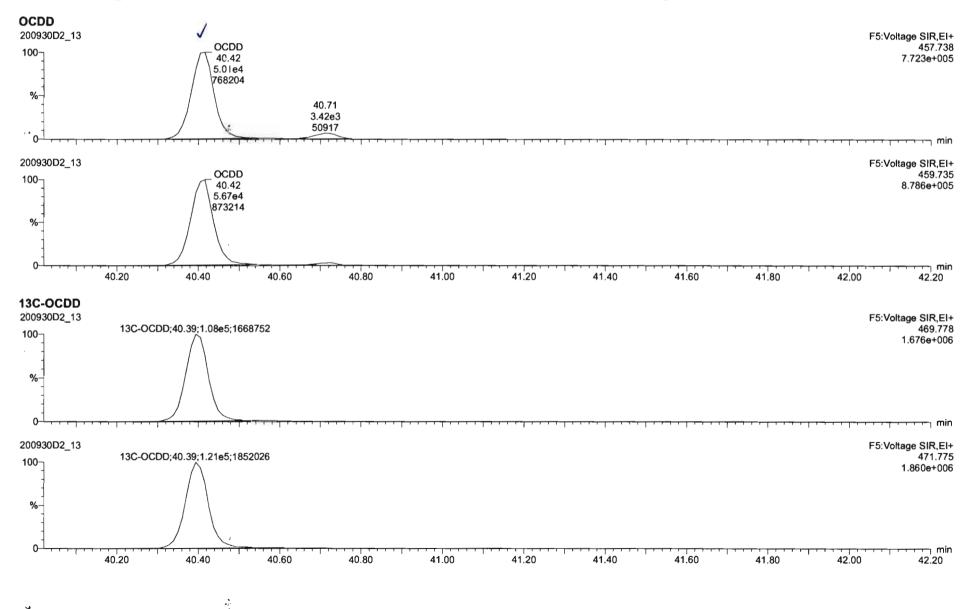
389.816

5.795e+003


. 8 x

Quantify Sample Report MassLynx 4.1

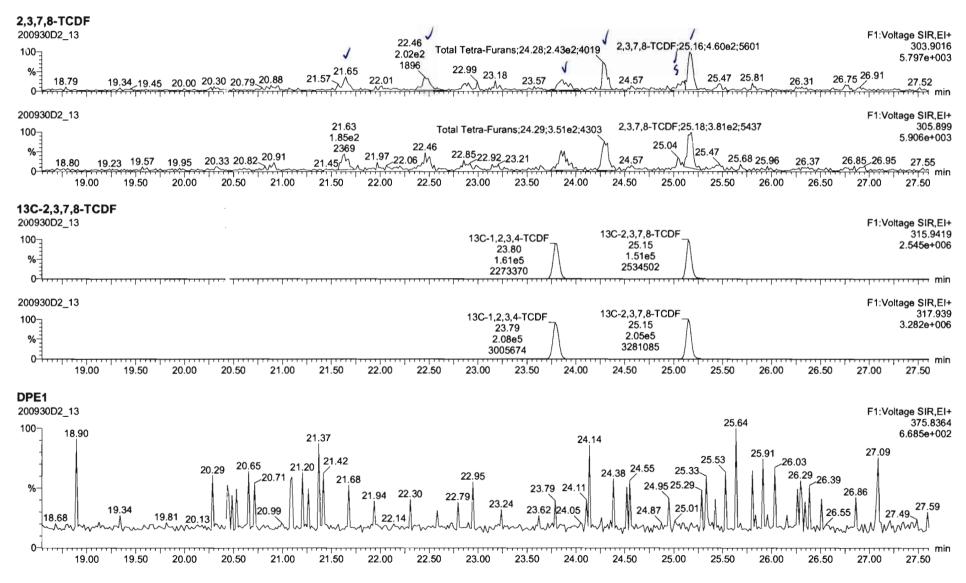
Vista Analytical Laboratory

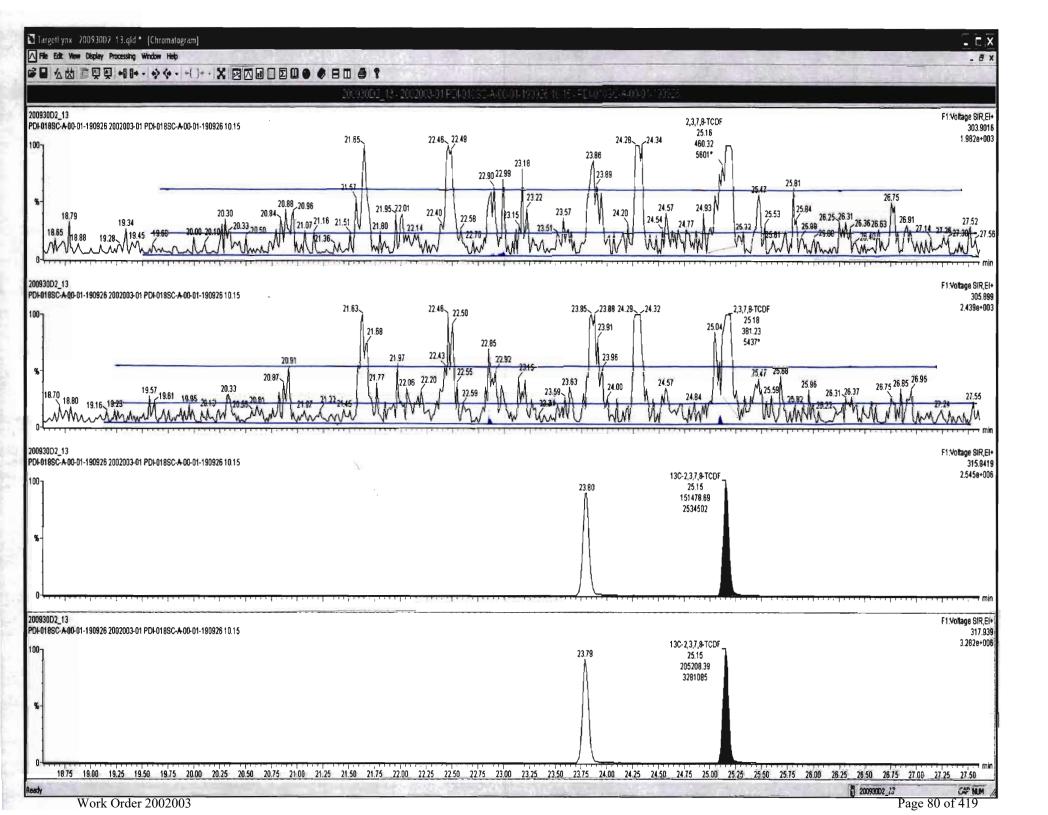

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

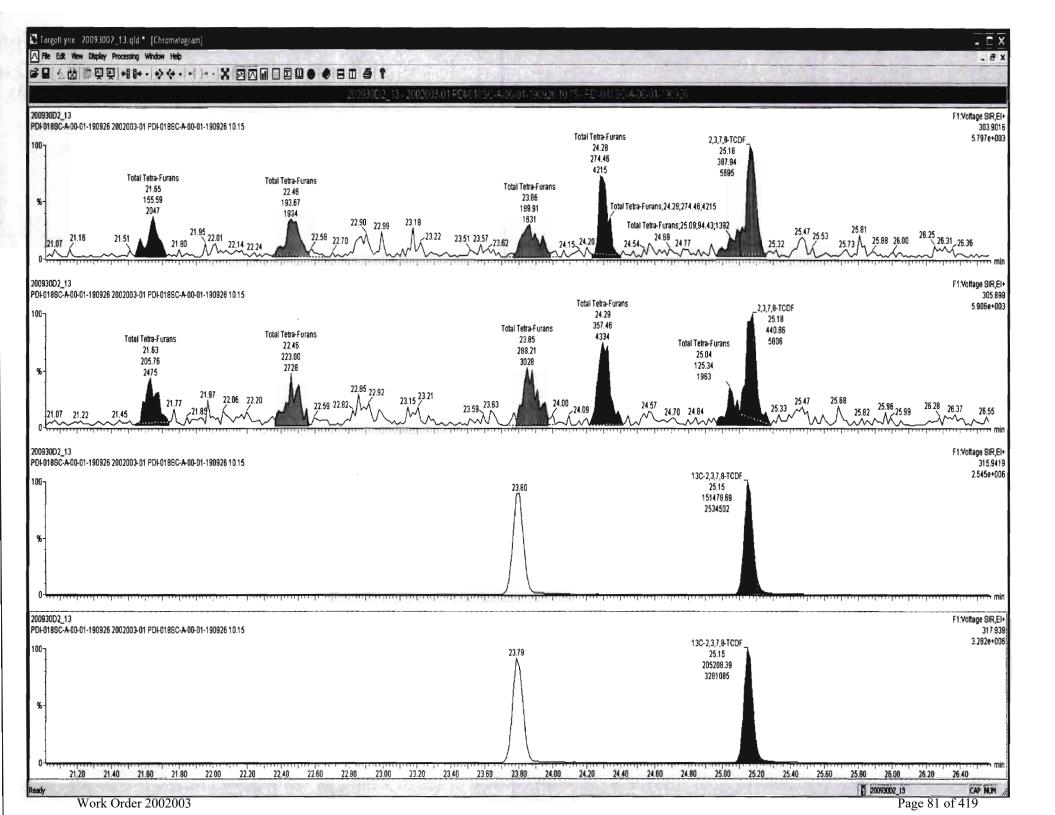
Last Altered:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:53:11 Pacific Daylight Time

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time Thursday, October 01, 2020 10:53:11 Pacific Daylight Time	

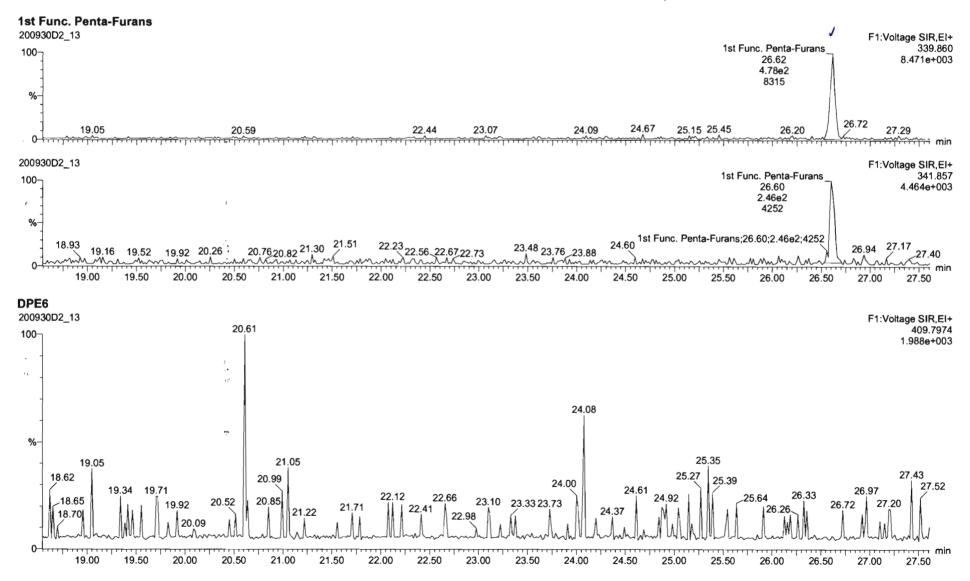
Name: 200930D2_13, Date: 30-Sep-2020, Time: 21:57:18, ID: 2002003-01 PDI-018SC-A-00-01-190926 10.15, Description: PDI-018SC-A-00-01-190926


Work Order 2002003


Quantify Sample Report MassLynx 4.1

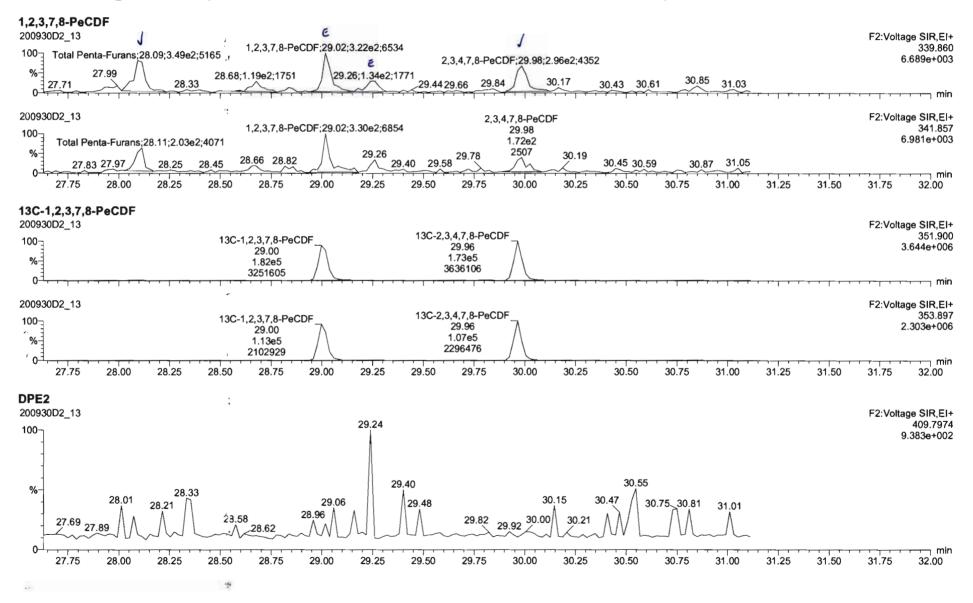

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

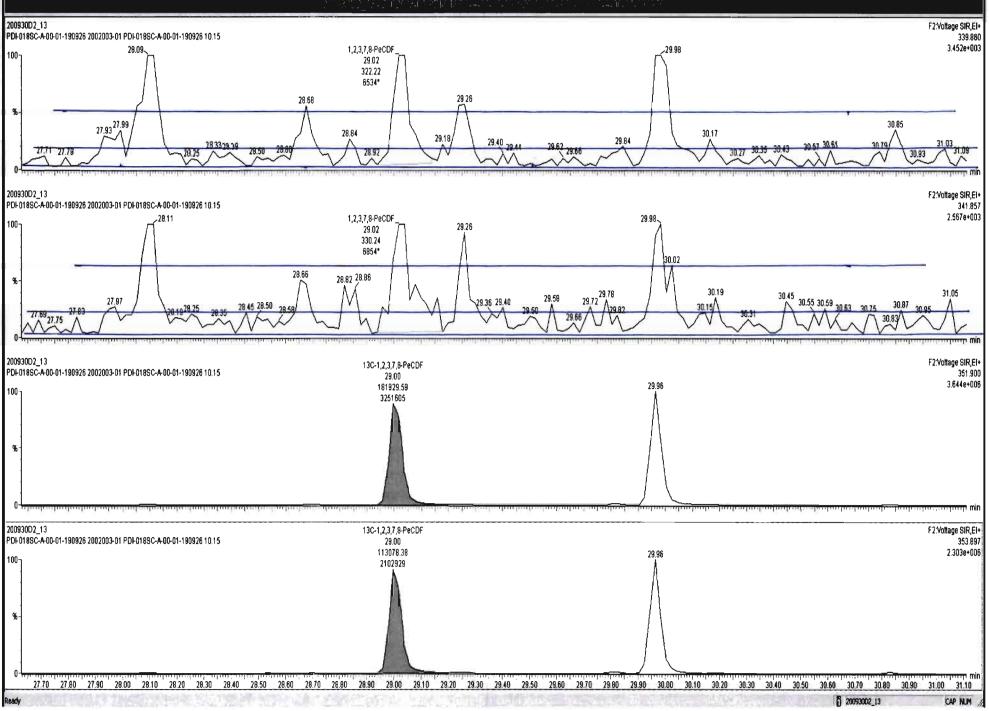

Last Altered:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:53:11 Pacific Daylight Time

Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time Thursday, October 01, 2020 10:53:11 Pacific Daylight Time	

📱 TargeiLynx - 200930D2_13.qld * - [Chromatogram]

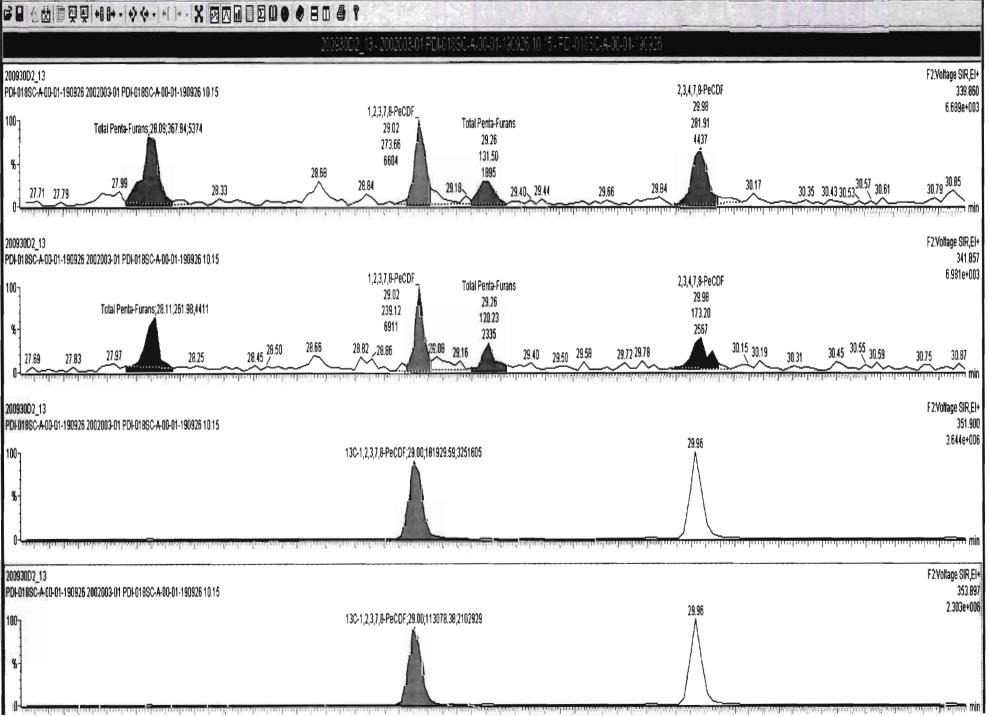

A File Edit View Display Processing Window Help

☞■ ☆☆ ■♀♀ +1≥ - > + - + X ⊠⊠₪ ∎ ⊠⊔● ♦ 8 □ ♣ \$ 200930D2 13 F1:Voltage SIR,EI+ PDF018SC-A-00-01-190926 2002003-01 PDF018SC-A-00-01-190926 10.15 339,860 8.471e+003 1st Func. Penta-Furans 100-26.62 477,81 8315 **%**-25.33 25.45 26.20 27.29 26.72 26.40 26.51 200930D2 13 F1:Voltage SIR,EH PDF018SC-A 00-01-190926 2002003-01 PDF018SC-A 00-01-190926 10.15 341.857 4,4648+003 1 st Func. Penta-Furans 100-26.60 275.28 4390 **%**-25.45 25.56 25.61 25.78 25.89 25.91 25.96 26.07 26.10 26.17 26.26 26.37 25.32 26.74 26.83 26.94 26.48 27.07 27.17 27.32 27.40 200930D2_13 F2 Voltage SIR EI+ PDH018SC-A-00-01-190926 2002003-01 PDH018SC-A-00-01-190926 10.15 351,900 2.531e+004 28.09 100-28.54 28.64/ g, 27.75 200930D2 13 F2:Voltage SIR,EI+ PDF018SC-A 00-01-190926 2002003-01 PDF018SC-A 00-01-190926 10.15 353.897 1.681e+004 28 09 100-28.54 g. 27.91 28.25 28.35 28.43 \wedge Page 83 of 419 Work Order 2002003


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

Last Altered:Thursday, October 01, 2020 10:51:21 Pacific Daylight TimePrinted:Thursday, October 01, 2020 10:53:11 Pacific Daylight Time

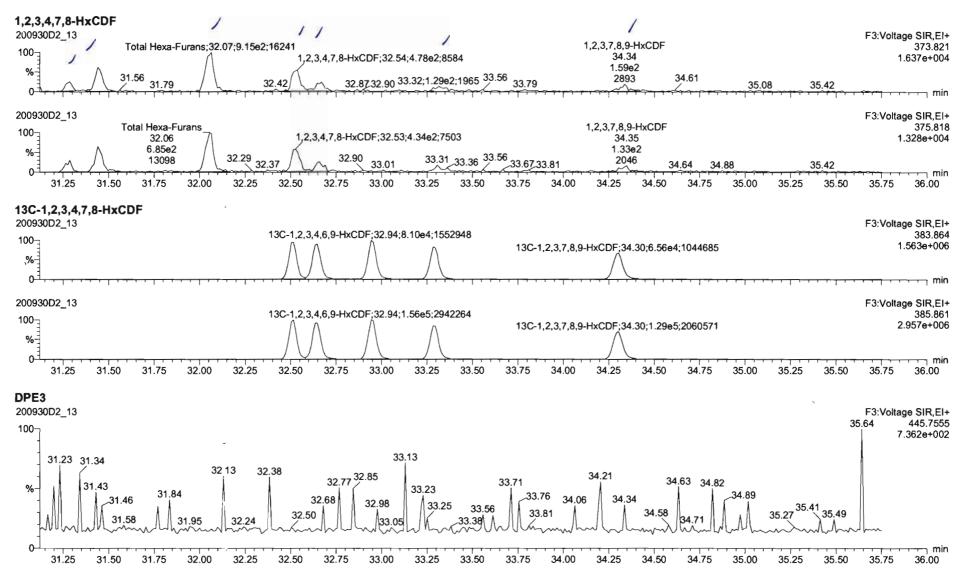

☞묘 소성 ▣ 및 및 +88+ · ◇ ↔ · - ()+ · Ⅹ ☑ △ 데 □ ፬ 비 ● ● 日 □ ● ?

- C X

🖹 TargetLynx - 200930D2_13.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

Work Order 2002003

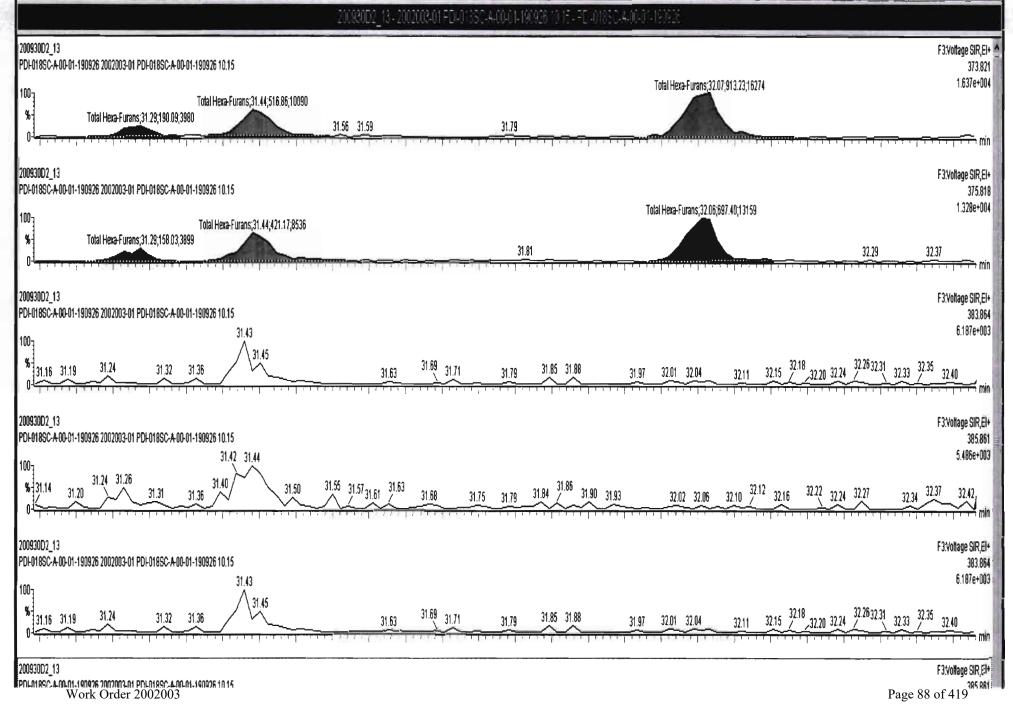

Page 86 of 419

. đ X

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

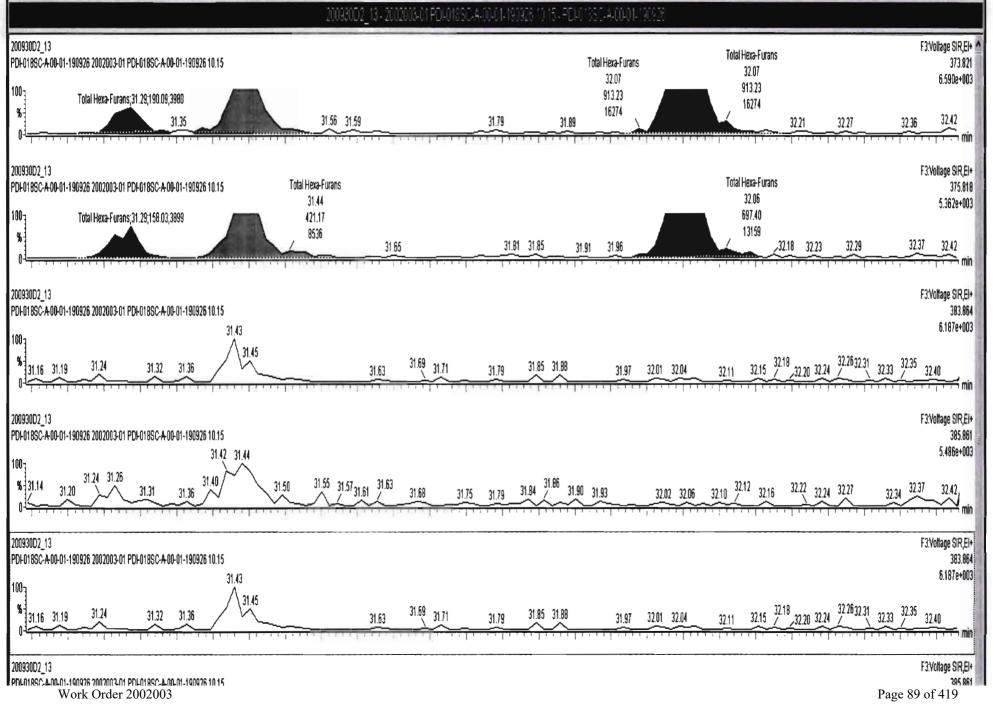
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

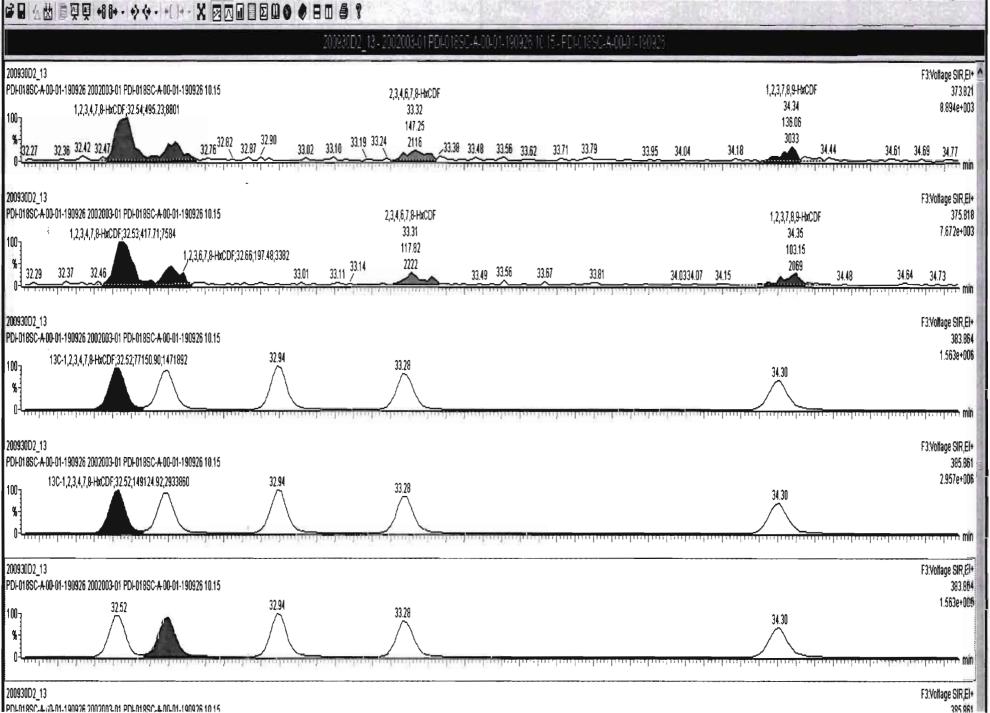
Last Altered:Thursday, October 01, 2020 10:51:21 Pacific Daylight TimePrinted:Thursday, October 01, 2020 10:53:11 Pacific Daylight Time



📱 TargetLynx - 200930D2_13.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

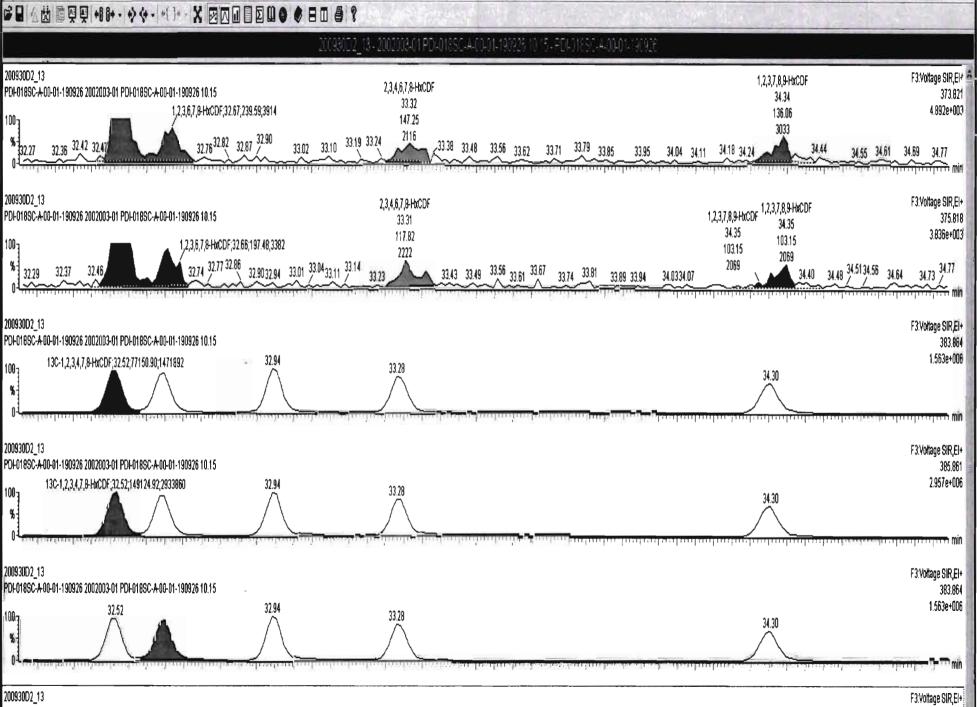



A File Edit Yiew Display Processing Window Help

☞■ △법 臺및및 +8 D+ · · · · · · · X ፼囚◨▯◪◧● ● 日田 ● ?

TargetLynx - 200930D2_13.qtd * - [Chromatogram]

File Edit Wew Display Processing Window Help

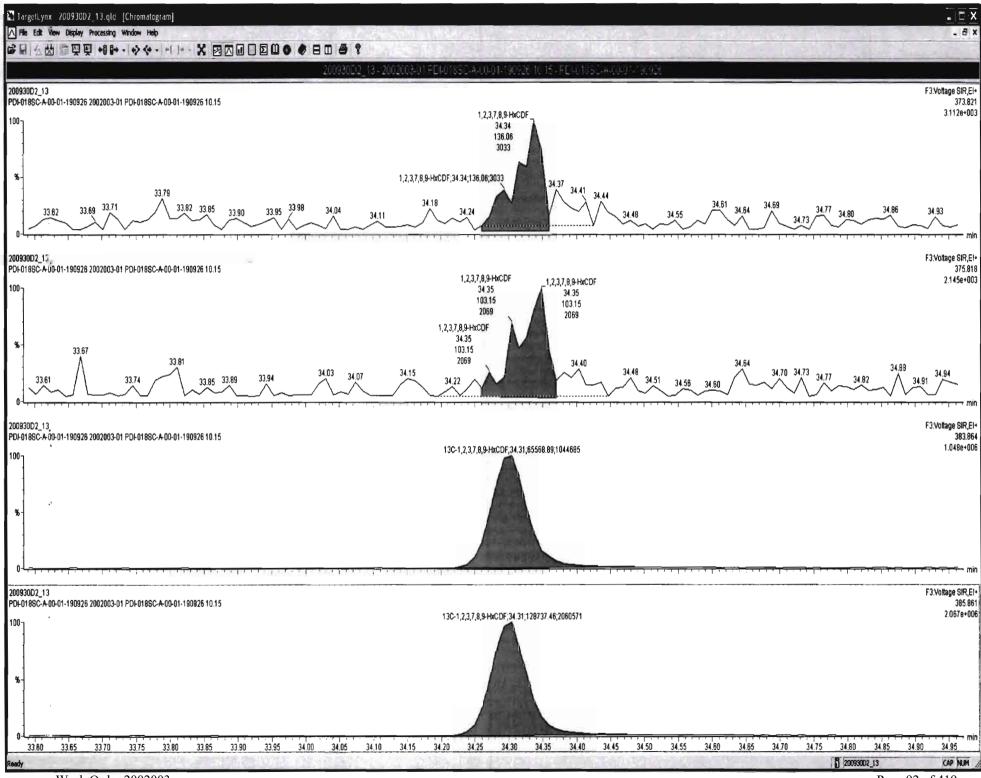

PDL018SC_4;(0.01-190926 2002003-01 PDL018SC-4-00-01-190926 10 15 Work Order 2002003

. 8)

Page 90 of 419

TargetLynx - 200930D2_13.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

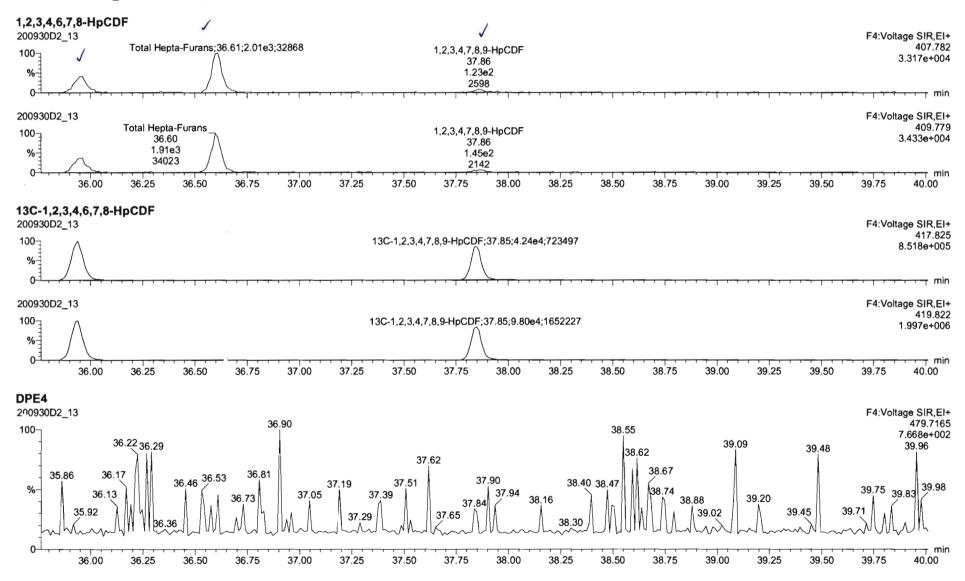


PRIMASE AREAL 19036 2002003 PRIMASE AREAL 19036 10 15

. E X

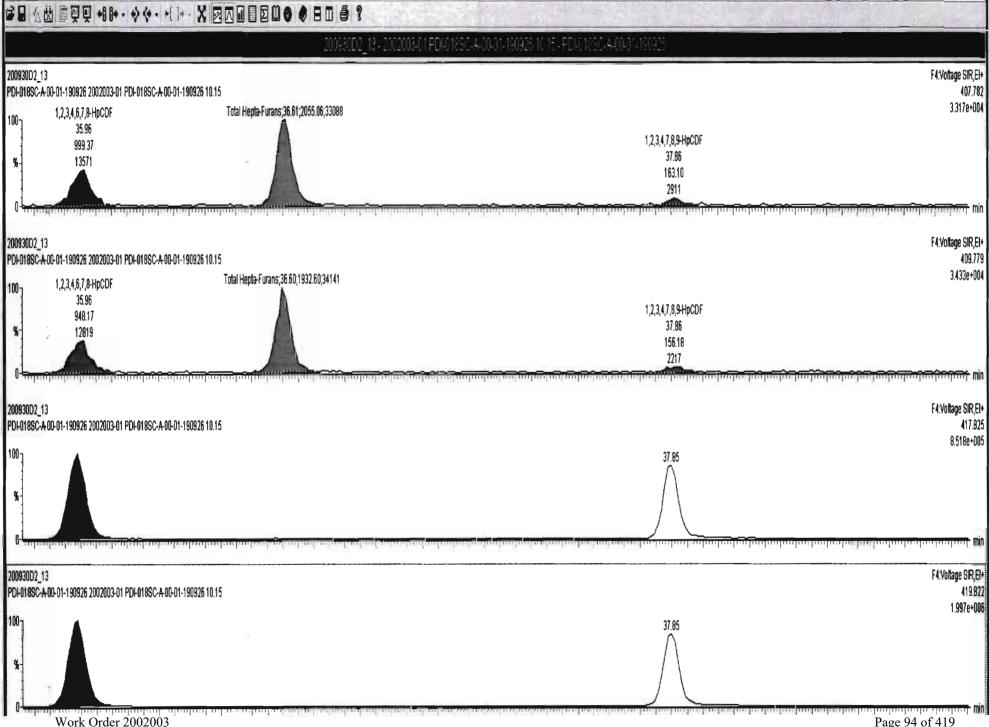
. ā >

Page 91 of 419


Work Order 2002003

Quantify Sample Report	MassLynx 4.1
------------------------	--------------

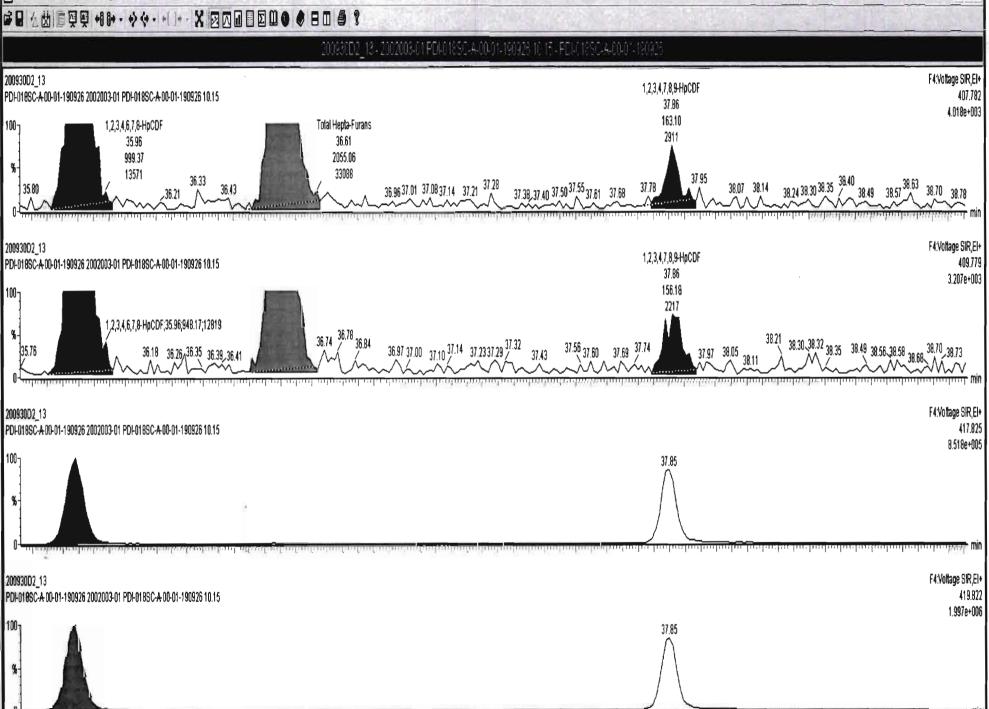
Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

Last Altered:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:53:11 Pacific Daylight Time

TargetLynx - 200930D2_13.qld * - [Chromatogram]

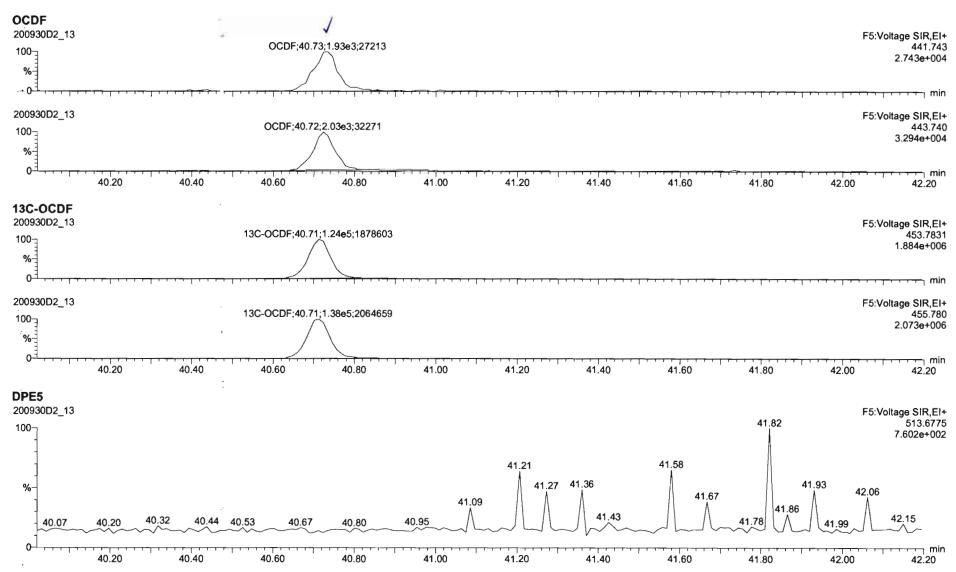
A File Edit View Display Processing Window Help

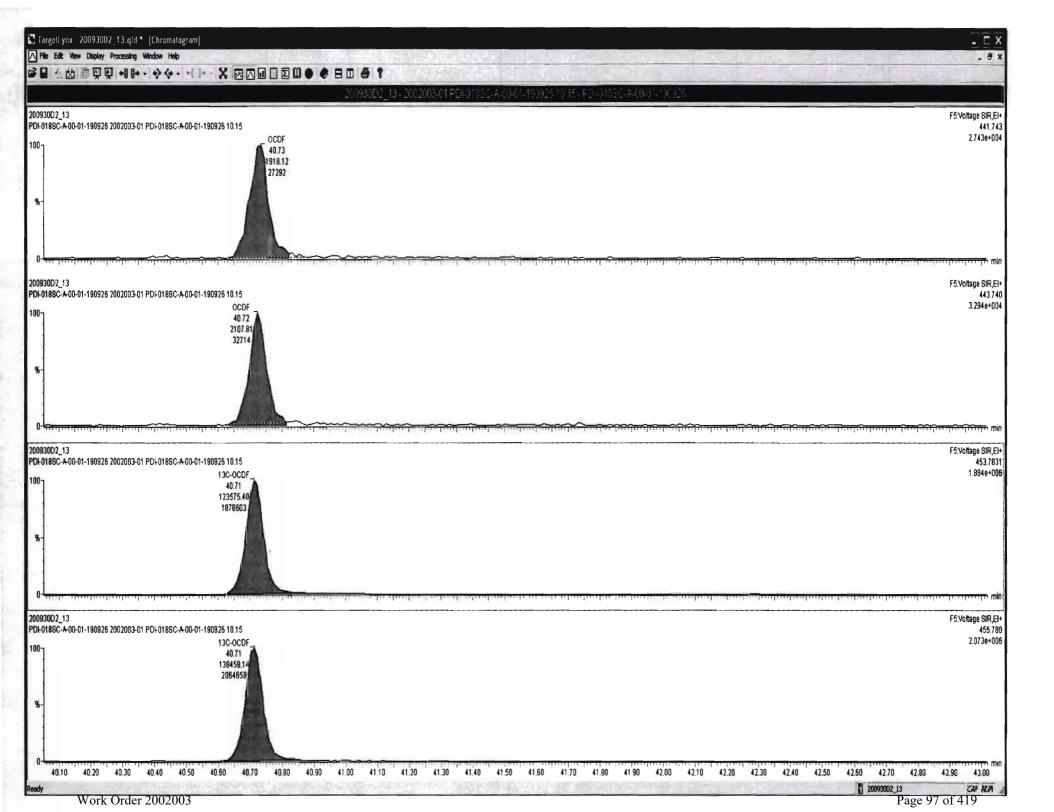

Page 94 of 419

- ā

TargetLynx - 200930D2_13.gld • - [Chromatogram]

Work Order 2002003

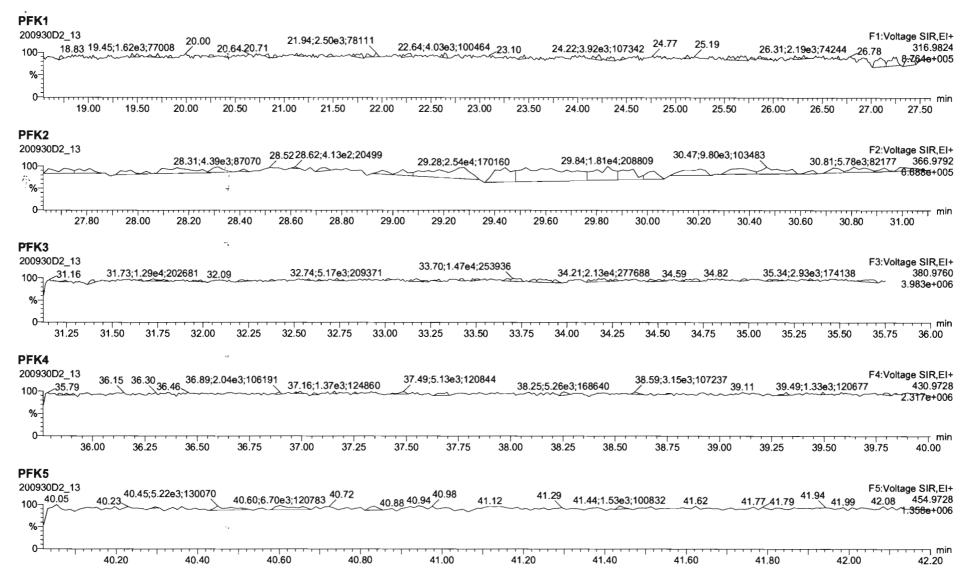

Rie Edit View Display Processing Window Help



. ô

Page 95 of 419

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_13.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time Thursday, October 01, 2020 10:53:11 Pacific Daylight Time	



Quantify Sample Report	MassLynx 4.1	
Vista Analytical Laboratory		

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_13.qld

Last Altered:	Thursday, October 01, 2020 10:51:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:53:11 Pacific Daylight Time

Quantify Sam Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	0930D2\200930D2_14.qld	
Last Altered: Printed:		020 15:22:56 Pacific Daylight Time 020 15:24:01 Pacific Daylight Time	DB

Page 1 of 2

10/1/20 CT 10/06/2020

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

and B	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	9.776	25.837		1.001				0.0958	
2	2 1,2,3,7,8-PeCDD			NO	0.935	9.776	30.187		1.001				0.142	
3	3 1,2,3,4,7,8-HxCDD			NO	1.15	9.776	33.415		1.000				0.153	
4	4 1,2,3,6,7,8-HxCDD	4.07e2	1.41	NO	1.02	9.776	33.525	33.54	1.000	1.000	0.44548		0.164	0.445
5	5 1,2,3,7,8,9-HxCDD	1.88e2	1.32	NO	1.06	9.776	33.834	33.82	1.001	1.001	0.20234		0.169	0.202
6	6 1,2,3,4,6,7,8-HpCDD	9.47e3	1.04	NO	1.00	9.776	37.212	37.21	1.000	1.000	12.887		0.378	12.9
7	7 OCDD	7.81e4	0.89	NO	0.952	9.776	40.395	40.40	1.000	1.000	144.04		0.363	144
8	8 2,3,7,8-TCDF	2.08e3	0.85	NO	1.01	9.776	25.188	25.18	1.001	1.001	1.0679		0.112	1.07
9	9 1,2,3,7,8-PeCDF	1.60e3	1.54	NO	0.998	9.776	29.018	29.02	1.001	1.001	1.0552		0.0844	1.06
10	10 2,3,4,7,8-PeCDF	1.15e3	1.77	NO	1.07	9.776	29.994	29.98	1.001	1.001	0.72094		0.0737	0.721
11	11 1,2,3,4,7,8-HxCDF	2.99e3	1.26	NO	1.05	9.776	32.516	32.53	1.000	1.000	2.4433		0.121	2.44
12	12 1,2,3,6,7,8-HxCDF	1.09e3	1.39	NO	1.10	9.776	32.647	32.66	1.000	1.001	0.84394		0.113	0.844
13	13 2,3,4,6,7,8-HxCDF	4.15e2	1.16	NO	1.09	9.776	33.317	33.29	1.001	1.000	0.34671		0.134	0.347
14	14 1,2,3,7,8,9-HxCDF	4.31e2	1.14	NO	1.08	9.776	34.293	34.34	1.000	1.001	0.40974		0.174	0.410
15	15 1,2,3,4,6,7,8-HpCDF	3.48e3	0.97	NO	1.13	9.776	35.965	35.95	1.001	1.001	3.2139		0.166	3.21
16	16 1,2,3,4,7,8,9-HpCDF	5.44 e 2	1.15	NO	1.29	9.776	37.849	37.85	1.000	1.000	0.59462		0.163	0.595
17	17 OCDF	3.99e3	0.88	NO	0.953	9.776	40.713	40.71	1.000	1.000	6.3366		0.177	6.34
18	18 13C-2,3,7,8-TCDD	2.51e5	0.78	NO	1.17	9.776	25.802	25.81	1.026	1.026	205.62	101	0.495	
19	19 13C-1,2,3,7,8-PeCDD	2.01e5	0.61	NO	0.914	9.776	29.992	30.17	1.193	1.200	211.21	103	0.423	
20	20 13C-1,2,3,4,7,8-HxCDD	1.61e5	1.32	NO	0.634	9.776	33.405	33.40	1.014	1.014	214.38	105	0.634	
21	21 13C-1,2,3,6,7,8-HxCDD	1.82e5	1.31	NO	0.724	9.776	33.514	33.53	1.017	1.018	212.30	104	0.554	
22	22 13C-1,2,3,7,8,9-HxCDD	1.79e5	1.26	NO	0.716	9.776	33.781	33.80	1.025	1.026	211.43	103	0.561	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.50e5	1.05	NO	0.660	9.776	37.194	37.20	1.129	1.129	191.68	93.7	0.998	
24	24 13C-OCDD	2.33e5	0.89	NO	0.587	9.776	40.172	40.40	1.219	1.226	334.79	81.8	0.679	
25	25 13C-2,3,7,8-TCDF	3.93e5	0.76	NO	1.02	9.776	24.897	25.16	0.990	1.001	214.33	105	0.463	
26	26 13C-1,2,3,7,8-PeCDF	3.12e5	1.64	NO	0.842	9.776	29.064	29.00	1.156	1.153	206.37	101	0.623	
27	27 13C-2,3,4,7,8-PeCDF	3.04e5	1.65	NO	0.802	9.776	29.951	29.96	1.191	1.192	211.30	103	0.654	
28	28 13C-1,2,3,4,7,8-HxCDF	2.38e5	0.52	NO	1.00	9.776	32.549	32.52	0.988	0.987	200.30	97.9	0.686	
29	29 13C-1,2,3,6,7,8-HxCDF	2.41e5	0.53	NO	1.02	9.776	32.680	32.64	0.992	0.991	199.40	97.5	0.675	
30	30 13C-2,3,4,6,7,8-HxCDF	2.25e5	0.51	NO	0.955	9.776	33.244	33.28	1.009	1.010	198.61	97.1	0.720	
31	31 13C-1,2,3,7,8,9-HxCDF	1.99e5	0.51	NO	0.851	9.776	34.308	34.29	1.041	1.041	197.00	96.3	0.808	

194

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered:	Thursday, October 01, 2020 15:22:56 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 15:24:01 Pacific Daylight Time

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

10 m	# Name	Resp	RA	n/y	RRF	wt/voi	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.96e5	0.44	NO	0.848	9.776	35.810	35.93	1.087	1.091	194.58	95.1	0.871	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.45e5	0.43	NO	0.624	9.776	37.787	37.85	1.147	1.149	196.44	96.0	1.18	
34	34 13C-OCDF	2.71e5	0.89	NO	0.730	9.776	40.323	40.71	1.224	1.236	312.75	76.4	0.539	
35	35 37CI-2,3,7,8-TCDD	1.28e5			1.21	9.776	25.799	25.82	1.026	1.027	101.79	124	0.144	
36	36 13C-1,2,3,4-TCDD	2.13e5	0.81	NO	1.00	9.776	25.260	25.15	1.000	1.000	204.58	100	0.581	
37	37 13C-1,2,3,4-TCDF	3.67e5	0.77	NO	1.00	9.776	23.930	23.80	1.000	1.000	204.58	100	0.473	
38	38 13C-1,2,3,4,6,9-HxCDF	2.43e5	0.52	NO	1.00	9.776	32.990	32.94	1.000	1.000	204.58	100	0.688	
39	39 Total Tetra-Dioxins				1.00	9.776	24.620		0.000				0.0614	
40	40 Total Penta-Dioxins				0.935	9.776	29.960		0.000				0.0631	
41	41 Total Hexa-Dioxins				1.02	9.776	33.635		0.000		2.9549		0.170	4.10
42	42 Total Hepta-Dioxins				1.00	9.776	37.640		0.000		29.626		0.378	29.6
43	43 Total Tetra-Furans				1.01	9.776	23.610		0.000		4.4815		0.112	4.77
44	44 1st Func. Penta-Furans				0.998	9.776	26.750		0.000		0.78876		0.0417	0.789
45	45 Total Penta-Furans				0.998	9.776	29.275		0.000		4.7425		0.0819	4.74
46	46 Total Hexa-Furans				1.09	9.776	33.555		0.000		7.2300		0.132	7.23
47	47 Total Hepta-Furans				1.13	9.776	37.835		0.000		8.0119		0.175	8.01

Page 2 of 2

110

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered:	Thursday, October 01, 2020 15:22:56 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 15:24:01 Pacific Daylight Time

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Hexa-Dioxins

17. N	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	31.79	2.126e4	1.444e4	9.466e2	7.871e2	1.20	NO	1.734e3	1.9874	1.9874	0.170
2	Total Hexa-Dioxins	32.38	2.195e3	2.004e3	9.184e1	7.881e1	1.17	NO	1.707e2	0.19563	0.19563	0.170
3	Total Hexa-Dioxins	32.66	1.904e4	9.326e3	7.156e2	4.463e2	1.60	YES	0.000e0	0.00000	1.1461	0.170
4	Total Hexa-Dioxins	32.77	1.378e3	1.171e3	6.027e1	4.790e1	1.26	NO	1.082e2	0.12400	0.12400	0.170
5	1,2,3,6,7,8-HxCDD	33.54	4.020e3	2.949e3	2.381e2	1.685e2	1.41	NO	4.066e2	0.44548	0.44548	0.164
6	1,2,3,7,8,9-HxCDD	33.82	2.234e3	1.308e3	1.070e2	8.133e1	1.32	NO	1.883e2	0.20234	0.20234	0.169

Hepta-Dioxins

Sec. 1	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.31	9.847e4	9.468e4	6.354e3	5.949e3	1.07	NO	1.230e4	16.739	16.739	0.378
2	1,2,3,4,6,7,8-HpCDD	37.21	8.877e4	8.589e4	4.828e3	4.644e3	1.04	NO	9.472e3	12.887	12.887	0.378

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered:	Thursday, October 01, 2020 15:22:56 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 15:24:01 Pacific Daylight Time

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

Tetra-Furans

293-27	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	21.63	5.372e3	5.897e3	3.861e2	4.801e2	0.80	NO	8.662e2	0.44506	0.44506	0.112
2	Total Tetra-Furans	22.47	5.994e3	9.158e3	4.943e2	6.937e2	0.71	NO	1.188e3	0.61045	0.61045	0.112
3	Total Tetra-Furans	22.90	3.054e3	3.138e3	2.158e2	1.975e2	1.09	YES	0.000e0	0.00000	0.17964	0.112
4	Total Tetra-Furans	23.86	1.153e4	1.172e4	9.151e2	1.176e3	0.78	NO	2.091e3	1.0744	1.0744	0.112
5	Total Tetra-Furans	24.31	9.078e3	1.254e4	6.453e2	8.218e2	0.79	NO	1.467e3	0.75379	0.75379	0.112
6	Total Tetra-Furans	25.07	6.644e3	8.635e3	4.706e2	5.607e2	0.84	NO	1.031e3	0.52991	0.52991	0.112
7	2,3,7,8-TCDF	25.18	1.499e4	1.870e4	9.541e2	1.124e3	0.85	NO	2.078e3	1.0679	1.0679	0.112
8	Total Tetra-Furans	26.92	2.574e3	2.733e3	1.166e2	1.219e2	0.96	YES	0.000e0	0.00000	0.11085	0.112

Penta-Furans function 1

1	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	26.60	1.225e4	7.598e3	7.121e2	4.720e2	1.51	NO	1.184e3	0.78876	0.78876	0.0417

Penta-Furans

Sec. 18	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.07	1.209e4	8.215e3	1.240e3	8.117e2	1.53	NO	2.051e3	1.3664	1.3664	0.0819
2	Total Penta-Furans	28.68	1.433e4	8.191e3	8.209e2	4.825e2	1.70	NO	1.303e3	0.86823	0.86823	0.0819
3	Total Penta-Furans	28.84	5.648e3	3.462e3	3.114e2	1.755e2	1.77	NO	4.869e2	0.32432	0.32432	0.0819
4	1,2,3,7,8-PeCDF	29.02	1.848e4	1.222e4	9.716e2	6.327e2	1.54	NO	1.604e3	1.0552	1.0552	0.0844
5	Total Penta-Furans	29.26	7.460e3	4.381e3	3.640e2	2.477e2	1.47	NO	6.117e2	0.40745	0.40745	0.0819
6	2,3,4,7,8-PeCDF	29.98	1.144e4	7.945e3	7.350e2	4.154e2	1.77	NO	1.150e3	0.72094	0.72094	0.0737

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Page	3	of	3
------	---	----	---

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered:	Thursday, October 01, 2020 15:22:56 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 15:24:01 Pacific Daylight Time

ï۲

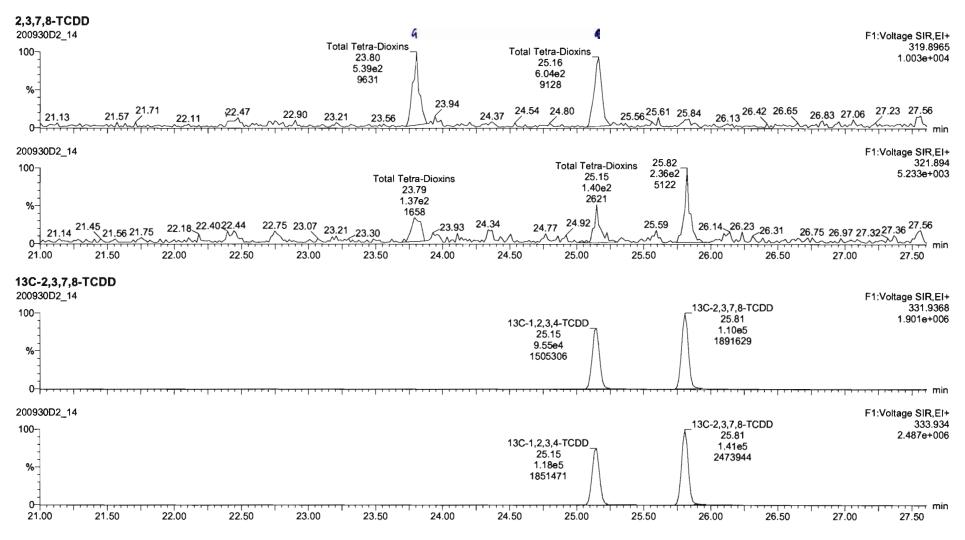
٠ŧ

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

Hexa-Furans

1-21	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.28	6.230e3	4.736e3	3.162e2	2.582e2	1.22	NO	5.744e2	0.47858	0.47858	0.132
2	Total Hexa-Furans	31.44	1.665e4	1.303e4	7.862e2	6.584e2	1.19	NO	1.445e3	1.2038	1.2038	0.132
3	Total Hexa-Furans	32.06	2.009e4	1.515e4	9.954e2	8.096e2	1.23	NO	1.805e3	1.5040	1.5040	0.132
4	1,2,3,4,7,8-HxCDF	32.53	3.166e4	2.441e4	1.669e3	1.323e3	1.26	NO	2.992e3	2.4433	2.4433	0.121
5	1,2,3,6,7,8-HxCDF	32.66	1.088e4	7.559e3	6.350e2	4.580e2	1.39	NO	1.093e3	0.84394	0.84394	0.113
6	2,3,4,6,7,8-HxCDF	33.29	3.723e3	3.821e3	2.225e2	1.921e2	1.16	NO	4.147e2	0.34671	0.34671	0.134
7	1,2,3,7,8,9-HxCDF	34.34	3.332e3	3.100e3	2.300e2	2.010e2	1.14	NO	4.310e2	0.40974	0.40974	0.174

Hepta-Furans

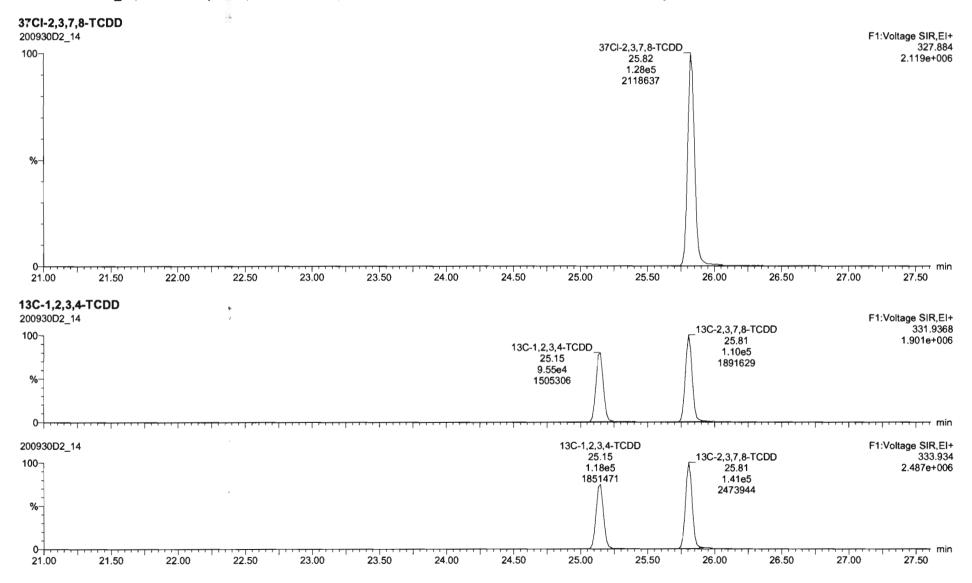

att out	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	35.95	2.751e4	2.431e4	1.716e3	1.762e3	0.97	NO	3.478e3	3.2139	3.2139	0.166
2	Total Hepta-Furans	36.60	3.617e4	3.032e4	1.992e3	1.972e3	1.01	NO	3.964e3	4.2035	4.2035	0.175
3	1,2,3,4,7,8,9-HpCDF	37.85	4.882e3	4.639e3	2.907e2	2.530e2	1.15	NO	5.437e2	0.59462	0.59462	0.163

τ.

Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_14.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time Thursday, October 01, 2020 10:54:08 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

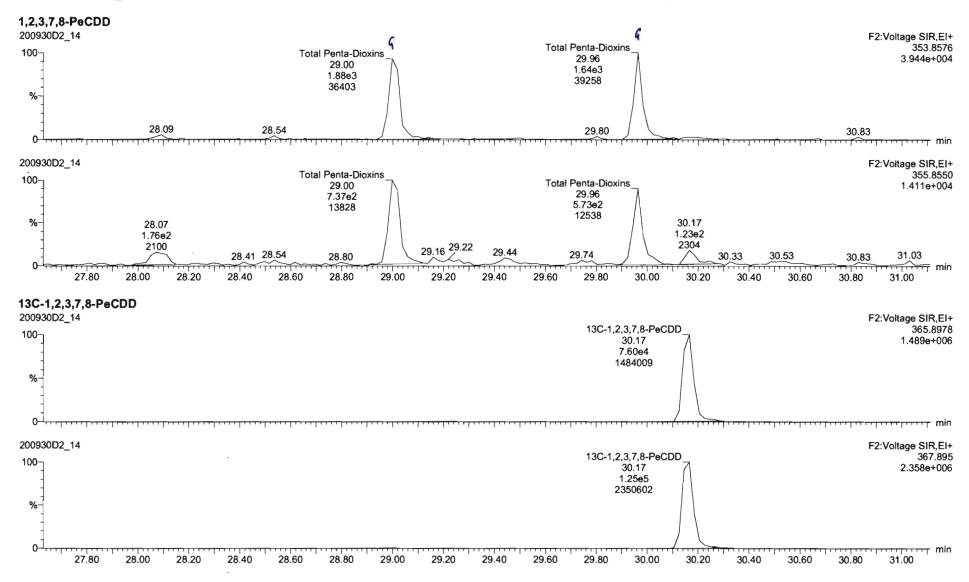
Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

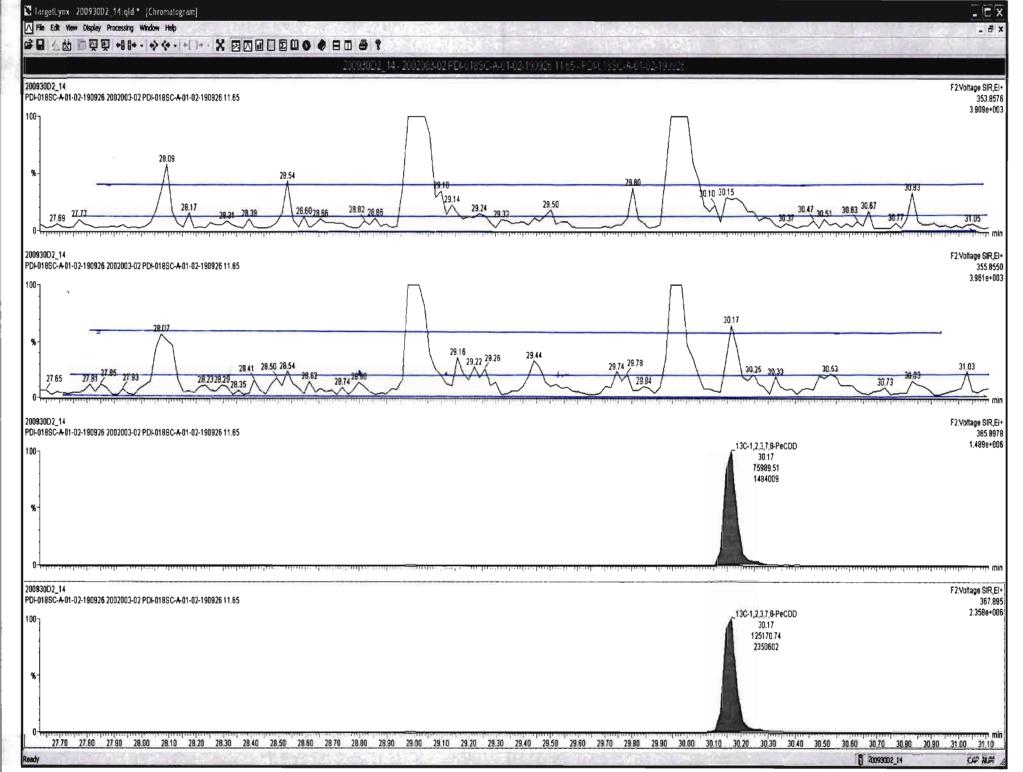


•

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_14.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time Thursday, October 01, 2020 10:54:08 Pacific Daylight Time	

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

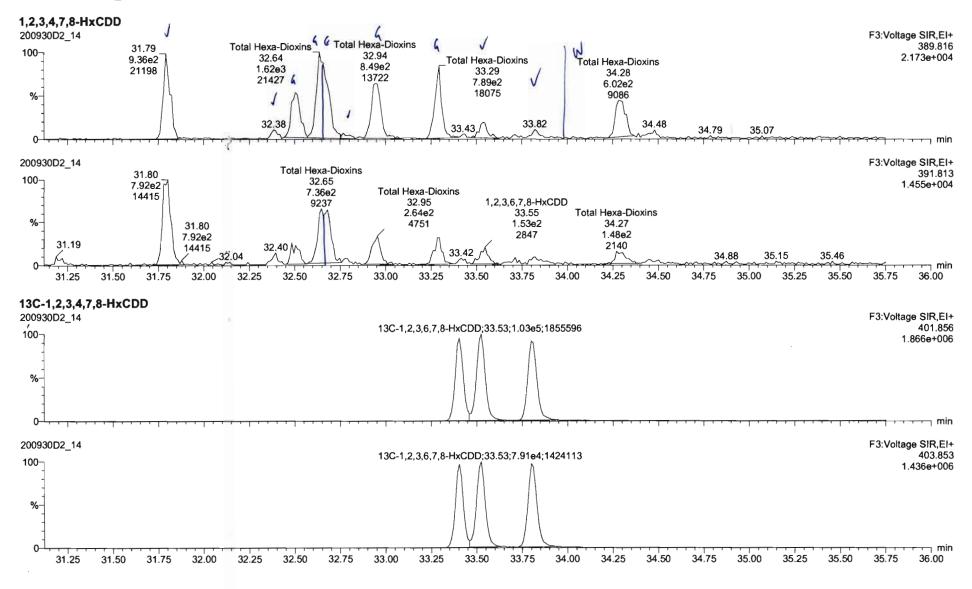

Ξ.


Quantify San Vista Analytica	· · ·	Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_14.qld	
Last Altered:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time	

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

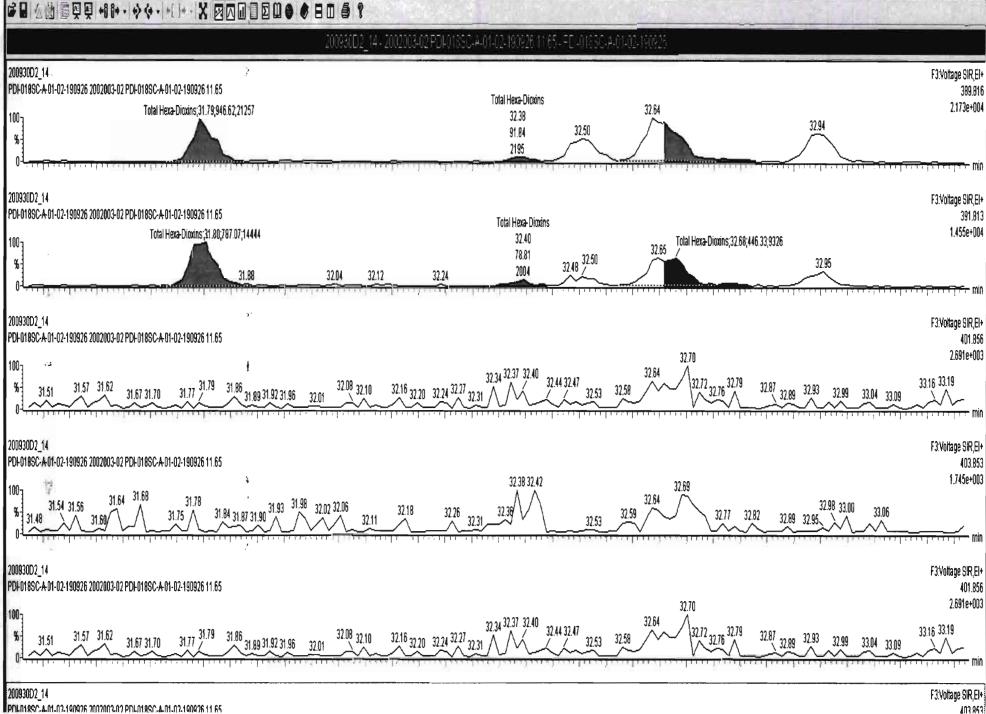
Thursday, October 01, 2020 10:54:08 Pacific Daylight Time

Printed:



Work Order 2002003

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

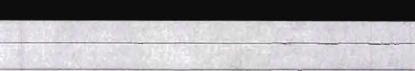

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

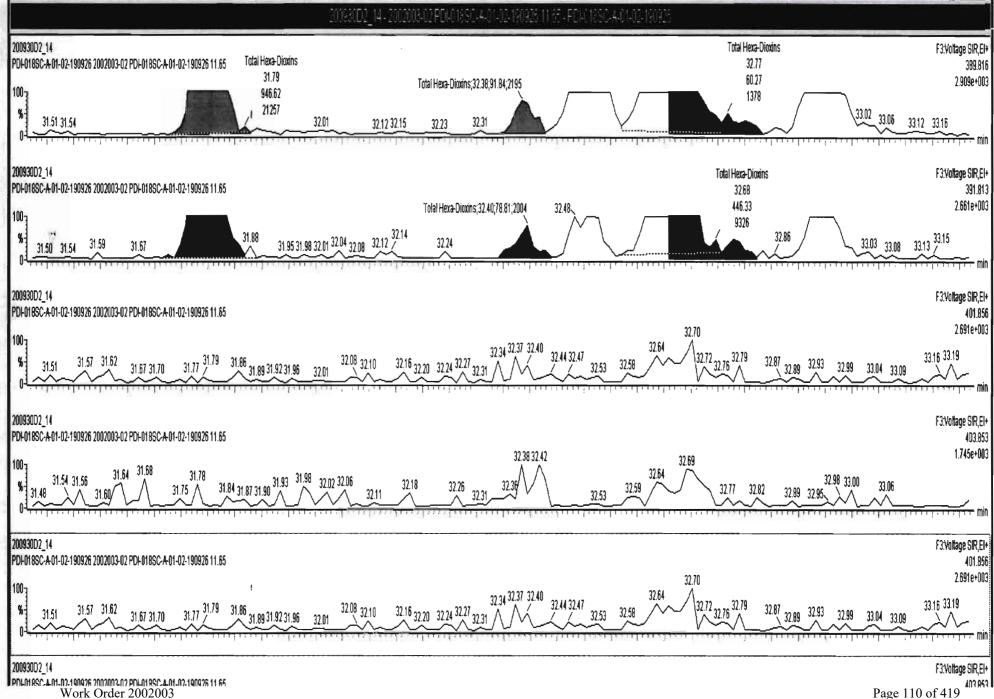
Last Altered:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:54:08 Pacific Daylight Time

TargetLynx - 20093002_14.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

Work Order 2002003

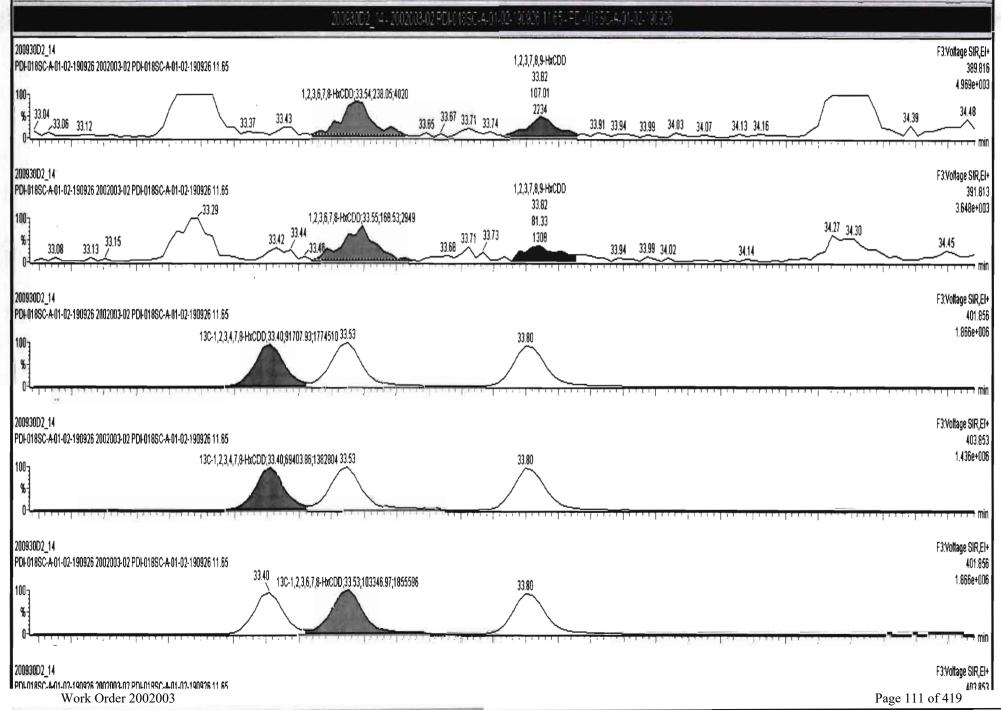

. 8


Page 109 of 419

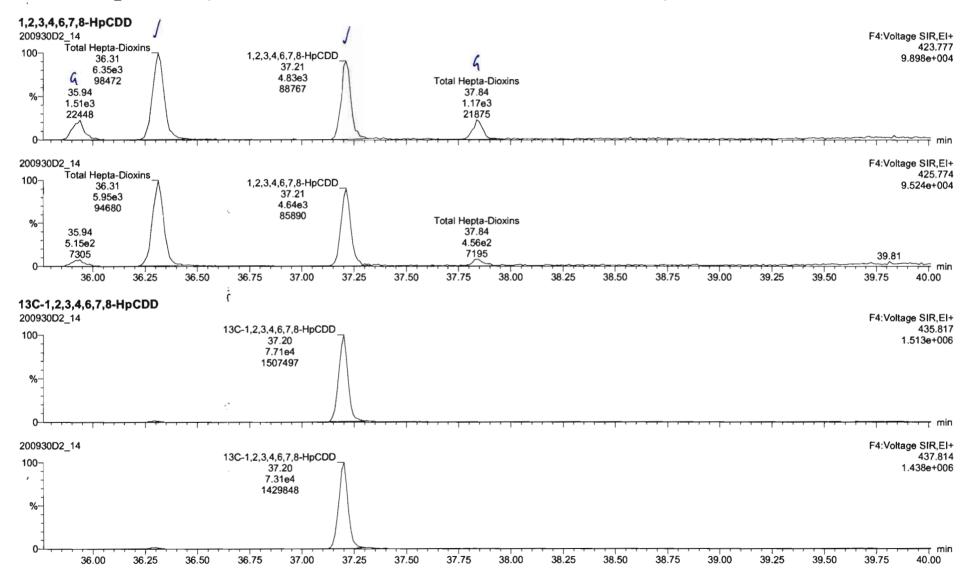
TargetLynx - 200930D2_14.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

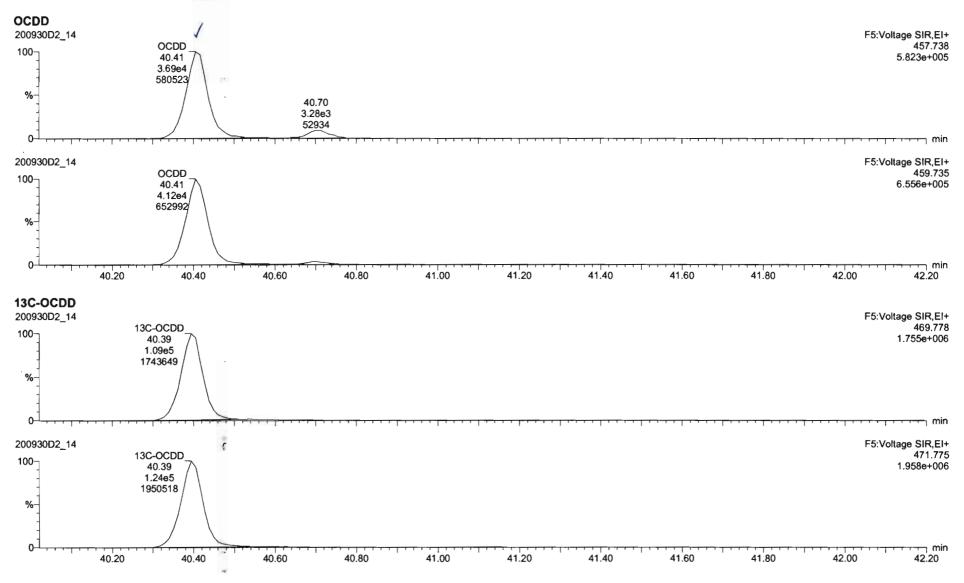
rî I



🖹 TargetLynx - 200930D2_14.qld * - [Chromatogram]

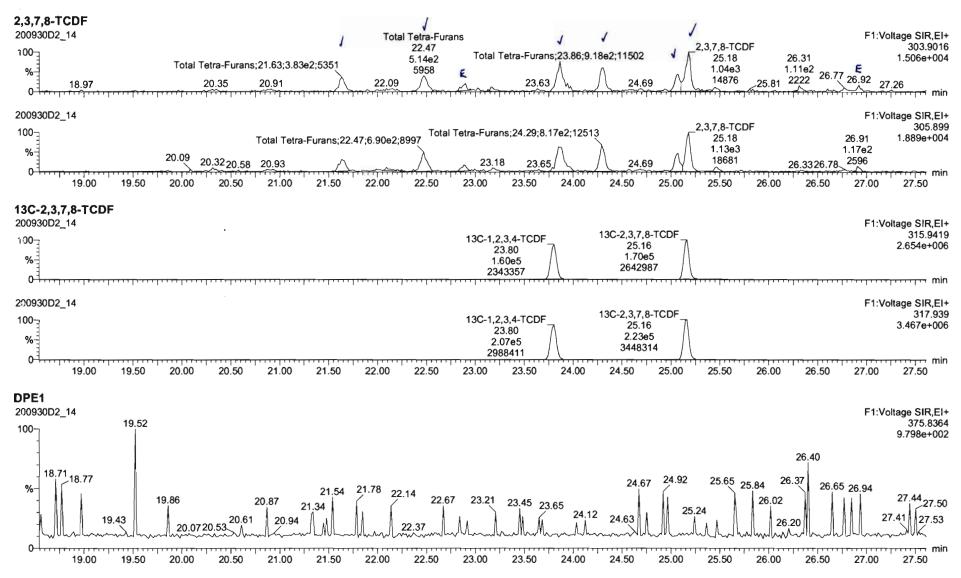

A File Edit View Display Processing Window Help

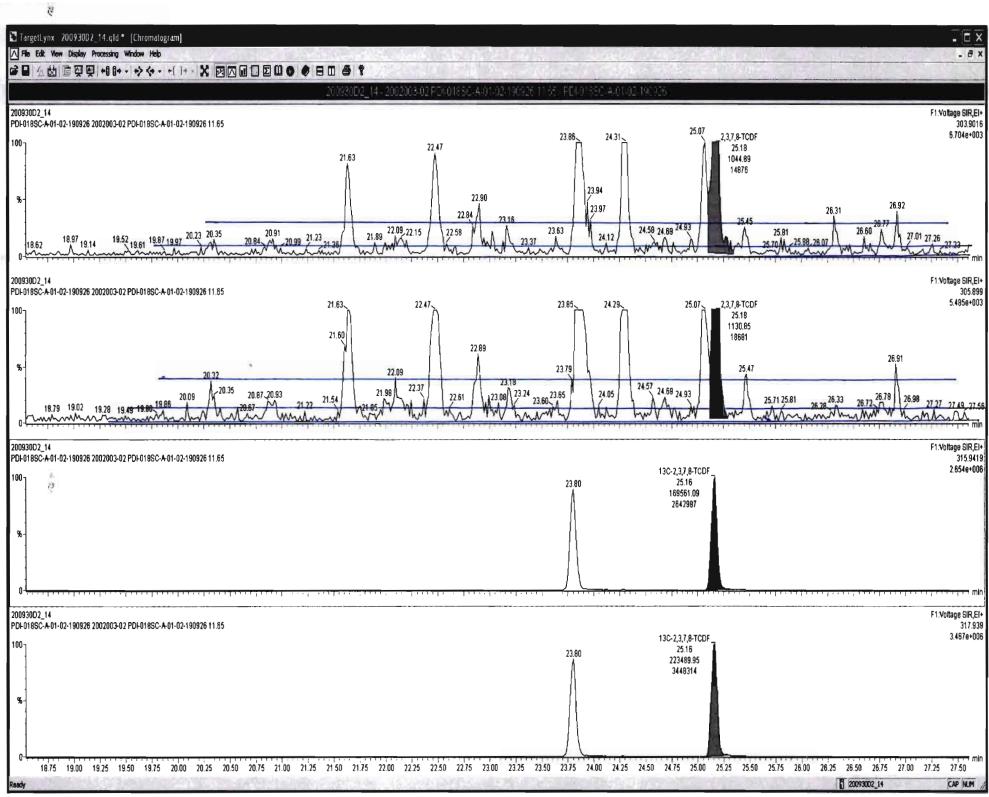
☞묘소법률및및+10+・◇◆・+()+・※図囚◨目Σ묘●●日日春 *



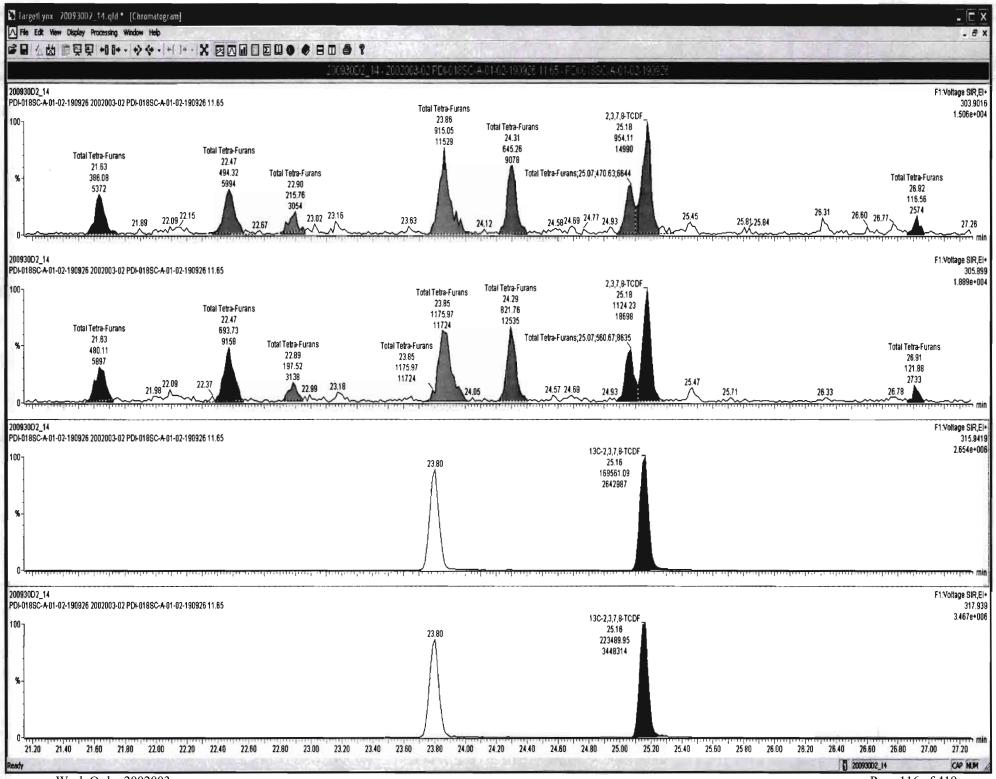
. 8 >

Quantify San Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_14.qld	
Last Altered: Printed:	Thursday, October 01,∴2020 10:53:16 Pacific Daylight Time Thursday, October 01, 2020 10:54:08 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_14.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time Thursday, October 01, 2020 10:54:08 Pacific Daylight Time	

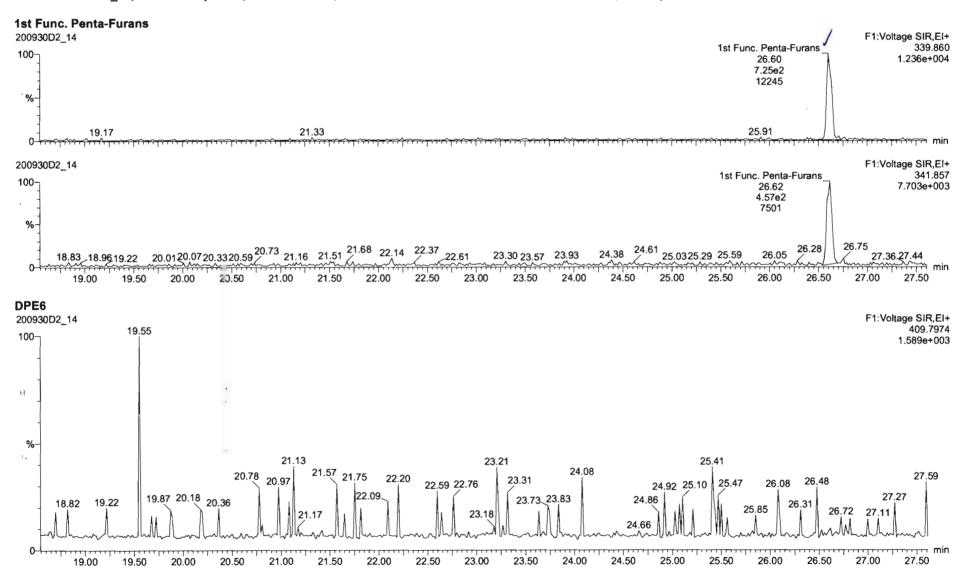


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:54:08 Pacific Daylight Time

Work Order 2002003



Work Order 2002003

Page 116 of 419

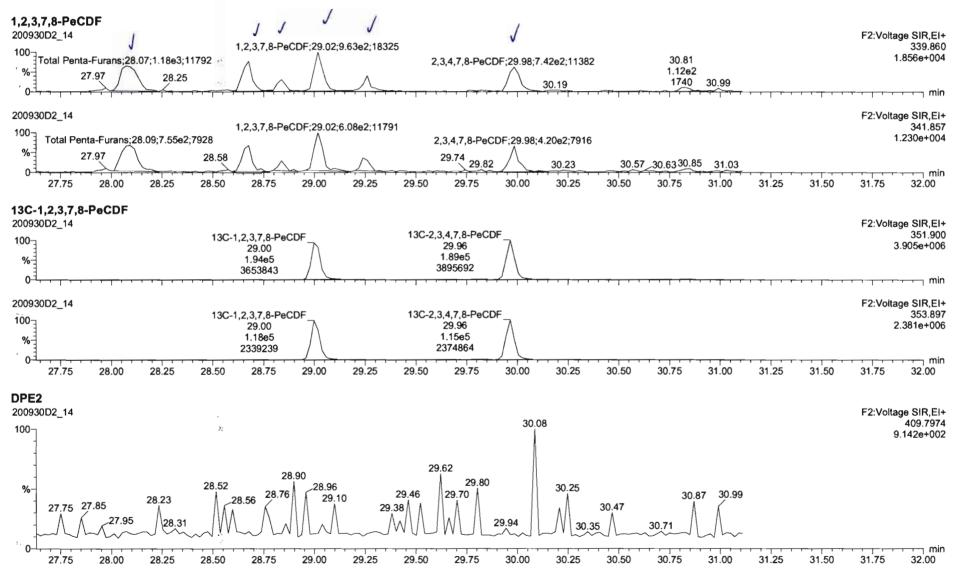
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld Last Altered: Thursday, October 01, 2020 10:53:16 Pacific Daylight Time

TargetLynx - 200930D2_14.gld * - [Chromatogram]

Rife Edit View Display Processing Window Help

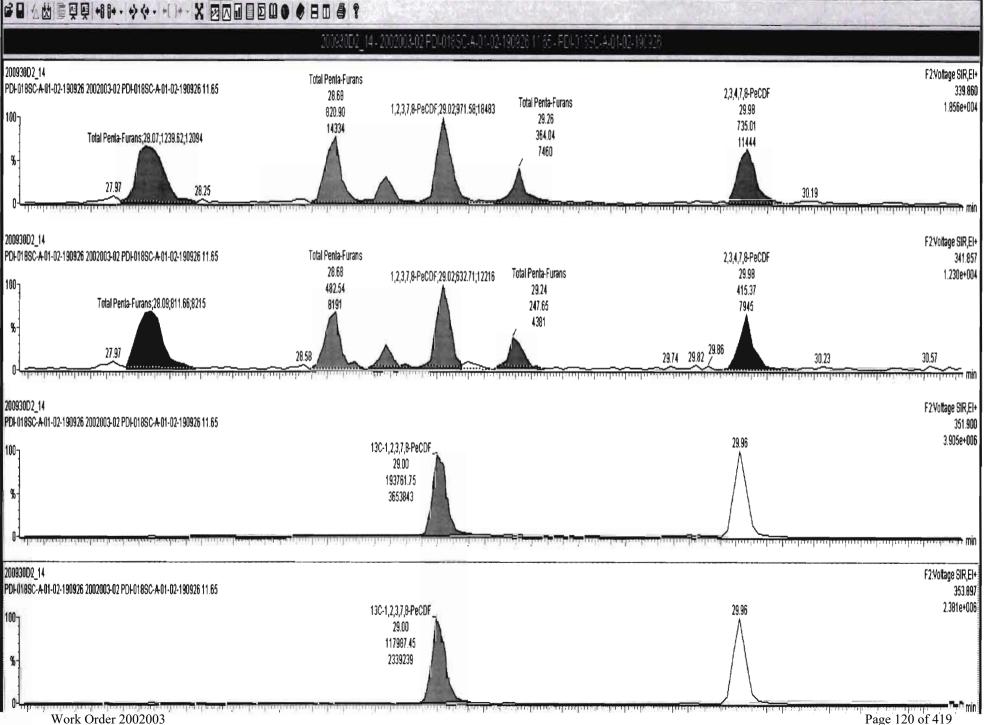
F1. Voltage SIR, El+ 200930D2 14 PDF018SC-A-01-02-190926 2002003-02 PDF018SC-A-01-02-190926 11.65 339.B60 1.236e+004 1st Func, Penta-Furans 100-26.60 712.13 12250 % 25.91 04 F1. Voitage SIR, El· 200930D2 14 PDI-018SC-A-01-02-190926 2002003-02 PDI-018SC-A-01-02-190926 11.65 341.857 7.703e+003 1st Func Penta-Furans 100-26.62 472.01 759B 4 26.75 27.36 27.44 25.59 25.71 25.82 26.05 26.28 26.40 26.49 27.03_27.06 25.45 F2:Voltage SIR,EI+ 200930D2 14 PDF018SC-A01-02-190926 2002003-02 PDF018SC-A01-02-190926 11.65 351,900 3.664e+006 13C-1,2,3,7,8-PeCDF 100-29.00 193761.75 3653843 \$ min representation F2:Voltage SIR,EI+ 200930D2 14 353.897 PDF018SC-A-01-02-190926 2002003-02 PDF018SC-A-01-02-190926 11.65 2.346e+006 13C-1,2,3,7,8-PeCDF 100-29.00 117987.45 2339239 Work Order 2002003

Page 118 of 419


. 8

Quantify Sample Report MassLynx 4.1

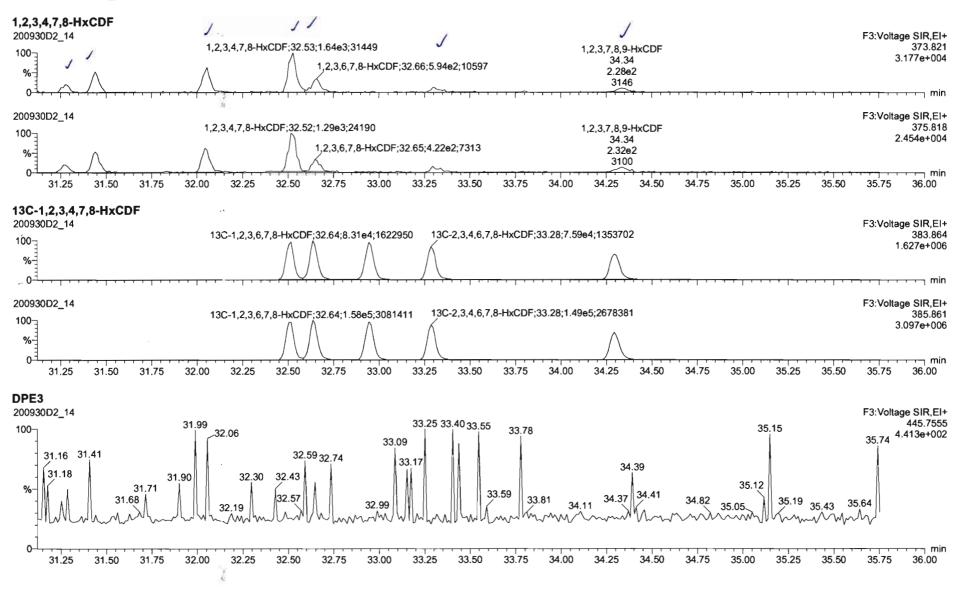
Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered: Thursday, October 01, 2020 10:53:16 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:54:08 Pacific Daylight Time

TargetLynx · 200930D2_14.qld * · [Chromatogram]

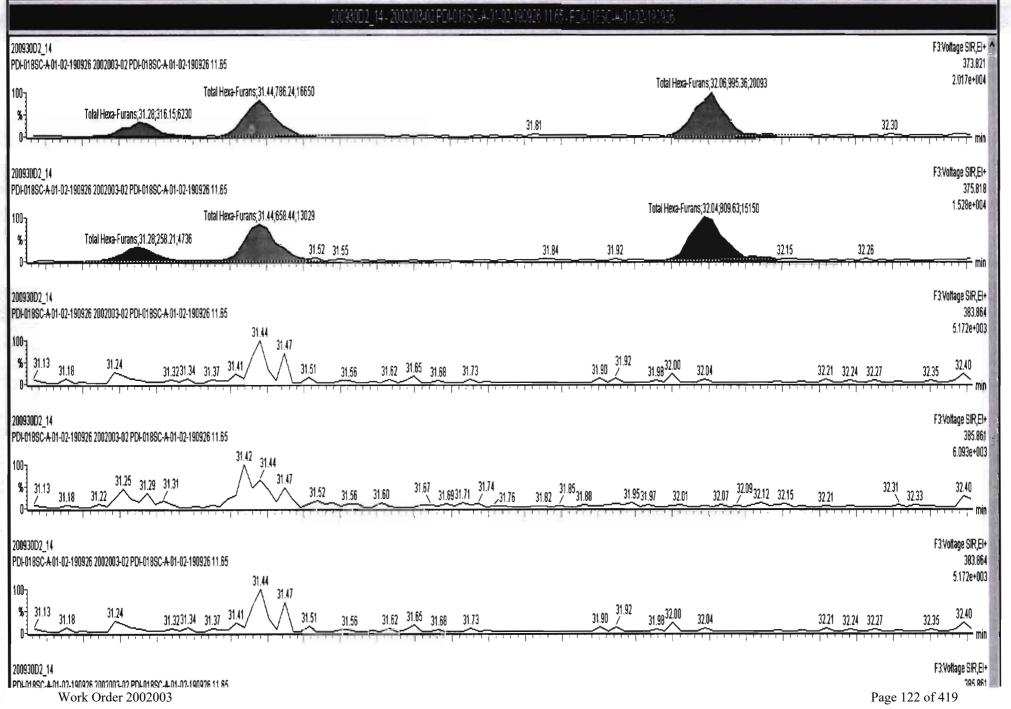
A File Edit Wew Display Processing Window Heb


Page 120 of 419

. 7 >

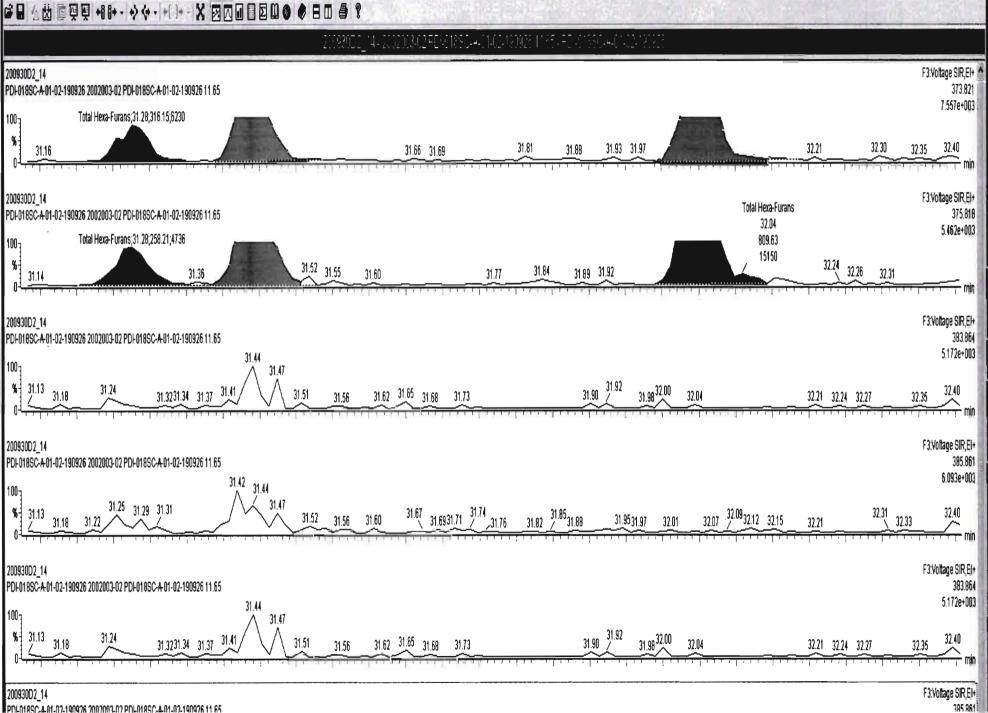
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld


Last Altered:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:54:08 Pacific Daylight Time

TargetLynx - 200930D2_14.qld * - [Chromatogram]

A File Edit Yew Display Processing Window Help


☞◼△썹▣▣▣●♥+₩+・♦♦・+()+・Х ◙◙▣■घ₽●●日□● ?

