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Abstract 

It is observed here that bootstrap confidence intervals constructed under i.i.d, assumptions 
turn out to be 'conservative' under non-i.i.d, models, and thus they can be regarded as fall-back 
devices in the non-i.i.d, situations where exact inference is not available. 
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1. Introduction 

Let X1 . . . . .  X, be an i.i.d. (independent and identically distributed) sample from 

a popula t ion with distribution G(. ). Let To be the parameter  of interest, for example 

the mean, the median, the variance, or  the correlat ion coefficient. Let F , ( . )  be the 

empirical distribution of  the Xi's, and let T, = T(X1,. . . ,  X,) be an est imator of T~. Let 
Y~ . . . . .  Y, be a boots t rap  sample, i.e. a r andom sample from F,( . ) ,  and T* be 7", 

computed  on Y/'s instead of  Xi's. If ~ ,  stands for the distribution of , / n ( T * -  7",) 
under /7 , ( .  ) and Bt stands for the tth quantile of A°,, then 

I , = ( T , - B a  _~/xfn, T,--B~/x/~) (1.1) 

is the s tandard boots t rap  confidence interval for To with an asymptot ic  coverage 

probabil i ty (1 - 2 ~ ) .  N o w  suppose that X1, . . . ,  X, are independent but not identically 

distributed. Is the confidence interval IB in (1.1) still of any value? The main goal of this 
paper is to show that the answer is actually yes. If we let Gi(- ) be the distribution of Xi 

and set (~ , ( s )=~ '=  1Gi(s)/n, then In is in fact a confidence interval for To, with an 
asymptot ic  coverage probabil i ty >~(1-2~).  We believe this observat ion is of 
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importance, given that a general exact inference for non-i.i.d, models is not available. 
This observation gives a rigorous justification to using i.i.d, bootstrap inference as 
a fail-back device in some non-i.i.d, situations. In addition to (1.1), the above nice 
property also holds for bootstrap confidence intervals constructed from the following 
bootstrap methods: the percentile method, the bootstrap-t method, the bias-corrected 
method, the accelerated bias-corrected method, the prepivoting method and the 
shortest length confidence intervals. (For the descriptions of these methods, see Efron 
(1979, 1985, 1987), Beran (1987), and Hall (1988).) Moreover, this property is not 
restricted to the bootstrap procedures only. It also holds for the jackknife confidence 
intervals. Detailed discussions on those other methods are given in Remarks (II) and 
(IV) in Section 4. 

Frequently, the collected data are not from a randomly selected sample, but rather 
from patients, customers or other objects as they come in for service during a certain 
period of time. These are samples of independent but nonidentical distributions. 
For  instance, suppose a car dealer has collected data on the degree of customer's 
satisfaction and on the period of trouble-free time from all his customers for a 
given year. Obviously, the dealer has ignored several variables on the customer side, 
such as the driving habit. Other such non-i.i.d, examples are: Data collected from 
patients treated in a period of time; patrons of a particular restaurant; viewers of a 
certain show. 

In these examples the average population (7, is not a well-defined fixed population 
but, for a large sample size n, it can be viewed as the representative population 
pertaining to an 'average' patient or customer. Now suppose that a bootstrap 
confidence interval 18 is given for the mean (or the median) of this supposed single 
underlying population. The same interval 1B can be shown to be a conservative 
confidence interval for the mean (or the median) of the average population. Note that 
the mean of the average population is the same as the average of the individual means. 
In the example of observing lifetime of patients, even though one is working with 
a wrong model, the interval In obtained this way is still a meaningful confidence 
interval for the 'average lifetime'. Roughly speaking, this means that in the absence of 
a single underlying population, the standard single population procedure is automati- 
cally doing the corresponding inference on the average population with the resulting 
coverage probability no less than the one that we are aiming for. 

The quantity T6, often has a nice interpretation, for example as the average mean, 
the ratio of two average means, the correlation coefficient between two average 
populations, the median of the average population, or the interquartile range of an 
average population. 

We present here an example of a non-i.i.d, situation in sample surveys where the 
average population (7, is actually the population of interest. Consider a survey 
designed to obtain the national median of a variable X such as the real-estate price, 
annual income, autoinsurance charge, etc. For  logistic reasons, suppose the data are 
collected state or county-wise and are put together to estimate the national median, or 
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some other parameter  such as a tr immed mean. If the regional sample sizes are 
proportional to the corresponding regional population sizes, the average population 
corresponding to the combined sample is exactly the same as the national population. 

In the case that the statistician is not provided with segmentwise data and he chooses 
to treat the entire sample as one, the theory presented in the article can be readily 
applied. For  instance, a bootstrap confidence interval for the median with 90% 
coverage probability based on the combined sample is a legitimate confidence interval 
for the national median of X with the asymptotic coverage probability somewhere 

between 90 and 100%. Of course, this confidence interval will be particularly mean- 
ingful if it has a 'reasonable'  width. 

