

June 11, 2020

Vista Work Order No. 2000945

Ms. Delaney Peterson Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

Dear Ms. Peterson,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on April 28, 2020 under your Project Name 'Gasco PDI'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2000945 Case Narrative

Sample Condition on Receipt:

Eight sediment samples and two QC water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The EPA Method 1613 analyses for the QC water samples were assigned to Vista Work Order No. 2000947. The EPA method 1668 analysis of sample "PDI-146SC-A-00-01-200426" was assigned to Vista Work Order No. 2000974.

Analytical Notes:

EPA Method 1613B

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-5MS GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above 1/2 the quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

As requested, a duplicate was performed on sample "PDI-146SC-A-01-02-200426". The RPDs were outside of the acceptance criteria for 2,3,4,7,8-PeCDF; 2,3,4,6,7,8-HxCDF; and 1,2,3,4,7,8,9-HpCDF.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	18
Certifications	19
Sample Receipt	22
Extraction Information	26
Sample Data - EPA Method 1613	33
Confirmation	311
Continuing Calibration	323
Initial Calibration	419

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2000945-01	PDI-146SC-A-00-01-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-02	PDI-146SC-A-01-02-200426	DUP26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-03	PDI-146SC-A-02-03-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-04	PDI-146SC-A-03-04-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-05	PDI-146SC-A-04-05-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-06	PDI-146SC-A-05-06-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-07	PDI-146SC-A-06-07-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL
2000945-08	PDI-146SC-A-07-08-200426	26-Apr-20 08:53	28-Apr-20 09:04	Amber Glass, 120 mL

ANALYTICAL RESULTS

Sample ID: Method	l Blank							EPA Me	thod 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch: Date Extracted	B0D0306 : 28-Apr-2020 14:00			ab Sample: B0D0306-BLK1 ate Analyzed : 15-May-20 10:3		1S	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0604			IS	13C-2,3,7,8-TCDD	89.2	25 - 164	
1,2,3,7,8-PeCDD	ND	0.0469				13C-1,2,3,7,8-PeCDD	112	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.0678				13C-1,2,3,4,7,8-HxCDD	104	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.0720				13C-1,2,3,6,7,8-HxCDD	94.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.0756				13C-1,2,3,7,8,9-HxCDD	106	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.0610				13C-1,2,3,4,6,7,8-HpCDD	110	23 - 140	
OCDD	0.423			J		13C-OCDD	103	17 - 157	
2,3,7,8-TCDF	ND	0.0425				13C-2,3,7,8-TCDF	84.7	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0376				13C-1,2,3,7,8-PeCDF	108	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0344				13C-2,3,4,7,8-PeCDF	108	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0436				13C-1,2,3,4,7,8-HxCDF	98.3	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0424				13C-1,2,3,6,7,8-HxCDF	92.6	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0441				13C-2,3,4,6,7,8-HxCDF	99.4	28 - 136	
1,2,3,7,8,9-HxCDF	0.0633			J		13C-1,2,3,7,8,9-HxCDF	102	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0704				13C-1,2,3,4,6,7,8-HpCDF	100	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0727				13C-1,2,3,4,7,8,9-HpCDF	114	26 - 138	
OCDF	ND	0.0642				13C-OCDF	106	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	87.8	35 - 197	
						Toxic Equivalent Quotient (T	EQ) Data (pg/g dr	y wt)	
						TEQMinWHO2005Dioxin	0.00646		
TOTALS									
Total TCDD	ND	0.0604							
Total PeCDD	ND	0.0469							
Total HxCDD	ND	0.0756							
Total HpCDD	ND	0.0610							
Total TCDF	ND	0.0425							
Total PeCDF	ND	0.0376							
Total HxCDF	0.0633		0.0900						
Total HpCDF	ND	0.0727				T I arrian control limit annual control li			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: OPR								EPA Method 1613B
Matrix:SolidSample Size:10.0 g			B0D0306 28-Apr-2020	0 14:00		Lab Sample:B0D0306-BS1Date Analyzed:15-May-20 09:01	Column: ZB-5MS	
Analyte	Amt Found (pg/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	17.5	20.0	87.3	67 - 158	IS	13C-2,3,7,8-TCDD	80.6	20 - 175
1,2,3,7,8-PeCDD	89.7	100	89.7	70 - 142		13C-1,2,3,7,8-PeCDD	96.6	21 - 227
1,2,3,4,7,8-HxCDD	96.5	100	96.5	70 - 164		13C-1,2,3,4,7,8-HxCDD	93.3	21 - 193
1,2,3,6,7,8-HxCDD	99.3	100	99.3	76 - 134		13C-1,2,3,6,7,8-HxCDD	83.6	25 - 163
1,2,3,7,8,9-HxCDD	98.3	100	98.3	64 - 162		13C-1,2,3,7,8,9-HxCDD	94.7	21 - 193
1,2,3,4,6,7,8-HpCDD	100	100	100	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	98.5	26 - 166
OCDD	198	200	99.2	78 - 144		13C-OCDD	93.8	13 - 199
2,3,7,8-TCDF	19.6	20.0	98.1	75 - 158		13C-2,3,7,8-TCDF	77.7	22 - 152
1,2,3,7,8-PeCDF	96.2	100	96.2	80 - 134		13C-1,2,3,7,8-PeCDF	95.5	21 - 192
2,3,4,7,8-PeCDF	95.8	100	95.8	68 - 160		13C-2,3,4,7,8-PeCDF	95.4	13 - 328
1,2,3,4,7,8-HxCDF	106	100	106	72 - 134		13C-1,2,3,4,7,8-HxCDF	87.4	19 - 202
1,2,3,6,7,8-HxCDF	104	100	104	84 - 130		13C-1,2,3,6,7,8-HxCDF	83.6	21 - 159
2,3,4,6,7,8-HxCDF	105	100	105	70 - 156		13C-2,3,4,6,7,8-HxCDF	88.2	22 - 176
1,2,3,7,8,9-HxCDF	105	100	105	78 - 130		13C-1,2,3,7,8,9-HxCDF	92.8	17 - 205
1,2,3,4,6,7,8-HpCDF	109	100	109	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	89.1	21 - 158
1,2,3,4,7,8,9-HpCDF	108	100	108	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	105	20 - 186
OCDF	212	200	106	63 - 170		13C-OCDF	94.8	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	94.9	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: PDI-14	6SC-A-00-01-200426							EPA Me	thod 1613E
Project: Gasco	or QEA, LLC 9 PDI 9r-2020 8:53	Matr	ple Size: 14.3 g	:	Lal QC	•	Date Recei Date Extra 0 Column: ZB- 3 Column: DB-	cted: 28-Apr-2020 5MS	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.400			J	IS	13C-2,3,7,8-TCDD	90.3	25 - 164	
1,2,3,7,8-PeCDD	ND		0.597			13C-1,2,3,7,8-PeCDD	85.2	25 - 181	
1,2,3,4,7,8-HxCDD	0.794			J		13C-1,2,3,4,7,8-HxCDD	94.2	32 - 141	
1,2,3,6,7,8-HxCDD	3.19					13C-1,2,3,6,7,8-HxCDD	87.1	28 - 130	
1,2,3,7,8,9-HxCDD	1.65			J		13C-1,2,3,7,8,9-HxCDD	90.2	32 - 141	
1,2,3,4,6,7,8-HpCDD	97.9					13C-1,2,3,4,6,7,8-HpCDD	84.1	23 - 140	
OCDD	1010			В		13C-OCDD	77.3	17 - 157	
2,3,7,8-TCDF	7.16					13C-2,3,7,8-TCDF	86.6	24 - 169	
1,2,3,7,8-PeCDF	9.95					13C-1,2,3,7,8-PeCDF	87.8	24 - 185	
2,3,4,7,8-PeCDF	4.85					13C-2,3,4,7,8-PeCDF	86.3	21 - 178	
1,2,3,4,7,8-HxCDF	20.3					13C-1,2,3,4,7,8-HxCDF	86.6	26 - 152	
1,2,3,6,7,8-HxCDF	6.09					13C-1,2,3,6,7,8-HxCDF	80.9	26 - 123	
2,3,4,6,7,8-HxCDF	2.61					13C-2,3,4,6,7,8-HxCDF	82.9	28 - 136	
1,2,3,7,8,9-HxCDF	1.24			J, B		13C-1,2,3,7,8,9-HxCDF	91.1	29 - 147	
1,2,3,4,6,7,8-HpCDF	28.1					13C-1,2,3,4,6,7,8-HpCDF	79.8	28 - 143	
1,2,3,4,7,8,9-HpCDF	4.44					13C-1,2,3,4,7,8,9-HpCDF	85.5	26 - 138	
OCDF	53.1					13C-OCDF	75.1	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	85.1	35 - 197	
						Toxic Equivalent Quotient (TH	EQ) Data (pg/g	dry wt)	
						TEQMinWHO2005Dioxin	8.08		
TOTALS									
Total TCDD	3.09		4.14						
Total PeCDD	14.5		16.9						
Total HxCDD	54.0		55.6						
Total HpCDD	223								
Total TCDF	32.9		37.4						
Total PeCDF	37.2		40.9						
Total HxCDF	55.8			В					
Total HpCDF	71.7								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PDI-14	6SC-A-01-02-20042	6						EPA Me	thod 1613B
Project: Gasco	or QEA, LLC o PDI pr-2020 8:53	Matr Sam	le Data ix: Sediment ple Size: 12.0 g blids: 88.0	i .	La QC	-	Date Recei Date Extra 6 Column: ZB- 95 Column: DB-	cted: 28-Apr-2020 5MS	
Analyte Conc.	. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.361			J	IS	13C-2,3,7,8-TCDD	76.7	25 - 164	
1,2,3,7,8-PeCDD	ND		0.305			13C-1,2,3,7,8-PeCDD	76.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.232				13C-1,2,3,4,7,8-HxCDD	86.9	32 - 141	
1,2,3,6,7,8-HxCDD	0.725			J		13C-1,2,3,6,7,8-HxCDD	80.6	28 - 130	
1,2,3,7,8,9-HxCDD	0.400			J		13C-1,2,3,7,8,9-HxCDD	85.6	32 - 141	
1,2,3,4,6,7,8-HpCDD	23.7					13C-1,2,3,4,6,7,8-HpCDD	80.0	23 - 140	
OCDD	238			В		13C-OCDD	80.1	17 - 157	
2,3,7,8-TCDF	6.25					13C-2,3,7,8-TCDF	72.1	24 - 169	
1,2,3,7,8-PeCDF	5.67					13C-1,2,3,7,8-PeCDF	80.1	24 - 185	
2,3,4,7,8-PeCDF	2.66					13C-2,3,4,7,8-PeCDF	81.0	21 - 178	
1,2,3,4,7,8-HxCDF	7.99					13C-1,2,3,4,7,8-HxCDF	78.5	26 - 152	
1,2,3,6,7,8-HxCDF	2.40					13C-1,2,3,6,7,8-HxCDF	74.6	26 - 123	
2,3,4,6,7,8-HxCDF	0.681			J		13C-2,3,4,6,7,8-HxCDF	78.2	28 - 136	
1,2,3,7,8,9-HxCDF	0.251			J, B		13C-1,2,3,7,8,9-HxCDF	85.5	29 - 147	
1,2,3,4,6,7,8-HpCDF	6.12					13C-1,2,3,4,6,7,8-HpCDF	74.4	28 - 143	
1,2,3,4,7,8,9-HpCDF	1.67			J		13C-1,2,3,4,7,8,9-HpCDF	82.7	26 - 138	
OCDF	14.3					13C-OCDF	76.9	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	78.7	35 - 197	
						Toxic Equivalent Quotient (TE	EQ) Data (pg/g	dry wt)	
						TEQMinWHO2005Dioxin	3.59		
TOTALS									
Total TCDD	0.876								
Total PeCDD	0.820		1.13						
Total HxCDD	8.14								
Total HpCDD	56.7								
Total TCDF	22.4		27.1						
Total PeCDF	18.7		20.7						
Total HxCDF	17.2			В					
Total HpCDF DL - Sample specifc esti	16.1								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: Du	plicate							EPA Met	1613B
Source Client ID: Source LabNumber: Matrix: Sample Size:	PDI-146SC-A-01-02-200426 2000945-02 Solid 11.4 g		QC Batch: Date Extracted:	B0D0306 28-Apr-2020 14:00	Lab Sa Date A	mple: B0D0306-DUP1 nalyzed: 04-Jun-20 16:31 Colu 09-Jun-20 16:37 Colu			
Analyte	Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.375			J	IS	13C-2,3,7,8-TCDD	77.8	25 - 164	
1,2,3,7,8-PeCDD	ND		0.204			13C-1,2,3,7,8-PeCDD	79.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.234				13C-1,2,3,4,7,8-HxCDD	87.0	32 - 141	
1,2,3,6,7,8-HxCDD	0.815			J		13C-1,2,3,6,7,8-HxCDD	82.1	28 - 130	
1,2,3,7,8,9-HxCDD	0.417			J		13C-1,2,3,7,8,9-HxCDD	85.5	32 - 141	
1,2,3,4,6,7,8-HpCDD	24.1					13C-1,2,3,4,6,7,8-HpCDD	84.4	23 - 140	
OCDD	294			В		13C-OCDD	83.4	17 - 157	
2,3,7,8-TCDF	5.87					13C-2,3,7,8-TCDF	70.5	24 - 169	
1,2,3,7,8-PeCDF	4.81					13C-1,2,3,7,8-PeCDF	81.8	24 - 185	
2,3,4,7,8-PeCDF	2.05			J		13C-2,3,4,7,8-PeCDF	82.3	21 - 178	
1,2,3,4,7,8-HxCDF	9.13					13C-1,2,3,4,7,8-HxCDF	81.5	26 - 152	
1,2,3,6,7,8-HxCDF	2.58					13C-1,2,3,6,7,8-HxCDF	75.5	26 - 123	
2,3,4,6,7,8-HxCDF	0.880			J		13C-2,3,4,6,7,8-HxCDF	81.4	28 - 136	
1,2,3,7,8,9-HxCDF	0.217			J, B		13C-1,2,3,7,8,9-HxCDF	87.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	7.62					13C-1,2,3,4,6,7,8-HpCDF	78.9	28 - 143	
1,2,3,4,7,8,9-HpCDF	2.39			J		13C-1,2,3,4,7,8,9-HpCDF	87.8	26 - 138	
OCDF	18.0					13C-OCDF	82.7	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	90.3	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g dı	y wt)	
						TEQMinWHO2005Dioxin	3.56		
TOTALS									
Total TCDD	1.15		2.70						
Total PeCDD	1.42		2.31						
Total HxCDD	9.07								
Total HpCDD	56.9								
Total TCDF	29.9		32.2						
Total PeCDF	19.9								
Total HxCDF	19.3			В					
Total HpCDF	19.4								