. O X . a x

🖺 TargetLynx - 200930D2_14.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

Work Order 2002003

. [] \

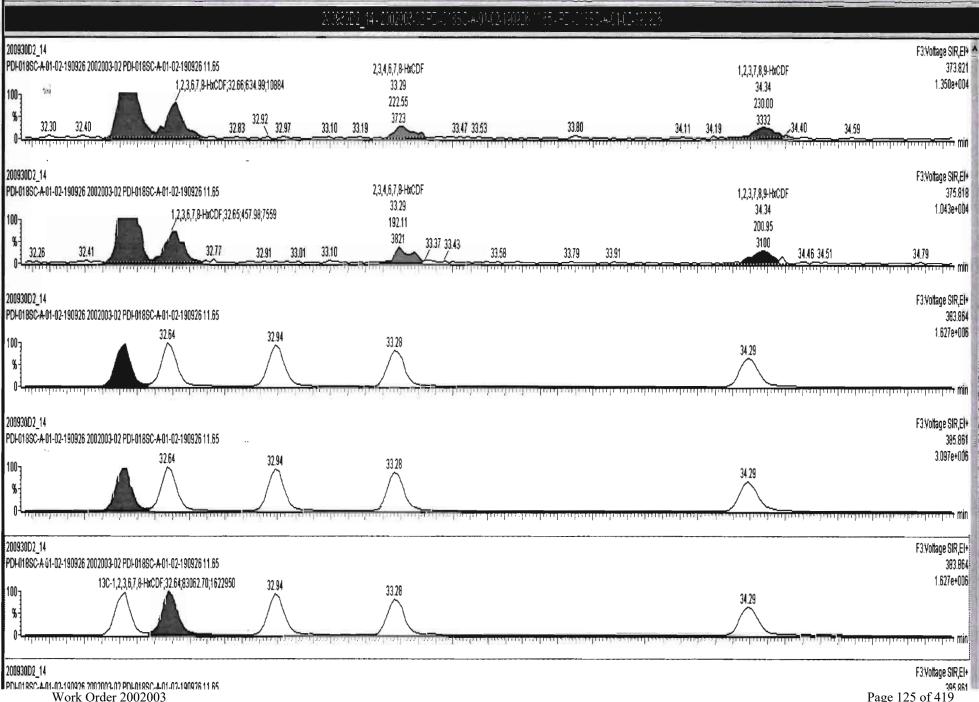
Page 123 of 419

TargetLynx - 200930D2_14.qld * - [Chromatogram]

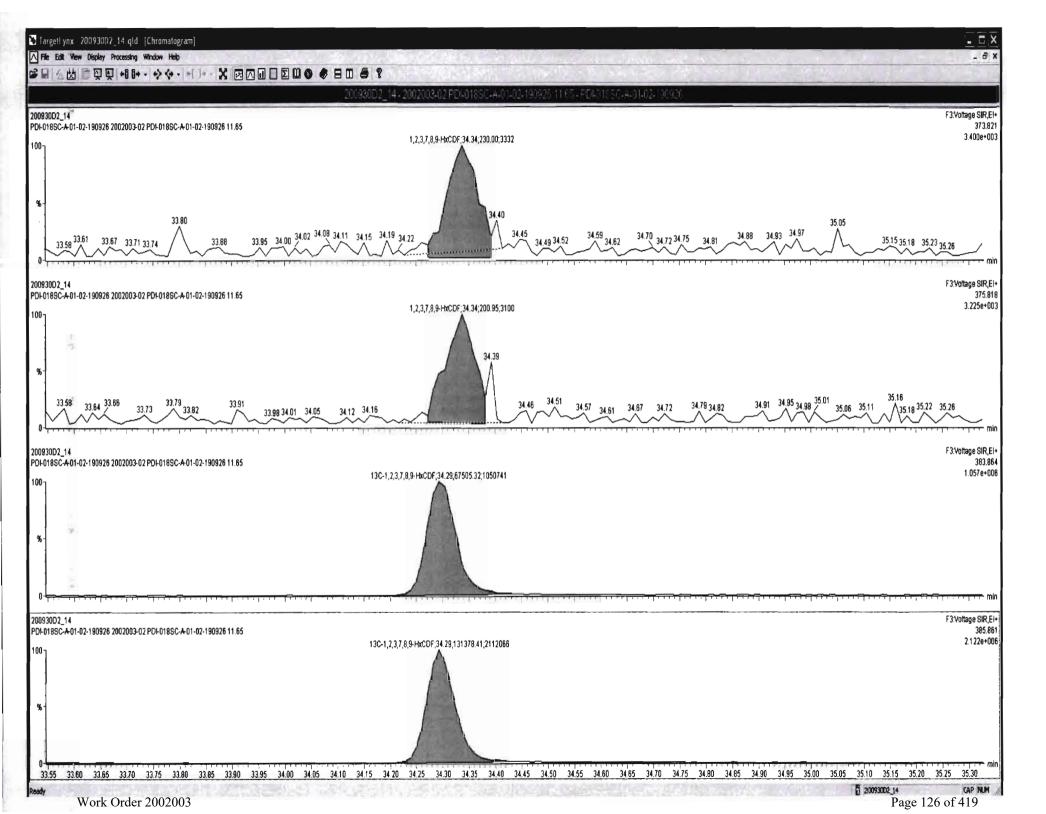
Rie Edit View Display Processing Window Heb

☞묘소법ᄚ꼊ᆽᆊᆘ・᠅᠅・*()・ Ⅹ ☑☑ⓓ▯◙◫◈ ◈ ⊟◻ 兽 १ 200930D2 14 F3:Voltage SIR EI+ PDF018SC-A01-02-190926 2002003-02 PDF018SC-A01-02-190926 11.65 373.821 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 3.177e+004 1,2,3,4,7,8-HxCDF;32,53;1668,72;31657 33.29 34.34 100-1,2,3,6,7,8-HxCDF;32.66;634.99;10884 222.55 230.00 Ÿ, 3723 3332 The section min min 200930D2 14 F3:Voltage SIR,EI+ PDF018SC-A01-02-190926 2002003-02 PDF018SC-A01-02-190926 11.65 375.818 2.3.4.6.7.8-HxCDF 1,2,3,7,8,9-HxCDF 2,454e+004 1,2,3,4,7,8-HxCDF;32.52;1323.29;24414 33.29 3434 100-192,11 1,2,3,6,7,8-HxCDF;32.65;457.98;7559 200.95 3821 3100 ter in in 200930D2 14 F3:Voltage SIR,EI+ PDI-018SC-A 01-02-190926 2002003-02 PDI-018SC-A 01-02-190926 11.65 383.864 1.627e+006 32.64 32.94 33.28 1005 34.29 <u>%</u>h min 200930D2 14 F3:Voltage SIR EI+ PDF018SC-A01-02-190926 2002003-02 PDF018SC-A01-02-190926 11 65 385.861 3.097e+006 32.64 32.94 33 28 100-34,29 nin 🕁 200930D2 14 F3:Voltage SIR,EI+ PDF018SC-A01-02-190926 2002003-02 PDF018SC-A01-02-190926 11.65 383,864 1.627e+006 13C-1,2,3,6,7,8-HxCDF;32.64;83062.70;1622950 32.94 33.28 1005 34.29 q, - min 200930D2 14 F3:Voltage SIR,EI+ 785 861

PDL018SC-4-01-02-190926 2002003-02 PDL018SC-4-01-02-190926 11 65 Work Order 2002003

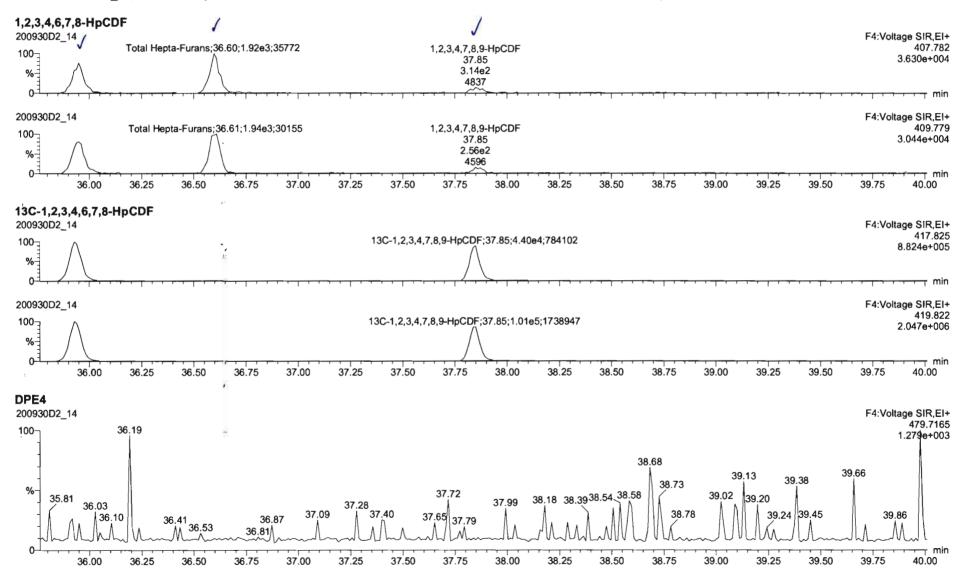

. E x

. 7 :


🖹 TargetLynx - 200930D2_14.qld * - [Chromatogram]

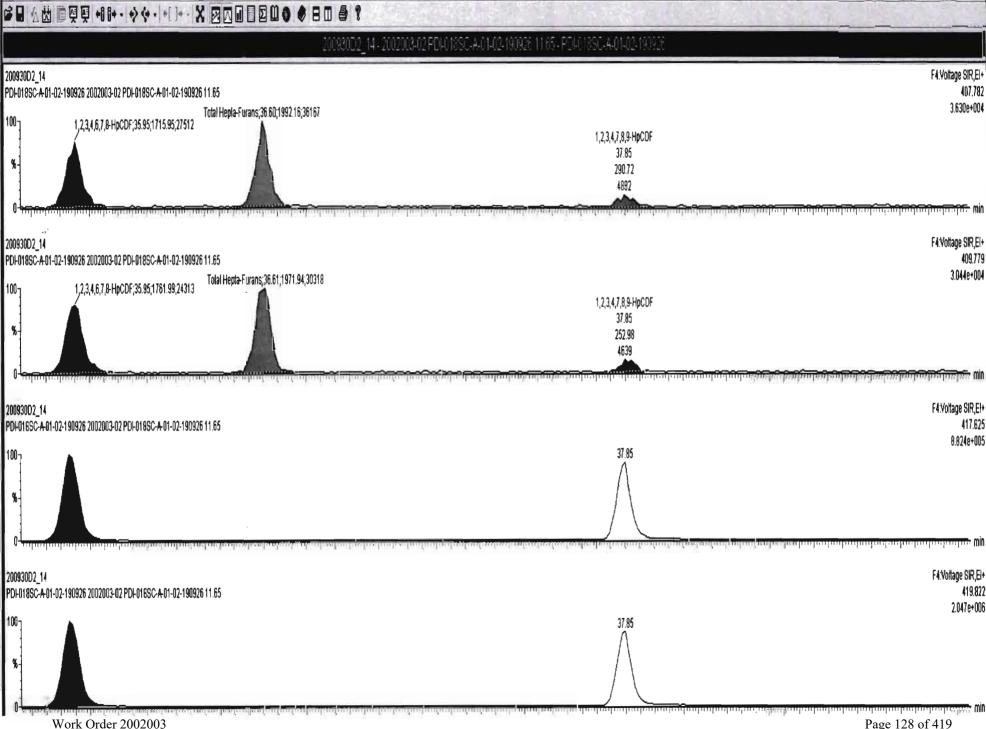
A File Edit View Display Processing Window Help

☞묘 △☆ ■♀♀ +i 肿・ ÷ (・ +()・ · X 図△ □ □ □ □ ● ◆ 日 □ ● ♥



- C X

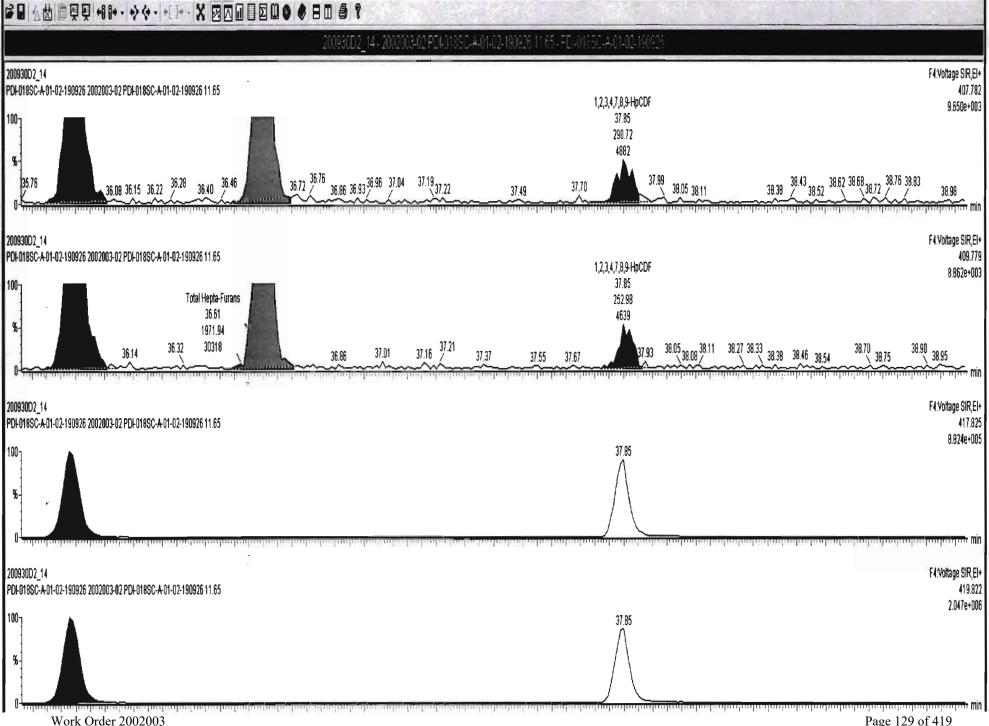
Quantify San Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\2,00930D2\200930D2_14.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time Thursday, October 01, 2020 10:54:08 Pacific Daylight Time	


Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926

Work Order 2002003

📱 TargetLynx - 200930D2_14.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

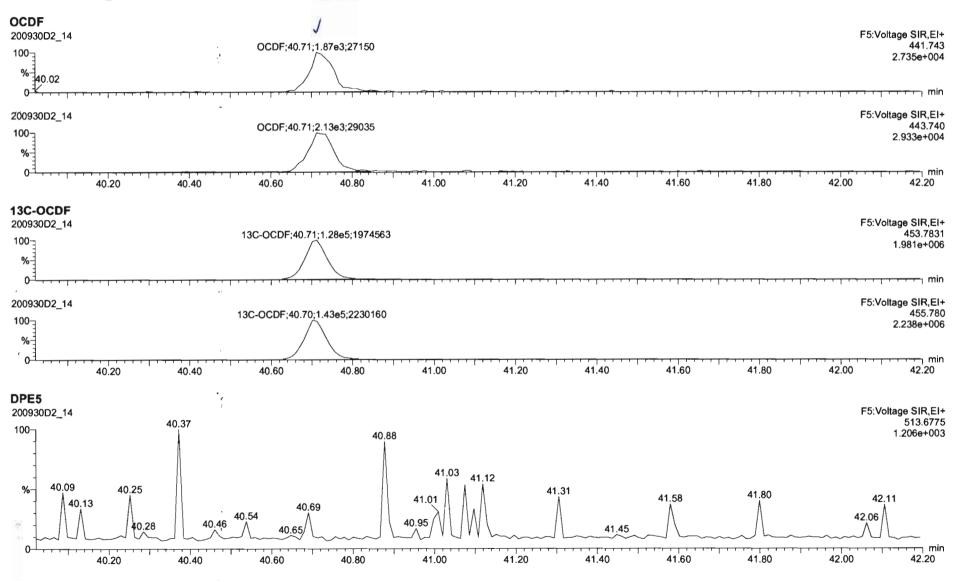


Page 128 of 419

. E X . đ

TargetLynx - 200930D2_14.gld * - [Chromatogram]

Re Edit View Display Processing Window Help

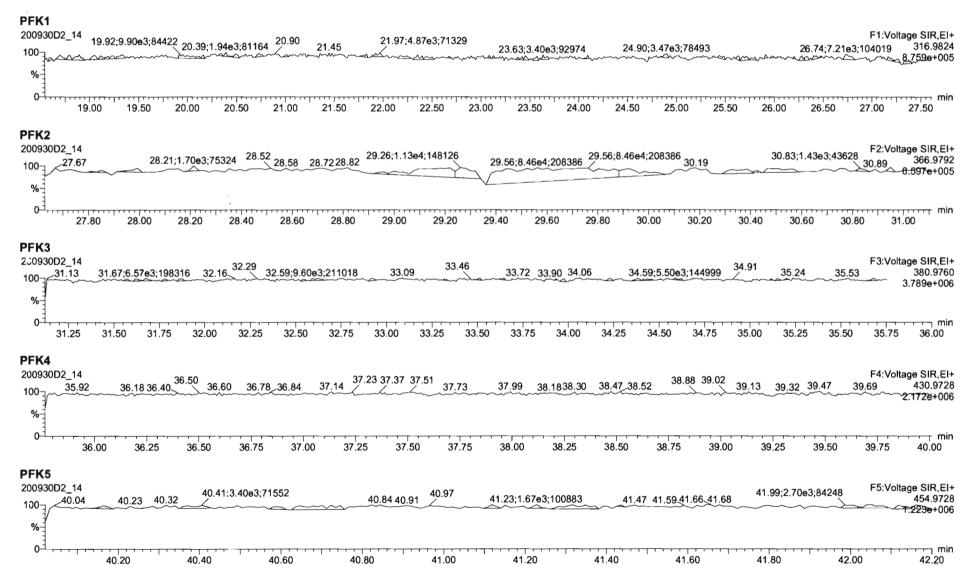


Page 129 of 419

P . 8

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_14.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time Thursday, October 01, 2020 10:54:08 Pacific Daylight Time	

Name: 200930D2_14, Date: 30-Sep-2020, Time: 22:43:26, ID: 2002003-02 PDI-018SC-A-01-02-190926 11.65, Description: PDI-018SC-A-01-02-190926



100

Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_14.qld

Last Altered:	Thursday, October 01, 2020 10:53:16 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:54:08 Pacific Daylight Time

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	0930D2\200930D2_15.qld	
Last Altered: Printed:		10:28:16 Pacific Daylight Time 10:29:12 Pacific Daylight Time	7

DB 10/2/20 C7 10/05/2020

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

N. KIR	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	6.515	25.822		1.001				0.178	
2	2 1,2,3,7,8-PeCDD			NO	0.935	6.515	30.167		1.001				0.188	
3	3 1,2,3,4,7,8-HxCDD			NO	1.15	6.515	33.404		1.000				0.292	
4	4 1,2,3,6,7,8-HxCDD	3.21e2	1.13	NO	1.02	6.515	33.515	33.53	1.000	1.000	0.54773		0.295	0.548
5	5 1,2,3,7,8,9-HxCDD	1.98e2	1.64	YES	1.06	6.515	33.834	33.80	1.001	1.000	0.33937		0.395	0.280
6	6 1,2,3,4,6,7,8-HpCDD	4.42e3	1.08	NO	1.00	6.515	37.201	37.20	1.000	1.000	9.0814		0.814	9.08
7	7 OCDD	3.86e4	0.90	NO	0.952	6.515	40.384	40.40	1.000	1.000	118.45		0.431	118
8	8 2,3,7,8-TCDF	3.84e2	1.45	YES	1.01	6.515	25.173	25.16	1.001	1.001	0.30447		0.123	0.220
9	9 1,2,3,7,8-PeCDF			NO	0.998	6.515	29.019		1.001				0.118	
10	10 2,3,4,7,8-PeCDF	7.64e2	1.17	YES	1.07	6.515	29.995	29.98	1.001	1.001	0.77402		0.1.22	0.688
11	11 1,2,3,4,7,8-HxCDF	3.33e2	1.10	NO	1.05	6.515	32.505	32.51	1.000	1.000	0.42107		0.176	0.421
12	12 1,2,3,6,7,8-HxCDF	1.28e3	1.13	NO	1.10	6.515	32.647	32.65	1.000	1.000	1.5511		0.177	1.55
13	13 2,3,4,6,7,8-HxCDF	4.95e2	1.53	YES	1.09	6.515	33.306	33.33	1.001	1.002	0.66410		0.204	0.588
14	14 1,2,3,7,8,9-HxCDF			NO	1.08	6.515	34.283		1.000				0.242	
15	15 1,2,3,4,6,7,8-HpCDF	5.84e3	1.05	NO	1.13	6.515	35.965	35.94	1.001	1.000	8.5984		0.258	8.60
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.29	6.515	37.827		1.000				0.264	
17	17 OCDF	2.19e3	0.88	NO	0.953	6.515	40.702	40.71	1.000	1.000	5.7353		0.278	5.74
18	18 13C-2,3,7,8-TCDD	2.52e5	0.79	NO	1.17	6.515	25.786	25.79	1.026	1.026	295.26	96.2	0.737	
19	19 13C-1,2,3,7,8-PeCDD	1.96e5	0.62	NO	0.914	6.515	29.974	30.15	1.193	1.199	294.32	95.9	0.564	
20	20 13C-1,2,3,4,7,8-HxCDD	1.60e5	1.31	NO	0.634	6.515	33.394	33.39	1.014	1.014	313.60	102	1.07	
21	21 13C-1,2,3,6,7,8-HxCDD	1.75e5	1.26	NO	0.724	6.515	33.503	33.51	1.017	1.018	300.64	97.9	0.932	
22	22 13C-1,2,3,7,8,9-HxCDD	1.73e5	1.24	NO	0.716	6.515	33.769	33.80	1.025	1.026	300.40	97.9	0.943	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.49e5	1.05	NO	0.660	6.515	37.181	37.19	1.129	1.129	280.05	91.2	1.19	
24	24 13C-OCDD	2.10e5	0.87	NO	0.587	6.515	40.159	40.38	1.219	1.226	444.18	72.4	0.943	
25	25 13C-2,3,7,8-TCDF	3.82e5	0.77	NO	1.02	6.515	24.882	25.15	0.990	1.001	304.50	99.2	0.597	
26	26 13C-1,2,3,7,8-PeCDF	3.13e5	1.60	NO	0.842	6.515	29.046	29.00	1.156	1.154	302.73	98.6	0.751	
27	27 13C-2,3,4,7,8-PeCDF	2.82e5	1.59	NO	0.802	6.515	29.933	29.97	1.191	1.192	286.47	93.3	0.788	
28	28 13C-1,2,3,4,7,8-HxCDF	2.31e5	0.50	NO	1.00	6.515	32.538	32.51	0.988	0.987	285.69	93.1	0.931	
29	29 13C-1,2,3,6,7,8-HxCDF	2.30e5	0.51	NO	1.02	6.515	32.670	32.64	0.992	0.991	279.99	91.2	0.916	
30	30 13C-2,3,4,6,7,8-HxCDF	2.10e5	0.51	NO	0.955	6.515	33.233	33.27	1.009	1.010	273.21	89.0	0.978	
31	31 13C-1,2,3,7,8,9-HxCDF	1.94e5	0.51	NO	0.851	6.515	34.296	34.28	1.041	1.041	282.44	92.0	1.10	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Page 2 of 2

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

Läst Altered: Friday, October 02, 2020 10:28:16 Pacific Daylight Time Printed: Friday, October 02, 2020 10:29:12 Pacific Daylight Time

Name: 200930D2_15, Date: 30-Sep-2020, Time: 23:29:40, ID: 2002003-03 PDI-018SC-A-02-03-190926 10.16, Description: PDI-018SC-A-02-03-190926

100	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.84e5	0.43	NO	0.848	6.515	35.798	35.93	1.087	1.091	269.79	87.9	1.24	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.38e5	0.43	NO	0.624	6.515	37.774	37.83	1.147	1.149	274.75	89.5	1.69	
34	34 13C-OCDF	2.46e5	0.87	NO	0.730	6.515	40.310	40.70	1.224	1.236	417.80	68.1	0.547	
35	35 37CI-2,3,7,8-TCDD	1.22e5			1.21	6.515	25.784	25.82	1.026	1.027	139.05	113	0.179	
36	36 13C-1,2,3,4-TCDD	2.24e5	0.79	NO	1.00	6.515	25.260	25.13	1.000	1.000	306.97	100	0.865	
37	37 13C-1,2,3,4-TCDF	3.77e5	0.77	NO	1.00	6.515	23.930	23.79	1.000	1.000	306.97	100	0.610	
38	38 13C-1,2,3,4,6,9-HxCDF	2.47e5	0.51	NO	1.00	6.515	32.990	32.93	1.000	1.000	306.97	100	0.934	
39	39 Total Tetra-Dioxins				1.00	6.515	24.620		0.000				0.0926	
40	40 Total Penta-Dioxins				0.935	6.515	29.960		0.000				0.0970	
41	41 Total Hexa-Dioxins				1.02	6.515	33.635		0.000		2.7354		0.313	4.66
42	42 Total Hepta-Dioxins				1.00	6.515	37.640		0.000		23.598		0.814	23.6
43	43 Total Tetra-Furans				1.01	6.515	23.610		0.000		3.5355		0.123	4.12
44	44 1st Func. Penta-Furans				0.998	6.515	26.750		0.000		4.3711		0.0675	4.37
45	45 Total Penta-Furans				0.998	6.515	29.275		0.000		1.9853		0.129	3.74
46	46 Total Hexa-Furans				1.09	6.515	33.555		0.000		12.795		0.197	13.4
47	47 Total Hepta-Furans				1.13	6.515	37.835		0.000		17.199		0.276	17.2

11

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

Last Altered:	Friday, October 02, 2020 10:28:16 Pacific Daylight Time
Printed:	Friday, October 02, 2020 10:29:12 Pacific Daylight Time

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_15, Date: 30-Sep-2020, Time: 23:29:40, ID: 2002003-03 PDI-018SC-A-02-03-190926 10.16, Description: PDI-018SC-A-02-03-190926

Tetra-Dioxins

~°

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Hexa-Dioxins

TANK .	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	31.78	1.346e4	1.122e4	6.380e2	4.780e2	1.33	NO	1.116e3	1.9730	1.9730	0.313
2	Total Hexa-Dioxins	32.38	1.387e3	1.280e3	6.292e1	5.850e1	1.08	NO	1.214e2	0.21467	0.21467	0.313
3	Total Hexa-Dioxins	32.65	1.767e4	9.465e3	6.361e2	4.143e2	1.54	YES	0.000e0	0.00000	1.6408	0.313
4	1,2,3,6,7,8-HxCDD	33.53	3.006e3	2.631e3	1.700e2	1.506e2	1.13	NO	3.205e2	0.54773	0.54773	0.295
5	1,2,3,7,8,9-HxCDD	33.80	1.948e3	1.503e3	1.229e2	7.491e1	1.64	YES	1.978e2	0.00000	0.28023	0.305

Hepta-Dioxins

A Contract	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.31	5.145e4	5.377e4	3.562e3	3.496e3	1.02	NO	7.058e3	14.517	14.517	0.814
2	1,2,3,4,6,7,8-HpCDD	37.20	4.173e4	3.950e4	2.288e3	2.127e3	1.08	NO	4.415e3	9.0814	9.0814	0.814

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

Last Altered:	Friday, October 02, 2020 10:28:16 Pacific Daylight Time
Printed:	Friday, October 02, 2020 10:29:12 Pacific Daylight Time

Name: 200930D2_15, Date: 30-Sep-2020, Time: 23:29:40, ID: 2002003-03 PDI-018SC-A-02-03-190926 10.16, Description: PDI-018SC-A-02-03-190926

Tetra-Furans

2000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	21.62	9.531e3	1.135e4	7.930e2	1.013e3	0.78	NO	1.806e3	1.4315	1.4315	0.123
2	Total Tetra-Furans	22.46	3.891e3	4.917e3	2.999e2	4.074e2	0.74	NO	7.073e2	0.56051	0.56051	0.123
3	Total Tetra-Furans	22.89	7.325e3	7.517e3	4.745e2	5.367e2	0.88	NO	1.011e3	0.80131	0.80131	0.123
4	Total Tetra-Furans	23.88	5.399e3	7.248e3	3.942e2	5.423e2	0.73	NO	9.365e2	0.74213	0.74213	0.123
5	Total Tetra-Furans	24.31	2.680e3	2.072e3	1.811e2	1.547e2	1.17	YES	0.000e0	0.00000	0.21694	0.123
6	2,3,7,8-TCDF	25.16	3.291e3	2.396e3	2.275e2	1.567e2	1.45	YES	3.842e2	0.00000	0.21980	0.123
2.	Total Tetra-Furans	26.28	1.57 9e 3	2.089e3	1.069e2	1.082e2	0.99	YES	0.000e0	0.00000	0.15178	0.123

Penta-Furans function 1

19 . B. B.	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	- 26.60	4.401e4	3.121e4	2.543e3	1.686e3	1.51	NO	4.229e3	4.3711	4.3711	0.0675

Penta-Furans

13 10 10	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.11	1.529e4	9.151e3	1.217e3	7.034e2	1.73	NO	1.921e3	1.9853	1.9853	0.129
2	Total Penta-Furans	28.66	6.806e3	6.993e3	3.928e2	3.427e2	1.15	YES	0.000e0	0.00000	0.66784	0.129
3	Total Penta-Furans	29.24	2.363e3	1.859e3	2.368e2	1.925e2	1.23	YES	0.000e0	0.00000	0.40263	0.129
4	2,3,4,7,8-PeCDF	29.98	7.768e3	5.880e3	4.128e2	3.514e2	1.17	YES	7.642e2	0.00000	0.68779	0.132

Hexa-Furans

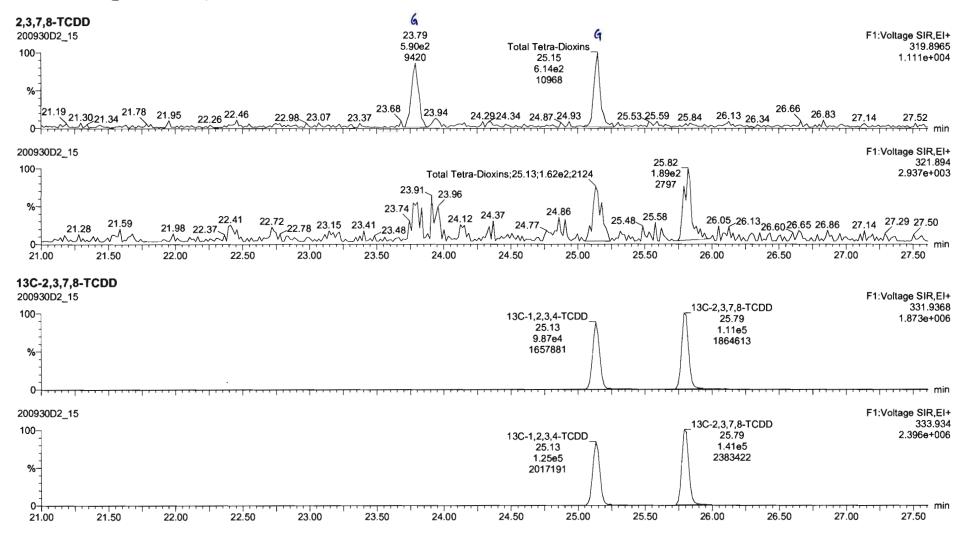
ALC: NO.	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.28	1.177e4	1.212e4	5.662e2	5.020e2	1.13	NO	1.068e3	1.3949	1.3949	0.197
2	Total Hexa-Furans	31.43	3.183e4	2.629e4	1.575e3	1.241e3	1.27	NO	2.816e3	3.6773	3.6773	0.197
3	Total Hexa-Furans	32.03	4.437e4	3.517e4	2.466e3	1.938e3	1.27	NO	4.404 e 3	5.7502	5.7502	0.197
4	1,2,3,4,7,8-HxCDF	32.51	3.269e3	3.096e3	1.743e2	1.587e2	1.10	NO	3.330e2	0.42107	0.42107	0.176
5	1,2,3,6,7,8-HxCDF	32.65	1.166e4	1.235e4	6.763e2	6.008e2	1.13	NO	1.277e3	1.5511	1.5511	0.177
6	2,3,4,6,7,8-HxCDF	33.33	4.224e3	2.898e3	2.991e2	1.955e2	1.53	YES	4.947e2	0.00000	0.58796	0.204
12												

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

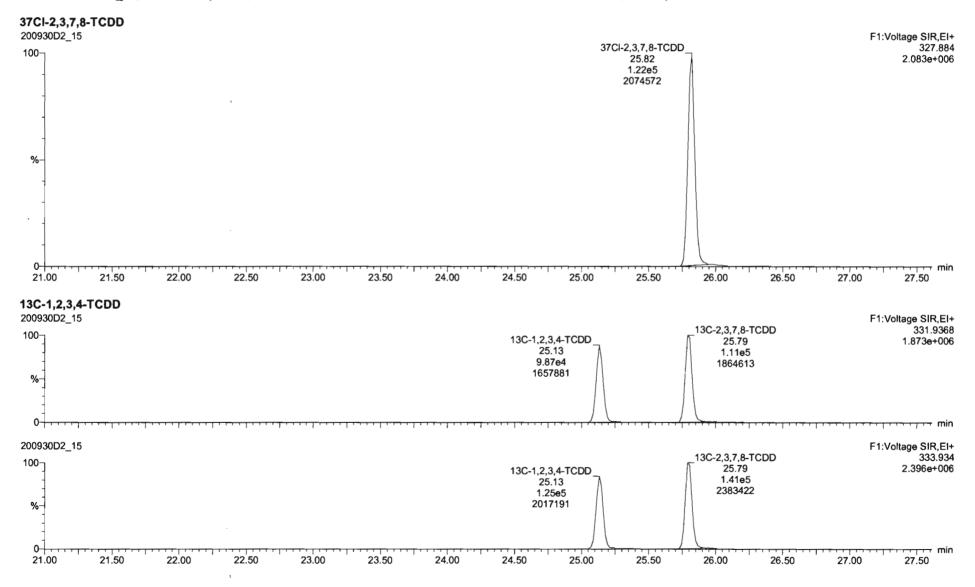
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

Last Altered:	Friday, October 02, 2020 10:28:16 Pacific Daylight Time
Printed:	Friday, October 02, 2020 10:29:12 Pacific Daylight Time

Name: 200930D2_15, Date: 30-Sep-2020, Time: 23:29:40, ID: 2002003-03 PDI-018SC-A-02-03-190926 10.16, Description: PDI-018SC-A-02-03-190926


Hepta-Furans

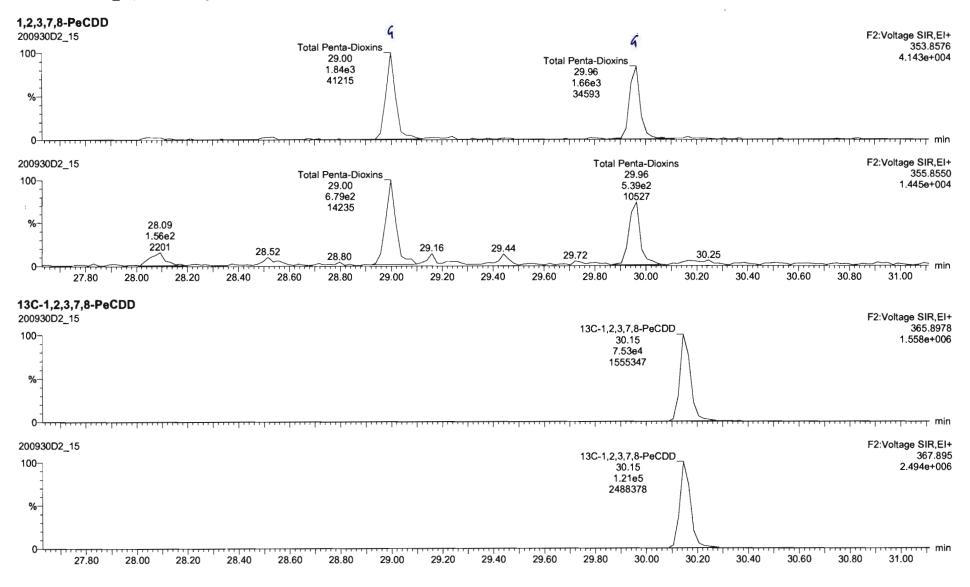
•


Γ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1,2,3,4,6,7,8-HpCDF	35.94	4.657e4	4.535e4	2.989e3	2.853e3	1.05	NO	5.841e3	8.5984	8.5984	0.258
2	2 Total Hepta-Furans	36.60	4.049e4	4.184e4	2.586e3	2.525e3	1.02	NO	5.111e3	8.6009	8.6009	0.276

Quantify San Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_15.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time Thursday, October 01, 2020 10:56:08 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

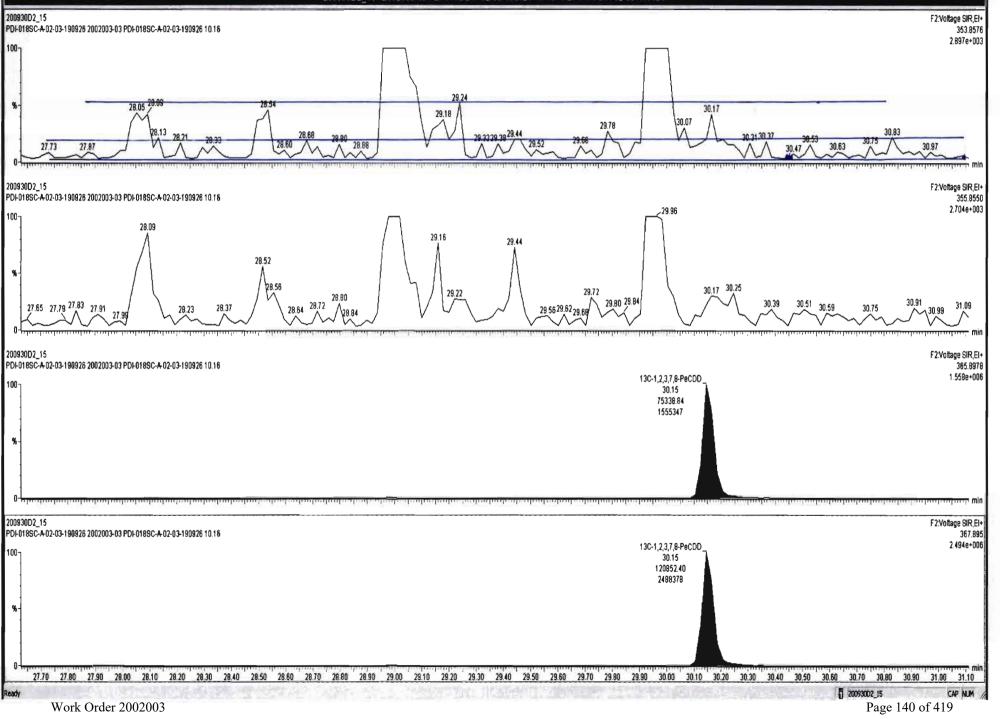
Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_15.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time Thursday, October 01, 2020 10:56:08 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1

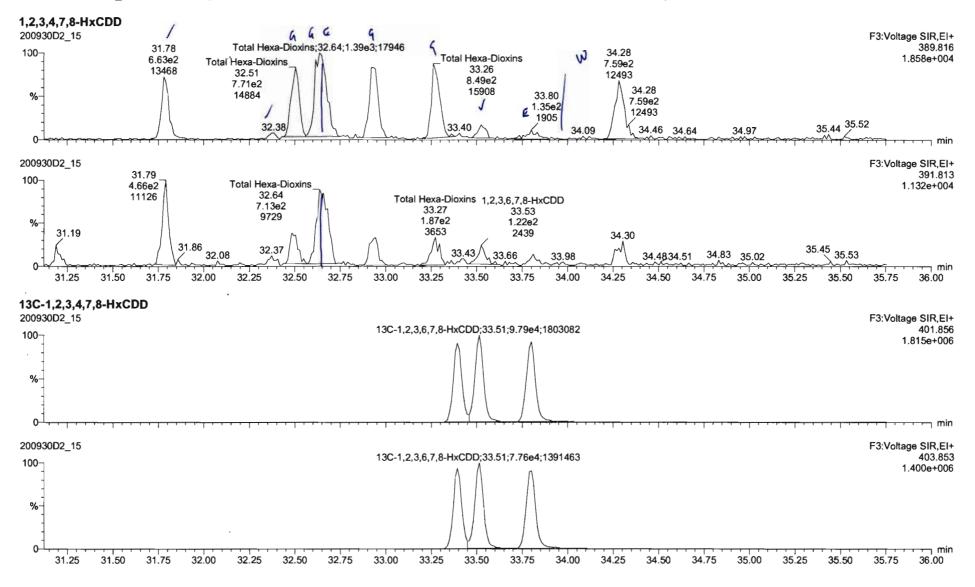
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld


Last Altered:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:56:08 Pacific Daylight Time

File Edit View Display Processing Window Help

ᄚᇦᇫᄨᄚᅋᆞᅋᆞᆘᆘᆞ᠅᠅ᆞᆞᆞᆞᆞᅏᄚᇧᅋᇊᄧᅇᆥᇴᇢᇥᆥ


_ = X

Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

Last Altered:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:56:08 Pacific Daylight Time

TargetLynx - 200930D2_15.qld * - [Chromatogram]

A File Edit Yiew Display Processing Window Help

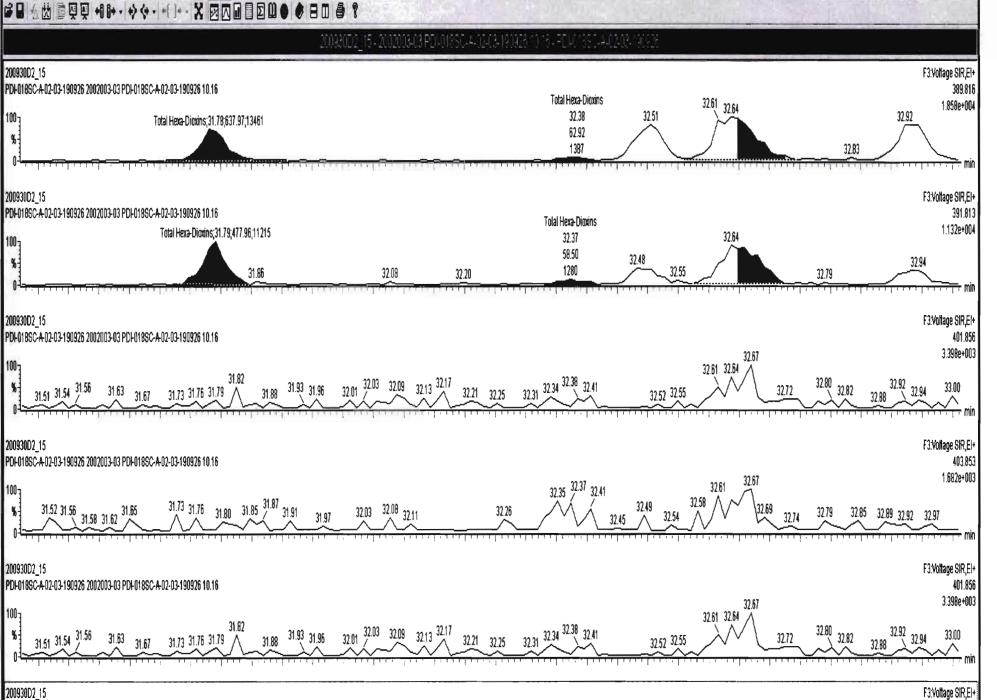
1007

%

1007

%

100


\$

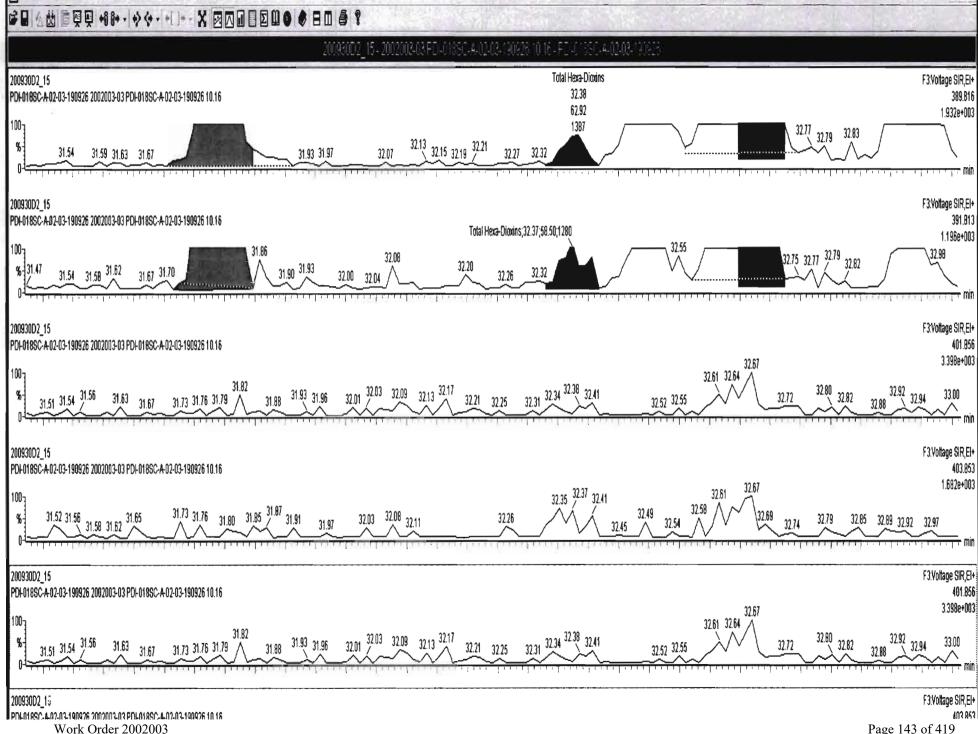
1005

\$

100-

\$

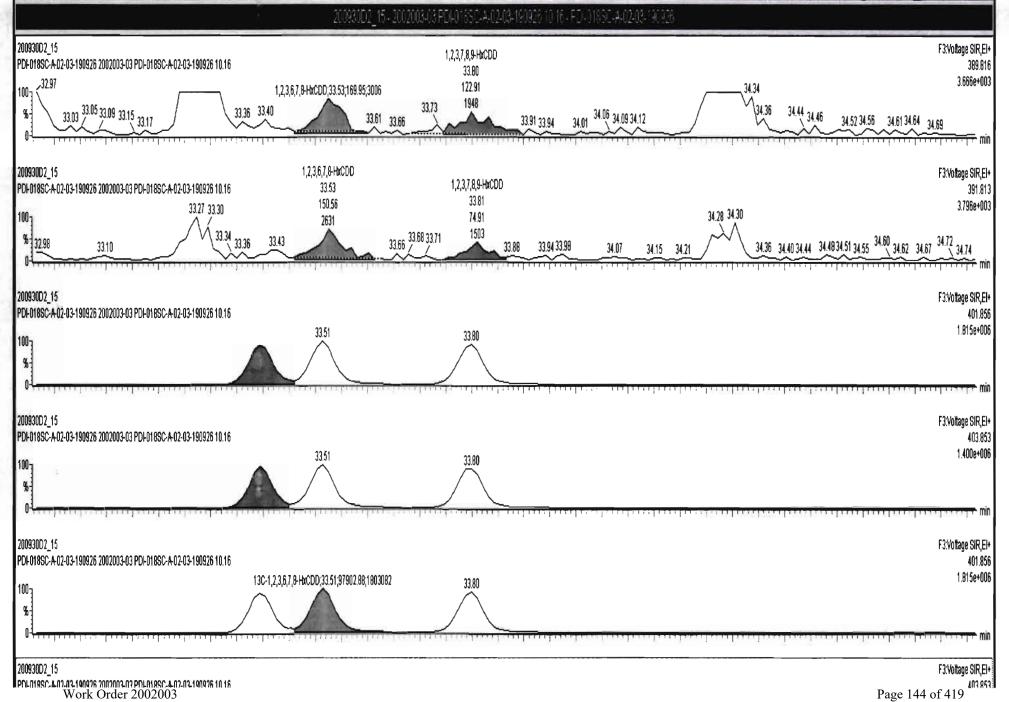
PDL018SC_&02.03.190926 2002003.02 PDL018SC_&02.03.190926 10 16 Work Order 2002003


Page 142 of 419

Ξß

. 8

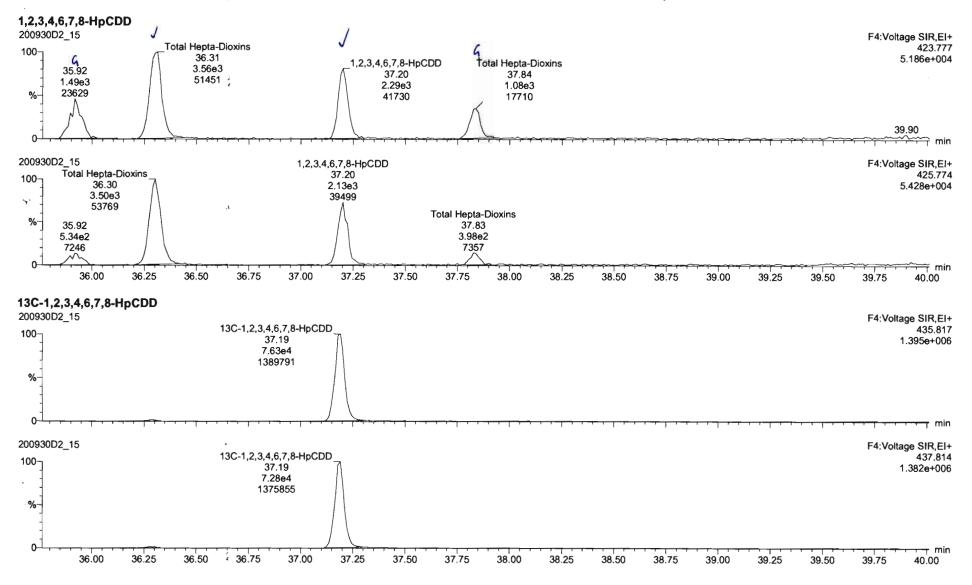
^{403 853}

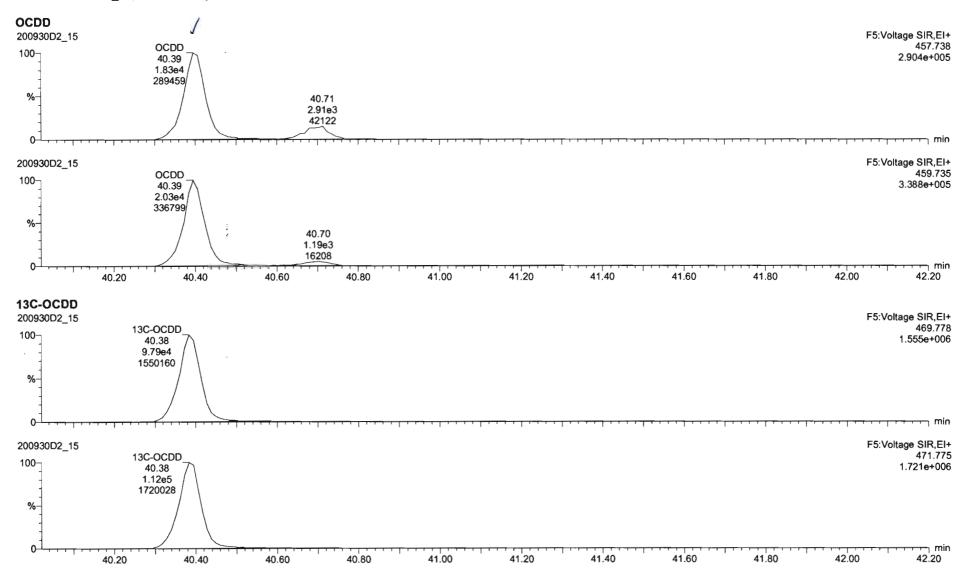


-6 . 8 x

TargetLynx - 200930D2_15.qld * - [Chromatogram]

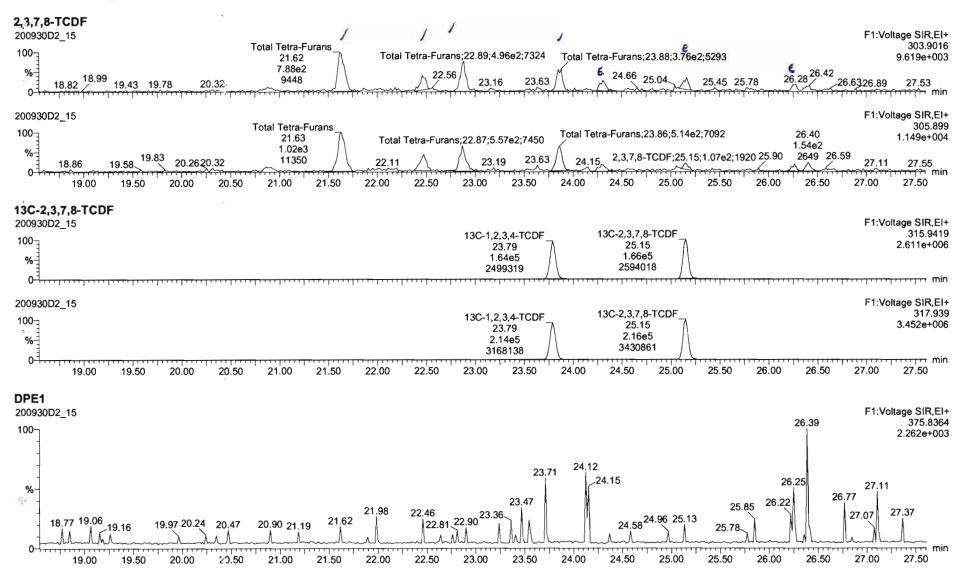
A File Edit View Display Processing Window Help

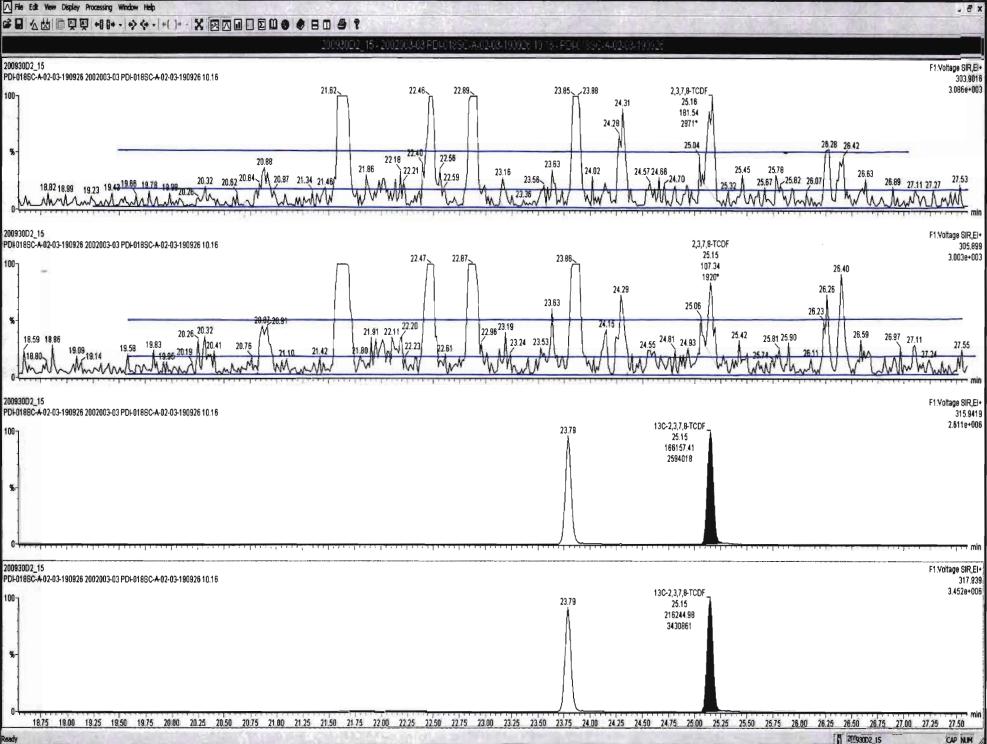

☞■△龄≣♀♀ +\$₽- ◇◇· +()+·X ፼∧∎∎⊻₩● ●日∎ ● ?


. . . x

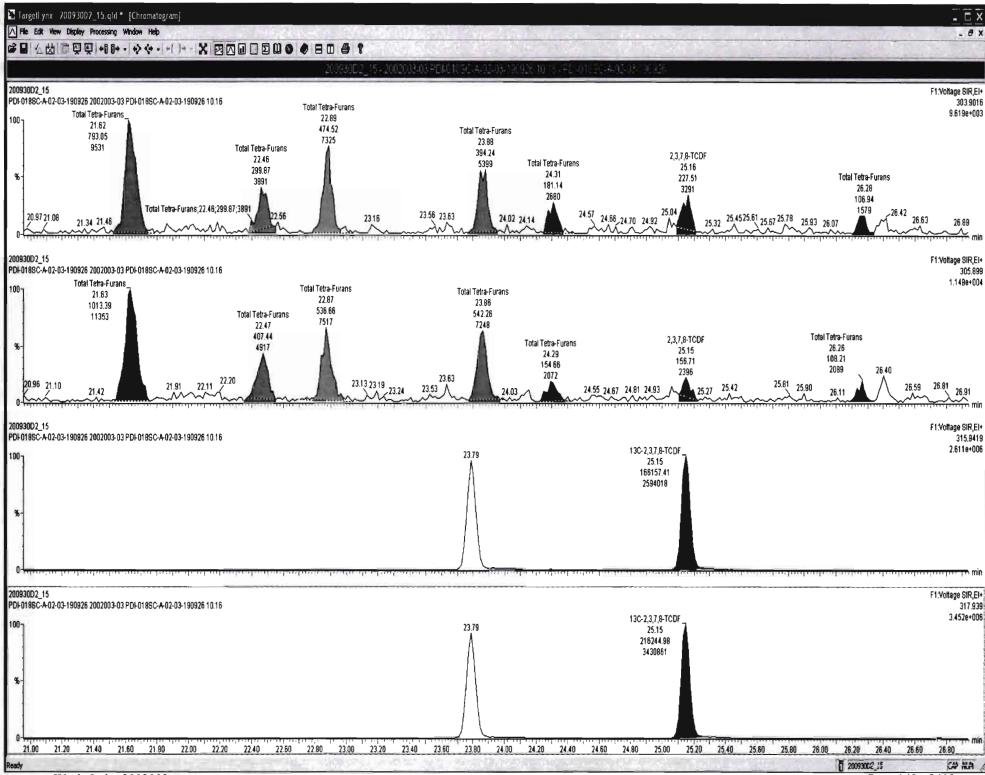
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Page 5 of 13 Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld Last Altered: Thursday, October 01, 2020 10:54:21 Pacific Daylight Time

Printed: Thursday, October 01, 2020 10:56:08 Pacific Daylight Time

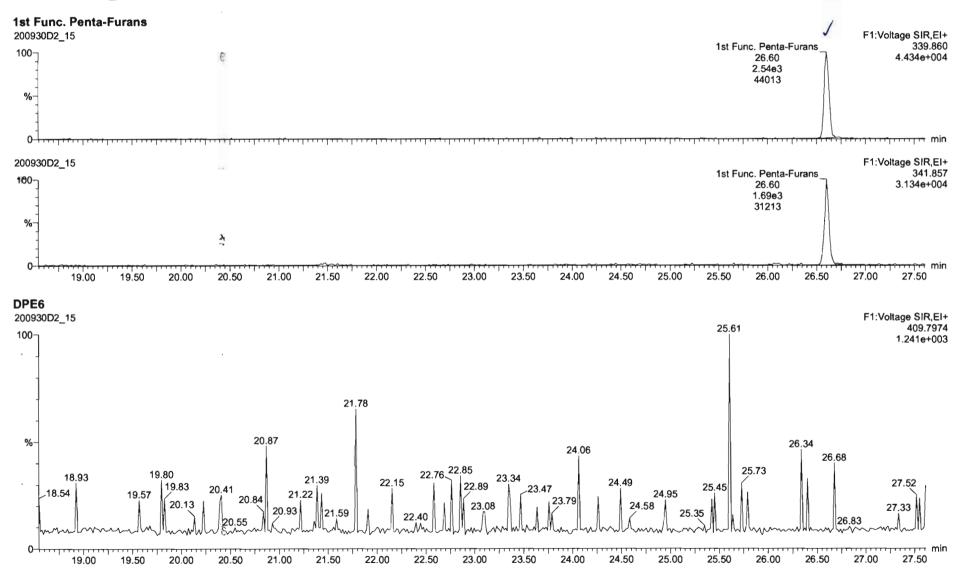

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_15.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time Thursday, October 01, 2020 10:56:08 Pacific Daylight Time	


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

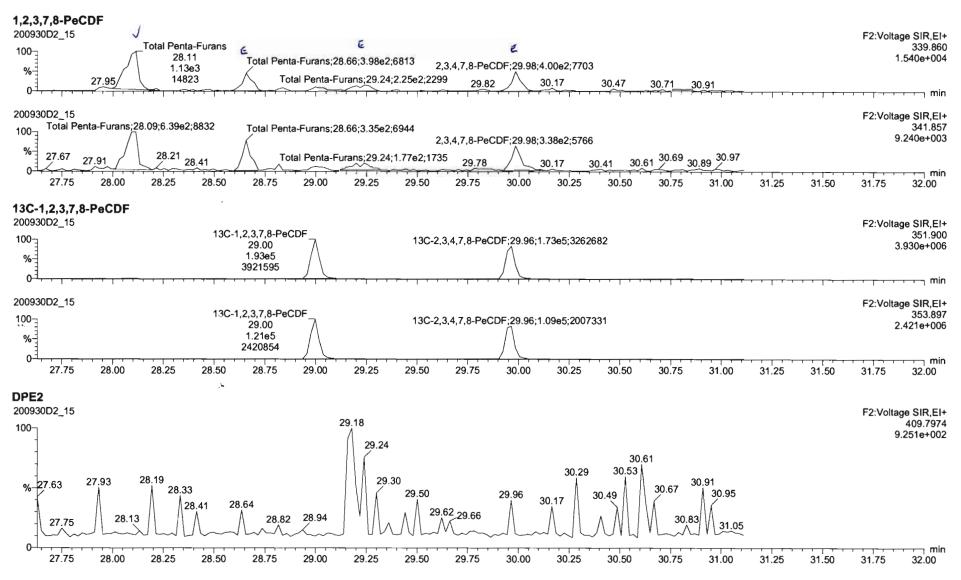

Last Altered:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:56:08 Pacific Daylight Time

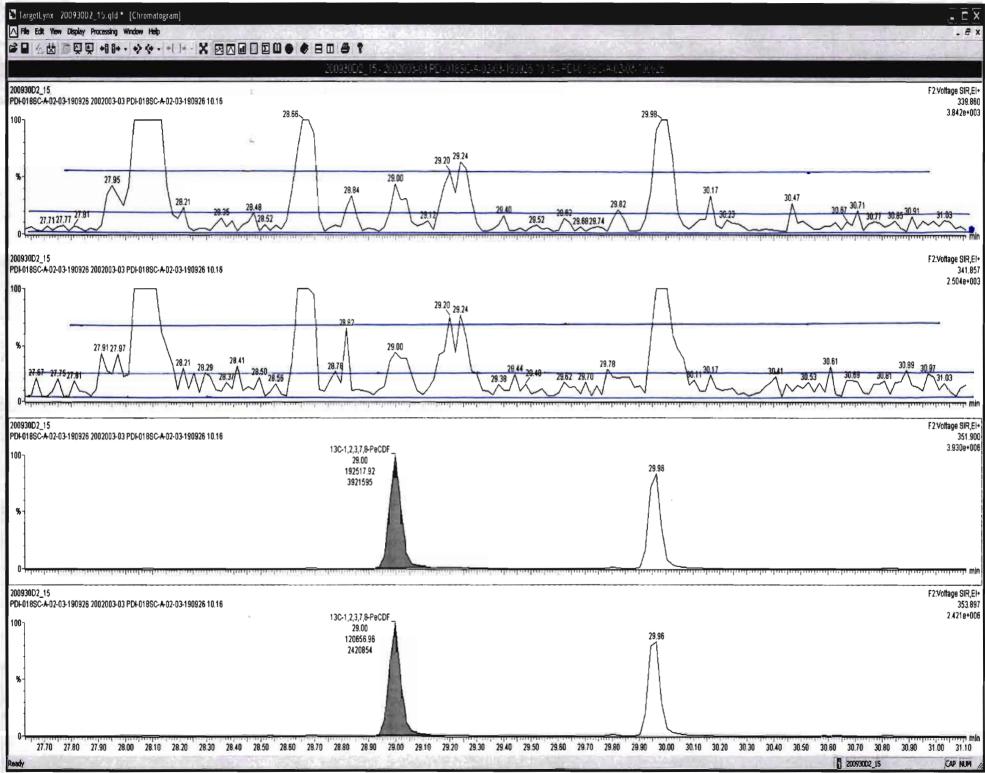
TargetLynx 200930D2 15.gld * (Chromatogram)


. [

Work Order 2002003

Page 149 of 419

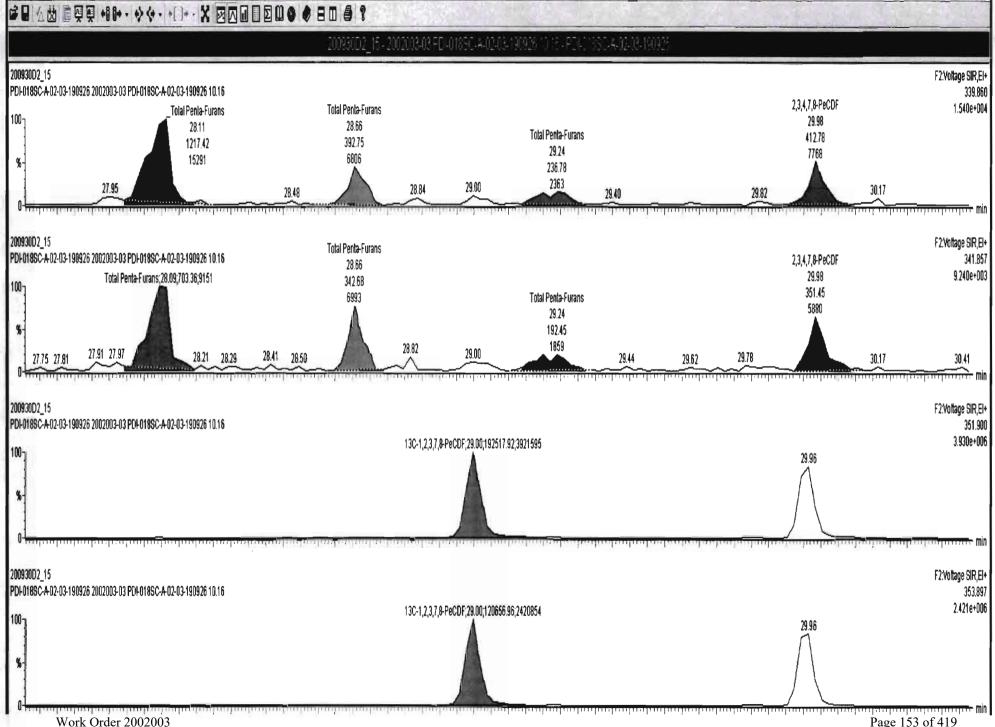

Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_15.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time Thursday, October 01, 2020 10:56:08 Pacific Daylight Time	



Quantify Sample Report Massing 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

Last Altered:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:56:08 Pacific Daylight Time

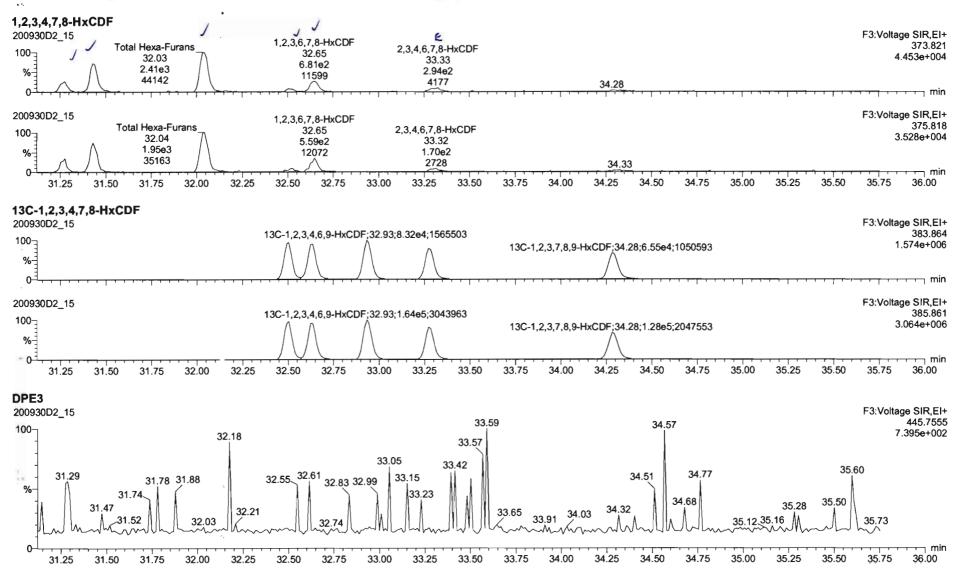


Work Order 2002003

TargetLynx - 200930D2_15.qld * - [Chromatogram]

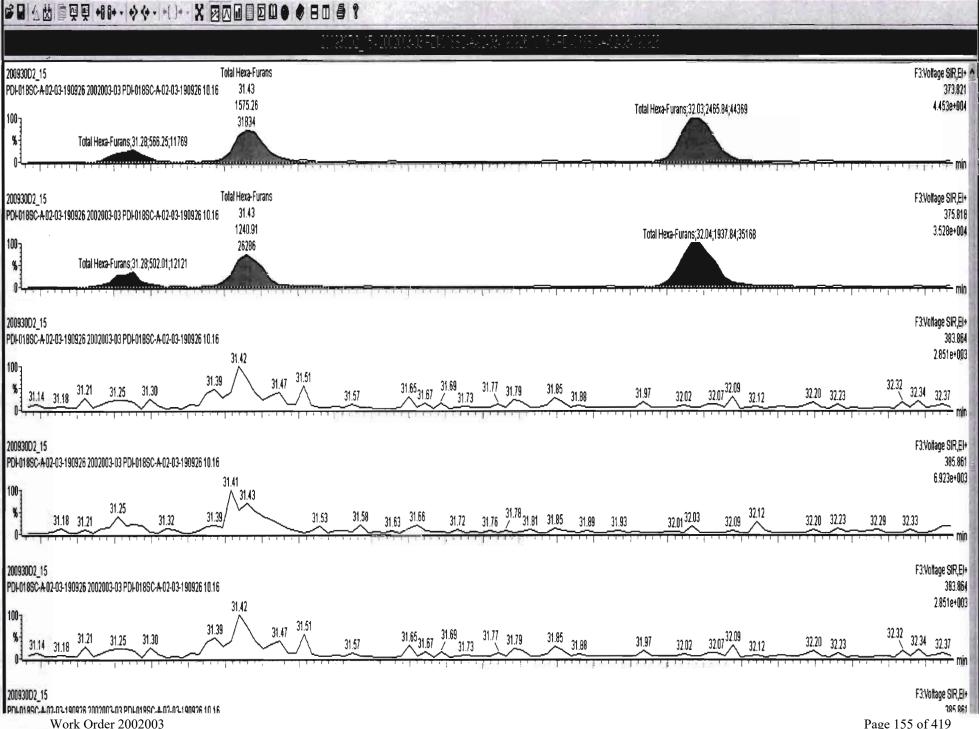
Re Edit View Display Processing Window Help

Page 153 of 419


- 8 1

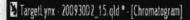
Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_15.qld

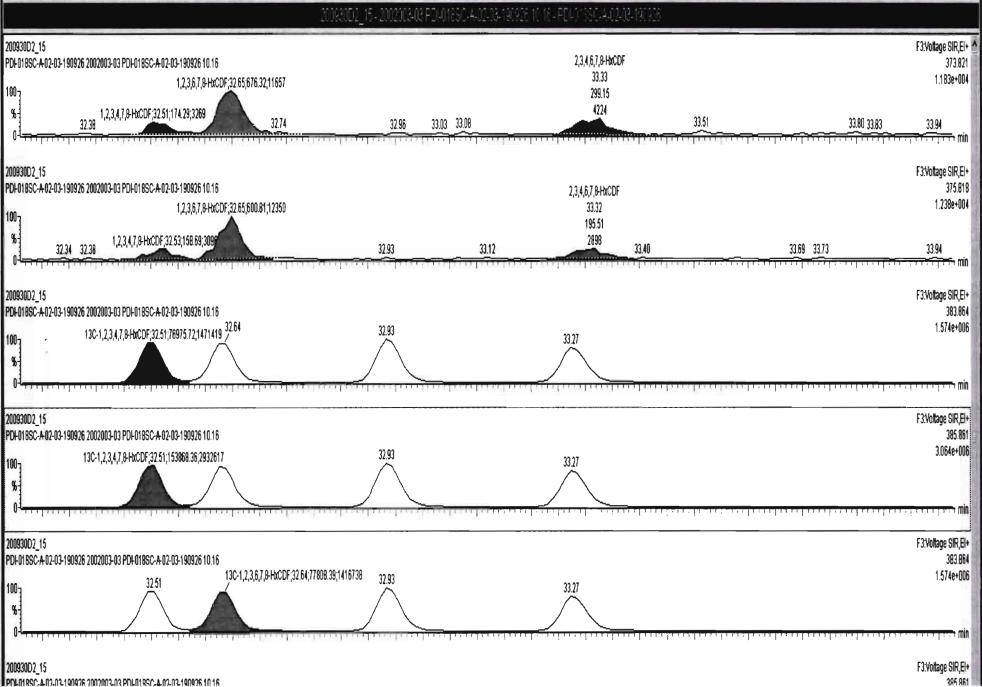
Last Altered:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:56:08 Pacific Daylight Time

👌 TargetLynx - 200930D2 15.gld * [Chromatogram]


A File Edit View Display Processing Window Help

Page 155 of 419

. C X

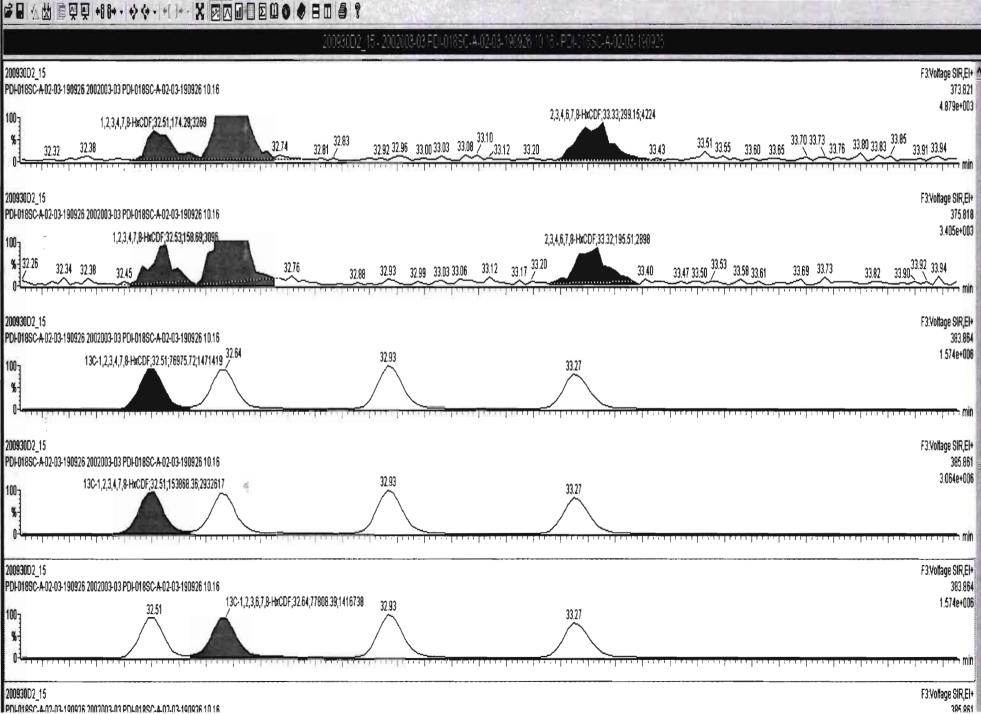

. 8 :

Work Order 2002003

ਫ਼ਿਤਿਨੋਲੋਫ਼ੋਯੋਡੋਯੋਡੋ +1 (+ - ☆ ↔ - +1 + - Ⅹ ☑☑〗 🖬 🖉 ♦ 日 🛯 🖗 १

A File Edit View Display Processing Window Help

Page 156 of 419


. D X

. 2 >

TargetLynx · 200930D2_15.qld * - [Chromatogram]

Work Order 2002003

A File Edit View Display Processing Window Help

Page 157 of 419

- - - > >

uantify Sam		Mas	sLynx 4.1												Pag	je 11 of 1
ataset:	U:\VG7.PRC)\Results\/	200930D2	\200930D	2_15.qld											
ast Altered: rinted:	Thursday, O Thursday, O	ctober 01 ctober 01	, 2020 10: , 2020 10:	54:21 Pac 56:08 Pac	ific Daylig ific Daylig	ht Time ht Time		_								
	-					_										
lame: 200930	D2_15, Date:	: 30-Sep-2	2020, Tim	e: 23:29:4	0, ID: 20	02003-03	PDI-018S	C-A-02-0	3-190926	10.16, De	escription	: PDI-018	SC-A-02-	03-19092	6	
,2,3,4,6,7,8-H 00930D2_15	pCDF	1	é												E4:Volt	age SIR,E
1003002_10	Total Hep	ota-Furans;3	6.60;2 <i>.</i> 49e3;	40030												407.78 4.673e+00
%		/\					37.	07								
0-1	<u>، ۱ ۱ ۰ - امخیر</u>		````	· · · · · · · ·	, , , , , , , , , , , , , , , , , , , 	· · · · · · ·				, , , , , ,						
00930D2_15	Total Hen	ta-Furans:36	6.59;2.48e3;4	11680											F4:Volt	age SIR,E 409.77
	10tal Hop			1000			- 1									4.549e+00
	،		<u>\</u> , 				4N	+		· , . , , ,				<u>-</u>		m
36.0		36.50	36.75	37.00	37.25	37.50	37.75	38.00	38.25	38.50	38.75	39.00	39.25	39.50	39.75	40.00
3C-1,2,3,4,6,7 00930D2_15	7,8-HpCDF		ř.												F4:Volt	age SIR,E
Λ Ε00					13	C-1,2,3,4,7,	8,9-HpCDF;	37.83;4.18e	4;701878							417.82 8.177e+00
%								<								
			-, , , , -, -,	· · l - · ·	· · · · · ·	· · · · · ·		┶╴╷╼╴╴			· · · · · · · ·	,_, , , , ,		• • •		
00930D2_15					13	C-1,2,3,4,7,8	B,9-HpCDF;3	37.83;9.64e4	;1609311							age SIR,E 419.82
%							\wedge									1.871e+00
0 ¹	0 36.25	36.50	36.75	37.00	37.25	37.50	37.75	38.00	38.25	38.50	38.75	39.00	39.25	39.50	39.75	
PE4																
00930D2_15	36.21														F4:Volt	age SIR,E 479.71
00				3	37.18						38.81		3	9.41		8.585e+0
-	36.17										38.77	3.84	39.32			
%-35.78	36.25		36.70	37.15	37.3	36 37,51	37.9	38.00	38.22		38.69	39,02	ł.	39,51	00.70	40.00
35.98	B /	36.53	· A I .	36.84 5.96 37.04	NA		37.68 37.8	38.0 36		38.65		B.90	20.10	39	39.70 .68 39.78	Λ
14Kml	m UIIm	mh	MWL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I'WW	Julton	37.68 37.8	NUM	38.3	3 38.49	JV VVV VL	Luh	39.19	Jhulh	whin	99.91

38.50

38.25

38.75

39.00

39.25

39.50

39.75

40.00 min

36.00

36.25

36.50

36.75

37.00

37.25

37.50

37.75

38.00

TargetLynx - 200930D2_15.qld • - [Chromatogram]

A File Edit View Display Processing Window Help

%

100-

100 -

%

100-

Work Order 2002003

F4.Voltage SIR,EI+

F4:Voltage SIR EI+

409.779 4,549e+004

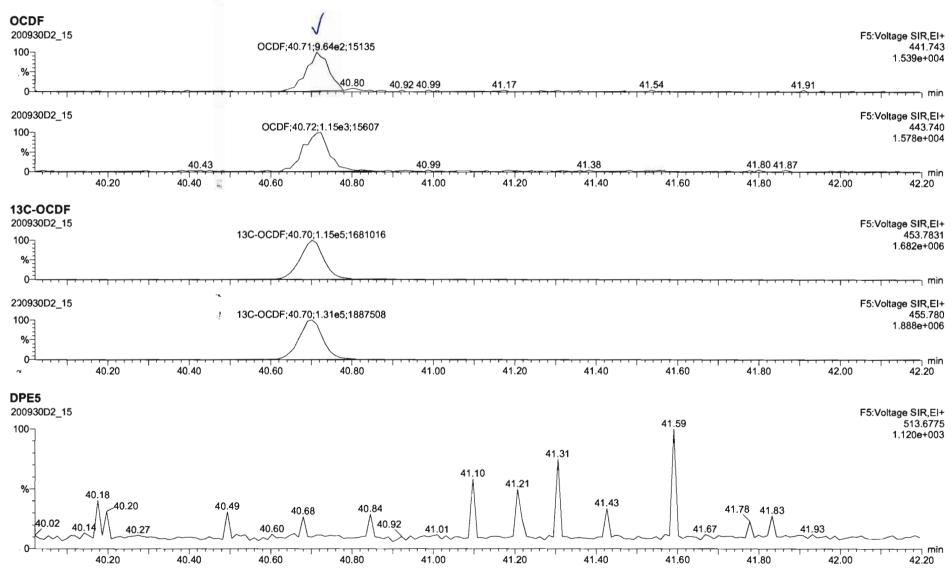
mir mir

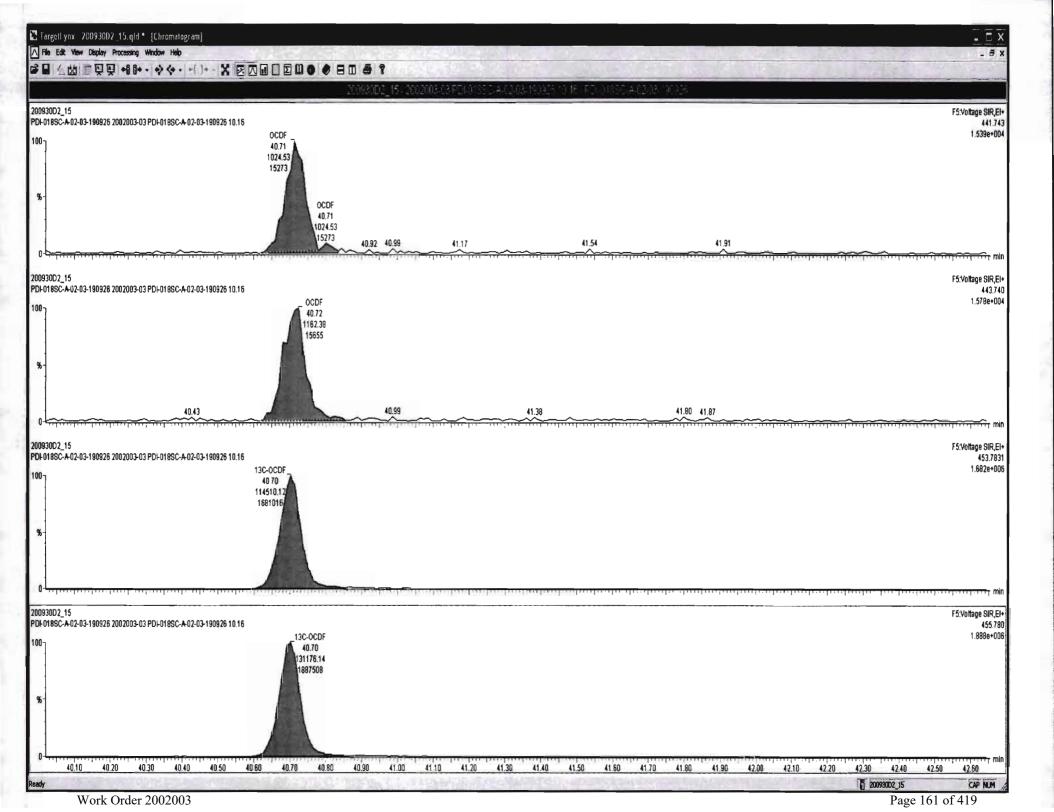
417.825 8.177e+005

F4.Voltage SIR,EI+

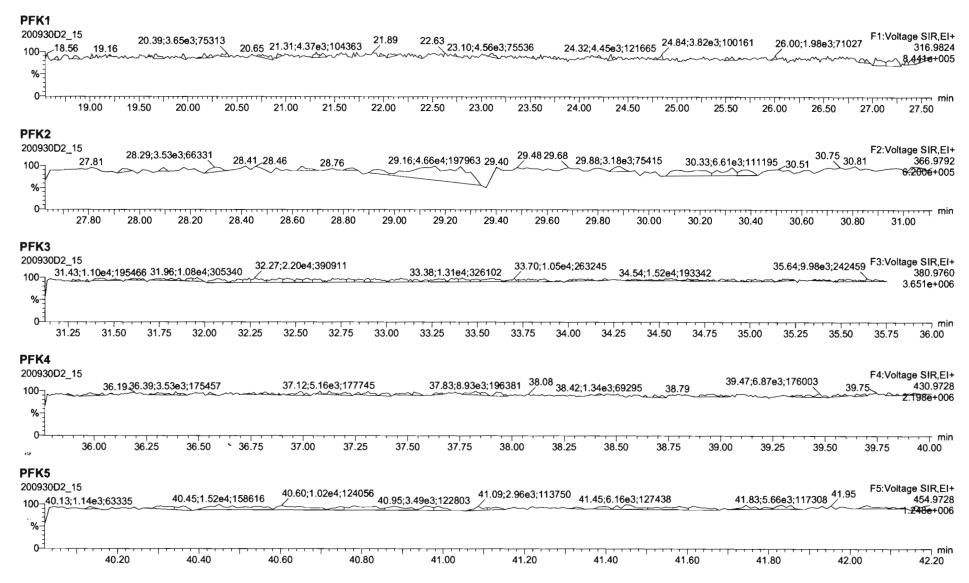
F4.Voltage SIR,EI+

419.822 1.871e+006


407,782


4.673e+004

☞◼☆ऄॗॕॕज़ज़ज़ॳॖ + () + - Х छ∧ॊॖ∎ॆऽध● ♦ 8 □ ♣ १ REPUBLARAN Total Hepla-Furans 200930D2 15 36.60 PDF018SC-A-02-03-190926 2002003-03 PDF018SC-A-02-03-190926 10.16 100 1,2,3,4,6,7,8-HpCDF;35.94;2988.75;46573 2585.88 40485 37.87 200930D2_15 PDF018SC-A02-03-190926 2002003-03 PDF018SC-A02-03-190926 10.16 1,2,3,4,6,7,8-HpCDF;35.94;2852.71;45353 Total Hepta-Furans; 36.59; 2524.92, 41837 1,2,3,4,6,7,8-HpCDF 35.94 2852.71 45353 0-200930D2_15 PDF0185C-A u2-03-190926 2002003-03 PDF0185C-A 02-03-190926 10.16 37.83 200930D2_15 PDF018SC-A02-03-190926 2002003-03 PDF018SC-A02-03-190926 10.16 37.83


Page 159 of 419

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_15.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time Thursday, October 01, 2020 10:56:08 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 13 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_15.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:54:21 Pacific Daylight Time Thursday, October 01, 2020 10:56:08 Pacific Daylight Time	

Quantify San Vista Analytica	aple Summary Report MassLynx 4.1 al Laboratory		Page 1 of 2
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld		
Last Altered: Printed:	Friday, October 02, 2020 11:10:18 Pacific Daylight Time Friday, October 02, 2020 11:12:22 Pacific Daylight Time	DB 10/2/20	C-1 10/06/2020
(m)	1		C. /0/

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	7.751	25.852		1.001				0.140	
2	2 1,2,3,7,8-PeCDD			NO	0.935	7.751	30.187		1.001				0.180	1
3	3 1,2,3,4,7,8-HxCDD			NO	1.15	7.751	33.426		1.000				0.191	
4	4 1,2,3,6,7,8-HxCDD	3.26e2	1.25	NO	1.02	7.751	33.525	33.55	1.000	1.001	0.58316		0.198	0.583
5	5 1,2,3,7,8,9-HxCDD	1.90e2	1.15	NO	1.06	7.751	33.845	33.84	1.001	1.001	0.33905		0.205	0.339
6	6 1,2,3,4,6,7,8-HpCDD	3.87e3	1.02	NO	1.00	7.751	37.212	37.22	1.000	1.001	9.3000		0.522	9.30
7	7 OCDD	4.13e4	0.86	NO	0.952	7.751	40.405	40.42	1.000	1.000	188.90		0.611	189
8	8 2,3,7,8-TCDF	3.73e2	1.04	YES	1.01	7.751	25.188	25.19	1.001	1.001	0.27482		0.134	0.238
9	9 1,2,3,7,8-PeCDF			NO	0.998	7.751	29.038		1.001				0.148	
10	10 2,3,4,7,8-PeCDF	1.01e3	1.83	YES	1.07	7.751	29.994	30.00	1.001	1.001	0.98149		0.144	0.883
11	11 1,2,3,4,7,8-HxCDF	3.96e2	1.17	NO	1.05	7.751	32.516	32.53	1.000	1.000	0.51563		0.160	0.516
12	12 1,2,3,6,7,8-HxCDF	8.73e2	1.10	NO	1.10	7.751	32.657	32.66	1.000	1.000	1.0918		0.164	1.09
12 13	13 2,3,4,6,7,8-HxCDF	5.93e2	1.25	NO	1.09	7.751	33.328	33.31	1.001	1.000	0.87238		0.200	0.872
14	14 1,2,3,7,8,9-HxCDF	2.29e2	1.12	NO	1.08	7.751	34.293	34.36	1.000	1.002	0.34803		0.231	0.348
15	15 1,2,3,4,6,7,8-HpCDF	8.49e3	1.07	NO	1.13	7.751	35.975	35.95	1.001	1.000	14.727		0.289	14.7
16	16 1,2,3,4,7,8,9-HpCDF	1.56e2	1.14	NÖ	1.29	7.751	37.849	37.86	1.000	1.000	0.33164		0.278	0.332
17	17 OCDF	1.81e3	0.94	NO	0.953	7.751	40.713	40.75	1.000	1.001	6.7912		0.350	6.79
18	18 13C-2,3,7,8-TCDD	2.31e5	0.79	NO	1.17	7.751	25.817	25.82	1.026	1.026	248.43	96.3	0.631	
19	19 13C-1,2,3,7,8-PeCDD	1.71e5	0.62	NO	0.914	7.751	30.009	30.17	1.193	1.199	235.36	91.2	0.458	
20	20 13C-1,2,3,4,7,8-HxCDD	1.27e5	1.28	NO	0.634	7.751	33.416	33.42	1.014	1.014	218.73	84.8	0.692	
21	21 13C-1,2,3,6,7,8-HxCDD	1.41e5	1.27	NO	0.724	7.751	33.525	33.53	1.017	1.017	211.88	82.1	0.606	
22	22 13C-1,2,3,7,8,9-HxCDD	1.36e5	1.30	NO	0.716	7.751	33.792	33.81	1.025	1.026	207.06	80.2	0.613	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.07e5	1.00	NO	0.660	7.751	37.206	37.20	1.129	1.129	176.73	68.5	1.01	
24	24 13C-OCDD 1	1.18e5	0.90	NO	0.587	7.751	40.185	40.40	1.219	1.226	219.68	42.6	0.542	
25	25 13C-2,3,7,8-TCDF	3.46e5	0.77	NO	1.02	7.751	24.911	25.16	0.990	1.000	232.86	90.2	0.544	
26	26 13C-1,2,3,7,8-PeCDF	2.71e5	1.66	NO	0.842	7.751	29.081	29.02	1.156	1.153	221.34	85.8	0.727	
27	27 13C-2,3,4,7,8-PeCDF	2.48e5	1.65	NO	0.802	7.751	29.969	29.96	1.191	1.191	212.34	82.3	0.764	
28	28 13C-1,2,3,4,7,8-HxCDF	1.88e5	0.50	NO	1.00	7.751	32.560	32.52	0.988	0.987	204.38	79.2	0.925	
29	29 13C-1,2,3,6,7,8-HxCDF	1.88e5	0.50	NO	1.02	7.751	32.691	32.65	0.992	0.991	200.34	77.6	0.911	
30	30 13C-2,3,4,6,7,8-HxCDF	1.61e5	0.50	NO	0.955	7.751	33.255	33.29	1.009	1.010	183.61	71.2	0.972	
31	31 13C-1,2,3,7,8,9-HxCDF	1.57e5	0.52	NO	0.851	7.751	34.319	34.29	1.041	1.041	200.45	77.7	1.09	

Quantify Sam Vista Analytica	aple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	0930D2\200930D2_16.qld	
Last Altered: Printed:) 11:10:18 Pacific Daylight Time) 11:12:22 Pacific Daylight Time	

Name: 200930D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926

States -	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.32e5	0.45	NO	0.848	7.751	35.822	35.94	1.087	1.091	168.75	65.4	0.791	
33	33 13C-1,2,3,4,7,8,9-HpCDF	9.42e4	0.45	NO	0.624	7.751	37.799	37.85	1.147	1.149	164.25	63.7	1.07	
31	34 13C-OCDF	1.44e5	0.88	NO	0.730	7.751	40.337	40.71	1.224	1.235	214.69	41.6	0.620	
35	35 37CI-2,3,7,8-TCDD	1.15e5			1.21	7.751	25.815	25.84	1.026	1.027	120.02	116	0.124	
36	36 13C-1,2,3,4-TCDD	2.05e5	0.77	NO	1.00	7.751	25.260	25.16	1.000	1.000	258.03	100	0.740	
37	37 13C-1,2,3,4-TCDF	3.75e5	0.78	NO	1.00	7.751	23.930	23.80	1.000	1.000	258.03	100	0.556	
30	38 13C-1,2,3,4,6,9-HxCDF	2.37e5	0.52	NO	1.00	7.751	32.990	32.96	1.000	1.000	258.03	100	0.928	
39	39 Total Tetra-Dioxins				1.00	7.751	24.620		0.000				0.0711	
40	40 Total Penta-Dioxins				0.935	7.751	29.960		0.000		0.50981		0.180	0.510
41	41 Total Hexa-Dioxins				1.02	7.751	33.635		0.000		2.8793		0.209	3.94
42	42 Total Hepta-Dioxins				1.00	7.751	37.640		0.000		23.850		0.522	23.9
43	43 Total Tetra-Furans				1.01	7.751	23.610		0.000		4.4130		0.134	4.84
44	44 1st Func. Penta-Furans				0.998	7.751	26.750		0.000		5.8765		0.0742	5.88
45	45 Total Penta-Furans				0.998	7.751	29.275		0.000		3.6560		0.151	4.54
46	46 Total Hexa-Furans				1.09	7.751	33.555		0.000		16.853		0.185	16.9
47	47 Total Hepta-Furans				1.13	7.751	37.835		0.000		28.568		0.300	28.6

- 11

2

.