The precise statement and proof  of this method for obtaining conservative confi- 
dence intervals for the mean are given in Section 2. In Section 3 we use a representa- 
tion approach to extend the results to some other commonly used statistics such as 
functions of (multivariate) means and quantiles. Even though confidence intervals for 
the mean obtained by the usual normal approximation can be shown to share this 

conservative inference phenomenon, we concentrate here only on the bootstrap 
method since it has a much greater range of applicability beyond the mean. For 

example, there are no obvious normal approximation methods for the two classes of 
statistics discussed in Section 3. Section 4 is devoted to various remarks, in particular 
one regarding the above phenomenon of conservative inference in the context of the 
product-limit estimator in survival analysis. 

2. Mean 

Consider the case of mean, i.e. using the sample mean 7",=X,,  to estimate the 

average population mean T~, = ~x d t~,(x). In this case IB = (2,  - B1 ~/x/n, X , -  B~/'x/n), 
where B, is the tth quantile of the distribution of x/n ( Y , -  X,), Y, being the mean of the 

bootstrap sample ?'1 . . . . .  Y,. Let f i , = ~ x d G , ( x ) ( = Z , " = ,  ui/n) where pi=~xdGAx), 
v, '2 -Xi=" 1 a.Z,/n with ~r 2 the variance of Gi, and define 

de " = 1 ~ (#,_fi,)z/ve"" 
n i -  1 

We shall refer to d~ as the heterogeneity factor, since it describes the total standardized 
heterogeneity among underlying p~'s. 

Theorem 1. Assume that E[Xi[2+~ ~ K for all i and for some positive 6 and K, and that 
lira inf . . . .  v~ 2 > 0. Then 

V(fi,~ls)-[2Cb(zl ~(1 +d2)1/2) - 13 -~0 a.s. (2.1) 

as n - ~ ,  where ~ ( . )  and zt stand, respectively, Jor the c.df  and tth quantile of the 
standard normal distribution. 
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Eq. (2.1) indicates clearly that the coverage probability of IB is asymptotically 

[ 2 ~ ( Z  1 _~(1 + d 2 ) 1 / 2 )  - 1] 

which is >i(1 -2c0,  since 2q~(zl _ , ) -  1 = 1 - 2 ~ .  The asymptotic coverage probability is 
equal to 1 -  2~ if and only if 527= l (Pi- f i )2/n  tends to 0, as observed in Liu (1988). In 
this case, the inference is asymptotically exact. The conservativeness in the inference is 
determined entirely by d, 2, which in some sense is measuring the heterogeneity of the 
means of #is. We obtain no excess coverage probability if d, z --* 0, i.e. ~7- I(Pi-fi)2/n ~0. 
The last condition indicates that the #~'s vary in a somewhat controlled manner, the 
variations diminishing in the long run. Of  course, this is automatically satisfied when 
the sampling populations have the same mean but different variances, such as Tukey's 

symmetric contamination model. On the other hand, if the populations are different in 
a more significant manner, both in their means and their variances, then we begin to 

observe the asserted excess coverage probability. Unless the difference among 
populations are more specified, exact inference seems to be highly unlikely. We 
therefore believe the standard bootstrap i.i.d, inference is useful here, even though it is 

conservative. 

Proof of Theorem 1. The key observation is that 

V d - v 2 ( 1  + d  2) --*0 a.s. (2.2) 

where vd=yv=I(Xi--X,)2/n is the variance of the bootstrap population. To verify 
(2.2) we rewrite V d as 

i=1 

which is equal to 

~, (Xi--IXi)2/rlq - ~ (#i--f~,)2/n+R, 
i=1 i=1 

with R, the sum of the remaining terms. The second term above is bounded since 
EIXiI2+~<~K for all i. We can show that R, ~ 0  a.s. by using a modified version of the 
Marcinkiewicz-Zygmund SLLN, e.g. Lemma 1 of Liu (1988). Similarly we can also 

, 2 0 a.s. The result therefore follows if we can establish show that 52i = 1 (Xi -  [Ai)2/FI - -  Un 

that 

II P(x/~(Z--  ft.)Iv. <~ x)-- q~(x)II ~ - - ,  o (2.3) 

and 

B,=z, vx/-~,(l+d2)+o(1) a.s. (2.4) 
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The statement (2.3) is a direct consequence of Lindberg Feller central limit theorem, 
while (2.4) follows from 

IIP*(x/n(~-X.)/V.<~x)-4~(x)ll~--,O a.s. (2.5) 

where P*(.  ) is the bootstrap probability conditional on X~'s. This last statement can 
be established by applying the Berry Esseen bound. 