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet

Sample ID: Du	plicate							EPA Me	thod 1613B
Source Client ID: Source LabNumber: Matrix:	PDI-146SC-A-01-02-200426 2000945-02 Solid	5			Duplica	te Lab Sample: B0D0306-	DUP1		
Analyte	Dup Conc. (pg/g)	Source Conc.	RPD	RPD Limits		Labeled Standard	Dup %R	Source %R	LCL-UCL
2,3,7,8-TCDD	0.375	0.361	3.82	25	IS	13C-2,3,7,8-TCDD	77.8	76.7	25 - 164
1,2,3,7,8-PeCDD	ND	ND	NA	25		13C-1,2,3,7,8-PeCDD	79.6	76.4	25 - 181
1,2,3,4,7,8-HxCDD	ND	ND	NA	25		13C-1,2,3,4,7,8-HxCDD	87.0	86.9	32 - 141
1,2,3,6,7,8-HxCDD	0.815	0.725	11.7	25		13C-1,2,3,6,7,8-HxCDD	82.1	80.6	28 - 130
1,2,3,7,8,9-HxCDD	0.417	0.400	4.36	25		13C-1,2,3,7,8,9-HxCDD	85.5	85.6	32 - 141
1,2,3,4,6,7,8-HpCDD	24.1	23.7	1.76	25		13C-1,2,3,4,6,7,8-HpCDD	84.4	80.0	23 - 140
OCDD	294	238	20.8	25		13C-OCDD	83.4	80.1	17 - 157
2,3,7,8-TCDF	5.87	6.25	6.25	25		13C-2,3,7,8-TCDF	70.5	72.1	24 - 169
1,2,3,7,8-PeCDF	4.81	5.67	16.3	25		13C-1,2,3,7,8-PeCDF	81.8	80.1	24 - 185
2,3,4,7,8-PeCDF	2.05	2.66	25.7	25		13C-2,3,4,7,8-PeCDF	82.3	81.0	21 - 178
1,2,3,4,7,8-HxCDF	9.13	7.99	13.3	25		13C-1,2,3,4,7,8-HxCDF	81.5	78.5	26 - 152
1,2,3,6,7,8-HxCDF	2.58	2.40	7.30	25		13C-1,2,3,6,7,8-HxCDF	75.5	74.6	26 - 123
2,3,4,6,7,8-HxCDF	0.880	0.681	25.6	25		13C-2,3,4,6,7,8-HxCDF	81.4	78.2	28 - 136
1,2,3,7,8,9-HxCDF	0.217	0.251	14.5	25		13C-1,2,3,7,8,9-HxCDF	87.2	85.5	29 - 147
1,2,3,4,6,7,8-HpCDF	7.62	6.12	21.8	25		13C-1,2,3,4,6,7,8-HpCDF	78.9	74.4	28 - 143
1,2,3,4,7,8,9-HpCDF	2.39	1.67	35.2	25		13C-1,2,3,4,7,8,9-HpCDF	87.8	82.7	26 - 138
OCDF	18.0	14.3	23.0	25		13C-OCDF	82.7	76.9	17 - 157
					CRS	37Cl-2,3,7,8-TCDD	90.3	78.7	35 - 197

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.Results

reported to the MDL

Sample ID: PDI-14	6SC-A-02-03-200426							EPA Me	thod 1613B
Project: Gasco	or QEA, LLC o PDI or-2020 8:53	Sample Matri Samp % Sol	x: Sediment le Size: 12.1 g		Lat QC	boratory Data o Sample: 2000945-03 Batch: B0D0306 te Analyzed : 04-Jun-20 17:10	Date Receive Date Extracte 6 Column: ZB-5M	•	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.120			IS	13C-2,3,7,8-TCDD	92.2	25 - 164	
1,2,3,7,8-PeCDD	ND	0.133				13C-1,2,3,7,8-PeCDD	87.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.168				13C-1,2,3,4,7,8-HxCDD	97.0	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.174				13C-1,2,3,6,7,8-HxCDD	94.4	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.181				13C-1,2,3,7,8,9-HxCDD	97.3	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.713			J		13C-1,2,3,4,6,7,8-HpCDD	91.7	23 - 140	
OCDD	5.05			В		13C-OCDD	93.3	17 - 157	
2,3,7,8-TCDF	ND	0.0851				13C-2,3,7,8-TCDF	86.9	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0630				13C-1,2,3,7,8-PeCDF	94.7	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0583				13C-2,3,4,7,8-PeCDF	94.6	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0732				13C-1,2,3,4,7,8-HxCDF	92.8	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0779				13C-1,2,3,6,7,8-HxCDF	86.7	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0768				13C-2,3,4,6,7,8-HxCDF	92.4	28 - 136	
1,2,3,7,8,9-HxCDF	ND		0.0708			13C-1,2,3,7,8,9-HxCDF	98.1	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.108				13C-1,2,3,4,6,7,8-HpCDF	88.5	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.109				13C-1,2,3,4,7,8,9-HpCDF	96.5	26 - 138	
OCDF	ND	0.154				13C-OCDF	92.1	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	92.8	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g dry	v wt)	
						TEQMinWHO2005Dioxin	0.00865		
TOTALS									
Total TCDD	ND		0.111						
Total PeCDD	ND	0.133							
Total HxCDD	0.493		0.636						
Total HpCDD	1.90								
Total TCDF	ND	0.0851							
Total PeCDF	ND	0.0630							
Total HxCDF	ND		0.0708						
Total HpCDF	ND	0.109							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PDI-14	6SC-A-03-04-200	426						EPA Me	thod 1613B
Project: Gasco	or QEA, LLC 9 PDI 9r-2020 8:53	Sample Matrix Sampl % Soli	: Sediment e Size: 13.0 g		Lal QC	boratory Data o Sample: 2000945-04 c Batch: B0D0306 te Analyzed : 03-Jun-20 21:2	Date Rece Date Extra 6 Column: ZB-	cted: 28-Apr-2020	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.122			IS	13C-2,3,7,8-TCDD	89.9	25 - 164	
1,2,3,7,8-PeCDD	ND	0.121				13C-1,2,3,7,8-PeCDD	89.9	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.171				13C-1,2,3,4,7,8-HxCDD	105	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.175				13C-1,2,3,6,7,8-HxCDD	93.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.192				13C-1,2,3,7,8,9-HxCDD	98.9	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND		0.441			13C-1,2,3,4,6,7,8-HpCDD	88.9	23 - 140	
OCDD	3.83			J, B		13C-OCDD	87.9	17 - 157	
2,3,7,8-TCDF	ND	0.0964				13C-2,3,7,8-TCDF	81.8	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0776				13C-1,2,3,7,8-PeCDF	89.1	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0703				13C-2,3,4,7,8-PeCDF	90.5	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0847				13C-1,2,3,4,7,8-HxCDF	91.2	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0884				13C-1,2,3,6,7,8-HxCDF	86.6	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0947				13C-2,3,4,6,7,8-HxCDF	91.1	28 - 136	
1,2,3,7,8,9-HxCDF	0.122			J, B		13C-1,2,3,7,8,9-HxCDF	99.8	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.121				13C-1,2,3,4,6,7,8-HpCDF	86.6	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.118				13C-1,2,3,4,7,8,9-HpCDF	96.6	26 - 138	
OCDF	ND	0.119				13C-OCDF	82.7	17 - 157	
					CRS	37C1-2,3,7,8-TCDD	95.5	35 - 197	
						Toxic Equivalent Quotient (TE	CQ) Data (pg/g	dry wt)	
						TEQMinWHO2005Dioxin	0.0133		
TOTALS									
Total TCDD	0.182								
Total PeCDD	ND	0.121							
Total HxCDD	0.446								
Total HpCDD	0.987		1.43						
Total TCDF	ND	0.0964							
Total PeCDF	ND	0.0776							
Total HxCDF	0.122			В					
Total HpCDF	ND	0.121							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PDI-14	6SC-A-04-05-200426							EPA Me	thod 1613B
Project: Gasco	or QEA, LLC o PDI pr-2020 8:53	Sample I Matrix: Sample % Solic	Sediment Size: 11.7 g		Lat QC	boratory Data o Sample: 2000945-05 b Batch: B0D0306 te Analyzed : 04-Jun-20 18:0	Date Received: Date Extracted: 1 Column: ZB-5MS	28-Apr-2020	
Analyte Conc.	. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0894			IS	13C-2,3,7,8-TCDD	94.1	25 - 164	
1,2,3,7,8-PeCDD	ND	0.125				13C-1,2,3,7,8-PeCDD	93.1	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.165				13C-1,2,3,4,7,8-HxCDD	105	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.156				13C-1,2,3,6,7,8-HxCDD	98.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.174				13C-1,2,3,7,8,9-HxCDD	102	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.680			J		13C-1,2,3,4,6,7,8-HpCDD	96.3	23 - 140	
OCDD	5.18			В		13C-OCDD	96.8	17 - 157	
2,3,7,8-TCDF	ND	0.0805				13C-2,3,7,8-TCDF	89.8	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0569				13C-1,2,3,7,8-PeCDF	102	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0647				13C-2,3,4,7,8-PeCDF	101	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0704				13C-1,2,3,4,7,8-HxCDF	96.4	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0762				13C-1,2,3,6,7,8-HxCDF	89.8	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0772				13C-2,3,4,6,7,8-HxCDF	96.9	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.104				13C-1,2,3,7,8,9-HxCDF	105	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.119				13C-1,2,3,4,6,7,8-HpCDF	92.3	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.110				13C-1,2,3,4,7,8,9-HpCDF	101	26 - 138	
OCDF	ND	0.157				13C-OCDF	93.7	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	90.8	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g dry v	vt)	
						TEQMinWHO2005Dioxin	0.00835		
TOTALS									
Total TCDD	ND	0.0894							
Total PeCDD	ND	0.125							
Total HxCDD	0.427		0.556						
Total HpCDD	1.74								
Total TCDF	ND	0.0805							
Total PeCDF	ND	0.0647							
Total HxCDF	ND	0.104							
Total HpCDF	ND	0.119							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PDI-14	6SC-A-05-06-200426			EPA Method 16
Project: Gasco	or QEA, LLC o PDI pr-2020 8:53	Sample DataMatrix:SedimentSample Size:12.8 g% Solids:87.6		Laboratory DataLab Sample:2000945-06Date Received:28-Apr-20209:04QC Batch:B0D0306Date Extracted:28-Apr-202014:00Date Analyzed :03-Jun-2022:56Column: ZB-5MS
Analyte Conc.	. (pg/g)	DL EMPC	Qualifiers	Labeled Standard %R LCL-UCL Qualit
2,3,7,8-TCDD	ND	0.100		IS 13C-2,3,7,8-TCDD 93.2 25 - 164
1,2,3,7,8-PeCDD	ND	0.135		13C-1,2,3,7,8-PeCDD 89.9 25 - 181
1,2,3,4,7,8-HxCDD	ND	0.201		13C-1,2,3,4,7,8-HxCDD 103 32 - 141
1,2,3,6,7,8-HxCDD	ND	0.203		13C-1,2,3,6,7,8-HxCDD 97.0 28 - 130
1,2,3,7,8,9-HxCDD	ND	0.228		13C-1,2,3,7,8,9-HxCDD 99.0 32 - 141
1,2,3,4,6,7,8-HpCDD	0.953		J	13C-1,2,3,4,6,7,8-HpCDD 90.2 23 - 140
OCDD	6.74		В	13C-OCDD 93.7 17 - 157
2,3,7,8-TCDF	ND	0.0624		13C-2,3,7,8-TCDF 88.8 24 - 169
1,2,3,7,8-PeCDF	ND	0.0484		13C-1,2,3,7,8-PeCDF 88.4 24 - 185
2,3,4,7,8-PeCDF	ND	0.0490		13C-2,3,4,7,8-PeCDF 88.5 21 - 178
1,2,3,4,7,8-HxCDF	ND	0.0674		13C-1,2,3,4,7,8-HxCDF 92.6 26 - 152
1,2,3,6,7,8-HxCDF	ND	0.0696		13C-1,2,3,6,7,8-HxCDF 88.2 26 - 123
2,3,4,6,7,8-HxCDF	ND	0.0729		13C-2,3,4,6,7,8-HxCDF 91.4 28 - 136
1,2,3,7,8,9-HxCDF	ND	0.0975		13C-1,2,3,7,8,9-HxCDF 96.1 29 - 147
1,2,3,4,6,7,8-HpCDF	ND	0.110		13C-1,2,3,4,6,7,8-HpCDF 90.6 28 - 143
1,2,3,4,7,8,9-HpCDF	ND	0.109		13C-1,2,3,4,7,8,9-HpCDF 96.3 26 - 138
OCDF	ND	0.116		13C-OCDF 84.9 17 - 157
				CRS 37C1-2,3,7,8-TCDD 99.4 35 - 197
				Toxic Equivalent Quotient (TEQ) Data (pg/g dry wt)
				TEQMinWHO2005Dioxin 0.0116
TOTALS				
Total TCDD	ND	0.169		
Total PeCDD	0.141	0.233		
Total HxCDD	0.701	0.952		
Total HpCDD	2.51			
Total TCDF	ND	0.0624		
Total PeCDF	ND	0.0490		
Total HxCDF	ND	0.0975		
Total HpCDF	ND	0.110		