1

20

ġ

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_16.qld

Last Altered:	Friday, October 02, 2020 11:10:18 Pacific Daylight Time
Printed:	Friday, October 02, 2020 11:12:22 Pacific Daylight Time

l

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp n	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Penta-Dioxins

10 The	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.11	1.548e3	3.580e3	1.226e2	1.930e2	0.64	NO	3.156e2	0.50981	0.50981	0.180

Haxa-Dioxins

The second	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	31.79	9.578e3	8.839e3	4.809e2	4.182e2	1.15	NO	8.990e2	1.6802	1.6802	0.209
2	Total Hexa-Dioxins	32.38	1.644e3	1.053e3	8.339e1	6.480e1	1.29	NO	1.482e2	0.27694	0.27694	0.209
3	Total Hexa-Dioxins	32.68	1.034e4	8.142e3	3.659e2	2.536e2	1.44	YES	0.000e0	0.00000	1.0615	0.209
4	1,2,3,6,7,8-HxCDD	33.55	3.208e3	3.526e3	1.812e2	1.451e2	1.25	NO	3.263e2	0.58316	0.58316	0.198
5	1,2,3,7,8,9-HxCDD	33.84	1.716e3	2.184e3	1.017e2	8.817e1	1.15	NO	1.899e2	0.33905	0.33905	0.205

Hepta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.31	5.083e4	4.883e4	3.179e3	2.878e3	1.10	NO	6.057e3	14.550	14.550	0.522
2	1,2,3,4,6,7,8-HpCDD	37.22	3.602e4	3.776e4	1.954e3	1.917e3	1.02	NO	3.872e3	9.3000	9.3000	0.522

2

Quantify Totals Report MassLynx 4.1

Vista Analytica	al Laboratory
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld
Last Altered: Printed:	Friday, October 02, 2020 11:10:18 Pacific Daylight Time Friday, October 02, 2020 11:12:22 Pacific Daylight Time

Name: 200930D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926

Tetra-Furans

21.25	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.91	1.799e3	2.322e3	1.106e2	1.826e2	0.61	YES	0.000e0	0.00000	0.18707	0.134
2	Total Tetra-Furans	21.66	1.030e4	1.198e4	9.030e2	1.193e3	0.76	NO	2.096e3	1.5423	1.5423	0.134
3	Total Tetra-Furans	22.50	3.973e3	6.260e3	3.720e2	4.970e2	0.75	NO	8.690e2	0.63943	0.63943	0.134
4	Total Tetra-Furans	22.89	7.994e3	9.045e3	5.881e2	7.184e2	0.82	NO	1.307e3	0.96140	0.96140	0.134
5	Total Tetra-Furans	23.88	9.051e3	9.771e3	5.518e2	7.162e2	0.77	NO	1.268e3	0.93307	0.93307	0.134
6	2,3,7,8-TCDF	- 25.19	2.438e3	2.839e3	1.906e2	1.829e2	1.04	YES	3.735e2	0.00000	0.23820	0.134
7	Total Tetra-Furans	26.29	1.661e3	2.277e3	8.936e1	1.282e2	0.70	NO	2.175e2	0.16008	0.16008	0.134
8	Total Tetra-Furans	26.42	1.623e3	2.424e3	9.810e1	1.421e2	0.69	NO	2.402e2	0.17676	0.17676	0.134

Penta-Furans function 1

32	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
11	1st Func. Penta-Furans	26.62	6.513e4	3.800e4	3.620e3	2.272e3	1.59	NO	5.892e3	5.8765	5.8765	0.0742

Penta-Furans

12	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.11	1.767e4	1.504e4	1.365e3	9.995e2	1.37	NO	2.364e3	2.3580	2.3580	0.151
2	Total Penta-Furans	28.68	8.368e3	5.563e3	5.100e2	3.070e2	1.66	NO	8.170e2	0.81480	0.81480	0.151
3	Total Penta-Furans	29.28	3.264e3	2.133e3	2.850e2	1.994e2	1.43	NO	4.844e2	0.48312	0.48312	0.151
44	2,3,4,7,8-PeCDF	. 30.00	1.204e4	7.345e3	6.546e2	3.569e2	1.83	YES	1.012e3	0.00000	0.88305	0.144

Hexa-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
f	Total Hexa-Furans	31.29	1.781e4	1.414e4	8.588e2	7.420e2	1.16	NO	1.601e3	2.1893	2.1893	0.185
2	Total Hexa-Furans	31.45	4.403e4	3.206e4	2.050e3	1.616e3	1.27	NO	3.666e3	5.0139	5.0139	0.185
3	Total Hexa-Furans	32.06	5.275e4	4.660e4	2.736 e 3	2.252e3	1.22	NO	4.988e3	6.8218	6.8218	0.185
4	1,2,3,4,7,8-HxCDF	32.53	3.807e3	3.709e3	2.136e2	1.822e2	1.17	NO	3.958e2	0.51563	0.51563	0.160
5	1,2,3,6,7,8-HxCDF	32.66	7.546e3	7.356e3	4.574e2	4.154e2	1.10	NO	8.728e2	1.0918	1.0918	0.164
6	2,3,4,6,7,8-HxCDF	33.31	5.128e3	4.375e3	3.290e2	2.635e2	1.25	NO	5.926e2	0.87238	0.87238	0.200
7	1,2,3,7,8,9-HxCDF	34.36	2.171e3	2.084e3	1.211e2	1.077e2	1.12	NO	2.288e2	0.34803	0.34803	0.231

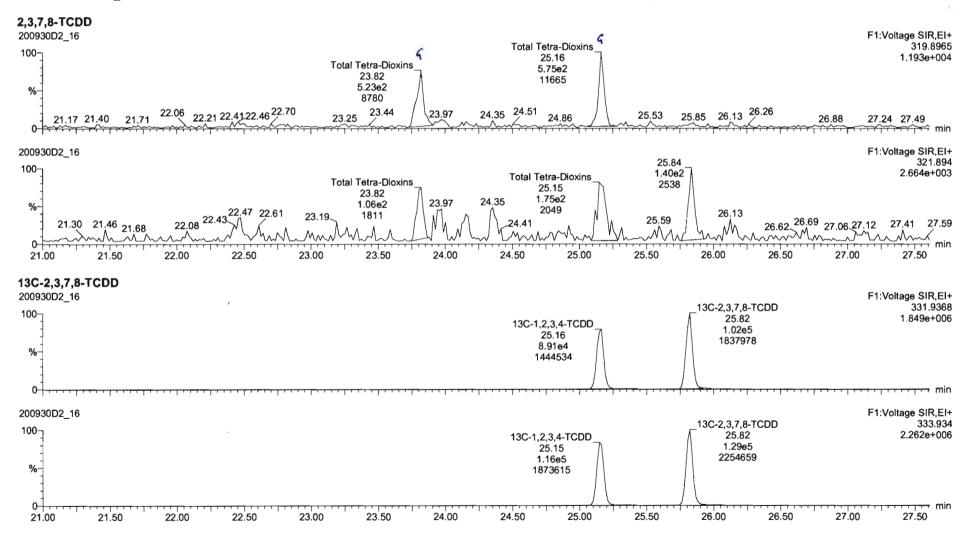
Guantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

U:\VG7.PRO\Results\200930D2\200930D2_16.qld Dataset:

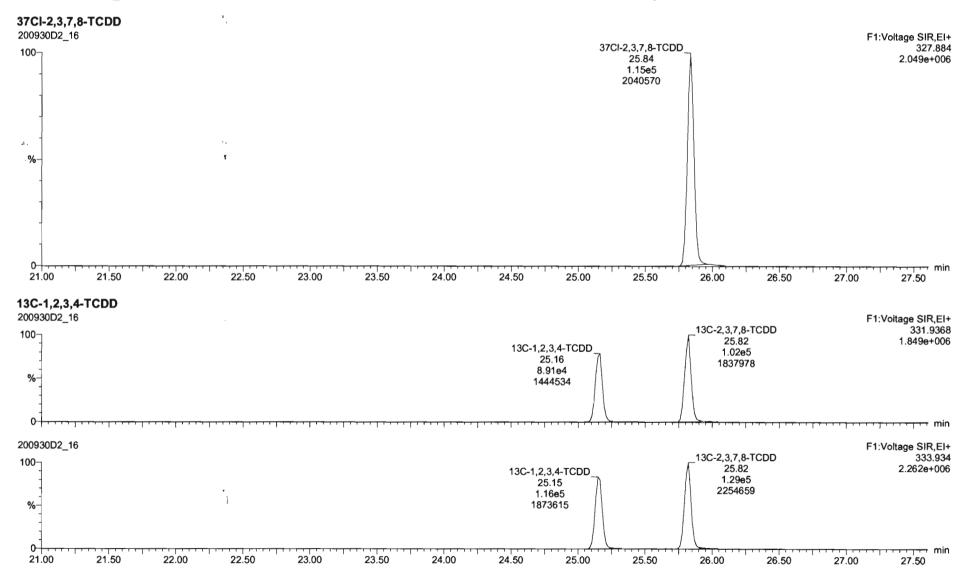
Last Altered:	Friday, October 02, 2020 11:10:18 Pacific Daylight Time
Printed:	Friday, October 02, 2020 11:12:22 Pacific Daylight Time

Name: 200930D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926

Hepta-Furans

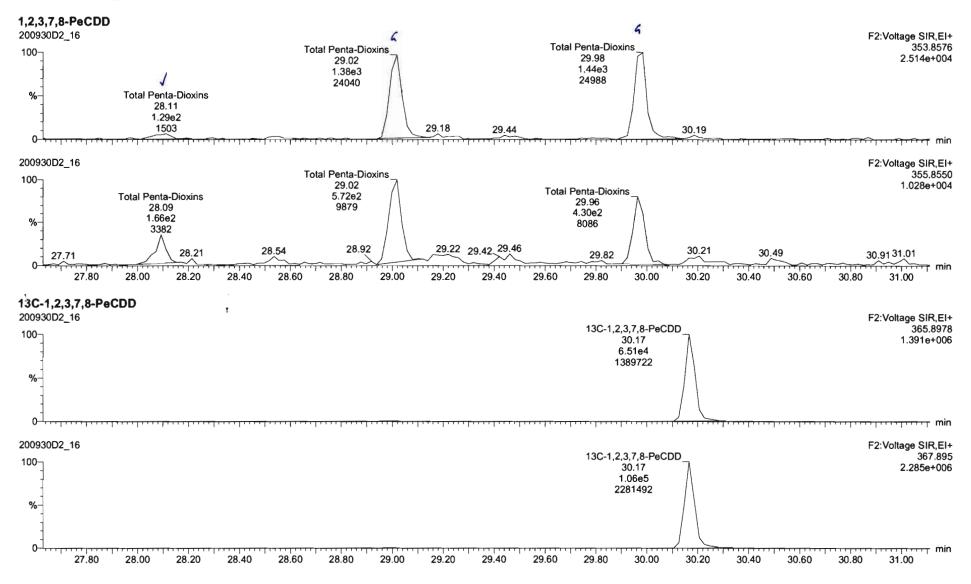

12

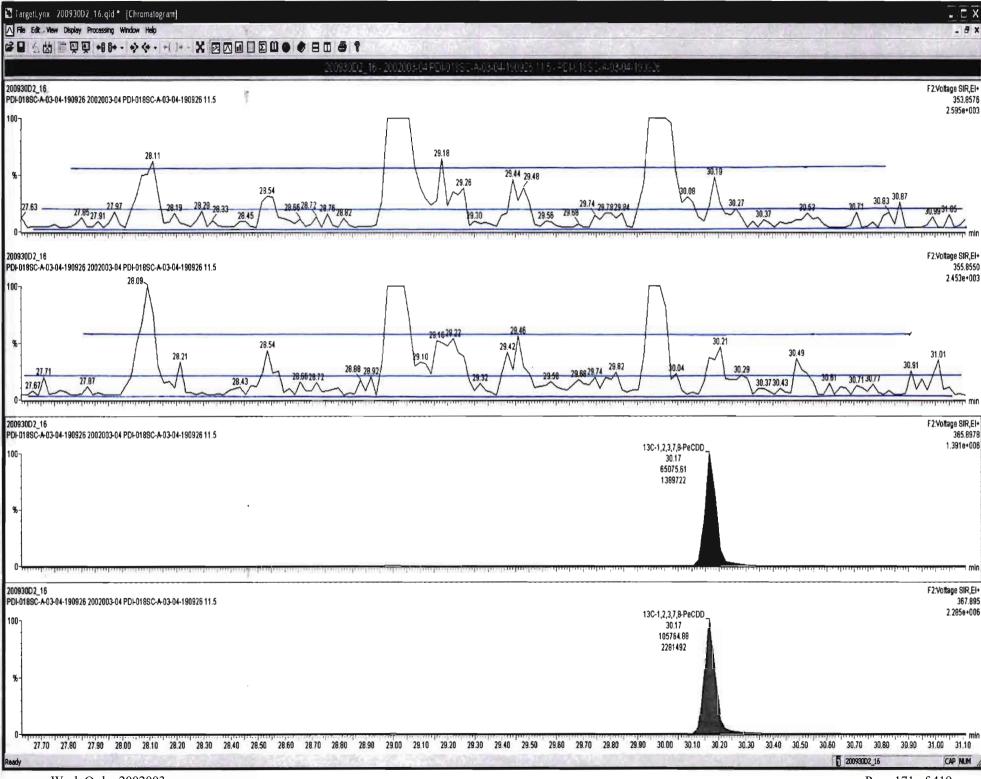
110.2	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	35.95	5.982e4	6.084e4	4.383e3	4.108e3	1.07	NO	8.491e3	14.727	14.727	0.289
2	Total Hepta-Furans	36.61	5.260e4	5.156e4	3.410e3	3.274e3	1.04	NO	6.684e3	13.510	13.510	0.300
3	1,2,3,4,7,8,9-HpCDF	37.86	1.430e3	1.447e3	8.282e1	7.294e1	1.14	NO	1.558e2	0.33164	0.33164	0.278


и. 91

Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

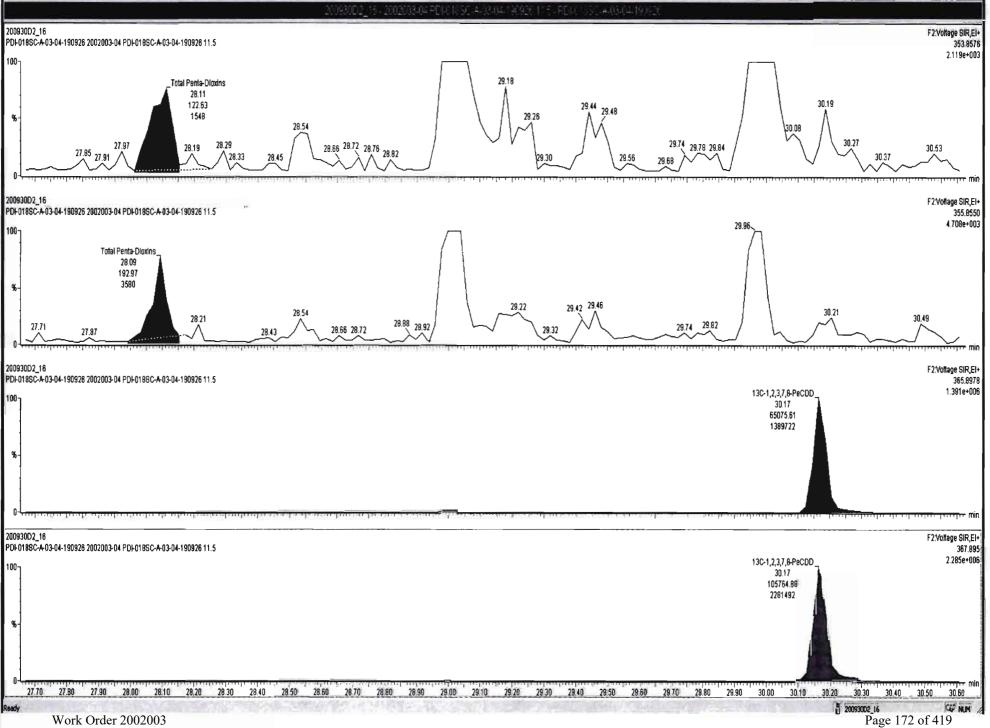

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

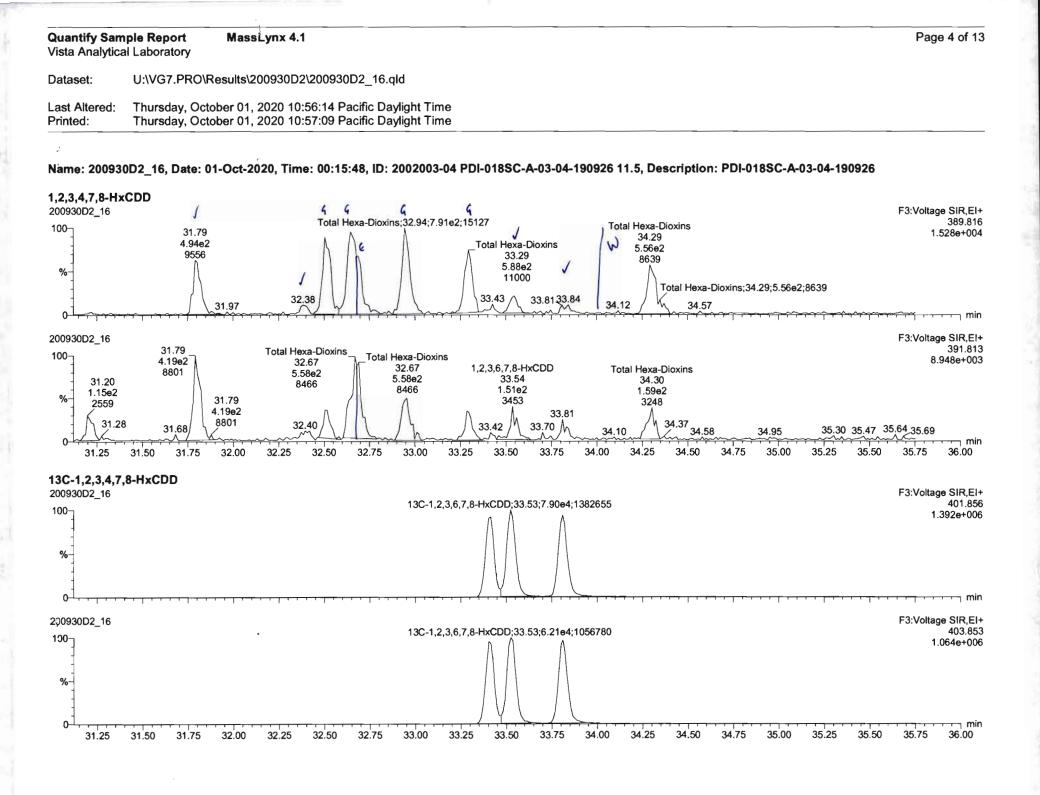

Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

Name: 200930D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926

ÿ

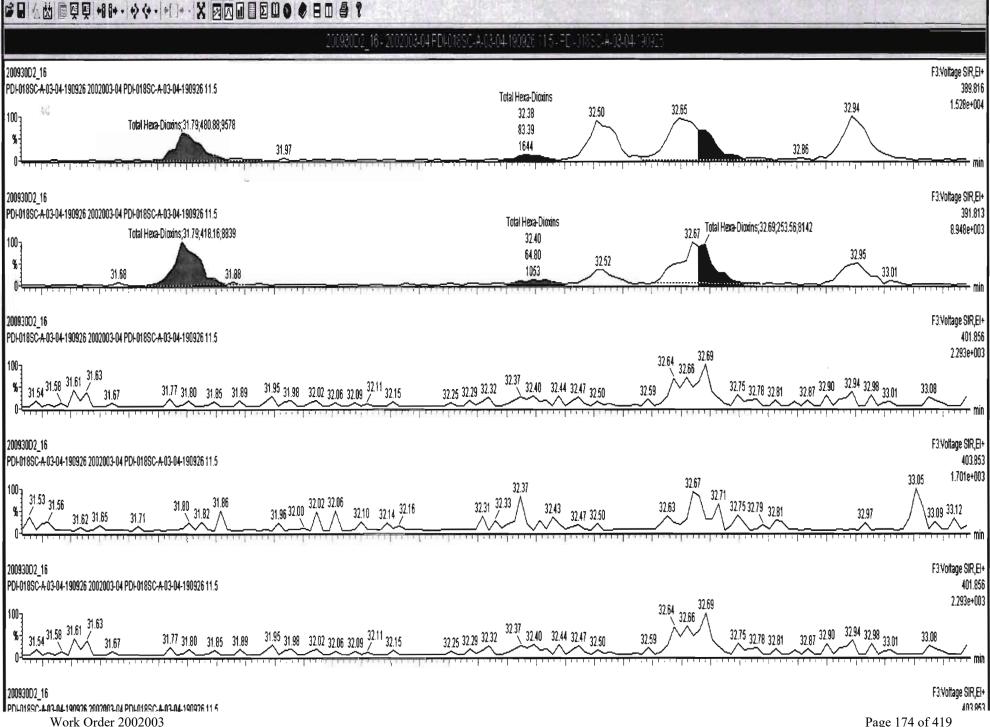
Work Order 2002003


Page 171 of 419

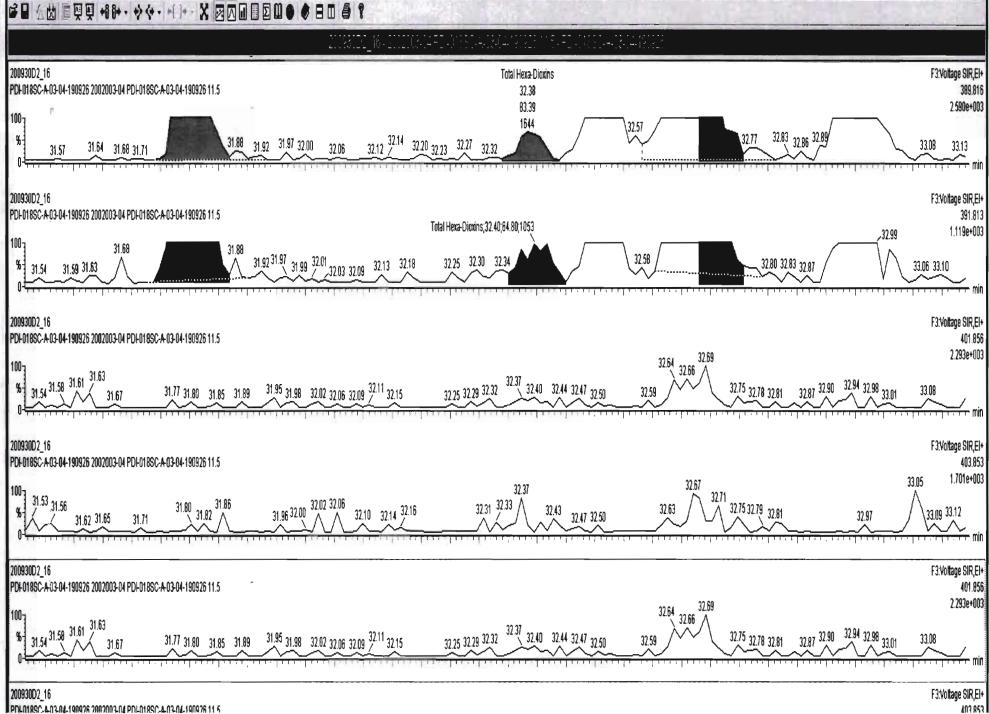

Work Order 2002003

🔁 Targetl ynx - 20093002_16.qld * - [Chromatogram]

A File Edit View Display Processing Window Help


✿■△齿■♀♀ +8 \$+ • ♦ ♦ • +()• · X ⊠⊠∎□ΣШ● ● В□ ♣ ?

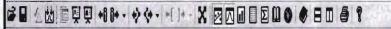
👌 TargetLynx - 200930D2 16.qld 🔭 [Chromatogram]

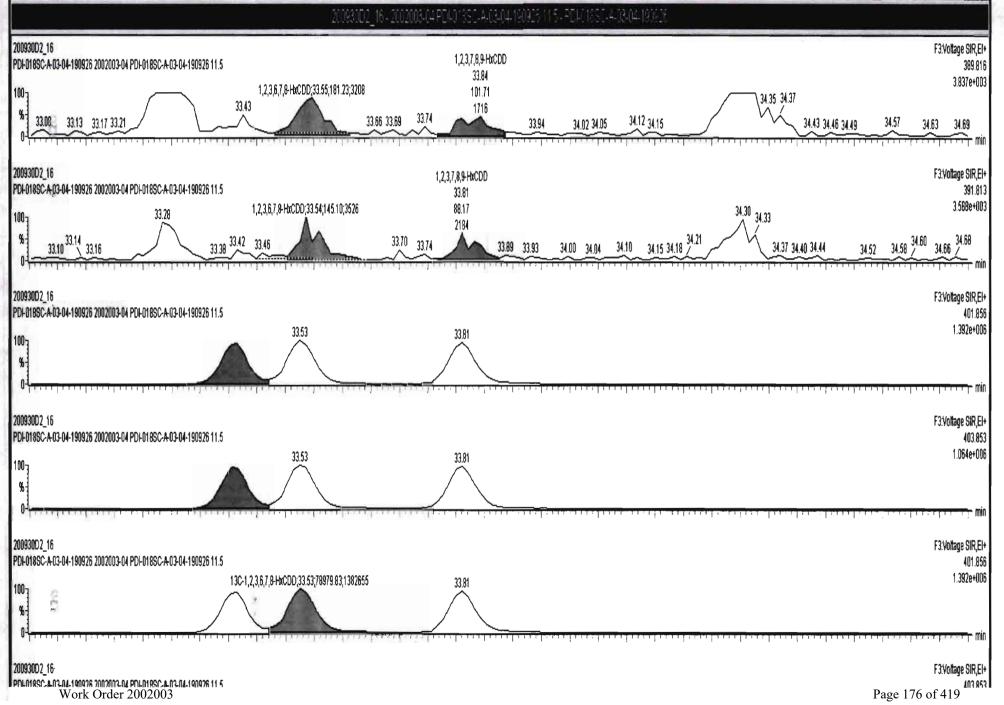

Rife Edit View Display Processing Window Help

. E X . 8 >

🖹 TargetLynx - 200930D2_16.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

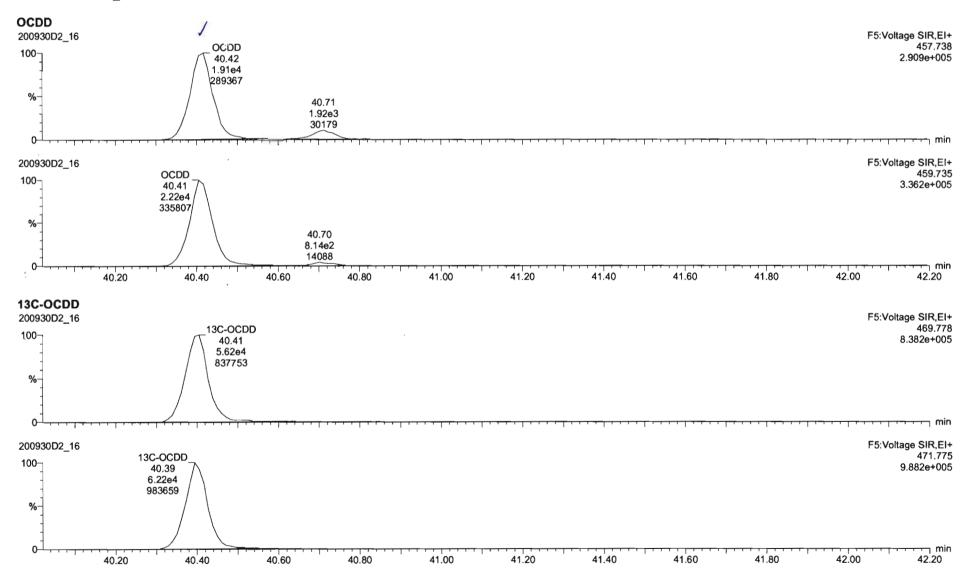

Work Order 2002003


. 8 x

Page 175 of 419

🖹 Targetl.ynx - 200930D2_16.qld * - [Chromatogram]

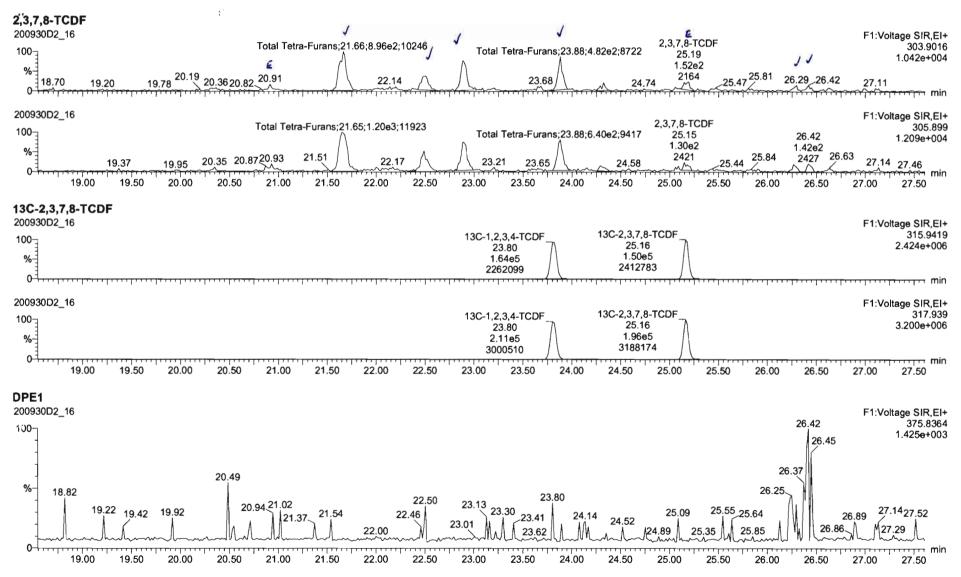
A File Edit View Display Processing Window Help



_ C X

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

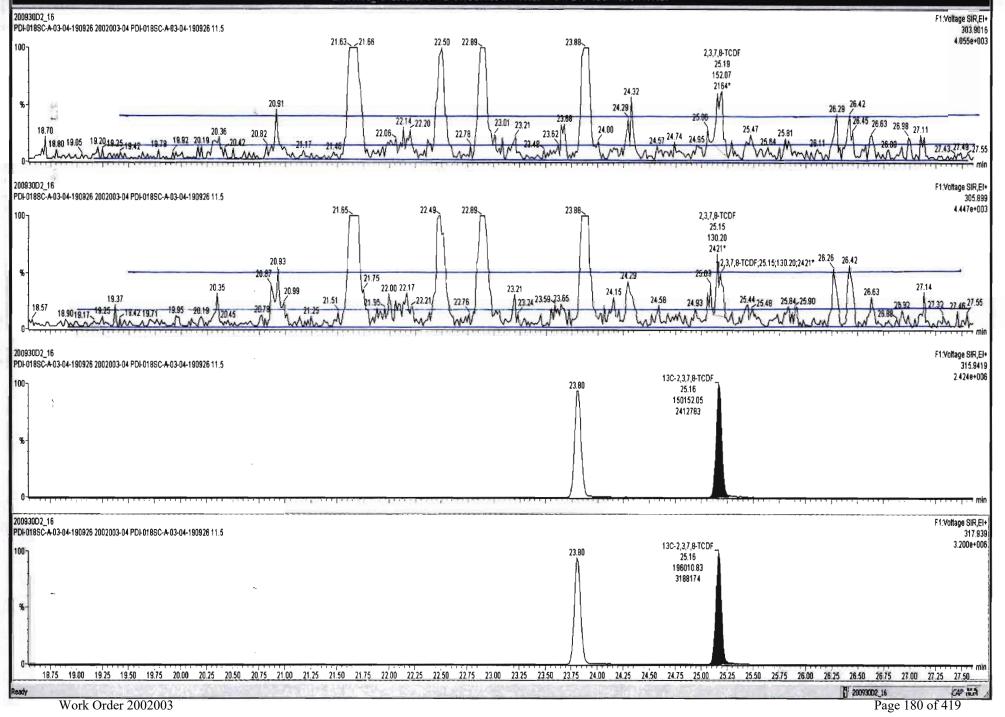


Quantify Sample Report MassLynx 4.1

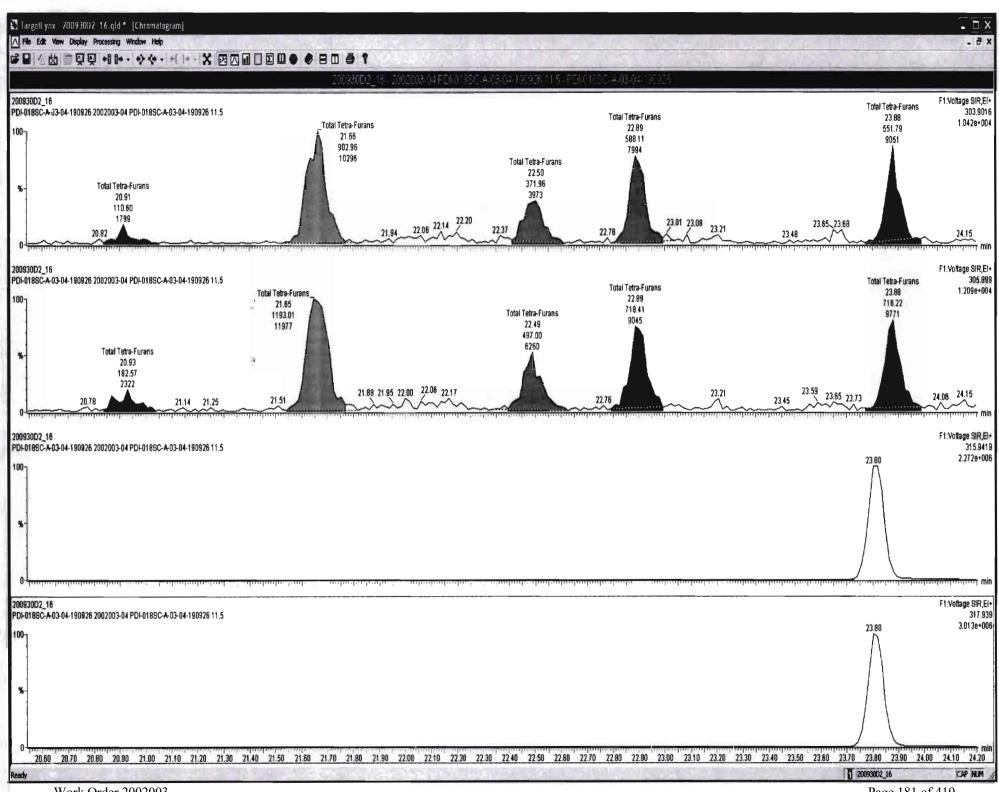
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_16.qld

Last Altered:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:57:09 Pacific Daylight Time

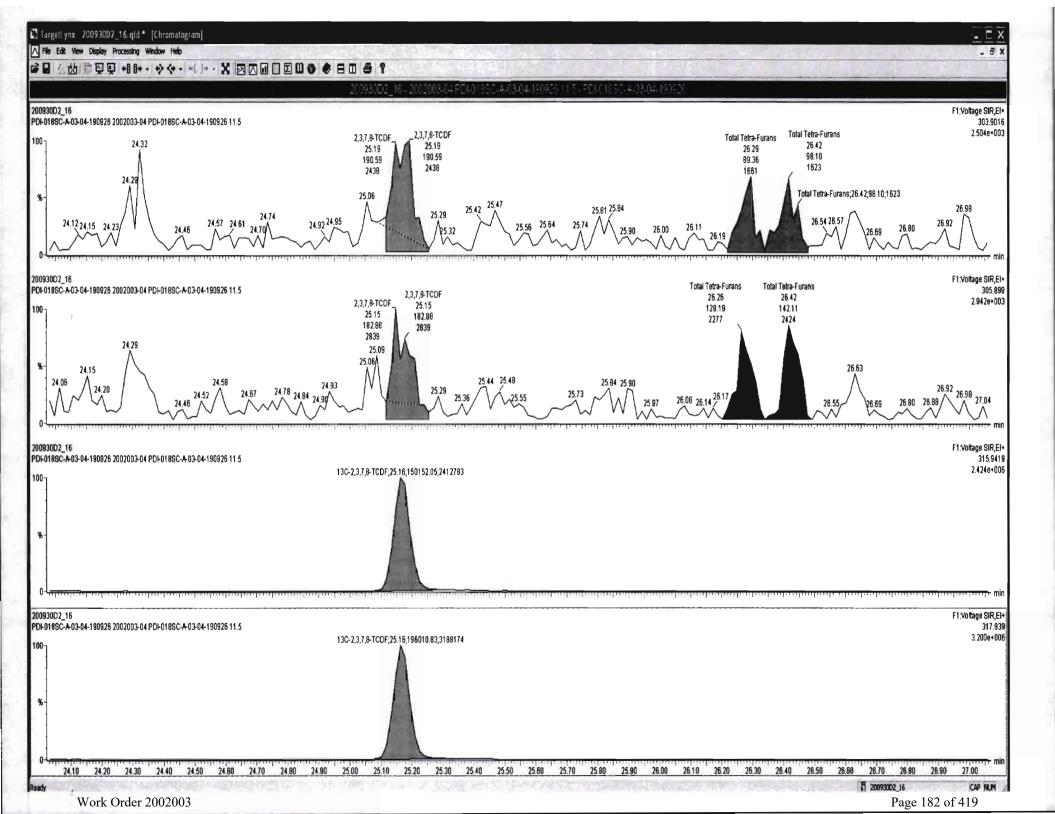


Targetl ynx 700930D7_16.qld • [Chromatogram]

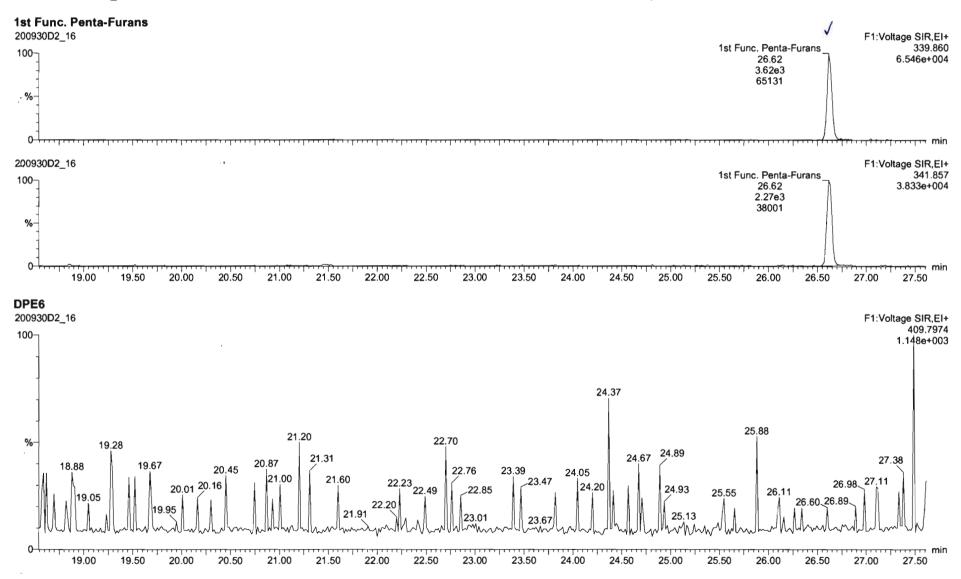

A File Edit View Display Processing Window Help

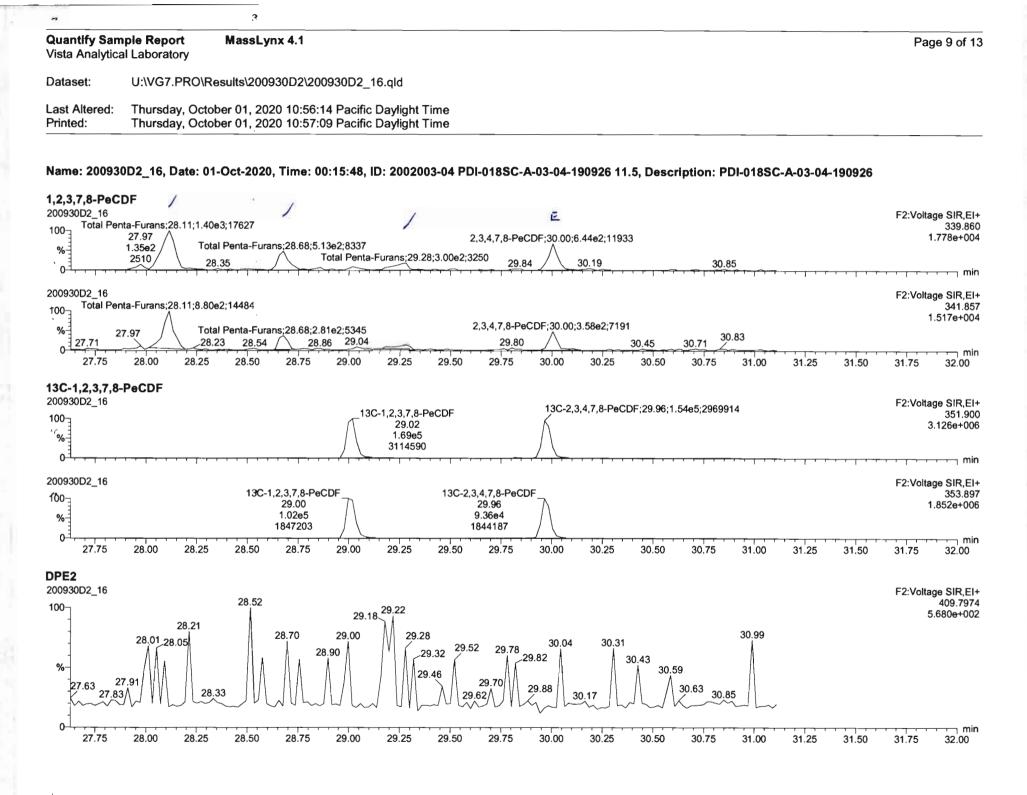
☞■ ☆☆ ◎♀♀ +8 \$+ • \$ \$ \$ • • 1 * • X 図집메目집입● ● 日田 ● \$

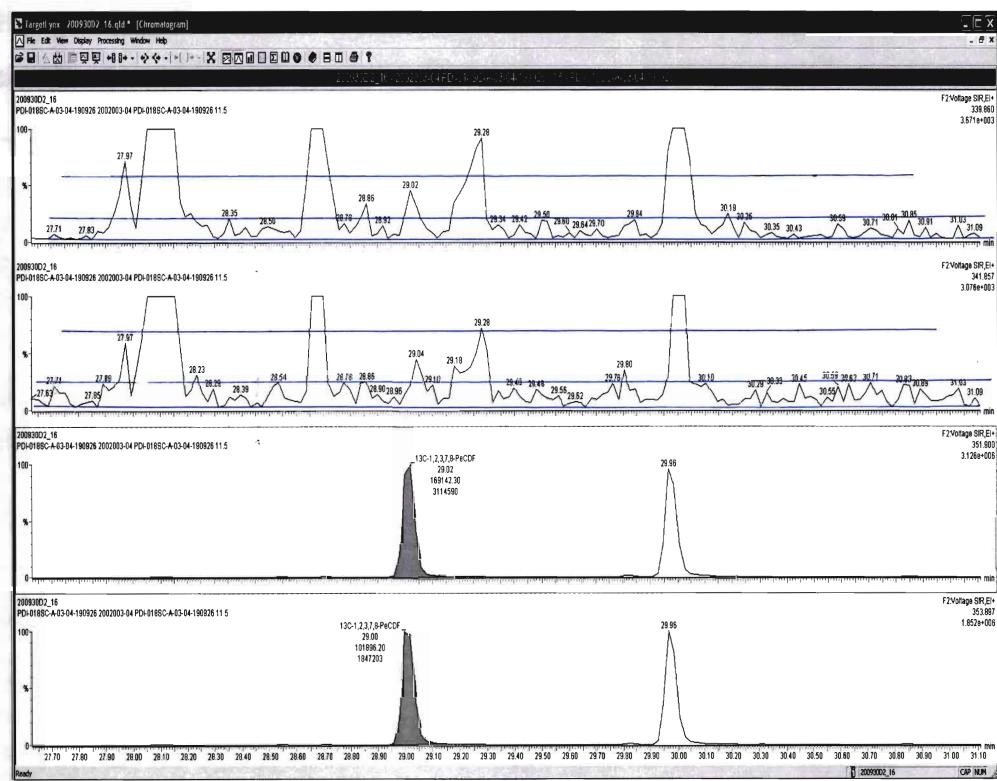
0930D2 16-200200304 PELOTISC AU304 190926 115-FEUO10SC AU3/04/191



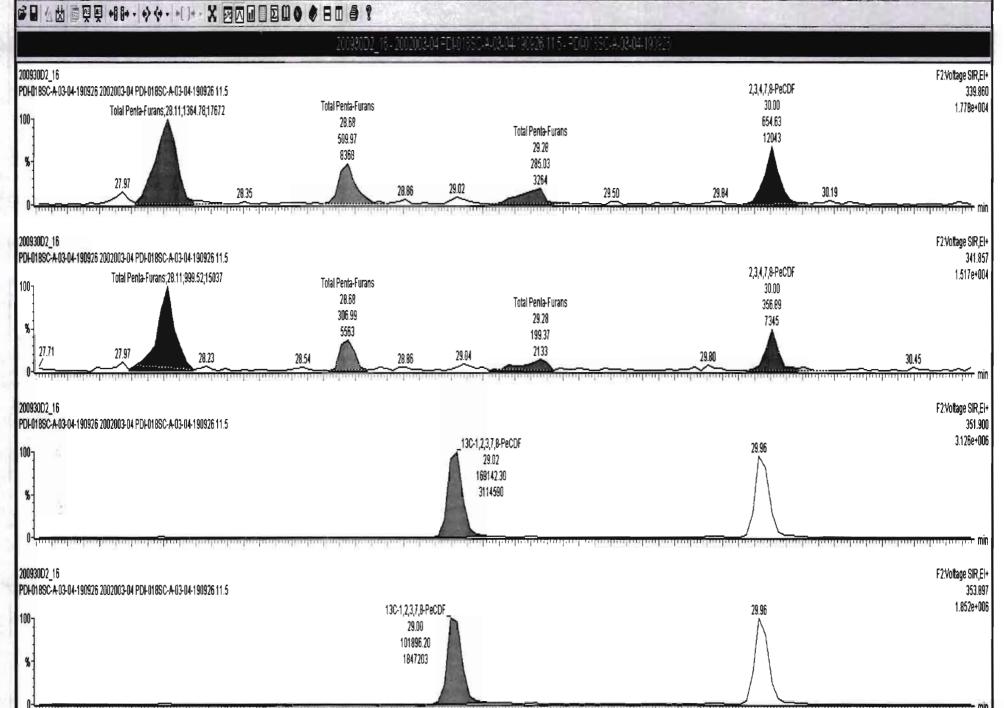
- C X




Work Order 2002003


Page 181 of 419

Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

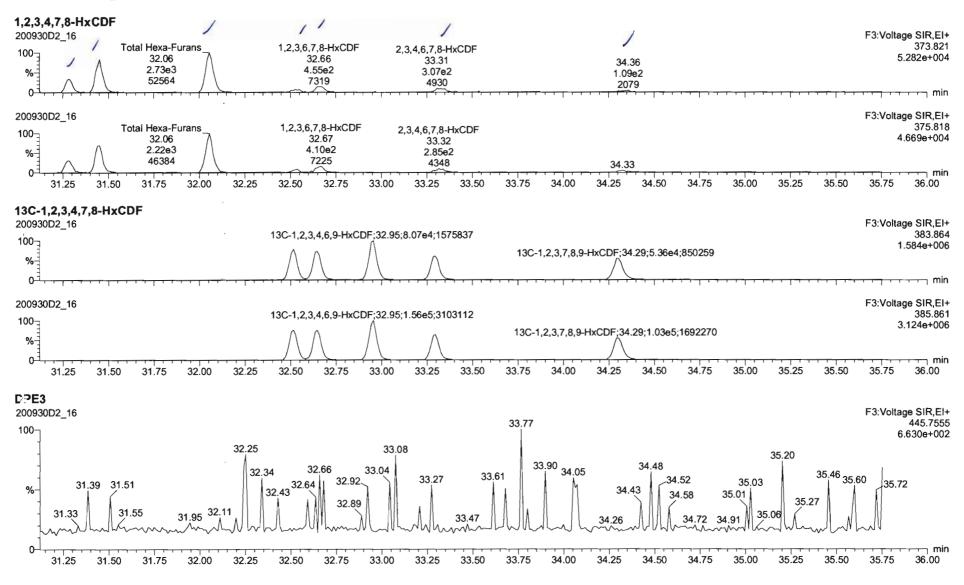


Page 185 of 419

Work Order 2002003

TargetLynx - 200930D2_16.qld * - [Chromatogram]

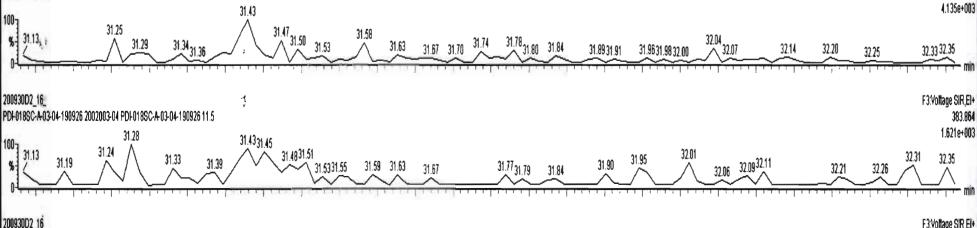
A File Edit Wew Display Processing Window Help


Work Order 2002003 Page 186 of 419

. 8 :

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_16.qld


Last Altered:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:57:09 Pacific Daylight Time

TargetLynx - 200930D2 16. gld * - [Chromatogram]

R File Edit View Display Processing Window Help

☞▋△썹意興興+1┣・◇◇・+()+・Х 図囚◨┃◙趾Ѻ◈日□ 兽 १ 200930D2 16 PDF018SC-A03-04-190926 2002003-04 PDF018SC-A 03-04-190926 11.5 Total Hexa-Furans; 32.06; 2736.17; 52753 Total Hexa-Furans: 31.45:2050.47:44029 1003 Total Hexa-Furans: 31, 29:858, 75:17809 %-200930D2 16 Total Hexa-Furans PDF018SC-A 03-04-190926 2002003-04 PDF018SC-A 03-04-190926 11.5 * 31.45 1615.57 Total Hexa-Furans;32.06;2251.75;46600 100-32063 %-Total Hexa-Furans;31.28;741.98;14142 200930D2 16 PDI-0185C-A-03-04-190926 2002003-04 PDI-0185C-A 03-04-190926 11.5 31.28 31.4331.45 100-31.24 31.4B31.51 32.01 31.13 31.33 32.06 32.09 32.11 31.95 31.19 31,90 31,39 31.77 31.79 31.84 1.5331.55 31.59 31.63 31.67 32.21 200930D2 16 PDF018SC-A 03-04-190926 2002003-04 PDF018SC-A 03-04-190926 11.5

F3:Voltage SIR, EI+ 385 861 Page 188 of 419

PDE018SC-A03-04-190926 2002003-04 PDE018SC-A 03-04-190926 11 5 Work Order 2002003

. a x

F3:Vollage SIR,EI+

F3:Voltage SIR,EI+

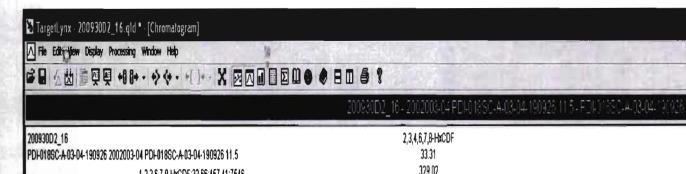
F3.Voltage SIR EI+

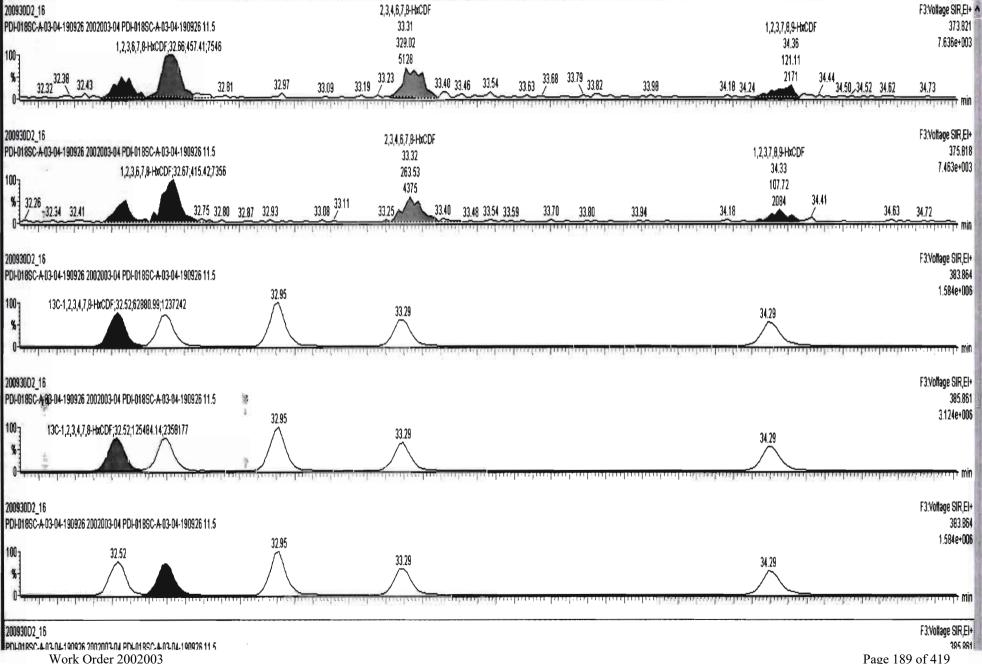
32.35

F3:Vollage SIR,EI+

385.861

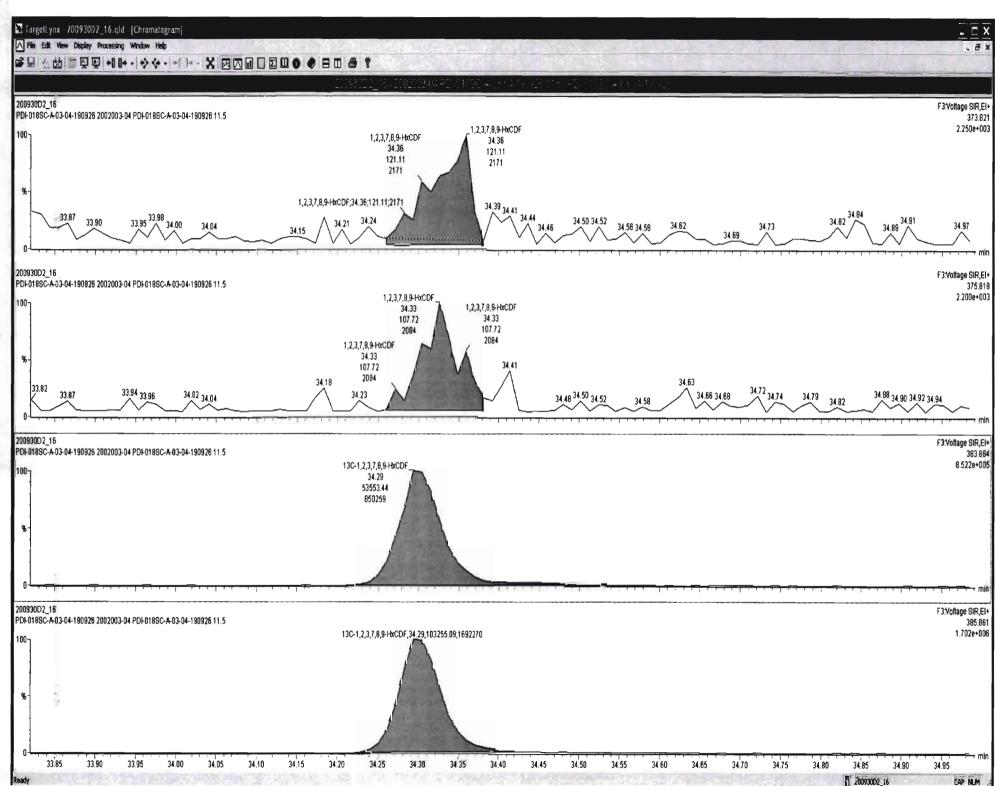
32.31

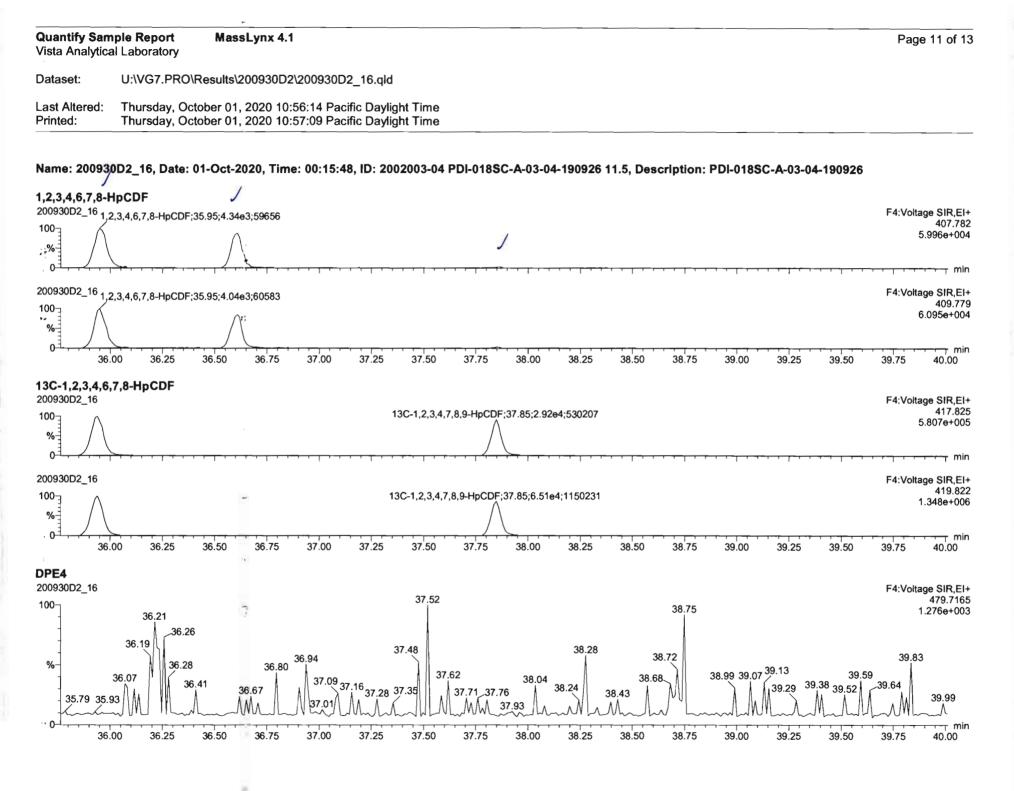

32.26

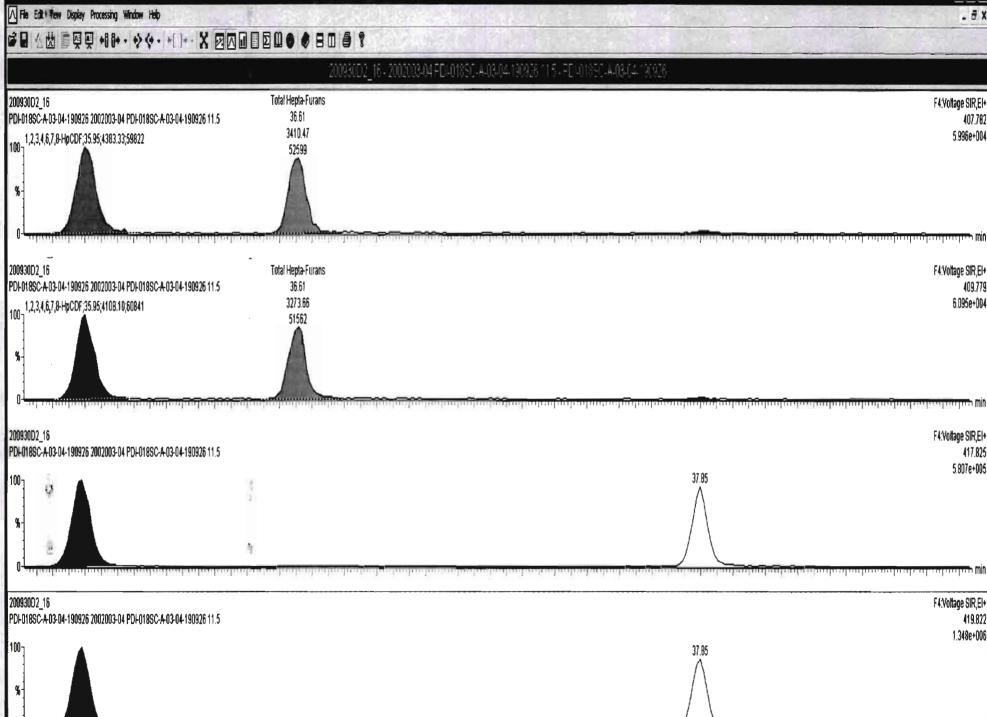

383.864 1.621e+003

375.818

4.669e+004


373.821 5.282e+004

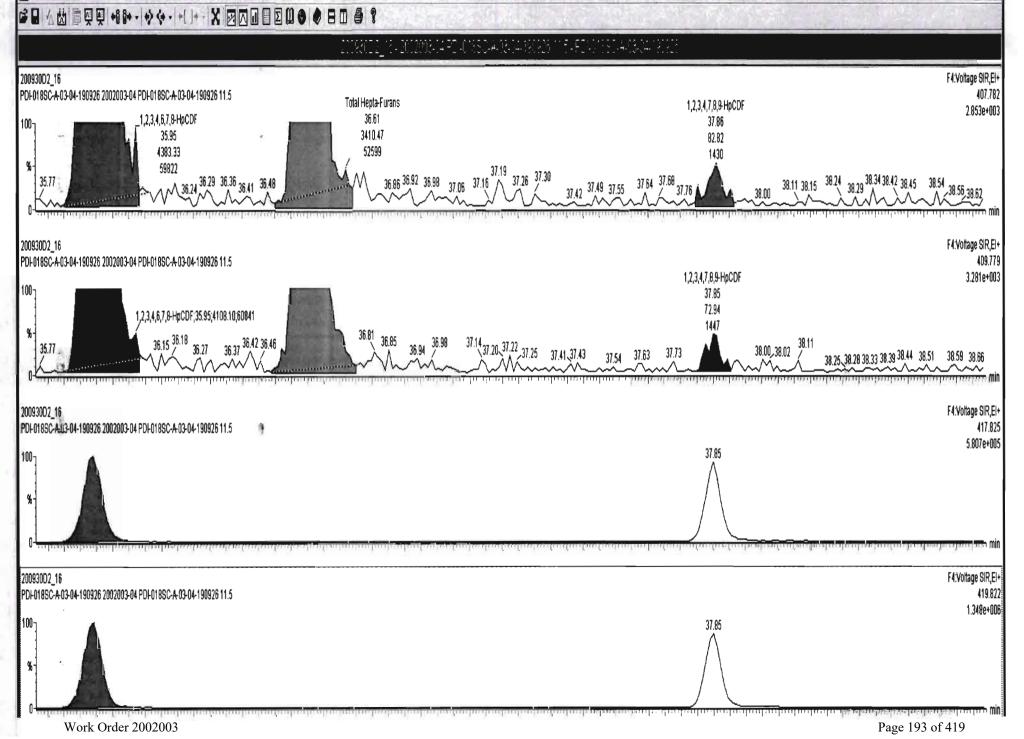

Page 189 of 419


. 0) . ð

Work Order 2002003

Page 190 of 419

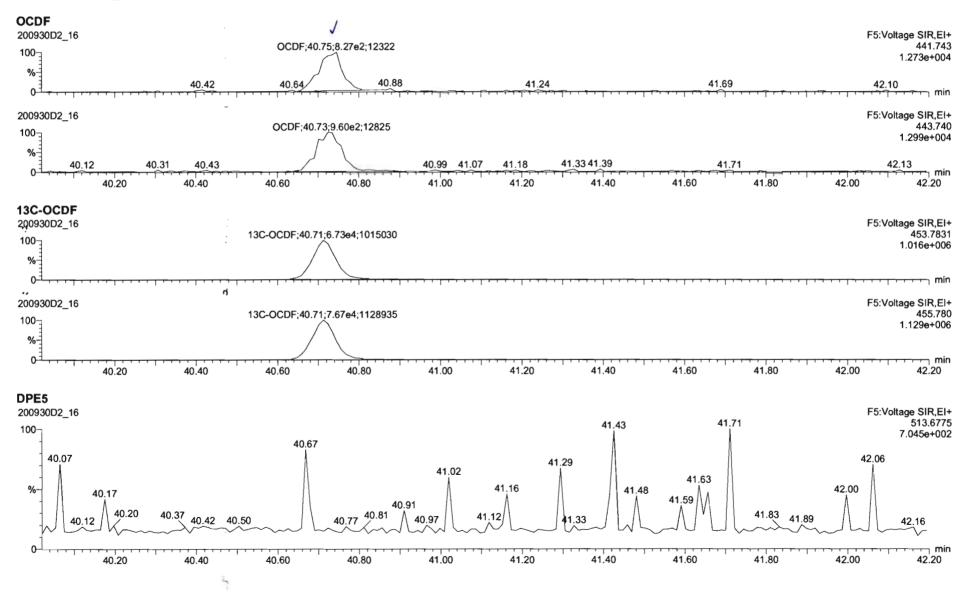
🔁 TargetLynx - 200930D2_16.qld * - [Chromatogram]

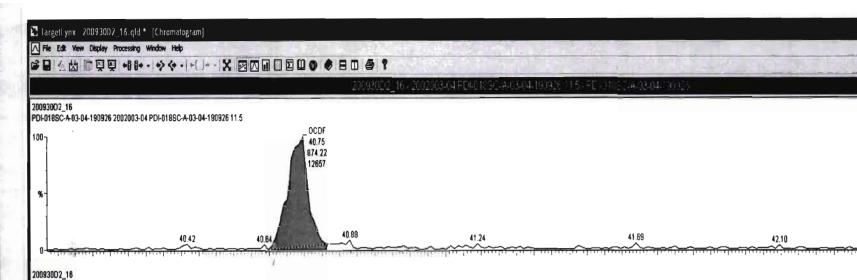

Work Order 2002003

Page 192 of 419

. DX

TargetLynx - 200930D2_16.qld * - [Chromatogram]

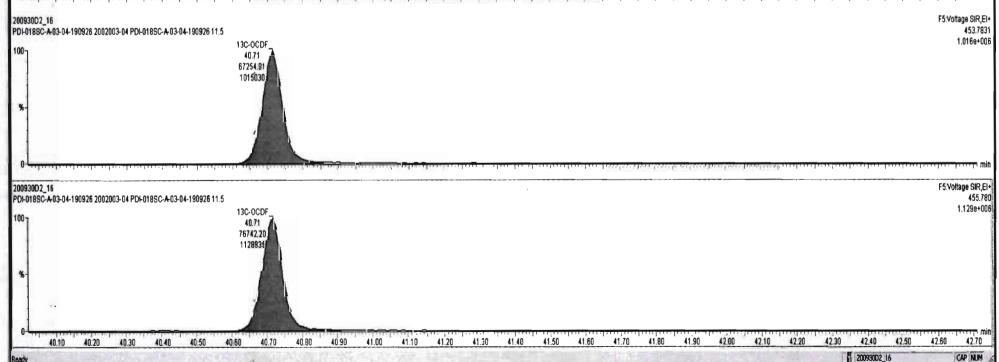

A File Edit View Display Processing Window Help


. DX

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	

Name: 200930D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926

Work Order 2002003



mir Terre

PDF018SC-A-03-04-190926 2002003-04 PDF018SC-A-03-04-190926 11.5

OCDF 100-40.73 931.35 2853 41.33 41.39 42.13 40.12 40.31 40.43 40.99 41.07 41.18 41.71 \rightarrow 0-4----

**Work Order 2002003

TIE X - 8

F5:Voltage SIR,EI

441.743 1.2738+004

Quantify Sam Vista Analytica		Page 13 of 13
Lataset:	U:\VG7.PRO\Results\200930D2\200930D2_16.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:56:14 Pacific Daylight Time Thursday, October 01, 2020 10:57:09 Pacific Daylight Time	
Name: 20093	0D2_16, Date: 01-Oct-2020, Time: 00:15:48, ID: 2002003-04 PDI-018SC-A-03-04-190926 11.5, Description: PDI-018SC-A-03-04-190926	
PFK1 200930D2_16	22 35:4 49e3:84128 22 27:1 65o4:110265	
PFK1 200930D2 16		:Voltage SIR,El+ 316.9824

PFK2 30.59 30.77 30.59 30.77 30.59 30.77 30.59 30.77 30.59 30.77 30.85 31.01 366.9792 6:210e+005 200930D2_16 28.41;3.00e3;69487 28.62 28.70 28.90 29.16;2.58e4;114168 30.00;2.15e3;72448 _30.35 29.68;3.02e4;87092 28.13 27.73 27.93 100] % 0-7 min group min 28.00 29.00 30.80 27.80 28.20 28.40 28.60 28.80 29.20 29.40 29.60 29.80 30.00 30.20 30.40 30.60 31.00 PFK3 F3:Voltage SIR,EI+ 380.9760 200930D2_16 34.62;6.66e3;225780 33.29;1.22e4;238856 33.70 33.79 31.54 31.77 31.88 32.06 34.26;7.71e3;220649 32.52;5.46e3;163299 35.46 35.62 100] 3.562e+006 %-0-1 min رــــ 31.75 32.25 32.50 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 31.25 31.50 32.00 32.75 33.00 35.75 36.00 PFK4 F4:Voltage SIR,EI+ 39.89 430.9728 2.2438+006 200930D2_16 37.78;4.91e3;200265 38.02 38.38 38.92 39.18;4.73e3;152371 38.59 39.59 36.43 36.74 7.11e3;152775 37.20;8.87e3;156937 36.22 35.99 100-%-0-37.75 39.50 37.25 38.75 37.50 38.00 38.25 38.50 39.00 39.25 39.75 36.00 36.25 36.50 36.75 37.00 40.00 PFK5 F5:Voltage SIR,EI+ 42.10 454.9728 200930D2_16 41.80 41.83 41.88 41.99 40.24 41.21 40.83 41.00;2.29e3;89942 41.46;3.97e3;100471 40.04 40.19 40.39 40.54 40.56 40.65 40.72 100] 1.179e+006 %-01 - min 41.20 41.00 40.20

41.40

41.60

41.80

40.40

40.80

40.60

42.20

42.00

 Quantify Sample Summary Report
 MassLynx 4.1

 Vista Analytical Laboratory
 MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_17.qld

Last Altered:	Friday, October 02, 2020 12:24:49 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 12:26:15 PM Pacific Daylight Time

B 10/2/20 C7 10/05/2020

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\Z8_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

and the state	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	7.090 /	25.837		1.001				0.121	
2	2 1,2,3,7,8-PeCDD			NO	0.935	7.090	30.187		1.001				0.211	
3	3 1,2,3,4,7,8-HxCDD			NO	1.15	7.090	33.404		1.000				0.161	
4	4 1,2,3,6,7,8-HxCDD	3.87e2	1.20	NO	1.02	7.090	33.514	33.55	1.000	1.001	0.59349		0.156	0.593
5	5 1,2,3,7,8,9-HxCDD	1.73e2	1.33	NO	1.06	7.090	33.834	33.81	1.001	1.000	0.25809		0.168	0.258
6	6 1,2,3,4,6,7,8-HpCDD	5.84e3	1.04	NO	1.00	7.090	37.201	37.20	1.000	1.000	10.662		0.464	10.7
7	7 OCDD	5.91e4	0.90	NO	0.952	7.090	40.395	40.40	1.000	1.000	165.60		0.486	166
8	8 2,3,7,8-TCDF	3.28e2	0.95	YES	1.01	7.090	25.173	25.16	1.001	1.001	0.22897		0.11	0.204
9	9 1,2,3,7,8-PeCDF			NO	0.998	7.090	29.018		1.001				0.142	
10	10 2,3,4,7,8-PeCDF	1.28e3	1.37	NO	1.07	7.090	29.994	29.98	1.001	1.001	1.1146		0.139	1.11
11	11 1,2,3,4,7,8-HxCDF	4.87e2	1.06	NO	1.05	7.090	32.505	32.53	1.000	1.001	0.55481		0.183	0.555
12	12 1,2,3,6,7,8-HxCDF	2.37e3	1.23	NO	1.10	7.090	32.647	32.65	1.000	1.000	2.6032		0.177	2.60
13	13 2,3,4,6,7,8-HxCDF	8.87e2	1.29	NO	1.09	7.090	33.317	33.32	1.001	1.001	1.0651		0.202	1.07
14	14 1,2,3,7,8,9-HxCDF			NO	1.08	7.090	34.293		1.000				0.240	
15	15 1,2,3,4,6,7,8-HpCDF	1.33e4	1.02	NO	1.13	7.090	35.965	35.94	1.001	1.000	18.307		0.238	18.3
16	16 1,2,3,4,7,8,9-HpCDF	1.84e2	1.41	YES	1.29	7.090	37.838	37.86	1.000	1.001	0.29007		0.241	0.245
17	17 OCDF	2.85e3	0.96	NO	0.953	7.090	40.702	40.71	1.000	1.000	6.6071		0.262	6.61
18	18 13C-2,3,7,8-TCDD	2.69e5	0.76	NO	1.17	7.090	25.786	25.81	1.026	1.027	285.69	101	0.599	
19	19 13C-1,2,3,7,8-PeCDD	2.00e5	0.62	NO	0.914	7.090	29.974	30.17	1,193	1.200	272.62	96.6	0.419	
20	20 13C-1,2,3,4,7,8-HxCDD	1.64e5	1.30	NO	0.634	7.090	33.394	33.39	1.014	1.014	288.22	102	0.824	
21	21 13C-1,2,3,6,7,8-HxCDD	1.80e5	1.28	NO	0.724	7.090	33.503	33.51	1.017	1.018	276.30	97.9	0.720	
22	22 13C-1,2,3,7,8,9-HxCDD	1.78e5	1.23	NO	0.716	7.090	33.769	33.80	1.025	1.026	276.58	98.0	0.729	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.54e5	1.06	NO	0.660	7.090	37.181	37.19	1.129	1.129	260.04	92.2	1.23	
24	24 13C-OCDD	2.11e5	0.89	NO	0.587	7.090	40.159	40.40	1.219	1.227	401.00	71.1	0.912	
25	25 13C-2,3,7,8-TCDF	4.08e5	0.75	NO	1.02	7.090	24.882	25.15	0.990	1.001	291.33	103	0.659	
26	26 13C-1,2,3,7,8-PeCDF	3.18e5	1.59	NO	0.842	7.090	29.046	29.00	1.156	1.154	275.43	97.6	0.645	
27	27 13C-2,3,4,7,8-PeCDF	3.01e5	1.66	NO	0.802	7.090	29.933	29.96	1.191	1.192	274.16	97.2	0.678	
27 28	28 13C-1,2,3,4,7,8-HxCDF	2.36e5	0.51	NO	1.00	7.090	32.538	32.51	0.988	0.987	261.41	92.7	0.838	
29	29 13C-1,2,3,6,7,8-HxCDF	2.33e5	0.51	NO	1.02	7.090	32.670	32.64	0.992	0.991	254.59	90.2	0.825	
30	30 13C-2,3,4,6,7,8-HxCDF	2.16e5	0.50	NO	0.955	7.090	33.233	33.28	1.009	1.011	251.75	89.2	0.880	
31	31 13C-1,2,3,7,8,9-HxCDF	2.04e5	0.49	NO	0.851	7.090	34.296	34.29	1.041	1.041	266.98	94.6	0.988	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Page 2 of 2

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_17.qld

Last Altered:	Friday, October 02, 2020 12:24:49 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 12:26:15 PM Pacific Daylight Time

석

2

S. Sal	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.82e5	0.43	NO	0.848	7.090	35.798	35.93	1.087	1.091	238.45	84.5	0.982	
33 34	33 13C-1,2,3,4,7,8,9-HpCDF	1.39e5	0.46	NO	0.624	7.090	37.774	37.84	1.147	1.149	248.18	88.0	1.33	
34	34 13C-OCDF	2.55e5	0.86	NO	0.730	7.090	40.310	40.70	1.224	1.236	389.40	69.0	0.659	
35	35 37CI-2,3,7,8-TCDD	1.31e5			1.21	7.090	25.784	25.82	1.026	1.027	135.23	120	0.140	
36	36 13C-1,2,3,4-TCDD	2.27e5	0.80	NO	1.00	7.090	25.260	25.13	1.000	1.000	282.11	100	0.702	
37	37 13C-1,2,3,4-TCDF	3.87e5	0.79	NO	1.00	7.090	23.930	23.80	1.000	1.000	282.11	100	0.674	
38	38 13C-1,2,3,4,6,9-HxCDF	2.54e5	0.51	NO	1.00	7.090	32.990	32.93	1.000	1.000	282.11	100	0.841	
39	39 Total Tetra-Dioxins				1.00	7.090	24.620		0.000				0.0665	
40	40 Total Penta-Dioxins				0.935	7.090	29.960		0.000		0.57309		0.211	0.573
41	41 Total Hexa-Dioxins				1.02	7.090	33.635		0.000		4.3970		0.170	4.68
42	42 Total Hepta-Dioxins				1.00	7.090	37.640		0.000		29.633		0.464	29.6
43	43 Total Tetra-Furans				1.01	7.090	23.610		0.000		4.0518		0.111	4.50
44	44 1st Func. Penta-Furans				0.998	7.090	26.750		0.000		5.7248		0.0532	5.72
45	45 Total Penta-Furans				0.998	7.090	29.275		0.000		4.2534		0.146	4.62
46	46 Total Hexa-Furans				1.09	7.090	33.555		0.000		21.520		0.198	21.5
47	47 Total Hepta-Furans				1.13	7.090	37.835		0.000		34.045		0.254	34.3

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Page 1 of 3

U:\VG7.PRO\Results\200930D2\200930D2_17.qld Dataset:

Last Altered:	Friday, October 02, 2020 12:24:49 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 12:26:15 PM Pacific Daylight Time

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_17, Date: 01-Oct-2020, Time: 01:01:11, ID: 2002003-05 PDI-018SC-A-04-05-190926 10.06, Description: PDI-018SC-A-04-05-190926

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Penta-Dioxins

1 2 3	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.07	2.233e3	3.199e3	1.497e2	2.306e2	0.65	NO	3.803e2	0.57309	0.57309	0.211

Hixa-Dioxins

12. 12	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	Total Hexa-Dioxins	31.79	1.494e4	1.251e4	7.246e2	6.670e2	1.09	NO	1.392e3	2.2046	2.2046	0.170
	Total Hexa-Dioxins	32.40	2.49 9e 3	1.734e3	1.317e2	8.061e1	1.63	YES	0.000e0	0.00000	0.28604	0.170
	Total Hexa-Dioxins	32.67	1.633e4	1.138e4	4.687e2	3.777e2	1.24	NO	8.463e2	1.3408	1.3408	0.170
	1,2,3,6,7,8-HxCDD	33.55	3.487e3	3.660e3	2.114e2	1.759e2	1.20	NO	3.873e2	0.59349	0.59349	0.156
	1,2,3,7,8,9-HxCDD	33.81	1.917e3	1.194e3	9.850e1	7.418e1	1.33	NO	1.727e2	0.25809	0.25809	0.168
-	1,2,3,7,8,9-HxCDD	33.81	1.917e3	1.19 4e 3	9.850e1	7.418e1	1.33	NO	1.727e2	0.25809	0.258	309

Hepta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.31	7.499e4	7.852e4	5.293e3	5.100e3	1.04	NO	1.039e4	18.971	18.971	0.464
2	1,2,3,4,6,7,8-HpCDD	37.20	5.506e4	5.042e4	2.973e3	2.869e3	1.04	NO	5.841e3	10.662	10.662	0.464

Quantify Tota	als Report MassLynx 4.1
Vista Analytica	al Laboratory
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld
Last Altered:	Friday, October 02, 2020 12:24:49 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 12:26:15 PM Pacific Daylight Time

Name: 200930D2_17, Date: 01-Oct-2020, Time: 01:01:11, ID: 2002003-05 PDI-018SC-A-04-05-190926 10.06, Description: PDI-018SC-A-04-05-190926 Tetra-Furans

19: 5	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.93	2.022e3	2.226e3	1.679e2	1.909e2	0.88	NO	0.000e0	0.00000	0.24484	0.111
2	Total Tetra-Furans	21.65	1.292e4	1.585e4	1.145e3	1.401e3	0.82	NO	2.546e3	1.7374	1.7374	0.111
3	Total Tetra-Furans	22.47	5.807e3	7.923e3	4.124e2	5.536e2	0.75	NO	9.660e2	0.65917	0.65917	0.111
4	Total Tetra-Furans	22.89	6.747e3	1.059e4	5.422e2	7.062e2	0.77	NO	1.248e3	0.85189	0.85189	0.111
5	Total Tetra-Furans	23.85	7.122e3	9.169e3	5.367e2	6.406e2	0.84	NO	1.177e3	0.80338	0.80338	0.111
6	2,3,7,8-TCDF	25.16	2.652e3	2.911e3	1.595e2	1.686e2	0.95	YES	3.281e2	0.00000	0.20365	0.111

Penta-Furans function 1

and the state	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1.	1st Func. Penta-Furans	26.62	6.426e4	4.227e4	3.857e3	2.410e3	1.60	NO	6.267e3	5.7248	5.7248	0.0532

Penta-Furans

1.408	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1. 10	Total Penta-Furans	28.09	1.825e4	1.377e4	1.454e3	1.073e3	1.35	NO	2.527e3	2.3084	2.3084	0.146
2	Total Penta-Furans	28.66	9.624e3	5.813e3	5.552e2	3.539e2	1.57	NO	9.091e2	0.83040	0.83040	0.146
3	Total Penta-Furans	29.24	4.595e3	1.801e3	2.916e2	1.580e2	1.85	YES	0.000e0	0.00000	0.36811	0.146
4	2,3,4,7,8-PeCDF	29.98	1.346e4	9.475e3	7.390e2	5.394e2	1.37	NO	1.278e3	1.1146	1.1146	0.139

Haxa-Furans

1000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.26	2.454e4	1.925e4	1.127e3	8.755e2	1.29	NO	2.003e3	2.3377	2.3377	0.198
2	Total Hexa-Furans	31.43	6.419e4	4.858e4	3.087e3	2.270e3	1.36	NO	5.357e3	6.2525	6.2525	0.198
3	Total Hexa-Furans	32.04	8.124e4	6.394e4	4.203e3	3.256e3	1.29	NO	7.459e3	8.7062	8.7062	0.198
4	1,2,3,4,7,8-HxCDF	32.53	4.813e3	4.632e3	2.502e2	2.369e2	1.06	NO	4.872e2	0.55481	0.55481	0.183
5	1,2,3,6,7,8-HxCDF	, 32.65	2.203e4	2.255e4	1.305e3	1.060e3	1.23	NO	2.365e3	2.6032	2.6032	0.177
5	2,3,4,6,7,8-HxCDF	33.32	8.782e3	7.463e3	4.992e2	3.880e2	1.29	NO	8.872e2	1.0651	1.0651	0.202

130

Quantify Totals Report MassLynx 4.1

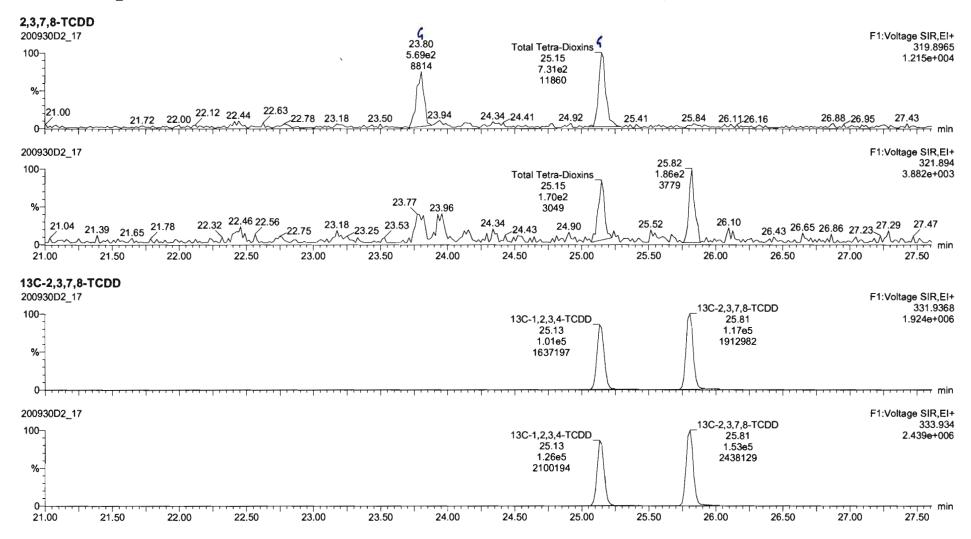
Vista Analytical Laboratory

Page 3 of 3

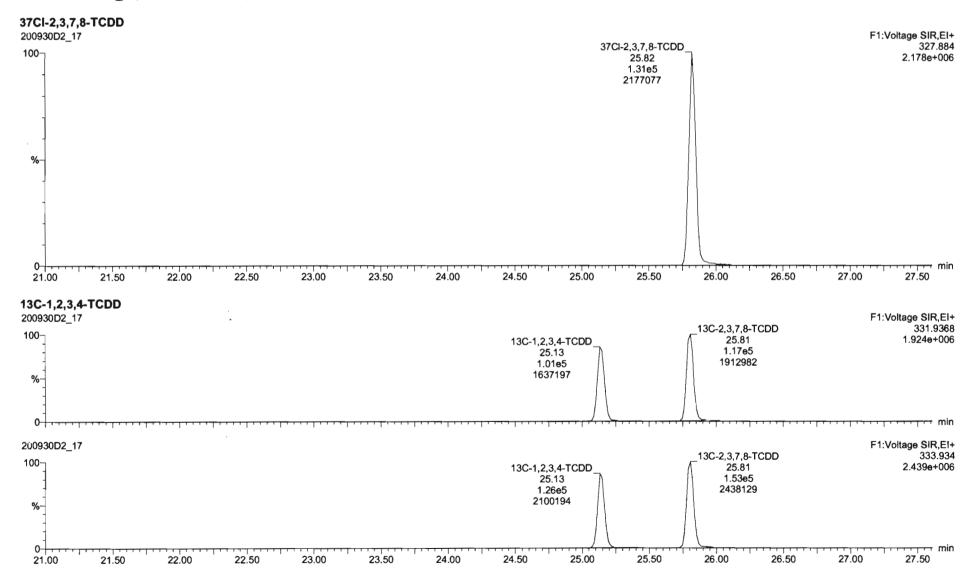
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_17.qld

Last Altered:	Friday, October 02, 2020 12:24:49 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 12:26:15 PM Pacific Daylight Time

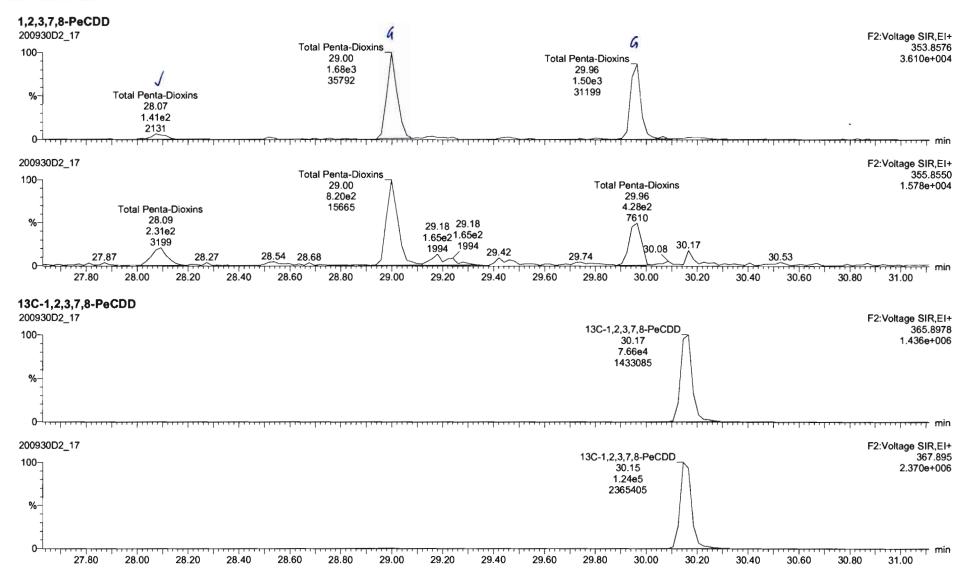
Name: 200930D2_17, Date: 01-Oct-2020, Time: 01:01:11, ID: 2002003-05 PDI-018SC-A-04-05-190926 10.06, Description: PDI-018SC-A-04-05-190926


Hepta-Furans

2000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	35.94	9.359e4	9.338e4	6.727e3	6.613e3	1.02	NO	1.334e4	18.307	18.307	0.238
2	Total Hepta-Furans	36.59	8.155e4	8.531e4	5.112e3	5.013e3	1.02	NO	1.013e4	15.738	15.738	0.254
3	1,2,3,4,7,8,9-HpCDF	37.86	2.088e3	1.221e3	1.079e2	7.623e1	1.41	YES	1.841e2	0.00000	0.24503	0.241