3. Some general statistics 

3.1. Functions of  means 

We consider here a class of statistics which can be expressed as functions of 
means e.g. sample variance, coefficient of variation, ratio estimators, correlation 
coefficient, etc. 

In general such a statistic T, can be written as h(l~',) for some function h(. ), where 
, = ~ i = 1  Wi/n and W/=(gl(Xi) . . . . .  gk(Xi)). Here g l ( ' )  . . . . .  gk( ' )  are k functions 

defined on the original data set X~'s which are possibly multivariate. For example, the 
sample correlation coefficient between the two coordinates of X~=(Xil,X12), 
i=  1 . . . . .  n, can be viewed as a function of five means, namely, that of X~I, Xi2, Xs 2 , X/2 
and XilXi2. Let EWe=2, and 2 ,=~ '_12~/n .  Let W * = ( g l ( Y / )  . . . . .  gk(Yi)), 
i----1 . . . . .  n, where Y1 . . . . .  Y, is the bootstrap sample drawn with replacement from 

X1 . . . . .  X,. In other words W* . . . . .  W* may be viewed as a bootstrap sample of 
w l  . . . . .  w . .  

Under appropriate regularity conditions the following stochastic expansions hold: 

and 

h( W . ) -  h(L) = h' ()~). ( I~. - L )  + Op(n- 1), (3.1) 

h(W*) -h ( f f / , )=h ' ( f f / , ) . ( l~  * -  if',) + O*(n 1), (3.2) 

Set Z~=h'()~2). W~,Z*=h'(I~,) .  W*, and ri=EZ~, i=1  . . . . .  n. Then (3.1) and (3.2) 
become, respectively, 

h( ~F.)- h(2.) = ( 2 . -  ~.)+ Op(n- 1) (3.3) 

and 

h ( i ~ , ) _ h ( f f / ) = ( 2 } _ 2 . ) + O , ( n - 1 )  (3.4) 

since h ' (2 , ) -  h'(W,) = O p ( n  - 1/2) if h"(. ) is bounded. Here O*( .  ) stands for Op(. ) w.r.t. 
the bootstrap probability P*(.  ). If the remainders are ignored, then we are in exactly 
the same situation as the sample mean case of Section 2 after replacing Xi by Zi. In 
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particular, a similar phenomenon of conservative inference occurs for this general 
class of statistics. The heterogeneity factor in this case is 

d2 =-1 ( r j_  •) 2 Var(Zi). (3.5) 
n j = l  i=  

For (3.1) and (3.2) to hold we may use for instance the following set of regularity 
conditions: 

(i) h(-) is defined and admits bounded second-order derivatives on an open set 
C in ~k which contains 2, for all large n; 

(ii) E II w~ 112~<K for some positive constant K, for all i. 
The foregoing discussion can be summed up in the following theorem. 

Theorem 2. Let IB be a (1 -2~)  confidence interval of the parameter T~, where the 
required percentiles are obtained from the bootstrap distribution of ,,/n(h( i f ' * ) -  h(if',)). 
I f  the above regularity conditions (i) and (ii) hold, and 

then 

lim inf ~. Var(Zi)/n > 0, 
n ~  i = 1  

P(T6 elB)-[2Cb(za_.( l  +d2)l/2) - 1 ]  ~ 0  a.s. 

where d 2 is given by (3.5), 

(3.6) 

3.2. Quantiles 

The same phenomenon takes place for quantiles under proper conditions. To state 
the result we need the following representations for non-i.i.d, random samples. Let 
Q.,p= t~- l(p) be the pth quantile of iT. where t~-a(p) is defined as inf{x: t~.(x)~>p} 
for 0 < p < l .  Let F.-l(p)  and -1 F. . . (p)  be the pth quantiles of the empirical 
population F . ( . )  and the bootstrap population F . , . ( , ) ,  respectively, defined in 
similar fashion. 

Theorem 3. Assume that for all large n there exists a finite interval I such that Q.,p lies 
in I, that G.(. ) is twice differentiable with second derivative bounded in I, and that G'.(. ) 
is bounded away from zero. Then we have 

F.(Q. p ) - p  + o t t n _  F 2 1 ( P ) - Q " ' P = -  t~'.(Q.,p) ~ 11nn)3/4) a.s. 

and 

F,.,(Q,.,)-F,(Q..p) 4_ O , ( ( n _  1 In n) 3/4) F~. l*(p)--F21(P)= (~,(Q.,p) 

(3.7) 

a.s. (3.8) 
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The statement (3.7) is essentially the standard Bahadur representation, while (3.8) is 
its bootstrap version. The i.i.d, version of (3.7) is given in Bahadur (1967) and that of 
(3.8) in Babu and Singh (1984). The proof of Theorem 3 is similar to the proof of 
Theorem 5 of Babu and Singh (1984), and is omitted here. 