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PDI-14	6SC-A-06-07-200426							EPA Me	thod 1613B
Project: Gasco	or QEA, LLC o PDI or-2020 8:53	Sample Matriz Sampl % Sol	x: Sediment le Size: 14.1 g		Lat QC	boratory Data 5 Sample: 2000945-07 2 Batch: B0D0306 te Analyzed : 03-Jun-20 23:4	Date Extra	•	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.103			IS	13C-2,3,7,8-TCDD	76.2	25 - 164	
1,2,3,7,8-PeCDD	ND	0.117				13C-1,2,3,7,8-PeCDD	82.3	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.130				13C-1,2,3,4,7,8-HxCDD	99.5	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.127				13C-1,2,3,6,7,8-HxCDD	93.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.146				13C-1,2,3,7,8,9-HxCDD	98.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	1.44			J		13C-1,2,3,4,6,7,8-HpCDD	92.5	23 - 140	
OCDD	11.9			В		13C-OCDD	90.6	17 - 157	
2,3,7,8-TCDF	ND	0.0774				13C-2,3,7,8-TCDF	67.2	24 - 169	
1,2,3,7,8-PeCDF	ND		0.0503			13C-1,2,3,7,8-PeCDF	81.0	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0664				13C-2,3,4,7,8-PeCDF	81.3	21 - 178	
1,2,3,4,7,8-HxCDF	ND		0.163			13C-1,2,3,4,7,8-HxCDF	87.8	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0724				13C-1,2,3,6,7,8-HxCDF	83.9	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0716				13C-2,3,4,6,7,8-HxCDF	90.8	28 - 136	
1,2,3,7,8,9-HxCDF	0.0932			J, B		13C-1,2,3,7,8,9-HxCDF	94.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	0.176			J		13C-1,2,3,4,6,7,8-HpCDF	89.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.108				13C-1,2,3,4,7,8,9-HpCDF	96.4	26 - 138	
OCDF	ND		0.0983			13C-OCDF	82.7	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	77.8	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g o	lry wt)	
						TEQMinWHO2005Dioxin	0.0291		
TOTALS									
Total TCDD	ND		0.0700						
Total PeCDD	ND	0.117							
Total HxCDD	0.631		0.889						
Total HpCDD	3.21								
Total TCDF	0.0733								
Total PeCDF	ND		0.0503						
Total HxCDF	0.0932		0.256	В					
Total HpCDF	0.176								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PDI-14	6SC-A-07-08-200	426					EPA Me	thod 1613B
Project: Gasco	or QEA, LLC o PDI pr-2020 8:53	Sample Size:	Sediment 13.2 g 75.7	Lab QC I	oratory Data Sample: 2000945-08 Batch: B0D0306 e Analyzed : 04-Jun-20 00:2'	Date Recei Date Extra 7 Column: ZB-	cted: 28-Apr-2020	
Analyte Conc.	. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0913		IS	13C-2,3,7,8-TCDD	95.0	25 - 164	
1,2,3,7,8-PeCDD	ND	0.114			13C-1,2,3,7,8-PeCDD	91.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.124			13C-1,2,3,4,7,8-HxCDD	106	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.123			13C-1,2,3,6,7,8-HxCDD	96.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.146			13C-1,2,3,7,8,9-HxCDD	99.6	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.204		J		13C-1,2,3,4,6,7,8-HpCDD	97.3	23 - 140	
OCDD	1.21		J, B		13C-OCDD	97.3	17 - 157	
2,3,7,8-TCDF	ND	0.0610			13C-2,3,7,8-TCDF	87.6	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0546			13C-1,2,3,7,8-PeCDF	88.7	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0570			13C-2,3,4,7,8-PeCDF	90.0	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0593			13C-1,2,3,4,7,8-HxCDF	94.3	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0646			13C-1,2,3,6,7,8-HxCDF	88.8	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0659			13C-2,3,4,6,7,8-HxCDF	93.2	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0697			13C-1,2,3,7,8,9-HxCDF	99.3	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0868			13C-1,2,3,4,6,7,8-HpCDF	93.9	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0798			13C-1,2,3,4,7,8,9-HpCDF	99.3	26 - 138	
OCDF	ND	0.115			13C-OCDF	89.3	17 - 157	
				CRS	37Cl-2,3,7,8-TCDD	98.1	35 - 197	
					Toxic Equivalent Quotient (TE	Q) Data (pg/g o	dry wt)	
					TEQMinWHO2005Dioxin	0.00240		
TOTALS								
Total TCDD	ND	0.0913						
Total PeCDD	ND	0.114						
Total HxCDD	0.127							
Total HpCDD	0.501							
Total TCDF	ND	0.0428						
Total PeCDF	ND	0.0570						
Total HxCDF	ND	0.0697						
Total HpCDF	ND	0.0868						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl
	ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue								
Description of Test	Method							
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B							
Dilution GC/HRMS								
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A							
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C							
by GC/HRMS								
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699							
HRGC/HRMS								
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537							
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B							
GC/HRMS								
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA							
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A							

MATRIX: Drinking Water							
Description of Test	Method						
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613/1613B						
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009						

MATRIX: Non-Potable Water							
Description of Test	Method						
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B						
Dilution GC/HRMS							
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A						
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C						
by GC/HRMS							
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Dioxin by GC/HRMS	EPA 613						
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B						
Dibenzofurans by GC/HRMS							
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA						
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A						

MATRIX: Solids							
Description of Test	Method						
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613						
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A						
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B						
Dibenzofurans by GC/HRMS							
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA						
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A						