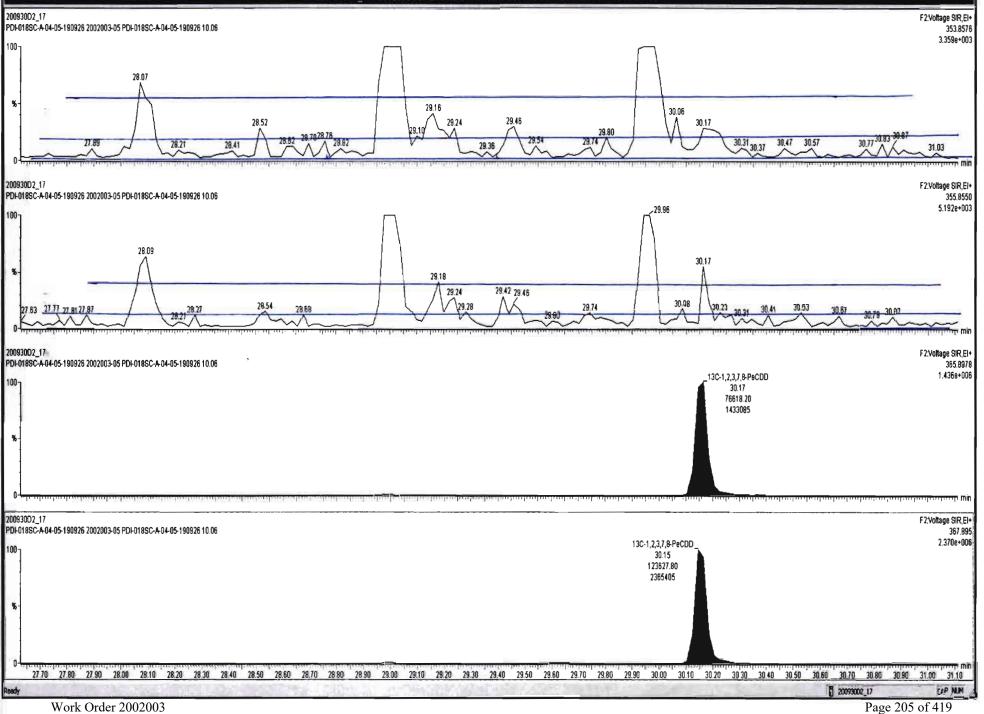

10

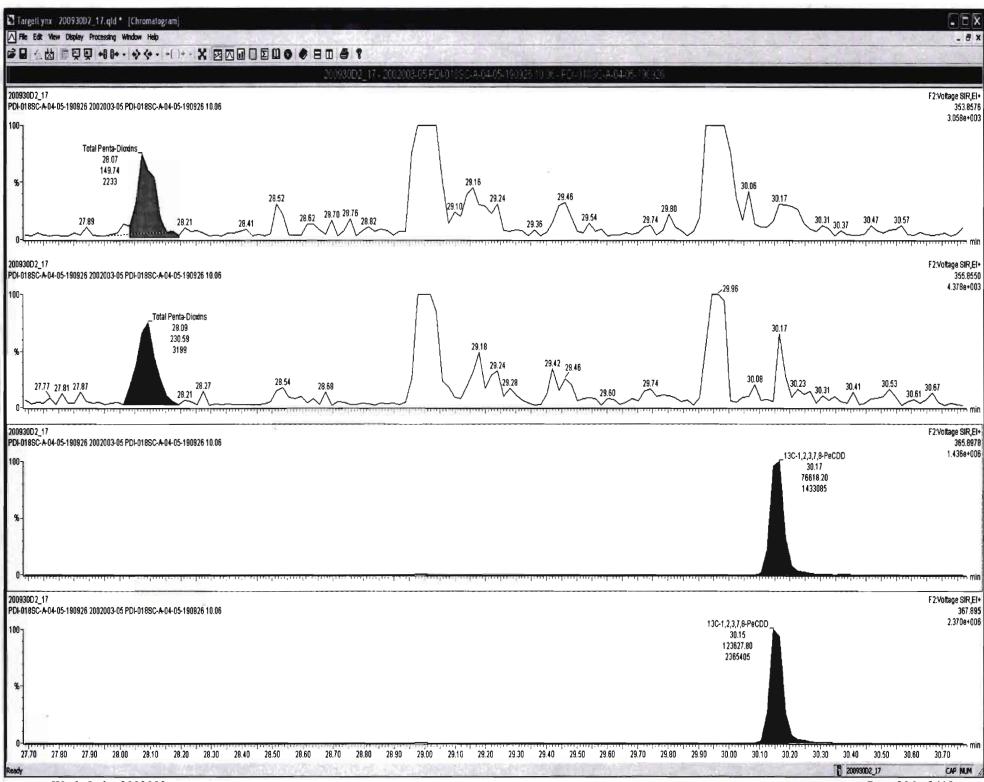
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	


Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	

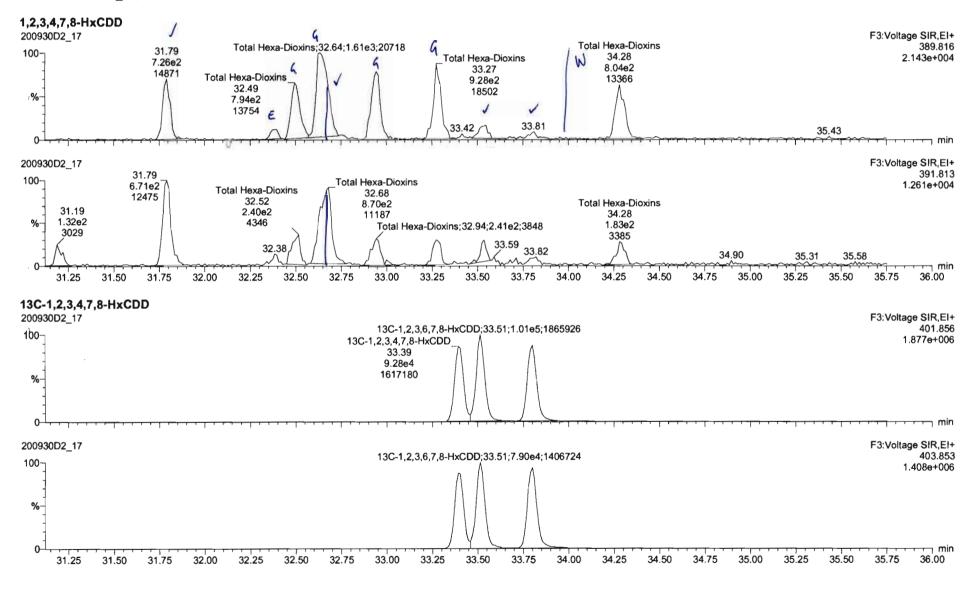
Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	

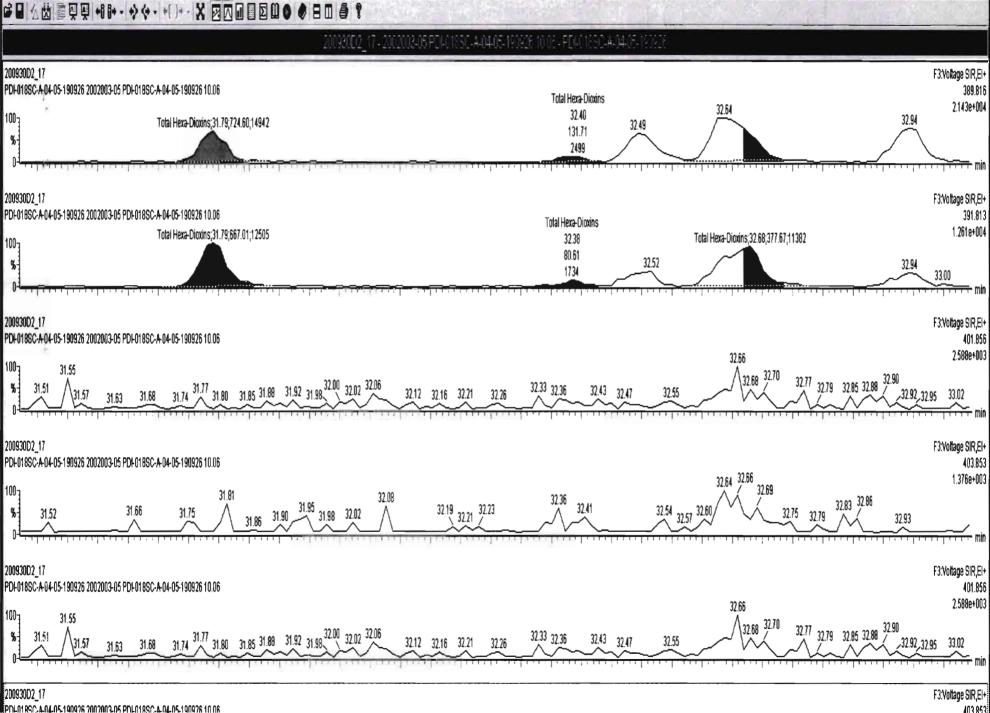

File Edit View Display Processing Window Help


☞ - △ ☆ 등 및 +1 ++ - → ↔ - +1 +- ★ 図즈교 - Σ ● ● ● ● ● ● ●

0000002 117-2002002-05 PE NOTES 6:404 (5:100025:0016-PE LOTES 5:404 05:10025

- EX


. 8 >


Work Order 2002003

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	

TargetLynx - 200930D2_17. qld * - [Chromatogram]

A File Edit Yew Display Processing Window Help

PDL0185C4.04.05.190926 2002003.05 PDL0185C4.04.05.190926 10.06 Work Order 2002003 <u>• ; E, X</u>

. 2)

Page 208 of 419

TargetLynx - 200930D2_17.qld * - [Chromatogram]

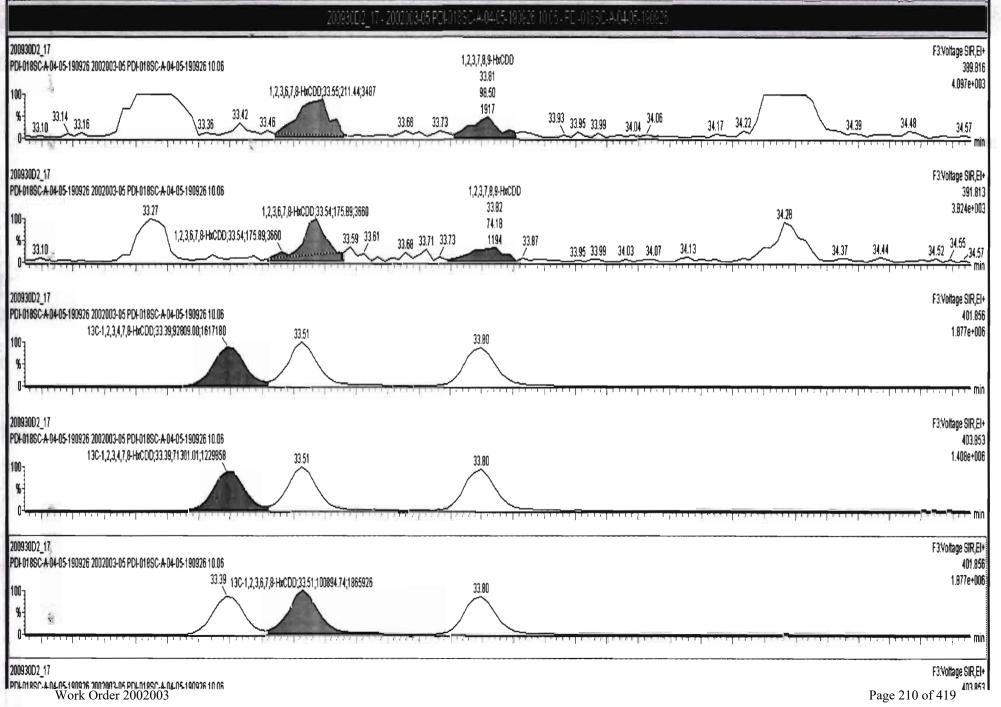
≦₩₽₽₽+₩++++++++*₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽

A File Edit View Display Processing Window Help

C I

F3:Voltage SIR,EI+ 200930D2 17 Total Hexa-Dioxins 32,40 PDF018SC-A-04-05-190926 2002003-05 PDF018SC-A-04-05-190926 10.06 389.816 131.71 3.707e+003 100-2499 32.26 32.29 31.57 31.59 32.75 33.02 8-31,86 31.90 31.96 32.00 32.04 31.67 31.70 32.12 32.15 32.81 31.51 Tolal Hexa-Dioxins F3 Voltage SIR EI+ 200930D2 17 32.38 391.813 PDF018SC-A 04-05-190926 2002003-05 PDF018SC-A 04-05-190926 10.06 32.91 80.61 2.359e+003 ,32.52 1007 1734 Total Hexa-Dioxins; 32.38; 80.61; 1734 32,15 33.00 31.97 32.00 32.04 32.07 32.10 32.85 \$1 32.79 32.82 31.57 31.66 31.51 F3:Voltage SIR,EI+ 200930D2 17 401.856 PDF018SC-A04-05-190926 2002003-05 PDF018SC-A04-05-190926 10.06 2.588e+003 32.66 1007 31.55 32.68 32.70 32.17 32.79 32.85 32.88 32.90 31.68 31.74 31.77 31.80 31.85 31.88 31.92 31.98 32.00 32.02 32.06 32.33 32.36 32.43 32.47 **%**-1 31.51 32.12 32.16 32.21 32.26 32.92, 32.95 32.55 33.02 31.63 F3:Voltage SIR,EI+ 200930D2 17 PDF018SC-A-04-05-190926 2002003-05 PDF018SC-A-04-05-190926 10.06 403.853 32.64 32.66 1.376e+003 32.69 100 -31.81 32.08 32.36 32.83 32.86 32.41 31.95 31.98 32.02 32.19 32.21 32.23 32.54 32.57 32.60 32.75 32.79 31.86 ^{31.90} 31.66 % 31.75 31.52 32.93 F3:Voltage SIR, El+ 200930D2 17 PD+0185C-A404-05-190926 2002003-05 PD+0185C-A-04-05-190926 10.06 401.856 2.588e+003 32.66 100-31.55 32.68 32.70 32.77 32.79 32.85 32.88 32.90 31.74 31.77 31.80 31.85 31.88 31.92 31.98 32.00 32.02 32.06 32.33 32.36 32.43 32.47 **%** 31.51 32.12 32.16 32.21 32.26 32.55 ,32.92 ,32.95 31.68 33.02 31.57 31.63 F3:Voltage SIR,EI+ 200930D2 17 103 853 PDL018SC-&04.05-190926 2002003-05 PDL018SC-&04-05-190926 10 06

Work Order 2002003


. 2)

Page 209 of 419

TargetLynx - 200930D2_17.qld * - [Chromatogram]

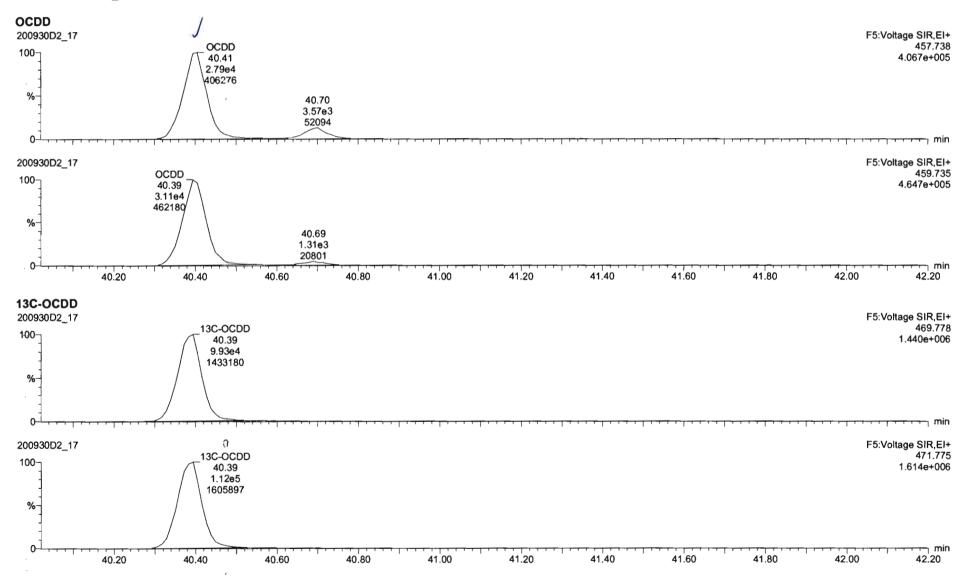
A File Edit View Display Processing Window Help

☞묘△做◎፵፵+40+ - ◇◇ - +()+ - Ⅹ ☑☑ⓓ目☑ધ◎ ◈ 日□ ♣ १

. C X

. 2

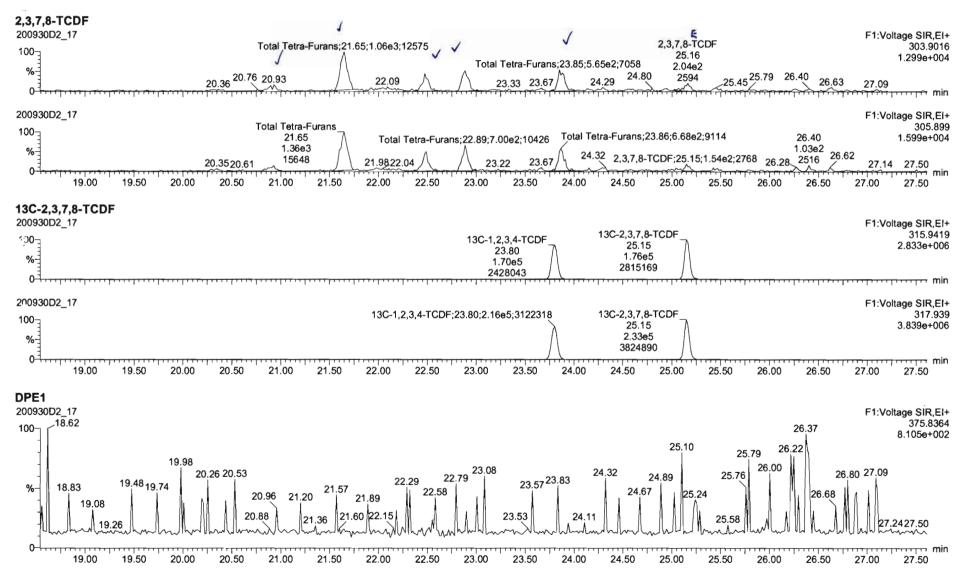
Quantify Sample Report MassLynx 4.1

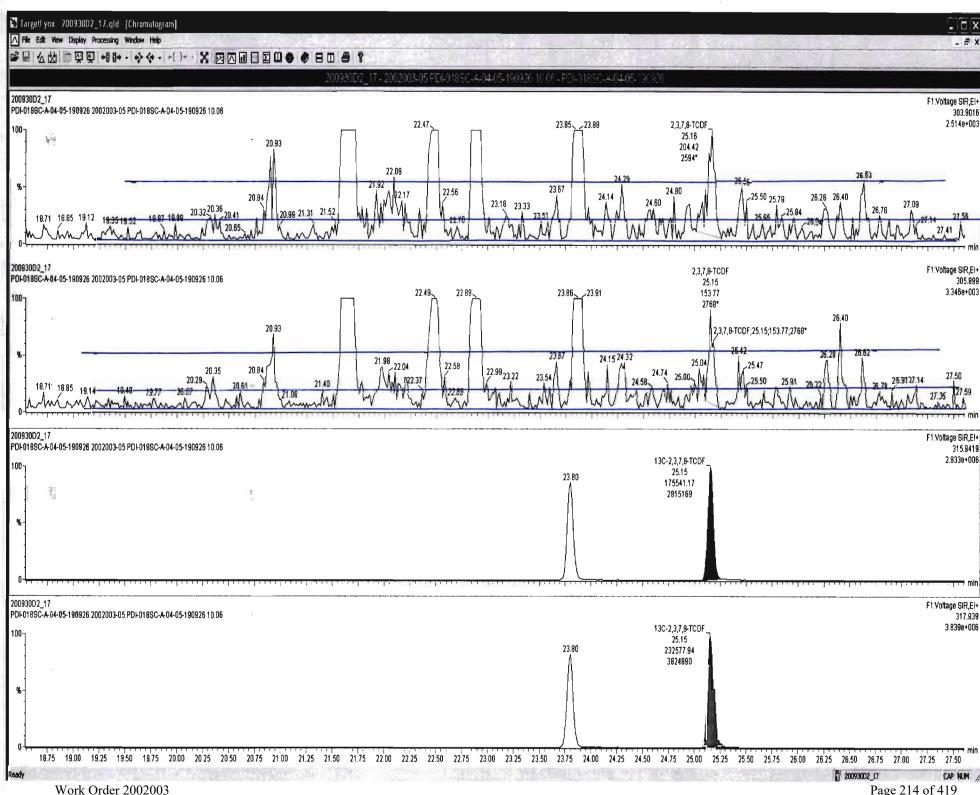

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_17.qld

Last Altered:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:59:00 Pacific Daylight Time

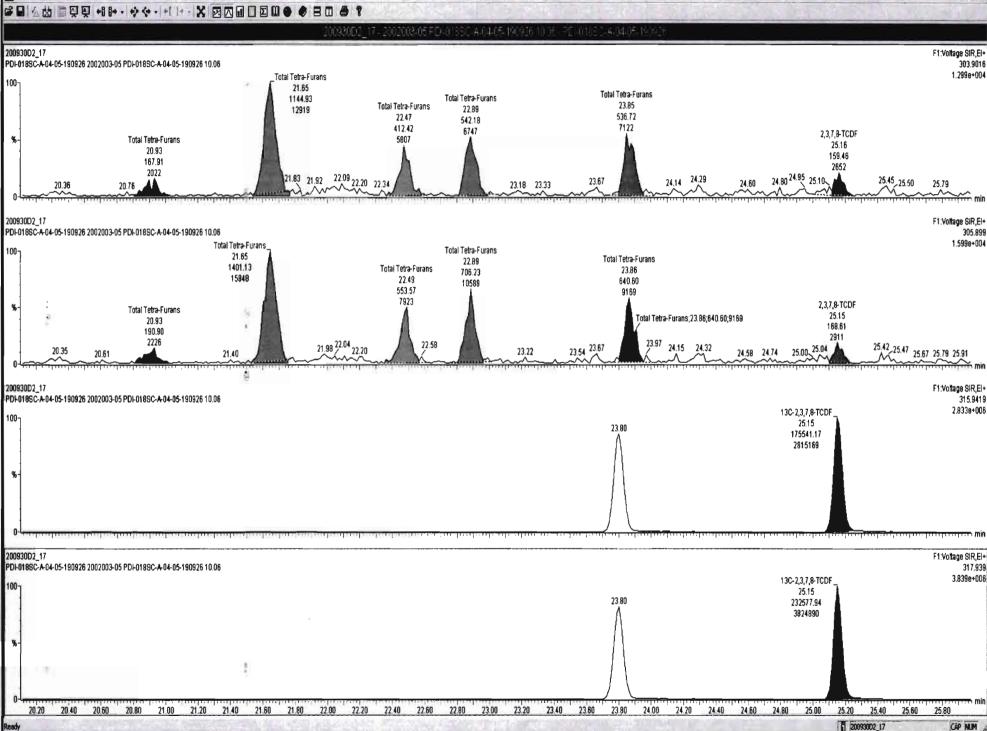
Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	



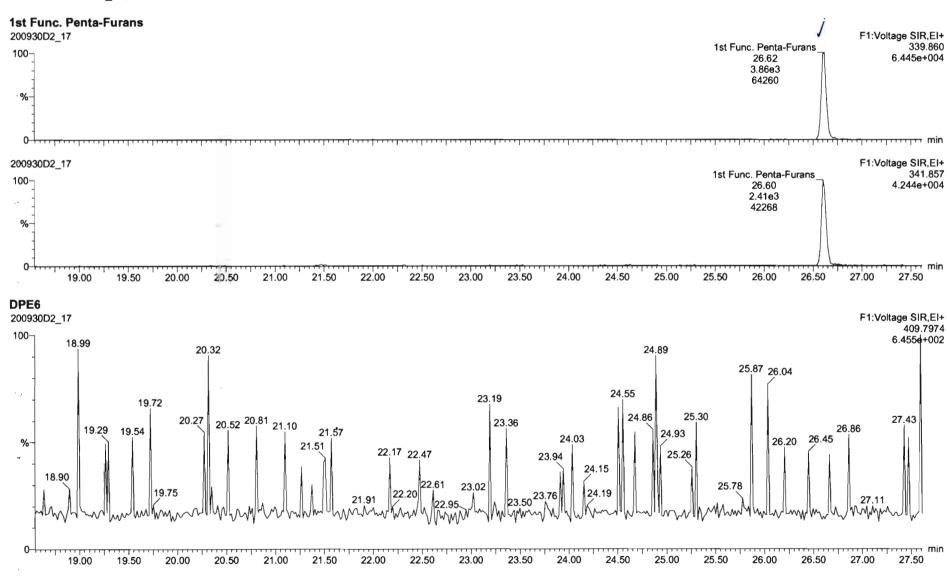

Quantify Sample Report MassLynx 4.1

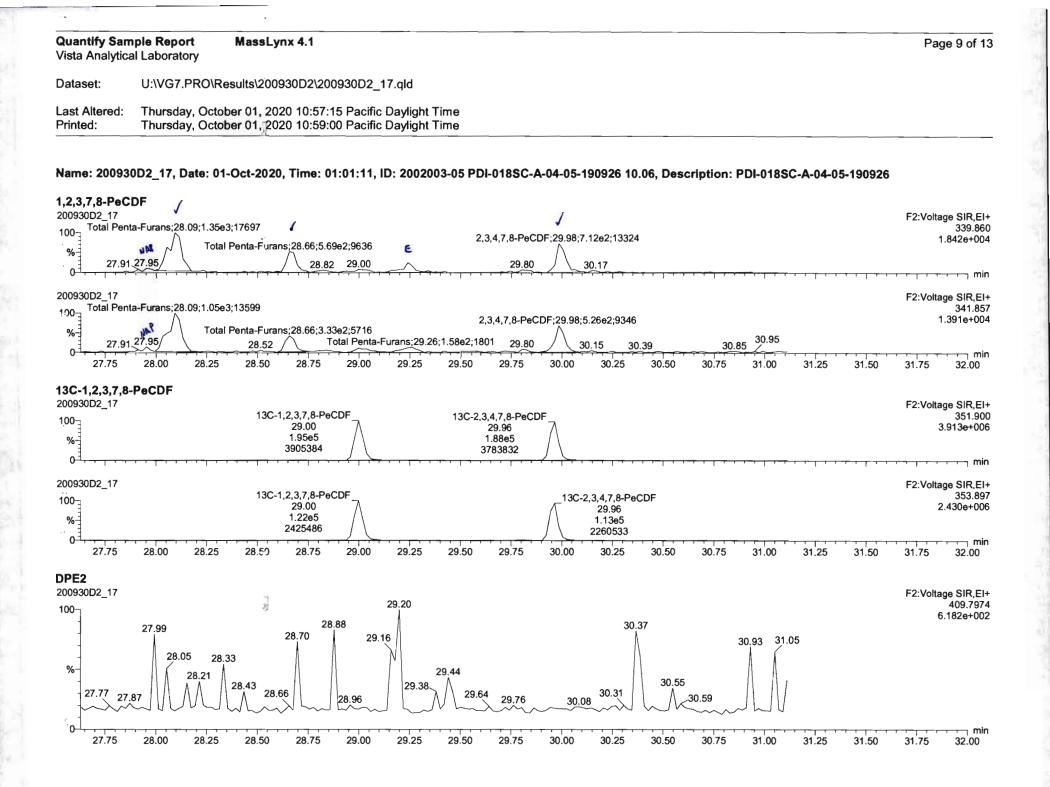
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_17.qld

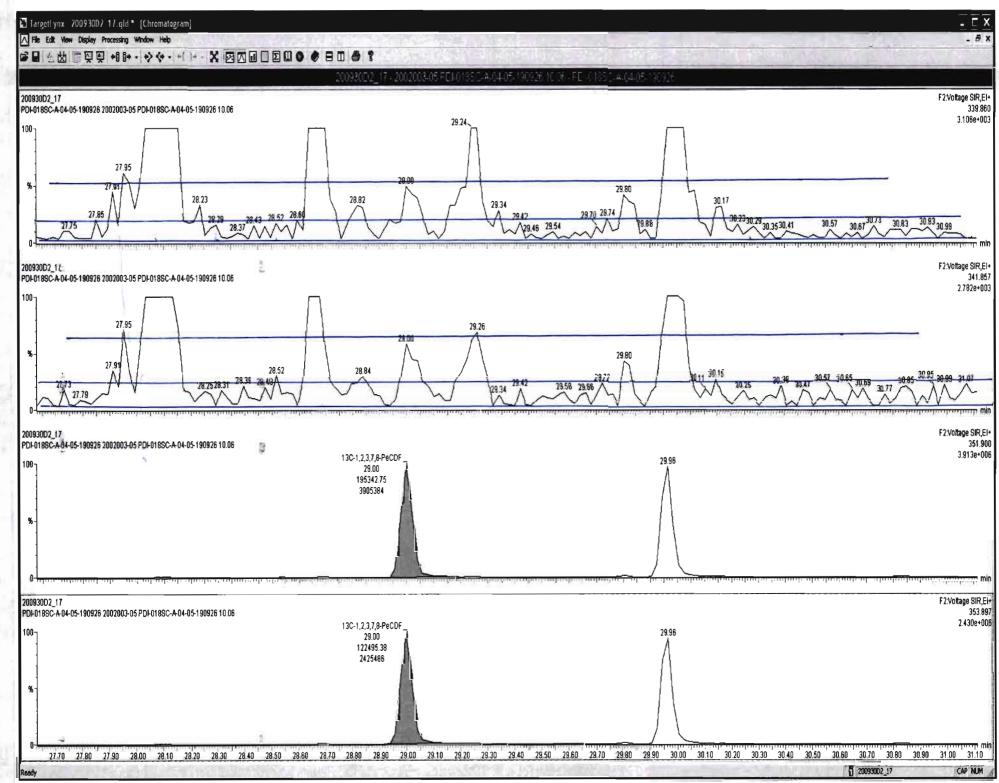

Last Altered:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:59:00 Pacific Daylight Time

Page 214 of 419

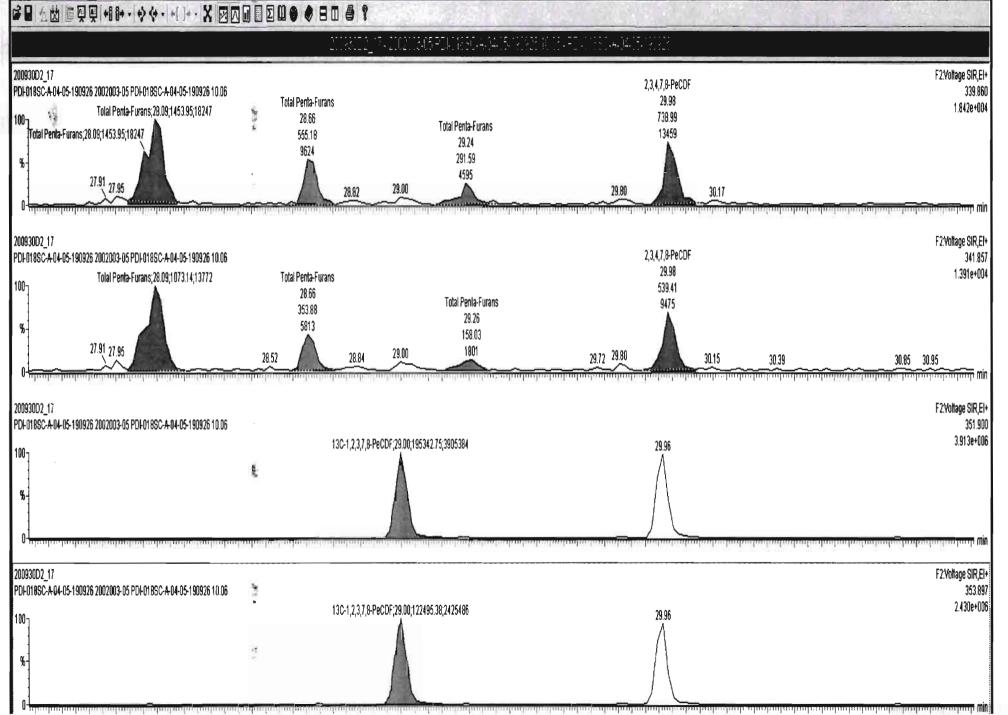

Targetl ynx 20093002_17.qld * [Chromatogram]



Work Order 2002003

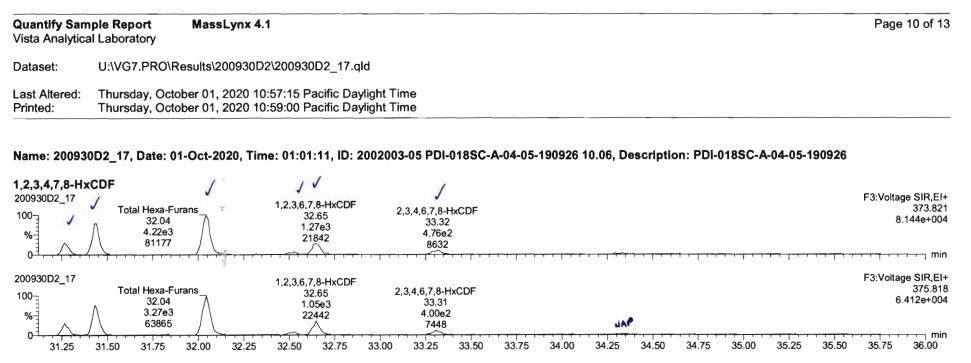

- 3 X

Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	

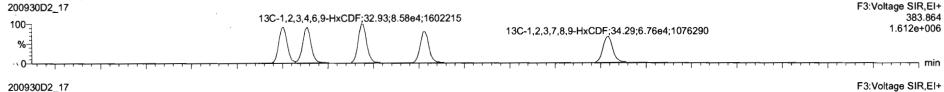


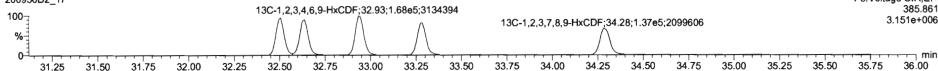
Work Order 2002003

🕌 TargetLynx - 200930D2_17.qld * - [Chromatogram]

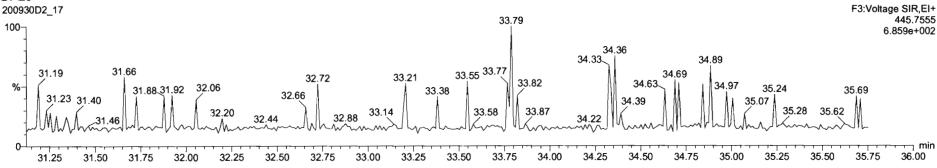

A File Edit Yew Display Processing Window Help

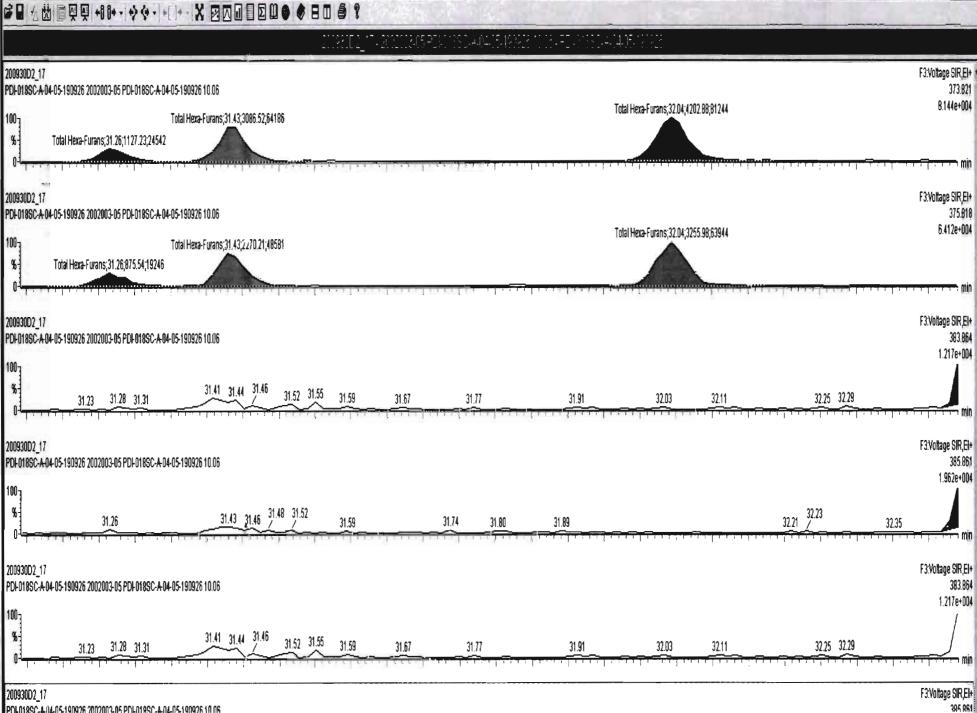



Work Order 2002003


. C X

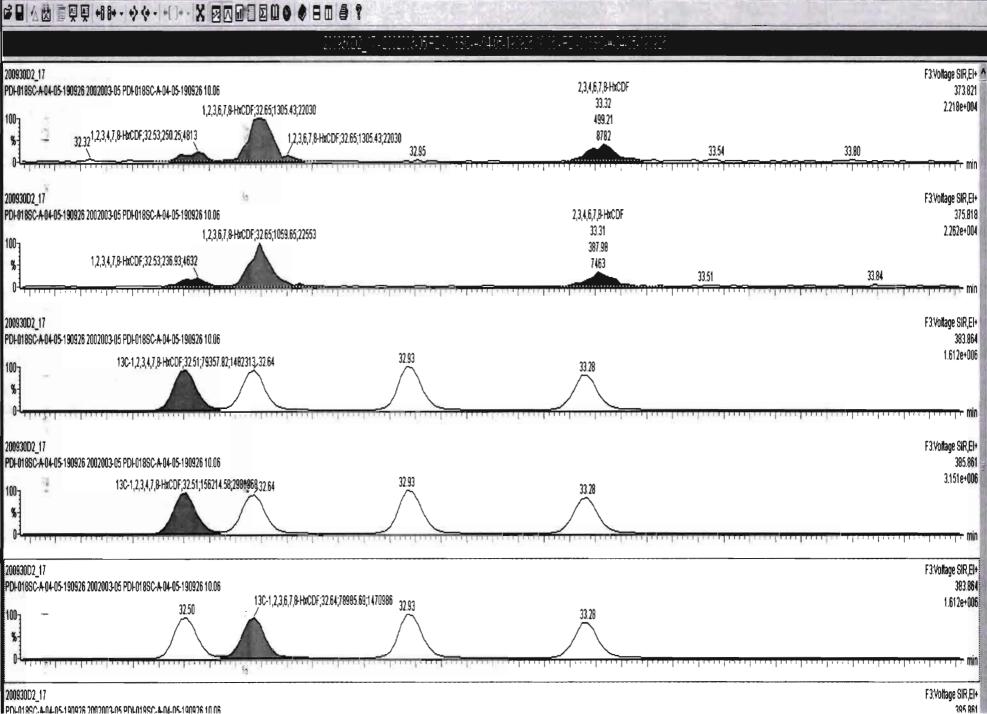
. . .





TargetLynx · 200930D2_17.qld * · [Chromatogram]

A File Edit New Display Processing Window Help


Work Order 2002003

. ; C X

. 6 >

TargetLynx - 200930D2_17.qld * - [Chromatogram]

Rile Edit View Display Processing Window Help

DL018SC-401-05-190938 2002003 00 2002003

. D X

. 8

1,2,3,4,7,8-HcCDF;32:53;250;25;4813

1,2,3,4,7,8-HxCDF;32,53;236,93;4632

13C-1,2,3,4,7,8-HxCDF;32:51;79357.82;1482313,32:64

13C-1,2,3,4,7,8-HxCDF;32:51;156214:58;2981868;32:64

32.50

32.40

32.40

PDF018SC-A04-05-190926 2002003-05 PDF018SC-A04-05-190926 10.06

PDF018SC-A-04-05-190926 2002003-05 PDF018SC-A-04-05-190926 10.06

PD+018SC-A-04-05-190926 2002003-05 PD+018SC-A-04-05-190926 10.06

PDF018SC-A-04-05-190926 2002003-05 PDF018SC-A-04-05-190926 10.06

PDF018SC-A04-05-190926 2002003-05 PDF018SC-A04-05-190926 10.06

F3:Voltage SIR,EI+

33.88 ^{33.90}

33.93

33.80

33,78

33.84

373,821

🗧 min

375.818

9.79Be+003

F3:Voltage SIR,EI+

F3:Voltage SIR EI+ 383.864

F3:Voltage SIR,EI+

F3:Voltage SIR,EI+

383,864

1.612e+006

385,861

3.151e+006

1.612e+006

1.020e+004

ᄚᇛᇫᄨᄚᅋᆞᅋᆞᅆᅆᆞ,ᄽᄿᆞᆞ(),Х◪◮◨▯◪◧◕◈◓◧◓窄

1.2.3.6.7.8-HxCDF

32.65

1305.43

22030

1.2.3.6.7.8-HxCDF

32.65

1059.65

22553

13C-1,2,3,6,7,8-HxCDF;32.64;78985.69;1470986 32.93

32.95 32.98

32.95

32.93

32.93

32.89

33.05 33.11

33.09

2,3,4,6,7,8-HxCDF;33,32;499,21;8782

2,3,4,6,7,8-HxCDF

33.31

387.98

7463

33.28

33.28

33.28

33.42

33.39

33.49 33.54

33.51

33.65

33.71

33,6833,71

32.32

200930D2 17

1005

8-

2009311D2 17

100-

8

100-%

200930D2 17

200930D2 17

200930D2 17

200930D2 17

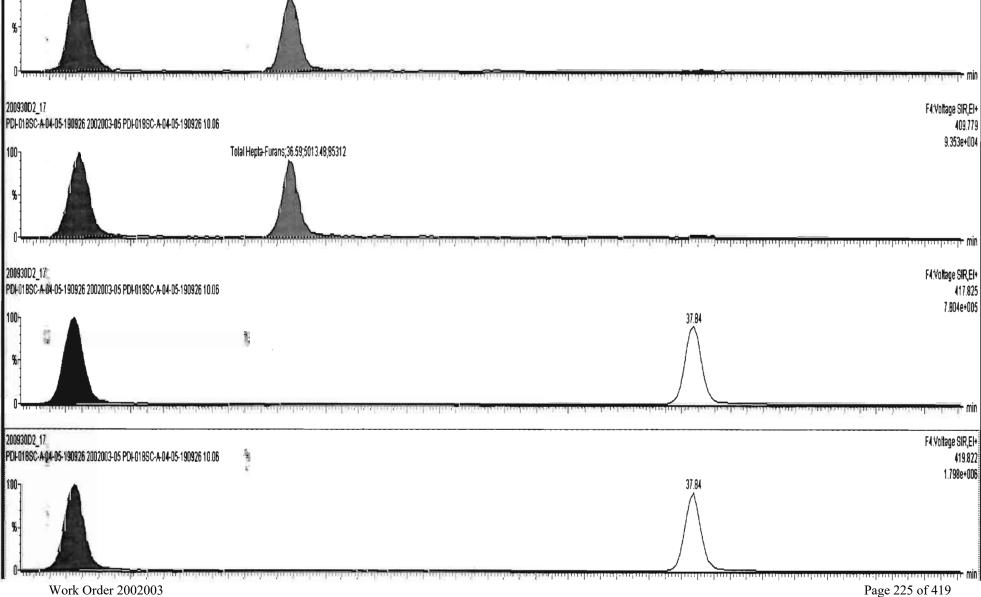
100-Ŷ,

14


1007 %÷

32.24

Rie Edit View Display Processing Window Help



Vista Analytical	le Report MassLynx 4.1 Laboratory	Page 11 of 13
~.		
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time	
Printed:	Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	

Work Order 2002003

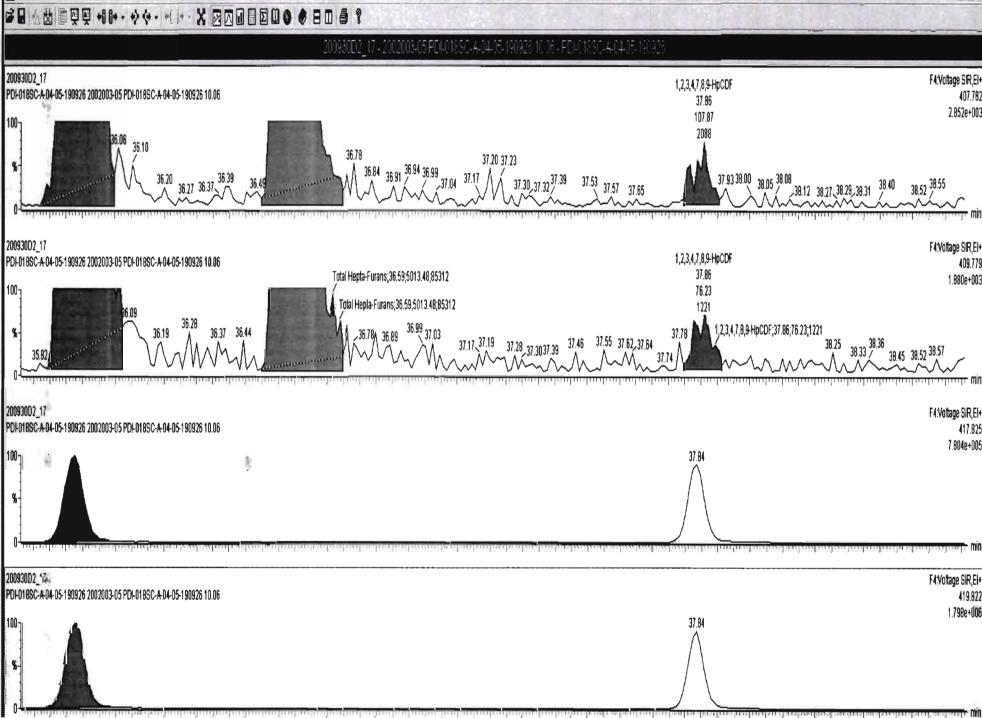
TargetLynx - 200930D2_17.qld * - [Chromatogram] A File Edit View Display Processing Window Help Total Hepla-Furans 200930D2 17 36.59 PDF018SC-A-04-05-190926 2002003-05 PDF018SC-A-04-05-190926 10.06 5111.75 Ň, 锁 100₁ 81547

F

. ð)

F4.Voltage SIR,EI+

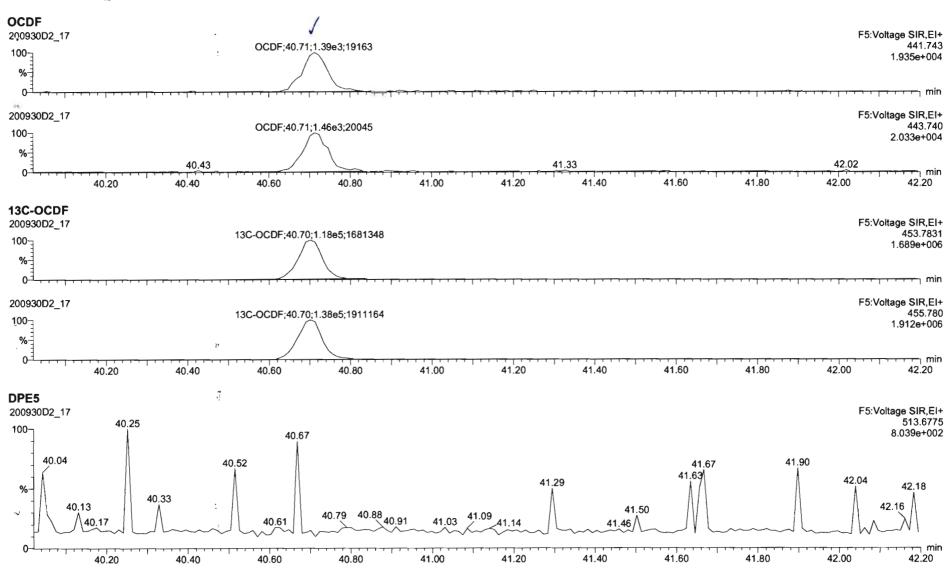
407.782


9.369e+004

Work Order 2002003

TargetLynx - 20093002_17.qld * - [Chromatogram]

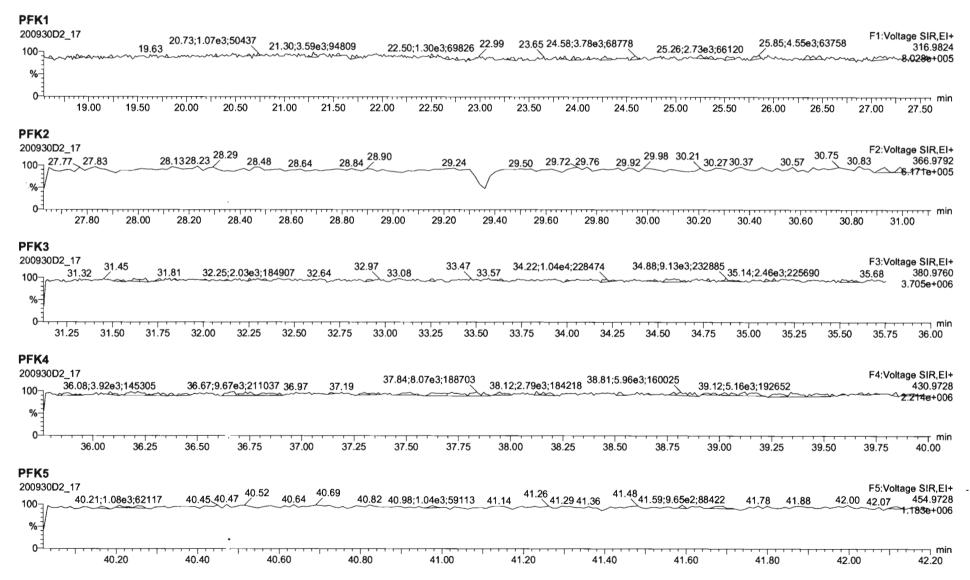
Work Order 2002003


A File Edit View Display Processing Window Help

<u>с X</u> . а х

Page 226 of 419

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_17.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time Thursday, October 01, 2020 10:59:00 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_17.qld

Last Altered:	Thursday, October 01, 2020 10:57:15 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:59:00 Pacific Daylight Time

Name: 200930D2_17, Date: 01-Oct-2020, Time: 01:01:11, ID: 2002003-05 PDI-018SC-A-04-05-190926 10.06, Description: PDI-018SC-A-04-05-190926

Quantify Sam Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1				Page 1 of
Dataset:	U:\VG7.PRO\Results\200	930D2\200930D2_18.qld				
Last Altered: Printed:		2:47:47 PM Pacific Daylight Time 2:48:41 PM Pacific Daylight Time	DB	10/2/20	C7 10	105/2020

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

Ju. M	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	1.00	7.721	25.837		1.001				0.136	
2	2 1,2,3,7,8-PeCDD	5.83e2	0.63	NO	0.935	7.721	30.187	30.19	1.001	1.001	0.74783		0.166	0.748
3	3 1,2,3,4,7,8-HxCDD	4.67e2	1.40	NO	1.15	7.721	33.404	33.42	1.000	1.001	0.60089		0.254	0.601
4	4 1,2,3,6,7,8-HxCDD	3.33e3	1.23	NO	1.02	7.721	33.514	33.54	1.000	1.001	4.3692		0.261	4.37
5	5 1,2,3,7,8,9-HxCDD	1.18e3	1.24	NO	1.06	7.721	33.834	33.81	1.001	1.000	1.5144		0.257	1.51
6	6 1,2,3,4,6,7,8-HpCDD	5.95e4	1.05	NO	1.00	7.721	37.201	37.20	1.000	1.000	95.409		1.15	95.4
7	7 OCDD	7.69e5	0.89	NO	0.952	7.721	40.395	40.40	1.000	1.000	1676.8		0.822	1680
8	8 2,3,7,8-TCDF	9.41e2	1.00	YES	1.01	7.721	25.188	25.18	1.001	1.001	0.57676		0.180	0.511
9	9 1,2,3,7,8-PeCDF	7.81e2	1.59	NO	0.998	7.721	29.018	29.02	1.001	1.001	0.60246		0.177	0.602
10	10 2,3,4,7,8-PeCDF	6.96e3	1.55	NO	1.07	7.721	29.994	30.00	1.001	1.001	5.2490		0.172	5.25
11	11 1,2,3,4,7,8-HxCDF	3.87e3	1.22	NO	1.05	7.721	32.505	32.52	1.000	1.000	3.7705		0.351	3.77
12	12 1,2,3,6,7,8-HxCDF	8.17e3	1.18	NO	1.10	7.721	32.647	32.65	1.000	1.000	7.5604		0.333	7.56
13	13 2,3,4,6,7,8-HxCDF	5.68e3	1.23	NO	1.09	7.721	33.317	33.32	1.001	1.001	5.7993		0.397	5.80
14	14 1,2,3,7,8,9-HxCDF	7.20e2	1.26	NO	1.08	7.721	34.294	34.33	1.000	1.001	0.80610		0.474	0.806
15	15 1,2,3,4,6,7,8-HpCDF	1.91e5	1.04	NO	1.13	7.721	35.965	35.94	1.001	1.000	223.50		0.565	223
16	16 1,2,3,4,7,8,9-HpCDF	1.63e3	1.08	NO	1.29	7.721	37.838	37.86	1.000	1.001	2.2245		0.558	2.22
17	17 OCDF	5.93e4	0.90	NO	0.953	7.721	40.713	40.72	1.000	1.000	112.17		0.367	112
18	18 13C-2,3,7,8-TCDD	2.69e5	0.77	NO	1.17	7.721	25.802	25.81	1.026	1.026	267.30	103	0.631	
19	19 13C-1,2,3,7,8-PeCDD	2.16e5	0.63	NO	0.914	7.721	29.992	30.17	1.193	1.200	275.39	106	0.574	
20	20 13C-1,2,3,4,7,8-HxCDD	1.75e5	1.30	NO	0.634	7.721	33.405	33.39	1.014	1.014	282.95	109	0.925	
21	21 13C-1,2,3,6,7,8-HxCDD	1.93e5	1.29	NO	0.724	7.721	33.514	33.51	1.017	1.017	273.56	106	0.809	
22	22 13C-1,2,3,7,8,9-HxCDD	1.91e5	1.24	NO	0.716	7.721	33.781	33.8 0	1.025	1.026	273.38	106	0.819	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.61e5	1.06	NO	0.660	7.721	37.194	37.19	1.129	1.129	250.69	96.8	1.20	
24	24 13C-OCDD	2.50e5	0.89	NO	0.587	7.721	40.172	40.40	1.219	1.226	436.72	84.3	0.838	
25	25 13C-2,3,7,8-TCDF	4.17e5	0.77	NO	1.02	7.721	24.897	25.16	0.990	1.001	270.54	104	0.531	
26	26 13C-1,2,3,7,8-PeCDF	3.37e5	1.61	NO	0.842	7.721	29.064	29.00	1.156	1.153	265.15	102	0.669	
27	27 13C-2,3,4,7,8-PeCDF	3.20e5	1.63	NO	0.802	7.721	29.951	29.96	1.191	1.192	264.40	102	0.703	
28	28 13C-1,2,3,4,7,8-HxCDF	2.53e5	0.51	NO	1.00	7.721	32.549	32.51	0.988	0.987	258.65	99.9	0.705	
29	29 13C-1,2,3,6,7,8-HxCDF	2.54e5	0.51	NO	1.02	7.721	32.680	32.64	0.992	0.991	2 56.32	99.0	0.694	
30	30 13C-2,3,4,6,7,8-HxCDF	2.33e5	0.52	NO	0.955	7.721	33.244	33.28	1.009	1.010	250.70	96.8	0.741	
31	31 13C-1,2,3,7,8,9-HxCDF	2.14e5	0.51	NO	0.851	7.721	34.308	34.29	1.041	1.041	257.78	99.5	0.831	

Page 1 of 2

Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_18.qld

Last Altered:	Friday, October 02, 2020 2:47:47 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 2:48:41 PM Pacific Daylight Time

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

and a	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL.	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.96e5	0.44	NO	0.848	7.721	35.810	35.93	1.087	1.091	236.99	91.5	0.983	
32 33	33 13C-1,2,3,4,7,8,9-HpCDF	1.48e5	0.45	NO	0.624	7.721	37.787	37.84	1.147	1.149	243.12	93.9	1.34	
34	34 13C-OCDF	2.88e5	0.90	NO	0.730	7.721	40.323	40.71	1.224	1.236	404.26	78.0	0.650	
35	35 37CI-2,3,7,8-TCDD	1.29e5			1.21	7.721	25.799	25.82	1.026	1.027	124.39	120	0.145	
33	36 13C-1,2,3,4-TCDD	2.22e5	0.83	NO	1.00	7.721	25.260	25.15	1.000	1.000	259.03	100	0.740	
37	37 13C-1,2,3,4-TCDF	3.91e5	0.78	NO	1.00	7.721	23.930	23.80	1.000	1.000	259.03	100	0.543	
38	38 13C-1,2,3,4,6,9-HxCDF	2.52e5	0.50	NO	1.00	7.721	32.990	32.94	1.000	1.000	259.03	100	0.707	
39	39 Total Tetra-Dioxins				1.00	7.721	24.620		0.000		1.7374		0.136	2.58
40	40 Total Penta-Dioxins				0.935	7.721	29.960		0.000		7.4538		0.166	7.45
41	41 Total Hexa-Dioxins				1.02	7.721	33.635		0.000		33.079		0.270	33.4
42	42 Total Hepta-Dioxins				1.00	7.721	37.640		0.000		231.44		1.15	231
43	43 Total Tetra-Furans				1.01	7.721	23.610		0.000		23.179		0.150	24.9
44	44 1st Func. Penta-Furans				0.998	7.721	26.750		0.000		35.250		0.0572	35.2
45	45 Total Penta-Furans				0.998	7.721	29.275		0.000		27.450		0.181	27.8
46	46 Total Hexa-Furans				1.09	7.721	33.555		0.000		165.34		0.382	165
47	47 Total Hepta-Furans				1.13	7.721	37.835		0.000		405.76		0.595	406

1920

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_18.qld

Last Altered:	Friday, October 02, 2020 2:47:47 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 2:48:41 PM Pacific Daylight Time

Method: Untitled 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

Tatra-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22.43	4.000e3	5.054e3	3.042e2	3.449e2	0.88	NO	6.491e2	0.62403	0.62403	0.136
2	Total Tetra-Dioxins	22.78	1.727e3	1.788e3	1.409e2	1.647e2	0.86	NO	3.056e2	0.29378	0.29378	0.136
3	Total Tetra-Dioxins	23.21	2.467e3	2.315e3	1.280e2	1.482e2	0.86	NO	2.762e2	0.26554	0.26554	0.136
4	Total Tetra-Dioxins	23.94	2.372e3	3.033e3	1.472e2	1.577e2	0.93	YES	0.000e0	0.00000	0.26841	0.136
5	Total Tetra-Dioxins	24.12	2.015e3	2.322e3	1.857e2	1.729e2	1.07	YES	0.000e0	0.00000	0.29426	0.136
C:Y	Total Tetra-Dioxins	24.35	2.950e3	3.659e3	1.892e2	2.417e2	0.78	NO	4.310e2	0.41434	0.41434	0.136
2	Total Tetra-Dioxins	24.54	1.773e3	1.085e3	8.234e1	6.550e1	1.26	YES	0.000e0	0.00000	0.11147	0.136
8	Total Tetra-Dioxins	24.78	1.425e3	1.605e3	6.746e1	7.781e1	0.87	NO	1.453e2	0.13967	0.13967	0.136
9	Total Tetra-Dioxins	24.87	1.411e3	1.579e3	9.352e1	9.817e1	0.95	YES	0.000e0	0.00000	0.16706	0.136

Penta-Dioxins

M. Carl	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.07	1.298e4	1.900e4	9.593e2	1.392e3	0.69	NO	2.351e3	3.0167	3.0167	0.166
2	Total Penta-Dioxins	28.52	2.519e3	3.910e3	1.316e2	2.299e2	0.57	NO	3.615e2	0.46387	0.46387	0.166
3	Total Penta-Dioxins	29.16	4.128e3	8.513e3	2.773e2	4.399e2	0.63	NO	7.172e2	0.92032	0.92032	0.166
4	Total Penta-Dioxins	29.22	4.304e3	5.369e3	2.369e2	3.417e2	0.69	NO	5.786e2	0.74253	0.74253	0.166
5	Total Penta-Dioxins	29.46	5.390e3	7.435e3	3.971e2	5.573e2	0.71	NO	9.544e2	1.2246	1.2246	0.166
6	1,2,3,7,8-PeCDD	30.19	3.956e3	7.404e3	2.248e2	3.580e2	0.63	NO	5.828e2	0.74783	0.74783	0.166
7	Total Penta-Dioxins	30.51	2.135e3	3.076e3	1.012e2	1.622e2	0.62	NO	2.634e2	0.33795	0.33795	0.166

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_18.qld

Last Altered:	Friday, October 02, 2020 2:47:47 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 2:48:41 PM Pacific Daylight Time

5

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

Hexa-Dioxins

C.C. T.	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	31.79	9.592e4	8.131e4	5.091e3	4.003e3	1.27	NO	9.094e3	12.361	12.361	0.270
2	Total Hexa-Dioxins	32.38	1.839e4	1.434e4	8.168e2	6.957e2	1.17	NO	1.512e3	2.0559	2.0559	0.270
3	Total Hexa-Dioxins	32.67	1.040e5	8.207e4	5.112e3	3.847e3	1.33	NO	8.959e3	12.177	12.177	0.270
4	1,2,3,4,7,8-HxCDD	33.42	4.163e3	4.527e3	2.726e2	1.943e2	1.40	NO	4.668e2	0.60089	0.60089	0.254
5	1,2,3,6,7,8-HxCDD	33.54	3.068e4	2.387e4	1.836e3	1.498e3	1.23	NO	3.334e3	4.3692	4.3692	0.261
6	Total Hexa-Dioxins	33.70	3.617e3	1.828e3	1.886e2	1.182e2	1.60	YES	0.000e0	0.00000	0.35979	0.270
7	1,2,3,7,8,9-HxCDD	33.81	1.130e4	9.406e3	6.554e2	5.273e2	1.24	NO	1.183e3	1.5144	1.5144	0.257

Hepta-Dioxins

12 10

1.40-2-

.

4	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.30	7.392e5	7.299e5	4.301e4	4.184e4	1.03	NO	8.485e4	136.03	136.03	1.15
2	1,2,3,4,6,7,8-HpCDD	37.20	5.469e5	5.287e5	3.051e4	2.900e4	1.05	NO	5.951e4	95.409	95.409	1.15

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_18.qld

Last Altered:	Friday, October 02, 2020 2:47:47 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 2:48:41 PM Pacific Daylight Time

÷.

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

tra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.33	3.288e3	4.047e3	2.493e2	3.136e2	0.80	NO	5.629e2	0.34510	0.34510	0.150
2	Total Tetra-Furans	20.90	7.368e3	9.251e3	6.845e2	9.963e2	0.69	NO	1.681e3	1.0305	1.0305	0.150
3	Total Tetra-Furans	21.65	5.881e4	6.989e4	5.104e3	6.129e3	0.83	NO	1.123e4	6.8865	6.8865	0.150
4	Total Tetra-Furans	21.98	3.507e3	4.920e3	3.496e2	4.179e2	0.84	NO	7.674e2	0.47050	0.47050	0.150
5	Total Tetra-Furans	22.11	2.585e3	4.297e3	3.103e2	4.708e2	0.66	NO	0.000e0	0.00000	0.47885	0.150
6	Total Tetra-Furans	22.47	2.451e4	2.951e4	2.064e3	2.655e3	0.78	NO	4.718e3	2.8929	2.8929	0.150
7	Total Tetra-Furans	22.89	3.830e4	4.537e4	3.307e3	3.824e3	0.86	NO	7.131e3	4.3722	4.3722	0.150
8	Total Tetra-Furans	23.19	3.510e3	3.562e3	2.819e2	3.041e2	0.93	YES	0.000e0	0.00000	0.33004	0.150
9	Total Tetra-Furans	23.67	4.494e3	5.180e3	3.479e2	4.494e2	0.77	NO	7.973e2	0.48883	0.48883	0.150
10	Total Tetra-Furans	23.86	3.167e4	4.639e4	2.578e3	3.627e3	0.71	NO	6.206e3	3.8046	3.8046	0.150
11	Total Tetra-Furans	24.14	4.396e3	4.650e3	2.898e2	3.512e2	0.83	NO	6.411e2	0.39303	0.39303	0.150
12	Total Tetra-Furans	24.29	6.057e3	7.791e3	4.407e2	5.495e2	0.80	NO	9.902e2	0.60710	0.60710	0.150
13	Total Tetra-Furans	24.95	2.409e3	2.691e3	1.311e2	1.942e2	0.68	NO	3.252e2	0.19939	0.19939	0.150
14	Total Tetra-Furans	25.07	3.321e3	4.731e3	2.280e2	3.149e2	0.72	NO	5.430e2	0.33290	0.33290	0.150
15	2,3,7,8-TCDF	25.18	7.265e3	6.854e3	4.698e2	4.709e2	1.00	YES	9.407e2	0.00000	0.51103	0.150
16	Total Tetra-Furans	25.45	3.053e3	5.194e3	2.539e2	3.182e2	0.80	NO	5.721e2	0.35075	0.35075	0.150
1.7	Total Tetra-Furans	26.26	8.535e3	7.652e3	3.599e2	4.526e2	0.80	NO	8.125e2	0.49813	0.49813	0.150
18	Total Tetra-Furans	26.42	6.024e3	6.643e3	3.839e2	4.428e2	0.87	NO	8.267e2	0.50682	0.50682	0.150
19	Total Tetra-Furans	26.62	5.728e3	8.152e3	3.783e2	3.981e2	0.95	YES	0.000e0	0.00000	0.43198	0.150

Penta-Furans function 1

1000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	26.60	5.214e5	3.088e5	2.769e4	1.687e4	1.64	NO	4.456e4	35.250	35.250	0.0572

-

71

14

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

U:\VG7.PRO\Results\200930D2\200930D2 18.qld Dataset:

Last Altered:	Friday, October 02, 2020 2:47:47 PM Pacific Daylight Time
Printed:	Friday, October 02, 2020 2:48:41 PM Pacific Daylight Time

21

٠.

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

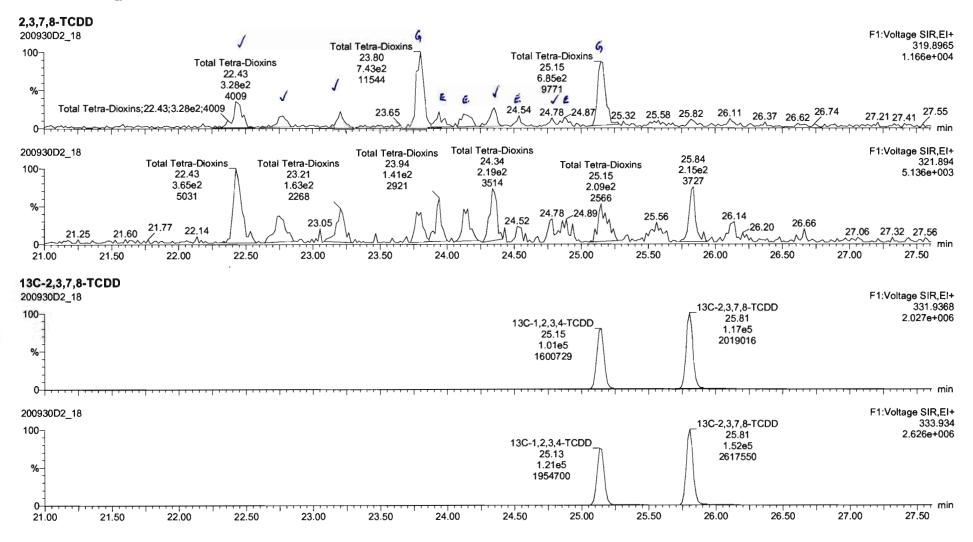
Penta-Furans

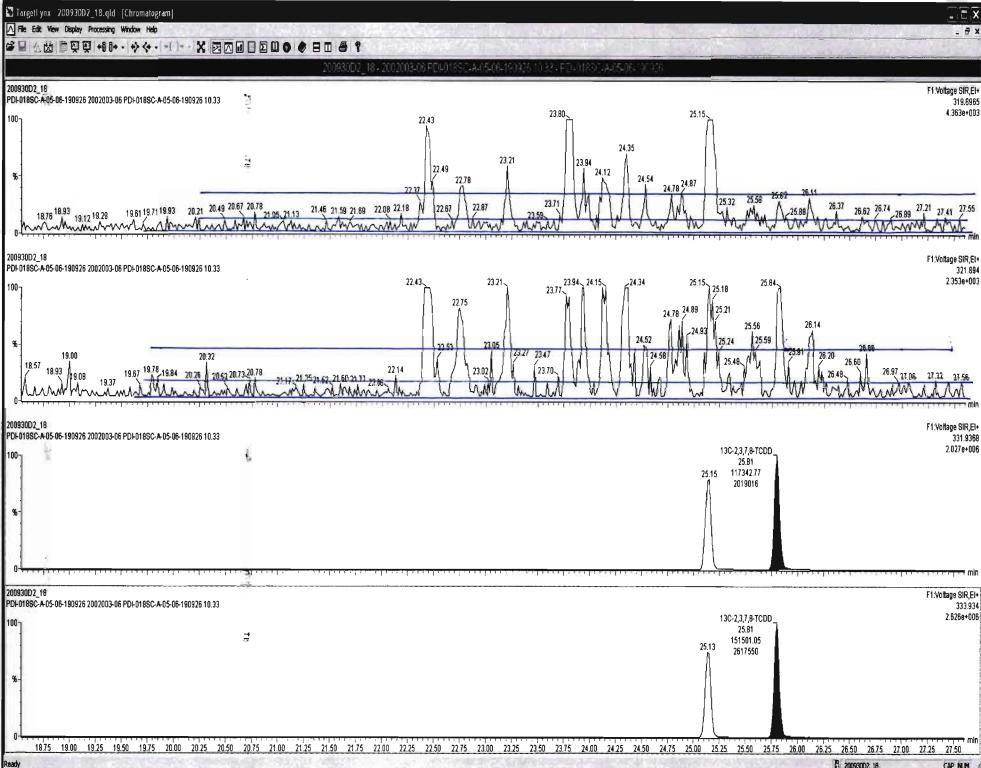
1	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	27.97	1.004e4	6.119e3	6.695e2	4.197e2	1.59	NO	1.089e3	0.86159	0.86159	0.181
2	Total Penta-Furans	28.09	1.336e5	9.262e4	1.029e4	6.813e3	1.51	NO	1.710e4	13.527	13.527	0.181
3	Total Penta-Furans	28.66	6.558e4	4.402e4	3.676e3	2.340e3	1.57	NO	6.016e3	4.7589	4.7589	0.181
4	Total Penta-Furans	28.82	5.136e3	3.355e3	3.191e2	1.717e2	1.86	YES	0.000e0	0.00000	0.34641	0.181
5	1,2,3,7,8-PeCDF	29.02	8.579e3	5.430e3	4.800e2	3.013e2	1.59	NO	7.814e2	0.60246	0.60246	0.177
6	Total Penta-Furans	29.26	2.091e4	1.280e4	1.684e3	1.046e3	1.61	NO	2.730e3	2.1598	2.1598	0.181
7.	Total Penta-Furans	29.82	4.598e3	3.189e3	2.265e2	1.419e2	1.60	NO	3.684e2	0.29141	0.29141	0.181
0	2,3,4,7,8-PeCDF	30.00	6.710e4	4.301e4	4.234e3	2.725e3	1.55	NO	6.959e3	5.2490	5.2490	0.172

Hexa-Furans

State State	Name	VRT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.28	2.397e5	1.854e5	1.168e4	9.289e3	1.26	NO	2.097e4	20.936	20.936	0.382
2	Total Hexa-Furans	31.43	5.872e5	4.610e5	2.866e4	2.240 0 4	1.28	NO	5.106e4	50.969	50.969	0.382
3	Total Hexa-Furans	31.82	6.736e3	5.064e3	3.373e2	2.513e2	1.34	NO	5.886e2	0.58756	0.58756	0.382
4	Total Hexa-Furans	32.04	8.370e5	6.597e5	4.101e4	3.246e4	1.26	NO	7.348e4	73.353	73.353	0.382
5	Total Hexa-Furans	32.41	5.417e3	4.292e3	3.164 e 2	2.748e2	1.15	NO	5.912e2	0.59015	0.59015	0.382
6	1,2,3,4,7,8-HxCDF	32.52	4.086e4	3.158e4	2.123e3	1.746e3	1.22	NO	3.869e3	3.7705	3.7705	0.351
7	1,2,3,6,7,8-HxCDF	32.65	7.580e4	7.081e4	4.425e3	3.742e3	1.18	NO	8.167e3	7.5604	7.5604	0.333
8	Total Hexa-Furans	32.94	4.266e3	4.064e3	2.071e2	1.616e2	1.28	NO	3.686e2	0.36802	0.36802	0.382
9	2,3,4,6,7,8-HxCDF	33.32	4.782e4	4.016e4	3.131e3	2.550e3	1.23	NO	5.681e3	5.7993	5.7993	0.397
10	1,2,3,7,8,9-HxCDF	34.33	9.380e3	7.830e3	4.020e2	3.179e2	1.26	NO	7.199e2	0.80610	0.80610	0.474
11	Total Hexa-Furans	34.36	7.566e3	6.565e3	3.277e2	2.771e2	1.18	NO	6.048e2	0.60375	0.60375	0.382

Hepta-Furans

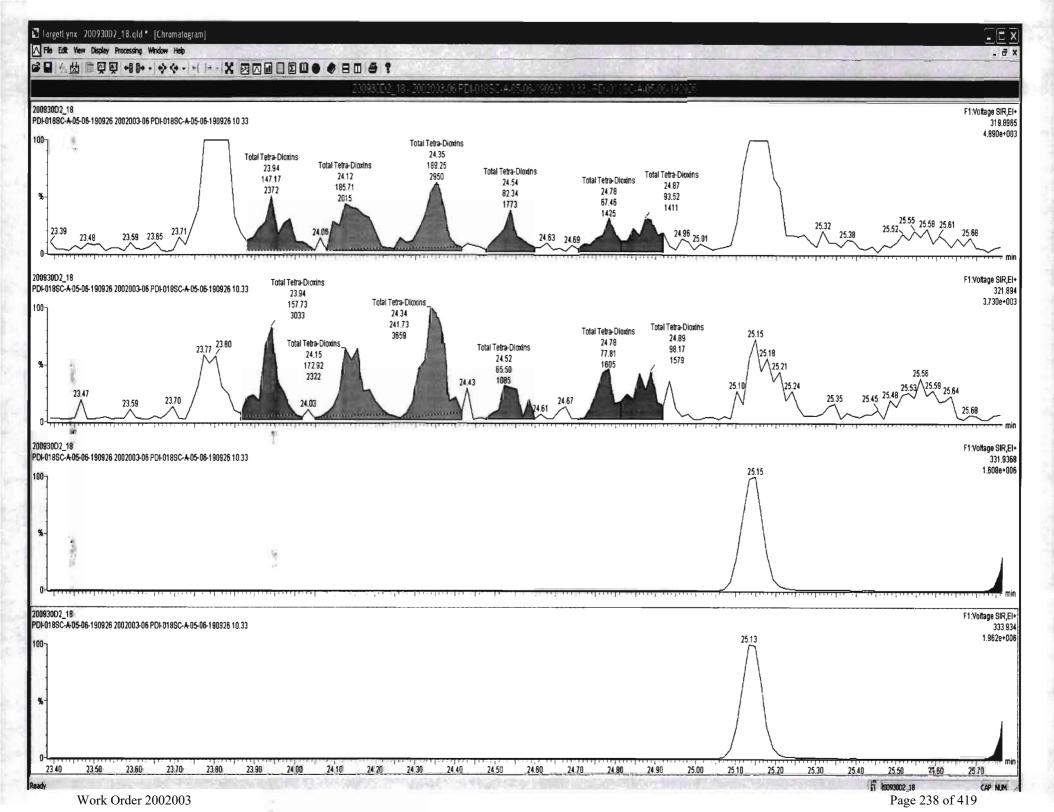

2	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	35.94	1.397e6	1.334e6	9.732e4	9.383e4	1.04	NO	1.912e5	223.50	223.50	0.565
2	Total Hepta-Furans	36.59	1.131e6	1.113e6	6.883e4	6.627e4	1.04	NO	1.351e5	180.03	180.03	0.595
3	1,2,3,4,7,8,9-HpCDF	37.86	1.233e4	1.303e4	8.464e2	7.870e2	1.08	NO	1.633e3	2.2245	2.2245	0.558

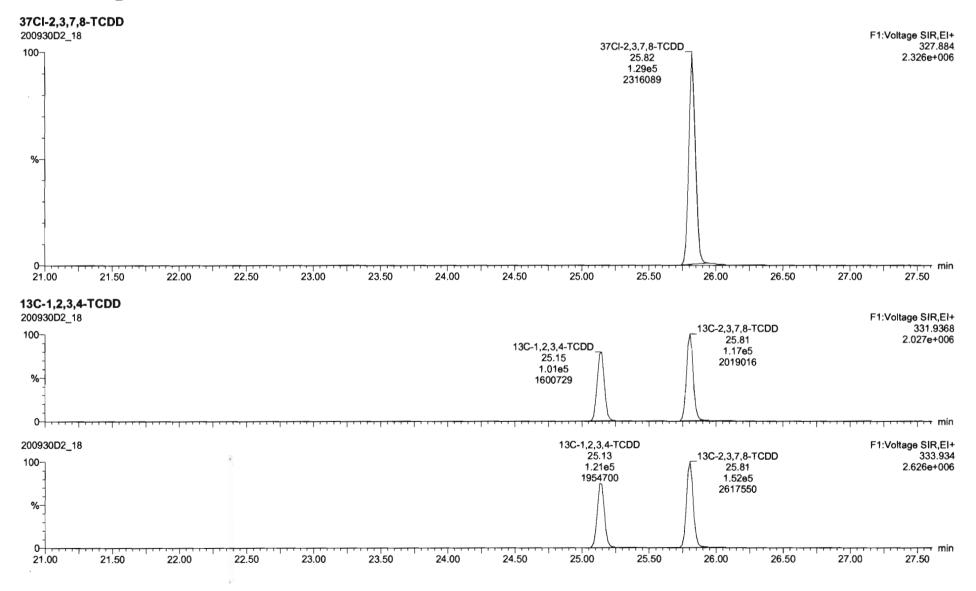

Page 4 of 4

Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

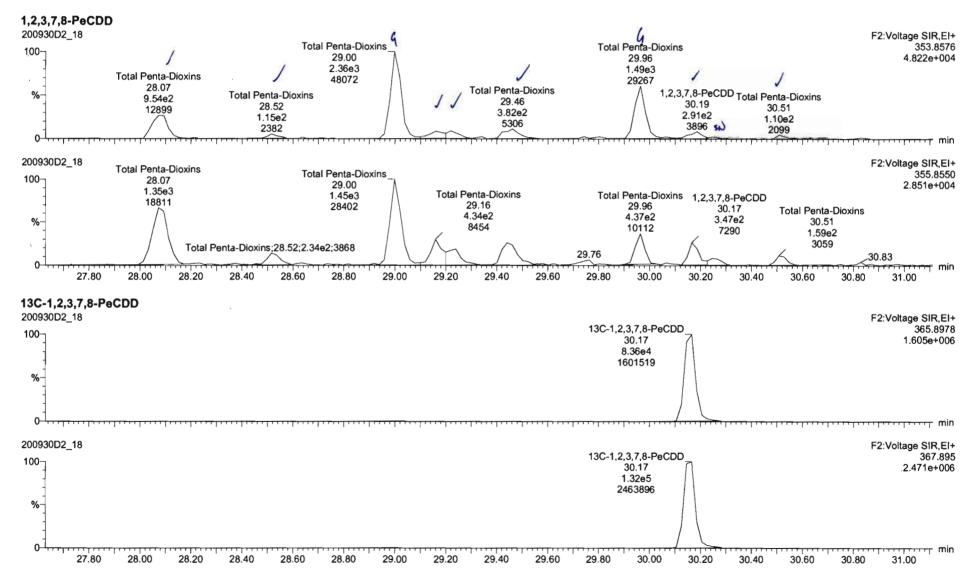
Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926




²⁰⁰⁹³⁰⁰²_18 CAP NUM ,

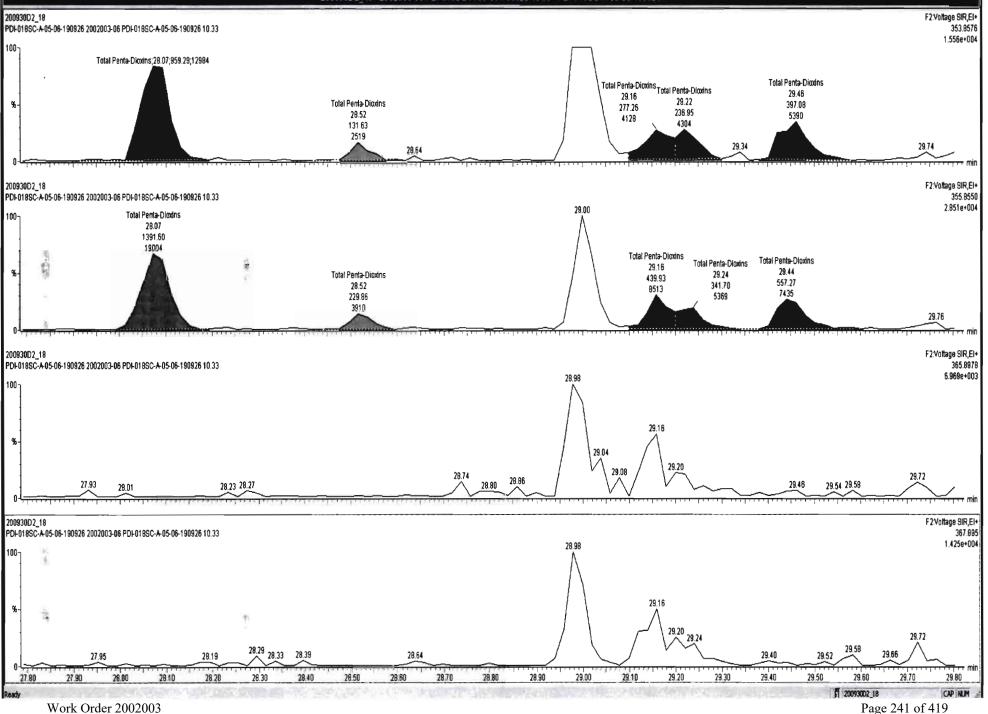
Work Order 2002003



Quantify San Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

k

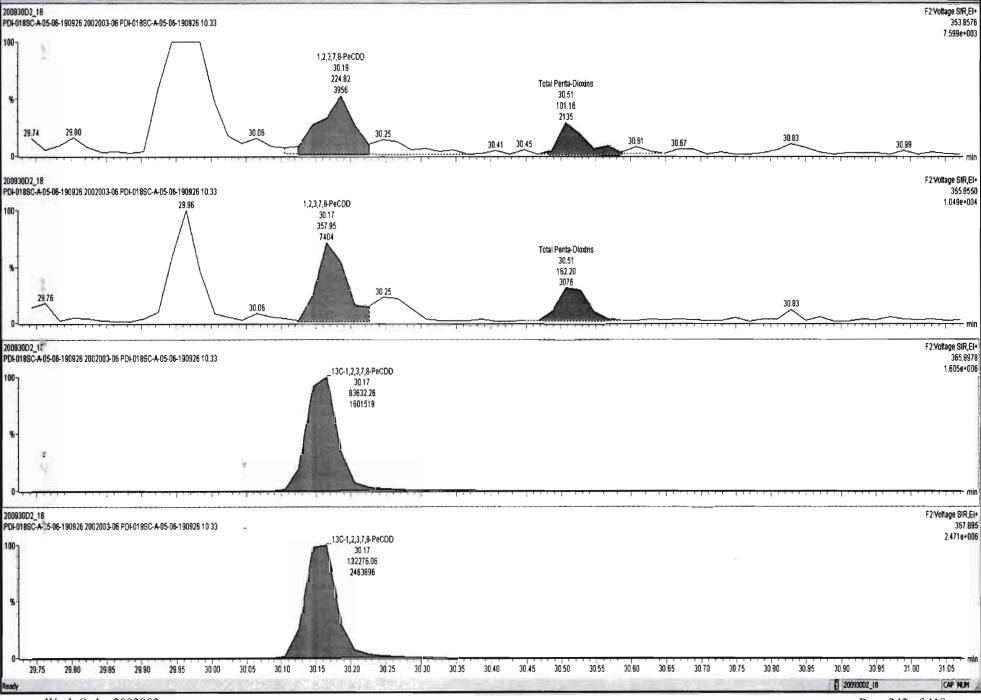


TargetLynx 200930D2_18.qld * [Chromatogram]

A File Edit View Display Processing Window Help

☞묘소故章架ዊ+88+・�☆・+()*・※四八通目ΣШ●●日田● ?