Let 

~i=llx,<~o.,.pi/CJ',(Q,,p), i= 1 . . . . .  n 

(n is suppressed in ~i for simplicity). The heterogeneity factor in this case is 

+2_1  ] 
[(Gj(Q.,p)-p)/G.(Q.,p)] / - _ Var(~i) . (3.9) 

n j = l  n i = l  

Corollary 3.1. Assume that the conditions of Theorem 3 hold and that 

lim inf ~ Var(~i)/n > O. 
n ~ ° c  i - I  

Then 

P(Q, .p6 I~ ) - [2~( z l  ,(1+d,2)1/2) - 1 ] ~ 0  a.s. 

where d 2 is given in (3.9) and In is the corresponding confidence interval, with coverage 

probability (1 -2~)  under i.i.d, setting. 

To conclude this section, we give an example which satisfies the conditions of both 
Theorem 3 and Corollary 3.1. 

Example. Gi(. )= F [ ( .  -#+)/ai] ,  with [#il ~c1 and C 2 ~ (7 i ~ C 3 for some positive con- 
stants cl, c2, c3, and a distribution function F which is twice differentiable on the real 
Line with bounded second derivative, and with its first derivative bounded away from 
zero on any given compact interval. 

4. Remarks 

(I) It is apparent from the results of the previous sections that the phenomenon of 
conservative inference exists for all statistics which admit linear representations, for 
example L- and M-estimators. For the bootstrap version of the representation for 
differentiable functionals, see Liu et al. (1989). 

(II) Similar phenomena also take place if the inference is based on the standard 
jackknife estimator of mean square error. However, in this context the applicability of 
the jackknife is more restricted in scope than that of the bootstrap. For example we 
can make valid inferences by bootstrap but not by standard jackknife in the case of 
median. On the other hand, in jackknifing such a nonsmooth functional, one may 
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want to resort to Shao and Wu's (1989) delete-d jackknife (with d ~oo),  which has 
been proved valid for jackknifing quantiles and can be shown to share the phenom- 
enon of conservative inference. 

(III) In Lo and Singh (1985) an asymptotic linear representation for the product- 

limit estimator based on i.i.d, censored data and its bootstrap version were obtained. 
Both representations can be extended to the case of nonidentically distributed but 
independent censored data. From this extension, it follows that a bootstrap confi- 
dence band for the survival distribution of i.i.d, case will be a conservative confidence 
band for the average survival distribution of the non-i.i.d, case. 

(IV) A simpler method for forming confidence intervals using the bootstrap is the 

percentile method proposed by Efron (1979). In this method one simply obtains the 
boots t rap histogram for T* (which is T, computed from the bootstrap sample). Let 
q,,, denote the tth quantile of the histogram. Then (q .... q,,1 ~) is the bootstrap 
percentile confidence interval of ( 1 -  2~) level. The described phenomenon of conser- 
vative inference holds for this percentile confidence interval. To see this we note that 

the confidence interval (q .... q,, 1-~) can be rewritten as (T,+B~/x/n, T ,+BI  a/x/n). 
Note also that Bt is asymptotically equivalent to [z, (the bootstrap estimator of the 
variance of x / n ( T , -  Tv))]. Since the bootstrap estimator overestimates the variance of 
x / n ( T , - T v )  in the non-i.i.d, case, we have the same phenomenon as before. 

Finally we briefly argue why confidence intervals based on bootstrap-t  method are 
also on the conservative side in our non-i.i.d, setting. For bootstrap-t  method, one 
bootstraps a studentized statistic such as ~ / n ( X , - # ) / S , .  Here the denominator  S, in 
general is some nonparametric  estimator of the standard error derived from the 
6-method or the jackknife method. The first-order approximation to the bootstrap-t  
interval is (T,--z~ ~S,/,f~, T,+z~ ~S,/x/n ). In the non-i.i.d, models, these estimates 
of the standard error overestimate the true standard error in limit, and consequently 
their corresponding bootstrap-t  confidence intervals have higher coverage probability 
in limit. Similarly, straightforward arguments show that bias-corrected and acceler- 
ated bias-corrected intervals (Efron, 1985, 1987), bootstrap confidence intervals based 
on prepivoting method discussed in Beran (1987), and the shortest length confidence 
intervals discussed in Hall (1988) all turn out to be conservative in the non-i.i.d. 
setting. As a matter  of fact, all above bootstrap confidence intervals have the same 
first-order limiting behavior, even though some of them have better higher-order 
properties, and since the phenomenon of conservative inference discussed in this 
article stems from the first-order property, they all share this phenomenon. 
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