POC	1605 Cornwall Avenue, Bellingha	m, WA		Client: NV	asco PDI V Natura		2000945 4.3°C	COC ID: Sample Custodian: Lab:	VISTA-202004 SN VISTA	126-095509
COC Sampl Numbe	e Field Sample ID	Sample Type	Matrix	Collected Date Tim	Containers	Lab ⊈QC*	Test Request	Method	TAT**	Preservative
001	PDI-FB-2004261231	FB.	WQ	04/26/2020 12:30	0 2				and the second	
			2				Dioxin/Furans	E1613B	30	4°C
002	PDI-RB-2004261300	RB	WQ	04/26/2020 13:00	0 2	$\left[\Box \right]$			A Vight A Loris Actor LAS	an Schuleren Guiss.
	$\label{eq:phi} (a_1,a_2,a_3,a_4,a_4,a_4,a_5,a_6,a_7,a_7,a_7,a_7,a_7,a_7,a_7,a_7,a_7,a_7$	1	-90				Dioxin/Furans	E1613B	30	4°C
003	PDI-146SC-A-00-01-200426	N	SE	04/26/2020 8:53	3 1		C. S. M. M. S. Land, J. S. M. S. Martin and M. Land	AND THE REPORT OF THE REPORT OF THE PARTY OF	Rept Colors Data South Street	The advect of the law 2 million
000				0.000			Dioxin/Furans	E1613B	7	4°C
							PCB Congeners (K)	E1668A	/	4°C
							Total solids (VISTA)	SM2540G	7	4°C
0.01			05	0.4/00/0000 0.5/					and other and a second where	un de de la compactante de la compacta
004	PDI-146SC-A-01-02-200426	N	SE	04/26/2020 8:53	3 1		S. C. & LEWIS TO DE MARK MERSEN MARKET AND A CONTRACT OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPA DESCRIPTON OF A DESC		an and the second s	400
							Dioxin/Furans	E1613B	7	4°C
			T —				Total solids (VISTA)	SM2540G	7	40
005	PDI-146SC-A-02-03-200426	N	SE	04/26/2020 8:53	3 1		A STATE OF	A CONTRACT OF A	and the barrier	· · · · · · · · · · · · · · · · · · ·
							Dioxin/Furans	E1613B	7	4°C
							Total solids (VISTA)	SM2540G	7	4°C
006	PDI-146SC-A-03-04-200426	N	SE	04/26/2020 8:53	3 1					
						<u> </u>	Dioxin/Furans	E1613B	7	4°C
							Total solids (VISTA)	SM2540G	7	4°C
007	PDI-146SC-A-04-05-200426	N	SE	04/26/2020 8:53	3 1					·
				0	<u> </u>		Dioxin/Furans	E1613B	7	4°C
							Total solids (VISTA)	SM2540G	7	4°C
000	PDI-146SC-A-05-06-200426	N	SE	04/26/2020 8:53					126	
008		IN	JL JL	04/20/2020 0.00	<u> </u>		Diovin/Europa	E1612D	7	4°C
							Dioxin/Furans	E1613B	1	
C	mment:								I '	
R	elinquisted By: Received By			Relinguished By:			Received By:	Relinguished By:	Received By:	
	Signature	01	V	Signature				Signature	Signature	
	White willing	12 Ut	<							
Sigi				Doot Name			Print Name D	hot Name		
Sigi	Name	AR	Vriel	Print Name		_	Print Name Pr	Print Name	Print Name	
	Name Nonalor Print Name	Al	Vry	Company				Company	Company	

Date Printed: 4/26/2020 Work Order 2000945 * Lab QC Requested for sample when box is checked ** TAT = Turn Around Time in DAYS # POC = Project Point of Contact

Vi	NCHOR DEAEN venue, Suite 2600, Seattle, WA 98101	VIR	ONME	ENTAL SAI	MPLE	CH	AIN	OF CUSTODY	COC ID:	VISTA-20200	426-095509
POC: *	Delaney Peterson (360-715-2707)			Project:	Gasco	D PDI		4.3°C	Sample Custodian:	SN	
	1605 Cornwall Avenue, Bellinghan	n, WA 9	98225	Client:	NW N	latural		2000945	Lab:	VISTA	
COC Sample Number	Field Sample ID	Sample Type	Matrix	Collecte	d Time	# Containers	Lab QC*	Test Request	Method	TAT**	Preservative
008	PDI-146SC-A-05-06-200426	N	SE	04/26/2020	8:53	1				an a	
	· · · · · · · · · · · · · · · · · · ·							Total solids (VISTA)	SM2540G	7,	4°C
009	PDI-146SC-A-06-07-200426	N	SE	04/26/2020	8:53	1					
1.	(a) Second String & B. S. Second and A. Marting and Addition of Static second second secon	1. A	- rade Brief (* 1	and an article state and the first state of the state of	22. 1999 X.1 2. 1999 X.1			Dioxin/Furans	E1613B	Contraction of Tables Series	4°C
			_					Total solids (VISTA)	SM2540G	7 -	4°C
010	PDI-146SC-A-07-08-200426	N	SE	04/26/2020	8:53	1					
								Dioxin/Furans	E1613B	7	4°C
								Total solids (VISTA)	SM2540G	7	4°C

Comment:					
1					
Relinguished By:	Received By:	Relinguished By:	Received By:	Relinguished By:	Received By:
Signature	Signature Ullin RUA	Signature	Signature	Signature	Signature
Paint Name Sasha Now	od Will, Am R. W.r. H	Print Name	Print Name	Print Name	Print Name
Company Anno	QEL COMPANY VAL	Company	Company	Company	Company
Date/Time		Date/Time	Date/Time	Date/Time	Date/Time
- (

Date Printed: 4/26/2020 Work Order 2000945 * Lab QC Requested for sample when box is checked ** TAT = Turn Around Time in DAYS # POC = Project Point of Contact

Sample Log-In Checklist

Vista Work Orde	r #:	200	0945					Page # 	of	
Samples Arrival:	Date/Tim 4/28/2	ne D 09:	04	Initials: ULU			Location: WK-2 Shelf/Rack: NA			
Delivered By:	FedEx	On Tra	On Trac GLS DH		DHI	L Hand Delivered		Other		
Preservation:	(10	e)	Blu	l el	lce			Dry Ice	None	
Temp °C: \mathcal{U}_t Temp °C: \mathcal{U}_t	rected) ted)	Probe used: Y / N			Thermometer ID: <u>TR3</u>					
				1947 (Perce)	ener for the boost stor.					

YES NO	NA
Shipping Container(s) Intact?	
Shipping Custody Seals Intact?	
Airbill 3 of 3 Trk # 7703 3190 1482 4	
Shipping Documentation Present?	
Shipping Container Vista Client Retain Return Disp	oose
Chain of Custody / Sample Documentation Present?	
Chain of Custody / Sample Documentation Complete?	
Holding Time Acceptable?	
Date/Time Initials: Location: WR-2	
Logged In: 04 28 20 1008 WWS Shelf/Rack: <u>G-4</u>	
COC Anomaly/Sample Acceptance Form completed? ✓	\checkmark

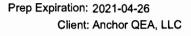
Comments:

CoC/Label Reconciliation Report WO# 2000945

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time		Container	BaseMat	Sample trix Comments
2000945-01	A PDI-146SC-A-00-01-200426			26-Apr-20 08:53	1	Amber Glass, 120 mL	Solid	
2000945-02	A PDI-146SC-A-01-02-200426			26-Apr-20 08:53		Amber Glass, 120 mL	Solid	DUP
2000945-03	A PDI-146SC-A-02-03-200426	ত		26-Apr-20 08:53	Ø	Amber Glass, 120 mL	Solid	
2000945-04	A PDI-146SC-A-03-04-200426			26-Apr-20 08:53		Amber Glass, 120 mL	Solid	
2000945-05	A PDI-146SC-A-04-05-200426	I	and the second	26-Apr-20 08:53	Ø	Amber Glass, 120 mL	Solid	
2000945-06	A PDI-146SC-A-05-06-200426			26-Apr-20 08:53		Amber Glass, 120 mL	Solid	
2000945-07	A PDI-146SC-A-06-07-200426			26-Apr-20 08:53	\mathbf{Z}	Amber Glass, 120 mL	Solid	
2000945-08	A PDI-146SC-A-07-08-200426			26-Apr-20 08:53	V	Amber Glass, 120 mL	Solid	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	\checkmark			Ī
Sample Custody Seals Intact?			\checkmark	İ
Adequate Sample Volume?	\checkmark			Ì
Container Type Appropriate for Analysis(es)	\checkmark			
Preservation Documented: Na2S2O3 Trizma None Other			V	Ĩ
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			V	


Verifed by/Dato 13 4 28 20

Printed: 4/28/2020 11:06:25AM

Work Order 2000945

EXTRACTION INFORMATION

Process Sheet Workorder: 2000945

•

Method: 1613 Full List Matrix: Solid Client Matrix: Sediment Also run: Percent Solids

Workorder Due:05-May-20 00:00

TAT: 7

Prep Batch	BOD0306
Prep Data Entered:	DF05/08/20 Date and Initiáls

Initial Sequence: <u>SOE0027</u>

LabSampleID	Recon ClientSampleID	Date Received	Location Comments
2000945-01	PDI-146SC-A-00-01-200426	28-Apr-20 09:04	WR-2 G-4
2000945-02	PDI-146SC-A-01-02-200426	28-Apr-20 09:04	WR-2 G-4 DUP
2000945-03	PDI-146SC-A-02-03-200426	28-Apr-20 09:04	WR-2 G-4
2000945-04	PDI-146SC-A-03-04-200426	28-Apr-20 09:04	WR-2 G-4
2000945-05	PDI-146SC-A-04-05-200426	28-Apr-20 09:04	WR-2 G-4
2000945-06	PDI-146SC-A-05-06-200426	28-Apr-20 09:04	WR-2 G-4
2000945-07	PDI-146SC-A-06-07-200426	28-Apr-20 09:04	WR-2 G-4
2000945-08	DI-146SC-A-07-08-200426	28-Apr-20 09:04	WR-2 G-4

WO Comments: Dioxin - 10g PCB - 5g extraction (dry weig		AS	04/28/20
Pre-Prep Check Out: CHI 64/28/70 Pre-Prep Check In: No	Prep Check Out: 00	04/28/20 04/28/20 Page 1 of 2	Prep Reconciled Initals/Date: <u>CHT</u> <u>64</u> Spike Reconciled Initals/Date: <u>A 2</u> <u>04</u> VialBoxID: <u>F-35</u> C

PREPARATION BENCH SHEET

Matrix: Solid

B0D0306

Chemist: _____

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

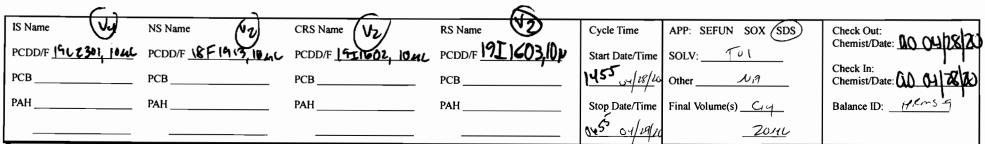
Prep Date/Time: 28-Apr-20 14:00

										7
	VISTA Sample ID	G Eqv	Sample Amt.	IS/NS CHEM/WIT	CRS CHEM/WIT	AP CHEM/	ABSG CHEM/	AA CHEM/	Florisil CHEM/	RS CHEM/WIT
C	Sample 12		(g)	DATE	DATE	DATE	DATE	DATE	DATE	DATE
	B0D0306-BLK1	(10.00)	(10.00)	10× 04/28/20	010 AZ 04/29/20	NA	00 04/29/2	0004/29/10	M 04/29/20	> F 04/20/24
	B0D0306-BS1	(10.00)		T	7	T T		r 17		T
	B0D0306-DUP1 2000945-02 (3)	11.31	H.113							
	2000945-01	13.97	off. 14.29	ĺ						
	2000945-02	11.31	12.02							
	2000945-03	11.82	12.11			+ +				
	2000945-04	12.43	12.08	-	1		<u>+</u>			
	2000945-05	11.56	11.108							
	2000945-06	12.74	12.84	1						
	2000945-07	13.12	14.13							
	2000945-08	13.02	13.17							
	2000946-01	19.23	19.45		<u> </u>					
	2000946-02 3	18.57	19.14							+
	2000946-03		13.48)		\$.			+ + +
	2000946-04		11.77			V .	· ·	U U		
				v	(in)	(12)	ч			
IS Nat	ne (ų) 12 1 <u>7 2501, 10<i>m</i></u>	NS Name	(V2)		RS Name	<u> </u>	1 .	PP: SEFUN SOX	SDS Check Chem	: Out: ist/Date: (10 04 28/2
	F 2501, 10ML				1002, 1040 PCDD/F		Start Date/Time S		Check	in:
PCB_								ther <u>NA</u>	Chem	ist/Date: 00 04 28 2
PAH _		PAH		PAH	PAH			inal Volume(s) <u>20</u>		ce ID: <u>HRMS-9</u>
-							0055 04/19/20	C_1	1	
						3)AZ 04/24/20	× 00	04/28/20		
	ple approached dryness ple bumped on rotovap			= Sample homogenized = Sample clogged durin	g extaction; pipetted and us					transformed
3 = San	ple poured through National states in the present at Final states and the present at Final states and the present at Final states are states at Final states a	2SO4 to rem						NEW RP	(10 041), transferred 29/20
	Work Order 200								0.0 - 1	Page 28 of 769