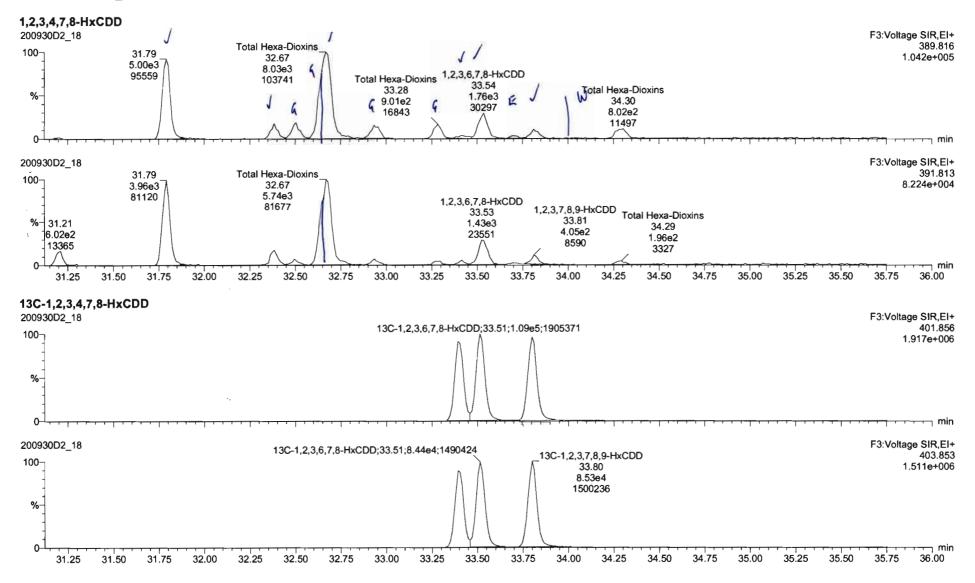
\$2000 18 - 2002003-06 PDU018551-4-05-06-190900 (0.33 - PDU019575-4-05-06-190255



. 8 :

A File Edit View Display Processing Window Help

ᄚᇛᄼᄲᆙᅋᅋᆞᆊᅆᆞᆞᄽᄿᆞᆘᆣᆞᄊᇏᄚᇟᇜᆸᇗᇞᅀᆥᇢᇊᇜᇴᆥ



Work Order 2002003

- D X

. 8 1

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

TargetLynx - 200930D2 18.gld * - [Chromatogram]

A File Edit View Display Processing Window Help

20093002 10

100

8

20093002 18

100-

8

20093002 18

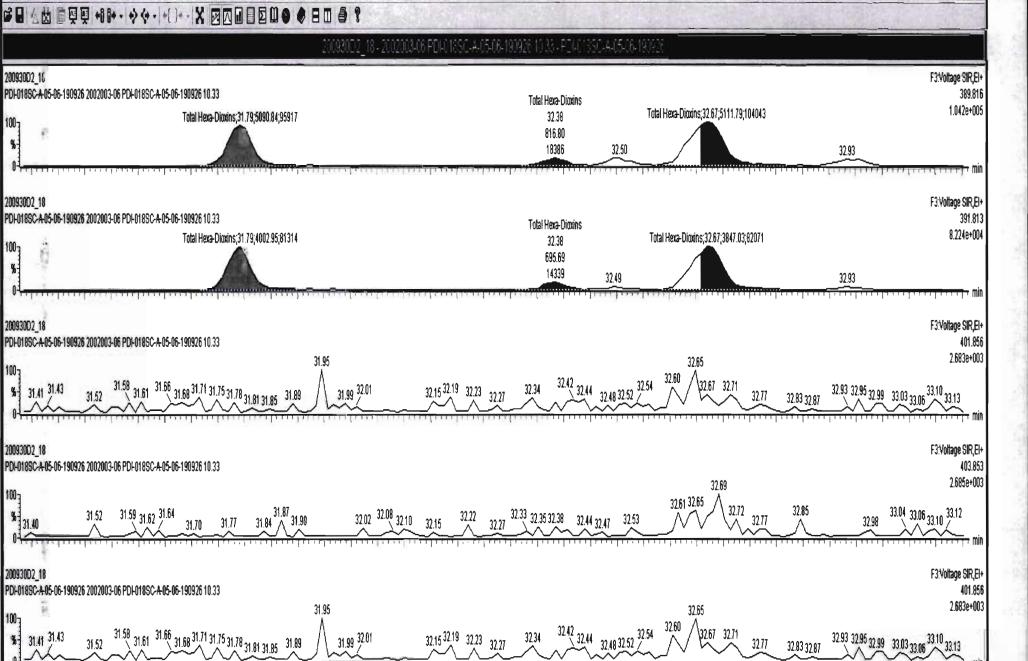
31.41 31.43

1002

\$

20093002 18

1003


\$ 31.40

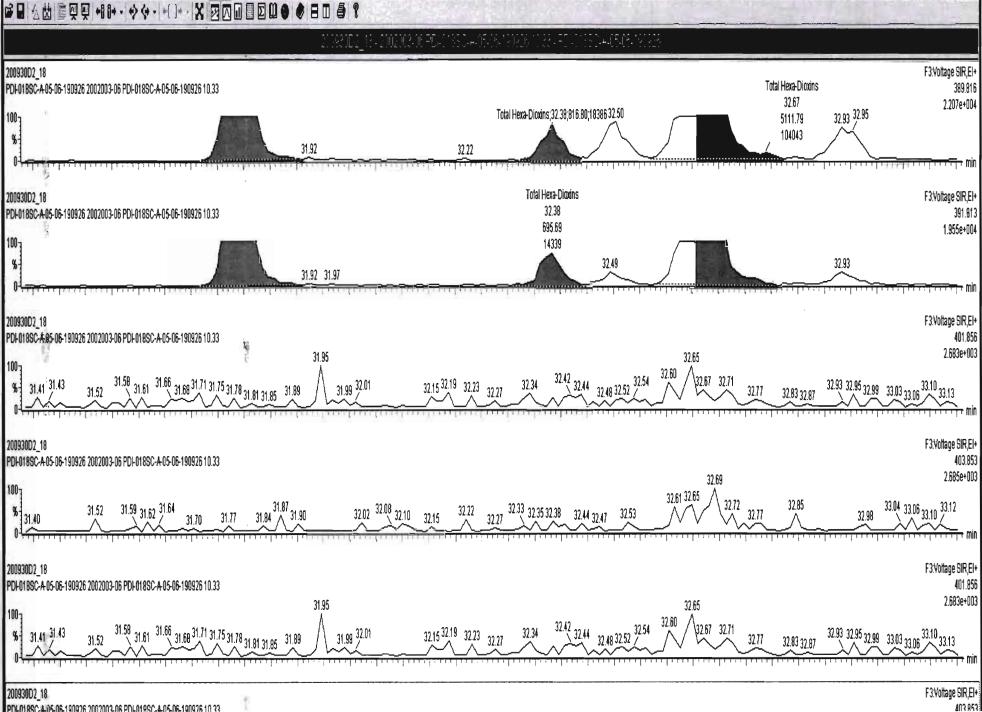
200930D2 18

31.41 31.43

1007

%

F3:Voltage SIR.EI+ 103 853


Page 244 of 419

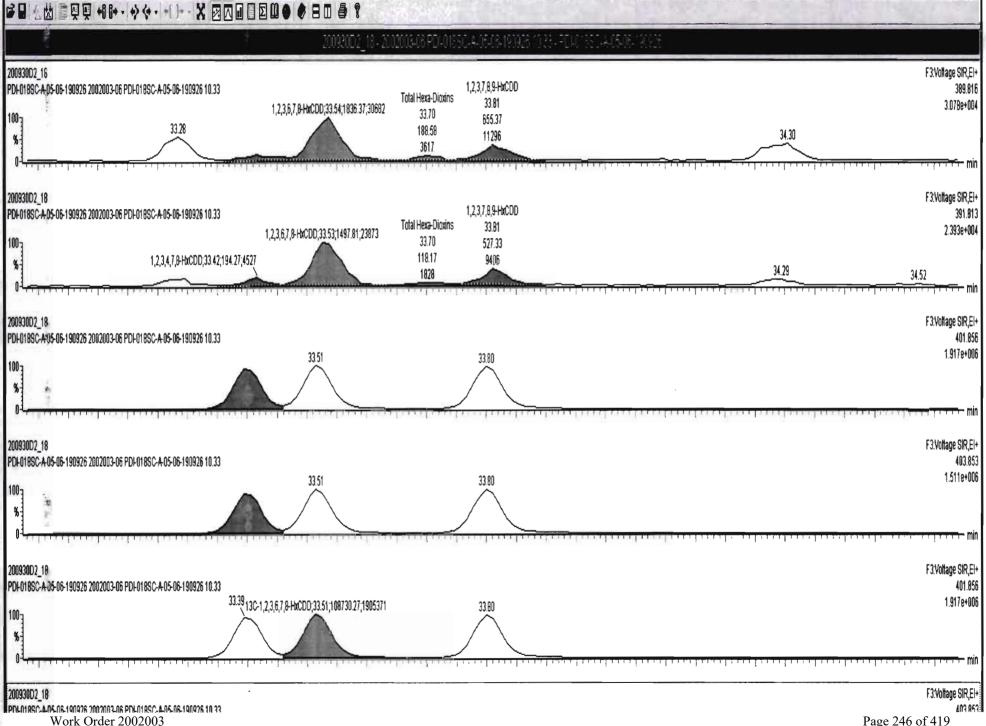
. 7

.6

TargetLynx · 200930D2_18.qld * · [Chromatogram]

A File Edit View Display Processing Window Help

Work Order 2002003

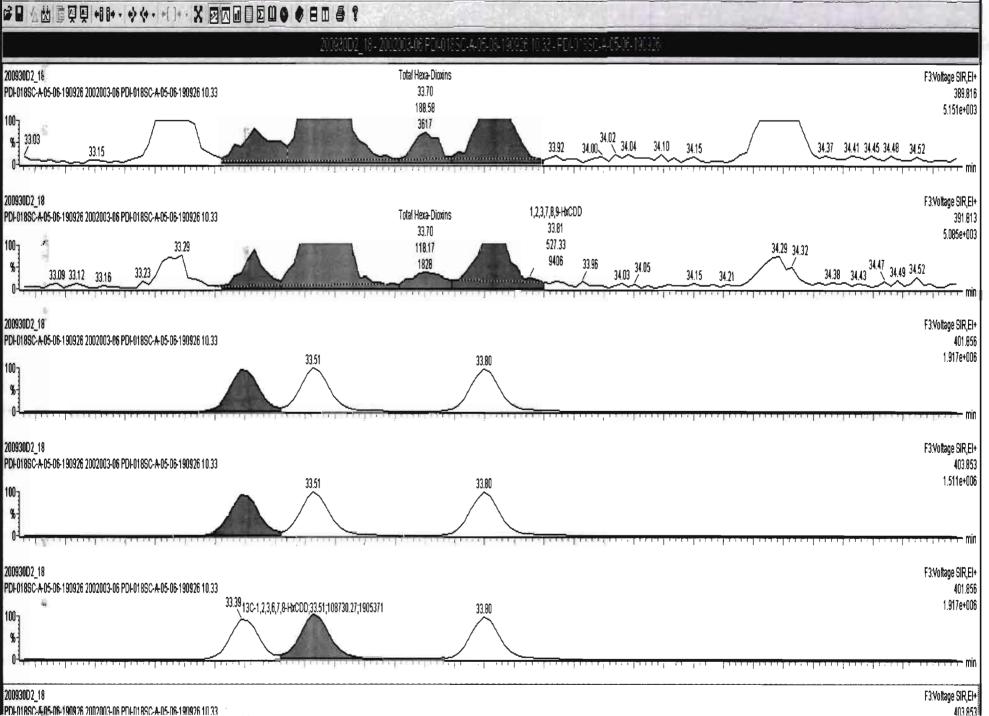

. 8)

- <u>5</u> X

Page 245 of 419

🎽 TargetLynx - 200930D2_18.qld * - [Chromatogram]

Rie Edit Yiew Display Processing Window Help

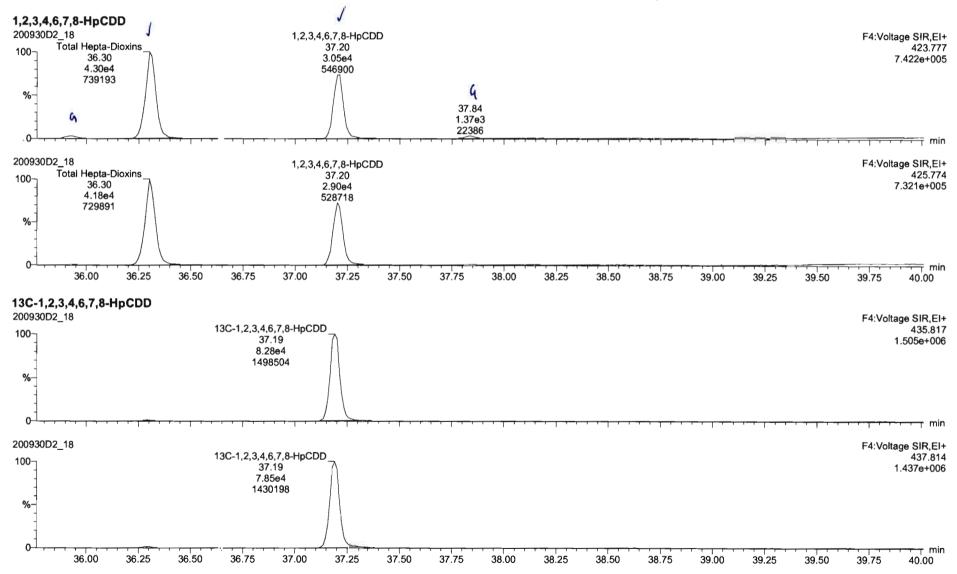

Page 246 of 419

. DX

. 8 >

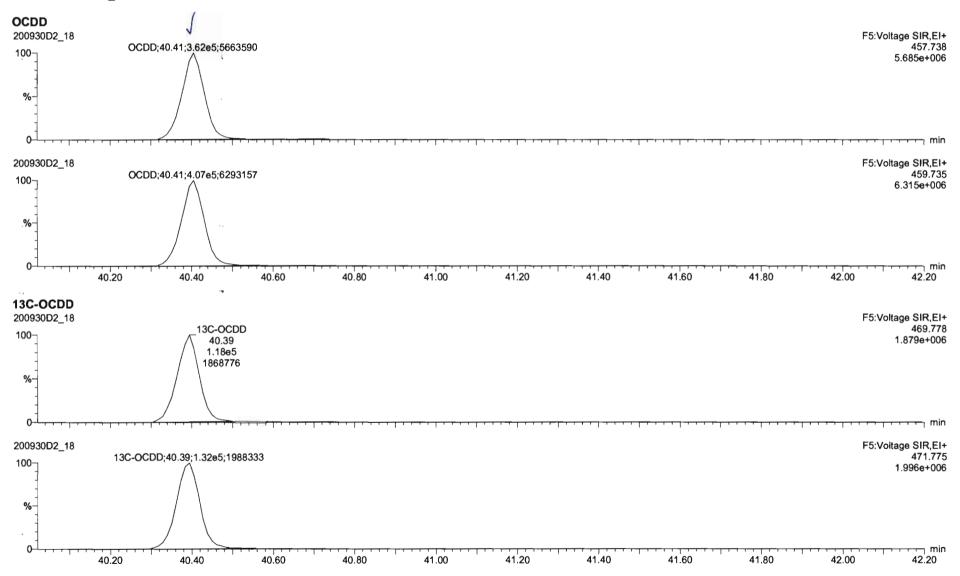
🐉 TargetLynx - 200930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

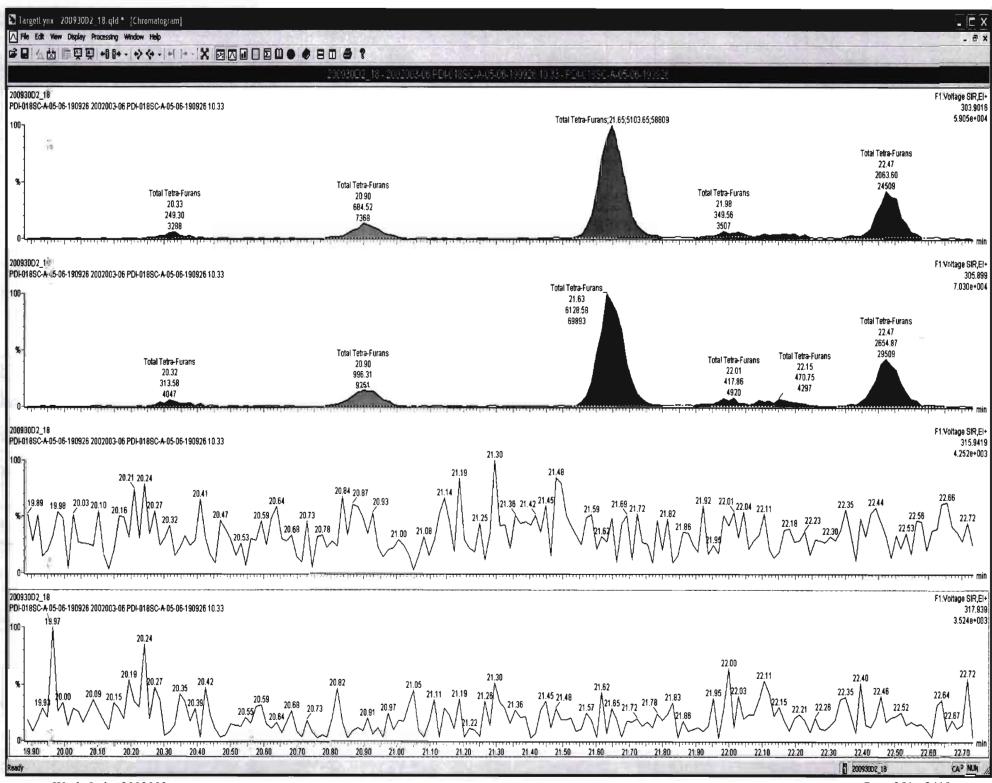

PDE018SC-A05-06-190926 2002003-06 PDE018SC-A05-06-190926 10 33 Work Order 2002003

Page 247 of 419

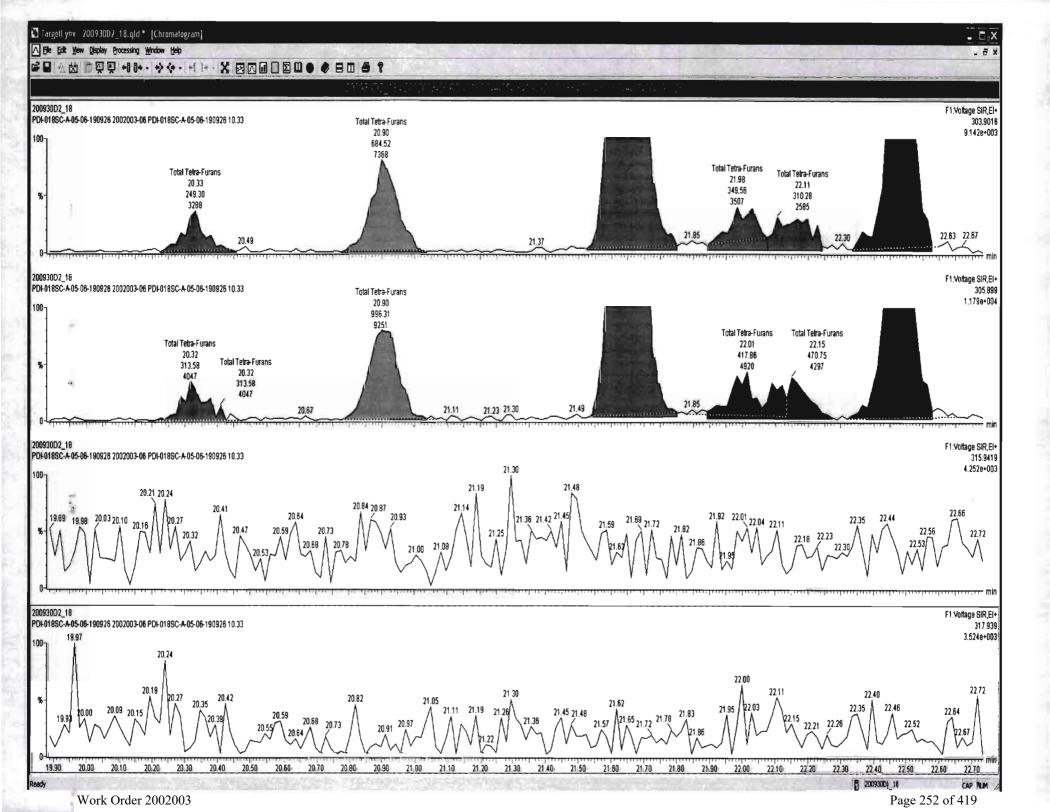
. C X

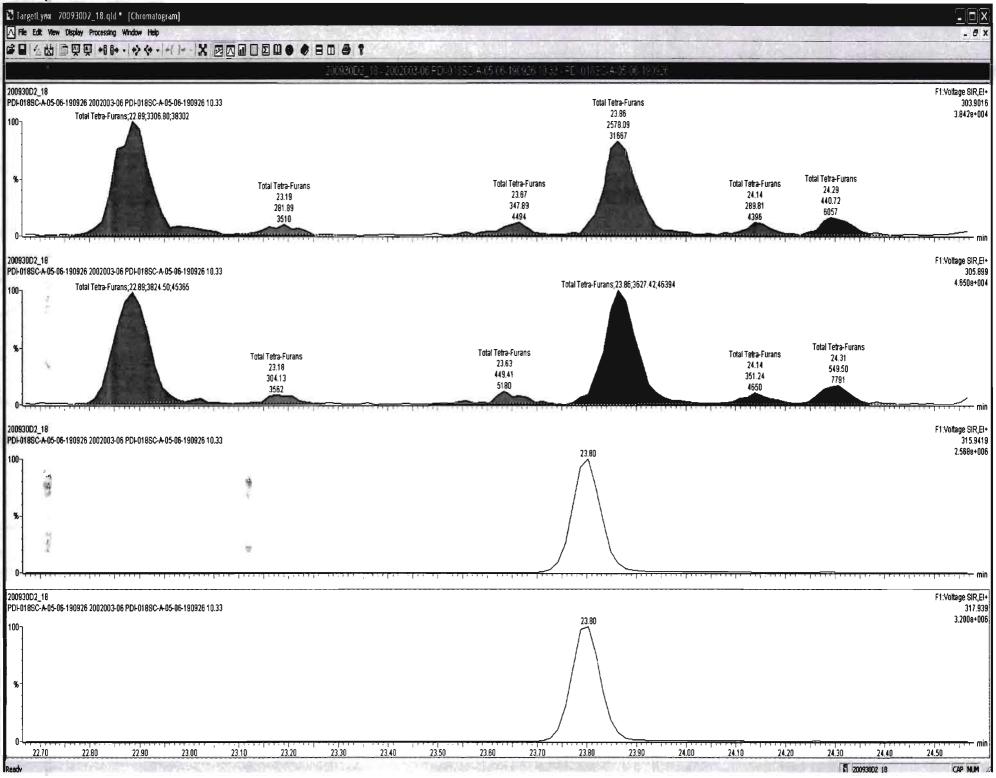

. 8 :

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

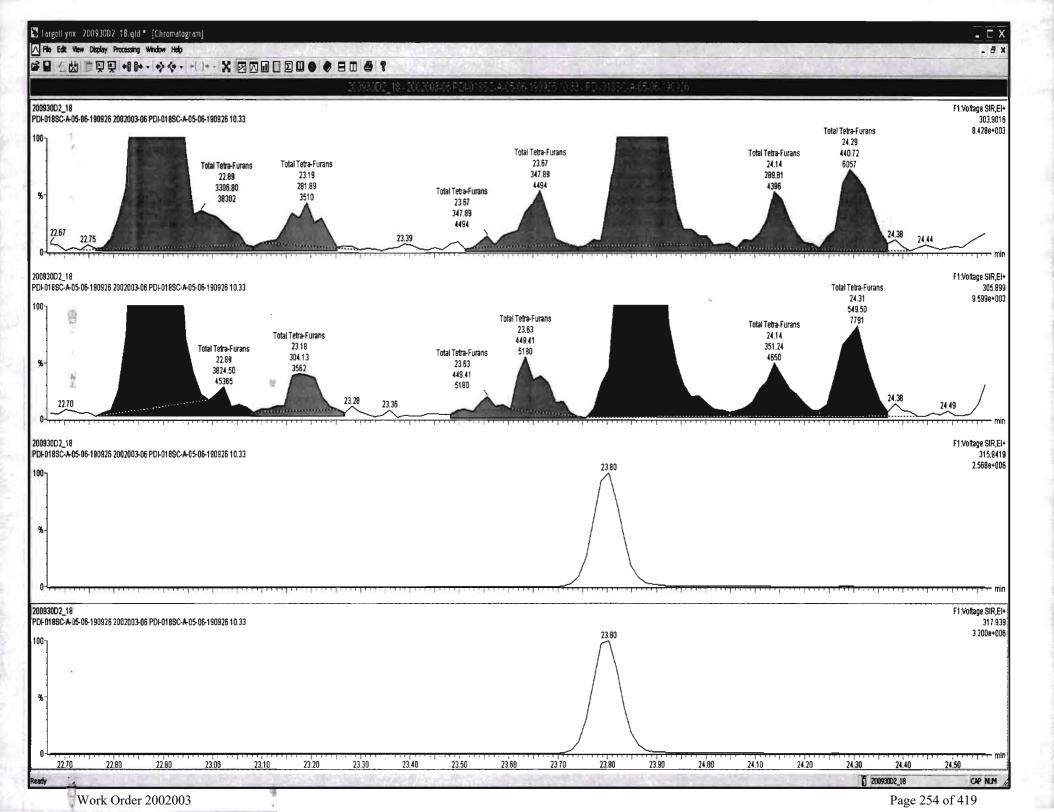

ŕ

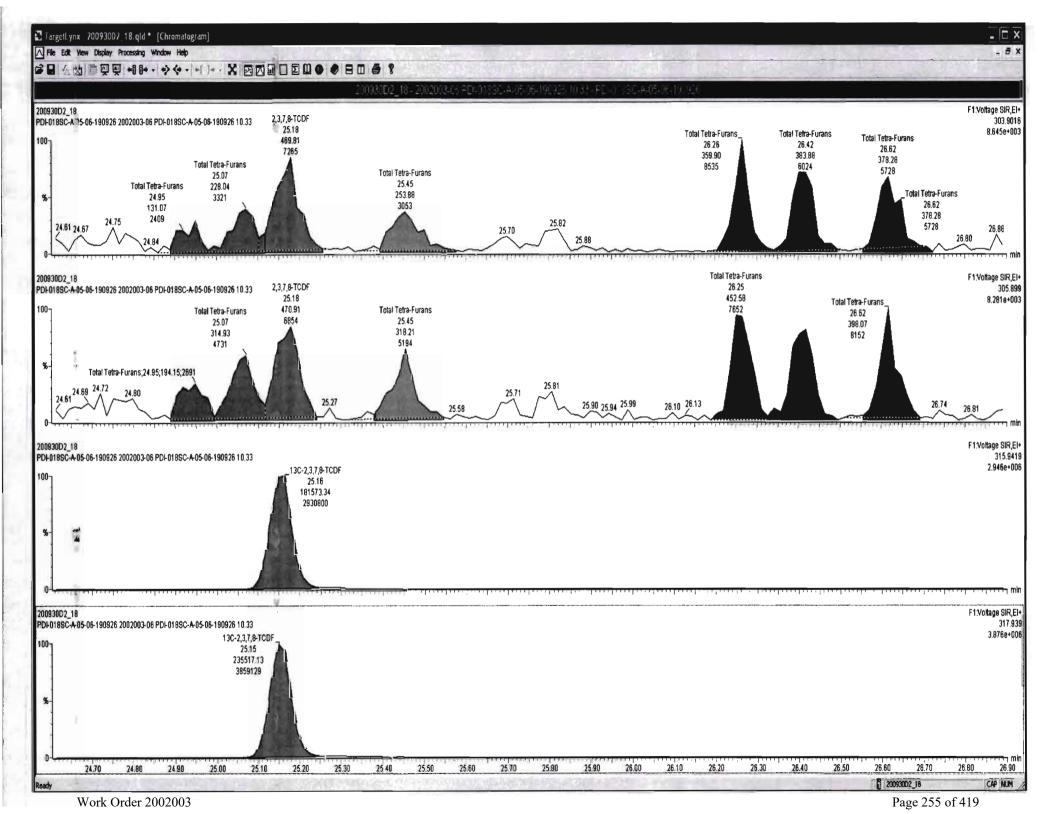
Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 7 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	
	-	

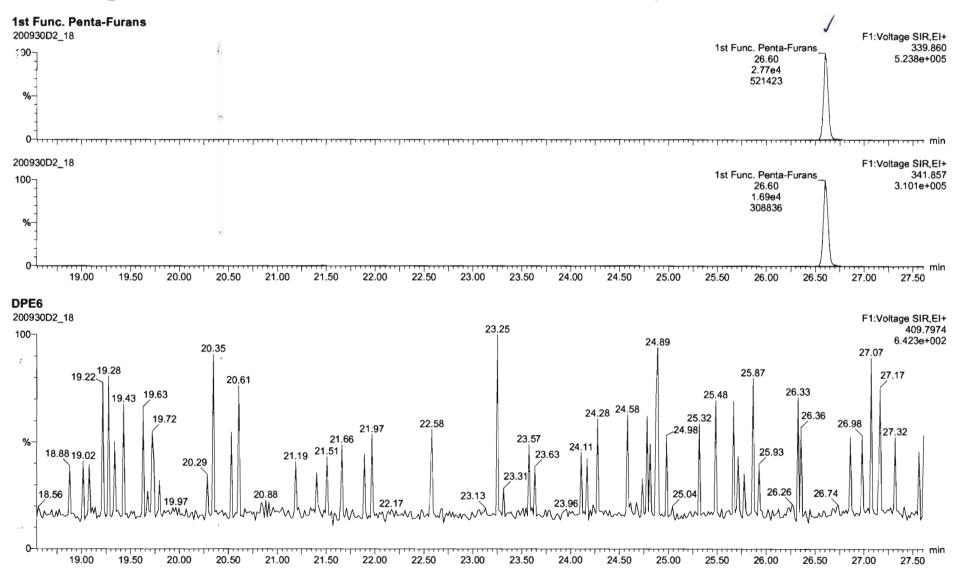

2,3,7,8- 200930D2 100 %		Total Tetra-Furan: 20.33 2.15e2 3137	s /	Total Tetra- 21.65 / 5.04e 58601	$\frac{1}{3}$	Total	Tetra-Fur	rans;22.89;3	3.24e3;3810 € /		elra-Furans;	23.86;2.42e; // E	3;31202 .	Total Tetr 26 3.5 85	.26	F1:Vo	Itage SIR,EI+ 303.9016 5.905e+004
200930D2 100 % 0	·····	Total Tetra-Furans 20.32 3.26e2 4040 19.50 20.00	20.50	Total Tetra-F 21.63 6.07e3 69713 1.00	, Л	22.00	22.50	Tota	l Tetra-Fura کېرمېرې 23.50	ans;23.86;3.6		a-Furans;24	.31;5.71e2		otal Tetra-Fu 26.62 3.86e2 8021 26.50		Itage SIR,EI+ 305.899 7.030e+004
13C-2,3 200930D2 100 %	,7,8-TCDF 2_18			1	 		1		,2,3,4-TCD 23.80 1.71e5 557112	F	13C-2,3,7, 25.1 1.82(29308	6 7 5 7	• • • • • • • • • • • • • • • • • • • •] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[****	F1:Vo	Itage SIR,EI+ 315.9419 2.946e+006
200930D2 100 %-	2_18					13C-1,	2,3,4-TC[DF;23.80;2.2	20e5;31886	во	13C-2,3,7,8 25.1 2.366 38591	5				F1:Vo	ltage SIR,EI+ 317.939 3.876e+006
0-7++++	19.00	19.50 20.00	20.50	21.00	21.50	22.00	22.50	23.00	23.50	24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50 min
DPE1 200930D2 100 	2_18													26.26 _ 2.14e2 5765	26.40	F1:Vo	ltage SIR,EI+ 375.8364 5.852e+003
%		19.69			21.8	85 22.06	22.50	22.85		24.11 1.25e 1940 24.00	2	5.01_25.13		5.7925.93	1.19e2 2461 26.40 1.19e2 2461	27.09	27.32 27.59

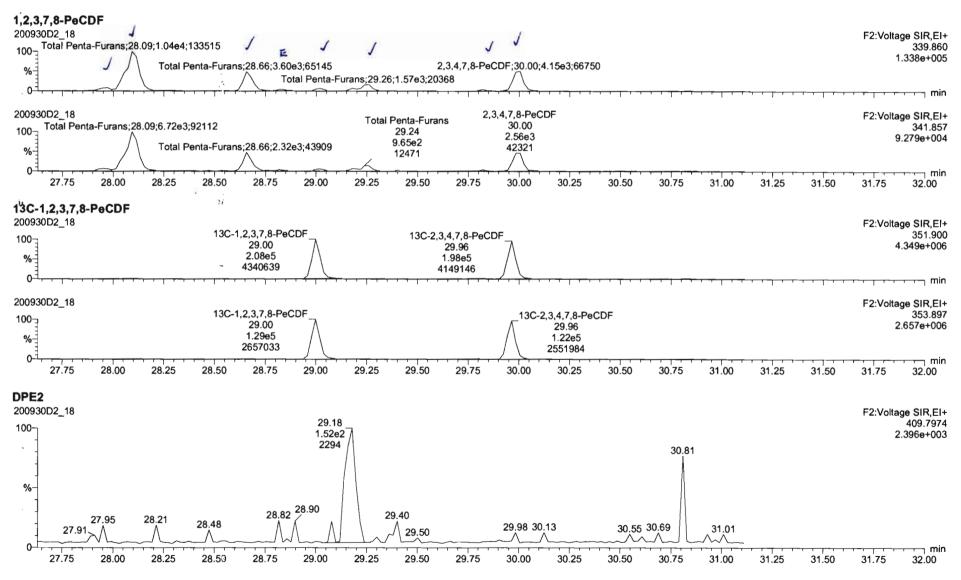
Work Order 2002003


Page 251 of 419

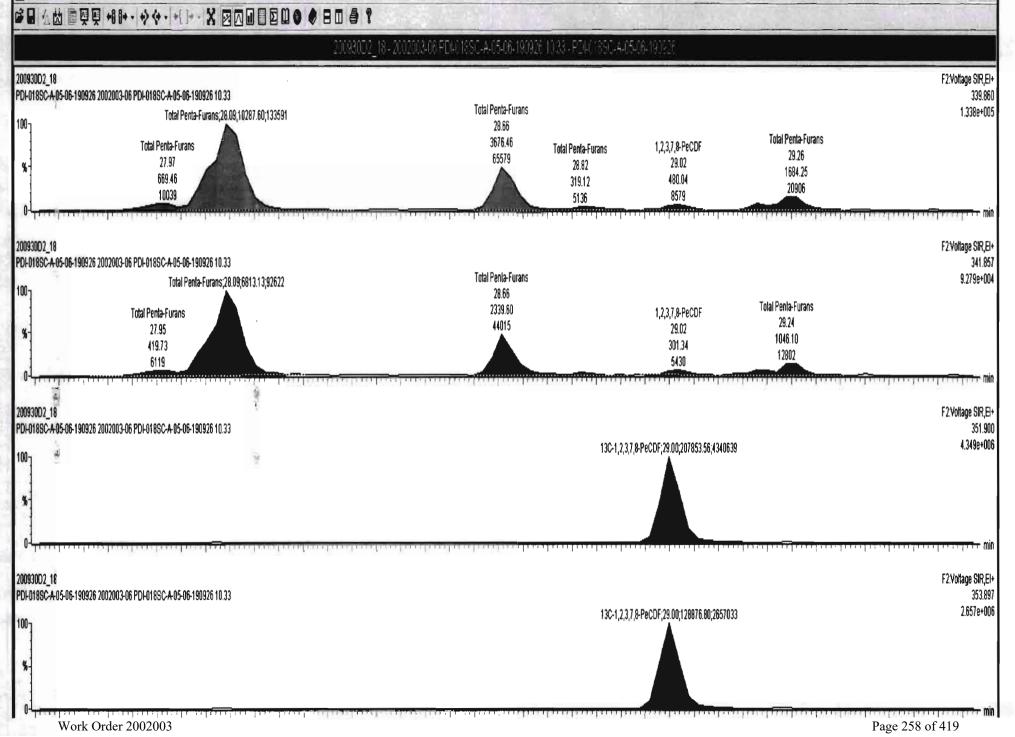


Work Order 2002003


Page 253 of 419


Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

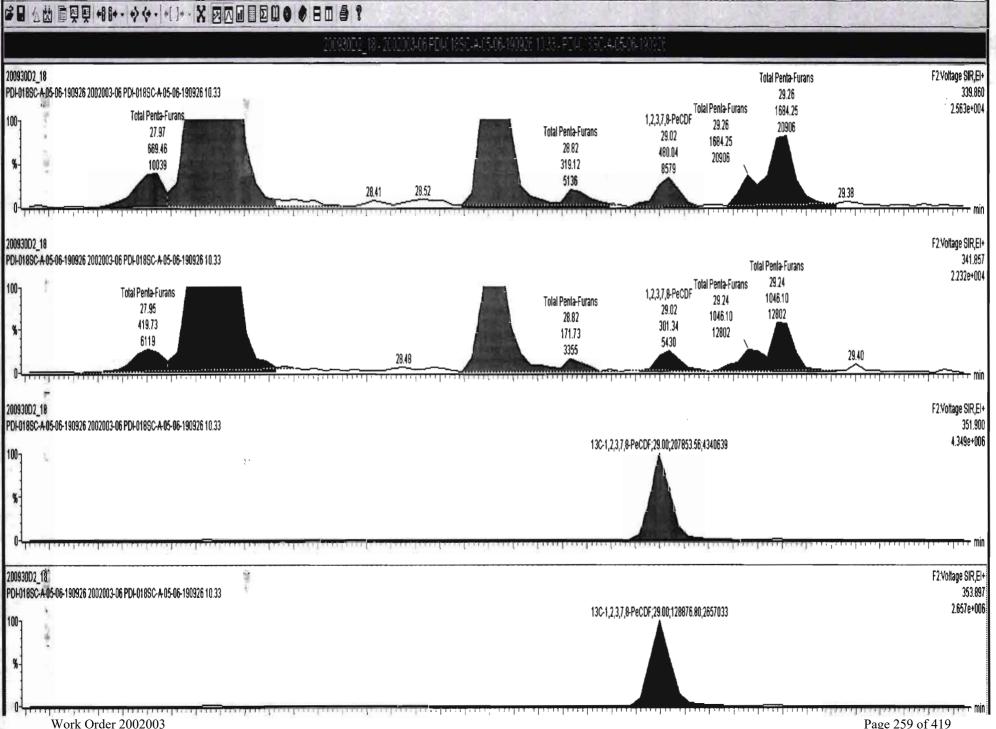
Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926


Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

TargetLynx - 200930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help



. E X

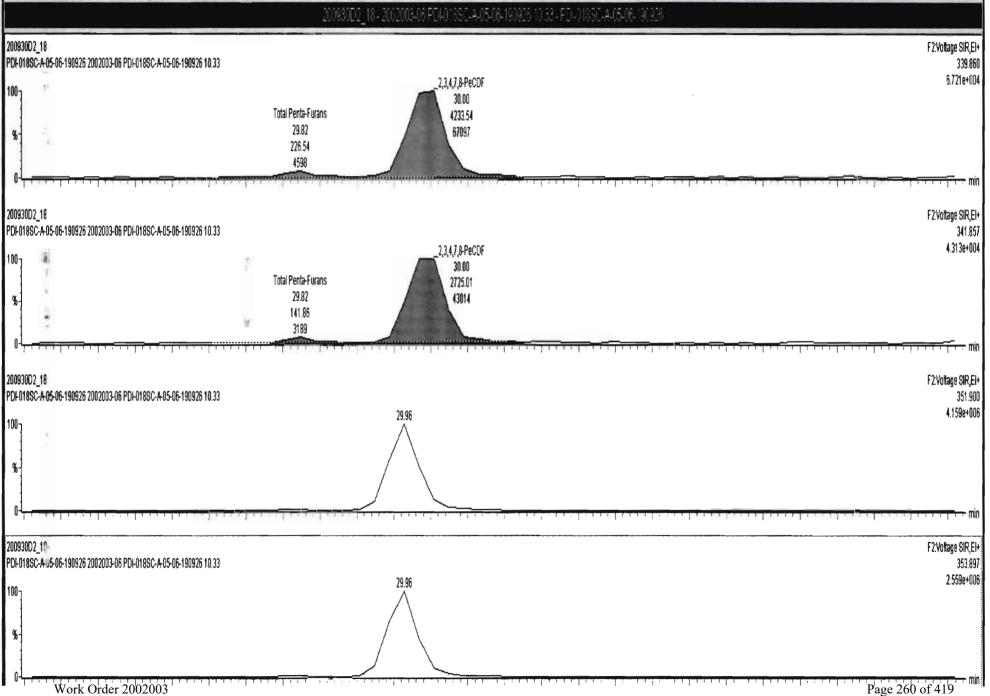
. 8 X

🖹 TargetLynx - 200930D2_18.qld * - [Chromatogram]

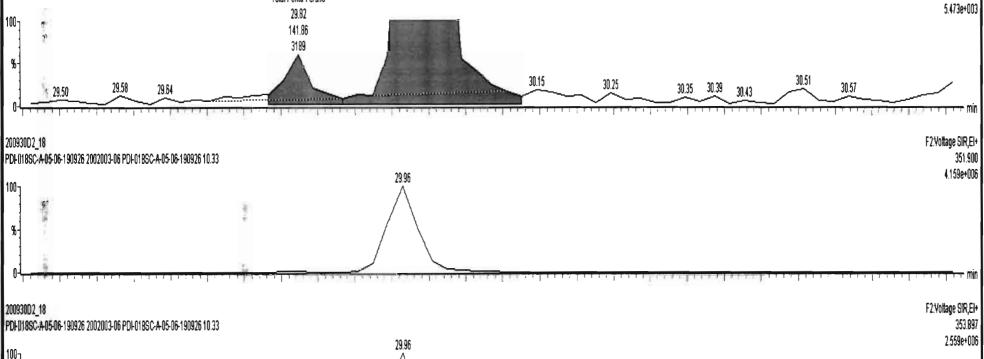
Re Edit View Display Processing Window Help

Page 259 of 419

. E X . 8 X


🖁 TargetLynx - 200930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help


.

. 8 >

☞■ △☆ ■♀♀ +i +· + + + + × ▼⊠□∎ ∎∎● ◆ 日□ ● ?

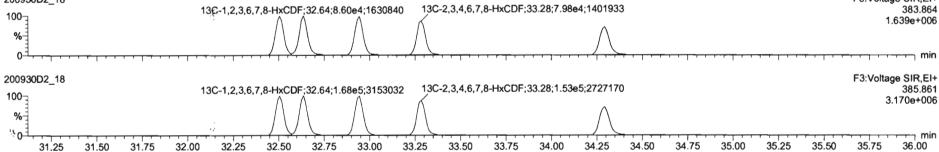
🔀 TargetLynx - 200930D2_18.qld * - [Chromatogram] A File Edit View Display Processing Window Help 200930D2 18 Total Penta-Furans PDF018SC-A05-06-190926 2002003-06 PDF018SC-A 05-06-190926 10.33 29.B2 226.54 100-4598 30.19 30.57 30,49 29.54 30,43 29.50 30.29 30.33 30.63 29.64 29.68 200930D2 18 PDF018SC-A05-06-190926 2002003-06 PDF018SC-A05-06-190926 10.33 Total Penta-Furans

%

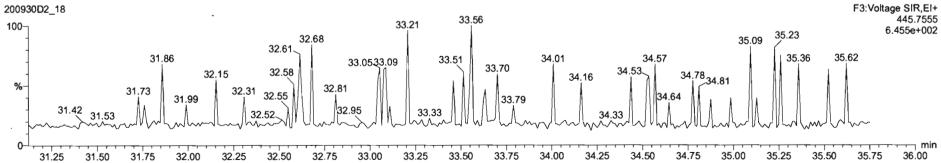
Work Order 2002003

. (Ē

. . .


F2:Voltage SIR,EI+

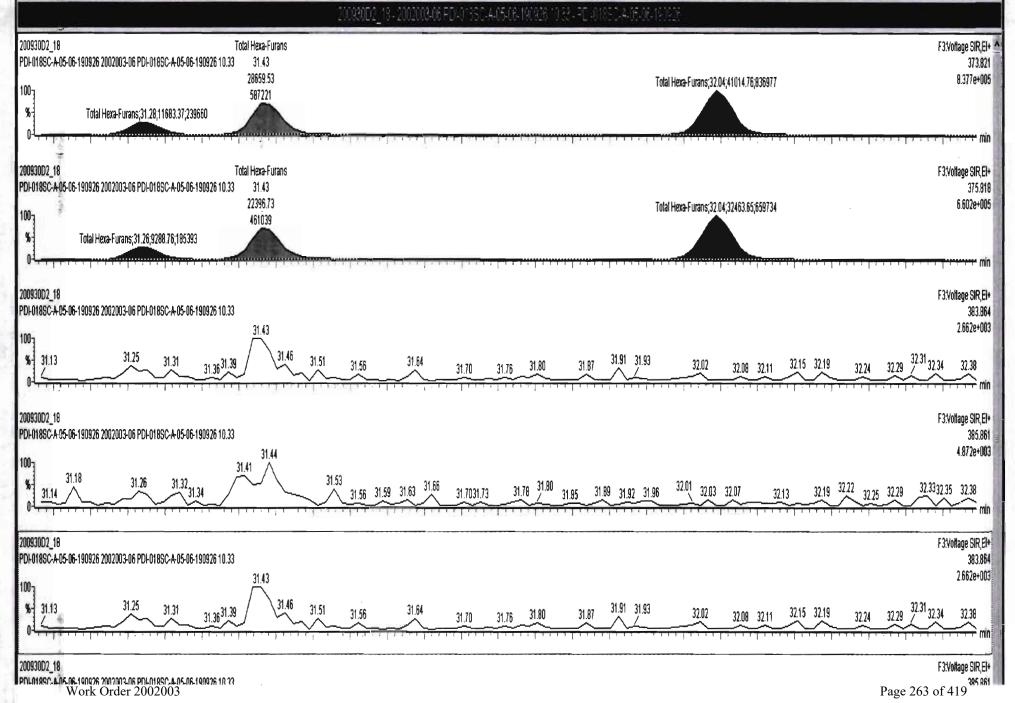
F2:Voltage SIR,EI+ 341.857


339.860

6.160e+003

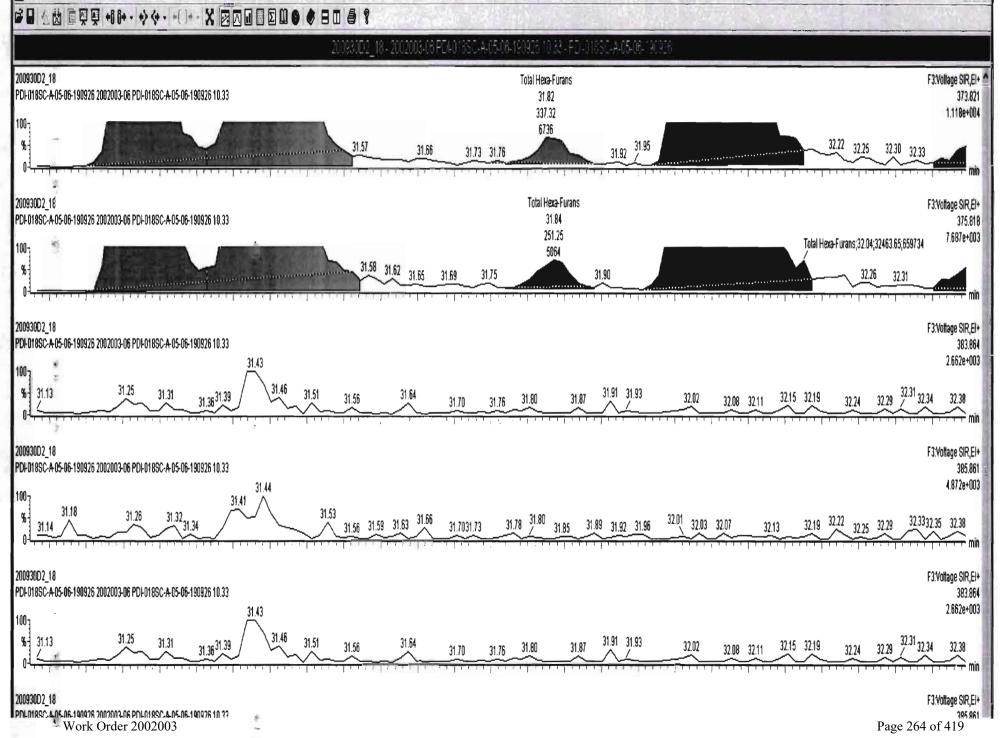
Quantify San /ista Analytica				sLynx 4. ់	1													Page	e 10 of 13
Dataset:	U:\VG	7.PRO\R	esults\2	200930D	2\200930)D2_18.c	ld												
ast Altered: Printed:		day, Octo day, Octo																	
lame: 20093	0D2_18	, Date: 01	1-Oct-2	020, Tim	ie: 01:46	:37, ID: :	2002003	-06 PDI	-018SC	•A-05-06	190926	10.33, D	escriptio	on: PDI-	018SC-/	4- 05-06-	190926		
,2,3,4,7,8-Hx	KCDF	1	/		11	1		1	1									E3 Volta	ge SIR,EI+
_	/ то	al Hexa-Fu 32.04 4.07e4 835725	rans	_	32 4.3	7,8-HxCDF 2.65 35e3 5295	12	,3,4,6,7,8- 33.32 3.06e 4740	2 93			1	\$						373.82 3.377e+005
200930D2_18 100 0 200930D2_18 100 % 100 % 100 % 100 % 100 100	<u> </u>	32.04 4.07e4			32 4.3 75 1,2,3,6,7 32 3.7	2.65 35e3		33.32 3.06e	2 93 7 				/ \$ 			· · · · · · · ·		۶ 	373.821 3.377e+005

DPE3



🖺 TargetLynx - 200930D2_18.qld * - [Chromatogram]

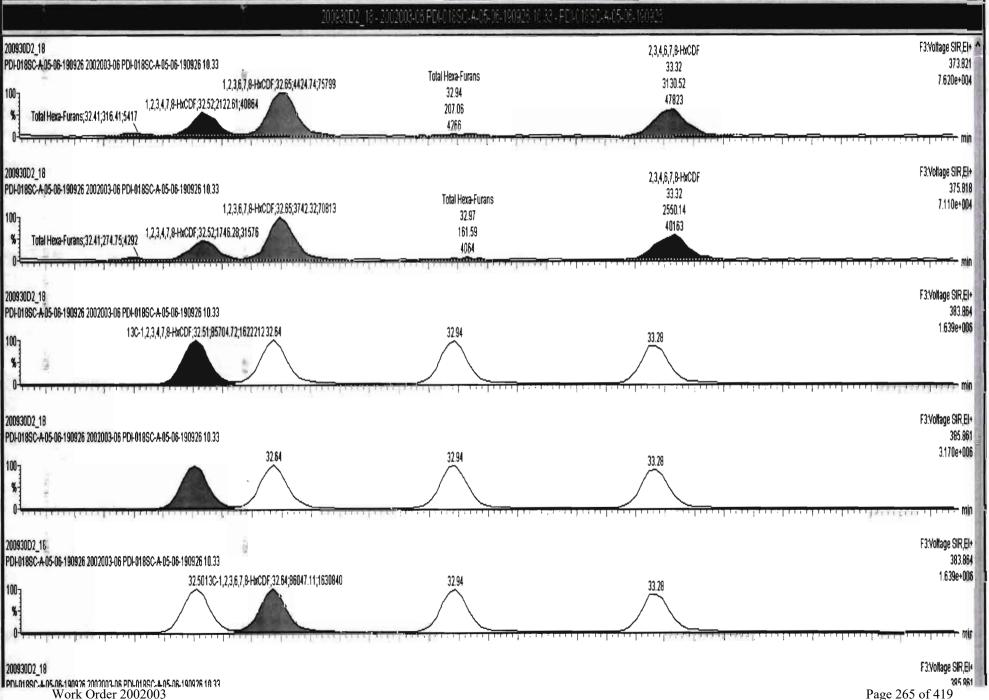
A File Edit View Display Processing Window Help



☞◼◁◍◙ਲ਼ੵਸ਼ਖ਼ਖ਼੶੶◇◇੶੶੶ੑਖ਼੶੶Xਲ਼ਲ਼ਗ਼∎₽₽●●₽⊓₽ਃ

🖺 TargetLynx - 200930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

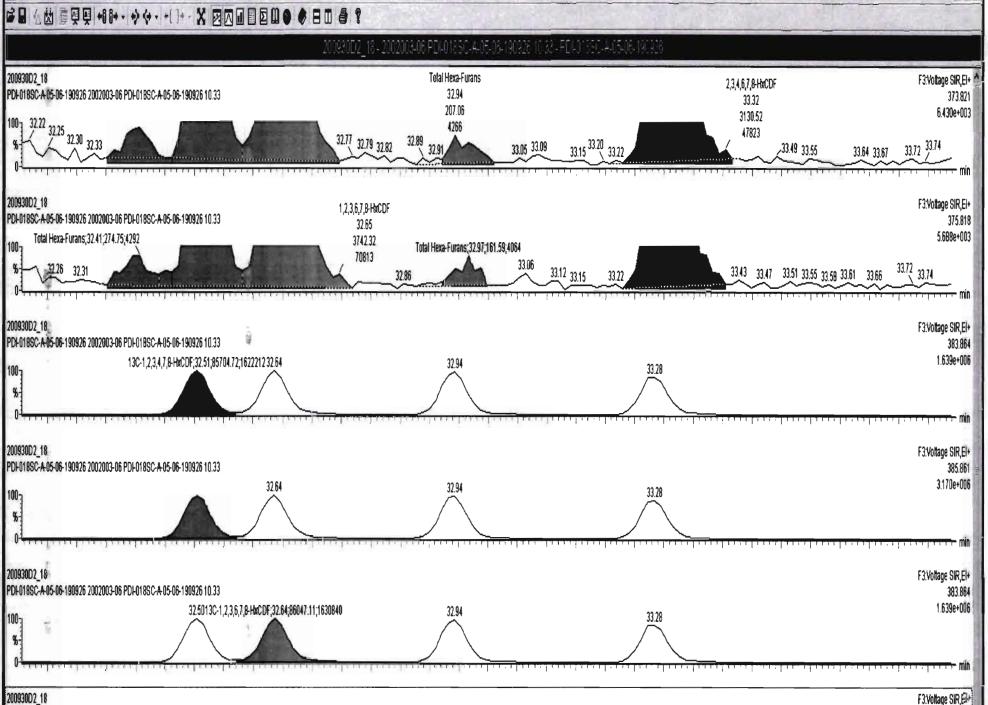


. 8 :

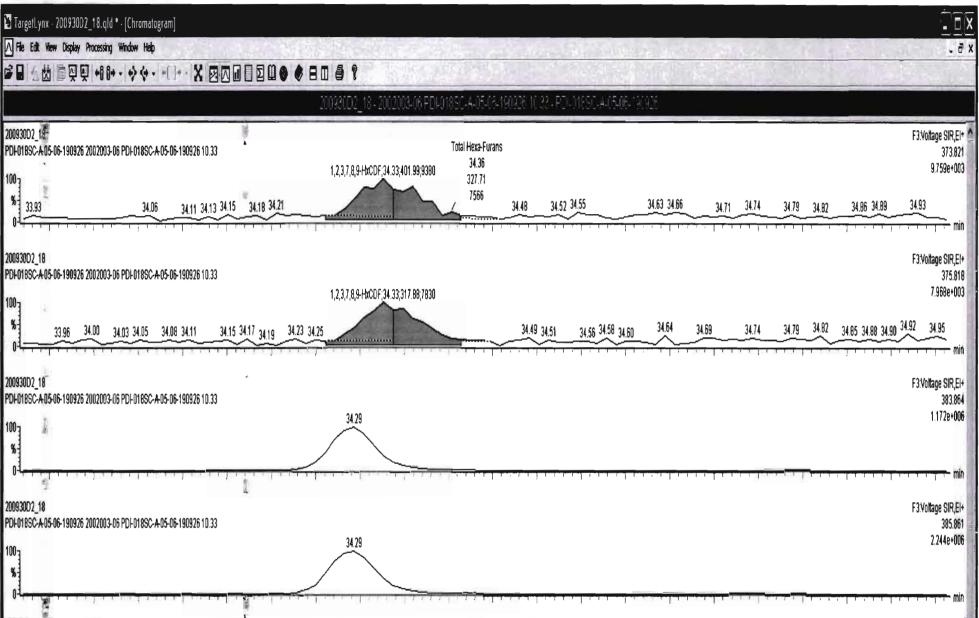
TargetLynx - 200930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

☞묘△⋈≣፵፵+₩↦・∻∻・・()・·Х⊠⊼ш∎⊠Ш●●日田●१


ŋ

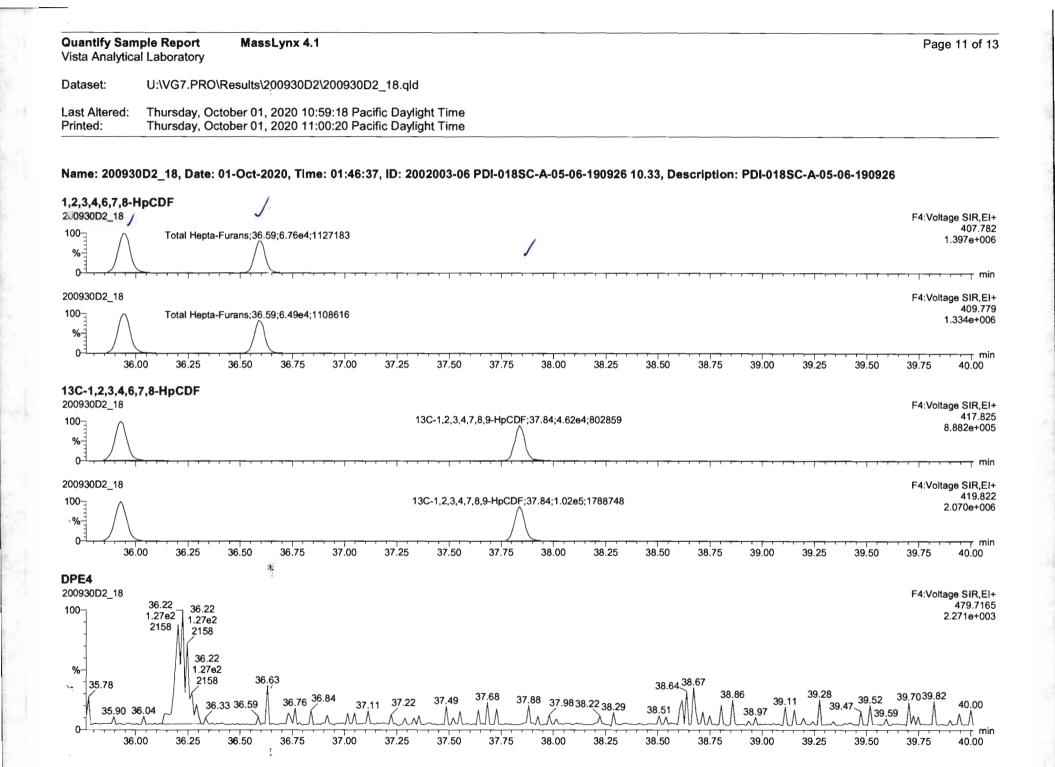
. 6


TargetLynx - 700930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

PPL01887_A.05.06.100076 2002003 PPL01887_A.05.06.100076 10 73 Work Order 2002003

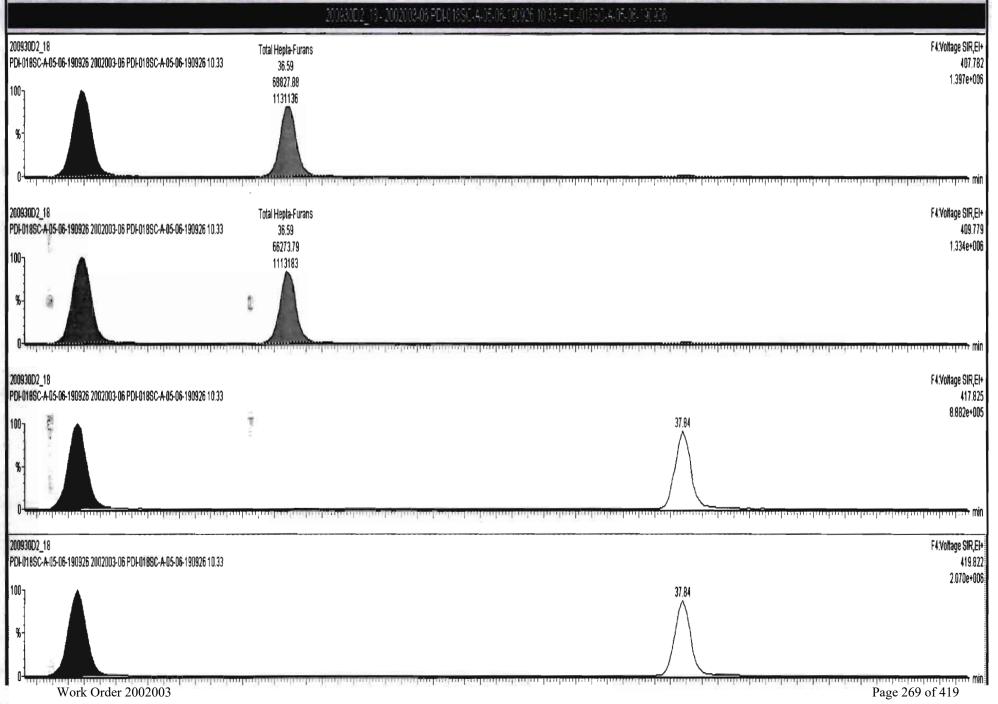
F3:Voltage SIR,EI+ PDF0185C-A05-06-190926 2002003-06 PDF0185C-A05-06-190926 10.33 383.864 1.172e+006 34.29

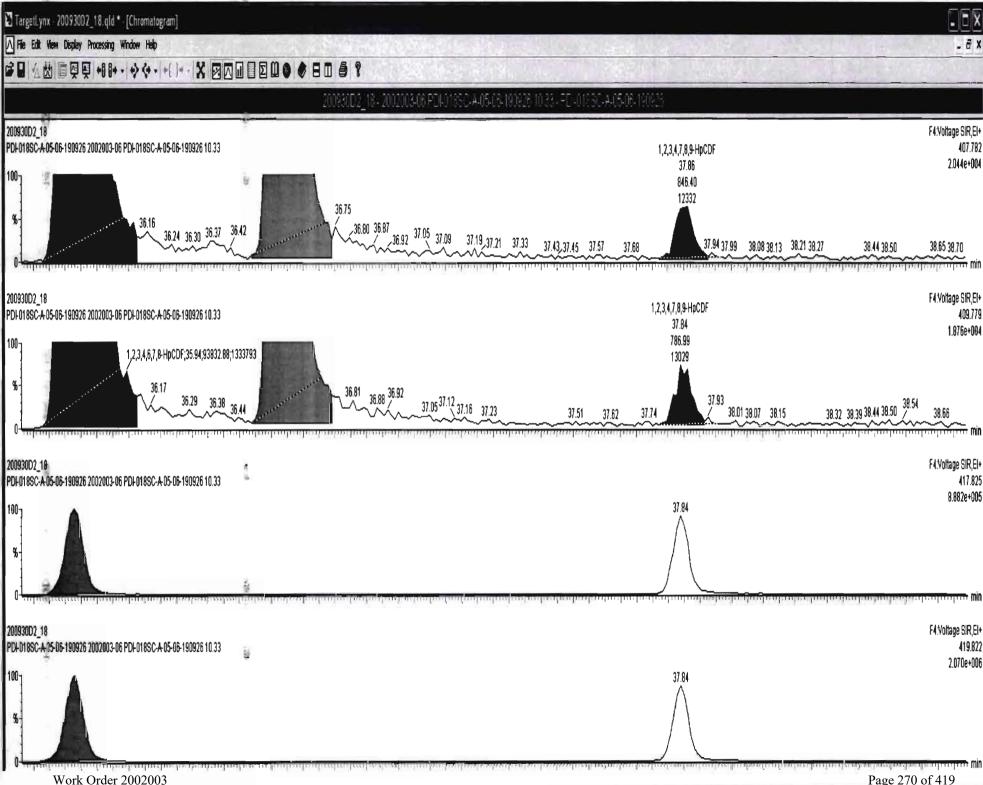

PILITIRSCARS OF STATE ST

200930D2 18

200930D2 18

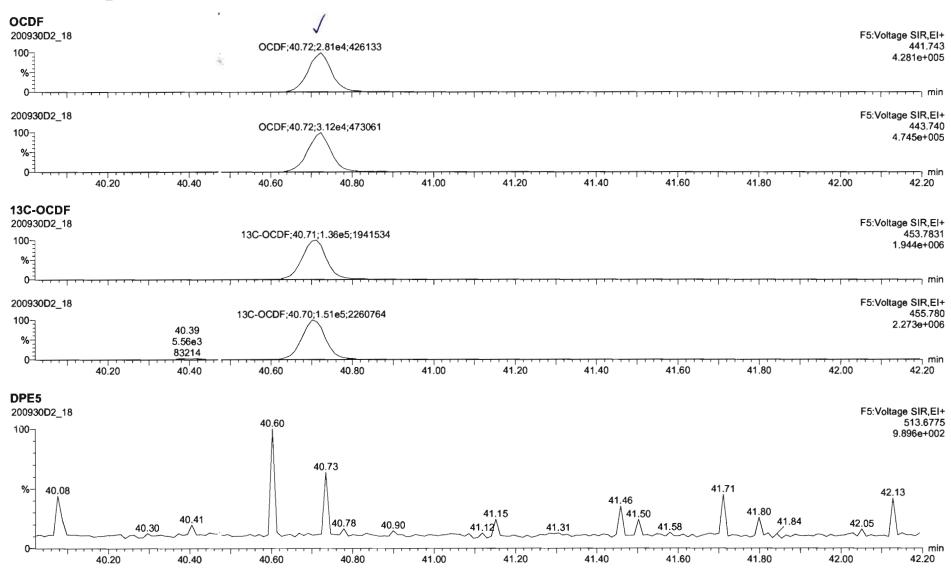
1005 <u>%</u>


mir


🖥 TargetLynx - 200930D2_18.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

▞▖▁∆⋈ॕॗॗख़ॣख़;+ŧ₽・.♦♦・+[]+ ·X ⊠॒॒ॿॻॻ● ♥ = ॻ ≜ १


. C X

Page 270 of 419

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

Cuantify Sam Vista Analytica		Page 13 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_18.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:59:18 Pacific Daylight Time Thursday, October 01, 2020 11:00:20 Pacific Daylight Time	

Name: 200930D2_18, Date: 01-Oct-2020, Time: 01:46:37, ID: 2002003-06 PDI-018SC-A-05-06-190926 10.33, Description: PDI-018SC-A-05-06-190926

PFK1 200930D2_18
% 0 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50
PFK2 200930D2_18 100 27.75 27.95 28.1328.2328.33 28.48 28.66 28.82 100 30.29 30.37 30.49 30.71 30.99 366.9792 5.87Te+005 5.87Te+005 5.87Te+00
27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60 29.80 30.00 30.20 30.40 30.60 30.80 31.00 PFK3 200930D2_18 F3:Voltage SIR,EI+ 100 31.16 31.66;1.88e4;246893 32.10 32.35;3.96e3;190784 32.63 32.94 33.14 33.42 33.93 34.48;7.36e3;198142 35.01;2.18e3;197890 35.24 380.9760 3.521e+006 3.521e+006 3.521e+006 3.521e+006 3.521e+006 3.521e+006 3.521e+006
% 0 31.25 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00
PFK4 200930D2_18 100
0 ¹ 36.00 36.25 36.50 36.75 37.00 37.25 37.50 37.75 38.00 38.25 38.50 38.75 39.00 39.25 39.50 39.75 40.00
PFK5 200930D2_18 40.35;5.89e3;114561 40.47;3.68e3;101594 40.64 40.91;4.00e3;117470 40.91;4.00e3;117470 41.21;1.14e3;73895 41.47;6.47e3;131093 41.70;9.49e3;111855 41.96 41.96 41.96 41.96 41.96 41.97 41.96
% ⁻ 0 ⁻

INITIAL CALIBRATION

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

DB 10/1/20 07 10/01/2020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

Compound name: 2,3,7,8-TCDD Response Factor: 1.00219 RRF SD: 0.105409, Relative SD: 10.5178 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	0.250	0.67	NO	25.79	1.001	4.43e2	1.74e5	0.254	1.5	1.02	MM
2	200930D2_2	0.500	0.78	NO	25.82	1.001	8.87e2	1.77e5	0.501	0.1	1.00	MM
3	200930D2_3	2.00	0.80	NO	25.79	1.001	3.35e3	1.92e5	1.75	-12.7	0.875	bb
4	200930D2_4	10.0	0.77	NO	25.81	1.001	1.39e4	1.46e5	9.51	-4.9	0.953	dd
5	200930D2_5	40.0	0.76	NO	25.81	1.001	7.37e4	1.89e5	38.9	-2.9	0.973	bb
6	200930D2_6	300	0.78	NO	25.82	1.001	7.58e5	2.12e5	357	18.9	1.19	bb

Compound name: 1,2,3,7,8-PeCDD Response Factor: 0.93495 RRF SD: 0.119844, Relative SD: 12.8182 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	0.62	NO	30.15	1.000	1.49e3	1.32e5	1.21	-3.3	0.904	MM
2	200930D2_2	2.50	0.66	NO	30.17	1.001	2.83e3	1.43e5	2.12	-15.1	0.793	MM
3	200930D2_3	10.0	0.59	NO	30.15	1.000	1.29e4	1.55e5	8.94	-10.6	0.836	bb
4	200930D2_4	50.0	0.59	NO	30.17	1.001	5.42e4	1.17e5	49.7	-0.6	0.929	bb
5	200930D2_5	200	0.60	NO	30.17	1.001	2.74e5	1.32e5	222	11.0	1.04	bb
6	200930D2_6	1500	0.62	NO	30.17	1.001	2.85e6	1.71e5	1780	18.7	1.11	bb

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 1,2,3,4,7,8-HxCDD Response Factor: 1.15193 RRF SD: 0.107646, Relative SD: 9.34488 Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.21	NO	33.40	1.001	1.43e3	1.01e5	1.22	-2.2	1.13	MM
2	200930D2_2	2.50	1.42	NO	33.40	1.000	2.77e3	1.06e5	2.27	-9.4	1.04	dd
3	200930D2_3	10.0	1.33	NO	33.39	1.000	1.21e4	1.17e5	8.93	-10.7	1.03	dd
4	200930D2_4	50.0	1.26	NO	33.40	1.000	5.14e4	8.84e4	50.4	0.8	1.16	bd
5	200930D2_5	200	1.29	NO	33.40	1.000	2.76e5	1.09e5	219	9.6	1.26	bd
6	200930D2_6	1500	1.27	NO	33.42	1.001	2.71e6	1.40e5	1680	11.7	1.29	bd

Compound name: 1,2,3,6,7,8-HxCDD

Response Factor: 1.02368 RRF SD: 0.0855683, Relative SD: 8.35893 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.19	NO	33.50	1.000	1.43e3	1.19e5	1.17	-6.4	0.958	MM
2	200930D2_2	2.50	1.19	NO	33.53	1.000	2.93e3	1.21e5	2.37	-5.0	0.972	db
3	200930D2_3	10.0	1.26	NO	33.51	1.000	1.28e4	1.36e5	9.16	-8.4	0.937	db
4	200930D2_4	50.0	1.26	NO	33.53	1.001	5.15e4	1.01e5	49.8	-0.3	1.02	db
5	200930D2_5	200	1.23	NO	33.53	1.001	2.74e5	1.24e5	216	8.2	1.11	db
6	200930D2_6	1500	1.28	NO	33.54	1.001	2.69e6	1.56e5	1680	12.0	1.15	db

Compound name: 1,2,3,7,8,9-HxCDD

Response Factor: 1.06096 RRF SD: 0.104523, Relative SD: 9.85175 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: RF

10.00	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.28	NO	33.80	1.000	1.50e3	1.15e5	1.23	-1.9	1.04	MM
2	200930D2_2	2.50	1.26	NO	33.81	1.000	2.90e3	1.22e5	2.25	-10.0	0.955	bb

Dataset: U:\VG7.PRO\Results\200930D2\200930D2 CRV.gld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

17

Compound name: 1,2,3,7,8,9-HxCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	10.0	1.33	NO	33.79	1.000	1.28e4	1.34e5	9.01	-9.9	0.956	bb
4	200930D2_4	50.0	1.29	NO	33.80	1.000	5.21e4	9.97e4	49.2	-1.6	1.04	bb
5	200930D2_5	200	1.25	NO	33.81	1.001	2.84e5	1.22e5	220	9.8	1.16	bb
6	200930D2_6	1500	1.28	NO	33.82	1.001	2.81e6	1.55e5	1700	13.6	1.21	bb

Compound name: 1,2,3,4,6,7,8-HpCDD Response Factor: 1.00136 RRF SD: 0.124298, Relative SD: 12.4129 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: RF

1.2	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	0.92	NO	37.19	1.000	1.19e3	1.07e5	1.11	-11.0	0.891	MM
2	200930D2_2	2.50	0.95	NO	37.20	1.000	2.68e3	1.13e5	2.37	-5.3	0.948	bb
3	200930D2_3	10.0	1.04	NO	37.18	1.000	1.09e4	1.22e5	8.94	-10.6	0.895	bb
4	200930D2_4	50.0	1.05	NO	37.19	1.000	4.59e4	9.48e4	48.4	-3.2	0.969	bb
5	200930D2_5	200	1.04	NO	37.20	1.001	2.47e5	1.12e5	221	10.6	1.11	bb
6	200930D2 6	1500	1.04	NO	37.21	1.000	2.53e6	1.41e5	1790	19.6	1.20	bb

Compound name: OCDD

Response Factor: 0.952 RRF SD: 0.102145, Relative SD: 10.7295 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	2.50	0.95	NO	40.38	1.001	2.06e3	1.81e5	2.39	-4.4	0.910	MM
2	200930D2_2	5.00	0.84	NO	40.39	1.000	4.26e3	2.08e5	4.30	-14.0	0.819	bb
3	200930D2_3	20.0	0.91	NO	40.37	1.000	1.88e4	2.10e5	18.8	-6.0	0.895	bd
4	200930D2_4	100	0.91	NO	40.39	1.001	7.84e4	1.63e5	101	1.1	0.963	bd
5	200930D2_5	400	0.90	NO	40.39	1.000	4.22e5	2.08e5	426	6.6	1.01	bb
6	200930D2_6	3000	0.91	NO	40.42	1.000	4.25e6	2.55e5	3500	16.7	1.11	bb

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 2,3,7,8-TCDF Response Factor: 1.01297 RRF SD: 0.140498, Relative SD: 13.8699 Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: RF

1.1.1.1.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	0.250	0.79	NO	25.15	1.001	7.60e2	2.52e5	0.298	19.2	1.21	MM
2	200930D2_2	0.500	0.76	NO	25.16	1.001	1.27e3	2.58e5	0.484	-3.1	0.981	MM
3	200930D2_3	2.00	0.74	NO	25.15	1.001	4.49e3	2.68e5	1.66	-17.2	0.839	bb
4	200930D2_4	10.0	0.74	NO	25.16	1.001	1.88e4	2.10e5	8.88	-11.2	0.899	bb
5	200930D2_5	40.0	0.77	NO	25.15	1.001	1.04e5	2.57e5	39.8	-0.4	1.01	bd
6 **	200930D2_6	300 1	0.76	NO	25.16	1.001	9.86e5	2.88e5	338	12.7	1.14	bb

Compound name: 1,2,3,7,8-PeCDF Response Factor: 0.997733 RRF SD: 0.105042, Relative SD: 10.528 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.56	NO	29.00	1.001	2.34e3	1.96e5	1.19	-4.5	0.952	MM
2	200930D2_2	2.50	1.49	NO	29.02	1.001	4.41e3	2.00e5	2.21	-11.5	0.882	bb
3	200930D2_3	10.0	1.59	NO	29.00	1.001	2.02e4	2.22e5	9.14	-8.6	0.912	bđ
4	200930D2_4	50.0	1.63	NO	29.00	1.000	8.94e4	1.79e5	50.0	-0.0	0.998	dd
5	200930D2_5	200	1.61	NO	29.00	1.001	4.62e5	2.12e5	218	9.2	1.09	bb
6	200930D2_6	1500	1.61	NO	29.02	1.001	4.38e6	2.53e5	1730	15.5	1.15	bd

Compound name: 2,3,4,7,8-PeCDF

Response Factor: 1.07418 RRF SD: 0.141641, Relative SD: 13.18 Résponse type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.58	NO	29.96	1.001	2.16e3	1.91e5	1.05	-15.7	0.905	MM
2	200930D2_2	2.50	1.60	NO	29.96	1.001	4.71e3	1.98e5	2.22	-11.3	0.952	bb

14

Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 2,3,4,7,8-PeCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	10.0	1.62	NO	29.96	1.001	2.12e4	2.10e5	9.39	-6.1	1.01	bb
4	200930D2_4	50.0	1.62	NO	29.96	1.001	8.96e4	1.61e5	51.9	3.7	1.11	bb
5	200930D2_5	200	1.60	NO	29.96	1.001	4.79e5	1.98e5	226	12.9	1.21	bb
6	200930D2_6	1500 /	1.58	NO	29.96	1.000	4.65e6	2.47e5	1750	16.6	1.25	bb

Compound name: 1,2,3,4,7,8-HxCDF Rcsponse Factor: 1.05155 RRF SD: 0.122186, Relative SD: 11.6195 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.19	NO	32.50	1.000	2.00e3	1.64e5	1.16	-7.0	0.978	MM
2	200930D2_2	2.50	1.29	NO	32.52	1.000	3.98e3	1.72e5	2.21	-11.7	0.929	bd
3	200930D2_3	10.0	1.25	NO	32.50	1.001	1.75e4	1.84e5	9.00	-10.0	0.947	bd
4	200930D2_4	50.0	1.27	NO	32.50	1.000	7.44e4	1.40e5	50.5	1.0	1.06	bd
5	200930D2_5	200	1.25	NO	32.51	1.000	4.05e5	1.72e5	224	12.0	1.18	bd
6	200930D2_6	1500	1.26	NO	32.52	1.000	3.93e6	2.16e5	1740	15.7	1.22	bd

Compound name: 1,2,3,6,7,8-HxCDF

ب

31

Response Factor: 1.09956 RRF SD: 0.12428, Relative SD: 11.3027 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF

٩ŧ

6

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.24	NO	32.64	1.000	2.15e3	1.66e5	1.18	-5.8	1.04	MM
2	200930D2_2	2.50	1.33	NO	32.65	1.000	4.33e3	1.77e5	2.23	-10.9	0.980	db
3	200930D2_3	10.0	1.24	NO	32.64	1.001	1.87e4	1.88e5	9.03	-9.7	0.993	db
4	200930D2_4	50.0	1.26	NO	32.64	1.000	7.93e4	1.45e5	49.7	-0.5	1.09	db
5	200930D2_5	200	1.24	NO	32.64	1.000	4.22e5	1.75e5	219	9.6	1.20	db
6	200930D2_6	1500	1.24	NO	32.65	1.000	4.09e6	2.11e5	1760	17.4	1.29	db

Page 5 of 16

Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 2,3,4,6,7,8-HxCDF

Response Factor: 1.08752 RRF SD: 0.136992, Relative SD: 12.5967 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.25	NO	33.27	1.000	1.91e3	1.58e5	1.11	-11.0	0.968	MM
2	200930D2_2	2.50	1.28	NO	33.28	1.000	3.96e3	1.61e5	2.26	-9.6	0.983	bb
3	200930D2_3	10.0	1.26	NO	33.28	1.001	1.77e4	1.81e5	8.97	-10.3	0.976	bb
4	200930D2_4	50.0	1.23	NO	33.28	1.000	7.34e4	1.35e5	50.2	0.3	1.09	bb
5	200930D2_5	200	1.24	NO	33.29	1.001	3.94e5	1.60e5	226	13.0	1.23	bb
6	200930D2_6	1500	1.24	NO	33.29	1.000	3.89e6	2.03e5	1760	17.5	1.28	bb

Compound name: 1,2,3,7,8,9-HxCDF

Response Factor: 1.08188 RRF SD: 0.11347, Relative SD: 10.4883 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF

5

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.20	NO	34.29	1.001	1.74e3	1.36e5	1.19	-5.2	1.03	MM
2	200930D2_2	2.50	1.35	NO	34.30	1.000	3.56e3	1.44e5	2.28	-8.6	0.989	bb
3	200930D2_3	10.0	1.23	NO	34.29	1.001	1.49e4	1.55e5	8.87	-11.3	0.960	bb
4	200930D2_4	50.0	1.26	NO	34.29	1.000	6.56e4	1.20e5	50.6	1.3	1.10	bb
5	200930D2_5	200	1.29	NO	34.29	1.000	3.46e5	1.49e5	215	7.7	1.17	bb
6	200930D2_6	1500	1.25	NO	34.30	1.000	3.50e6	1.86e5	1740	16.1	1.26	bb

Compound name: 1,2,3,4,6,7,8-HpCDF

Response Factor: 1.13056 RRF SD: 0.148448, Relative SD: 13.1304 Rcsponse type: Internal Std (Ref 32), *Frea* * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	0.96	NO	35.93	1.001	1.81e3	1.38e5	1.16	-7.6	1.04	MM
2	200930D2_2	2.50	1.10	NO	35.95	1.001	3.59e3	1.45e5	2.19	-12.5	0.989	bb

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

-1

Compound name: 1,2,3,4,6,7,8-HpCDF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	10.0	0.98	NO	35.92	1.000	1.52e4	1.54e5	8.72	-12.8	0.986	bb
4	200930D2_4	50.0	1.02	NO	35.94	1.001	6.77 e 4	1.17e5	51.2	2.4	1.16	bd
5	200930D2_5	200	1.04	NO	35.94	1.001	3.79e5	1.49e5	225	12.3	1.27	bb
6	200930D2_6	1500	1.03	NO	35.95	1.001	3.65e6	1.82e5	1770	18.1	1.34	bb

Compound name: 1,2,3,4,7,8,9-HpCDF Response Factor: 1.28584 RRF SD: 0.156323, Relative SD: 12.1572 Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	1.25	1.01	NO	37.84	1.000	1.49e3	9.84 e 4	1.17	-6.0	1.21	MM
2	200930D2_2	2.50	1.11	NO	37.85	1.000	2.96e3	1.07e5	2.16	-13.7	1.11	ьр
3	200930D2_3	10.0	1.04	NO	37.83	1.000	1.31e4	1.10e5	9.19	-8.1	1.18	bb
4	200930D2_4	50.0	1.02	NO	37.84	1.000	5.55e4	8.69e4	49.6	-0.7	1.28	bd
5	200930D2_5	200	1.03	NO	37.84	1.000	3.19e5	1.13 e 5	219	9.7	1.41	bb
6	200930D2_6	1500	1.03	NO	37.86	1.001	3.13e6	1.37e5	1780	18.8	1.53	bb

Compound name: OCDF

Response Factor: 0.952821 RRF SD: 0.11104, Relative SD: 11.6538 Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: RF

ła,

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	2.50	0.92	NO	40.69	1.000	2.42e3	2.27e5	2.24	-10.4	0.854	MM
2	200930D2_2	5.00	0.88	NO	40.71	1.000	5.45e3	2.52e5	4.54	-9.2	0.866	bb
3	200930D2_3	20.0	0.87	NO	40.69	1.000	2.28e4	2.61e5	18.3	-8.6	0.871	bb
4	200930D2_4	100	0.90	NO	40.71	1.001	9.70e4	2.04e5	99.6	-0.4	0.949	ьр
5	200930D2_5	400	0.89	NO	40.71	1.001	5.52e5	2.58e5	449	12.4	1.07	bb
6	200930D2_6	3000	0.90	NO	40.73	1.001	5.35e6	3.22e5	3480	16.2	1.11	bb

~

U:\VG7.PRO\Results\200930D2\200930D2_CRV.gld Dataset:

Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Last Altered: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time Printed:

Ň

Compound name: 13C-2,3,7,8-TCDD

Response Factor: 1.17295 RRF SD: 0.0331012, Relative SD: 2.82204 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF x

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.78	NO	25.77	1.027	1.74e5	1.48e5	101	0.5	1.18	bb
2	200930D2_2	100	0.78	NO	25.79	1.026	1.77e5	1.56e5	96.8	-3.2	1.14	bb
3	200930D2_3	100	0.75	NO	25.78	1.026	1.92e5	1.60e5	102	2.2	1.20	bb
4	200930D2_4	100	0.79	NO	25.79	1.027	1.46e5	1.27e5	97.9	-2.1	1.15	bb
5	200930D2_5	100	0.79	NO	25.78	1.026	1.89e5	1.64e5	98.4	-1.6	1.15	bb
6	200930D2_6	100	0.79	NO	25.81	1.027	2.12e5	1.74e5	104	4.2	1.22	bb

Compound name: 13C-1,2,3,7,8-PeCDD

Response Factor: 0.914327 RRF SD: 0.0634254, Relative SD: 6.93683 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

es.	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.62	NO	30.15	1.201	1.32e5	1.48e5	97.3	-2.7	0.890	bb
2	200930D2_2	100	0.61	NO	30.15	1.199	1.43e5	1.56e5	100	0.2	0.916	bb
3	200930D2_3	100	0.63	NO	30.15	1.200	1.55e5	1.60e5	106	5.9	0.968	bb
4	200930D2_4	100	0.63	NO	30.15	1.200	1.17e5	1.27e5	101	0.6	0.920	bb
5	200930D2_5	100	0.63	NO	30.15	1.200	1.32e5	1.64 e 5	88.2	-11.8	0.807	bb
6	200930D2_6	100	0.64	NO	30.15	1.199	1.71e5	1.74e5	108	7.7	0.985	bb

Compound name: 13C-1,2,3,4,7,8-HxCDD

Response Factor: 0.633572 RRF SD: 0.0302093, Relative SD: 4.7681 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

3

1 million	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	1.30	NO	33.38	1.014	1.01e5	1.67e5	95.7	-4.3	0.607	bd
2 '	200930D2_2	100	1.29	NO	33.39	1.014	1.06e5	1.70e5	98.5	-1.5	0.624	bd

Page 8 of 16

Work Order 2002003

Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\2(:)930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

144

Compound name: 13C-1,2,3,4,7,8-HxCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	100	1.28	NO	33.38	1.014	1.17e5	1.90e5	97.5	-2.5	0.618	bd
4	200930D2_4	100	1.27	NO	33.39	1.014	8.84e4	1.41e5	98.7	-1.3	0.625	bd
5	200930D2_5	100	1.28	NO	33.39	1.014	1.09e5	1.72e5	100	0.3	0.636	bd
6	200930D2_6	100	1.26	NO	33.39	1.014	1.40e5	2.03e5	109	9.2	0.692	bd

Compound name: 13C-1,2,3,6,7,8-HxCDD

Response Factor: 0.724314 RRF SD: 0.022761, Relative SD: 3.14242 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc +	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	1.29	NO	33.50	1.018	1.19e5	1.67e5	98.7	-1.3	0.715	db
2	200930D2_2	100	1.25	NO	33.51	1.017	1.21e5	1.70e5	98.0	-2.0	0.710	db
3	200930D2_3	100	1.28	NO	33.50	1.018	1.36 e 5	1.90e5	99.3	-0.7	0.719	db
4	200930D2_4	100	1.26	NO	33.50	1.017	1.01e5	1.41e5	98.5	-1.5	0.714	db
5	200930D2_5	100	1.28	NO	33.50	1.017	1.24e5	1.72e5	99.3	-0.7	0.719	dd
6	200930D2_6	100	1.25	NO	33.51	1.017	1.56e5	2.03e5	106	6.3	0.770	db

Compound name: 13C-1,2,3,7,8,9-HxCDD

Response Factor: 0.7157 RRF SD: 0.0260814, Relative SD: 3.64419 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	1.25	NO	33.79	1.026	1.15e5	1.67e5	96.6	-3.4	0.691	bb
2	200930D2_2	100	1.30	NO	33.80	1.026	1.22e5	1.70e5	100	0.0	0.716	bd
3	200930D2_3	100	1.26	NO	33.78	1.026	1.34e5	1.90e5	98.7	-1.3	0.706	bb
4	200930D2_4	100	1.21	NO	33.79	1.026	9.97e4	1.41e5	98.5	-1.5	0.705	bb
5	200930D2_5	100	1.23	NO	33.79	1.026	1.22e5	1.72e5	99.2	-0.8	0.710	bb
6	200930D2_6	100	1.28	NO	33.80	1.026	1.55e5	2.03e5	107	7.1	0.766	bb

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 13C-1,2,3,4,6,7,8-HpCDD

Response Factor: 0.660425 RRF SD: 0.0212049, Relative SD: 3.21079 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

- A	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	1.09	NO	37.18	1.129	1.07e5	1.67e5	96.7	-3.3	0.639	bd
2	200930D2_2	100	1.06	NO	37.19	1.129	1.13e5	1.70e5	101	0.8	0.666	bd
3	200930D2_3	100	1.12	NO	37.17	1.129	1.22e5	1.90e5	97.4	-2.6	0.643	bd
4	200930D2_4	100	1.06	NO	37.18	1.129	9.48e4	1.41e5	101	1.5	0.670	bb
5	200930D2_5	100	1.04	NO	37.18	1.129	1.12e5	1.72e5	98.2	-1.8	0.649	bb
6	200930D2_6	100	1.06	NO	37.20	1.129	1.41e5	2.03e5	105	5.3	0.695	bb

Compound name: 13C-OCDD Response Factor: 0.586504 RRF SD: 0.0345068, Relative SD: 5.88547 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	200	0.88	NO	40.36	1.226	1.81e5	1.67e5	185	-7.4	0.543	bb
2	200930D2_2	200	0.87	NO	40.38	1.226	2.08e5	1.70e5	209	4.6	0.613	bd
3	200930D2_3	200	0.90	NO	40.36	1.226	2.10e5	1.90e5	189	-5.7	0.553	bb
4	200930D2_4	200	0.88	NO	40.37	1.226	1.63e5	1.41e5	196	-1.9	0.575	bb
5	200930D2_5	200	0.90	NO	40.38	1.226	2.08e5	1.72e5	206	3.1	0.604	bd
6	200930D2_6	200	0.91	NO	40.41	1.226	2.55e5	2.03e5	215	7.3	0.629	bb

Compound name: 13C-2,3,7,8-TCDF

Response Factor: 1.02208 RRF SD: 0.0125198, Relative SD: 1.22493 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF X	X = dropped
1	200930D2_1	100	0.76	NO	25.12	1.001	2.52e5	2.46e5	100	0.1	1.02	bb
2	200930D2_2	100	0.80	NO	25.13	1.000	2.58e5	2.51e5	101	0.7	1.03	bd

Dataset:	U:\VG7.PRO\Results\200930D2\200930D2	CRV.ald

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

•••

Compound name: 13C-2,3,7,8-TCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	100	0.80	NO	25.12	1.000	2.68e5	2.62e5	99.9	-0.1	1.02	bb
4	200930D2_4	100	0.78	NO	25.13	1.001	2.10e5	2.07e5	99.1	-0.9	1.01	bb
5	200930D2_5	100	0.78	NO	25.13	1.001	2.57e5	2.56e5	98.3	-1.7	1.00	bb
6	200930D2_6	100	0.77	NO	25.15	1.001	2.88e5	2.77e5	102	1.8	1.04	bb

Compound name: 13C-1,2,3,7,8-PeCDF

Response Factor: 0.841931 RRF SD: 0.0454656, Relative SD: 5.40016 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

-	Name	Std. Conc a	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
17	200930D2_1	100	1.64	NO	28.98	1.154	1.96e5	2.46e5	94.8	-5.2	0.798	bb
2	200930D2_2	100	1.58	NO	29.00	1.154	2.00e5	2.51e5	94.6	-5.4	0.797	bb
3	200930D2_3	100	1.59	NO	28.98	1.154	2.22e5	2.62e5	100	0.4	0.845	bb
4	200930D2_4	100	1.59	NO	29.00	1.154	1.79e5	2.07e5	103	3.0	0.867	bb
5	200930D2_5	100	1.62	NO	28.98	1.154	2.12e5	2.56e5	98.3	-1.7	0.828	bb
6	200930D2_6	100	1.56	NO	29.00	1.154	2.53e5	2.77e5	109	8.9	0.916	bb

Compound name: 13C-2,3,4,7,8-PeCDF

Response Factor: 0.801596 RRF SD: 0.0468311, Relative SD: 5.84223 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	1.62	NO	29.94	1.193	1.91e5	2.46e5	96.9	-3.1	0.777	bb
2	200930D2_2	100	1.56	NO	29.94	1.191	1.98e5	2.51e5	98.3	-1.7	0.788	bb
3	200930D2_3	100	1.68	NO	29.94	1.192	2.10e5	2.62e5	100	0.0	0.802	bb
4 -	200930D2_4	100	1.67	NO	29.94	1.192	1.61e5	2.07e5	97.0	-3.0	0.777	bb
5	200930D2_5	100	1.60	NO	29.94	1.192	1.98e5	2.56e5	96.2	-3.8	0.771	bb
6	200930D2_6	100	1.63	NO	29.96	1.192	2.47e5	2.77e5	112	11.6	0.895	bb

Quantify Com Vinta Analytica	I Laboratory	MassLynx 4.1
f Dataset:	U:\VG7.PRO\Results\2009	30D2\200930D2_CRV.qld
Last Altered: Printed:) 10:27:41 Pacific Daylight Time) 10:31:30 Pacific Daylight Time

.

Compound name: 13C-1,2,3,4,7,8-HxCDF

Response Factor: 1.00275 RRF SD: 0.0328953, Relative SD: 3.28051 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.50	NO	32.49	0.987	1.64e5	1.67e5	97.7	-2.3	0.980	bd
2	200930D2_2	100	0.50	NO	32.50	0.987	1.72e5	1.70e5	101	0.7	1.01	bd
3	200930D2_3	100	0.50	NO	32.48	0.987	1.84e5	1.90e5	97.0	-3.0	0.972	bd
4	200930D2_4	100	0.49	NO	32.49	0.987	1.40e5	1.41e5	98.8	-1.2	0.991	bd
5	200930D2_5	100	0.51	NO	32.49	0.987	1.72e5	1.72e5	99.7	-0.3	1.00	bd
6 •	200930D2_6	100	0.51	NO	32.51	0.987	2.16e5	2.03e5	106	6.1	1.06	bd

Compound name: 13C-1,2,3,6,7,8-HxCDF

Response Factor: 1.01877 RRF SD: 0.0214481, Relative SD: 2.1053 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.50	NO	32.63	0.991	1.66e5	1.67e5	97.7	-2.3	0.995	db
2	200930D2_2	100	0.49	NO	32.64	0.991	1.77e5	1.70e5	102	2.1	1.04	db
3	200930D2_3	100	0.49	NO	32.61	0.991	1.88e5	1.90e5	97.4	-2.6	0.992	db
4	200930D2_4	100	0.50	NO	32.63	0.991	1.45e5	1.41e5	101	0.6	1.02	db
5	200930D2_5	100	0.51	NO	32.63	0.991	1.75e5	1.72e5	100	-0.0	1.02	dd
6	200930D2_6	100	0.51	NO	32.64	0.991	2.11e5	2.03e5	102	2.3	1.04	db

Compound name: 13C-2,3,4,6,7,8-HxCDF Response Factor: 0.954976 RRF SD: 0.0233865, Relative SD: 2.44891 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.50	NO	33.26	1.010	1.58e5	1.67e5	98.9	-1.1	0.944	bd
2	200930D2_2	100	0.51	NO	33.27	1.010	1.61e5	1.70e5	99.2	-0.8	0.947	bd

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

۰.

Compound name: 13C-2,3,4,6,7,8-HxCDF

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	100 •	0.50	NO	33.26	1.010	1.81e5	1.90e5	100	0.0	0.955	bb
4	200930D2_4	100	0.50	NO	33.27	1.010	1.35e5	1.41e5	99.6	-0.4	0.951	bb
5	200930D2_5	100	0.51	NO	33.27	1.010	1.60e5	1.72e5	97.6	-2.4	0.932	bb
6	200930D2_6	100	0.50	NO	33.28	1.010	2.03e5	2.03e5	105	4.7	1.00	bb

41

Compound name: 13C-1,2,3,7,8,9-HxCDF

Response Factor: 0.851129 RRF SD: 0.0371274, Relative SD: 4.36213 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

11	Name	Std. Conc ,	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.51	NO	34.27	1.041	1.36e5	1.67e5	95.7	-4.3	0.814	bb
2	200930D2_2	100	0.49	NO	34.29	1.041	1.44e5	1.70e5	99.8	-0.2	0.849	bb
3	200930D2_3	100	0.52	NO	34.27	1.041	1.55e5	1.90e5	96.0	-4.0	0.817	bd
4	200930D2_4	100	0.50	NO	34.28	1.041	1.20e5	1.41e5	99.4	-0.6	0.846	bb
5	200930D2_5	100	0.52	NO	34.28	1.041	1.49e5	1.72e5	102	1.5	0.864	bd
6	200930D2 6	100	0.50	NO	34.29	1.041	1.86e5	2.03e5	108	7.6	0.916	bb

Compound name: 13C-1,2,3,4,6,7,8-HpCDF Response Factor: 0.848459 RRF SD: 0.0316015, Relative SD: 3.72458 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

 \tilde{v}

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.43	NO	35.91	1.091	1.38e5	1.67e5	97.7	-2.3	0.829	bd
2	200930D2_2	100	0,41	NO	35.93	1.091	1.45e5	1.70e5	101	0.6	0.854	bb
3	200930D2_3	100	0.42	NO	35.91	1.091	1.54e5	1.90e5	95.9	-4.1	0.814	bb
4	200930D2_4	100	0.43	NO	35.92	1.091	1.17e5	1.41e5	97.4	-2.6	0.827	bb
5	200930D2_5	100	0.42	NO	35.92	1.091	1.49e5	1.72e5	102	2.3	0.868	bb
6	200930D2_6	100	0.42	NO	35.93	1.091	1.82e5	2.03e5	106	6.0	0.899	bb

28

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8,9-HpCDF

Response Factor: 0.624316 RRF SD: 0.0366881, Relative SD: 5.87653 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.42	NO	37.83	1.149	9.84e4	1.67e5	94.4	-5.6	0.589	bb
2	200930D2_2	100	0.44	NO	37.84	1.149	1.07e5	1.70e5	100	0.5	0.627	bd
3	200930D2_3	100	0.43	NO	37.82	1.149	1.10e5	1.90e5	93.3	-6.7	0.582	bb
4	200930D2_4	100	0.41	NO	37.83	1.149	8.69e4	1.41e5	98.4	-1.6	0.615	bb
5	200930D2_5	100	0.41	NO	37.83	1.149	1.13e5	1.72e5	105	5.4	0.658	bb
6	200930D2_6	100	0.43	NO	37.84	1.149	1.37e5	2.03e5	108	8.0	0.674	bb

Compound name: 13C-OCDF

1.00

Response Factor: 0.72976 RRF SD: 0.042457, Relative SD: 5.81794 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	200	0.87	NO	40.68	1.236	2.27e5	1.67e5	186	-6.8	0.680	bb
2	200930D2_2	200	0.87	NO	40.70	1.235	2.52e5	1.70e5	203	1.7	0.742	bb
3	200930D2_3	200	0.88	NO	40.68	1.236	2.61e5	1.90e5	189	-5.6	0.689	bb
4	200930D2_4	200	0.88	NO	40.69	1.236	2.04e5	1.41e5	198	-1.0	0.722	bb
5	200930D2_5	200	0.88	NO	40.69	1.236	2.58e5	1.72e5	206	2.8	0.750	bb
6	200930D2_6	200	0.90	NO	40.71	1.236	3.22e5	2.03e5	218	8.9	0.795	bb

Compound name: 37CI-2,3,7,8-TCDD

Response Factor: 1.2073 RRF SD: 0.177075, Relative SD: 14.667 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	0.250			25.79	1.027	3.48e2	1.48e5	0.195	-22.0	0.941	bb
2	200930D2_2	0.500			25.81	1.027	8.95e2	1.56e5	0.476	-4.9	1.15	ьр

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered: Thursday, October 01, 2020 10:27:41 Pacific Daylight Time Printed: Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

Compound name: 37CI-2,3,7,8-TCDD

100	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200930D2_3	2.00			25.81	1.027	3.83e3	1.60e5	1.99	-0.7	1.20	bb
4	200930D2_4	10.0			25.81	1.027	1.49e4	1.27e5	9.73	-2.7	1.17	Ьd
5	200930D2_5	40.0			25.81	1.027	8.56e4	1.64e5	43.2	8.1	1.31	bd
6	200930D2_6	200			25.82	1.027	5.12e5	1.74e5	244	22.2	1.48	bb

Compound name: 13C-1,2,3,4-TCDD Response Factor: 1 RRF SD: 1.11022e-016, Relative SD: 1.11022e-014 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

and spectrum	Name	Std. Conc 1	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100 -	0.78	NO	25.10	1.000	1.48e5	1.48e5	100	-0.0	1.00	bb
2	200930D2_2	100	0.77	NO	25.13	1.000	1.56 e 5	1.56e5	100	0.0	1.00	bb
3	200930D2_3	100	0.78	NO	25.12	1.000	1.60e5	1.60e5	100	0.0	1.00	bb
4	200930D2_4	100	0.80	NO	25.12	1.000	1.27e5	1.27e5	100	0.0	1.00	bb
5	200930D2_5	100	0.79	NO	25.12	1.000	1.64 e 5	1.64 e 5	100	0.0	1.00	bb
6	200930D2_6	100	0.81	NO	25.13	1.000	1.74e5	1.74e5	100	0.0	1.00	bb

Compound name: 13C-1,2,3,4-TCDF

Response Factor: 1 RRF SD: 1.11022e-016, Relative SD: 1.11022e-014 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.79	NO	23.76	1.000	2.46e5	2.46e5	100	0.0	1.00	bb
2	200930D2_2	100	0.79	NO	23.79	1.000	2.51e5	2.51e5	100	0.0	1.00	bb
3	200930D2_3	100	0.79	NO	23.77	1.000	2.62e5	2.62e5	100	0.0	1.00	bb
4	200930D2_4	100	0.80	NO	23.77	1.000	2.07e5	2.07 e 5	100	-0.0	1.00	bb
5	200930D2_5	100	0.78	NO	23.77	1.000	2.56 e 5	2.56 e 5	100	0.0	1.00	bb
6	200930D2_6	100	0.77	NO	23.79	1.000	2.77e5	2.77e5	100	0.0	1.00	bb

Quantify Compound Summary Report Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:31:30 Pacific Daylight Time

.

19

4

¥

S.

Compound name: 13C-1,2,3,4,6,9-HxCDF

....

÷

÷

-

(2)

Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200930D2_1	100	0.50	NO	32.92	1.000	1.67e5	1.67e5	100	0.0	1.00	bb
2	200930D2_2	100	0.49	NO	32.94	1.000	1.70e5	1.70e5	100	0.0	1.00	bb
3	200930D2_3	100	0.50	NO	32.92	1.000	1.90e5	1.90e5	100	0.0	1.00	bd
4	200930D2_4	100	0.50	NO	32.93	1.000	1.41e5	1.41e5	100	0.0	1.00	bb
5	200930D2_5	100	0.50	NO	32.93	1.000	1.72e5	1.72e5	100	0.0	1.00	bb
6	200930D2_6	100	0.50	NO	32.94	1.000	2.03e5	2.03e5	100	0.0	1.00	bb

Quantify Sam Vista Analytica	aple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	0930D2\200930D2_CRV.qld	
Last Altered: Printed:		020 10:27:41 Pacific Daylight Time 020 10:33:19 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	4.43e2	0.67	NO	1.00	1.000	25.806	25.79	1.001	1.001	0.25382	102	0.0728	0.254
2	2 1,2,3,7,8-PeCDD	1.49e3	0.62	NO	0.935	1.000	30.166	30.15	1.001	1.000	1.2082	96.7	0.0691	1.21
3	3 1,2,3,4,7,8-HxCDD	1.43e3	1.21	NO	1.15	1.000	33.393	33.40	1.000	1.001	1.2230	97.8	0.0942	1.22
4	4 1,2,3,6,7,8-HxCDD	1.43e3	1.19	NO	1.02	1.000	33.503	33.50	1.000	1.000	1,1702	93.6	0.0968	1.17
5	5 1,2,3,7,8,9-HxCDD	1.50e3	1.28	NO	1.06	1.000	33.822	33.80	1.001	1.000	1,2264	98.1	0.0981	1.23
6	6 1,2,3,4,6,7,8-HpCDD	1.19e3	0.92	NO	1.00	1.000	37.190	37.19	1.000	1.000	1.1122	89.0	0.126	1.11
7	7 OCDD	2.06e3	0.95	NO	0.952	1.000	40.361	40.38	1.000	1.001	2.3892	95.6	0.133	2.39
8	8 2,3,7,8-TCDF	7.60e2	0.79	NO	1.01	1.000	25.143	25.15	1.001	1.001	0.29805	119	0.0517	0.298
9	9 1,2,3,7,8-PeCDF	2.34e3	1.56	NO	0.998	1.000	28.998	29.00	1.001	1.001	1.1933	95.5	0.0539	1.19
10	10 2,3,4,7,8-PeCDF	2.16e3	1.58	NO	1.07	1.000	29.974	29.96	1.001	1.001	1.0532	84.3	0.0475	1.05
11	11 1,2,3,4,7,8-HxCDF	2.00e3	1.19	NO	1.05	1.000	32.494	32.50	1.000	1.000	1.1620	93.0	0.0554	1.16
12	12 1,2,3,6,7,8-HxCDF	2.15e3	1.24	NO	1.10	1.000	32.635	32.64	1.000	1.000	1,1771	94.2	0.0541	1.18
13	13 2,3,4,6,7,8-HxCDF	1.91e3	1.25	NO	1.09	1.000	33.295	33.27	1.001	1.000	1.1126	89.0	0.0620	1.11
14	14 1,2,3,7,8,9-HxCDF	1.74e3	1.20	NO	1.08	1.000	34.271	34.29	1.000	1.001	1.1851	94.8	0.0794	1.19
15	15 1,2,3,4,6,7,8-HpCDF	1.81e3	0.96	NO	1.13	1.000	35.942	35.93	1.001	1.001	1.1552	92.4	0.0711	1.16
16	16 1,2,3,4,7,8,9-HpCDF	1.49e3	1.01	NO	1.29	1.000	37.826	37.84	1.000	1.000	1.1745	94.0	0.0684	1.17
17	17 OCDF	2.42e3	0.92	NO	0.953	1.000	40.680	40.69	1.000	1.000	2.2409	89.6	0.0901	2.24
18	18 13C-2,3,7,8-TCDD	1.74e5	0.78	NO	1.17	1.000	25.755	25.77	1.026	1.027	100.51	101	0.402	
19	19 13C-1,2,3,7,8-PeCDD	1.32e5	0.62	NO	0.914	1.000	29.937	30.15	1.193	1.201	97.346	97.3	0.269	
20	20 13C-1,2,3,4,7,8-HxCDD	1.01e5	1.30	NO	0.634	1.000	33.383	33.38	1.014	1.014	95.728	95.7	0.421	1
21	21 13C-1,2,3,6,7,8-HxCDD	1.19e5	1.29	NO	0.724	1.000	33.491	33.50	1.017	1.018	98.682	98.7	0.368	
22	22 13C-1,2,3,7,8,9-HxCDD	1.15e5	1.25	NO	0.716	1.000	33.758	33.79	1.025	1.026	96.579	96.6	0.373	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.07e5	1.09	NO	0.660	1.000	37.169	37.18	1.129	1.129	96.706	96.7	0.575	
24	24 13C-OCDD	1.81e5	0.88	NO	0.587	1.000	40.145	40.36	1.219	1.226	185.28	92.6	0.361	
25	25 13C-2,3,7,8-TCDF	2.52e5	0.76	NO	1.02	1.000	24.851	25.12	0.990	1.001	100.09	100	0.369	
26	26 13C-1,2,3,7,8-PeCDF	1.96e5	1.64	NO	0.842	1.000	29.011	28.98	1.156	1.154	94.839	94.8	0.310	
27	27 13C-2,3,4,7,8-PeCDF	1.91e5	1.62	NO	0.802	1.000	29.897	29.94	1.191	1.193	96.912	96.9	0.326	ļ
28	28 13C-1,2,3,4,7,8-HxCDF	1.64e5	0.50	NO	1.00	1.000	32.527	32.49	0.988	0.987	97.726	97.7	0.445	
29	29 13C-1,2,3,6,7,8-HxCDF	1.66e5	0.50	NO	1.02	1.000	32.658	32.63	0.992	0.991	97.658	97.7	0.438	
30	30 13C-2,3,4,6,7,8-HxCDF	1.58e5	0.50	NO	0.955	1.000	33.221	33.26	1.009	1.010	98.888	98.9	0.467	
31	31 13C-1,2,3,7,8,9-HxCDF	1.36e5	0.51	NO	0.851	1.000	34.285	34.27	1.041	1.041	95.657	95.7	0.524	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

.....