PREPARATION BENCH SHEET

Matrix: Solid

B0D0306


Chemist: 00

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

Prep Date/Time: 28-Apr-20 14:00

	VISTA	G	Sample	IS/NS	CRS	AP	ABSG	AA	Florisil	RS
с	Sample ID	Eqv	Amt.	CHEM/WIT	CHEM/WIT	CHEM/	CHEM/	CHEM/	CHEM/	CHEM/WIT
Ũ			(g)	DATE	DATE	DATE	DATE	DATE	DATE	DATE
	2000946-05	11.10	11.48	20 N 4/28/20	00 0204/29/20	NA	ao 04/28/20	0004/29/20	A 04/29/20	DEOYIAN 22
	2000946-06	10 47	11.93		+ ' '	T		Γ		T
		11.96	12.09							
	2000946-08	12.72	13.13			L L	V	J J	- - - -	\checkmark

Comments:

1 = Sample approached dryness on rotovap

2 =Sample bumped on rotovap; lost < 5%

3 = Sample poured through Na2SO4 to remove water

4 = Precipitate present at Final Volume

5 = Sample homogenized in secondary container

6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

Batch: B0D0306

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
2000945-01	14.29	70.38008	10.0573	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-02	12.02	88.02281	10.5803	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-03	12.11	82.77512	10.0241	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-04	12.98	76.52174	9.9325	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-05	11.68	86.85567	10.1447	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-06	12.84	87.55868	11.2425	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-07	14.13	76.51006	10.8109	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000945-08	13.17	75.70281	9.9701	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-01	19.45	52	10.1140	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-02	19.14	53.84615	10.3062	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-03	13.48	80.95238	10.9124	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-04	11.77	85.53719	10.0677	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-05	11.48	90.07264	10.3403	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-06	11.93	91.14833	10.8740	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-07	12.09	83.58208	10.1051	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
2000946-08	13.13	78.63437	10.3247	20	28-Apr-20 14:00	ACO			Sediment	1613 Full List
B0D0306-BLK1	10			20	28-Apr-20 14:00	ACO				QC
B0D0306-BS1	10			20	28-Apr-20 14:00	ACO	18F1913	10		QC
B0D0306-DUP1	11.39			20	28-Apr-20 14:00	ACO				QC

All bolded data on report verified against written benchsheet by (initial/date) $\frac{1}{20508120}$

Printed: 5/3/2020 11:26:05AM Page 1 of 1

Work Order 2000945

Page 30 of 769

Percent Molstelie/Recent Solids

D2216-90 BATCH ID B0D0303

Analyst: RR 🗸	Test Code: %Moist/%Solids	
Analyte:	Units: %	Data Entry Verified by: (Initial and Date) RR
Dried at	110°C+/-5°C	
Oven ID: <u>01</u>	02	

:	HRMS-8 🗸	-8														
	В	С	D	E	F	G	н		к	L	M N	0	P			
					RR 04/30/20 🗸	RR 05/01/20 V			RR 04/30/20 🗸		NA		RR 04/30/20			
Particle Size	SampiD		SampType	Pan Tare Wt. (gms)	Wet Pan and Sample Weight (g)	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Inspection	Be	oH pH fore Afte	r Added				
	2000945-01	A 🔨	Sample	1.2800 🗸	8.9100 V	6.6500 🗸	5.3700	70.38	MUD		VA NA	NA	× ✓			
	2000945-02	A	Sample	1.2800	6.5400 🗸	5.9100	4.6300	88.02	SAND		NA NA	NA	x			
	2000945-03	_ A	Sample	1.3200	7.5900 √	6.5100	5.1900	82.78	SAND	IA N	VA NA	NA	x			
	2000945-04	A	Sample	1.3000 🗸	5.9000	4.8200 🗸	3.5200	76.52	SAND		NA NA	NA	x			
	2000945-05	A	Sample	1.3200	5.2000	4.6900	3.3700	86.86	SAND	IA N	NA NA	NA	x			
	2000945-06	A	Sample	1.2600	5.5200	4.9900	3.7300	87.56	SAND	IA N	VA NA	NA	x			
	2000945-07	A	Sample	1.2800	5.7500	4.7000	3.4200	76.51	SAND	IA N	NA NA	NA	x			
	2000945-08	A	Sample	1.2700	6.2500	5.0400	3.7700	75.70	SAND	IA N	NA NA	NA	×			
	2000976-01	A	Sample	1.3000	8.2700 🗸	5.9200	4.6200	66.28		IA N	NA NA	NA	x			
	2000976-02	A	Sample	1.2800	6.0900	5.6300	4.3500	90.44	SAND	IA N	NA NA	NA	x			
	2000976-03	A	Sample	1.2800	5.3100	4.6100 🗸	3.3300	82.63	SAND	IA N	VA NA	NA	x			
	2000976-04	A	Sample	1.3000	6.3500	5.2200	3.9200	77.62	SAND		VA NA	NA	X			
	2000976-05	A	Sample	1.3000	6.7400	6.2500	4.9500	90.99	SAND N	IA N	VA NA	NA	x			
	2000976-06	A	Sample	1.3000	5.5200	4.8600	3.5600	84.36	SAND N		NA NA	NA	X			
	2000976-07	A	Sample	1.2800	6.6600	6.0500	4.7700	88.66	SAND	IA N	VA NA	NA	×			
	2000976-08	A .	Sample	1.2800	6.0500 🗸	5.3000	4.0200	84.28	SAND		NA NA	NA	×.			
									+							
										+						
									╉───┼							
	_									+						
													[
												_				
									1							

*Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B0D0303

The Provide Anti-
D2216-90 BATCH ID B0D0303

Analyst: R 2	Test Code: %Moist/%Solids	
Anatyte:	Units: %	Data Entry Verified by: (Initial and Date) NA
Dried at 110° Oven ID: (01) 02	C+/-5°C	

Date/Time IN: Date/Time OUT

inst -HEMS-	д		04/3022 1638	65/01/20 1417]									
	8	С	D	E	F	G	н	ł	К	Ł	M	N	0	Р
			_		RR 04/30/20	PR 05/01/20			2204/2					RR 04/30/20
Particle Size	SamplD		SampType	Pan Tare Wt. (gms)	Wet Pan and Sample Weight (g)	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Visual Inspection	Cŀ		pH After	Acid Added	Sample Homogenized*
	2000945-01	A	Sample	1.28	8.91	6.65			Mud					X
	2000945-02	T	Sample	1.28	6.54	5.91			Sand				7	Ϋ́
	2000945-03		Sample	1.32	7.54	6.51							/	X
	2000945-04		Sample	1.30	5.90	4.82								X
	2000945-05		Sample	1.32	5.20	4.69		7						×
	2000945-06		Sample	1,26	5,52	4.99		/			×	/		×
	2000945-07		Sample	1,28	5.75	4,70	~/				シ			×
	2000945-08		Sample	1.27	6.25	5.04	/د		~		- 7			×
	2000976-01		Sample	1.30	8.27	5.92			Mud					X
	2000976-02		Sample	1,28	6.09	5.63			sand					X
	2000976-03		Sample	1,28	5.3	4.61					/			×
	2000976-04		Samp le	1,30	6.35	5.22	7				/			×
	2000976-05		Sample	1.30	6.74	6.25								×
	2000976-06		Sample	1,30	5.52	6,25 4.86	/			[7]				×
	2000976-07		Sample	1,28	6.66	605	/			/				×
	2000976-08	V	Sample	1.28	6.05	5.30	/		\checkmark	1				×
											_			
			[

*Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B0D0303

~

SAMPLE DATA – EPA METHOD 1613

Quantify San Vista Analytica	nple Summary Report MassLynx 4.1 SCN815 al Laboratory Image: Comparison of the second secon	Page 1 of 2
Dataset:	U:\VG12.PRO\Results\200515R1\200515R1-4.qld	
Last Altered: Printed:	Friday, May 15, 2020 11:29:09 AM Pacific Daylight Time Friday, May 15, 2020 11:29:56 AM Pacific Daylight Time	GEB 05/15/2020

Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

Name: 200515R1_4, Date: 15-May-2020, Time: 10:34:04, ID: B0D0306-BLK1 Method Blank 10, Description: Method Blank

		ù.											
1 2,3,7,8-TCDD	i		NO	0.947	10.000	26.066		1.001				0.0604	
2 1,2,3,7,8-PeCDD			NO	0.942	10.000	31.146		1.001				0.0469	
3 1,2,3,4,7,8-HxCDD			NO	1.06	10.000	34.516		1.001				0.0678	
4 1,2,3,6,7,8-HxCDD			NO	0.915	10.000	34.601		1.000				0.0720	
5 1,2,3,7,8,9-HxCDD			NO	0.915	10.000	34.889		1.000				0.0756	
6 1,2,3,4,6,7,8-HpCDD			NO	0.898	10.000	38.404		1.000				0.0610	1
7 OCDD	1.58e3	1.02	NO	0.933	10.000	41.364	41.38	1.000	1.000	0.42264		0.0576	0.423
8 2,3,7,8-TCDF	1.0000	1.02	NO	0.333	10.000	25.132	41.50	1.000	1.000	0.42204		0.0425	0.423
9 1.2.3.7.8-PeCDF			NO	0.910	10.000	29.834		1.001				0.0425	
10 2,3,4,7,8-PeCDF			NO	0.966	10.000	30.835		1.001				0.0344	
11 1,2,3,4,7,8-HxCDF			NO	0.878	10.000	33.632		1.001				0.0436	
12 1,2,3,6,7,8-HxCDF			NO	0.874	10.000	33.770		1.000				0.0424	
13 2,3,4,6,7,8-HxCDF			NO	0.922	10.000	34.369		1.000				0.0424	
14 1,2,3,7,8,9-HxCDF	3.11e2	1.23	NO	0.864	10.000	35.219	35.23	1.001	1.000	0.063281		0.0367	0.0633
15 1,2,3,4,6,7,8-HpCDF	5.1162	1.25	NO	0.871	10.000	37.003	55.25	1.000	1.000	0.003201		0.0704	0.0033
16 1,2,3,4,7,8,9-HpCDF			NO	1.01	10.000	38.979		1.001				0.0727	
17 OCDF			NO	0.802	10.000	41.556		1.000				0.0642	
18 13C-2,3,7,8-TCDD	1.47e6	0.78	NO	1.16	10.000	26.031	26.03	1.000	1.027	178.44	89.2	0.196	
19 13C-1,2,3,7,8-PeCDD	1.35e6	0.62	NO	0.847	10.000	31.123	31.12	1.020	1.227	223.62	112	0.233	
20 13C-1,2,3,4,7,8-HxCDD	1.03e6	1.26	NO	0.750	10.000	34.506	34.51		1.014	223.02	104	0.263	
21 13C-1,2,3,6,7,8-HxCDD	1.20e6	1.27	NO	0.963	10.000	34.618	34.60		1.014	188.64	94.3	0.205	
22 13C-1,2,3,7,8,9-HxCDD	1.20e6 1.18e6	1.27	NO	0.963	10.000	34.818	34.88	1.017	1.017	211.91	94.3 106	0.205	
23 13C-1,2,3,4,6,7,8-HpCDD	9.39e5	1.24	NO	0.641	10.000	38.378	34.88		1.128	211.91	110	0.312	
24 13C-OCDD	9.3985 1.60e6	0.90	NO	0.586	10.000	41.372	41.36	1.128	1.120	411.32	103	0.312	
25 13C-2,3,7,8-TCDF	1.74e6	0.90	NO	1.03	10.000	25.090	25.11	0.989	0.990	169.40	84.7	0.338	
26 13C-1,2,3,7,8-PeCDF	1.81e6	1.55	NO	0.845	10.000	29.812	29.81		1.176	216.73	108	0.338	
27 13C-2,3,4,7,8-PeCDF	1.7 4e 6	1.55	NO	0.845	10.000	30.803	30.80		1.215	215.58	108	0.262	
		0.51	NO				33.63		0.988				
28 13C-1,2,3,4,7,8-HxCDF	1.31e6	0.51	NO	1.00 1.14	10.000 10.000	33.645 33.767	33.63 33.76	0.989 0.992	0.988	196.67 185.25	98.3 02.6	0.262	
29 13C-1,2,3,6,7,8-HxCDF	1.40e6 1.35e6		NO			33.767 34.336	33.76 34.33	1.009			92.6	0.232	
30 13C-2,3,4,6,7,8-HxCDF	1.35e6 1.14e6	0.51 0.51	NO	1.02 0.845	10.000 10.000	34.336 35.227	34.33 35.22		1.009 1.035	198.86 203.29	99.4 102	0.257 0.312	
31 13C-1,2,3,7,8,9-HxCDF	1.1400	0.51	NO	0.045	10.000	30.227	33.22	1.035	1.035	203.29	102	0.312	

C7 05/2272020

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1 SCN815
Dataset:	U:\VG12.PRO\Results\20	0515R1\200515R1-4.qld
Last Altered: Printed:		9:09 AM Pacific Daylight Time 9:56 AM Pacific Daylight Time

Name: 200515R1_4, Date: 15-May-2020, Time: 10:34:04, ID: B0D0306-BLK1 Method Blank 10, Description: Method Blank

1.02e6	0.44		1.2.1									
1.02e6	0.44			the second se								
	0.44	NO	0.771	10.000	36.959	36.97	1.086	1.086	200.08	100	0.313	
7.28e5	0.43	NO	0.482	10.000	38.970	38.98	1.145	1.146	227.65	114	0.501	
1.87e6	0.88	NO	0.669	10.000	41.542	41.56	1.221	1.221	421.96	105	0.310	
5.49e5			1.10	10.000	26.061	26.06	1.028	1.028	70.279	87.8	0.0495	
1.42e6	0.79	NO	1.00	10.000	25.350	25.36	1.000	1.000	200.00	100	0.227	
1.98e6	0.78	NO	1.00	10.000	23.560	23.59	1.000	1.000	200.00	100	0.350	ļ
1.33e6	0.51	NO	1.00	10.000	34.000	34.03	1.000	1.000	200.00	100	0.263	
			0.947	10.000	24.620		0.000				0.0372	ļ
			0.942	10.000	29.960		0.000				0.0169	
			0.915	10.000	33.635		0.000				0.0456	
			0.898	10.000	37.640		0.000				0.0285	1
			0.787	10.000	23.610		0.000				0.0183	[
			0.910	10.000	27.090		0.000				0.00790	1
			0.910	10.000	29.275		0.000				0.0176	Í
			0.922	10.000	33.555		0.000		0.063281		0.0275	0.0900
			0.871	10.000	37.835		0.000				0.0488	
	1.87e6 5.49e5 1.42e6 1.98e6	1.87e6 0.88 5.49e5 0.79 1.42e6 0.79 1.98e6 0.78	1.87e6 0.88 NO 5.49e5 1.42e6 0.79 NO 1.98e6 0.78 NO	1.87e6 0.88 NO 0.669 5.49e5 1.10 1.42e6 0.79 NO 1.00 1.38e6 0.78 NO 1.00 1.33e6 0.51 NO 1.00 0.947 0.942 0.915 0.898 0.787 0.910 0.910 0.922	1.87e6 0.88 NO 0.669 10.000 5.49e5 1.10 10.000 1.42e6 0.79 NO 1.00 10.000 1.98e6 0.78 NO 1.00 10.000 1.33e6 0.51 NO 1.00 10.000 0.947 10.000 0.947 10.000 0.942 10.000 0.915 10.000 0.915 10.000 0.910 10.000 0.910 10.000 0.910 10.000 0.910 10.000 0.910 10.000 0.910 10.000 0.910 10.000 0.922 10.000 0.922 10.000	1.87e6 0.88 NO 0.669 10.000 41.542 5.49e5 1.10 10.000 26.061 1.42e6 0.79 NO 1.00 10.000 25.350 1.98e6 0.78 NO 1.00 10.000 23.560 1.33e6 0.51 NO 1.00 10.000 24.620 0.947 10.000 29.960 0.915 10.000 33.635 0.898 10.000 37.640 0.787 10.000 23.610 0.910 10.000 27.090 0.910 10.000 29.275 0.922 10.000 33.555 0.922 10.000 33.555	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.87e6 0.88 NO 0.669 10.000 41.542 41.56 1.221 1.221 421.96 105 0.310 5.49e5 1.10 10.000 26.061 26.06 1.028 1.028 70.279 87.8 0.0495 1.42e6 0.79 NO 1.00 10.000 25.350 25.36 1.000 1.000 200.00 100 0.227 1.98e6 0.78 NO 1.00 10.000 23.560 23.59 1.000 1.000 200.00 100 0.350 1.33e6 0.51 NO 1.00 10.000 34.000 34.03 1.000 1.000 200.00 100 0.263 0.947 10.000 24.620 0.000 0.0169 0.0169 0.0169 0.0456 0.0285 0.942 10.000 23.610 0.000 0.0285 0.0285 0.0285 0.0285 0.0183 0.0176 0.00790 0.00790 0.0176 0.0275 0.0176 0.0275

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Page 1 of 2

Dataset: U:\VG12.PRO\Results\200515R1\200515R1-4.qld

Last Altered:Friday, May 15, 2020 11:29:09 AM Pacific Daylight TimePrinted:Friday, May 15, 2020 11:29:56 AM Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

Name: 200515R1_4, Date: 15-May-2020, Time: 10:34:04, ID: B0D0306-BLK1 Method Blank 10, Description: Method Blank

Tetra-Dioxins

Penta-Dioxins

the second s

Hexa-Dioxins

Hepta-Dioxins

Tetra-Furans

and the second
Penta-Furans function 1

Page 2 of 2

Dataset: U:\VG12.PRO\Results\200515R1\200515R1-4.qld

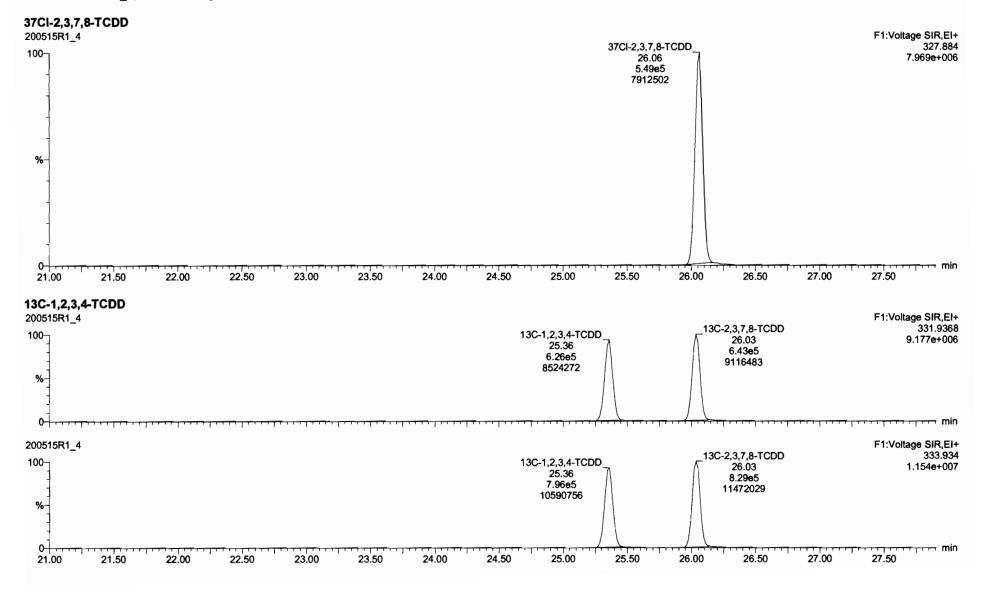
Last Altered:Friday, May 15, 2020 11:29:09 AM Pacific Daylight TimePrinted:Friday, May 15, 2020 11:29:56 AM Pacific Daylight Time

Name: 200515R1_4, Date: 15-May-2020, Time: 10:34:04, ID: B0D0306-BLK1 Method Blank 10, Description: Method Blank

Penta-Furans

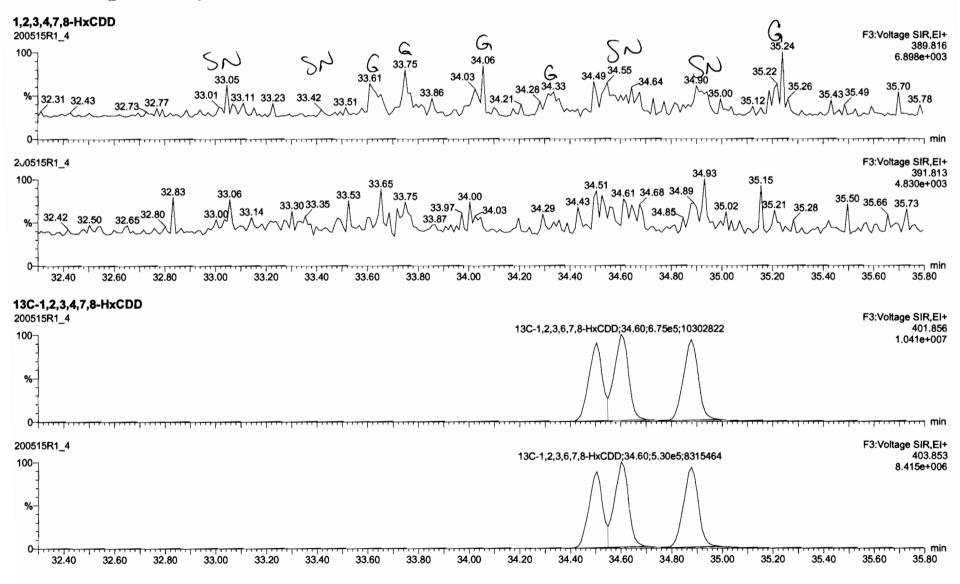
the state of the s

Hexa-Furans

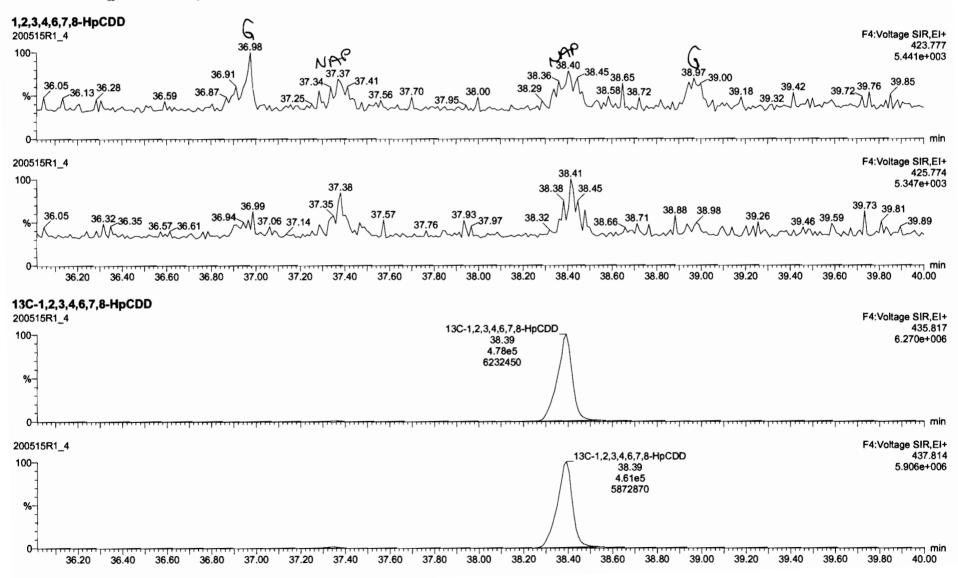

			1	101					
1		1.0	1. Section and the	Str. Str.					
1,2,3,7,8,9-HxCDF	35.23	4.869e3	3.760e3	1.717e2	1.396e2	1.23 N	IO 3.113e2	0.063281 0.063281	0.0367
Total Hexa-Furans	35.26	4.431e3	3.253e3	1.194e2	7.131e1	1.67 YE	S 0.000e0	0.00000 0.026701	0.0275