1.5	# Name	Resp	RA	n/v	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.38e5	0.43	NO	0.848	1.000	35.786		1.087	1.091	97.740	97.7	0.497	2
33	33 13C-1,2,3,4,7,8,9-HpCDF	9.84e4	0.42	NO	0.624	1.000	37.761	37.83	1.147	1.149	94.399	94.4	0.675	
34	34 13C-OCDF	2.27e5	0.87	NO	0.730	1.000	40.296	40.68	1.224	1.236	186.36	93.2	0.394	
35	35 37CI-2,3,7,8-TCDD	3.48e2			1.21	1.000	25.752	25.79	1.026	1.027	0.19492	78.0	0.0690	
36	36 13C-1,2,3,4-TCDD	1.48e5	0.78	NO	1.00	1.000	25.260	25.10	1.000	1.000	100.00	100	0.471	
37	37 13C-1,2,3,4-TCDF	2.46e5	0.79	NO	1.00	1.000	23.930	23.76	1.000	1.000	100.00	100	0.377	
38	38 13C-1,2,3,4,6,9-HxCDF	1.67e5	0.50	NO	1.00	1.000	32.990	32.92	1.000	1.000	100.00	100	0.446	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	8.87e2	0.78	NO	1.00	1.000	25.821	25.82	1.001	1.001	0.50055	100	0.0605	0.501
2	2 1,2,3,7,8-PeCDD	2.83e3	0.66	NO	0.935	1.000	30.166	30.17	1.001	1.001	2.1217	84.9	0.0704	2.12
3	3 1,2,3,4,7,8-HxCDD	2.77e3	1.42	NO	1.15	1.000	33.404	33.40	1.000	1.000	2.2660	90.6	0.138	2.27
4	4 1,2,3,6,7,8-HxCDD	2.93e3	1.19	NO	1.02	1.000	33.514	33.53	1.000	1.000	2.3742	95.0	0.153	2.37
5	5 1,2,3,7,8,9-HxCDD	2.90e3	1.26	NO	1.06	1.000	33.833	33.81	1.001	1.000	2.2497	90.0	0.161	2.25
6	6 1,2,3,4,6,7,8-HpCDD	2.68e3	0.95	NO	1.00	1.000	37.201	37.20	1.000	1.000	2.3665	94.7	0.0876	2.37
7	7 OCDD	4.26e3	0.84	NO	0.952	1.000	40.383	40.39	1.000	1.000	4.3012	86.0	0.144	4.30
8	8 2,3,7,8-TCDF	1.27e3	0.76	NO	1.01	1.000	25.158	25.16	1.001	1.001	0.48435	96.9	0.0533	0.484
9	9 1,2,3,7,8-PeCDF	4.41e3	1.49	NO	0.998	1.000	29.018	29.02	1.001	1.001	2.2113	88.5	0.0589	2.21
10	10 2,3,4,7,8-PeCDF	4.71e3	1.60	NO	1.07	1.000	29.974	29.96	1.001	1.001	2.2165	88.7	0.0554	2.22
11	11 1,2,3,4,7,8-HxCDF	3.98e3	1.29	NO	1.05	1.000	32.505	32.52	1.000	1.000	2.2085	88.3	0.0509	2.21
12	12 1,2,3,6,7,8-HxCDF	4.33e3	1.33	NO	1.10	1.000	32.646	32.65	1.000	1.000	2.2276	89.1	0.0487	2.23
13	13 2,3,4,6,7,8-HxCDF	3.96e3	1.28	NO	1.09	1.000	33.306	33.28	1.001	1.000	2.2609	90.4	0.0596	2.26
14	14 1,2,3,7,8,9-HxCDF	3.56e3	1.35	NO	1.08	1.000	34.293	34.30	1.000	1.000	2.2843	91.4	0.0732	2.28
15	15 1,2,3,4,6,7,8-HpCDF	3.59e3	1.10	NO	1.13	1.000	35.964	35.95	1.001	1.001	2.1875	87.5	0.0754	2.19
16	16 1,2,3,4,7,8,9-HpCDF	2.96e3	1.11	NO	1.29	1.000	37.838	37.85	1.000	1.000	2.1582	86.3	0.0750	2.16
17	17 OCDF	5.45e3	0.88	NO	0.953	1.000	40.701	40.71	1.000	1.000	4.5423	90.8	0.0888	4.54
18	18 13C-2,3,7,8-TCDD	1.77e5	0.78	NO	1.17	1.000	25.786	25.79	1.026	1.026	96.769	96.8	0.372	
19	19 13C-1,2,3,7,8-PeCDD	1.43e5	0.61	NO	0.914	1.000	29.974	30.15	1.193	1.199	100.22	100	0.199	
20	20 13C-1,2,3,4,7,8-HxCDD	1.06e5	1.29	NO	0.634	1.000	33.405	33.39	1.014	1.014	98.510	98.5	0.441	
21	21 13C-1,2,3,6,7,8-HxCDD	1.21e5	1.25	NO	0.724	1.000	33.514	33.51	1.017	1.017	97.961	98.0	0.386	
22	22 13C-1,2,3,7,8,9-HxCDD	1.22e5	1.30	NO	0.716	1.000	33.780	33.80	1.025	1.026	100.00	100	0.390	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.13e5	1.06	NO	0.660	1.000	37.193	37.19	1.129	1.129	100.83	101	0.613	
24	24 13C-OCDD	2.08e5	0.87	NO	0.587	1.000	40.172	40.38	1.219	1.226	209.10	105	0.471	
25	25 13C-2,3,7,8-TCDF	2.58e5	0.80	NO	1.02	1.000	24.882	25.13	0.990	1.000	100.73	101	0.338	
26	26 13C-1,2,3,7,8-PeCDF	2.00e5	1.58	NO	0.842	1.000	29.046	29.00	1.156	1.154	94.617	94.6	0.364	
27	27 13C-2,3,4,7,8-PeCDF	1.98e5	1.56	NO	0.802	1.000	29.933	29.94	1.191	1.191	98.287	98.3	0.382	
28	28 13C-1,2,3,4,7,8-HxCDF	1.72e5	0.50	NO	1.00	1.000	32.548	32.50	0.988	0.987	100.71	101	0.407	
29	29 13C-1,2,3,6,7,8-HxCDF	1.77e5	0.49	NO	1.02	1.000	32.680	32.64	0.992	0.991	102.10	102	0.401	
30	30 13C-2,3,4,6,7,8-HxCDF	1.61e5	0.51	NO	0.955	1.000	33.243	33.27	1.009	1.010	99.175	99.2	0.428	
31	31 13C-1,2,3,7,8,9-HxCDF	1.44e5	0.49	NO	0.851	1.000	34.308	34.29	1.041	1.041	99.754	99.8	0.480	
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.45e5	0.41	NO	0.848	1.000	35.810	35.93	1.087	1.091	100.64	101	0.494	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.07e5	0.44	NO	0.624	1.000	37.786	37.84	1.147	1.149	100.46	100	0.671	
34	34 13C-OCDF	2.52e5	0.87	NO	0.730	1.000	40.323	40.70	1.224	1.235	203.36	102	0.391	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	8.95e2			1.21	1.000	25.784	25.81	1.026	1.027	0.47558	95.1	0.0525	
36	36 13C-1,2,3,4-TCDD	1.56e5	0.77	NO	1.00	1.000	25.260	25.13	1.000	1.000	100.00	100	0.436	
37	37 13C-1,2,3,4-TCDF	2.51e5	0.79	NO	1.00	1.000	23.930	23.79	1.000	1.000	100.00	100	0.345	
38	38 13C-1,2,3,4,6,9-HxCDF	1.70e5	0.49	NO	1.00	1.000	32.990	32.94	1.000	1.000	100.00	100	0.408	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	3.35e3	0.80	NO	1.00	1.000	25.806	25.79	1.001	1.001	1.7454	87.3	0.0590	1.75
2	2 1,2,3,7,8-PeCDD	1.29e4	0.59	NO	0.935	1.000	30.166	30.15	1.001	1.000	8.9436	89.4	0.0709	8.94
3	3 1,2,3,4,7,8-HxCDD	1.21e4	1.33	NO	1.15	1.000	33.393	33.39	1.000	1.000	8.9337	89.3	0.114	8.93
4	4 1,2,3,6,7,8-HxCDD	1.28e4	1.26	NO	1.02	1.000	33.503	33.51	1.000	1.000	9.1556	91.6	0.120	9.16
5	5 1,2,3,7,8,9-HxCDD	1.28e4	1.33	NO	1.06	1.000	33.811	33.79	1.001	1.000	9.0082	90.1	0.115	9.01
6	6 1,2,3,4,6,7,8-HpCDD	1.09e4	1.04	NO	1.00	1.000	37.179	37.18	1.000	1.000	8.9356	89.4	0.134	8.94
7	7 OCDD	1.88e4	0.91	NO	0.952	1.000	40.361	40.37	1.000	1.000	18.794	94.0	0.105	18.8
8	8 2,3,7,8-TCDF	4.49e3	0.74	NO	1.01	1.000	25.143	25.15	1.001	1.001	1.6566	82.8	0.0457	1.66
9	9 1,2,3,7,8-PeCDF	2.02e4	1.59	NO	0.998	1.000	28.998	29.00	1.001	1.001	9.1384	91.4	0.0784	9.14
10	10 2,3,4,7,8-PeCDF	2.12e4	1.62	NO	1.07	1.000	29.974	29.96	1.001	1.001	9.3871	93.9	0.0692	9.39
11	11 1,2,3,4,7,8-HxCDF	1.75e4	1.25	NO	1.05	1.000	32.483	32.50	1.000	1.001	9.0042	90.0	0.0728	9.00
12	12 1,2,3,6,7,8-HxCDF	1.87e4	1.24	NO	1.10	1.000	32.624	32.64	1.000	1.001	9.0344	90.3	0.0761	9.03
13	13 2,3,4,6,7,8-HxCDF	1.77e4	1.26	NO	1.09	1.000	33.295	33.28	1.001	1.001	8.9732	89.7	0.0765	8.97
14	14 1,2,3,7,8,9-HxCDF	1.49e4	1.23	NO	1.08	1.000	34.271	34.29	1.000	1.001	8.8694	88.7	0.111	8.87
15	15 1,2,3,4,6,7,8-HpCDF	1.52e4	0.98	NO	1.13	1.000	35.942	35.92	1.001	1.000	8.7232	87.2	0.121	8.72
16	16 1,2,3,4,7,8,9-HpCDF	1.31e4	1.04	NO	1.29	1.000	37.816	37.83	1.000	1.000	9.1888	91.9	0.123	9.19
17	17 OCDF	2.28e4	0.87	NO	0.953	1.000	40.680	40.69	1.000	1.000	18.281	91.4	0.0889	18.3
18	18 13C-2,3,7,8-TCDD	1.92e5	0.75	NO	1.17	1.000	25.771	25.78	1.026	1.026	102.22	102	0.316	
19	19 13C-1,2,3,7,8-PeCDD	1.55e5	0.63	NO	0.914	1.000	29.955	30.15	1.193	1.200	105.86	106	0.332	
20	20 13C-1,2,3,4,7,8-HxCDD	1.17e5	1.28	NO	0.634	1.000	33.383	33.38	1.014	1.014	97.531	97.5	0.351	
21	21 13C-1,2,3,6,7,8-HxCDD	1.36e5	1.28	NO	0.724	1.000	33.491	33.50	1.017	1.018	99.251	99.3	0.307	
22	22 13C-1,2,3,7,8,9-HxCDD	1.34e5	1.26	NO	0.716	1.000	33.758	33.78	1.025	1.026	98.689	98.7	0.310	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.22e5	1.12	NO	0.660	1.000	37.169	37.17	1.129	1.129	97.425	97.4	0.540	
24	24 13C-OCDD	2.10e5	0.90	NO	0.587	1.000	40.145	40.36	1.219	1.226	188.69	94.3	0.406	
25	25 13C-2,3,7,8-TCDF	2.68e5	0.80	NO	1.02	1.000	24.866	25.12	0.990	1.000	99.924	99.9	0.356	
26	26 13C-1,2,3,7,8-PeCDF	2.22e5	1.59	NO	0.842	1.000	29.028	28.98	1.156	1.154	100.40	100	0.366	
27	27 13C-2,3,4,7,8-PeCDF	2.10e5	1.68	NO	0.802	1.000	29.915	29.94	1.191	1.192	100.05	100	0.385	
28	28 13C-1,2,3,4,7,8-HxCDF	1.84e5	0.50	NO	1.00	1.000	32.527	32.48	0.988	0.987	96.954	97.0	0.452	1
29	29 13C-1,2,3,6,7,8-HxCDF	1.88e5	0.49	NO	1.02	1.000	32.658	32.61	0.992	0.991	97.404	97.4	0.445	
30	30 13C-2,3,4,6,7,8-HxCDF	1.81e5	0.50	NO	0.955	1.000	33.221	33.26	1.009	1.010	100.01	100	0.475	
31	31 13C-1,2,3,7,8,9-HxCDF	1.55e5	0.52	NO	0.851	1.000	34.285	34.27	1.041	1.041	96.035	96.0	0.532	
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.54e5	0.42	NO	0.848	1.000	35.786	35.91	1.087	1.091	95.936	95.9	0.449	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.10e5	0.43	NO	0.624	1.000	37.761	37.82	1.147	1.149	93.270	93.3	0.610	
34	34 13C-OCDF	2.61e5	0.88	NO	0.730	1.000	40.296	40.68	1.224	1.236	188.84	94.4	0.327	

. 4 .

•

Page 6 of 12

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

1000	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	3.83e3			1.21	1.000	25.768	25.81	1.026	1.027	1.9864	99.3	0.0538	
36	36 13C-1,2,3,4-TCDD	1.60e5	0.78	NO	1.00	1.000	25.260	25.12	1.000	1.000	100.00	100	0.370	
37	37 13C-1,2,3,4-TCDF	2.62e5	0.79	NO	1.00	1.000	23.930	23.77	1.000	1.000	100.00	100	0.363	
38	38 13C-1,2,3,4,6,9-HxCDF	1.90e5	0.50	NO	1.00	1.000	32.990	32.92	1.000	1.000	100.00	100	0.453	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory Image: Comparison of Comparison o

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.39e4	0.77	NO	1.00	1.000	25.821	25.81	1.001	1.001	9.5080	95.1	0.111	9.51
2	2 1,2,3,7,8-PeCDD	5.42e4	0.59	NO	0.935	1.000	30.166	30.17	1.001	1.001	49.698	99.4	0.181	49.7
3	3 1,2,3,4,7,8-HxCDD	5.14e4	1.26	NO	1.15	1.000	33.404	33.40	1.000	1.000	50.422	101	0.242	50.4
4	4 1,2,3,6,7,8-HxCDD	5.15e4	1.26	NO	1.02	1.000	33.503	33.53	1.000	1.001	49.826	99.7	0.270	49.8
5	5 1,2,3,7,8,9-HxCDD .	5.21e4	1.29	NO	1.06	1.000	33.822	33.80	1.001	1.000	49.221	98.4	0.250	49.2
6	6 1,2,3,4,6,7,8-HpCDD	4.59e4	1.05	NO	1.00	1.000	37.190	37.19	1.000	1.000	48.395	96.8	0.334	48.4
7	7 OCDD	7.84e4	0.91	NO	0.952	1.000	40.372	40.39	1.000	1.001	101.14	101	0.308	101
8	8 2,3,7,8-TCDF	1.88e4	0.74	NO	1.01	1.000	25.158	25.16	1.001	1.001	8.8783	88.8	0.0922	8.88
9	9 1,2,3,7,8-PeCDF	8.94e4	1.63	NO	0.998	1.000	29.019	29.00	1.001	1.000	49.989	100	0.142	50.0
10	10 2,3,4,7,8-PeCDF	8.96e4	1.62	NO	1.07	1.000	29.974	29.96	1.001	1.001	51.857	104	0.130	51.9
11	11 1,2,3,4,7,8-HxCDF	7.44e4	1.27	NO	1.05	1.000	32.494	32.50	1.000	1.000	50.500	101	0.220	50.5
12	12 1,2,3,6,7,8-HxCDF	7.93e4	1.26	NO	1.10	1.000	32.635	32.64	1.000	1.000	49.738	99.5	0.206	49.7
13	13 2,3,4,6,7,8-HxCDF	7.34e4	1.23	NO	1.09	1.000	33.306	33.28	1.001	1.000	50.165	100	0.237	50.2
14	14 1,2,3,7,8,9-HxCDF	6.56e4	1.26	NO	1.08	1.000	34.282	34.29	1.000	1.000	50.648	101	0.288	50.6
15	15 1,2,3,4,6,7,8-HpCDF	6.77e4	1.02	NO	1.13	1.000	35.953	35.94	1.001	1.001	51.219	102	0.334	51.2
16	16 1,2,3,4,7,8,9-HpCDF	5.55e4	1.02	NO	1.29	1.000	37.827	37.84	1.000	1.000	49.634	99.3	0.356	49.6
17	17 OCDF	9.70e4	0.90	NO	0.953	1.000	40.690	40.71	1.000	1.001	99.596	99.6	0.263	99.6
18	18 13C-2,3,7,8-TCDD	1.46e5	0.79	NO	1.17	1.000	25.771	25.79	1.026	1.027	97.942	97.9	0.382	
1.9	19 13C-1,2,3,7,8-PeCDD	1.17e5	0.63	NO	0.914	1.000	29.955	30.15	1.193	1.200	100.61	101	0.290	
20	20 13C-1,2,3,4,7,8-HxCDD	8.84e4	1.27	NO	0.634	1.000	33.394	33.39	1.014	1.014	98.658	98.7	0.415	
21	21 13C-1,2,3,6,7,8-HxCDD	1.01e5	1.26	NO	0.724	1.000	33.503	33.50	1.017	1.017	98.518	98.5	0.363	
22	22 13C-1,2,3,7,8,9-HxCDD	9.97e4	1.21	NO	0.716	1.000	33.769	33.79	1.025	1.026	98.480	98.5	0.367	
23	23 13C-1,2,3,4,6,7,8-HpCDD	9.48e4	1.06	NO	0.660	1.000	37.181	37.18	1.129	1.129	101.49	101	0.587	
24	24 13C-OCDD	1.63e5	0.88	NO	0.587	1.000	40.158	40.37	1.219	1.226	196.23	98.1	0.349	
25	25 13C-2,3,7,8-TCDF	2.10e5	0.78	NO	1.02	1.000	24.866	25.13	0.990	1.001	99.133	99.1	0.390	(
26	26 13C-1,2,3,7,8-PeCDF	1.79e5	1.59	NO	0.842	1.000	29.028	29.00	1.156	1.154	102.97	103	0.440	
27	27 13C-2,3,4,7,8-PeCDF	1.61e5	1.67	NO	0.802	1.000	29.915	29.94	1.191	1.192	96.981	97.0	0.462	
28	28 13C-1,2,3,4,7,8-HxCDF	1.40e5	0.49	NO	1.00	1.000	32.538	32.49	0.988	0.987	98.799	98.8	0.562	
29	29 13C-1,2,3,6,7,8-HxCDF	1.45e5	0.50	NO	1.02	1.000	32.669	32.63	0.992	0.991	100.59	101	0.554	
30	30 13C-2,3,4,6,7,8-HxCDF	1.35e5	0.50	NO	0.955	1.000	33.233	33.27	1.009	1.010	99.579	99.6	0.591	
31	31 13C-1,2,3,7,8,9-HxCDF	1.20e5	0.50	NO	0.851	1.000	34.296	34.28	1.041	1.041	99.429	99.4	0.663	
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.17e5	0.43	NO	0.848	1.000	35.798	35.92	1.087	1.091	97.444	97.4	0.468	
33	33 13C-1,2,3,4,7,8,9-HpCDF	8.69e4	0.41	NO	0.624	1.000	37.774	37.83	1.147	1.149	98.450	98.4	0.635	
34	34 13C-OCDF	2.04e5	0.88	NO	0.730	1.000	40.310	40.69	1.224	1.236	197.95	99.0	0.428	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory

Page 8 of 12

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

-

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	1.49e4			1.21	1.000	25.768	25.81	1.026	1.027	9.7292	97.3	0.0917	
36	36 13C-1,2,3,4-TCDD	1.27e5	0.80	NO	1.00	1.000	25.260	25.12	1.000	1.000	100.00	100	0.448	
37	37 13C-1,2,3,4-TCDF	2.07e5	0.80	NO	1.00	1.000	23.9 3 0	23.77	1.000	1.000	100.00	100	0.399	
38	38 13C-1,2,3,4,6,9-HxCDF	1.41e5	0.50	NO	1.00	1.000	32.990	32.93	1.000	1.000	100.00	100	0.564	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

1	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	7.37e4	0.76	NO	1.00	1.000	25.806	25.81	1.001	1.001	38.854	97.1	0.0708	38.9
2	2 1,2,3,7,8-PeCDD	2.74e5	0.60	NO	0.935	1.000	30.167	30.17	1.001	1.001	221.90	111	0.133	222
3	3 1,2,3,4,7,8-HxCDD	2.76e5	1.29	NO	1.15	1.000	33.404	33.40	1.000	1.000	219.24	110	0.210	219
4	4 1,2,3,6,7,8-HxCDD	2.74e5	1.23	NO	1.02	1.000	33.504	33.53	1.000	1.001	216.34	108	0.225	216
5	5 1,2,3,7,8,9-HxCDD	2.84e5	1.25	NO	1.06	1.000	33.823	33.81	1.001	1.001	219.54	110	0.229	220
6	6 1,2,3,4,6,7,8-HpCDD	2.47e5	1.04	NO	1.00	1.000	37.191	37.20	1.000	1.001	221.28	111	0.516	221
7	7 OCDD	4.22e5	0.90	NO	0.952	1.000	40.384	40.39	1.000	1.000	426.28	107	0.374	426
8	8 2,3,7,8-TCDF	1.04e5	0.77	NO	1.01	1.000	25.158	25.15	1.001	1.001	39.830	99.6	0.0601	39.8
9	9 1,2,3,7,8-PeCDF	4.62e5	1.61	NO	0.998	1.000	28.999	29.00	1.001	1.001	218.35	109	0.201	218
10	10 2,3,4,7,8-PeCDF	4.79e5	1.60	NO	1.07	1.000	29.974	29.96	1.001	1.001	225.85	113	0.162	226
11	11 1,2,3,4,7,8-HxCDF	4.05e5	1.25	NO	1.05	1.000	32.494	32.51	1.000	1.000	223.95	112	0.297	224
12	12 1,2,3,6,7,8-HxCDF	4.22e5	1.24	NO	1.10	1.000	32.636	32.64	1.000	1.000	219.12	110	0.284	219
13	13 2,3,4,6,7,8-HxCDF	3.94e5	1.24	NO	1.09	1.000	33.306	33.29	1.001	1.001	225.95	113	0.334	226
14	14 1,2,3,7,8,9-HxCDF	3.46e5	1.29	NO	1.08	1.000	34.283	34.29	1.000	1.000	215.45	108	0.399	215
15	15 1,2,3,4,6,7,8-HpCDF	3.79e5	1.04	NO	1.13	1.000	35.954	35.94	1.001	1.001	224.59	112	0.460	225
16	16 1,2,3,4,7,8,9-HpCDF	3.19e5	1.03	NO	1.29	1.000	37.827	37.84	1.000	1.000	219.44	110	0.460	219
17	17 OCDF	5.52e5	0.89	NO	0.953	1.000	40.691	40.71	1.000	1.001	449.43	112	0.339	449
18	18 13C-2,3,7,8-TCDD	1.89e5	0.79	NO	1.17	1.000	25.771	25.78	1.026	1.026	98.388	98.4	0.296	
19	19 13C-1,2,3,7,8-PeCDD	1.32e5	0.63	NO	0.914	1.000	29.956	30.15	1.193	1.200	88.219	88.2	0.204	
20	20 13C-1,2,3,4,7,8-HxCDD	1.09e5	1.28	NO	0.634	1.000	33.394	33.39	1.014	1.014	100.34	100	0.403	
21	21 13C-1,2,3,6,7,8-HxCDD	1.24 e 5	1.28	NO	0.724	1.000	33.503	33.50	1.017	1.017	99.250	99.3	0.353	
22	22 13C-1,2,3,7,8,9-HxCDD	1.22e5	1.23	NO	0.716	1.000	33.769	33.79	1.025	1.026	99.176	99.2	0.357	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.12e5	1.04	NO	0.660	1.000	37.181	37.18	1.129	1.129	98.247	98.2	0.525	
24	24 13C-OCDD	2.08e5	0.90	NO	0.587	1.000	40.159	40.38	1.219	1.226	206.10	103	0.403	
25	25 13C-2,3,7,8-TCDF	2.57e5	0.78	NO	1.02	1.000	24.867	25.13	0.990	1.001	98.299	98.3	0.313	
26	26 13C-1,2,3,7,8-PeCDF	2.12e5	1.62	NO	0.842	1.000	29.029	28.98	1.156	1.154	98.319	98.3	0.497	
27	27 13C-2,3,4,7,8-PeCDF	1.98e5	1.60	NO	0.802	1.000	29.915	29.94	1.191	1.192	96.177	96.2	0.522	
28	28 13C-1,2,3,4,7,8-HxCDF	1.72e5	0.51	NO	1.00	1.000	32.538	32.49	0.988	0.987	99.701	99.7	0.382	
29	29 13C-1,2,3,6,7,8-HxCDF	1.75e5	0.51	NO	1.02	1.000	32.670	32.63	0.992	0.991	99.974	100	0.376	
30	30 13C-2,3,4,6,7,8-HxCDF	1.60e5	0.51	NO	0.955	1.000	33.233	33.27	1.009	1.010	97.627	97.6	0.401	
31	31 13C-1,2,3,7,8,9-HxCDF	1.49e5	0.52	NO	0.851	1.000	34.296	34.28	1.041	1.041	101.52	102	0.450	
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.49e5	0.42	NO	0.848	1.000	35.798	35.92	1.087	1.091	102.27	102	0.410	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.13e5	0.41	NO	0.624	1.000	37.774	37.83	1.147	1.149	105.42	105	0.557	
34	34 13C-OCDF	2.58e5	0.88	NO	0.730	1.000	40.310	40.69	1.224	1.236	205.63	103	0.367	

Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

Page 10 of 12

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	8.56e4			1.21	1.000	25.768	25.81	1.026	1.027	43.240	108	0.0718	
36	36 13C-1,2,3,4-TCDD	1.64e5	0.79	NO	1.00	1.000	25.260	25.12	1.000	1.000	100.00	100	0.348	
37	37 13C-1,2,3,4-TCDF	2.56e5	0.78	NO	1.00	1.000	23.930	23.77	1.000	1.000	100.00	100	0.319	
38	38 13C-1,2,3,4,6,9-HxCDF	1.72e5	0.50	NO	1.00	1.000	32.990	32.93	1.000	1.000	100.00	100	0.383	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

1. 1. 1.	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	7.58e5	0.78	NO	1.00	1.000	25.837	25.82	1.001	1.001	356.63	119	0.0966	357
2	2 1,2,3,7,8-PeCDD	2.85e6	0.62	NO	0.935	1.000	30.167	30.17	1.001	1.001	1780.4	119	0.172	1780
3	3 1,2,3,4,7,8-HxCDD	2.71e6	1.27	NO	1.15	1.000	33.404	33.42	1.000	1.001	1675.8	112	0.517	1680
4	4 1,2,3,6,7,8-HxCDD	2.69e6	1.28	NO	1.02	1.000	33.514	33.54	1.000	1.001	1680.7	112	0.531	1680
5	5 1,2,3,7,8,9-HxCDD	2.81e6	1.28	NO	1.06	1.000	33.834	33.82	1.001	1.001	1704.1	114	0.514	1700
6	6 1,2,3,4,6,7,8-HpCDD	2.53e6	1.04	NO	1.00	1.000	37.212	37.21	1.000	1.000	1793.7	120	1.10	1790
7	7 OCDD	4.25e6	0.91	NO	0.952	1.000	40.405	40.42	1.000	1.000	3501.8	117	0.640	3500
8	8 2,3,7,8-TCDF	9.86e5	0.76	NO	1.01	1.000	25.173	25.16	1.001	1.001	338.16	113	0.0928	338
9	9 1,2,3,7,8-PeCDF	4.38e6	1.61	NO	0.998	1.000	29.019	29.02	1.001	1.001	1733.2	116	0.290	1730
10	10 2,3,4,7,8-PeCDF	4.65e6	1.58	NO	1.07	1.000	29.994	29.96	1.001	1.000	1748.5	117	0.254	1750
11	11 1,2,3,4,7,8-HxCDF	3.93e6	1.26	NO	1.05	1.000	32.505	32.52	1.000	1.000	1735.3	116	0.598	1740
12	12 1,2,3,6,7,8-HxCDF	4.09e6	1.24	NO	1.10	1.000	32.646	32.65	1.000	1.000	1760.3	117	0.578	1760
13	13 2,3,4,6,7,8-HxCDF	3.89e6	1.24	NO	1.09	1.000	33.317	33.29	1.001	1.000	1762.8	118	0.677	1760
14	14 1,2,3,7,8,9-HxCDF	3.50e6	1.25	NO	1.08	1.000	34.293	34.30	1.000	1.000	1741.6	116	0.787	1740
15	15 1,2,3,4,6,7,8-HpCDF	3.65e6	1.03	NO	1.13	1.000	35.964	35.95	1.001	1.001	1771.8	118	1.17	1770
16	16 1,2,3,4,7,8,9-HpCDF	3.13e6	1.03	NO	1.29	1.000	37.838	37.86	1.000	1.001	1782.6	119	1.19	1780
17	17 OCDF	5.35e6	0.90	NO	0.953	1.000	40.713	40.73	1.000	1.001	3484.8	116	0.570	3480
18	18 13C-2,3,7,8-TCDD	2.12e5	0.79	NO	1.17	1.000	25.786	25.81	1.026	1.027	104.16	104	0.286	
1⁄9	19 13C-1,2,3,7,8-PeCDD -	1.71e5	0.64	NO	0.914	1.000	29.974	30.15	1.193	1.199	107.75	108	0.215	ĺ
20	20 13C-1,2,3,4,7,8-HxCDD	1.40e5	1.26	NO	0.634	1.000	33.405	33.39	1.014	1.014	109.23	109	0.282	
21	21 13C-1,2,3,6,7,8-HxCDD	1.56e5	1.25	NO	0.724	1.000	33.514	33.51	1.017	1.017	106.34	106	0.247	
22	22 13C-1,2,3,7,8,9-HxCDD	1.55e5	1.28	NO	0.716	1.000	33.781	33.80	1.025	1.026	107.07	107	0.250	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.41e5	1.06	NO	0.660	1.000	37.194	37.20	1.129	1.129	105.30	105	0.429	
24	24 13C-OCDD	2.55e5	0.91	NO	0.587	1.000	40.172	40.41	1.219	1.226	214.60	107	0.280	
25	25 13C-2,3,7,8-TCDF	2.88e5	0.77	NO	1.02	1.000	24.882	25.15	0.990	1.001	101.82	102	0.296	
26	26 13C-1,2,3,7,8-PeCDF	2.53e5	1.56	NO	0.842	1.000	29.046	29.00	1.156	1.154	108.85	109	0.302	
27	27 13C-2,3,4,7,8-PeCDF	2.47e5	1.63	NO	0.802	1.000	29.933	29.96	1.191	1.192	111.60	112	0.317	J
28	28 13C-1,2,3,4,7,8-HxCDF	2.16e5	0.51	NO	1.00	1.000	32.549	32.51	0.988	0.987	106.11	106	0.327	
29	29 13C-1,2,3,6,7,8-HxCDF	2.11e5	0.51	NO	1.02	1.000	32.680	32.64	0.992	0.991	102.28	102	0.322	
30	30 13C-2,3,4,6,7,8-HxCDF	2.03e5	0.50	NO	0.955	1.000	33.244	33.28	1.009	1.010	104.72	105	0.344	
31	31 13C-1,2,3,7,8,9-HxCDF	1.86e5	0.50	NO	0.851	1.000	34.308	34.29	1.041	1.041	107.61	108	0.386	
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.82e5	0.42	NO	0.848	1.000	35.810	35.93	1.087	1.091	105.97	106	0.366	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.37e5	0.43	NO	0.624	1.000	37.787	37.84	1.147	1.149	108.00	108	0.497	
34	34 13C-OCDF	3.22e5	0.90	NO	0.730	1.000	40.323	40.71	1.224	1.236	217.87	109	0.278	

Page 12 of 12

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 10:27:41 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:33:19 Pacific Daylight Time

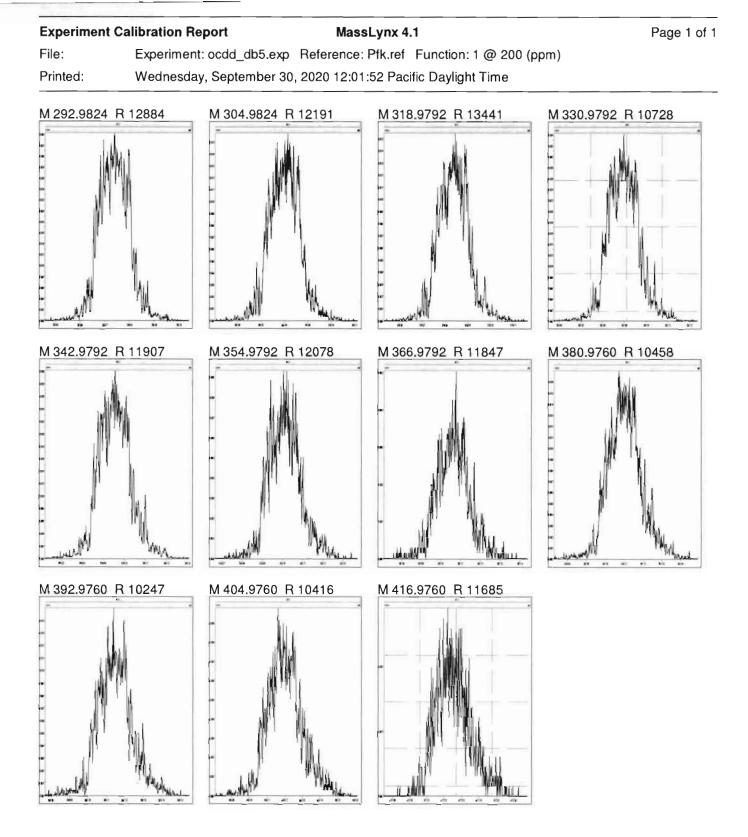
	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	5.12e5			1.21	1.000	25.784	25.82	1.026	1.027	244.41	122	0.0655	
36	36 13C-1,2,3,4-TCDD	1.74e5	0.81	NO	1.00	1.000	25.260	25.13	1.000	1.000	100.00	100	0.335	
37	37 13C-1,2,3,4-TCDF	2.77e5	0.77	NO	1.00	1.000	23.930	23.79	1.000	1.000	100.00	100	0.302	
38	38 13C-1,2,3,4,6,9-HxCDF	2.03e5	0.50	NO	1.00	1.000	32.990	32.94	1.000	1.000	100.00	100	0.328	

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1	Page 1 of 1
Dataset:	Untitled		
Last Altered: Printed:		20 10:37:09 Pacific Daylight Time 20 10:37:36 Pacific Daylight Time	

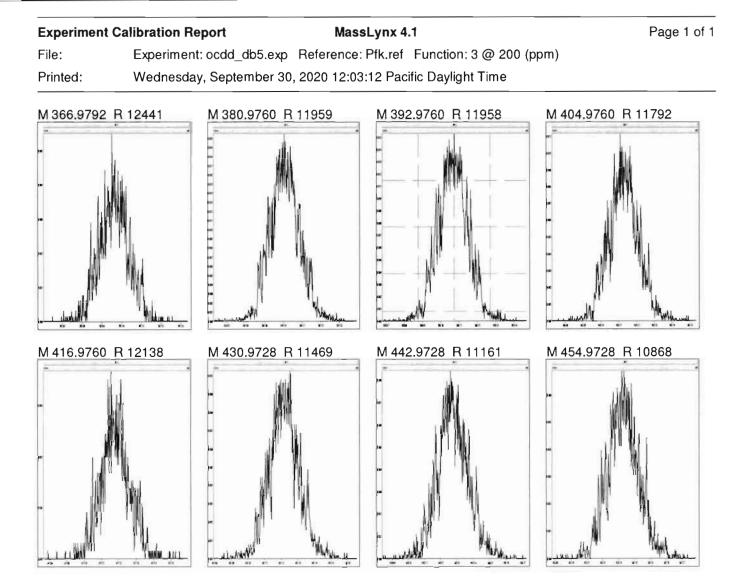
Method: C:\MassLynx\Default.pro\Methdb\CPSM.mdb 22 Sep 2020 09:44:55 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

1	# Name	RT
1	1 1,3,6,8-TCDD (First)	22.41
2	2 1,2,8,9-TCDD (Last)	26.63
3	3 1,2,4,7,9-PeCDD (First)	28.07
4	4 1,2,3,8,9-PeCDD (Last)	30.51
5	5 1,2,4,6,7,9-HxCDD (First)	31.78
6	6 1,2,3,7,8,9-HxCDD (Last)	33.80
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.29
8	8 1,2,3,4,6,7,8-HpCDD (Last)	37.19
9	9 1,3,6,8-TCDF (First)	20.29
10	10 1,2,8,9-TCDF (Last)	26.91
11	11 1,3,4,6,8-PeCDF (First)	26.55
12	12 1,2,3,8,9-PeCDF (Last)	30.83
13	13 1,2,3,4,6,8-HxCDF (First)	31.26
14	14 1,2,3,7,8,9-HxCDF (Last)	34.29
15	15 1,2,3,4,6,7,8-HpCDF (First)	35.94
16	16 1,2,3,4,7,8,9-HpCDF (Last)	37.84

Quantify Compound Summary ReportMassLynx 4.1Vista Analytical Laboratory VG-11

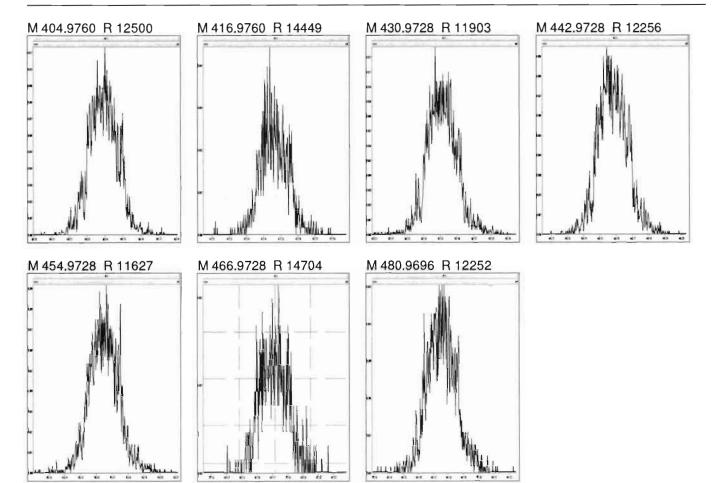

Dataset: Untitled

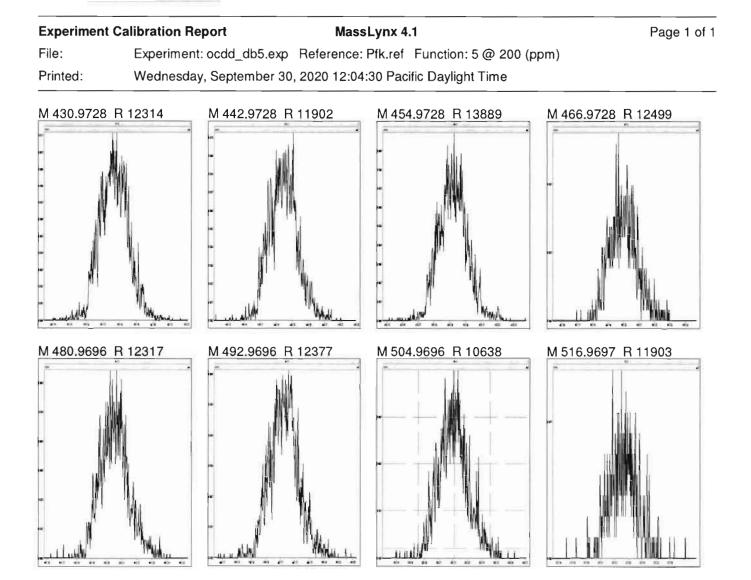

Last Altered: Thursday, October 01, 2020 10:38:02 Pacific Daylight Time Thursday, October 01, 2020 10:38:09 Pacific Daylight Time

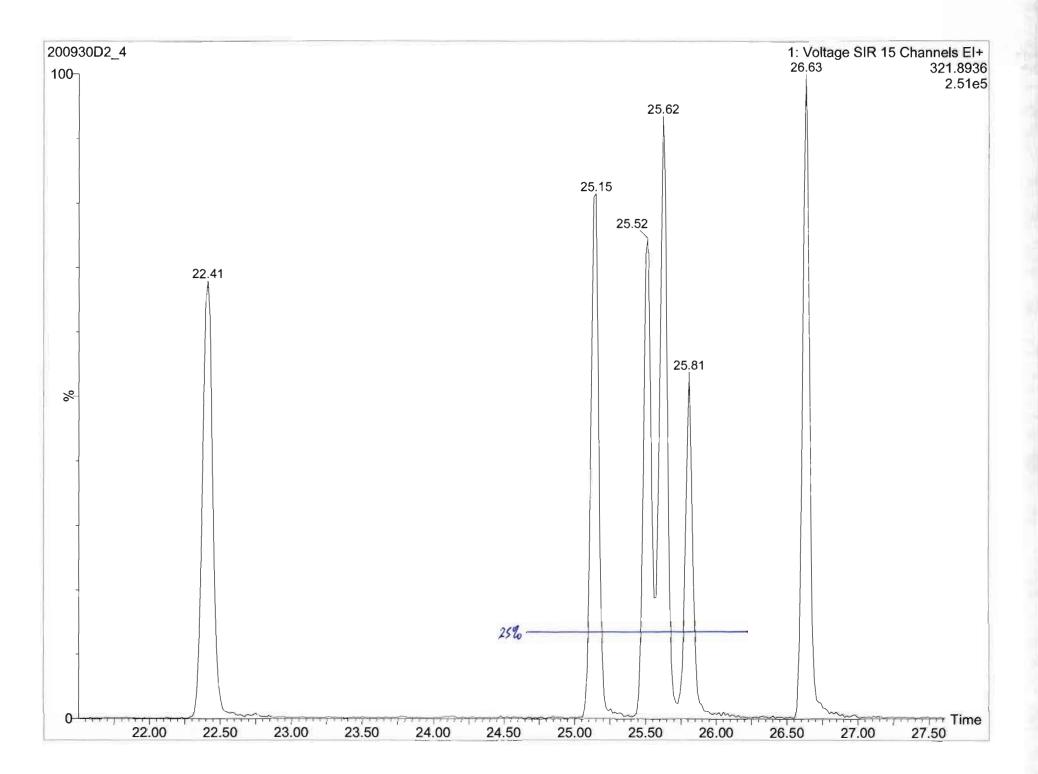

Method: C:\MassLynx\Default.pro\Methdb\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

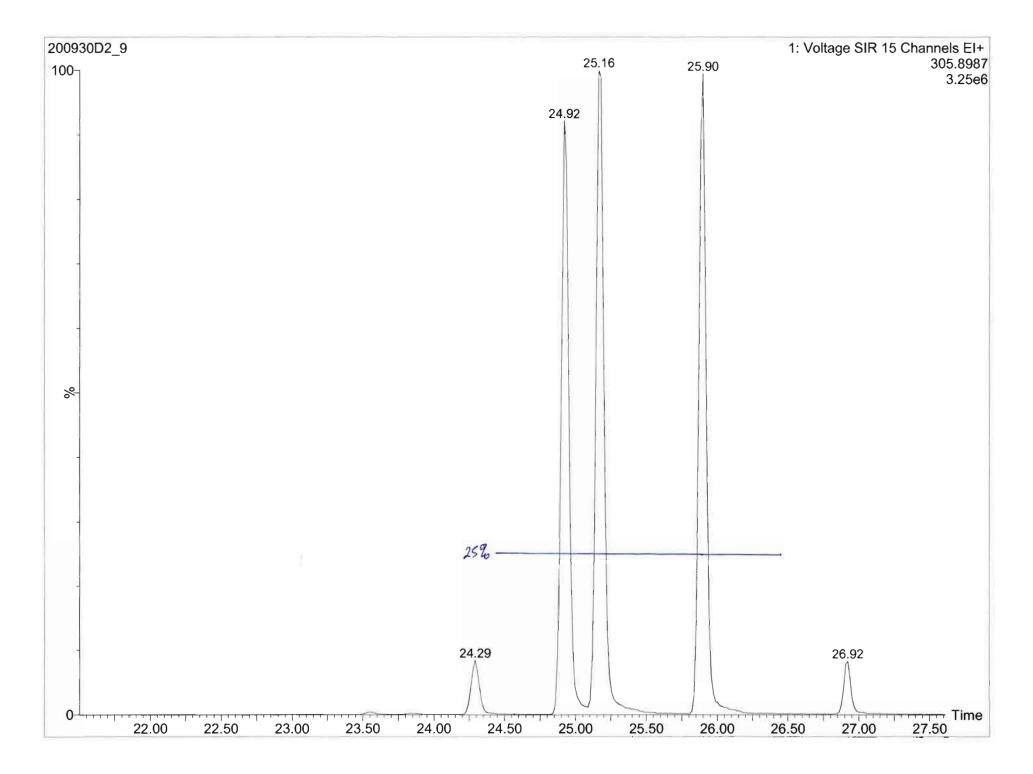
Compound name: 2,3,7,8-TCDD

	Name	ID	Acq.Date	Acq.Time
1	200930D2_1	ST200930D2-1 1613 CS0 20F1102	30-Sep-20	12:06:04
2	200930D2_2	ST200930D2-2 1613 CS1 20F1103	30-Sep-20	12:51:13
3	200930D2_3	ST200930D2-3 1613 CS2 20F1104	30-Sep-20	13:37:23
4	200930D2_4	ST200930D2-4 1613 CS3 20F1105	30-Sep-20	14:23:39
5	200930D2_5	ST200930D2-5 1613 CS4 20F1106	30-Sep-20	15:49:01
6	200930D2_6	ST200930D2-6 1613 CS5 20F1107	30-Sep-20	16:35:44
7	200930D2_7	SOLVENT BLANK	30-Sep-20	17:21:53
8	200930D2_8	SS200930D2-1 1613 SSS 20F1108	30-Sep-20	18:08:02
9	200930D2_9	QC200930D2-1 TCDF CPSM	30-Sep-20	18:54:11
10	200930D2_10	B0I0193-BS1 OPR 10	30-Sep-20	19:40:20
11	200930D2_11	SOLVENT BLANK	30-Sep-20	20:26:29
12	200930D2_12	B0I0193-BLK1 Method Blank 10	30-Sep-20	21:11:54
13	200930D2_13	2002003-01 PDI-018SC-A-00-01-190926 10.15	30-Sep-20	21:57:18
14	200930D2_14	2002003-02 PDI-018SC-A-01-02-190926 11.65	30-Sep-20	22:43:26
15	200930D2_15	2002003-03 PDI-018SC-A-02-03-190926 10.16	30-Sep-20	23:29:40
16	200930D2_16	2002003-04 PDI-018SC-A-03-04-190926 11.5	01-Oct-20	00:15:48
17	200930D2_17	2002003-05 PDI-018SC-A-04-05-190926 10.06	01-Oct-20	01:01:11
18	200930D2_18	2002003-06 PDI-018SC-A-05-06-190926 10.33	01-Oct-20	01:46:37

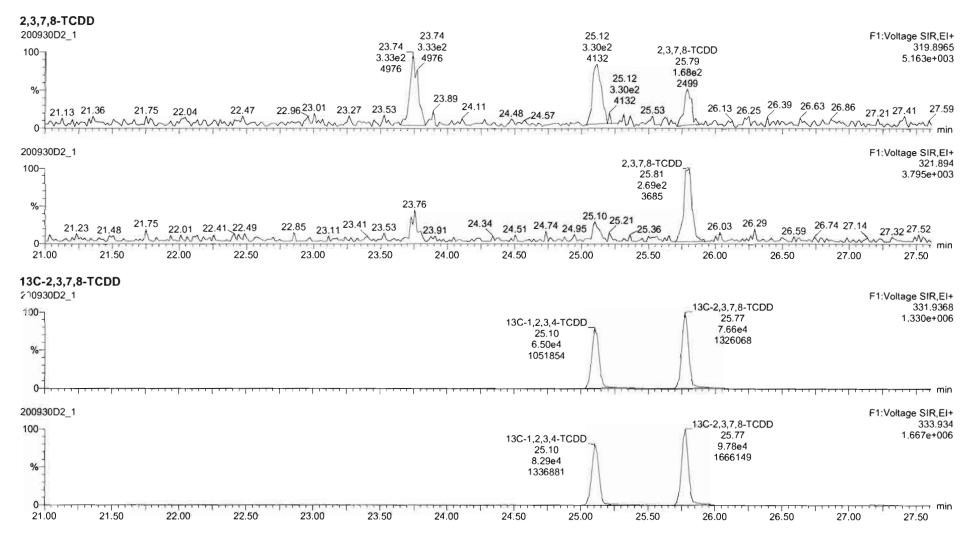

Experiment Calibration Report


MassLynx 4.1


File:


Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

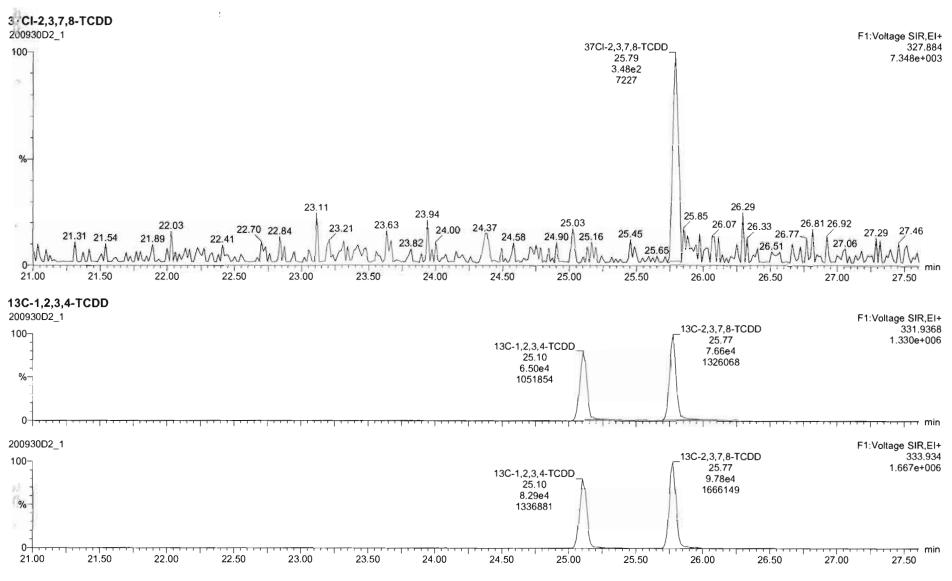
Printed: Wednesday, September 30, 2020 12:03:51 Pacific Daylight Time



	ample Report ical Laboratory	MassLynx 4.1
Dataset:	U:\VG7.PRO\	esults\200930D2\200930D2_CRV.qld

Last Altered:Thursday, October 01, 2020 09:56:59 Pacific Daylight TimePrinted:Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

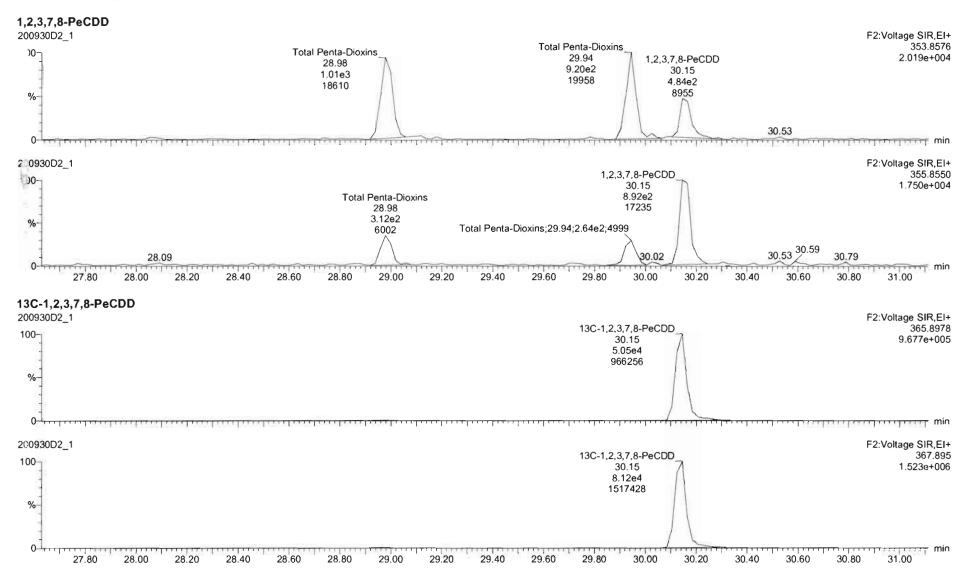
Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-8-20-20.cdb 21 Aug 2020 10:10:46

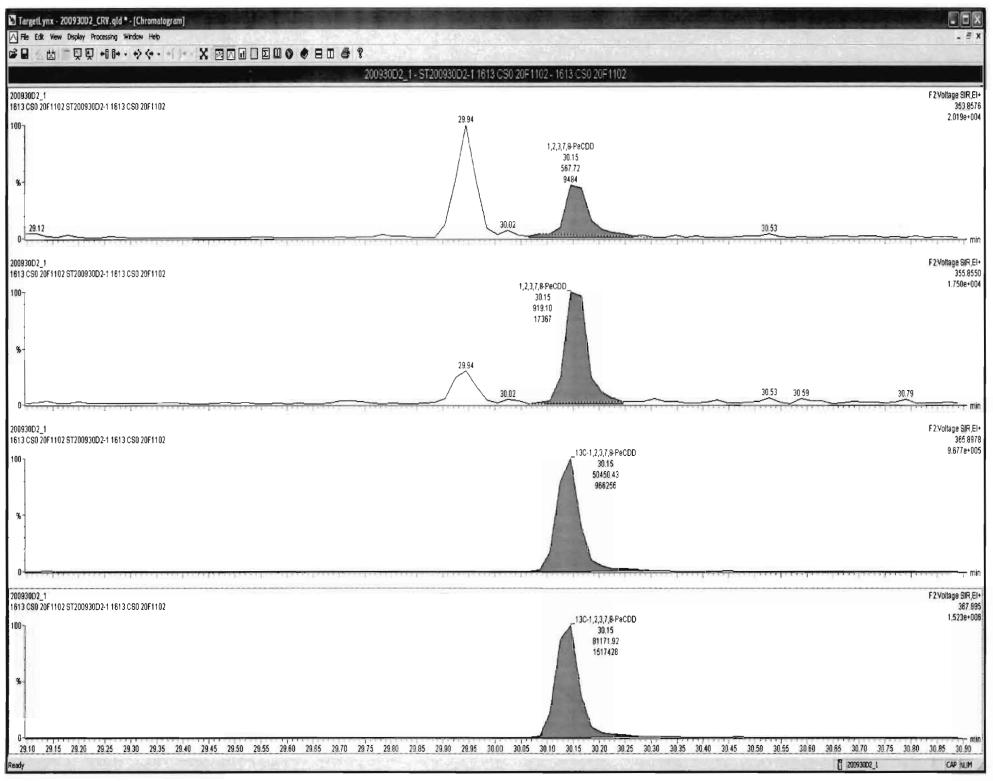


Work Order 2002003

Page 312 of 419

Quantify Sam Vista Analytica		Page 2 of 78
Dátaset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	




Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

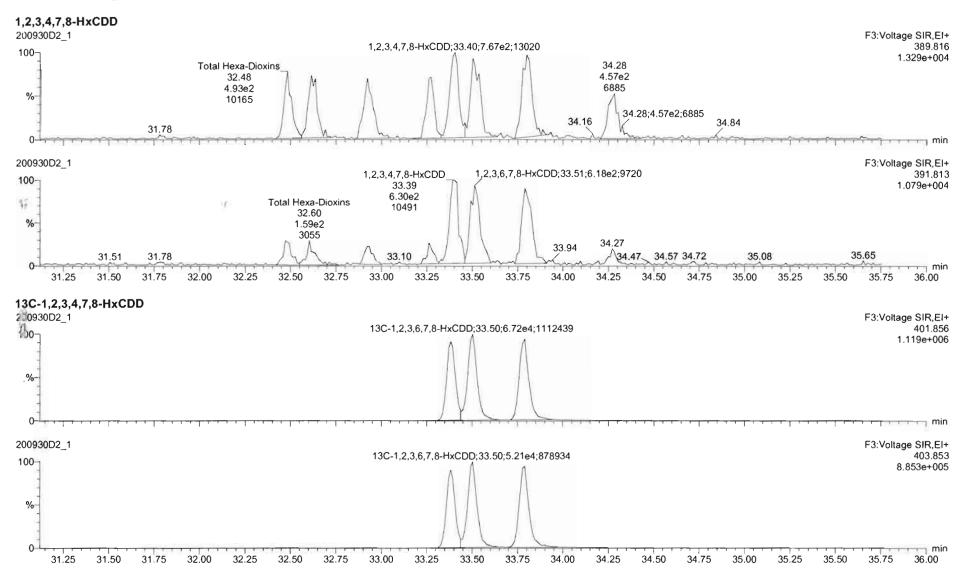
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

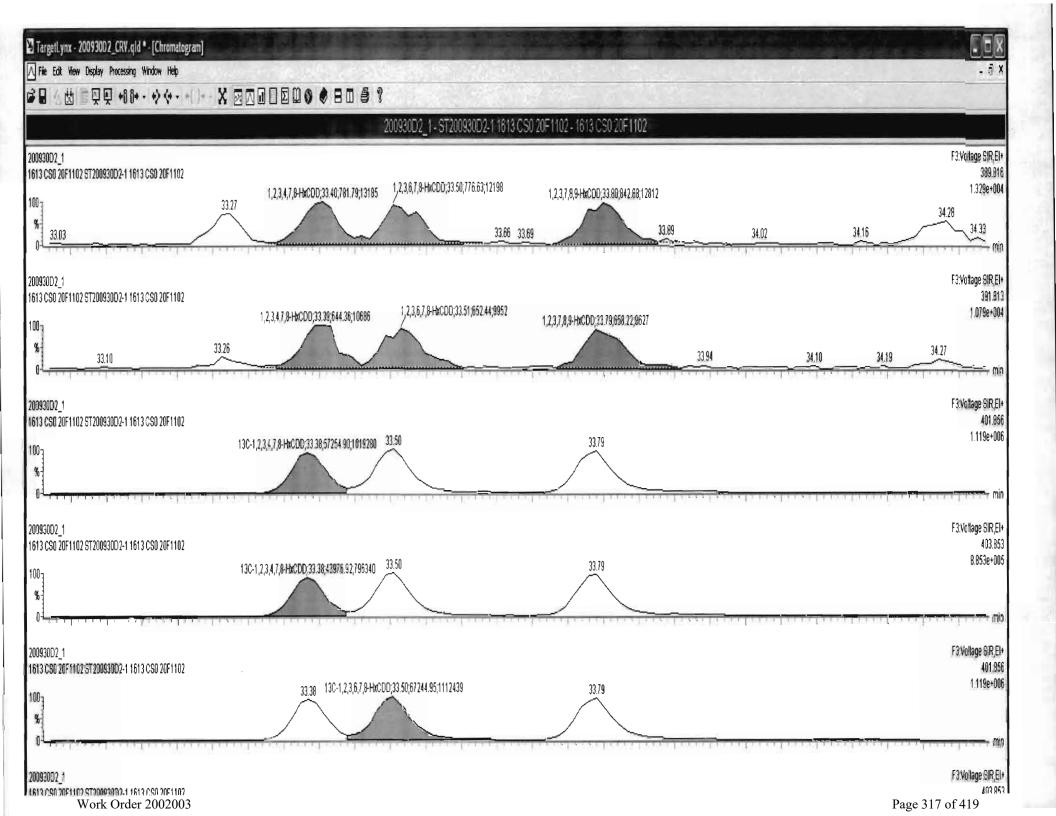
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

Work Order 2002003

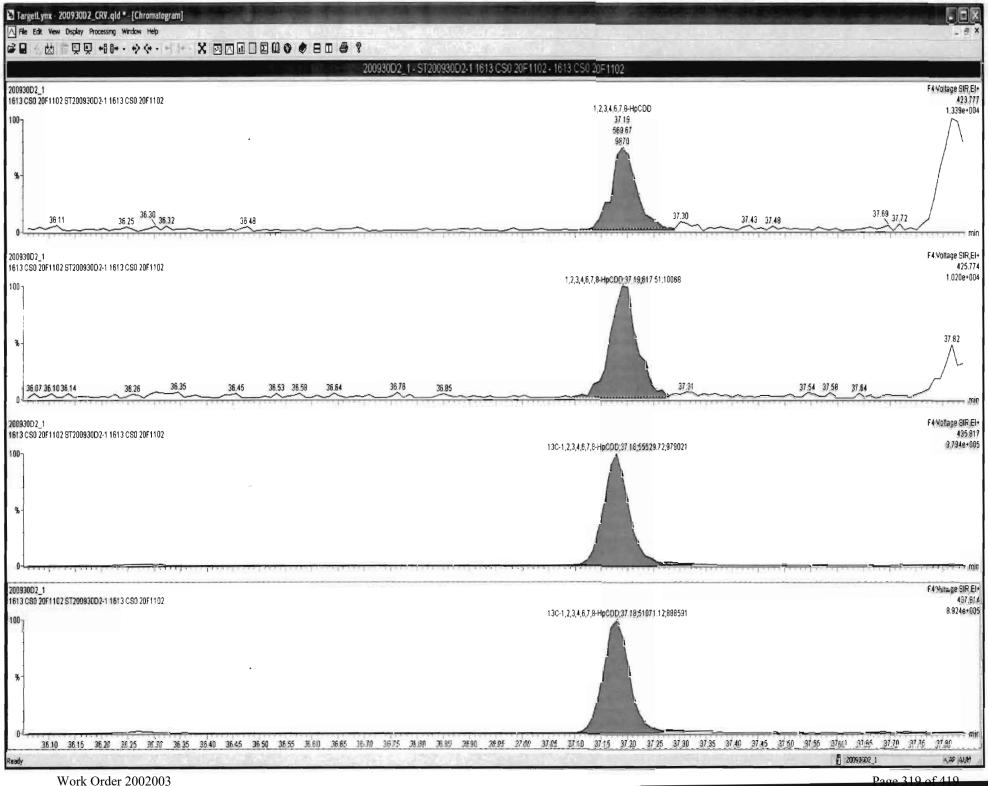
Page 315 of 419

Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory


 $\left[\hat{h} \right]$

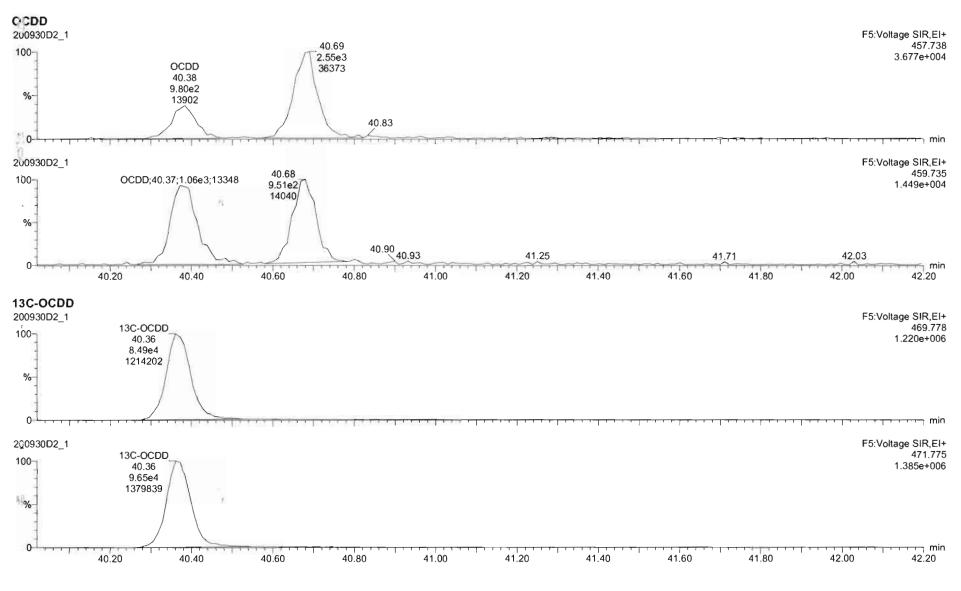
Page 4 of 78


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

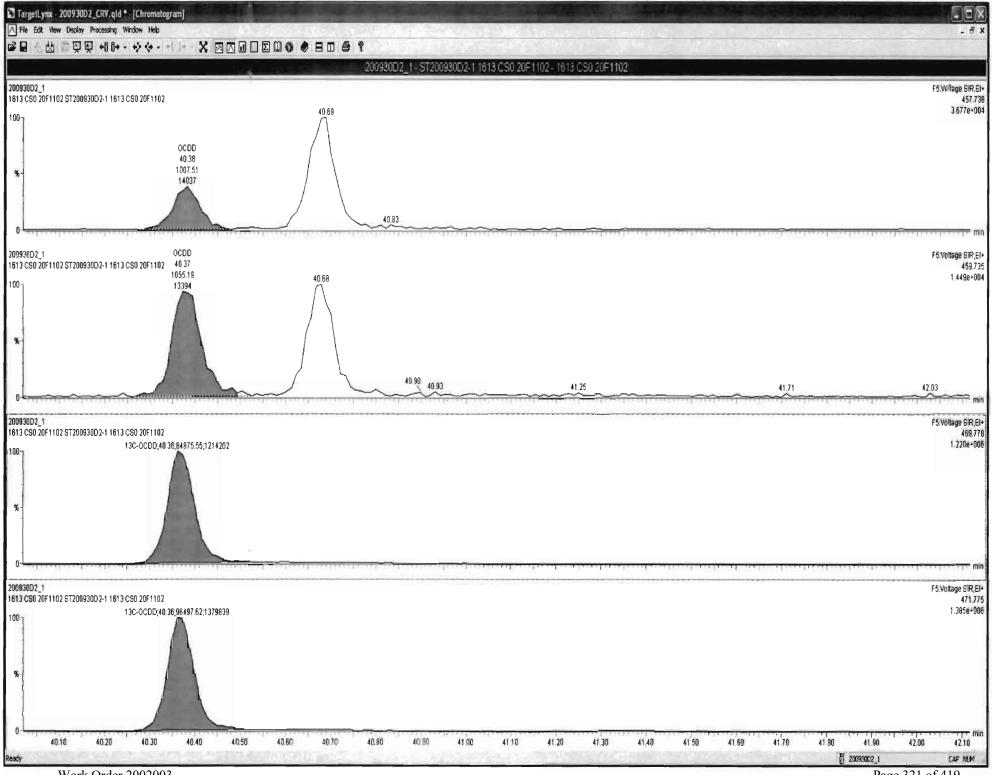
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

uantify Sam sta Analytica		MassLynx 4.1									Pag	ge 5 of 7
ataset:	U:\VG7.PRO\R	Results\200930D2\200930E	2_CRV.qld									
ast Altered: rinted:		ober 01, 2020 09:56:59 Pac ober 01, 2020 09:58:35 Pac										
ıme: 20093(0D2_1, Date: 30	-Sep-2020, Time: 12:06:04	4, ID: ST2009	30D2-1 1613	CS0 20F1102	, Description:	1613 CS0 2	0F1102				
2,3,4,6,7,8-H 0930D2_1 00	.91	9 <u>6</u>	6,7,8-HpCDD 37.19 5.47e2 9753	37 8.2	ota-Dioxins 2.82 11e2 183						F4:Volta 1	ge SIR,E 423.7 .763e+0
	36.32	*****	37.30 3	7.43 37.72	L		38	.88	39.26	~~~~~	39.80	n آ د د
0930D2_1 00 35.91 4.48e2 6525 % 35.	.91;4.48e2;6525	1,2,3,4,6,7,8-HpCD 37.19 6.03e2 9988		37 2.8	ota-Dioxins .82 .6e2 .990						F4:Volta	
	35.91;4.48e2;6525	36.53 36.76 36.85	37.31	37.58	Total Hepta-Di	oxins;37.82;2.86e	2;4690 38.74		39.32		39.83.39.8	37 ╤ ~, m
36.		36.50 36.75 37.00	37.25 3	7.50 37.75	38.00	38.25 38.50	38.75	39.00	39.25	39.50	39.75	40.00
C-1,2,3,4,6, 0930D2_1 0 ⁻]	,7,8-HpCDD	13C-1,2,3,4,6,7,8-HpCDI 37.18	⊃								F4:Volta 9	ge SIR,E 435.8).794e+0
%		5.55e4 979021	\bigwedge									
0	- 			+ 					 	· · · · · · · · · · · · · · · · · · ·		i i i i
0930D2_1		13C-1,2,3,4,6,7,8-HpCD 37.18 5.11e4 888591									F4:Volta 8	ge SIR,E 437.8 8.924e+0
1												ں ارد در

Page 310 of 410

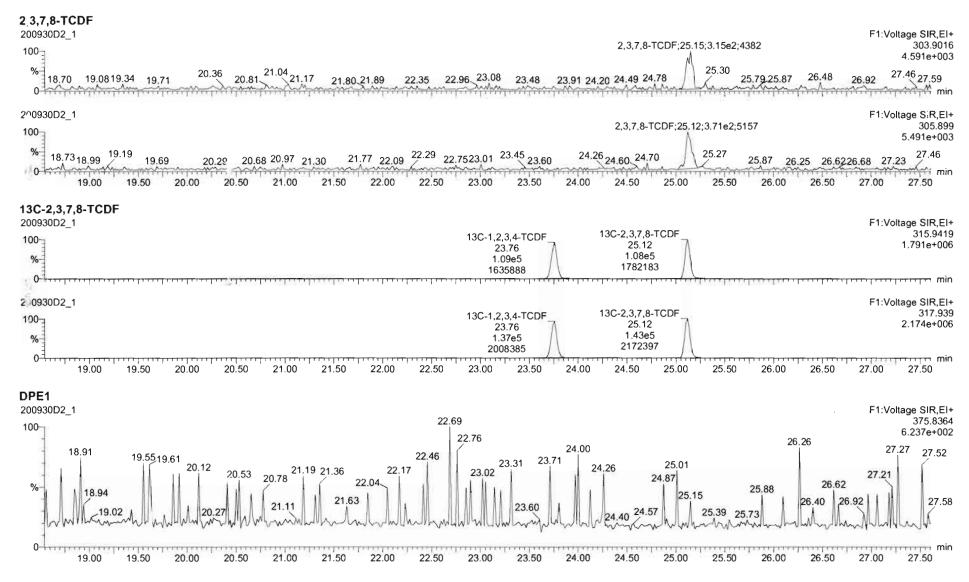

Quantify Sample Report MassLynx 4.1

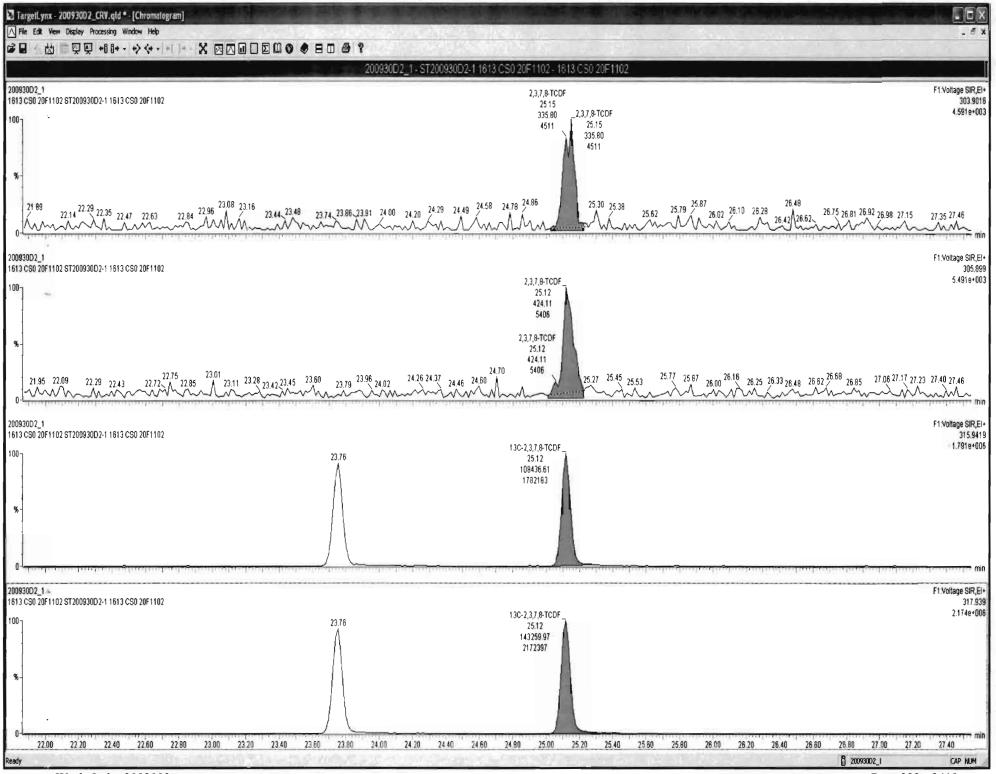
Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

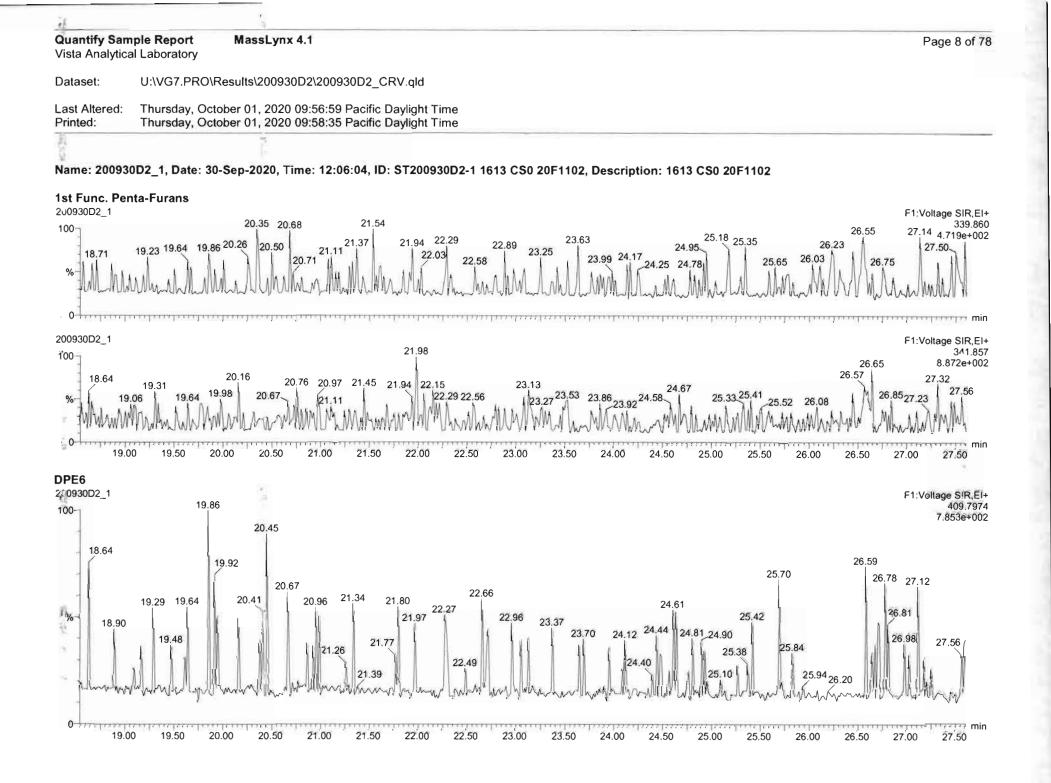
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

Name: 200930D2_1, Date: 30-Sep-2020, Time: 12:06:04, ID: ST200930D2-1 1613 CS0 20F1102, Description: 1613 CS0 20F1102



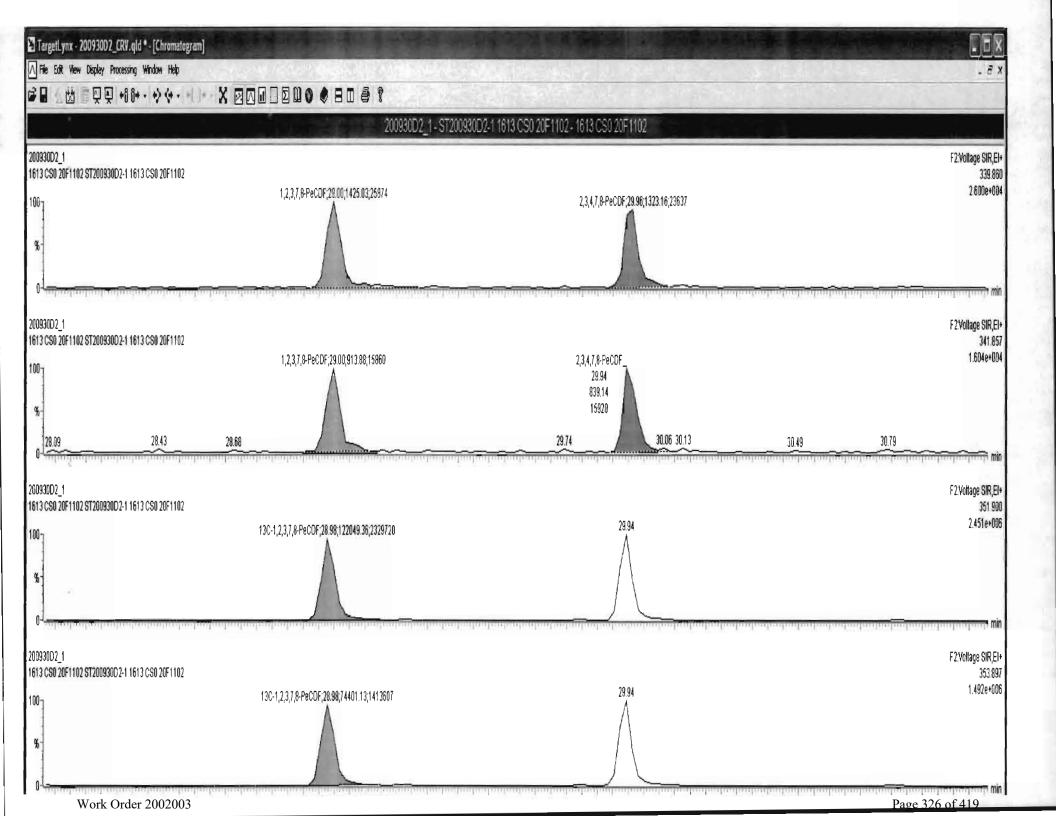

12

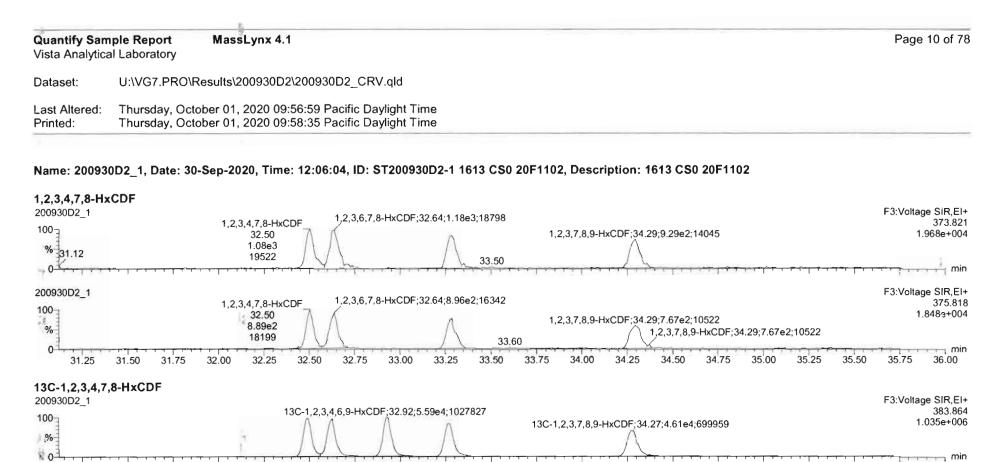
Page 321 of 419

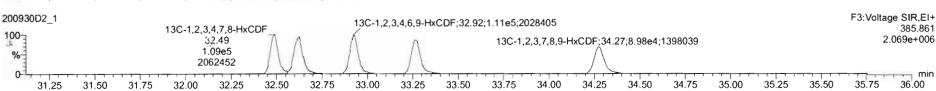

Work Order 2002003

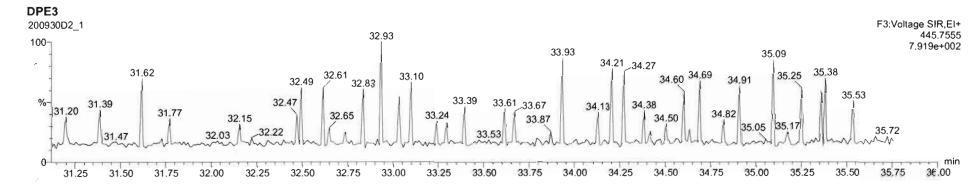
Work Order 2002003

Page 323 of 419



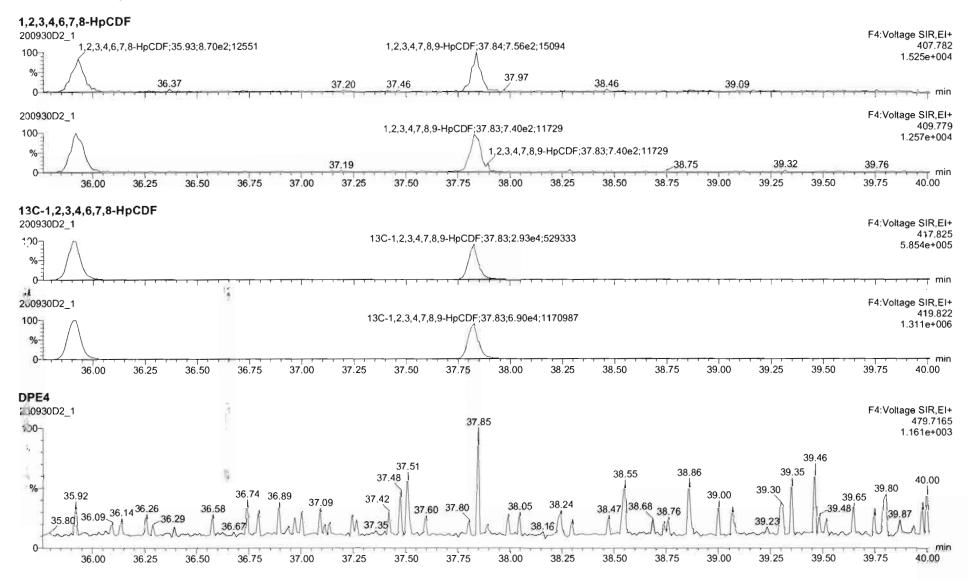

Work Order 2002003

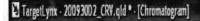

Page 324 of 419


luantify Sam ista Analytica		MassL	ynx 4.1												Pag	je 9 of 7
ataset:	U:\VG7.PRO\	Results\200	0930D2\200	0930D2_	CRV.qld											
ast Altered: inted:	Thursday, Oc Thursday, Oc						-									1
5	0D2_1, Date: 3	0-Sep-20 ?0), Time: 12	:06:04, I	D: ST2009	30D2-1 16	613 CS0 20)F1102,	Descript	tion: 1613	3 CS0 201	F1102				
2,3,7,8-PeCl 0930D2_1	DF		1,2,3,7,8-Pe 29.00 1.49e3 25884			2,3,4	4,7,8-PeCDF;	29.96;1.3	le3;23595	1 1					F2:Volta 2	ge SIR,E 339.86 .600e+00
0930D2_1	28.09	28.43	28.68	1,2	2,3,7,8-PeCDF 29.00 8.65e2 15686		,7,8-PeCDF_ 29.94 8.41e2 15843	2,3,	4,7,8-PeCE 29.94 8.41e2 15843	DF 30.49	30.79				F2:Volta	ge SIR,E 341.8 .604e+00
27.75	28.00 28.2	5 28.50	28.75	29.00	29.25	29.50	29.75	30.00	30.25	30.50	30.75	31.00	31.25	31.50	31.75	32.00
C-1,2,3,7,8- 0930D2_1	PeCDF	13C-	1,2,3,7,8-PeC 28.98 1.22e5 2329720			29 1.1	,7,8-PeCDF_ 9.94 18e5 14077	\backslash							F2:Volta 2	ge SIR,E 351.9 .451e+0
0 1)930D2_1	<u> </u>	;	· · · · ·		 .								1111	1 1 1 1 1	F2:Volta	
0- 		13C-	1,2,3,7,8-PeC 28.98 7.44e4 1413607			29 7.2	,7,8-PeCDF_ 9.94 28e4 66689	1								353.8 .492e+0
27.75	28.00 28.2	5 28.50	28.75	29.00	29.25	29.50	29.75	30.00	30.25	30.50	30.75	31.00	31.25	31.50	31.75	32.00
PE2 0930D2_1															F2:Volta	ne SIR F
27.71	28.19 ,28.05 ,28.05	27 28.52 28.43	58 28.68 ∧ 28,8	28.96 4 29.0	29.32 29.18 0	29.48	29.94	- A	30.3	30.45 5 30.59	30.71 30.8	31.03	9			409.79 .265e+0
0				~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						, , , , , , , , , , , , , , , , , , ,			·	11811	m ر ب
27.75	28.00 28.2		28.75	29.00	29.25	29.50	29.75	30.00	30.25	30.50	30.75	31.00	31.25	31.50	31.75	32.00
		12														

Work Order 2002003

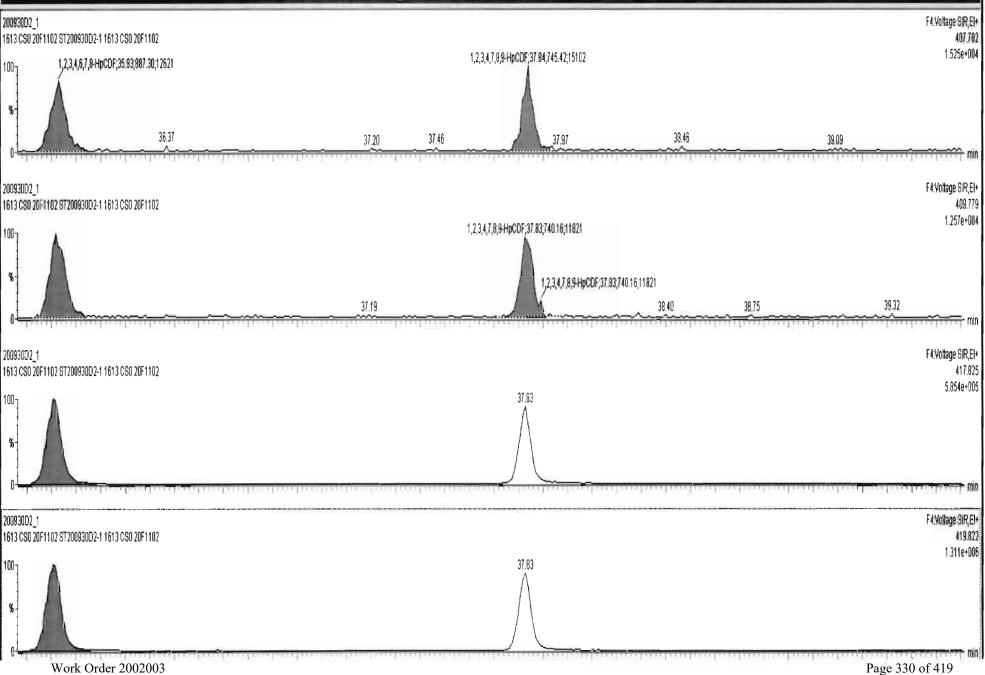
12

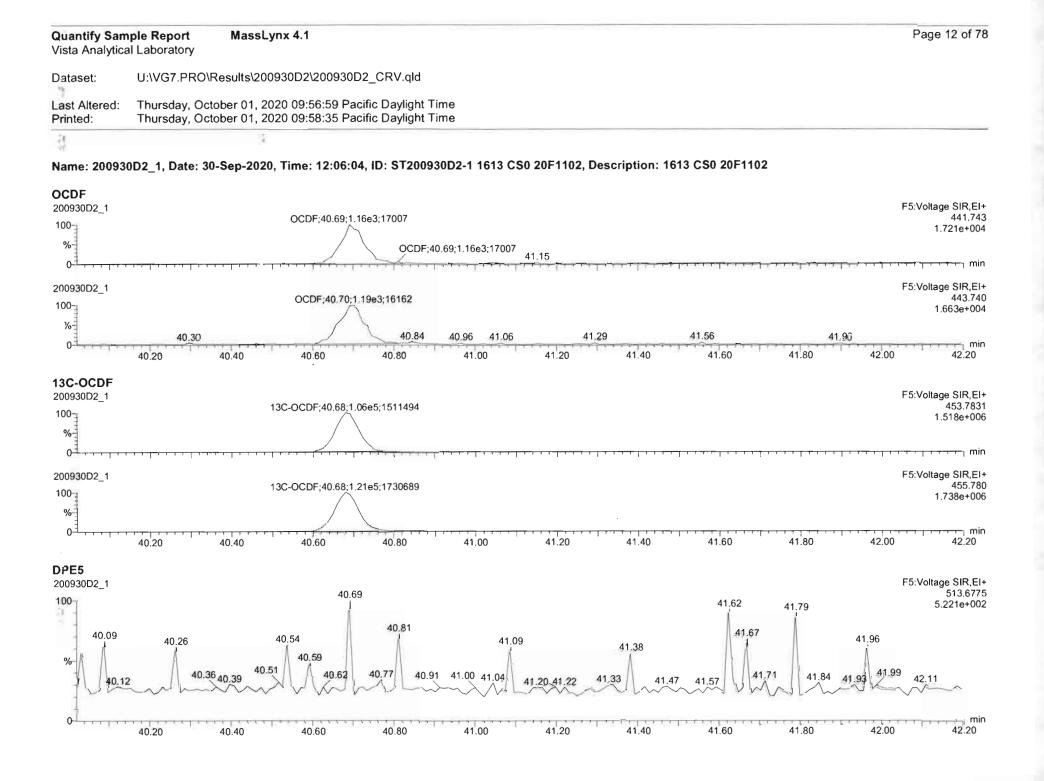

A File Edit View Display Processing Window Help . 3 > e I 200930D2 1 - ST200930D2-1 1613 CS0 20F1102 - 1613 CS0 20F1102 1,2,3,7,8,9-HxCDF 200930D2 1 F3:Voltage SIR,EI+ + 34.29 1613 CS0 20F1102 ST200930D2-1 1613 CS0 20F1102 373.821 951.94 1.968e+004 1,2,3,4,7,8-HxCDF;32.50,1087.80;19596 2,3,4,6,7,8-HaCDF;33:27;1060.42;16249 100-14164 1,2,3,6,7,8-HxCDF,32,64,1190,36;18927 2,3,4,6,7,8-HxCDF 33,27,1060,42,16249 % min 🗝 2,3,4,6,7,8-HMCDF 200930D2 1 F3:Vollage SIR,EI+ 1,2,3,7,8,9-HxCDF 33.28 1613 CS0 20F1102 ST200930D2-1 1613 CS0 20F1102 375.818 34.29 846.69 1.848e+004 1,2,3,4,7,8-HxCDF;32,50,910.77;18358 790.30 100-14134 10636 % 33.60 61111 min 200930D2 1 F3:Voltage SIR,EI+ 1613 CS0 20F1102 ST200930D2-1 1613 CS0 20F1102 383.864 1.035e+006 13C-1,2,3,4,7,8-HttCDF;32,49,54763.38,1018472 32.92 33.26 1005 34,27 % 200930D2 1 F3:Vollage SIR,EI+ 1613 CS0 20F1102 ST200930D2-1 1613 CS0 20F1102 385.861 2.069e+006 13C-1,2,3,4,7,8-HxCDF;32.49;108799.41;2062452 32.92 33.26 1005 34.27 % F3:Voltage SIR,EI+ 200930D2 1 1613 CS0 20F1102 ST200930D2-1 1613 CS0 20F1102 383.864 1.035e+006 32.49 32.92 33.26 1007 34.27 \$ 200930D2 1 F3:Vollage SIR,EI+

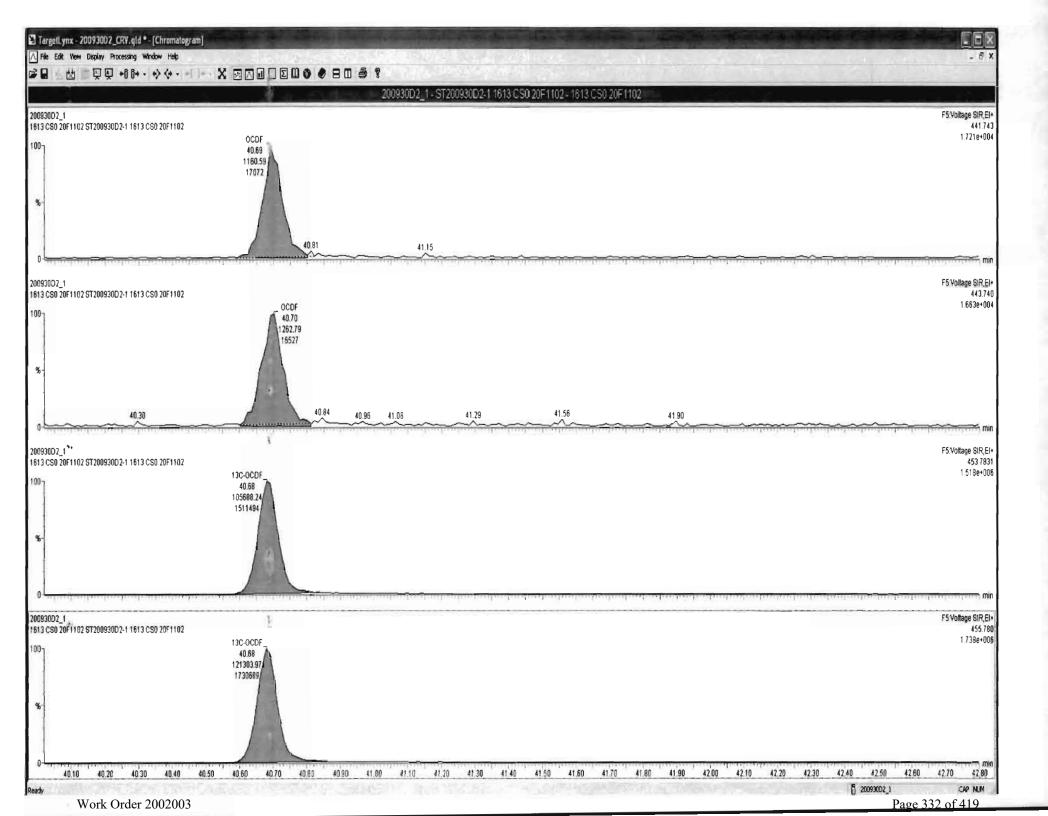

1613 CS0 20E1102 ST200930D2-1 1613 CS0 20E1102 Work Order 2002003

TargetLynx - 200930D2_CRV.qld * - [Chromatogram]

min


Quantify Samp Vista Analytical		Page 11 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
L ist Altered: F inted:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	