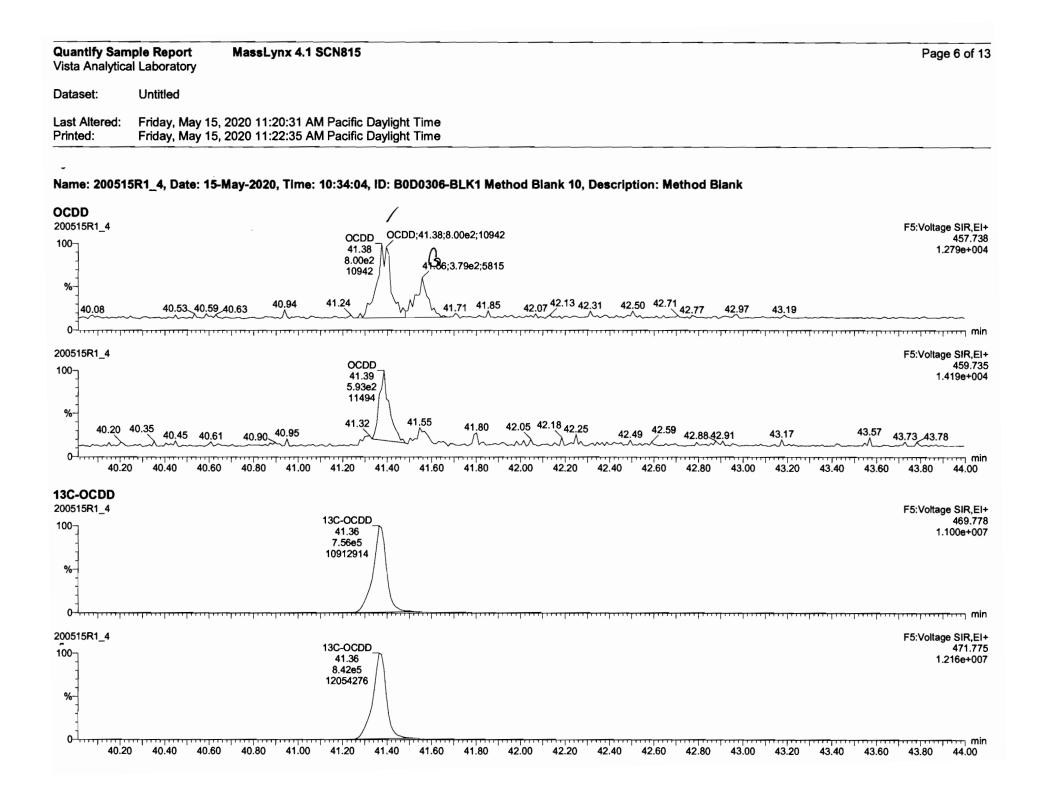
Hepta-Furans

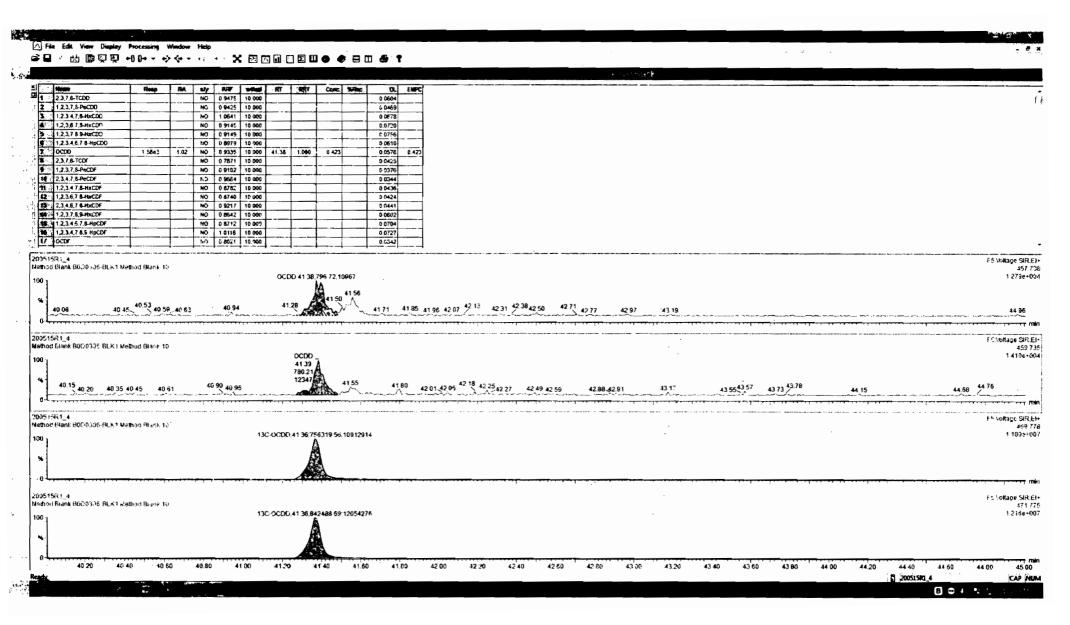
and the second			


ista Analytica	i ple Report al Laboratory	MassLynx 4.	1 SCN815						Page 1 of 1
ataset:	Untitled								
ast Altered: rinted:			AM Pacific Daylight Tin AM Pacific Daylight Tin						
			9-20.mdb 29 Apr 2020 3vg12-4-29-20.cdb 30		:23				
ame: 20051	5R1_4, Date: 1	5-May-2020, Time	ə: 10:34:04, ID: B0D03	306-BLK1 Metho	d Blank 10, Descri	ption: Metho	d Blank		
3,7,8-TCDD		Sp	Sr)	51	U	Sr	٢	F1:Voltage SIR,EI
00 21.08 21.08 21.08 21.08	25 21.95	19 22.22 22.47 22.53	22.88 23.21 23.34 MMMM	23.88 24.22	20,12	25.38 25.54 25.7 25.54 25.7	26.05 26.23 26.51 26 8 26.65 8 26.65	27.17	319.896 5.202e+00 27.40 27.86 MMMM
0	,	• • • • • • • • • • • • • • • • • • •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	╷┍╷┍╻┍╷┍╷	.,,,, ,,,,,,,,,			
0515R1_4						0	6.05		F1:Voltage SIR,EI 321.89
00							55e2		1.316e+00
%- 21.05 21.	54 21.60 21.9	9 22.31 22.68 22	23.27 77 23.22 23.37 ^{23.56} 2;	3.76 24.19 ^{24.4}	10 24.58 25.06	25.42 25.66 24	1093	26,8427,04 27,25	
21.05 21.	54 21.60 21.9 21.50 22.0		23.27 77 23.22 23.37 ^{23.56} 22 23.00 23.50		10 24.58 25.06 4.50 25.00		1093	26.8427.04 27.25	
21.05 21.00 3C-2,3,7,8-T	21.50 22.0		77 23.22 23.37 ^{23.56} 2:		······································	25.42 25.66 2!	1093	$\cdots \cdots $	27.31 27.85 27.50
21.05 21. 0 	21.50 22.0		77 23.22 23.37 ^{23.56} 2:		······································	25.42 25.66 28	1093	$\cdots \cdots $	527.31 27.85
21.05 21. 0 21.00 3C-2,3,7,8-T 00515R1_4	21.50 22.0 CDD	0 22.50	77 23.22 23.37 ^{23.56} 2:	24.00 2	4.50 25.00 13C-1,2,3,4-TCD 25.36 6.26e5 8524272	25.42 25.66 28	1093 5.72 26.24 26.24 26.77 26.00 26.50 13C-2,3,7,8-TCDD 26.03 6.43e5 9116483	27.00	27.31 27.85 27.50 F1:Voltage SIR,E 331.930 9.177e+00
21.05 21. 0 21.00 3C-2,3,7,8-T 00515R1_4	21.50 22.0 CDD	0 22.50	77 23.22 23.37 ^{23.56} 2	24.00 2	4.50 25.00 13C-1,2,3,4-TCD 25.36 6.26e5 8524272	25.42 25.66 24 25.50	1093 5.72 26.24 26.77 26.00 26.50 13C-2,3,7,8-TCDD 26.03 6.43e5 9116483 9116483	27.00	527.31 27.85 77.50 F1:Voltage SIR,E 331.93 9.177e+00 F1:Voltage SIR,E
21.05 21. 0 21.00 C-2,3,7,8-T 0 SC-2,3,7,8-T 0 SC-2,3,7,8-T	21.50 22.0 CDD	0 22.50	77 23.22 23.37 ^{23.56} 2	24.00 2	4.50 25.00 13C-1,2,3,4-TCD 25.36 6.26e5 8524272	25.42 25.66 24 25.50	1093 5.72 26.24 26.24 26.77 26.00 26.50 13C-2,3,7,8-TCDD 26.03 6.43e5 9116483	27.00	5.27.31 27.85 7.7.50 F1:Voltage SIR,E 331.93 9.177e+00

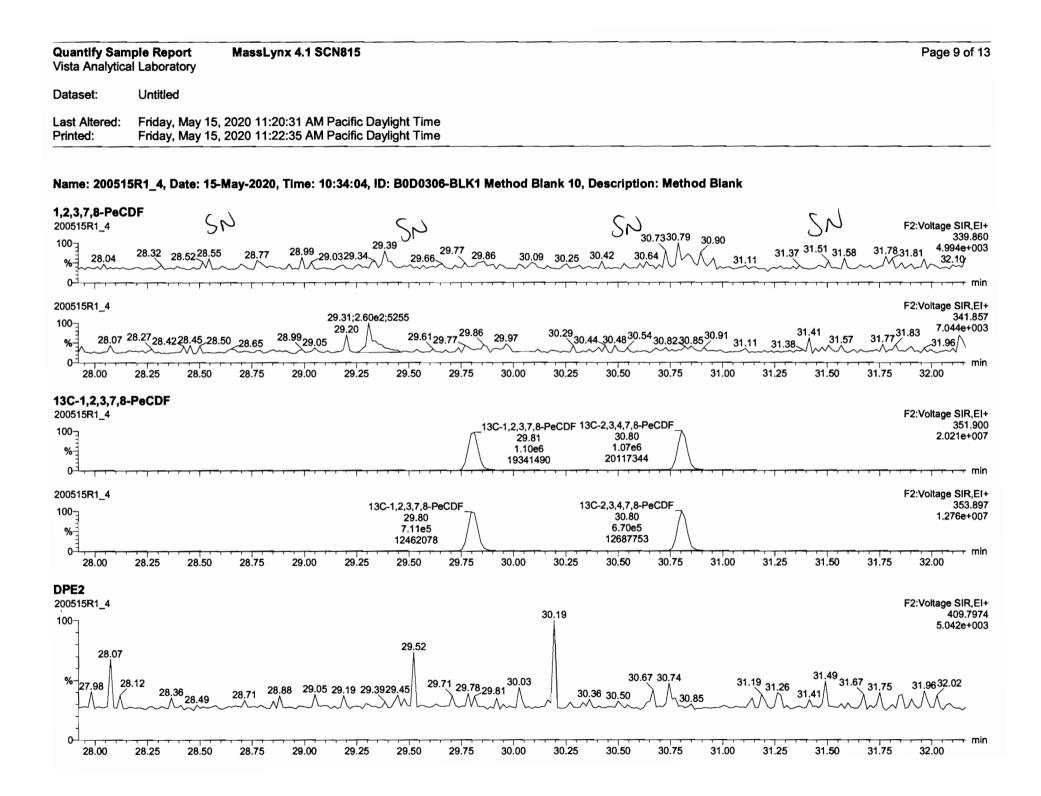
Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 11:20:31 AM Pacific Daylight Time Friday, May 15, 2020 11:22:35 AM Pacific Daylight Time	