A File Edit View Display Processing Window Help

☞ 묘 △ 법 首 및 및 +8 6+ · ↔ ↔ · + · · · X 図 △ 回 □ Σ □ ♥ ♥ 日 □ ● % 200930D2_1 - ST200930D2-1 1613 CS0 20F1102 - 1613 CS0 20F1102

Quantify Sample Report	MassLynx 4.1
------------------------	--------------

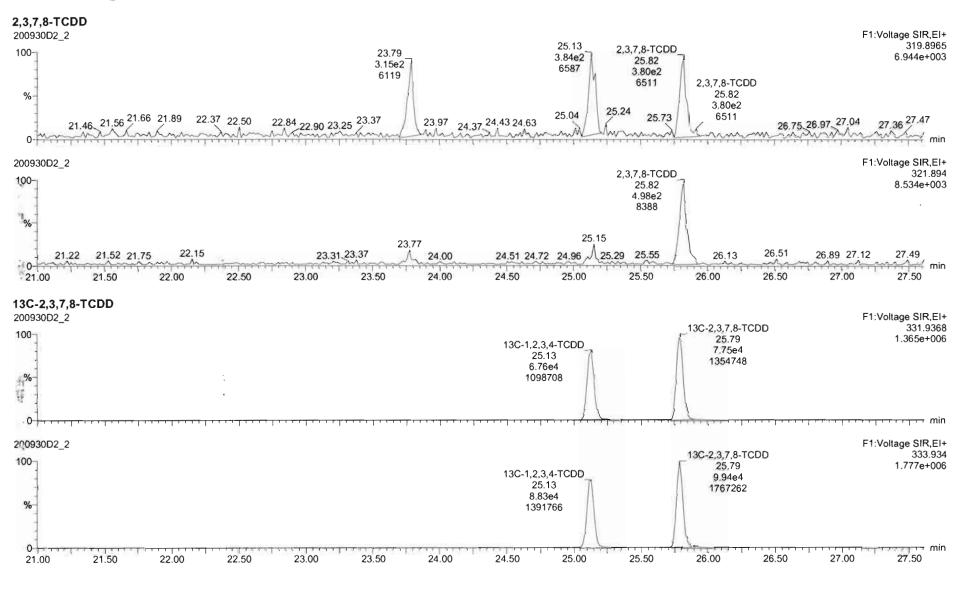
Vista Analytical Laboratory

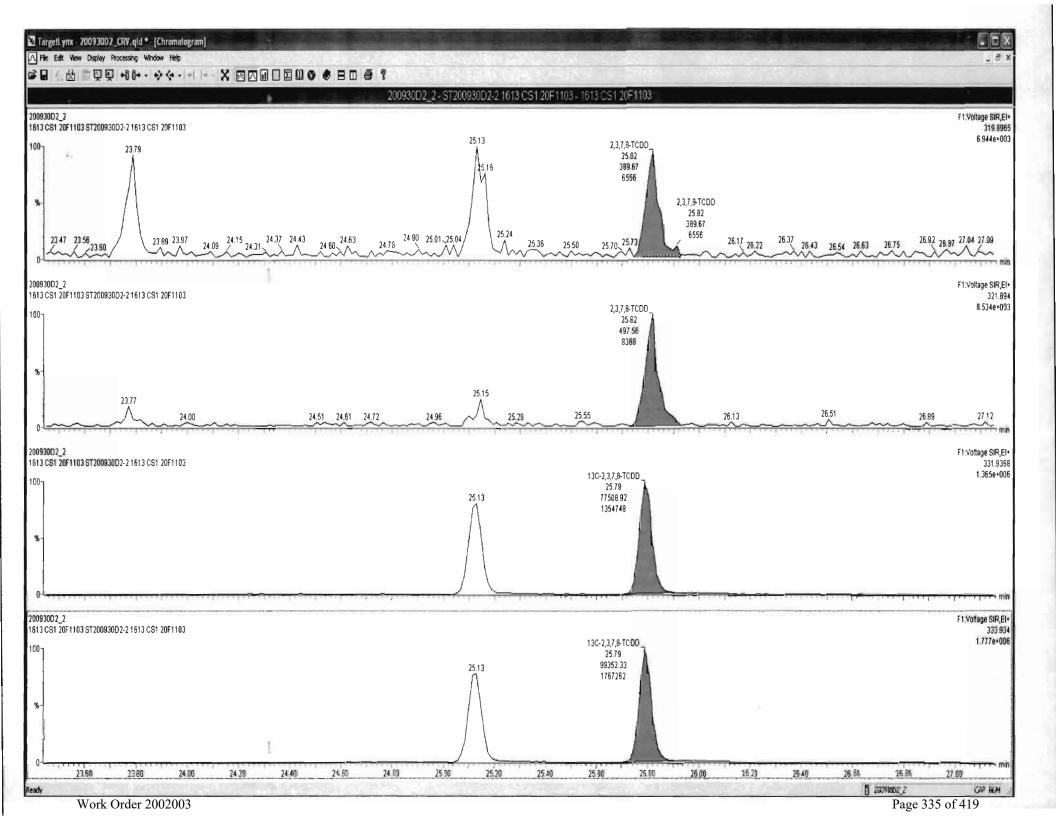
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

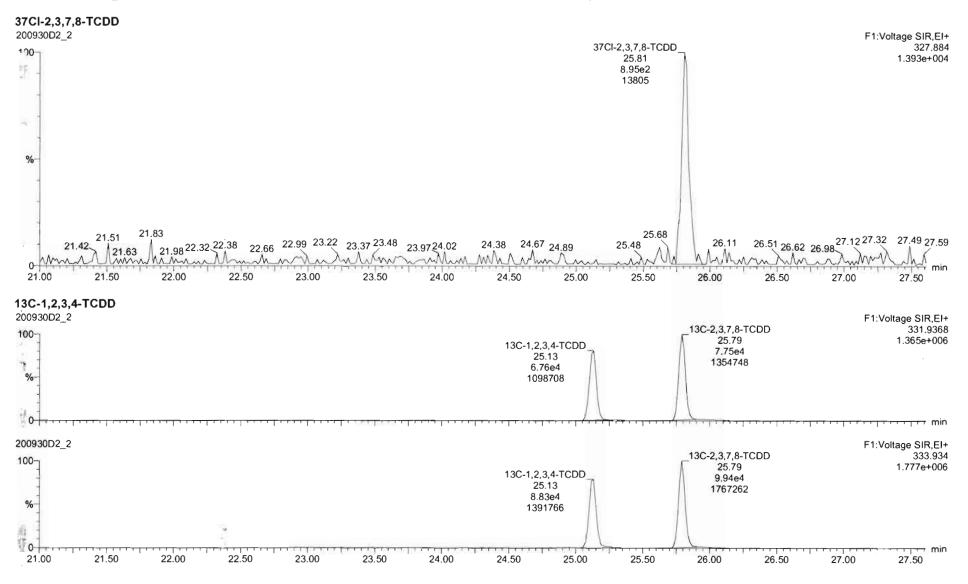
Name: 200930D2_1, Date: 30-Sep-2020, Time: 12:06:04, ID: ST200930D2-1 1613 CS0 20F1102, Description: 1613 CS0 20F1102

PFK1 200930D2_1 100_1
min 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50
PFK2
200930D2_1 27.93;3.30e3;90817 28.29;2.82e3;109331 28.62 28.76;2.55e3;64953 29.38;4.94e3;107137 29.58;2.43e3;73506 30.13;9.70e3;137134 30.63;4.61e3;91959 366.9792 1.301e+006
0 ⁻¹
F:K3 200930D2_1 31.33;1.45e4;341562 31.98;9.44e3;214522 32.46 33.12;2.43e3;151416 33.61 33.79 34.07 34.58;1.09e4;304858 35.19;2.06e4;282927 380.9760 100 32.46 33.12;2.43e3;151416 33.61 33.79 34.07 34.58;1.09e4;304858 35.19;2.06e4;282927 380.9760
%
31.25 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00
200930D2_1 10035.81 36.11 36.26 36.43 36.59 36.75 37.01 37.2037.32 37.52 37.68 37.84 38.07 38.30 38.35 38.63 38.8338.95 39.15 39.30 39.45 39.68 430.9728 31956+006
0 ¹ . 36.00 36.25 36.50 36.75 37.00 37.25 37.50 37.75 38.00 38.25 38.50 38.75 39.00 39.25 39.50 39.75 40.00
PFK5 200930D2_1 100 40.12 40.24 40.35 40.57 40.60 40.67 40.79 40.87 40.92 40.98 41.12 41.22 41.38 41.48 41.51 41.68 41.79 41.83 41.91 42.06 42.13 454.9728 2.196e+006
0 ⁻¹


, I

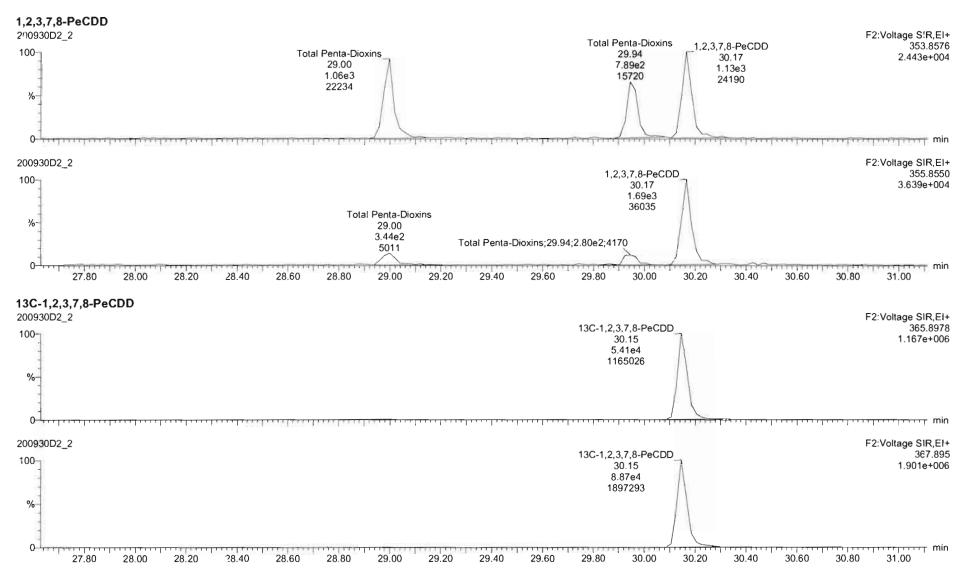

Quantify Sample Report MassLynx 4.1

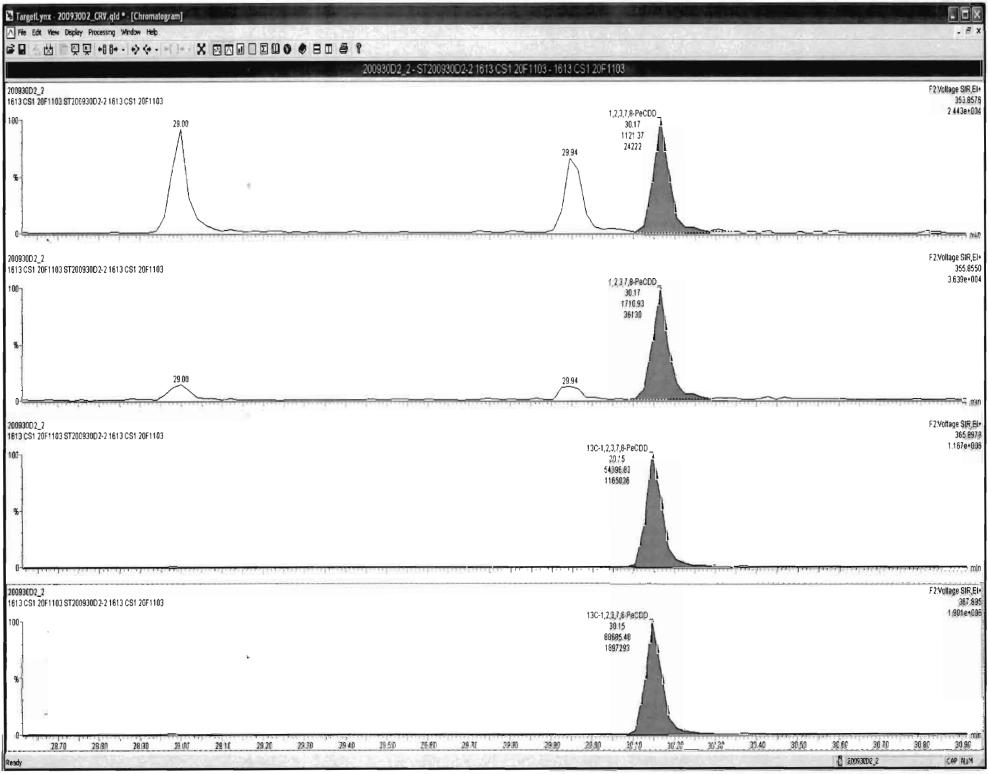
Vista Analytical Laboratory


C ataset: U:\VG7.PRO\Results\2:00930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

Quantify Sam Vista Analytica		Page 15 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: F inted:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

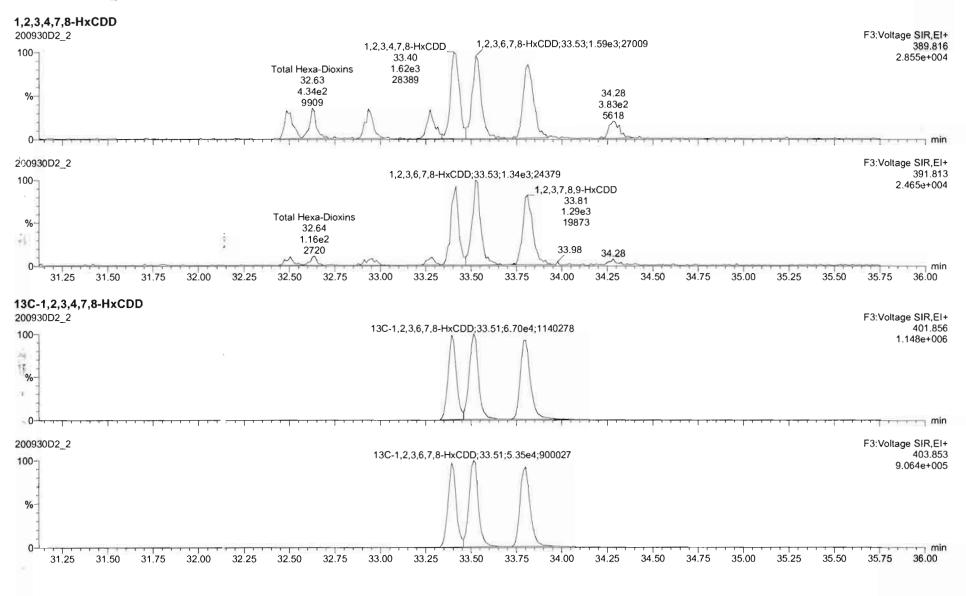

ų


Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

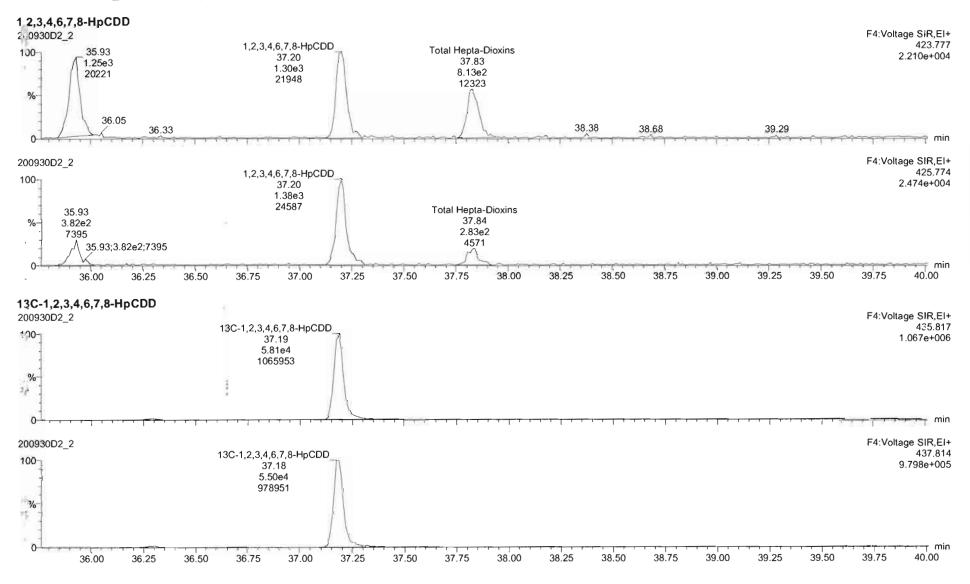
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

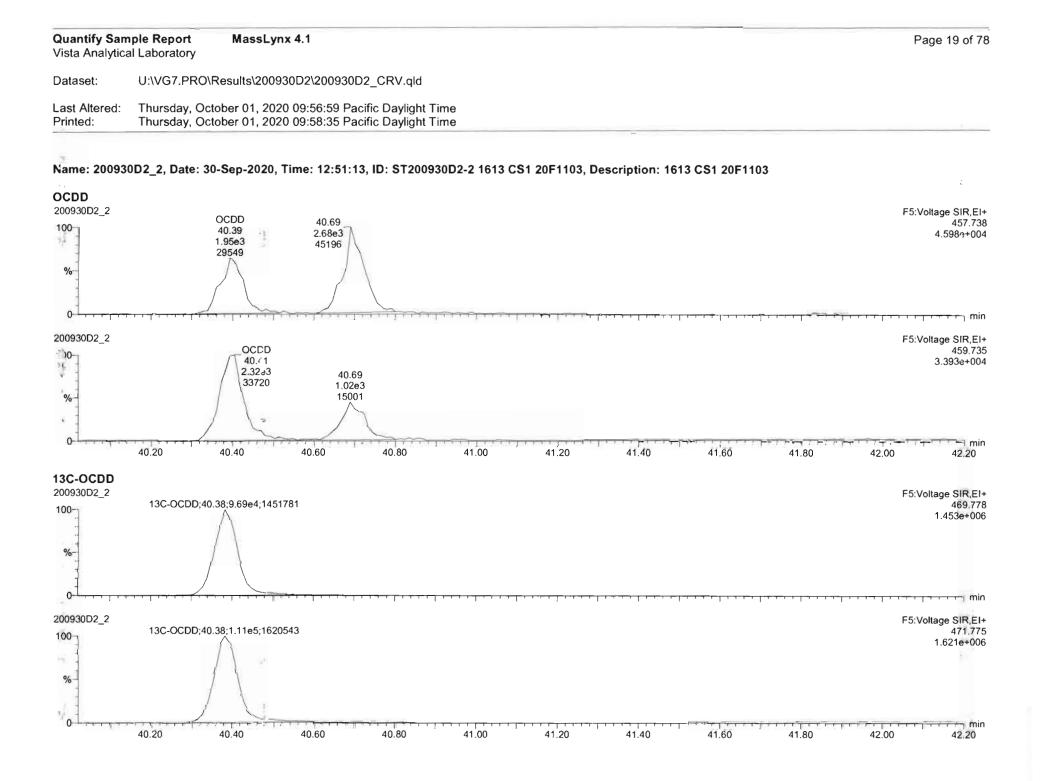


Work Order 2002003

Page 338 of 419

Quantify Sam		Page 17 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

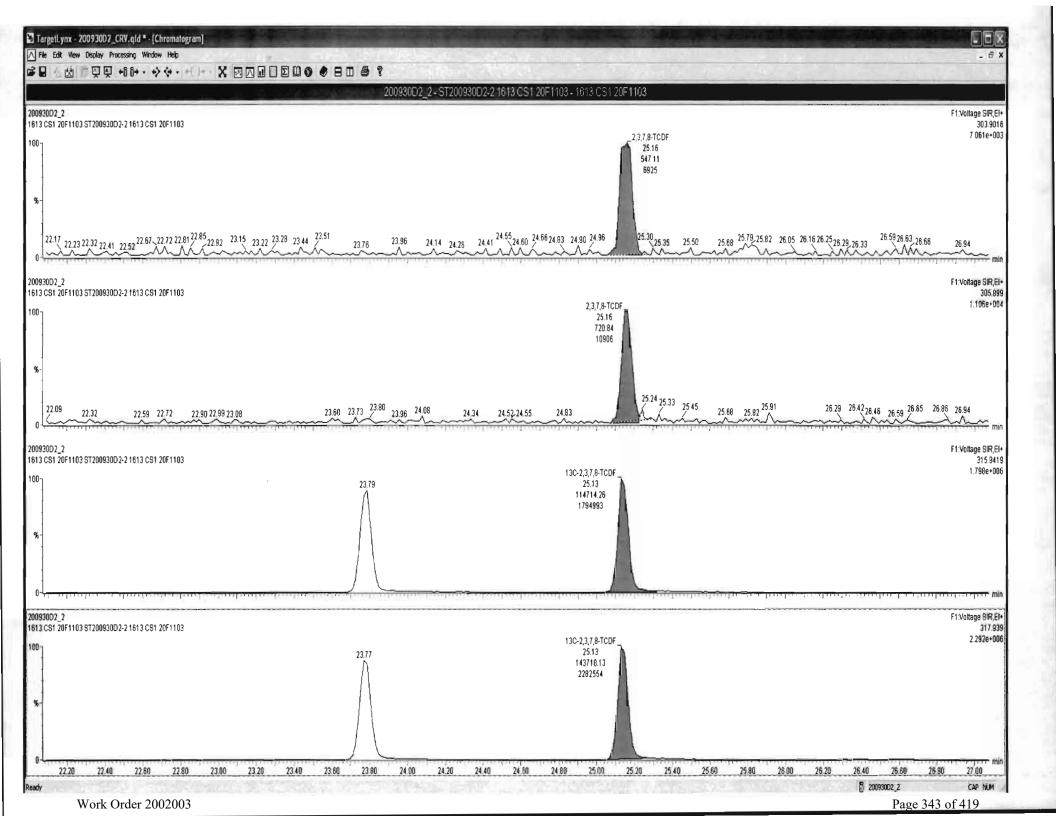

Cuantify Sample Report MassLynx 4.1


Vista Analytical Laboratory

34

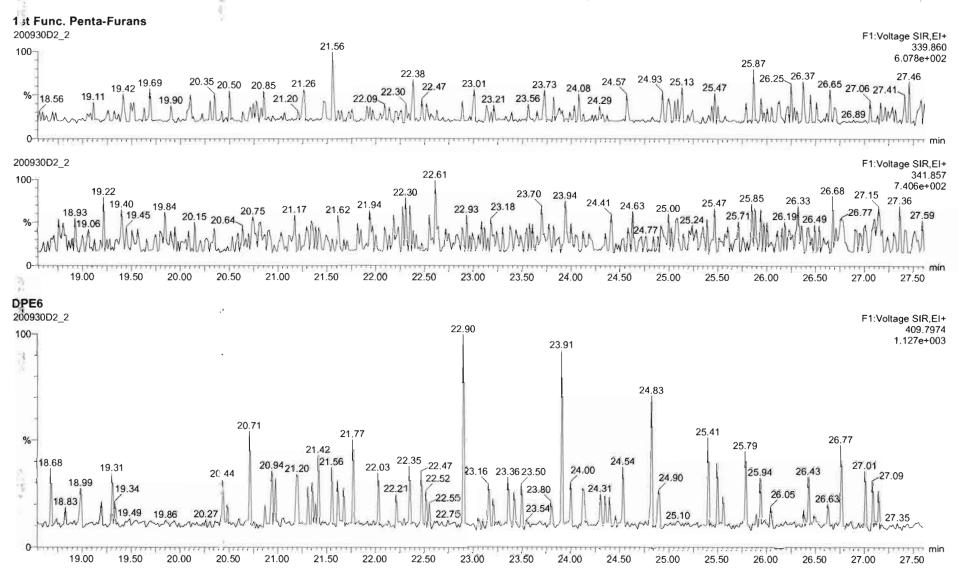
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time



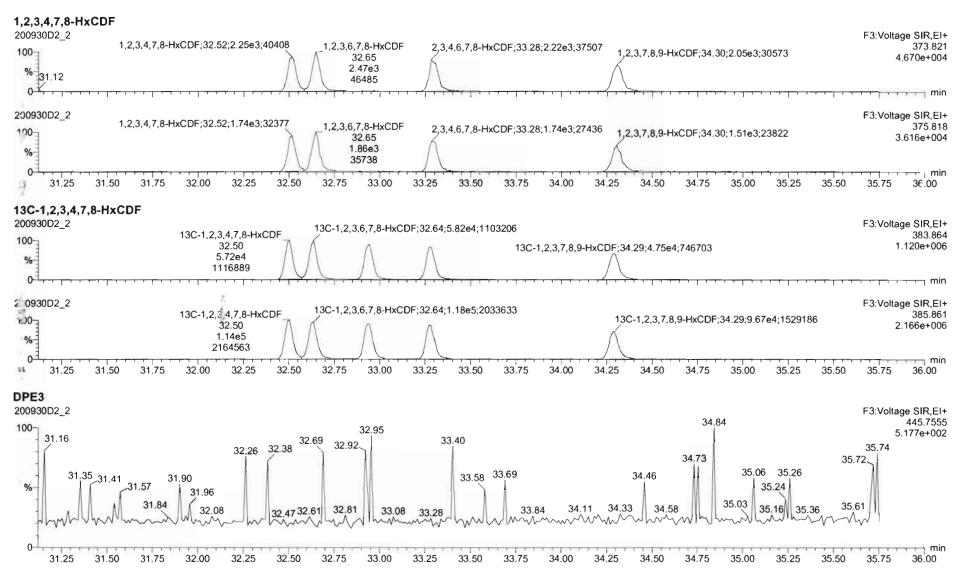
Cuantify Sample Report Vista Analytical Laboratory MassLynx 4.1

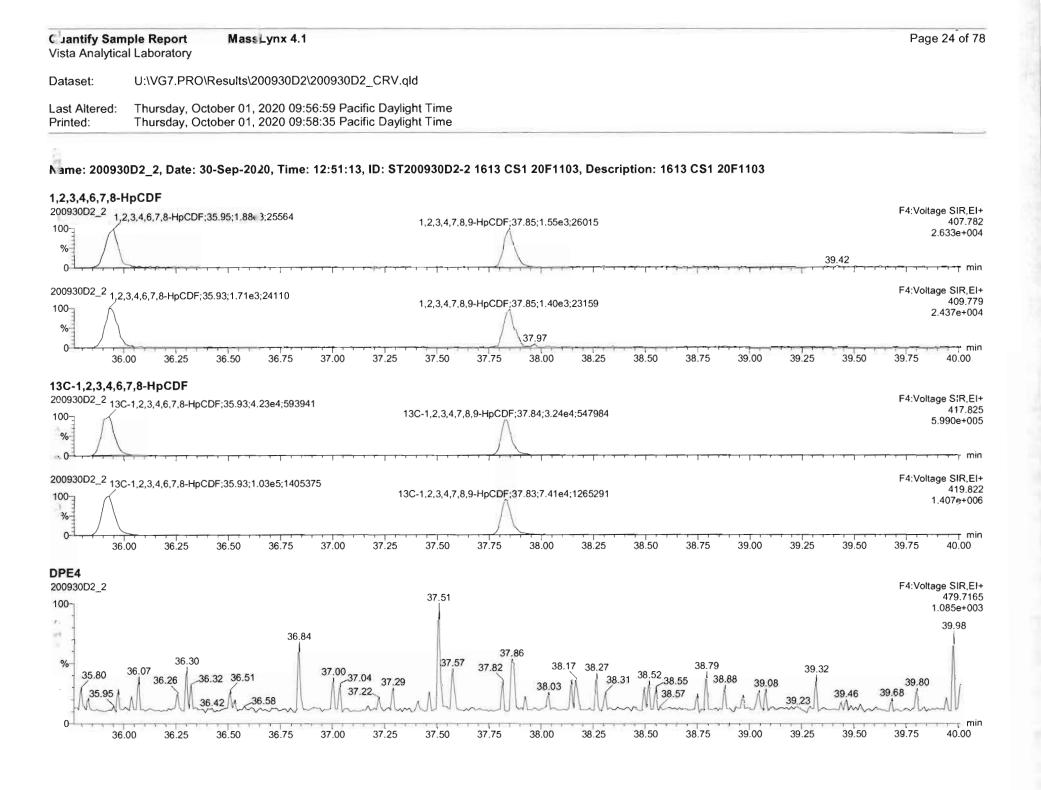
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

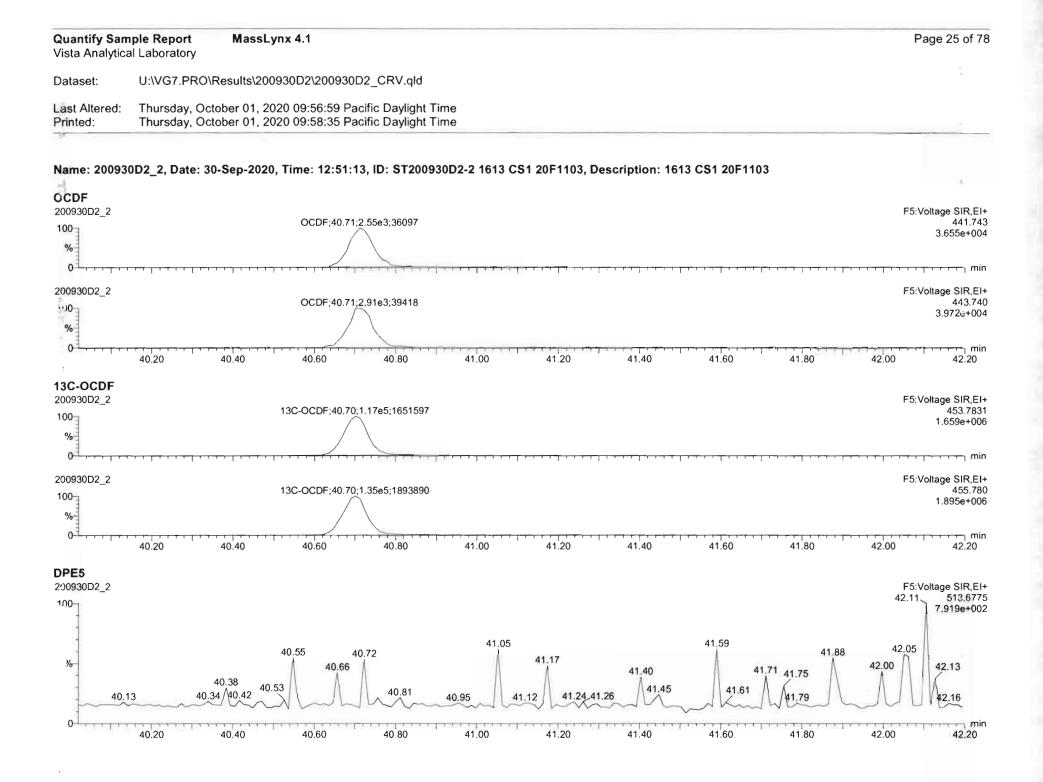

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

100 % to st 19.34 20.62 op 70 21.85 23.22 24.41 5.46e2 5.46e2	oltage SIR,EI+ 303.9016 7.061e+003
1:00 1:00	oltage SIR,EI+ 305.899 1.106e+004 27.30 27.47 11.106e+004 27.50
1 C-2,3,7,8-TCDF 5 200930D2_2 13C-1,2,3,4-TCDF 13C-2,3,7,8-TCDF 100 23.79 25.13 0 1.11e5 1.15e5 1609346 1794993	oltage SIR,EI+ 315.9419 1.798e+006
200930D2_2 100-	oltage SIR,EI+ 317.939 2.292e+006
100 19.03 20.36 21.45 24.98 24.98	oltage SIR,EI+ 375.8364 6.128e+002 27.59
% 19.57 19.93 120.76 21.77 22.53 24.12 24.60 25.29 25.91 26.02 26.85	7.27 ~~~~ 27.50

Quantify Sam Vista Analytica		Page 21 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

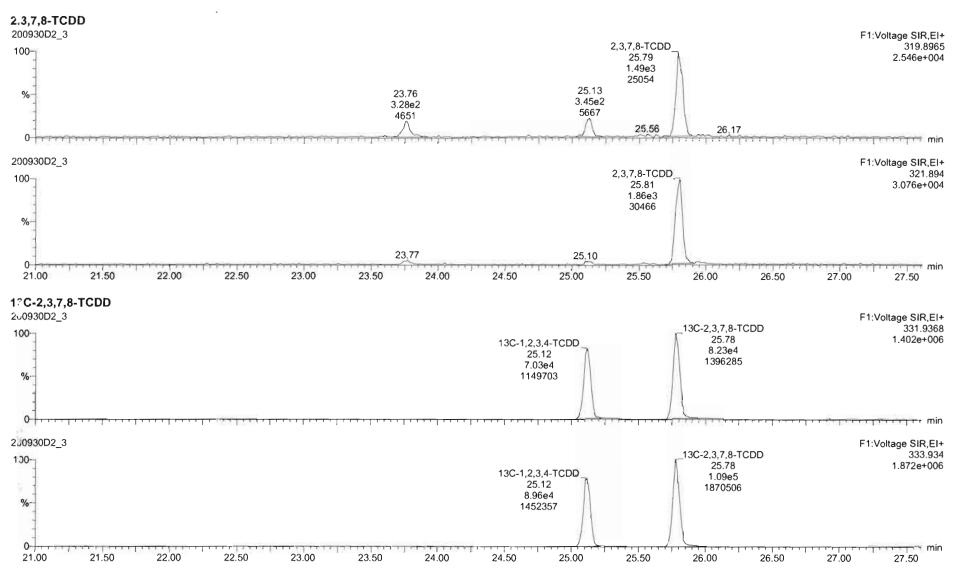

. .


75


	al Laboratory	MassLynx 4.1											Page 22 of
ataset:	U:\VG7.PRO\	Results\200930D2\	200930D2_CRV.c	ld									
ast Altered: inted:	Thursday, Oc Thursday, Oc	tober 01, 2020 09:5 tober 01, 2020 09:5	6:59 Pacific Dayli 8:35 Pacific Dayli	ght Time ght Time									
ame: 20093	0D2_2, Date: 3	0-Sep-2020, Time:	12:51:13, ID: ST2	200930D2-2	2 1613 CS1	20F1103	, Descrip	tion: 1613	3 CS1 20	F1103			
2,3,7,8-PeC	DF	1											F2:Voltage SiR,E
		1.2.3.7.8	-PeCDF;29.02;2.64e3	:44948	2,3,4,7,8-PeC	DF							339.8 5.460e+0
%			\bigwedge		29.96 2.90e3 54398	Λ							
0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	╷╶┑╶╸╴╴╴╴╴╴╴╸╸			- <u>1</u> -1-1-1-1-					1.1.1.1.2.2		F2:Voltage SIR,E
003		12378	PeCDF;29.00;1.77e3;	29305	2,3,4,7,8-PeC	DF_							341.8
-		.,_,_,_	$\overline{\wedge}$		29.96 1.81e3	A							3.389e+0
%		ŝ,	29.	26	33635								
27.75	28.00 28.2	5 28.50 28.7	5 29.00 29.3	25 29.50	29.75	30.00	30.25	30.50	30.75	31.00	31.25	31.50	31.75 32.00
0930D2_2 00				.00 3e5		13C-2,3	,4,7,8-PeCE	0F;29.94;1.2	De5;225482	28			F2:Voltage SIR, 351.9 2.304e+(
0	<u>, , , , , , , , , , , , , , , , , , ,</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>			<u> </u>							
0930D2_2	13C-1,2,3,7,	8-PeCDF;29.00;7.74e4;	1396495	13C-2	2,3,4,7,8-PeCD	F							F2:Voltage SIR,I 353.8
90- %			\bigwedge		29.94 7.73e4 1506188	\bigwedge							1.511e+0
0 ⁻¹ , , , , , , , , , , , , , , , , , , ,	28.00 28.2	5 28.50 28.7	5 29.00 29.2	25 29.50	29.75	30.00	30.25	30.50	30.75	31.00	31.25	31.50	31.75 32.00
PE2 0930D2_2													F2:Voltage SIR,E
00-1		28.43				29.96	0	0.44					409.79 4.533e+0
27.83 % 27.63	28.05		28.90 8.82 29.08	29.44	29.9	2 30	.13 30.27	30.49	30. 3 30.89				
ful.		JUWWW	29.16	-wh	29.60	JIN	WL	MK	~~~~``	JU'K			
0													r r r r r r r r r r

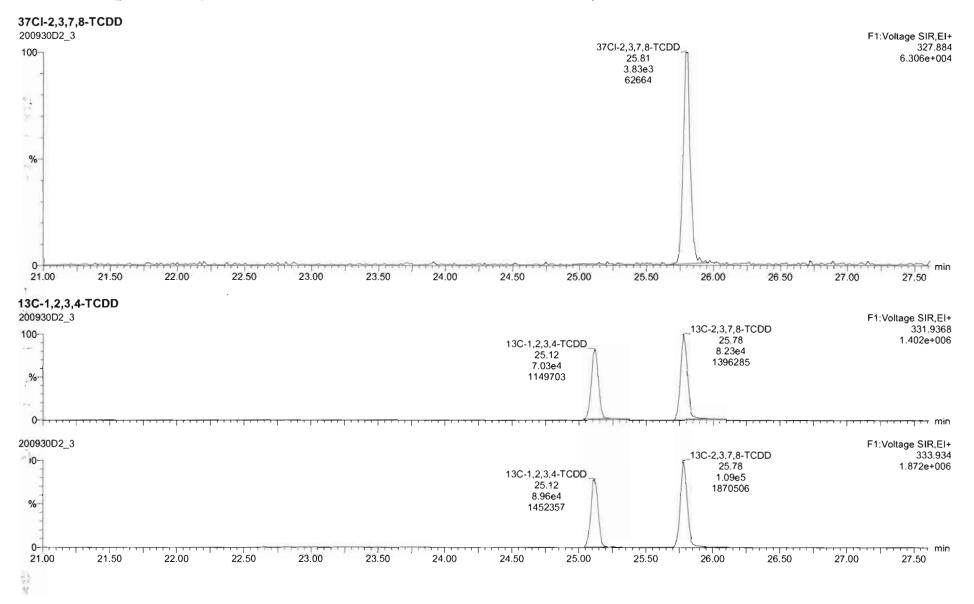
Quantify Sam Vista Analytica		Page 23 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

þ.



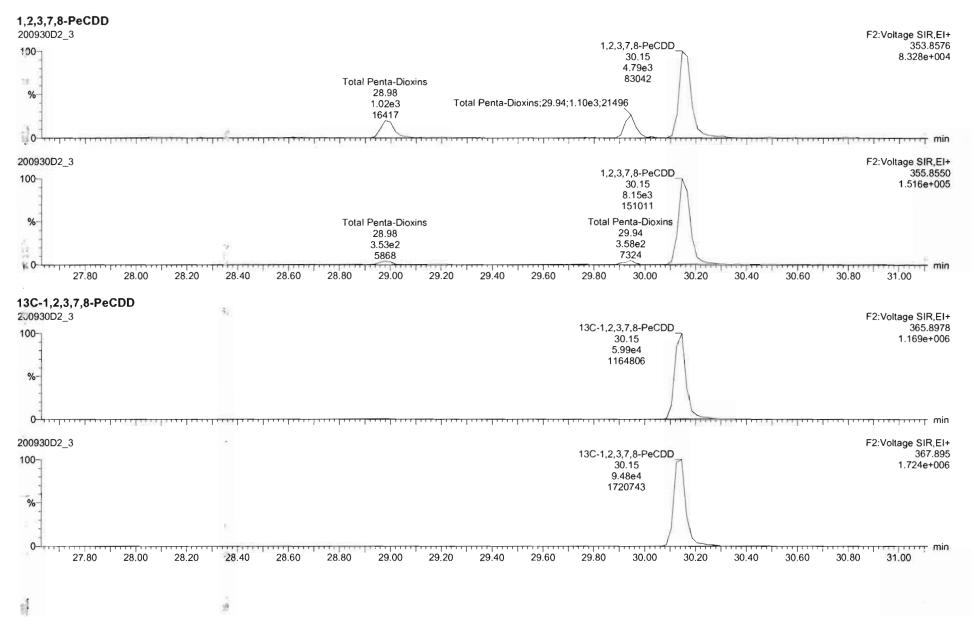
Work Order 2002003

	nple Report al Laboratory	MaseLynx	(4.1								Page 26 of
ataset:	U:\VG7.PRC	\Results\20093	30D2\200930D2_	_CRV.qld							
ast Altered: inted:) 09:56:59 Pacifi) 09:58:35 Pacifi								
ıme: 20093	30D2_2, Date: 3	30-Sep-2020, 1	ime: 12:51:13,	ID: ST2009	30D2-2 1613	CS1 20F1103,	Description:	1613 CS1 20	F1103		
K1											
0930D2_2 00_18.88_18.9 %	9719.03 19.54	20.45;4.18e3;11	13734 21.05 21.0	56 22.69;2.4	1e3;73564	23.82;2.43e3;9007(6 25.01;1.69	e4;130563	26.29;5.28e3;96	662 26.46 26.8	F1:Voltage SIR, 31 316.9
0 1	00 19.50	20.00 20.50	21.00 21.5	0 22.00	22.50 2	3.00 23.50	24.00 24.5	50 25.00	25.50 26.00	26.50	27.00 27.50
FK2 0930D2_2											F2:Voltage SIR
27.6927.7	79 27.93 28.	1 28.15 25.372	8.48 28.68	28.84 29.04	29.12 29.26	29.42 29.0	62 29.7429.84	30.02 30.13	30.33 30.39	30.59 30.71	30.89 36€.9 1.151€+
3/											
0-7,	80 28.00	28.20 28.40	28.60 28	.80 29.00	0 29.20	29.40 29.60	0 29.80	30.00 30.1	20 30.40	30.60 30.8	30 31.00
0	80 28.00	28.20 28.40 31.93 32.20	30.32 33	.80 29.00 .69 <u>33.01</u>		29.40 29.60 3.49 ^{33.71} 33.83	0 29.80 34.22 34.3	24.52	20 30.40 34.81 34.95		F3:Voltage SIR,
0 FK3 0930D2_2 0 31.1431 0 31.25	31.81		32.33 32.56 32	.69 33.01	33.24 33	3.49 33.71 33.83		34.53 34.66	34.81 34.95 35.05		F3:Voltage SIR, 35.65 380.9
FK3 0930D2_2 10 31.1431	1.29 31.56 ^{31.81} 31.50 31.75	31.93 32.20	^{32.33} 32.56 ³² 25 32.50 32	.69 33.01	33.24 33 33.25 33	3.49 33.71 33.83	^{34.22} 34.3 34.00 34.25	34.53 34.66 34.50 34	34.81 34.95 35.05 75 35.00	35.16 35.50	60 31.00 F3:Voltage SIR, 35.65 380.9 5.025e+i 35.75 36.0
0 FK3 0930D2_2 0 31.1431 % 0 31.25 FK4 0930D2_2 0 35.9 %	1.29 31.56 ^{31.81} 31.50 31.75	31.93 32.20 32.00 32.2	^{32.33} 32.56 ³² 25 32.50 32	.69 <u>33.01</u> 75 <u>33.00</u>	33.24 33 33.25 33	3.49 ^{33.71} 33.83 3.50 33.75	^{34.22} 34.3 34.00 34.25	34.53 34.66 34.50 34	34.81 34.95 35.05 75 35.00	35.16 35.50 35.25 35.50 39.55	0 31.00 F3:Voltage SIR, 35.65 380.9 5.025e+ 35.75 36.0 F4:Voltage SIR, 430.9
0 FK3 0930D2_2 0 31.1431 % 0 31.25 FK4 0930D2_2 0 31.25 FK4 0930D2_2 0 31.25	1.29 31.56 ^{31.81} 31.50 31.75	31.93 32.20 32.00 32.2	^{32.33} 32.56 ³² 25 32.50 32 189974 ^{37.14 3}	.69 <u>33.01</u> 75 <u>33.00</u> 7.28 <u>37.34</u>	33.24 33 33.25 33	3.49 ^{33.71} 33.83 3.50 33.75 7.84 38.01 38.14	^{34.22} 34.3 34.00 34.25	34.53 34.66 34.50 34	34.81 34.95 35.05 75 35.00	35.16 35.50 35.25 35.50 9.3339.45 ^{39.55}	0 31.00 F3:Voltage SIR, 35.65 380.9 5.025e+ 35.75 36.0 F4:Voltage SIR, 430.9
0 K3 0930D2_2 0 31.1431 0 31.25 K4 0930D2_2 0 31.25 K4 0930D2_2 0 35.9 0 36 K5	1.29 31.56 ^{31.81} 31.50 31.75 96 36.14	31.93 32.20 32.00 32.2 36.70;9.82e3;	^{32.33} 32.56 ³² 25 32.50 32 189974 ^{37.14 3}	.69 <u>33.01</u> 75 <u>33.00</u> 7.28 <u>37.34</u>	33.24 33 33.25 33 37.50 37.71 37	3.49 ^{33.71} 33.83 3.50 33.75 7.84 38.01 38.14	34.22 34.3 34.00 34.25 38.34 38.47 38.	34.50 34.66 34.50 34 .57 38.75 38.	34.81 34.95 35.05 .75 35.00 3 90 39.07 39	35.16 35.50 35.25 35.50 9.3339.45 ^{39.55}	0 31.00 F3:Voltage SIR, 35.65 380.9 5.025e+ 35.75 36.0 F4:Voltage SIR, 430.9 3.018e+ 39.75 40.00
0 FK3 0930D2_2 0 31.1431 0 31.25 FK4 0930D2_2 0 35.9 0 36 FK5 0930D2_2 0 40.05	1.29 31.56 31.81 31.50 31.75 31.50 31.75 36 36.14	31.93 32.20 32.00 32.2 36.70;9.82e3;	^{32.33} 32.56 ³² 25 32.50 32 189974 ^{37.14 3}	.69 33.01 75 33.00 7.28 37.34 37.25 3	33.24 33 33.25 33 37.50 37.71 37	3.49 ^{33.71} 33.83 3.50 33.75 7.84 38.01 38.14 38.00 3	34.22 34.3 34.00 34.25 38.34 38.47 38. 38.25 38.50	34.50 34.66 34.50 34 .57 38.75 38.	34.81 34.95 35.05 .75 35.00 3 90 39.07 39 39.00 39.25 41 73:1 33	35.16 35.50 35.25 35.50 9.3339.45 39.55 39.50	0 31.00 F3:Voltage SIR, 35.65 380.9 5.025e+1 35.75 36.0 F4:Voltage SIR, 430.9 3.018e+1 39.75 40.00 F5:Voltage SIR,
0 FK3 0930D2_2 0 31.1431 % 0 31.25 FK4 0930D2_2 0 35.9 % 0	1.29 31.56 31.81 31.50 31.75 31.50 31.75 36 36.14	31.93 32.20 32.00 32.2 36.70;9.82e3; 36.50 36.	^{32.33} 32.56 ³² 25 32.50 32 189974 ^{37.14 3} 75 37.00	.69 33.01 75 33.00 7.28 37.34 37.25 3	33.24 33 33.25 33 37.50 37.71 37 7.50 37.75	3.49 33.71 33.83 3.50 33.75 7.84 38.01 38.14 38.00 3	34.22 34.3 34.00 34.25 38.34 38.47 38. 38.25 38.50	34.50 34.66 34.50 34 .57 38.75 38. 38.75	34.81 34.95 35.05 .75 35.00 3 90 39.07 39 39.00 39.25 41 73:1 33	35.16 35.50 35.25 35.50 9.33 39.45 39.55 39.50	0 31.00 F3:Voltage SIR, 35.65 380.9 5.025e+ 35.75 36.0 F4:Voltage SIR, 430.9 3.018e+ 39.75 40.00 F5:Voltage SIR, 1 454.9 2.095e+


Quantify Sam Vista Analytica		Page 27 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

10

21

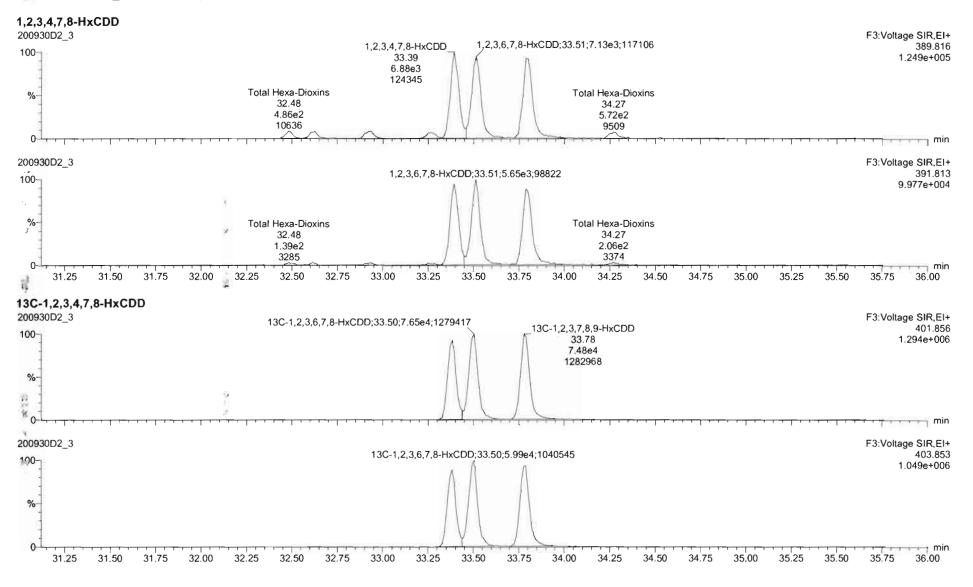

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld L_st Altered: Thursday, October 01, 2020 09:56:59 Pacific Daylight Time	Quantify Sam Vista Analytica		Page 28 of 78
List Altered: Thursday, October 01, 2020 09:56:59 Pacific Davlight Time	Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Printed: Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 29 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

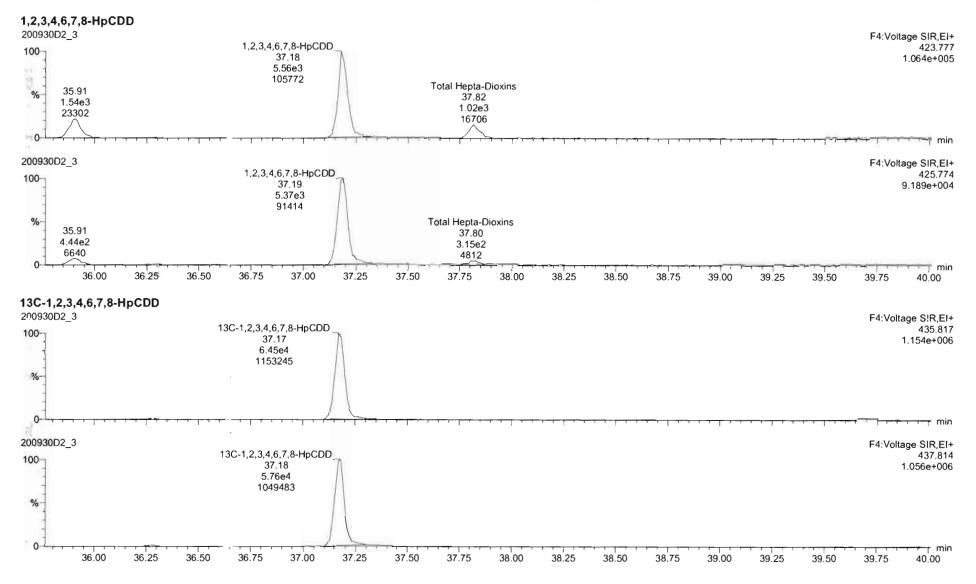
3)

-

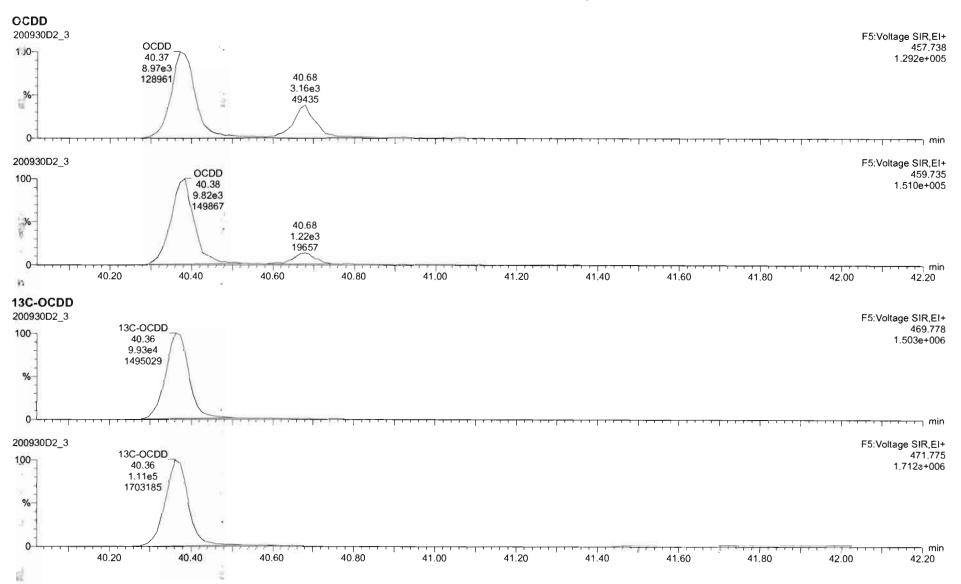
Work Order 2002003


Quantify Sample Report MassLynx 4.1

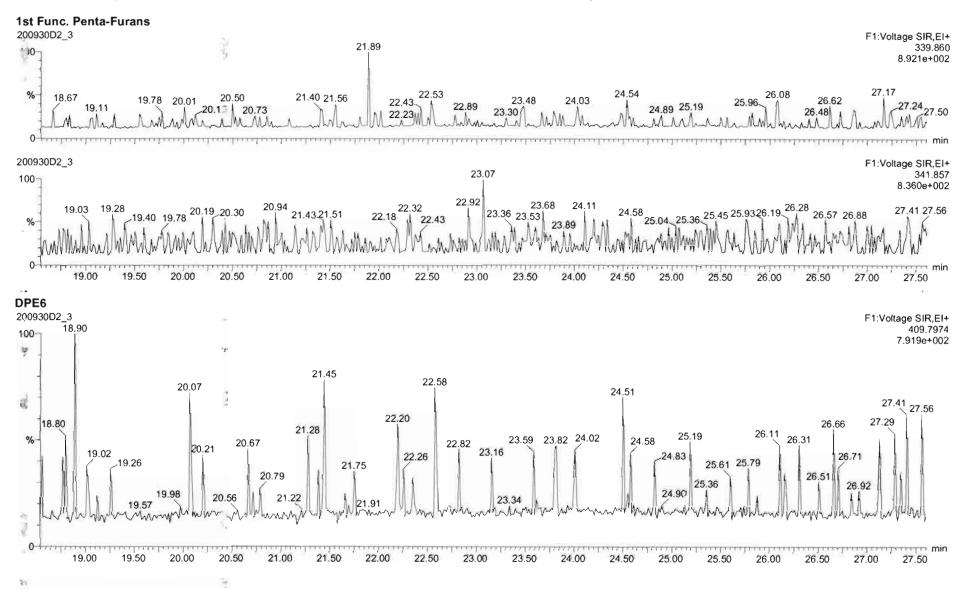
Vista Analytical Laboratory

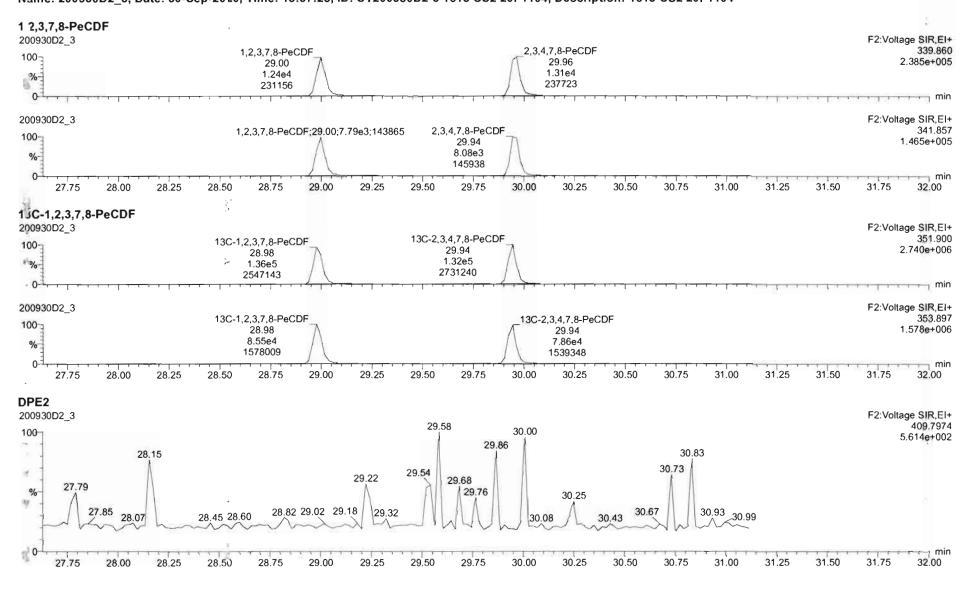

14

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

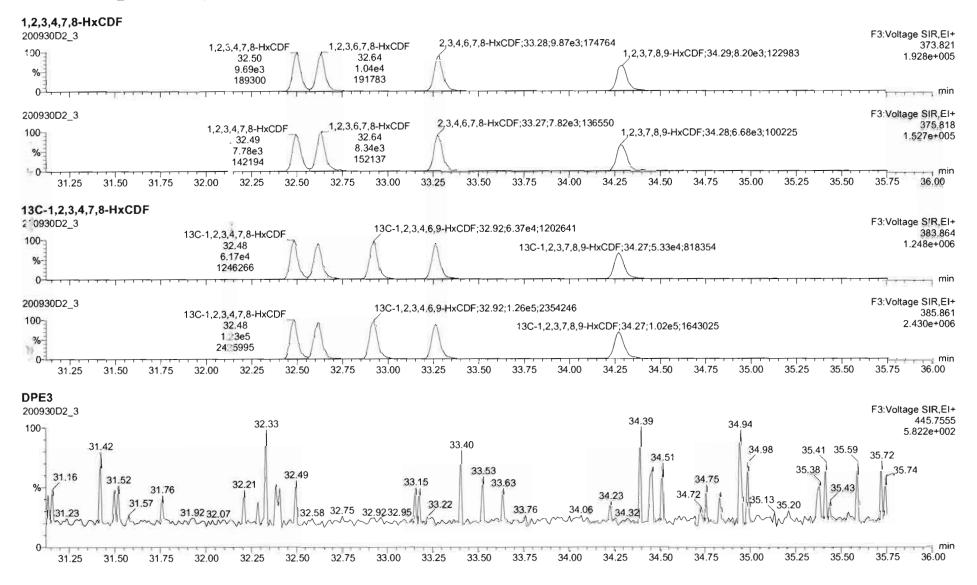

L st Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

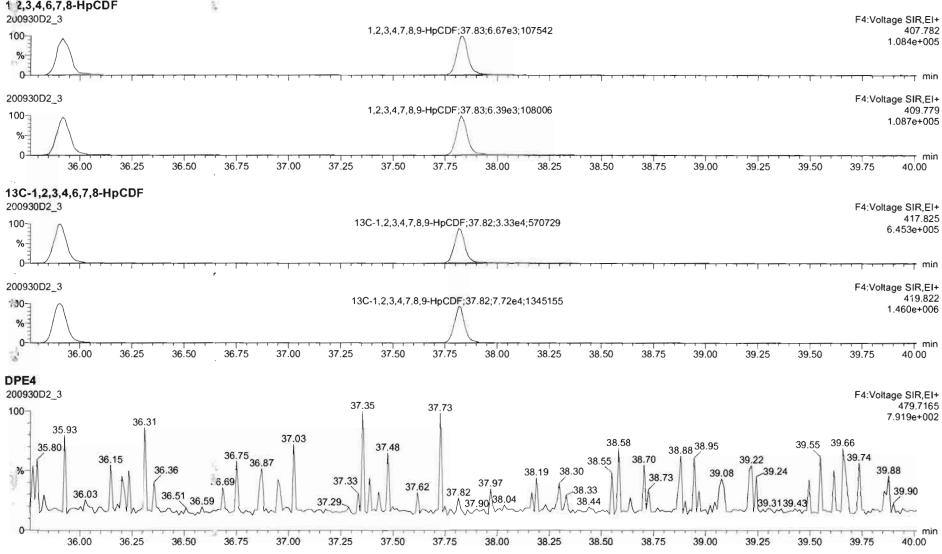
Quantify Sam Vista Analytica		Page 31 of 78
Cutaset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 32 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

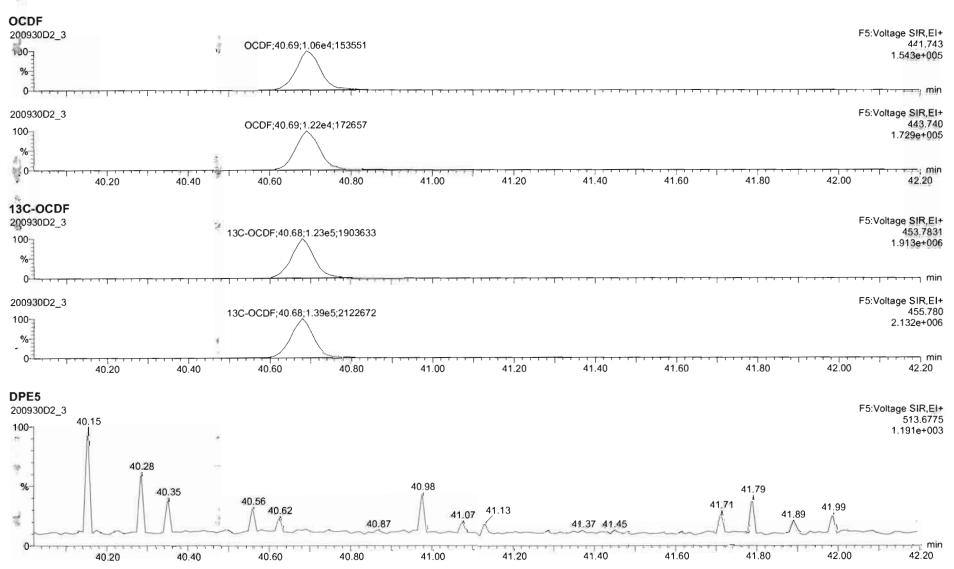

Quantify Sam Vista Analytica		Page 33 of 78
E staset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
n	2	

2,3,7,8-TCDF 200930D2_3		·····	2,3,7,8-TCDF 25,15 1.91e3 30398	F1:Voltage SIR,EI+ 303.9016 3.092e+004
200930D2_3			2,3,7,8-TCDF 25.15 2.58e3 38108	F1:Voltage SIR,EI+ 305.899 3.848e+004
19.00 19.50 20.00 13C-2,3,7,8-TCDF 200930D2_3 100 _–	20.50 21.00 21.50 22.00 2	2.50 23.00 23.50 24.00 13C-1,2,3,4-TCDF	13C-2,3,7,8-TCDF	F1:Voltage SIR,EI+ 315.9419
% 0 200930D2_3		23.77 1.15e5 1641734	25.12 1.19e5 1832600	1.843e+006 min F1:Voltage SIR,EI+
100- %- 0	20.50 21.00 21.50 22.00 2	13C-1,2,3,4-TCDF 23,76 1.47e5 2113269 2.50 23.00 23.50 24.00	13C-2,3,7,8-TCDF 25.12 1.49e5 2327113 24.50 25.00 25.50	317.939 2.338e+006
DPE1 200930D2_3	21.50 21.50 21.50 22.00 2	2.50 23.00 23.50 24.00	24.95	26.00 26.50 27.00 27.50 F1:Voltage SIR,EI+ 375.8364 6.051e+002
20.04 % 18.85 19.20.19.29 19.83 20.2	21.74 22.01 20.97 21.31 21.48 22.01 20.97 21.31 21.48 22.11 22.11 22.11	23.37	3.99 24.70 25.41	27.18 27.58 26.16.26.23 26.94 26.05 26.46 64 26.77
0	20.50 21.00 21.50 22.00 2	2.50 23.00 23.50 24.00	24.50 25.00 25.50	


Quantify Sam Vista Analytica		Page 34 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
List Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


ple Report MassLynx 4.1	Page 35 of 78
U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
-	Laboratory U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld Thursday, October 01, 2020 09:56:59 Pacific Daylight Time

Cuantify Sam		Page 36 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Lust Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

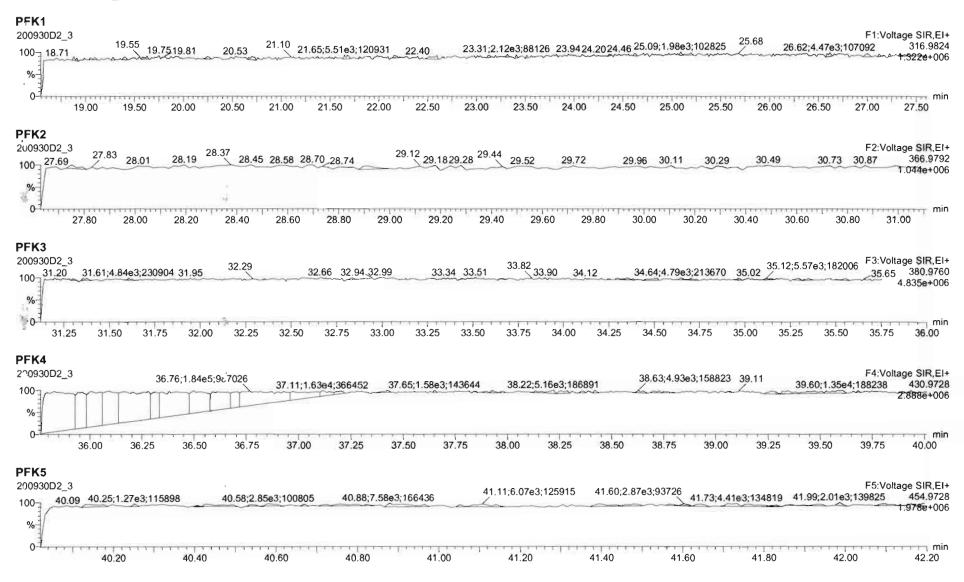


Quantify Sam Vista Analytica		Page 37 of 78
Dataset:	U:\VG7.PRO\Results\2J0930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Work Order 2002003

Quantify Sam Vista Analytica		Page 38 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
1 km		

Work Order 2002003

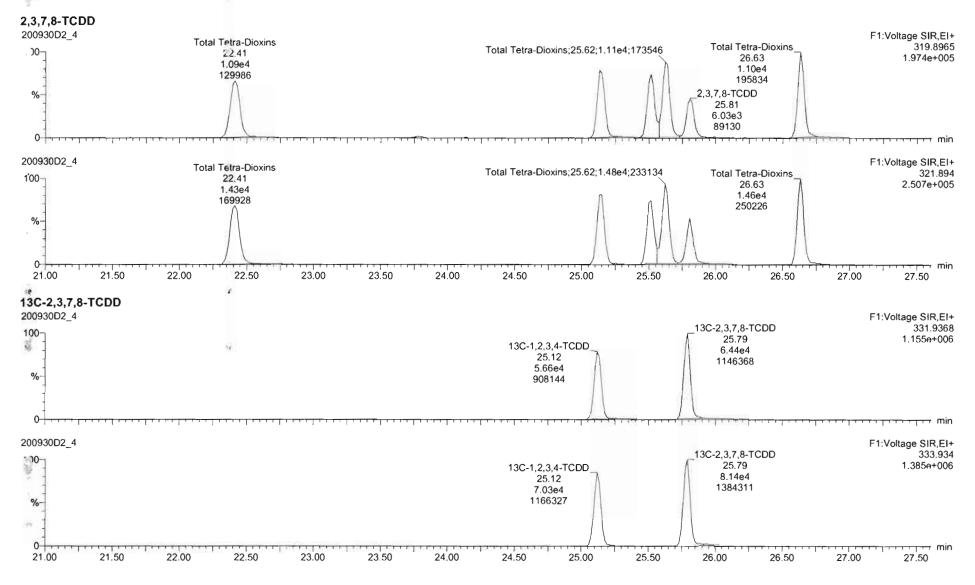

Quantify Sample F	Report N	lassLynx 4.1
-------------------	----------	--------------

Vista Analytical Laboratory

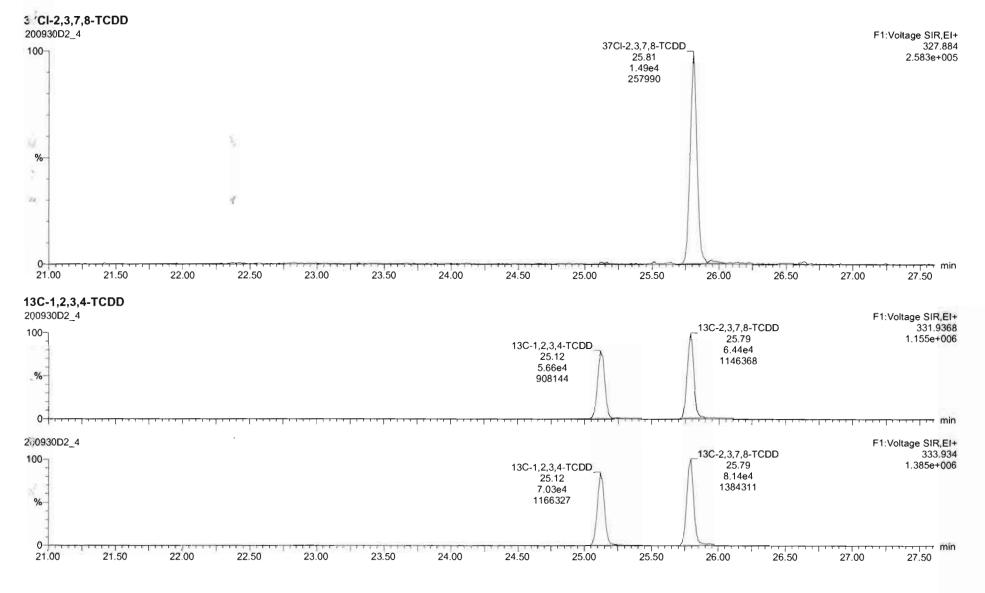
Page 39 of 78

Cataset: U:\VG7.PRO\Results\2J0930D2\200930D2_CRV.qld

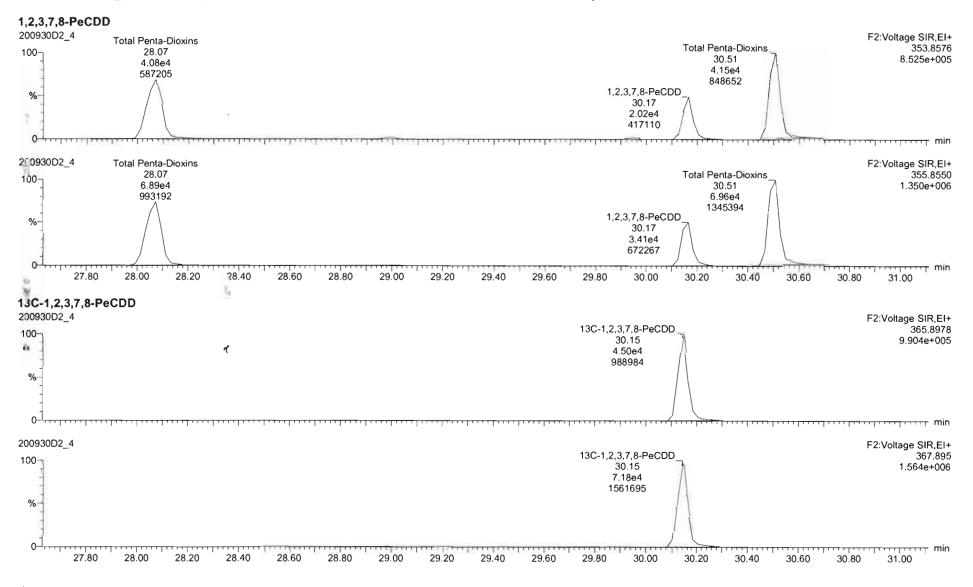
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time



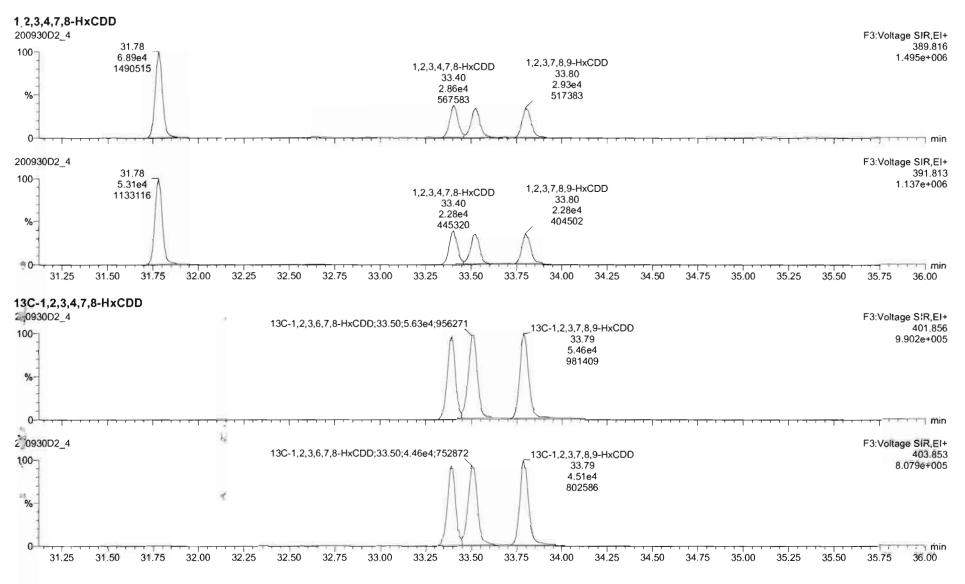
Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory

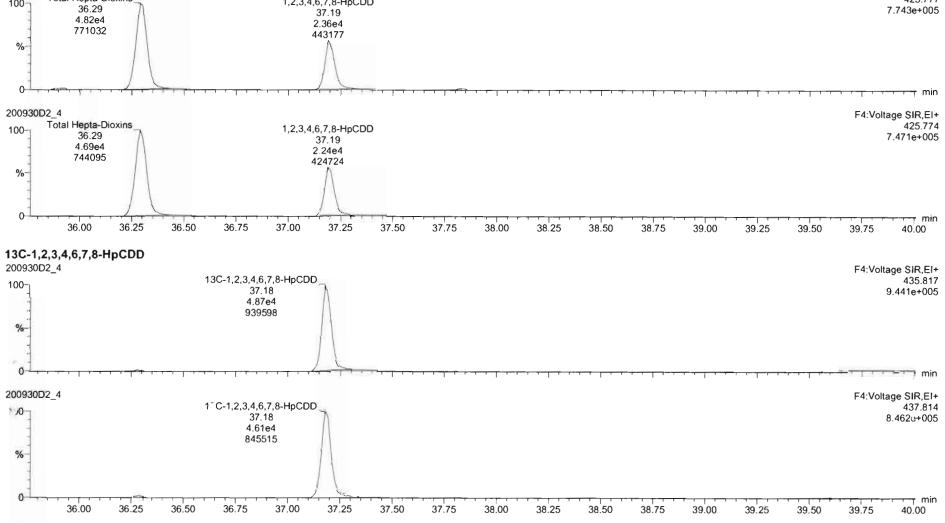
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld


Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

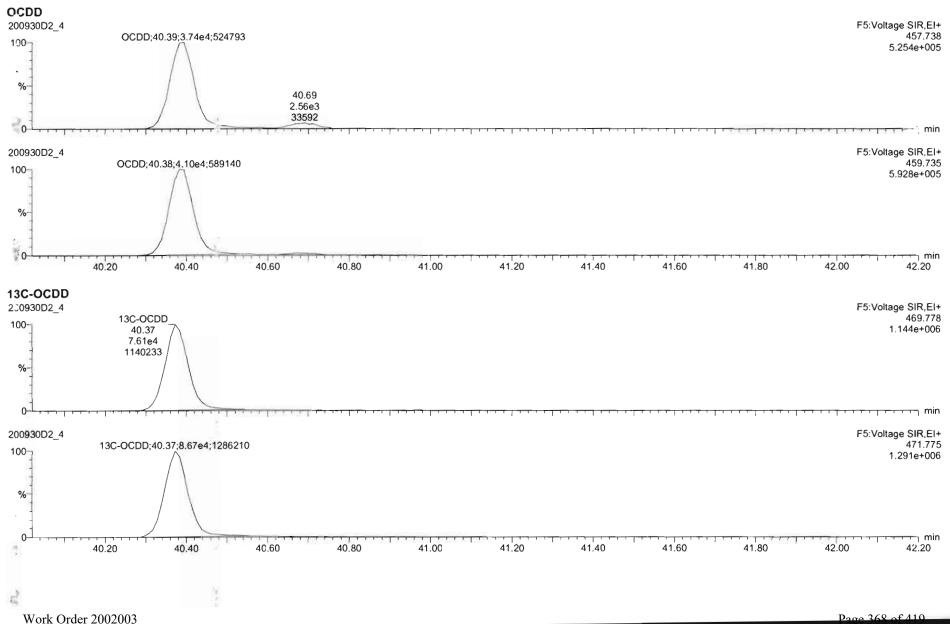
Quantify Sam Vista Analytica		Page 41 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
ж.		



Quantify Sam Vista Analytica		Page 42 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


... Work Order 2002003

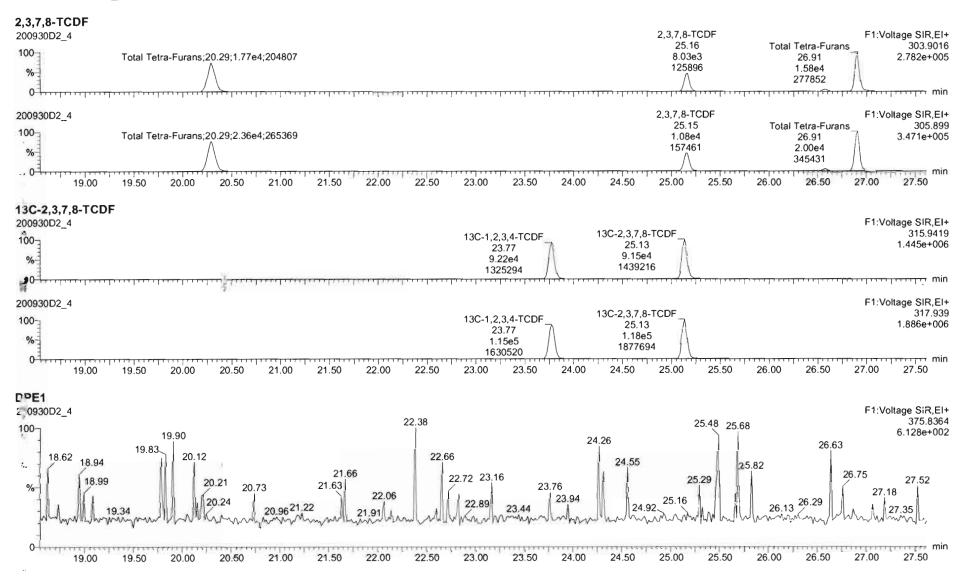
Quantify Sam Vista Analytica		Page 43 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
*(



Work Order 2002003

2 .

Quantify Sam Vista Analytica		Page 45 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

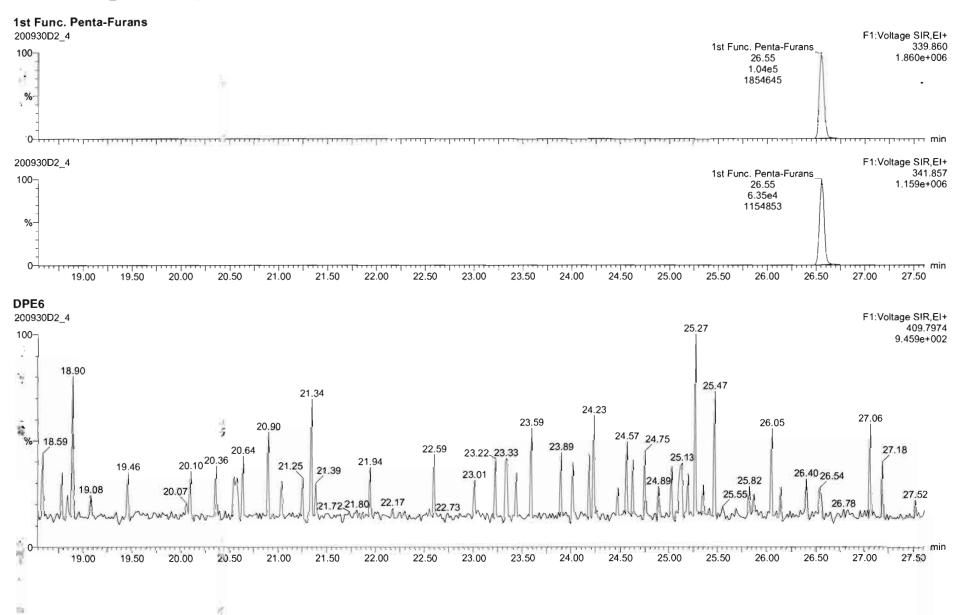

Page 368 of 410

Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

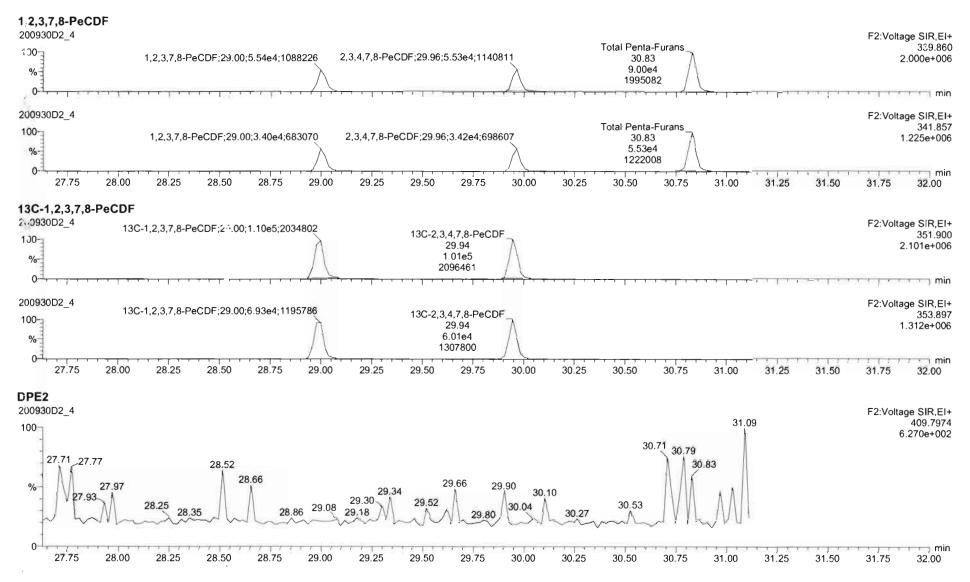


Quantify Sample Report	MassLynx 4.1
------------------------	--------------

Vista Analytical Laboratory

Dutaset: U:\VG7.PRO\Results\2J0930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

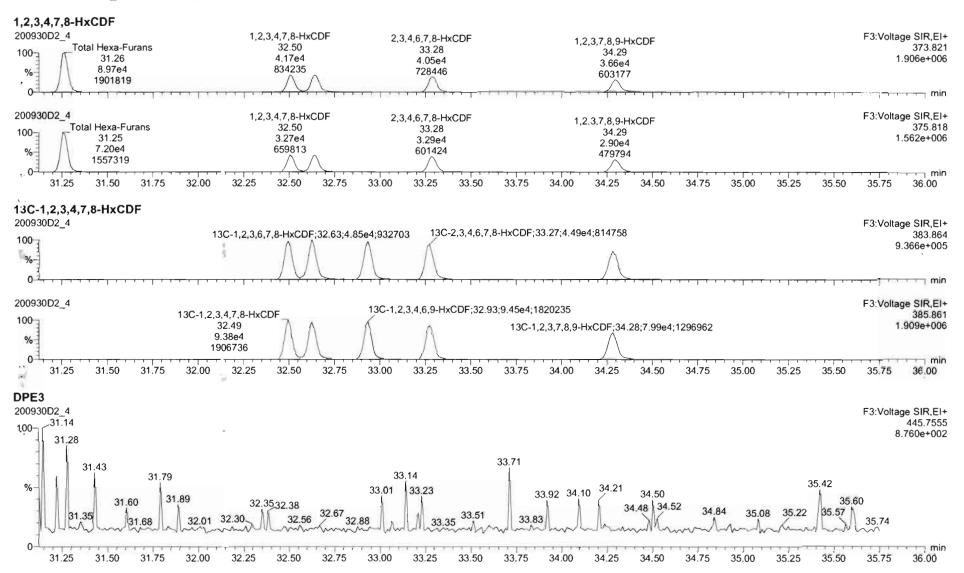


Quantify	Sample Report	MassLynx 4.1
----------	---------------	--------------

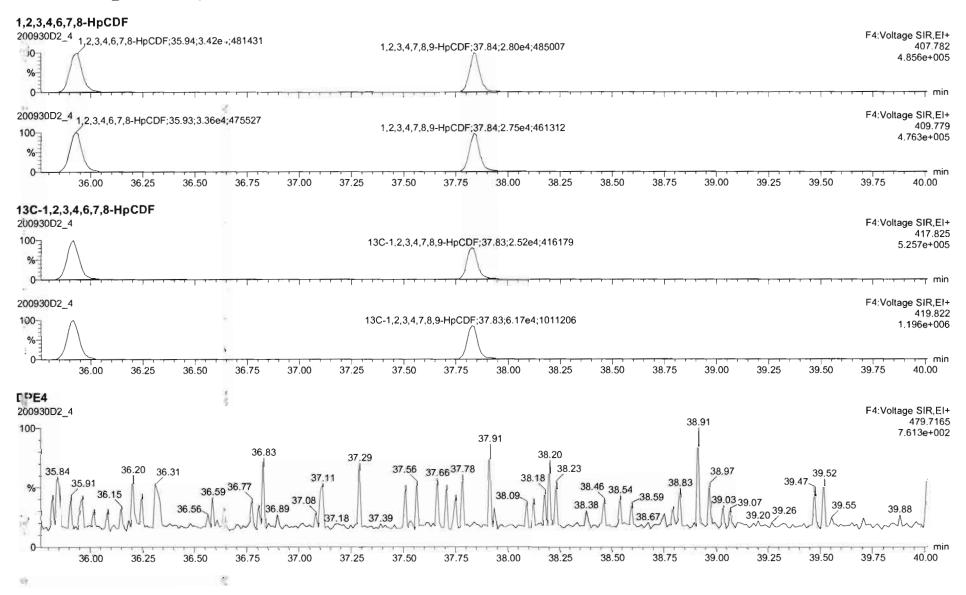
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

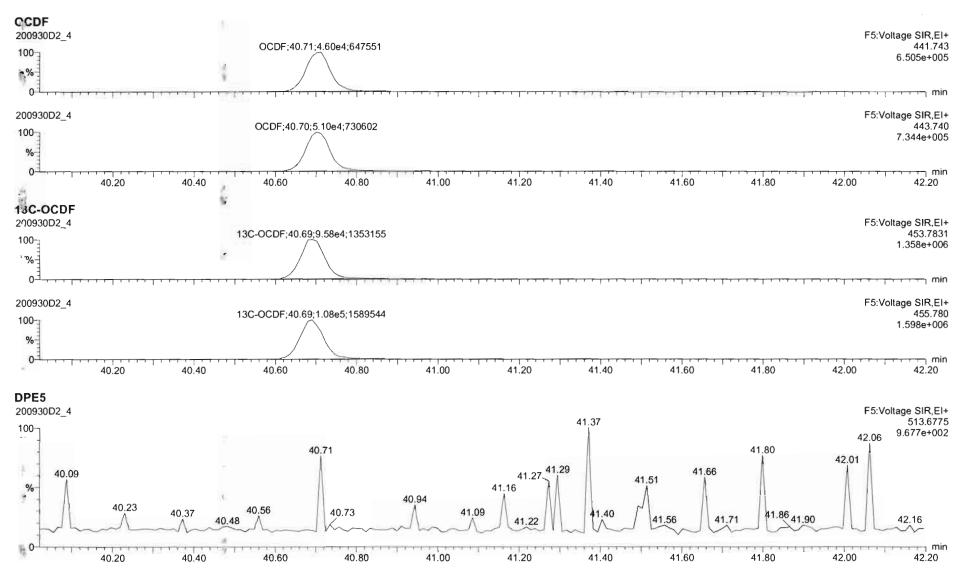
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1

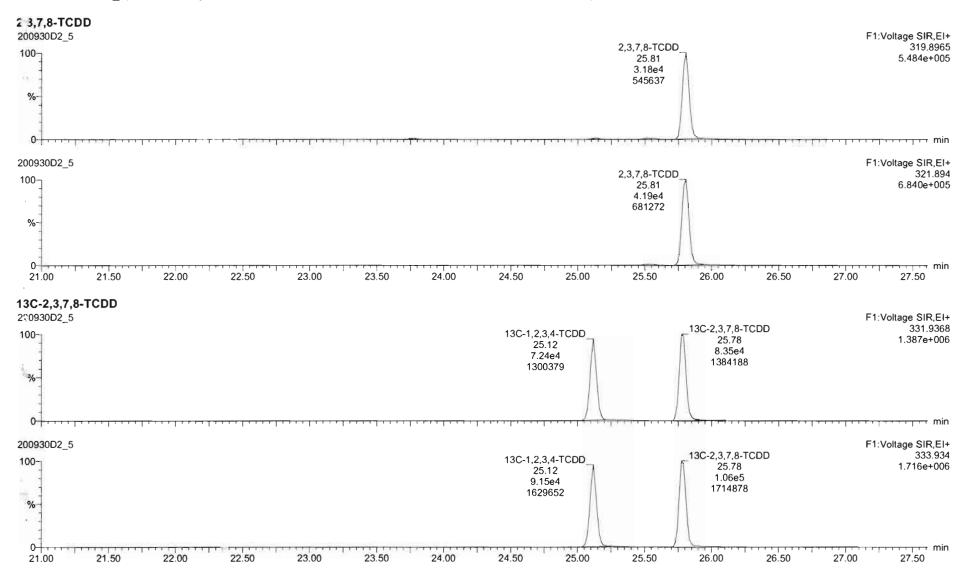

Vista Analytical Laboratory

L staset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

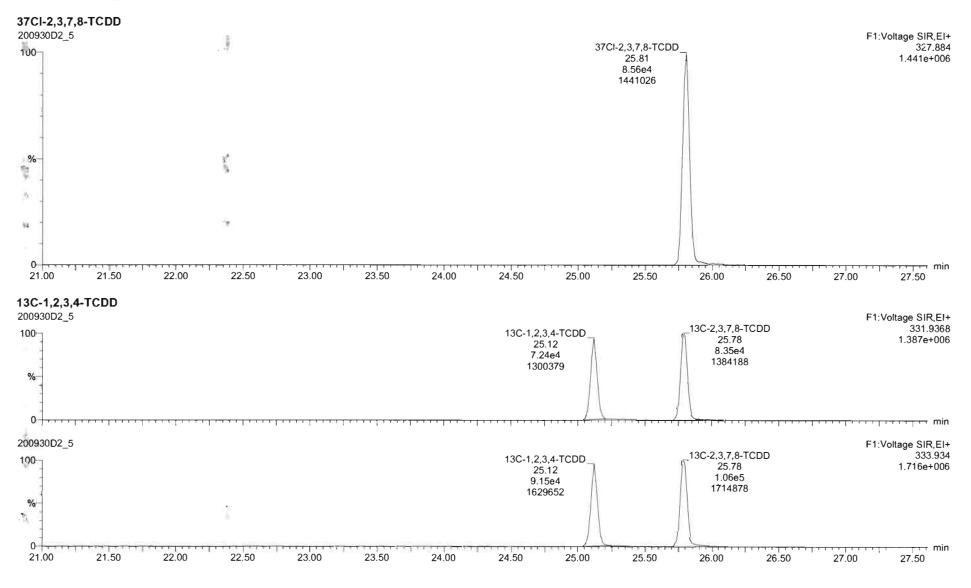

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

Quantify Sam V.sta Analytica		Page 50 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time	
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

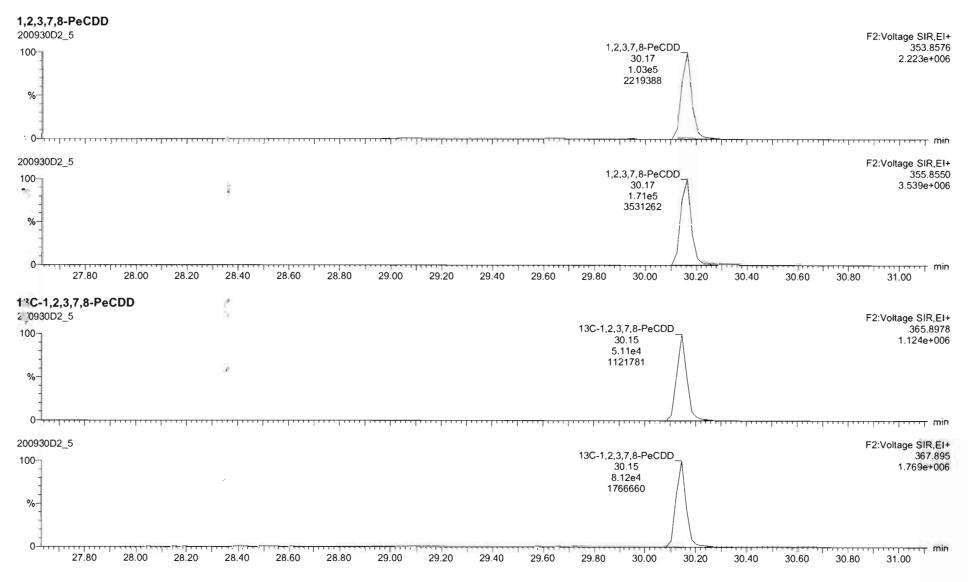
Quantify Sam Vista Analytica		Page 51 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


C Jantify Sample Report V sta Analytical Laboratory MassLynx 4.1

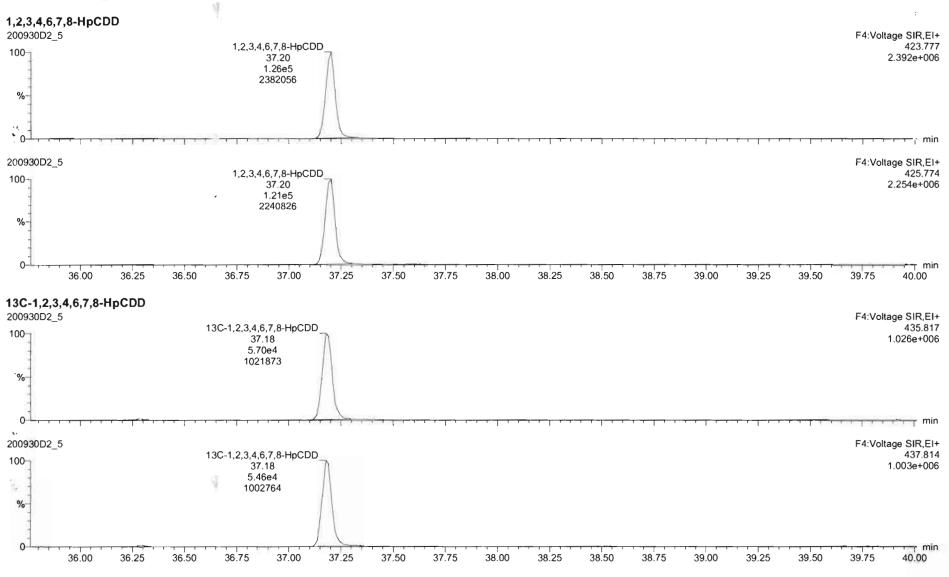
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

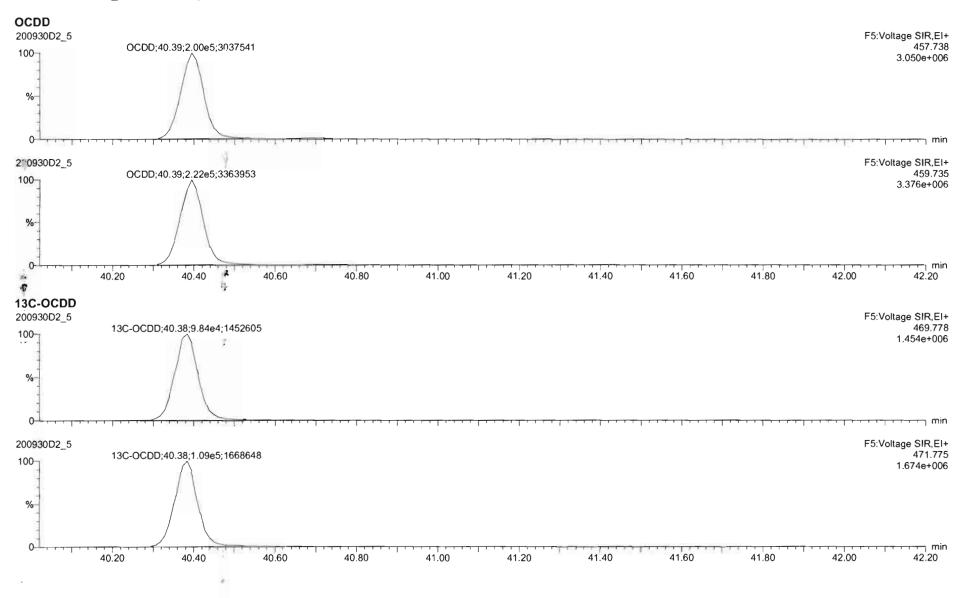

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

PFK1 200930D2_4 25.41;1.65e3;77203 F1:Voltage SIR,EI+
100 19.06;1.22e3;73580 20.03 20.50;3.96e3;113971 21.22 21.40 21.98 22.43;1.04e3;67542 23.30 24.00;1.96e3;93200 25.76 25.88 26.75;1.41e3;76773 316.9824 1.276e+006
%
19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 PFK2
20093002_4 100 27.73 28.01 28.07 28.29 28.4528.56 28.74 28.96 29.02 29.24 29.38 29.4629.56 29.84;5.94e3;86360 30.1330.23 30.51 30.69;3.25e3;95675 30.93 366.9792 %
0 ⁻¹
PFK3 200930D2_4
100 31.58;3.26e3;217200 31.96 32.21 32.42 32.89;1.65e4;256580 33.44;1.01e4;204792 33.81 34.05 34.42;1.32e4;229363 34.87 35.03 35.54 35.64 380.9760 4.899e+006
0 ⁻³ 31.25 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00
PFK4 200930D2_4 27_14:4.05o2:120005 F4:Voltage SIR,EI+
20030022_4 36.06;5.08e3;167595 36.51 37.14;4.96e3;129906 37.2137.50;1.23e4;170692 37.99 38.34;2.78e3;147783 38.57 39.07;3.85e3;127899 39.57
of , , , , , , , , , , , , , , , , , , ,
36.00 36.25 36.50 36.75 37.00 37.25 37.50 37.75 38.00 38.25 38.50 38.75 39.00 39.25 39.50 39.75 40.00
PFK5 200930D2_4 100 40.11 40.23 40.27 40.38 40.53;2.41e3;114993 40.68 40.78 40.89;1.07e3;97649 41.21;3.79e3;118961 41.41;3.82e3;124186 41.70;2.69e3;108054 41.95 F5:Voltage SIR,EI+ 42.07 454.9728 1.938e+006
%
0 ⁻¹ , 40.20 40.40 40.60 40.80 41.00 41.20 41.40 41.60 41.80 42.00 42.20

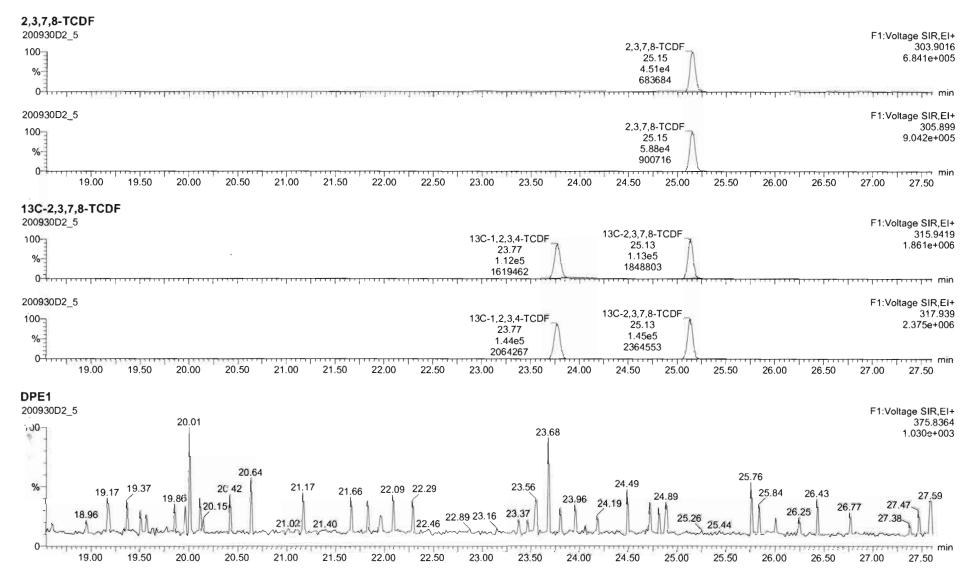

Quantify Sam Vista Analytica		Page 53 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 54 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 55 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


14

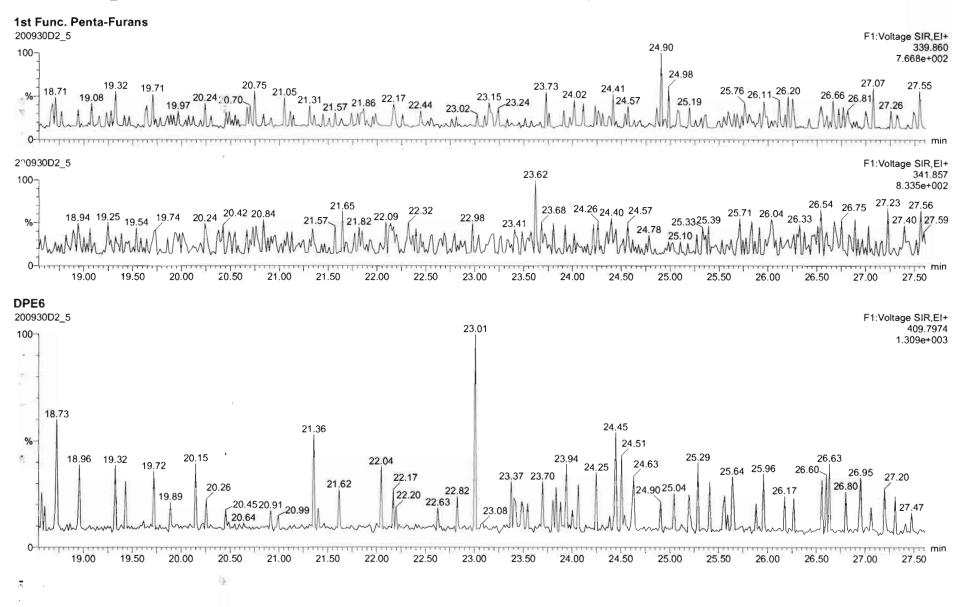
uantify Sam Ista Analytica	al Laboratory Mass Lynx 4.1		Page 56 of
ataset:	U:\VG7.PRO\Results\200930D2\200930D2_CF	RV.qld	
ast Altered: inted:	Thursday, October 01, 2020 09:56:59 Pacific D Thursday, October 01, 2020 09:58:35 Pacific D		
ame: 20093(0D2_5, Date: 30-Sep-2020, Time: 15:49:01, ID:	ST200930D2-5 1613 CS4 20F1106, Description: 1613 CS4 20F1106	
2,3,4,7,8-Hx	CDD		50.14 11 010 5
0930D2_5		1,2,3,4,7,8-HxCDD 33.40 1,55e5 2891594 1,2,3,7,8,9-HxCDD 33.81 1,58e5 2688745	F3:Voltage SIR,E 389.8 2.901e+0
0	• • • • • • • • • • • • • • • • • • • •		
0930D2_5		1,2,3,4,7,8-HxCDD 33.40 1.21e5 2246119	F3:Voltage SIR,E 391,8 2.252e+0
31.25	31.50 31.75 32.00 32.25 32.50 32.75	33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50	35.75 36.00
C-1,2,3,4,7, 0930D2_5	8-HxCDD	13C-1,2,3,6,7,8-HxCDD;33.50;6.94e4;1226196	F3:Voltage SIR,E 401.8 1.229e+0
%			
0930D2_5			F3:Voltage SIR,E
%	Ľ	13C-1,2,3,6,7,8-HxCDD;33.50;5.42e4;964873	403.8 9.706a+0


Quantify Sam Vista Analytica		Page 57 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
4	4	

Ouantify Sam Vista Analytica		Page 58 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 59 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
4	4	

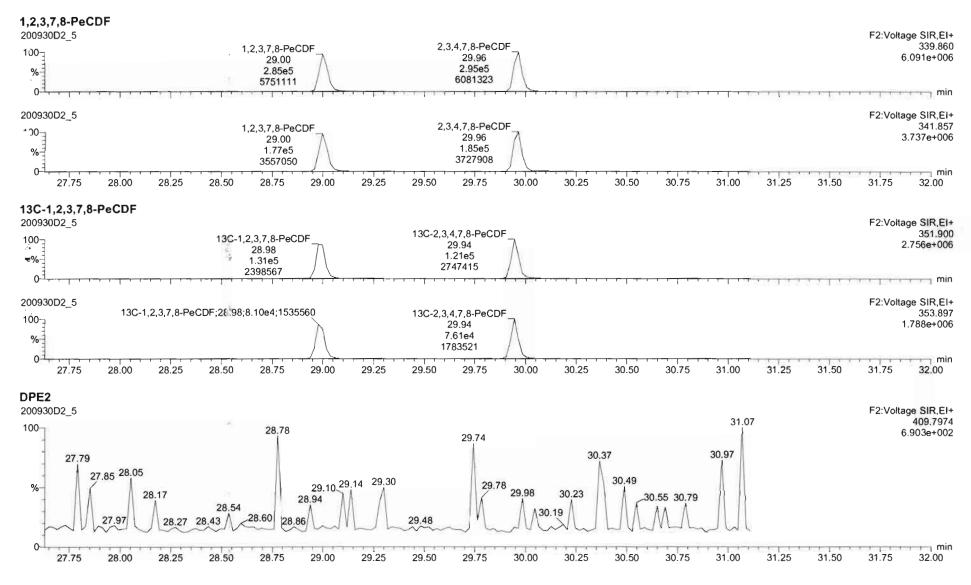
η.


Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

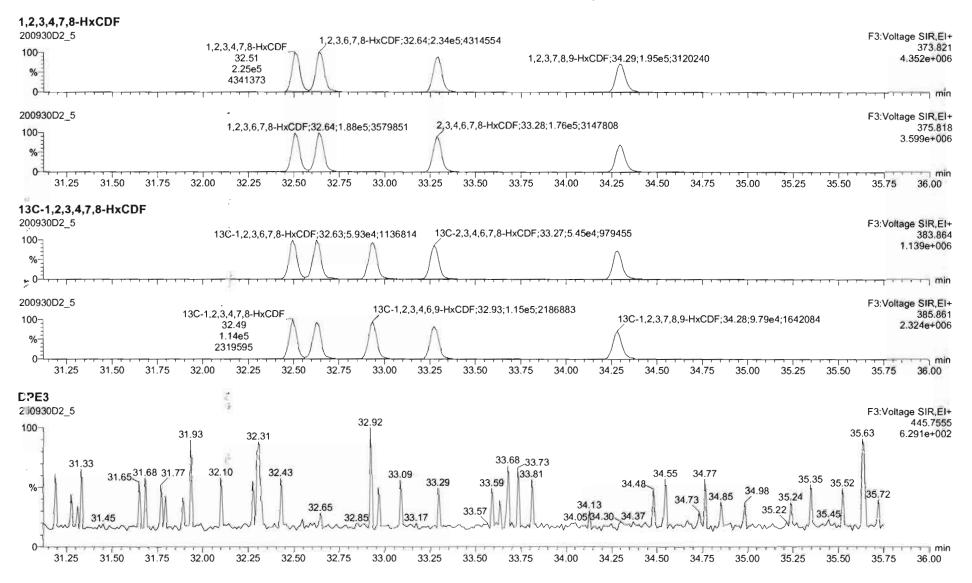
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time


Name: 200930D2_5, Date: 30-Sep-2020, Time: 15:49:01, ID: ST200930D2-5 1613 CS4 20F1106, Description: 1613 CS4 20F1106

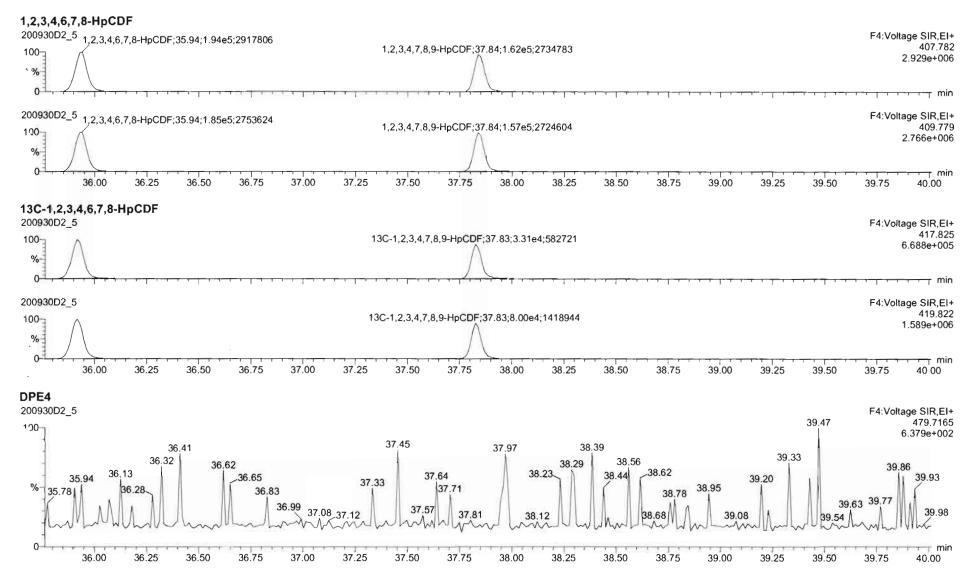
10

Quantify San Vista Analytica		Page 61 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

12

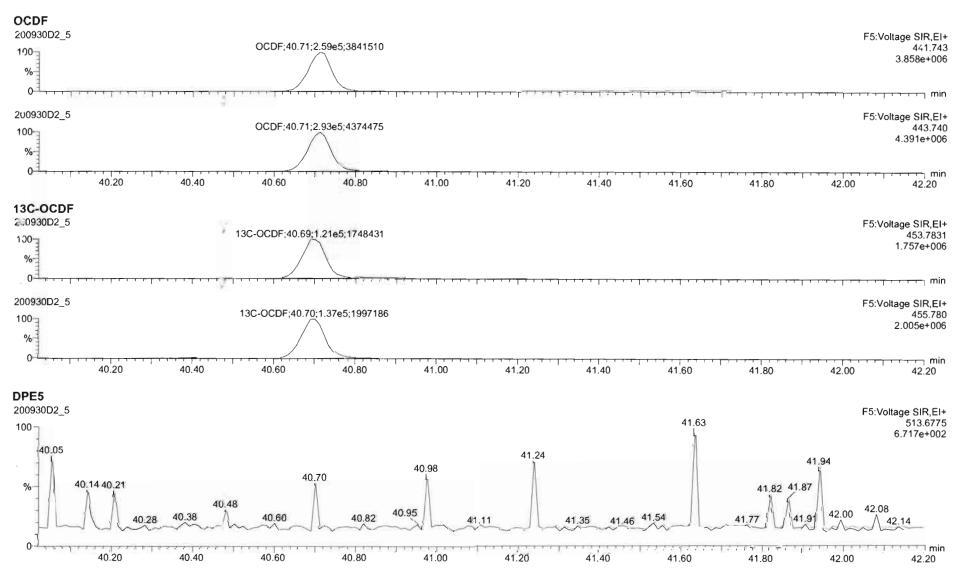


Work Order 2002003


Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	

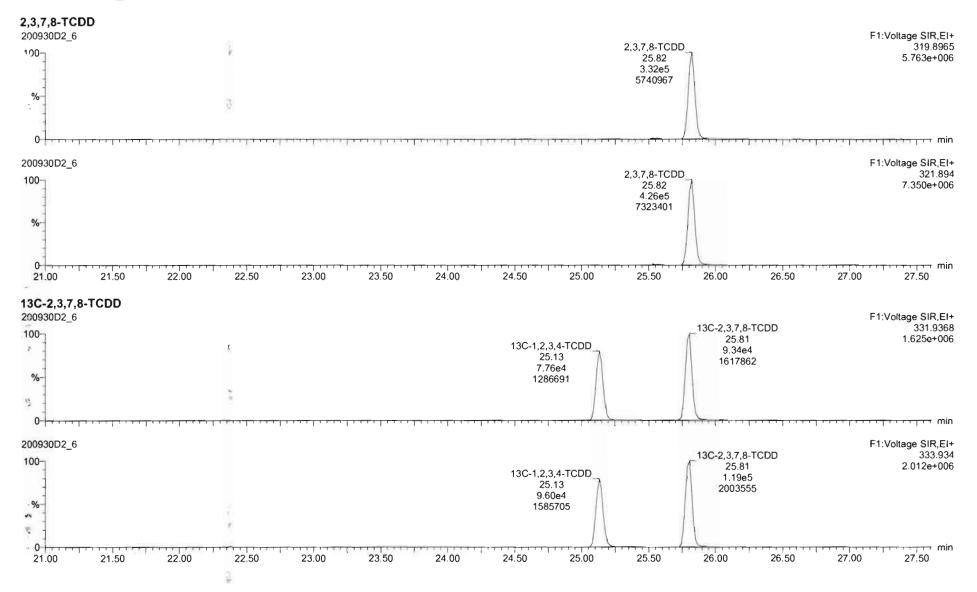
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

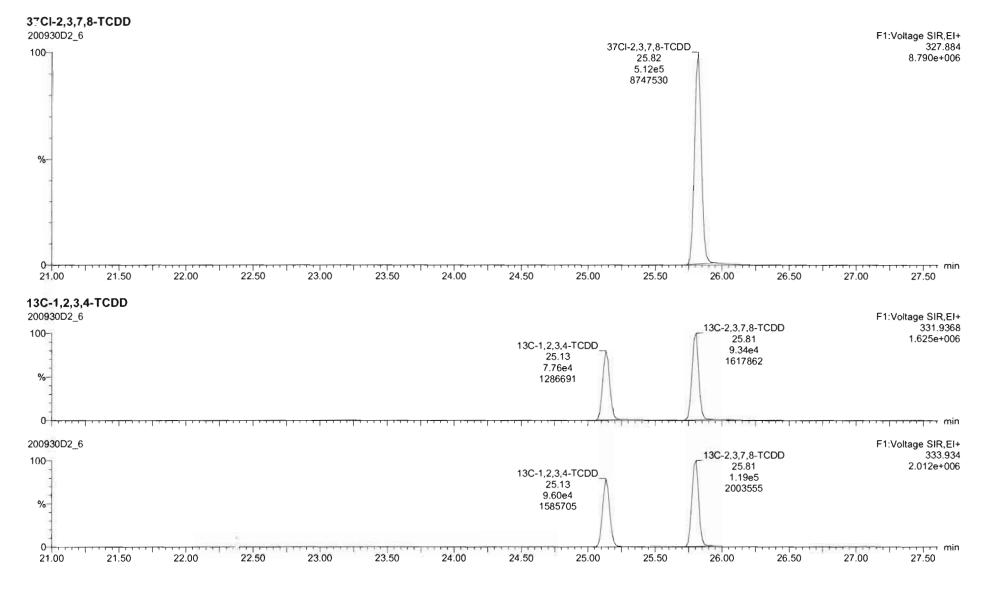


Quantify San Vista Analytica		Page 63 of 78
Dataset:	U:\VG7.PRO\Results\2.)0930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

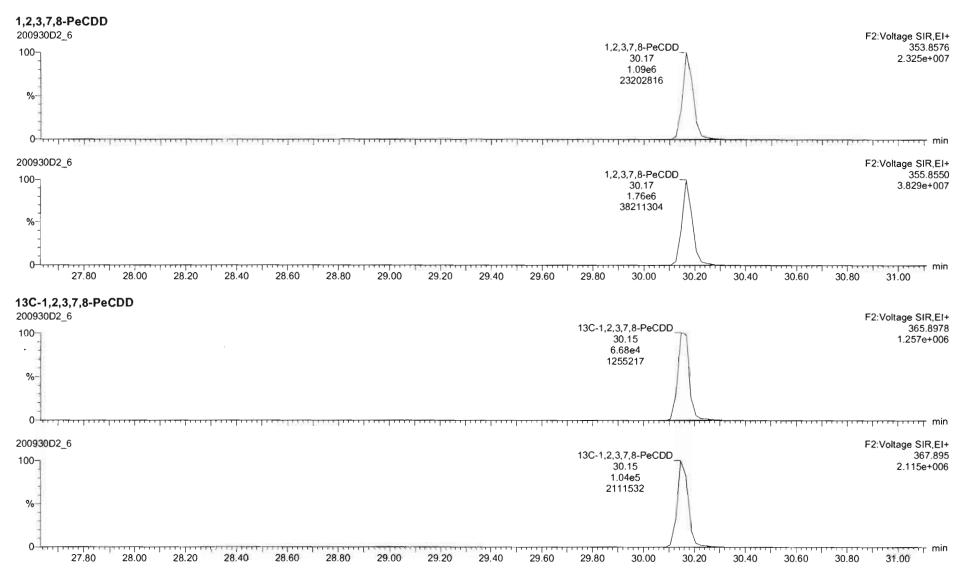
Work Order 2002003


Quantify Sam Vista Analytica		Page 64 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

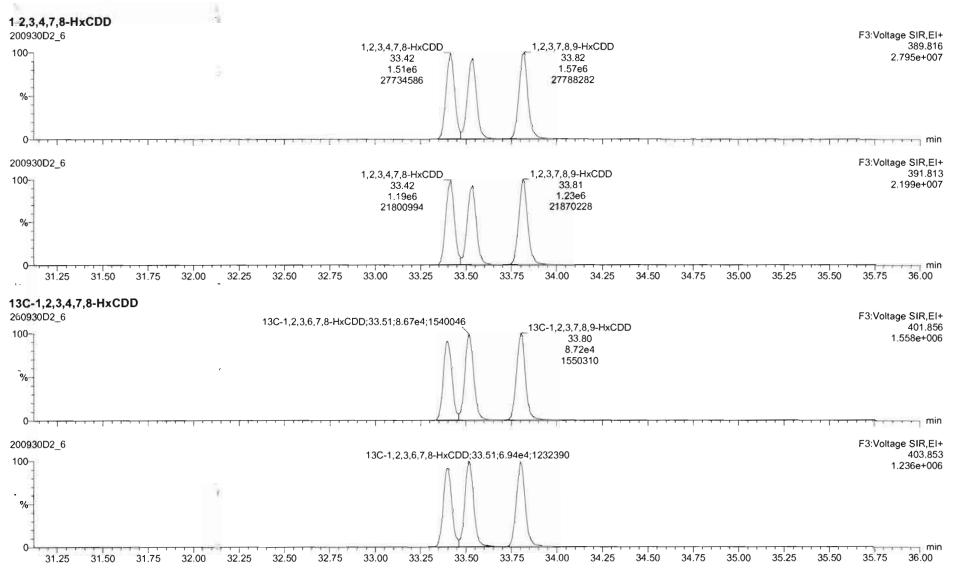
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Image: Comparison of Compar		Page 65 of 78
Dataset:	U:\VG7.PRO\Results\2)0930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


% 0 19.00 19.50	20.00 20.50 21.00	21.50 22.00 22.50	23.00 23.50 24	4.00 24.50 25.00		
FK2	20.00 20.50 21.00	21.50 22.00 22.50	23.00 23.50 24	4.00 24.50 25.00	25.50 26.00 26.50) 27.00 27.50
00930D2_5		29	16;5.15e3;103763		20.27 20.64	F2:Voltage SIR,
27.73 27.89 28.01 28	13 28.39;3.42e3;79900 28.7	70 28.82 28.96	29.58 29	9.7229.82 30.00	30.27 30.35 30.61 30.67	30.8330.93 366.97 9.138e+0
%-						
0-1	20.20 20.40 20.60	28.00 20.00 20.0				n n n n n n n n n n
27.80 28.00	28.20 28.40 28.60	28.80 29.00 29.2	20 29.40 29.60	29.80 30.00 3	0.20 30.40 30.60	30.80 31.00
FK3	5 C					
00930D2_5 0031.1431.68;2.68e3;15	176 32.19	32.91 33.25;6.83e3;2	261174 33.65 33.80 34.0	01 34.47;2.37e3;16422	6 34.93 35.51;3.71e3;20262	35.61 380.97
ť						4.372e+0
%-						
0-1, 31.25 31.50 31.75	32.00 32.25 32.50	32.75 33.00 33.25	33.50 33.75 34.0	0 34.25 34.50	34.75 35.00 35.25 3	5.50 35.75 36.00
31.25 31.50 31.75	32.00 32.25 32.50	32.75 33.00 33.25	33.50 33.75 34.0	0 34.25 34.50	34.75 35.00 35.25 3	
31.25 31.50 31.75	4					5.50 35.75 36.00 F4:Voltage SIR,t
• • • • • • • • • • • • • • • • • • • •	4	32.75 33.00 33.25 37.07 37.34 37.79;4.74e3;144				5.50 35.75 36.00 F4:Voltage SIR,t 39.58 39.89 430.97
31.25 31.50 31.75 K4 0930D2_5 0-35.95 36.35 0-35.95	4					5.50 35.75 36.00 F4:Voltage SIR,t
31.25 31.50 31.75 K4 1930D2_5 35.95 6 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	36.46 36.60 36.82 36.96 3	37.07 37.34 37.79;4.74e3;144	4118 37.97 <u>38.22;4.28e3;</u>	155518 38.69;3.49e3;1187;		5.50 35.75 36.00 F4:Voltage SIR,t 39.58 39.89 430.97
31.25 31.50 31.75 FK4 0930D2_5 36.35 10-35.95 36.35	4	37.07 37.34 37.79;4.74e3;144		155518 38.69;3.49e3;1187;		5.50 35.75 36.00 F4:Voltage SIR,1 39.58 39.89 430.97 2.5736+0
31.25 31.50 31.75 FK4 0930D2_5 36.35 00 35.95 %	36.46 36.60 36.82 36.96 3	37.07 37.34 37.79;4.74e3;144	4118 37.97 <u>38.22;4.28e3;</u>	155518 38.69;3.49e3;1187;	38 39,10 39,34 39,40 3	5.50 35.75 36.00 F4:Voltage SIR,t 39.58 39.89 430.97 2.5736+0
31.25 31.50 31.75 FK4 0930D2_5 36.35 % 0 36.00 36.25 FK5 10930D2_5 10930D2_5	36.46 36.60 36.82 36.96 3 36.50 36.75 37.00	37.07 37.34 37.79;4.74e3;144 37.25 37.50	4118 37.97 38.22;4.28e3; 38.22;4.28e3; 37.75 38.00 38.25	155518 38.69;3.49e3;1187; 5 38.50 38.75	38 39.10 39.34 39.40 3 39.00 39.25 39.50	5.50 35.75 36.00 F4:Voltage SIR, 39.58 39.89 430.9 2.573e+(0 39.75 40.00 F5:Voltage SIR,
31.25 31.50 31.75 FK4 0930D2_5 36.35 0 35.95 % 0 36.00 36.25 FK5 10930D2_5	36.46 36.60 36.82 36.96 3 36.50 36.75 37.00	37.07 37.34 37.79;4.74e3;144	4118 37.97 38.22;4.28e3; 38.22;4.28e3; 37.75 38.00 38.25	155518 38.69;3.49e3;1187; 5 38.50 38.75	38 39.10 39.34 39.40 3 39.00 39.25 39.50	5.50 35.75 36.0 F4:Voltage SIR, 39.58 39.89 430.9 2.5736+ 0 39.75 40.00

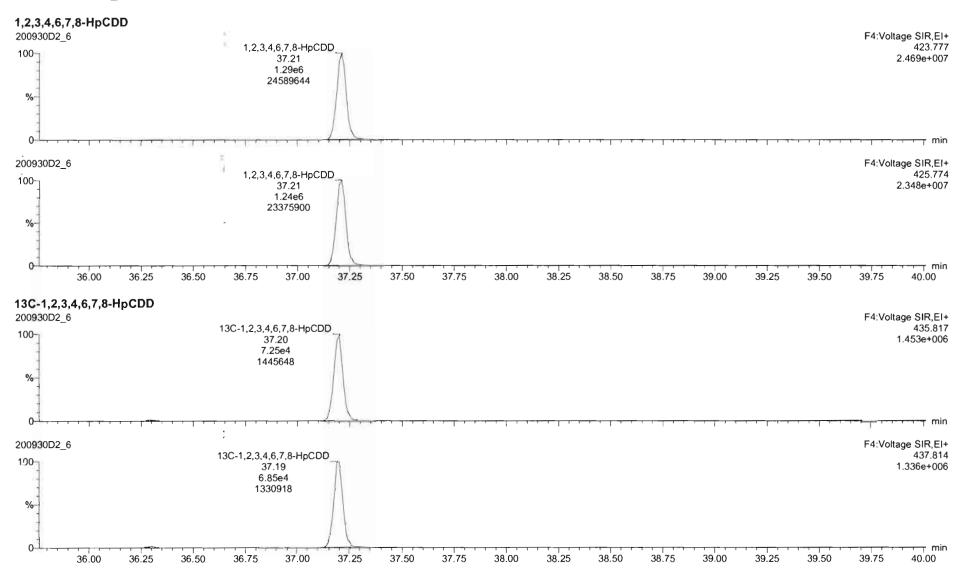
Quantify Sam Vista Analytica		Page 66 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	



Work Order 2002003


Quantify Samp Vista Analytical		Page 67 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Cuantify San Vista Analytica		Page 68 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

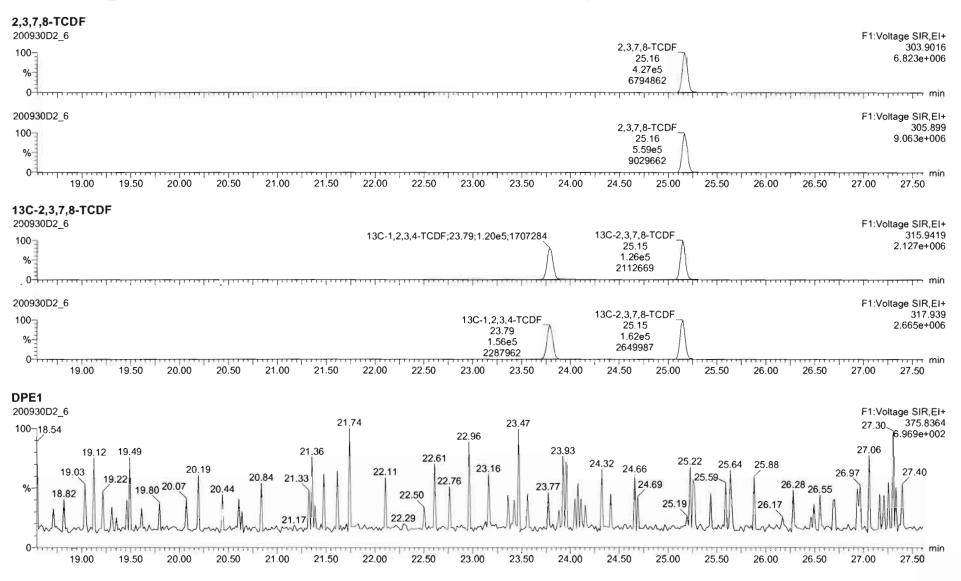


Quantify San Vista Analytica		Page 69 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

10

Vista Analytica	ple Report MassLynx 4.1	Page 70 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 71 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

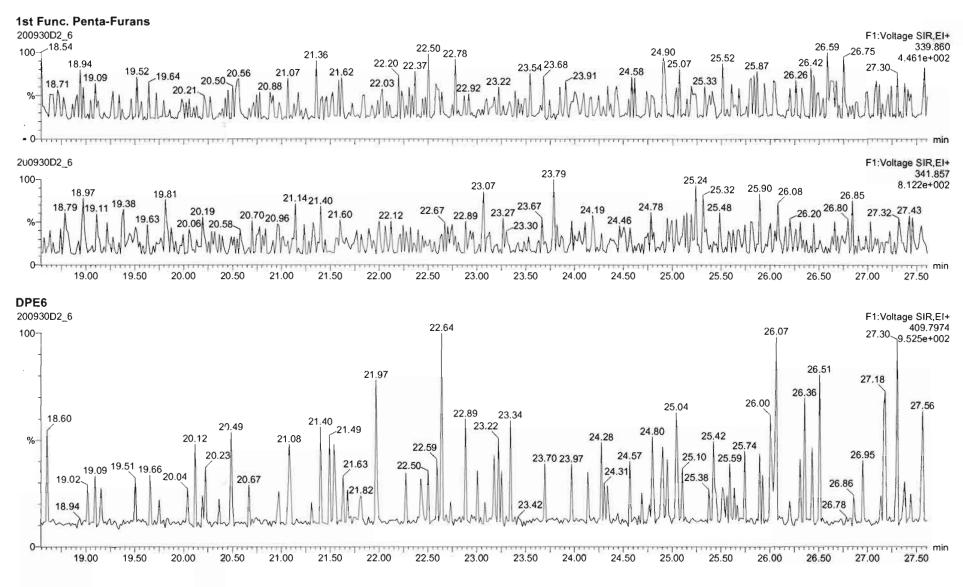


Cuantify Sample Report Mast Lynx 4.1

Vista Analytical Laboratory

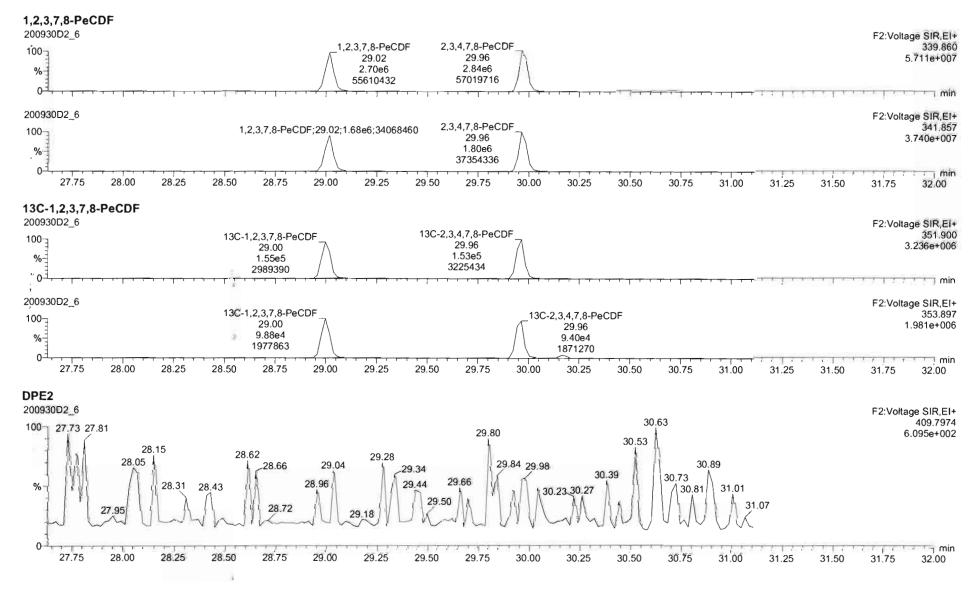
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time

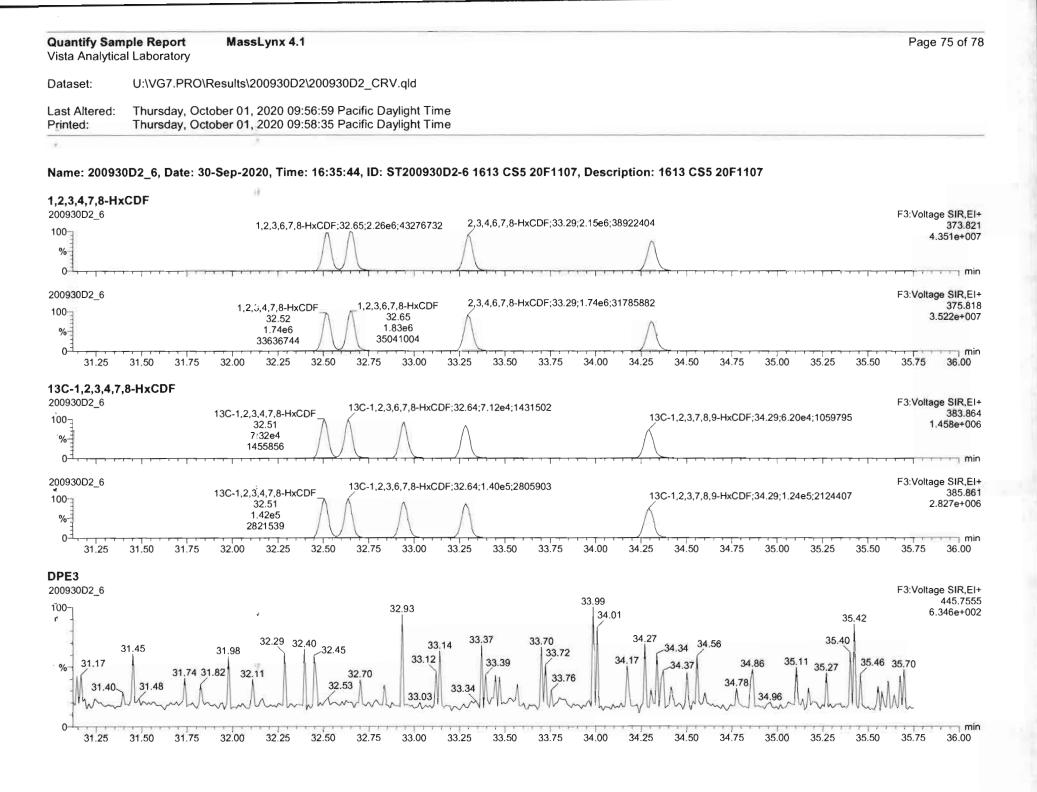


Quantify Sample Report MassLynx 4.1

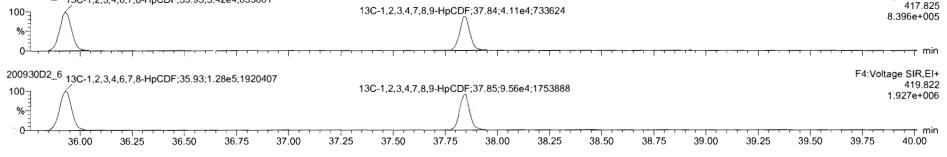
Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld

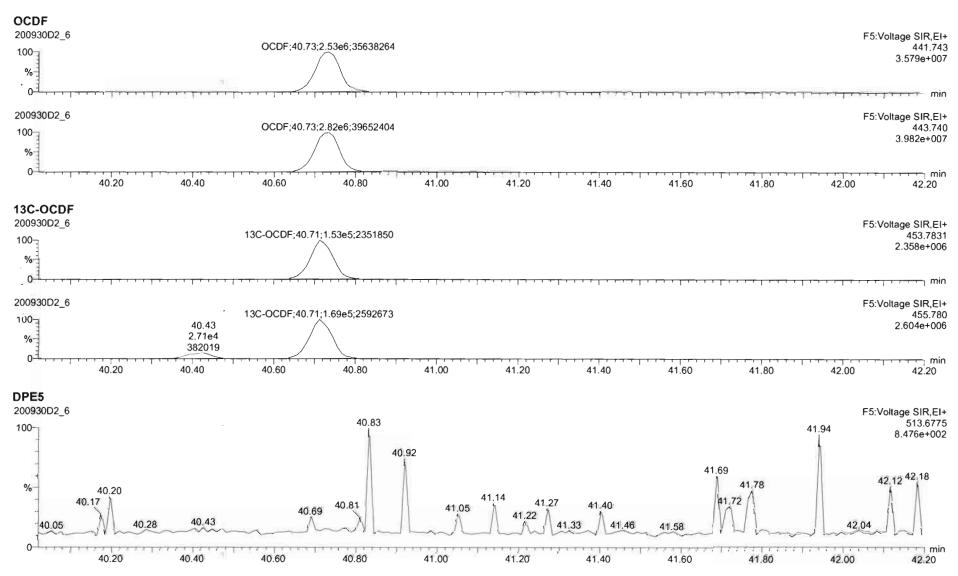
Last Altered:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 09:58:35 Pacific Daylight Time



Quantify San Vista Analytica	and the second	Page 74 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	


Name: 200930D2_6, Date: 30-Sep-2020, Time: 16:35:44, ID: ST200930D2-6 1613 CS5 20F1107, Description: 1613 CS5 20F1107

.

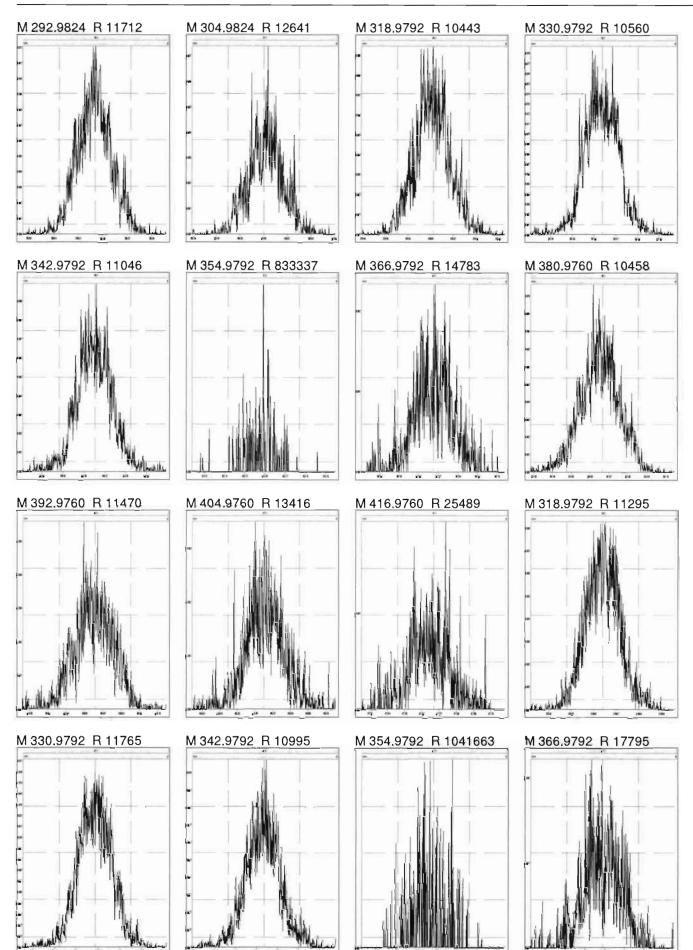

Quantify Sam Vista Analytica		Page 76 of 7
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
ast Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	
	D2_6, Date: 30-Sep-2020, Time: 16:35:44, ID: ST200930D2-6 1613 CS5 20F1107, Description: 1613 CS5 20F1107	
,2,3,4,6,7,8-F 00930D2_6 1,2	pCDF ,3,4,6,7,8-HpCDF;35.95;1.85e6;26630928 1,2,3,4,7,8,9-HpCDF;37.86;1.59e6;27936138	F4:Voltage SIR,EI 407.78 2.807e+00
00930D2_6 1,2	3,4,6,7,8-HpCDF;35.94;1.80e6;25992866 1,2,3,4,7,8,9-HpCDF;37.85;1.55e6;27301788	F4:Voltage SIR,EI 409.77 2.740e+00
0 ⁻¹	00 36.25 36.50 36.75 37.00 37.25 37.50 37.75 38.00 38.25 38.50 38.75 39.00 39.25 39.50	39.75 40.00
3C-1,2,3,4,6, 200930D2_6 13C	7,8-HpCDF -1,2,3,4,6,7,8-HpCDF;35.93;5.42e4;835661	F4:Voltage SIR,EI

DPE4 F4:Voltage SIR,EI+ 479.7165 200930D2_6 36.21 39.18 100-7.482e+002 39.56 39.10 39.88 36.01 36.59 38.01 38.54 36.87 37.04 37.34 .38.07 39.20 39.38 39.63 36.27 38.77 38.85 37.95 35.93 .37.06 % 37.39 38.57 36.69 37.25 38.24 36.40 37.82 39.78 40.00 36.08 36.33 37.54 37.79. 38.31_38.35 38.69 AA 0 min 37.25 37.75 38.50 38.75 40.00 36.00 36.25 36.50 36.75 37.00 37.50 38.00 38.25 39.00 39.25 39.50 39.75

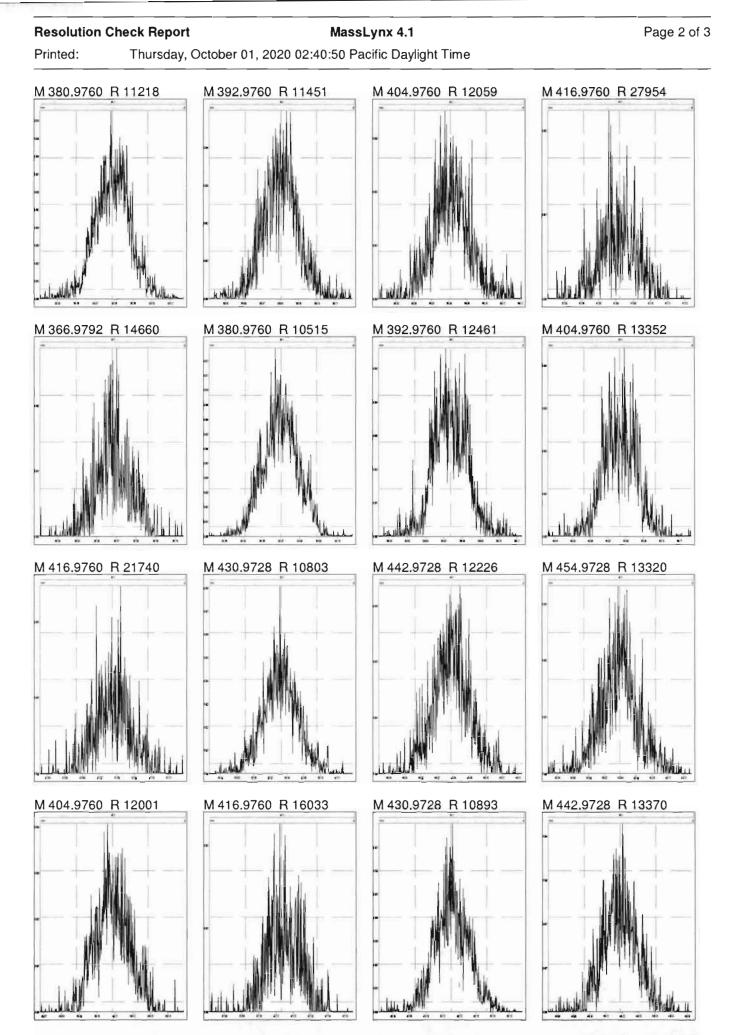
Quantify San Vista Analytica		Page 77 of 78
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_CRV.qld	
Last Altered: Printed:	Thursday, October 01, 2020 09:56:59 Pacific Daylight Time Thursday, October 01, 2020 09:58:35 Pacific Daylight Time	

Name: 200930D2_6, Date: 30-Sep-2020, Time: 16:35:44, ID: ST200930D2-6 1613 CS5 20F1107, Description: 1613 CS5 20F1107

	n ple Report al Laboratory	MassLyn	к 4.1								Page 78 o
ataset:	U:\VG7.PRC)\Results\20093	0D2\200930D2	_CRV.qld							
ast Altered: rinted:		ctober 01, 2020 ctober 01, 2020									
ame: 20093	0D2_6, Date: 3	30-Sep-2020, T	ime: 16:35:44	ID: ST20093	30D2-6 1613 (CS5 20F1107, I	Description:	1613 CS5 20F1	107		
FK1											
00930D2_6	9.08 19.17 19.71	20.3920.45	21.00 21.14 21.5	9 21.94 22.40;3	3.38e3;118091	23.51;5.58e3;121	834 24.14	24.64 24.83 25.3	35 25.73 25.9	26.17 26.	F1:Voltage SIR 91 316.9
%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0					han tanı tanı						
19.0	00 19.50	20.00 20.50	21.00 21	50 22.00	22.50 23	.00 23.50	24.00 24.	50 25.00	25.50 26.00	26.50 2	27.00 27.50
F K2 0930D2_6					00.40.4.0	- 4.00050				_	F2:Voltage SIR
	1;3.55e3;63239	28.31 28.39	28.56 21	.92;3.13e3;1089	942 29.16;1.60	299856 29	0.66 29.84 30.0	2;6.36e3;108859	30.33 30.57	30.75;2.67e3;56	891 366.9 8.932e+
16											
o ¹											
27.8	30 28.00	28.20 28.40	28.60	8.80 29.00	29.20	29.40 29.60	29.80	30.00 30.20	30.40	30.60 30.80	31.00
27.8 - K3	30 28.00	28.20 28.40	28.60 2	8.80 29.00			29.80				31.00
27.8 K3 0930D2_6		28.20 28.40	28.60 2		29.20 33.23;2.88e		29.80	34 90:1 01e4:206		30.60 30.80 5.14e3;226732	31.00 F3:Voltage SIR 380.9
27.8 0930D2_6 0								34 90:1 01e4:206			31.00 F3:Voltage SIR
27.8 0930D2_6 031.35 %	31.47 31.76	32.02_32.09	32,4532.78;9	71e3;283340	33.23;2.88e	3;186080	34.4	34.90;1.01e4;206	504 35.59;	5.14e3;226732	F3:Voltage SIR 53:Voltage SIR 53:0:9 50:50 4.505e+
27.8 0930D2_6 0 31.35 0 31.25		32.02_32.09	32,4532.78;9			3;186080		34 90:1 01e4:206	504 35.59;		31.00 F3:Voltage SIR 380.9 4.505e+
27.8 0930D2_6 00	31.47 31.76	32.02_32.09	32.4532.78;9 25 32.50 3	71e3;283340 2.75 33.00	33.23;2.88e	33;186080 50 33.75 3	34.4 34.00 34.25	34.90;1.01e4;206	504 35.59;	5.14e3;226732	F3:Voltage SIR 380.9 4.505e+ 35.75 36.0
27.8 0930D2_6 0 31.35 % 0 31.25	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u>	32.02_32.09	32,4532.78;9 25 32.50 3	71e3;283340	33.23;2.88e	3;186080	34.4 34.00 34.25	34.90;1.01e4;206	504 35.59; 5 35.00 3:	5.14e3;226732 5.25 35.50	F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9 ^{F4:Voltage SIR} 430.9
27.8 0930D2_6 0931.35 %0	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u>	32.02 32.09 32.00 32.1	32,4532.78;9 25 32.50 3	71e3;283340 2.75 33.00	33.23;2.88e	33;186080 50 33.75 3	34.4 34.00 34.25	34.90;1.01e4;206	504 35.59; 5 35.00 3:	5.14e3;226732 5.25 35.50	F3:Voltage SIR 380.9 4.505e+ 35.75 36.0
27.8 0930D2_6 0 31.35 % 0 31.25 FK4 0930D2_6	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u> <u>36.35;1.33</u> e	32.02 32.09 32.00 32.1 33.91034 36.83;6	32.4532.78;9 25 32.50 3 .03e3;198221	71e3;283340 2.75 33.00 7.14;6.85e3;178	33.23;2.88e 33.25 33. 3060 37.83	3;186080 50 33.75 3 38.06;2.11e3;1832	34.4 34.00 34.25 33 38.47	34.90;1.01e4;206 34.50 34.75 38.79;4.44e3;1084	504 35.59; 5 35.00 3: 30 39.33;2.70	5.14e3;226732 5.25 35.50 e4;339116 ^{39.5}	31.00 F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9F4:Voltage SIR 430.9 2.746e+
27.8 0930D2_6 0 31.35 % 0 31.25 FK4 0930D2_6	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u>	32.02 32.09 32.00 32.1	32.4532.78;9 25 32.50 3 .03e3;198221	71e3;283340 2.75 33.00 7.14;6.85e3;178	33.23;2.88e 33.25 33. 3060 37.83	3;186080 50 33.75 3 38.06;2.11e3;1832	34.4 34.00 34.25 33 38.47	34.90;1.01e4;206 34.50 34.75 38.79;4.44e3;1084	504 35.59; 5 35.00 3:	5.14e3;226732 5.25 35.50 e4;339116 ^{39.5}	F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9 ^{F4:Voltage SIR} 430.9 2.746e+
27.8 0930D2_6 0 31.35 FK4 0930D2_6 0 31.25	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u> <u>36.35;1.33</u> e	32.02 32.09 32.00 32.1 33.91034 36.83;6	32.4532.78;9 25 32.50 3 .03e3;198221	71e3;283340 2.75 33.00 7.14;6.85e3;178	33.23;2.88e 33.25 33. 3060 37.83	33;186080 50 33.75 3 38.06;2.11e3;1832 38.00 3	34.4 34.00 34.25 33 38.47 5.25 38.50	34.90;1.01e4;206 34.50 34.75 38.79;4.44e3;10844 38.75 3	504 35.59; 5 35.00 3: 30 39.33;2.70 9.00 39.25	5.14e3;226732 5.25 35.50 e4;339116 39.5 39.50	F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9 F4:Voltage SIR 430.9 2.746e+ 39.75 40.0
27.8 0930D2_6 0 31.35 % 0 31.25 FK4 0930D2_6	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u> <u>36.35;1.33</u> e	32.02 32.09 32.00 32 32.00 32 30.00 32 30.00 32 30.00 32 30.00 30 30.00 30	32.4532.78;9 25 32.50 3 .03e3;198221 75 37.00	71e3;283340 2.75 33.00 7.14;6.85e3;178	33.23;2.88e 33.25 33. 3060 37.83 .50 37.75	3;186080 50 33.75 3 38.06;2.11e3;1832	34.4 34.00 34.25 33 38.47 5.25 38.50	34.90;1.01e4;206 34.50 34.75 38.79;4.44e3;1084	504 35.59; 5 35.00 3: 30 39.33;2.70 9.00 39.25	5.14e3;226732 5.25 35.50 e4;339116 ^{39.5}	31.00 F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9 F4:Voltage SIR 430.9 2.746e+ 39.75 40.0 F5:Voltage SIR 127759 454.9
27.8 0930D2_6 0 31.35 0 31.25 FK4 0930D2_6 0 31.25 FK4 0930D2_6 0 36 FK5 0930D2_6	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u> <u>36.35;1.33</u> .00 <u>36.25</u>	32.02 32.09 32.00 32 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.	32.4532.78;9 25 32.50 3 .03e3;198221 75 37.00	71e3;283340 2.75 33.00 7.14;6.85e3;178 37.25 37	33.23;2.88e 33.25 33. 3060 37.83 .50 37.75	33;186080 50 33.75 3 38.06;2.11e3;1832 38.00 3	34.4 34.00 34.25 33 38.47 5.25 38.50	34.90;1.01e4;206 34.50 34.75 38.79;4.44e3;10844 38.75 3	504 35.59; 5 35.00 3: 30 39.33;2.70 9.00 39.25	5.14e3;226732 5.25 35.50 e4;339116 39.5 39.50	F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9 F4:Voltage SIR 430.9 2.746e+ 39.75 40.0
27.8 0930D2_6 0 31.35 0 31.25 K4 0930D2_6 0 36 K5 0930D2_6 0 40.03	<u>31.47</u> <u>31.76</u> 31.50 <u>31.75</u> <u>36.35;1.33</u> .00 <u>36.25</u>	32.02 32.09 32.00 32 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.	32.4532.78;9 25 32.50 3 .03e3;198221 75 37.00	71e3;283340 2.75 33.00 7.14;6.85e3;178 37.25 37	33.23;2.88e 33.25 33. 3060 37.83 .50 37.75	33;186080 50 33.75 3 38.06;2.11e3;1832 38.00 3	34.4 34.00 34.25 33 38.47 5.25 38.50	34.90;1.01e4;206 34.50 34.75 38.79;4.44e3;10844 38.75 3	504 35.59; 5 35.00 3: 30 39.33;2.70 9.00 39.25	5.14e3;226732 5.25 35.50 e4;339116 39.5 39.50	31.00 F3:Voltage SIR 380.9 4.505e+ 35.75 36.0 9 F4:Voltage SIR 430.9 2.746e+ 39.75 40.0 F5:Voltage SIR 127759 454.9

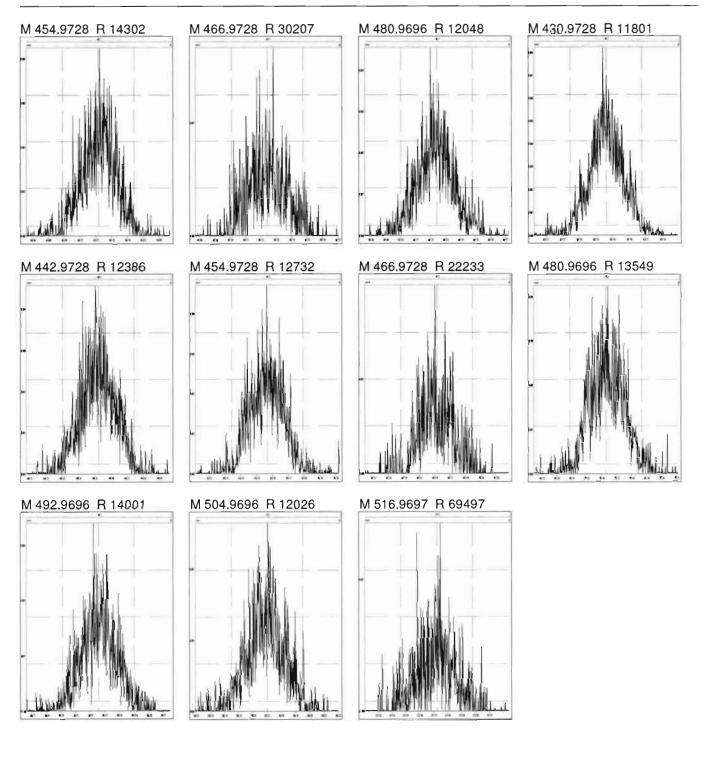

-

Resolution Check Report


MassLynx 4.1

Thursday, October 01, 2020 02:40:50 Pacific Daylight Time

Work Order 2002003


Work Order 2002003

Resolution Check Report

MassLynx 4.1

Printed:

Thursday, October 01, 2020 02:40:50 Pacific Daylight Time

4.1	

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_8.qld

Last Altered:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:42:01 Pacific Daylight Time

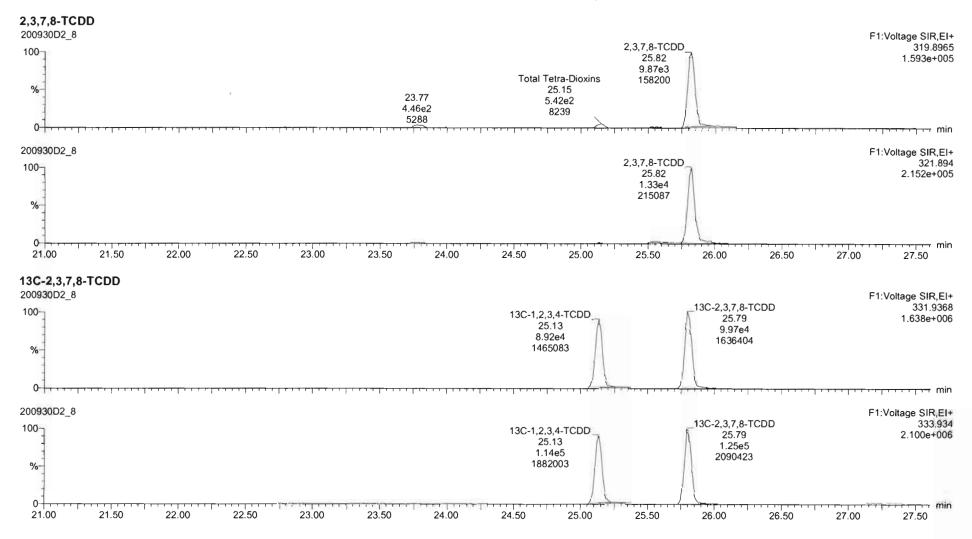
DB 10/1/20 CT 10/01/2020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

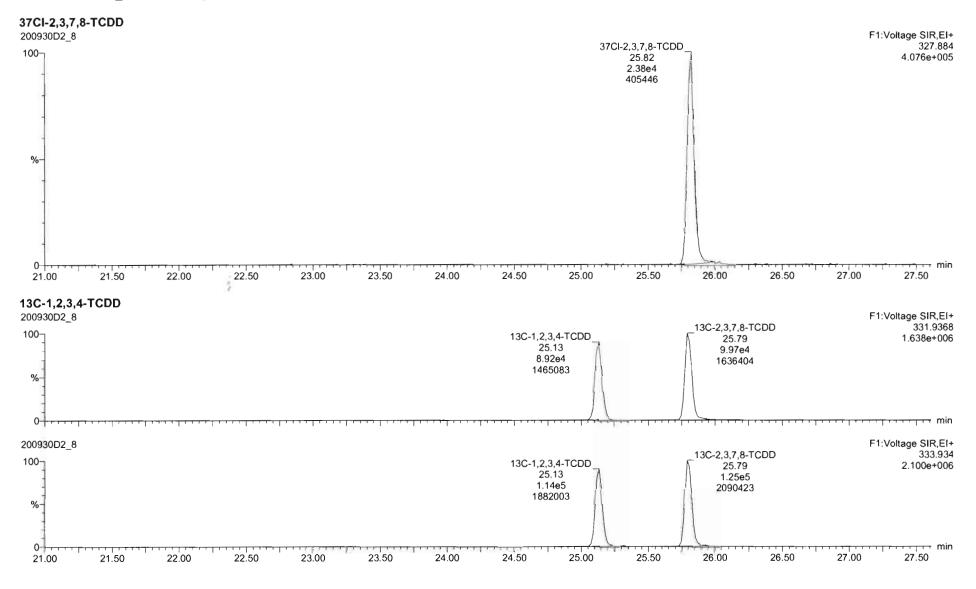
	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.31e4	0.74	NO	1.00	1.000	25.821	25.82	1.001	1.001	10.260	103	0.0632	10.3
2	2 1,2,3,7,8-PeCDD	8.31e4	0.61	NO	0.935	1.000	30.187	30.19	1.001	1.001	53.368	107	0.106	53.4
3	3 1,2,3,4,7,8-HxCDD	7.77e4	1.26	NO	1.15	1.000	33.415	33.42	1.000	1.000	45.778	91.6	0.150	45.8
4	4 1,2,3,6,7,8-HxCDD	8.20e4	1.25	NO	1.02	1.000	33.526	33.54	1.000	1.000	47.955	95.9	0.161	48.0
5	5 1,2,3,7,8,9-HxCDD	7.98e4	1.27	NO	1.06	1.000	33.845	33.82	1.001	1.000	45.851	91.7	0.156	45.9
6	6 1,2,3,4,6,7,8-HpCDD	7.23e4	1.07	NO	1.00	1.000	37.213	37.21	1.000	1.000	49.364	98.7	0.231	49.4
7	7 OCDD	1.24e5	0.89	NO	0.952	1.000	40.395	40.41	1.000	1.000	100.14	100	0.175	100
8	8 2,3,7,8-TCDF	3.03e4	0.76	NO	1.01	1.000	25.174	25.16	1.001	1.001	8.5800	85.8	0.0490	8.58
9	9 1,2,3,7,8-PeCDF	1.26e5	1.58	NO	0.998	1.000	29.019	29.02	1.001	1.001	47.977	96.0	0.102	48.0
10	10 2,3,4,7,8-PeCDF	1.46e5	1.58	NO	1.07	1.000	29.994	29.98	1.001	1.001	53.283	107	0.0861	53.3
11	11 1,2,3,4,7,8-HxCDF	1.29e5	1.25	NO	1.05	1.000	32.505	32.53	1.000	1.001	56.257	113	0.172	56.3
12	12 1,2,3,6,7,8-HxCDF	1.36e5	1.28	NO	1.10	1.000	32.658	32.66	1.000	1.000	56.801	114	0.172	56.8
13	13 2,3,4,6,7,8-HxCDF	1.28e5	1.27	NO	1.09	1.000	33.328	33.31	1.001	1.000	57.613	115	0.191	57.6
14	14 1,2,3,7,8,9-HxCDF	1.06e5	1.25	NO	1.08	1.000	34.294	34.32	1.000	1.001	53.240	106	0.252	53.2
15	15 1,2,3,4,6,7,8-HpCDF	1.20e5	1.03	NO	1.13	1.000	35.976	35.95	1.001	1.000	52.614	105	0.212	52.6
16	16 1,2,3,4,7,8,9-HpCDF	9.52e4	1.03	NO	1.29	1.000	37.849	37.86	1.000	1.000	51.703	103	0.224	51.7
17	17 OCDF	1.66e5	0.89	NO	0.953	1.000	40.702	40.72	1.000	1.001	114.48	114	0.229	114
18	18 13C-2,3,7,8-TCDD	2.25e5	0.80	NO	1.17	1.000	25.787	25.79	1.026	1.026	94.491	94.5	0.271	
19	19 13C-1,2,3,7,8-PeCDD	1.66e5	0.62	NO	0.914	1.000	29.974	30.17	1.193	1.200	89.682	89.7	0.183	
20	20 13C-1,2,3,4,7,8-HxCDD	1.47e5	1.28	NO	0.634	1.000	33.405	33.40	1.014	1.014	105.24	105	0.428	
21	21 13C-1,2,3,6,7,8-HxCDD	1.67e5	1.27	NO	0.724	1.000	33.514	33.53	1.017	1.018	104.35	104	0.375	
22	22 13C-1,2,3,7,8,9-HxCDD	1.64e5	1.25	NO	0.716	1.000	33.781	33.81	1.025	1.026	103.67	104	0.379	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.46e5	1.05	NO	0.660	1.000	37.194	37.20	1.129	1.129	100.22	100	0.415	
24	24 13C-OCDD	2.61e5	0.89	NO	0.587	1.000	40.172	40.39	1.219	1.226	201.24	101	0.287	[
25	25 13C-2,3,7,8-TCDF	3.48e5	0.73	NO	1.02	1.000	24.882	25.15	0.990	1.001	99.486	99.5	0.276	
26	26 13C-1,2,3,7,8-PeCDF	2.62e5	1.59	NO	0.842	1.000	29.046	29.00	1.156	1.154	91.006	91.0	0.298	
27	27 13C-2,3,4,7,8-PeCDF	2.55e5	1.67	NO	0.802	1.000	29.934	29.96	1.191	1.192	92.871	92.9	0.313	
28	28 13C-1,2,3,4,7,8-HxCDF	2.17e5	0.51	NO	1.00	1.000	32.549	32.51	0.988	0.987	98.055	98.1	0.333	
29	29 13C-1,2,3,6,7,8-HxCDF	2.17e5	0.52	NO	1.02	1.000	32.680	32.65	0.992	0.991	96.461	96.5	0.328	
30	30 13C-2,3,4,6,7,8-HxCDF	2.05e5	0.52	NO	0.955	1.000	33.244	33.30	1.009	1.011	97.072	97.1	0.350	
31	31 13C-1,2,3,7,8,9-HxCDF	1.83e5	0.53	NO	0.851	1.000	34.308	34.29	1.041	1.041	97.441	97.4	0.392	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Page 2 of 2


Dataset: U:\VG7.PRO\Results\200930D2\200930D2_8.qld

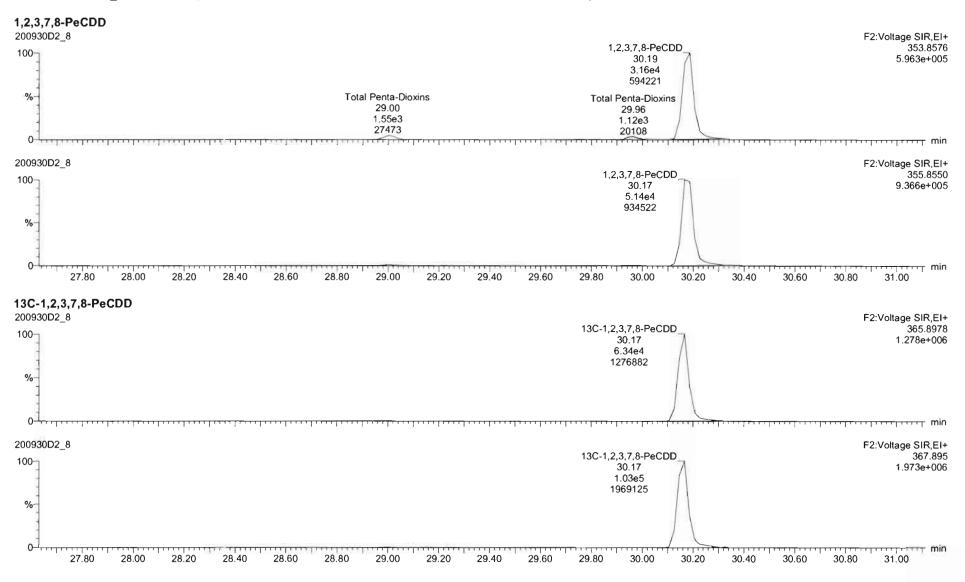
Last Altered:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:42:01 Pacific Daylight Time


	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	2.01e5	0.44	NO	0.848	1.000	35.810	35.94	1.087	1.091	107.16	107	0.390	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.43e5	0.45	NO	0.624	1.000	37.787	37.85	1.147	1.149	103.84	104	0.530	
34	34 13C-OCDF	3.04e5	0.90	NO	0.730	1.000	40.323	40.70	1.224	1.235	188.59	94.3	0.259	ſ
35	35 37CI-2,3,7,8-TCDD	2.38e4			1.21	1.000	25.784	25.82	1.026	1.027	9.7250	97.3	0.0428	
36	36 13C-1,2,3,4-TCDD	2.03e5	0.78	NO	1.00	1.000	25.260	25.13	1.000	1.000	100.00	100	0.318	
37	37 13C-1,2,3,4-TCDF	3.43e5	0.75	NO	1.00	1.000	23.930	23.79	1.000	1.000	100.00	100	0.282	
38	38 13C-1,2,3,4,6,9-HxCDF	2.21e5	0.52	NO	1.00	1.000	32.990	32.94	1.000	1.000	100.00	100	0.334	

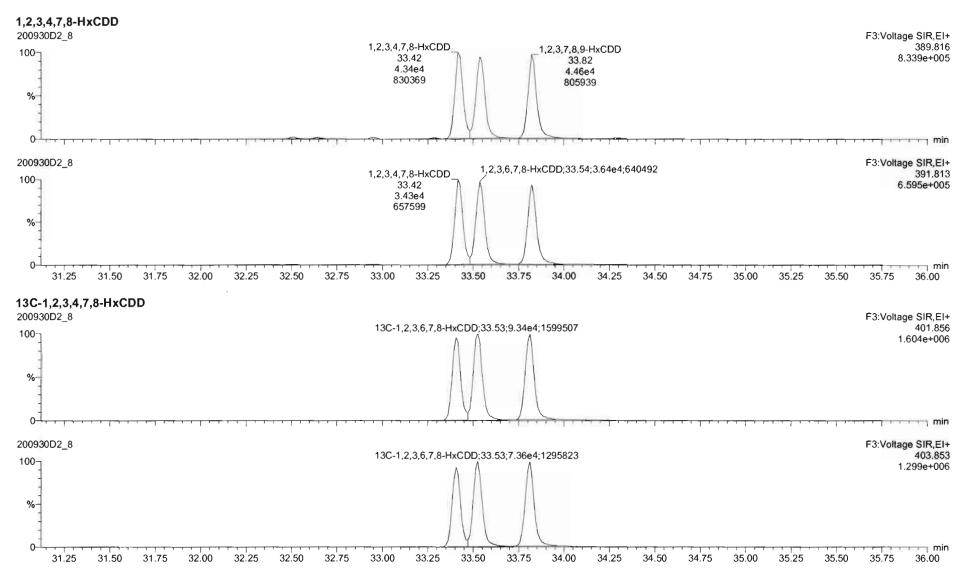
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 11 Sep 2020 15:14:27 Calibration: U:\VG7.PRO\CurveDB\ZB_DIOXIN_1613vg7-9-30-20.cdb 01 Oct 2020 10:27:37

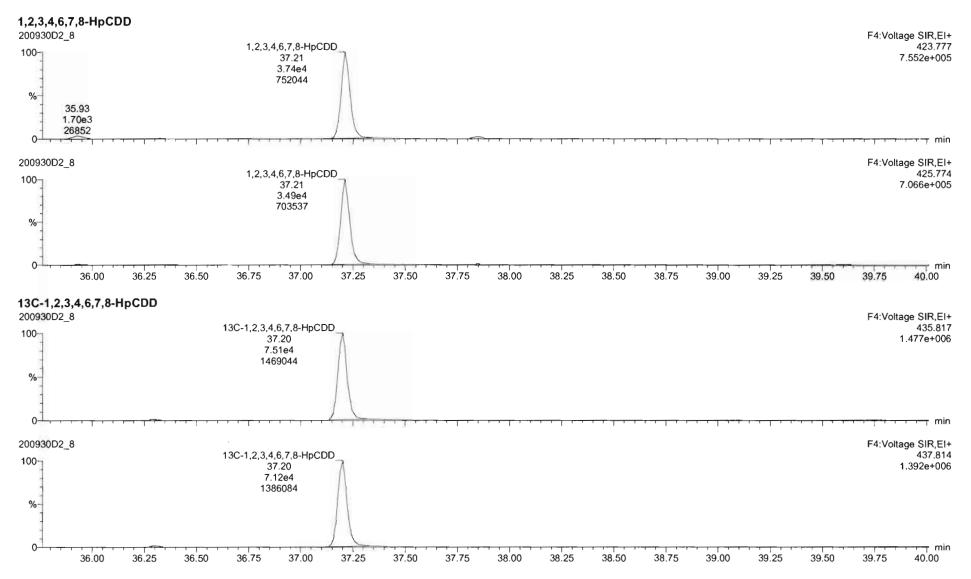
Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

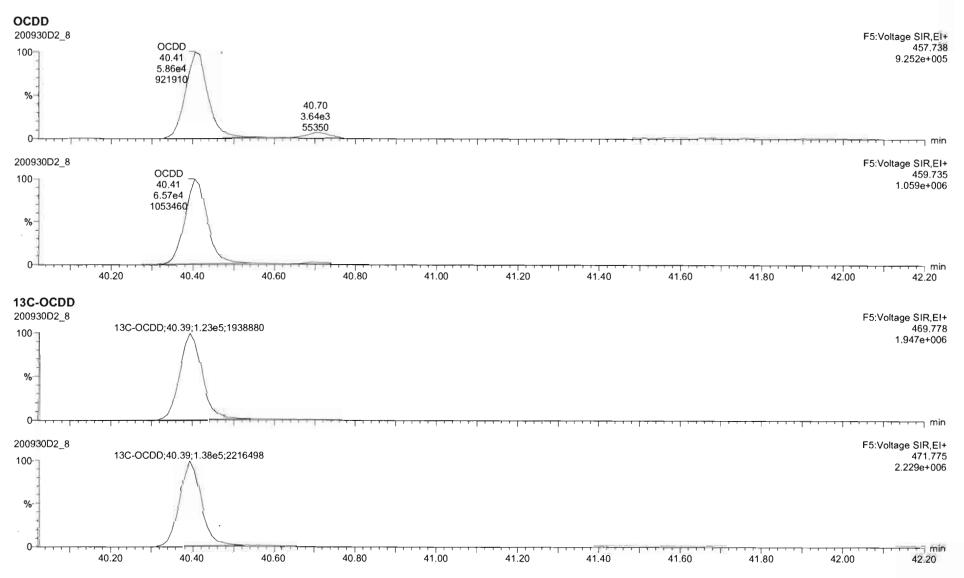


Work Order 2002003


Quantify Sample Report	MassLynx 4.1

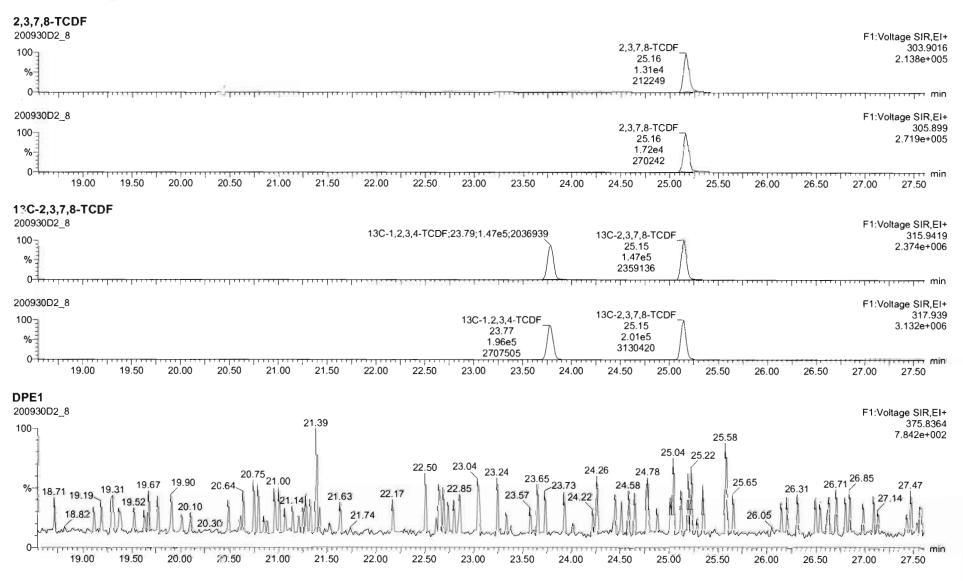
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_8.qld


Last Altered:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:42:17 Pacific Daylight Time


Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

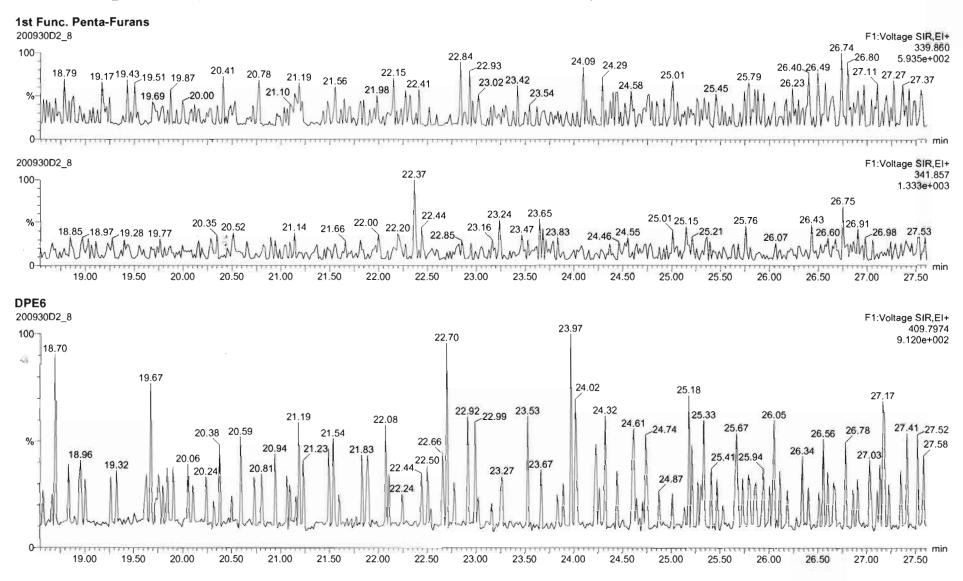
Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	_


Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

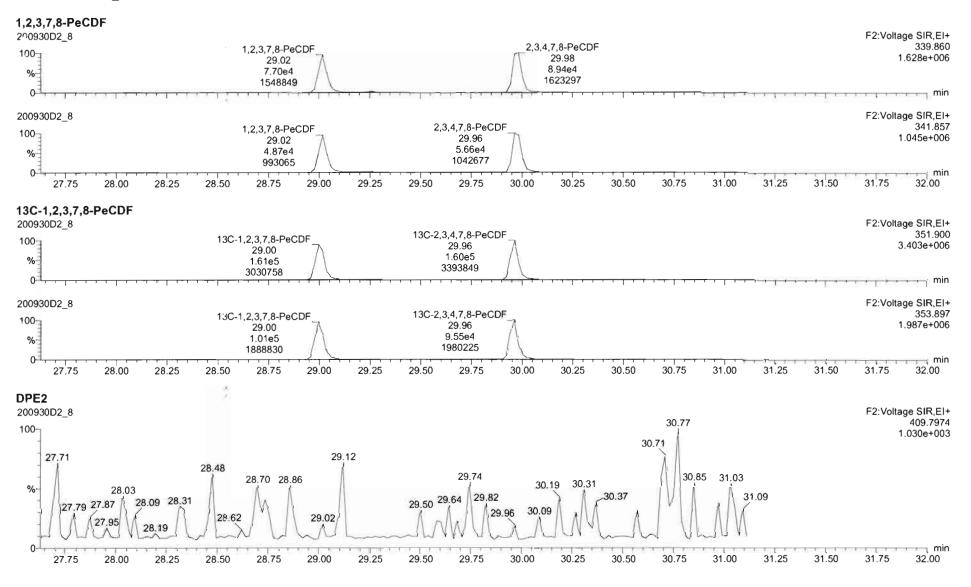
Dataset: U:\VG7.PRO\Results\200930D2\200930D2_8.qld


Last Altered:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:42:17 Pacific Daylight Time

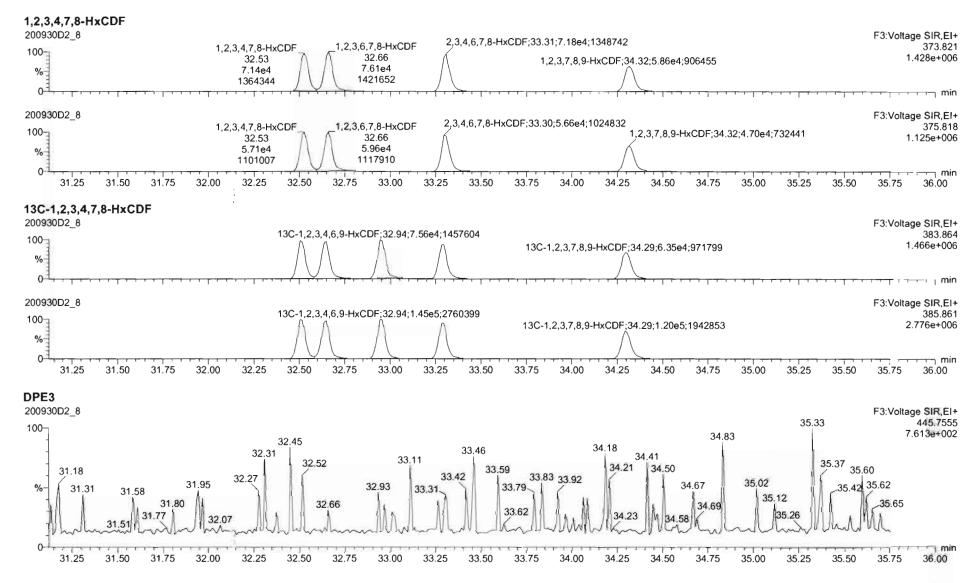
Name: 200930D2_8, Date: 30-Sep-2020, Time: 18:08:02, ID: SS200930D2-1 1613 SSS 20F1108, Description: 1613 SSS 20F1108

Page 413 of 419

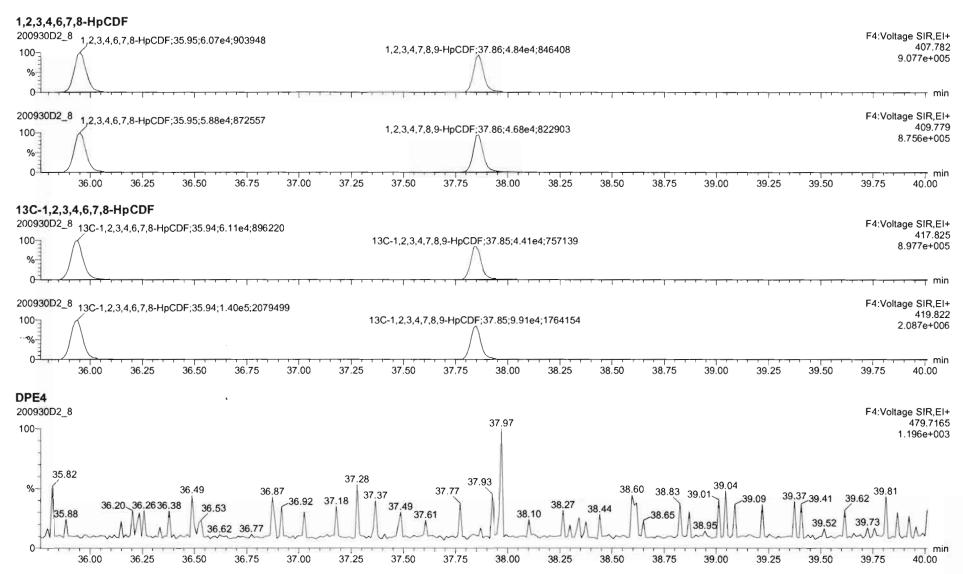
Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

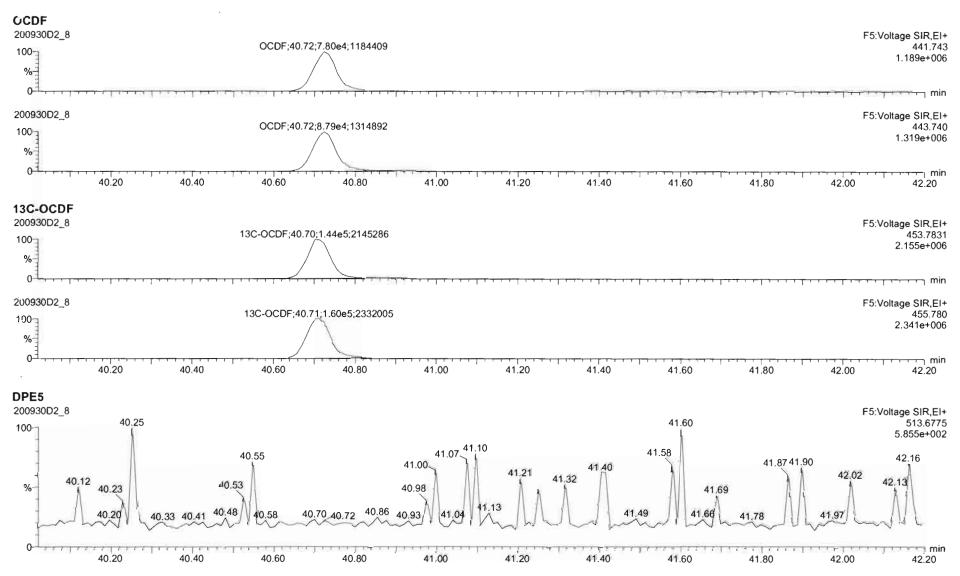


Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_8.qld


Last Altered:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:42:17 Pacific Daylight Time


Quantify Sam Vista Analytica		Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200930D2\200930D2_8.qld	
Last Altered: Printed:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time Thursday, October 01, 2020 10:42:17 Pacific Daylight Time	

Quantify Sample ReportMassLynx 4.1Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200930D2\200930D2_8.qld

Last Altered:	Thursday, October 01, 2020 10:40:53 Pacific Daylight Time
Printed:	Thursday, October 01, 2020 10:42:17 Pacific Daylight Time

18.97_1	9.09	20.18;4.18	e3;13)193	man man	21.85	22.32;3.58€	3;74093 22.92	23.18 23.47	man	24.78;8.89e	3;122377	25.42			40 27 33	tage SIR,E 316.982 ≫ 1:0776+ 00
10.00	10.50	20.00	20.50	21.00	21.50	22.00	22.50 22	00 22 50	24.00	24.50	25.00	25.50	26.00	26.50	27.00	
19.00	19.50	20.00	20.50	21.00	21.50	22.00	22.30 23.	23.50	24.00	24.50	23.00	25.50	20.00	20.50	27.00	27.50
8 27.79	28.07;3.7	1e3;67541	28.54;	3.40e3;5856	4 2	9.00 29.04	29.12 29.58;	3.81e3;72622	29.8	88;3.54e3;83661	30.17	30.31	30.49	30.77		tage SIR,E 366.979 8.571e+00
27.80	28.00	28.20	28.40	28.60	28.80	29.00	29.20	29.40 2	9.60 2	9.80 30.00) 30.	20 30).40 30	.60 30	.80 3	1.00
	1		32.10 00 32.2		76;8.53e3;26 32.75		33.34		20018 34.1	34.49;5.786		· · · · ·		****	5.69	tage SIR,E 380.97 4.636e+0 36.00
8 79	36.25_36	3.47;2.67e3;	138990 36.	77_37.09;2.0	04e3;101459	37.39;2.	17e3;101346	37.91 38	.31;4.23e3;	124222 38.56	38.77	38.90;8.81	e3;139156	<u></u>	F4:Vol	tage SIR,E 430.97 2.597e+0
36.00	36.2	5 36.5	0 36.7	5 37.00) 37.25	37.50	37.75	38.00	38.25	38.50	38.75	39.00	39.25	39.50	39.75	40.00
-				D.E. 0E-0.070	22					41.59;8.70e2;6	4448					tage SIR,E
8 40.2	40.31;3.	43e3;97345	40.49	9;5.05e3;978		40.98;9	.26e3;205494	41.15	<u></u>		41	.72;3.38e3	;104510		42.05	454.972 1.622e+00
	18.97 1 19.00 27.79 27.80 5 3 9 36.00	18.97 19.09 19.00 19.50 27.79 28.07;3.7 27.80 28.00 31.54 3' 5 31.54 3' 9 36.25 36 36.00 36.2'	18.97 19.09 20.18;4.18 19.00 19.50 20.00 27.79 28.07;3.71e3;67541 27.80 28.00 28.20 31.54 31.75 5 31.50 31.75 9 36.25 36.47;2.67e3; 36.00 36.25 36.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.97 19.09 20.18;4.18e3;1? 1193 21.85 22.32;3.58e3;74093 22.92 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.4 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.4 27.79 28.07;3.71e3;67541 28.54;3.40e3;58564 29.00 29.04 29.12 29.58; 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.04 29.12 29.58; 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.20 31.54 31.75 32.10 32.76;8.53e3;260966 33.34 34 5 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.5 9 36.25 36.47;2.67e3;138990 36.77 37.09;2.04e3;101459 37.39;2.17e3;101346 36.00 36.25 36.50 36.75 37.00 37.25 37.50 37.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.97 19.09 20.18.4.18e3;17:1193 21.85 22.32,3.58e3;74093;22.9223,18:23,47 24.78;8.89e 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 27.79 28.07;3.71e3;67541 28.54;3.40e3;58564 29.00 29.04 29.12 29.58;3.81e3;72622 29.88;3.54e3;8366 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60 29.80 30.00 31.54 31.75 32.10 32.76;8.53e3;260966 33.34 34.01;2.96e4;320018 34.17 34.49;5.78 5 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34 9 36.25 36.47;2.67e3;138990 36.77 37.09;2.04e3;101459 37.39;2.17e3;101346 37.91 38.31;4.23e3;124222 38.56 3	18.97 19.09 20.18:4.18e3.11: 1193 21.45 22.32:3.58e3.74093 22.9223.18 23.47 24.76:8.89e3.122377 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 27.79 28.07;3.71e3.67541 28.54;3.40e3.58564 29.00 29.12 29.58;3.81e3;72622 29.88;3.54e3;83661 30.17 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60 29.80 30.00 30. 31.54 31.75 32.10 32.76;8.53e3.260966 33.34 34.01;2.96e4;320018 34.17 34.49;5.78e3;207041 5 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25	18.97 19.09 20.18.4.18e3;1:193 21.45 22.32:358e3;74093 22.9223;18 23.47 24.76;8.89e3;122377 25.42 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 27.79 28.07;3.71e3;67541 28.54;3.40e3;58564 29.00 29.12 29.58;3.81e3;72622 29.88;3.54e3;83661 30.17 30.31 27.80 28.00 28.20 28.40 28.60 26.80 29.00 29.20 29.40 29.60 29.80 30.00 30.20 30 31.54 31.75 32.10 32.76;8;53e3;260966 33.34 34.01;2.96e4;320018 34.17 34.49;5;78e3;207041 35.12 5 31.50 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 36.90;8.81 9 36.25 36.47;2:67e3;138990 36.77 37.09;2.04e3;101459 37.39;2:17e3;101346 37.91 38.31:4:23e3;124222 38.56 38.77 38.90;8.81 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>18.97 19.00 20.16.4.16e.3.15 19.30 21.85 22.32.3.56e.374093 22.922.3.18 23.47 24.768.8.999.3.122377 25.42 26.423.56e.3.106340 27.33 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 47.79 28.07.3.71e3.67541 28.54.3.40e3.58564 29.00 29.12 29.58.3.81e3.72622 29.88.3.54e3.83661 30.17 30.49 30.77 50.85 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.12 29.40 29.60 29.80 30.00 30.20 30.40 30.60 30.85 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60 29.80 30.00 30.20 30.40 30.60 30.80 3 31.54 31.54 31.75 32.10 32.76,8.53e3.260966 33.34 34.01.2.96e4.320018 34.17 34.49.5.78e3.207041 35.12.9.35e3.246442 35.69</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.97 19.00 20.16.4.16e.3.15 19.30 21.85 22.32.3.56e.374093 22.922.3.18 23.47 24.768.8.999.3.122377 25.42 26.423.56e.3.106340 27.33 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 47.79 28.07.3.71e3.67541 28.54.3.40e3.58564 29.00 29.12 29.58.3.81e3.72622 29.88.3.54e3.83661 30.17 30.49 30.77 50.85 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.12 29.40 29.60 29.80 30.00 30.20 30.40 30.60 30.85 27.80 28.00 28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60 29.80 30.00 30.20 30.40 30.60 30.80 3 31.54 31.54 31.75 32.10 32.76,8.53e3.260966 33.34 34.01.2.96e4.320018 34.17 34.49.5.78e3.207041 35.12.9.35e3.246442 35.69