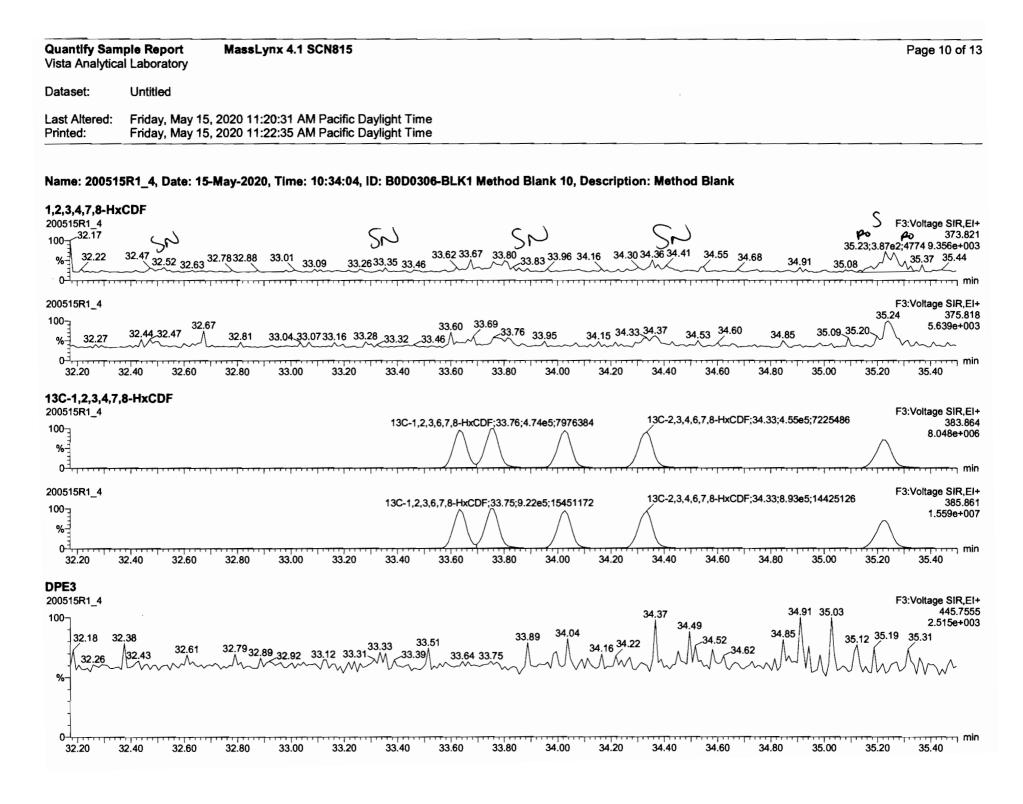



Juantify Sam /ista Analytica		MassLyn	x 4.1 SCN815							Page 3 of 7
ataset:	Untitled									
ast Altered: rrinted:			:31 AM Pacific Da :35 AM Pacific Da							
ama: 20051	5P1 A Data: 1/	May 2020 1	Fime: 10:34:04, II	. BODO306-BI	K1 Method	Blank 10 Dec	cription: Met	hod Blank		
2,3,7,8-PeC	_	-may-2020, 1	1111 0 . 10.34.04, 11	. BUDUJUG-BL		Dialik IU, Des				
00515R1_4					G		G	2		F2:Voltage SIR,E
100-7			<u>_</u>	29.81 2.60e2			30.80	2)	\sim)	353.857 6.006e+00
-		SN	Sr	4336	29.81	52	2.30e2 4194		SN	0.0000.00
∞			00.00	29,45	2.60e2	<u> </u>	1	l	31.25 31.52 31.52 31.58 31	32.13
%_ 28.09 \ \	28.3828.5328	56 28,74 28,8	8 28.93 29.20 29.29	29.51 29.58	4336 3	30,29 ^{30.5}	0 30.59 30.62	30.97 31.12	2 β 1.40 β $^{31.58}$ $^{31.58}$ $^{31.}$	67 31,8932.01
from	$\sim\sim\sim\sim\sim$	\sim	K-mm I	And		$\sim\sim\sim\sim\sim\sim$				\sim
0							<u>, , , , , , , , , , , , , , , , , , , </u>			, m
00515R1_4	.				, .		1 /			F2:Voltage SIR,E
				9.31						355.855
				55e2 3247						1.093 a +00
-			8247	2.11						
%				29.54				or oo 01	31,63	32.10
27.94 28	16 28.30 28.42 2	8.59 28.84 ^{28.87}	28.90 29.20	∖29.46 / 29	.78 29.86	30,16 30.33 30	0,48 30,68 ^{30,}	80 31.02 31.	31.55	31.80 31.98 N
Kan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A-A-A	mm	million	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm	m
0- 28.00	28.25 28.50	28.75	29.00 29.25	29.50 29.7	75 30.00	30.25 3	0.50 30.75	31.00	31.25 31.50 3 ⁴	.75 32.00 m
3C-1,2,3,7,8 - 00515R1_4	PeCDD									F2:Voltage SIR,E
							13C-1,2,	3,7,8-PeCDD_		365.897
00								81.12 .15e5		9.195e+00
1								62514		
%								11		
1										
1) \	l	
0				<u> </u>			 		~_ +	 m
00515R1_4										F2:Voltage SIR,E
00-1							13C-1,2,3	,7,8-PeCDD		367.89 1.472e+00
1							8.	1.11 33e5 87397		1.4728+00
-							146	87397		
%_								11		
1								/ \		
0 ¹		<u> </u>				····		/		
		28.75	29.00 29.25	29.50 29.3	75 30.00	30.25 3				

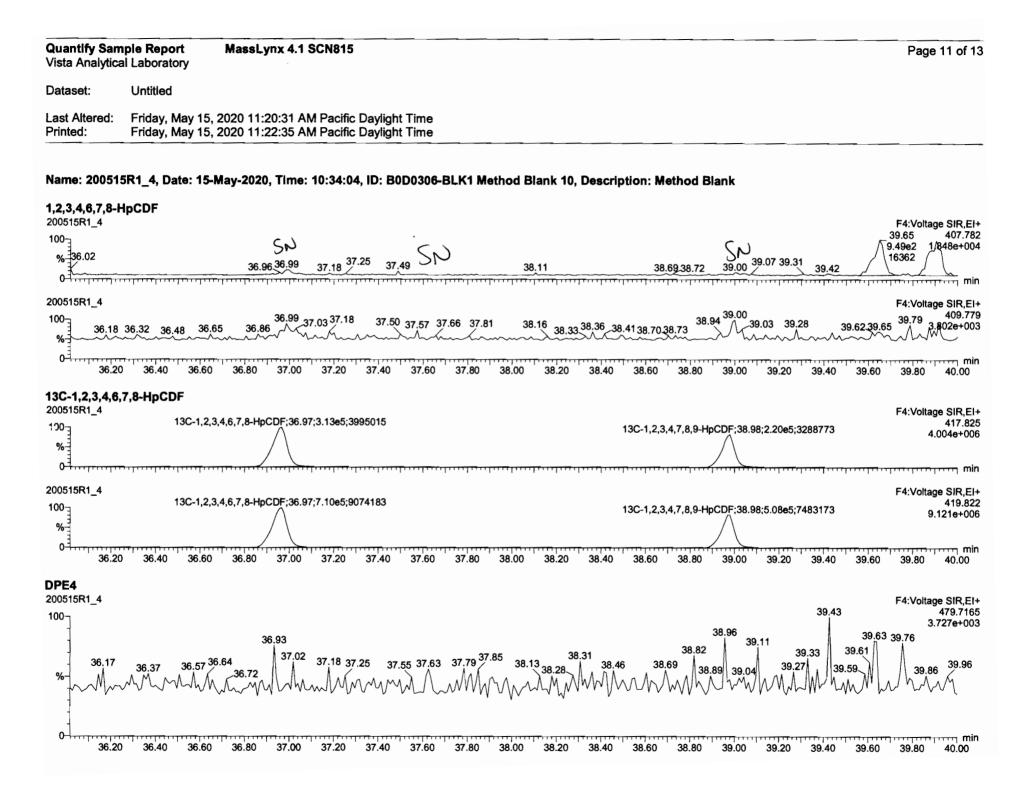

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 11:20:31 AM Pacific Da Friday, May 15, 2020 11:22:35 AM Pacific Da	

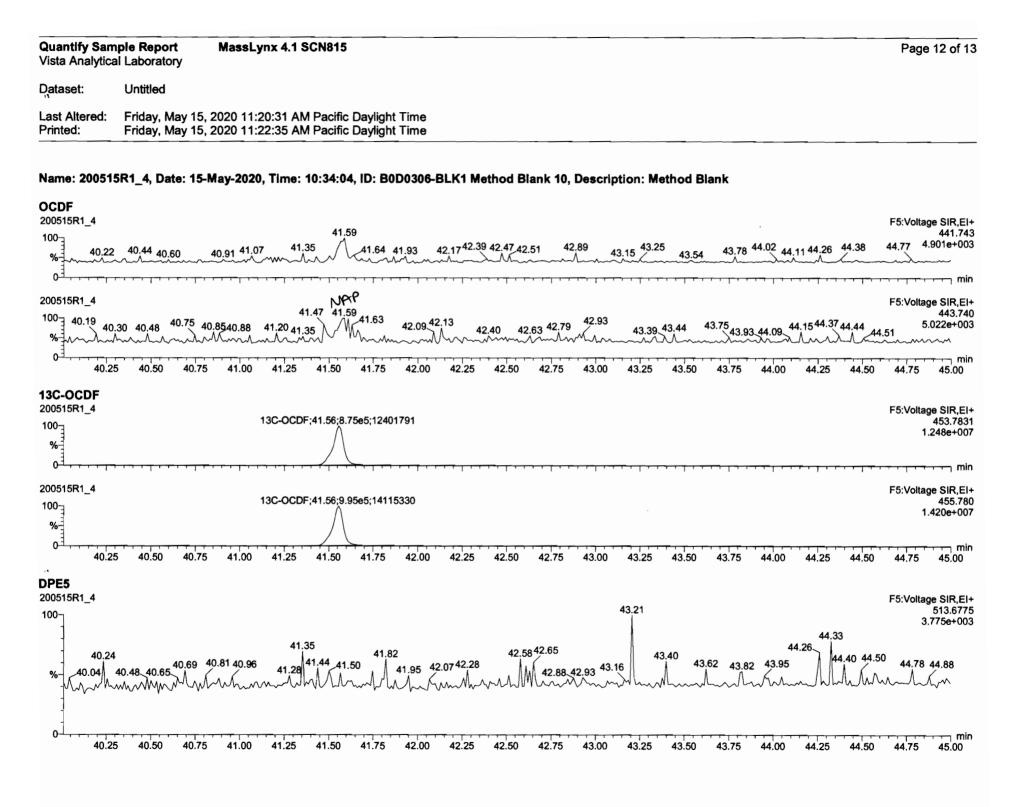
Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 11:20:31 AM Pacific Daylight Time Friday, May 15, 2020 11:22:35 AM Pacific Daylight Time	



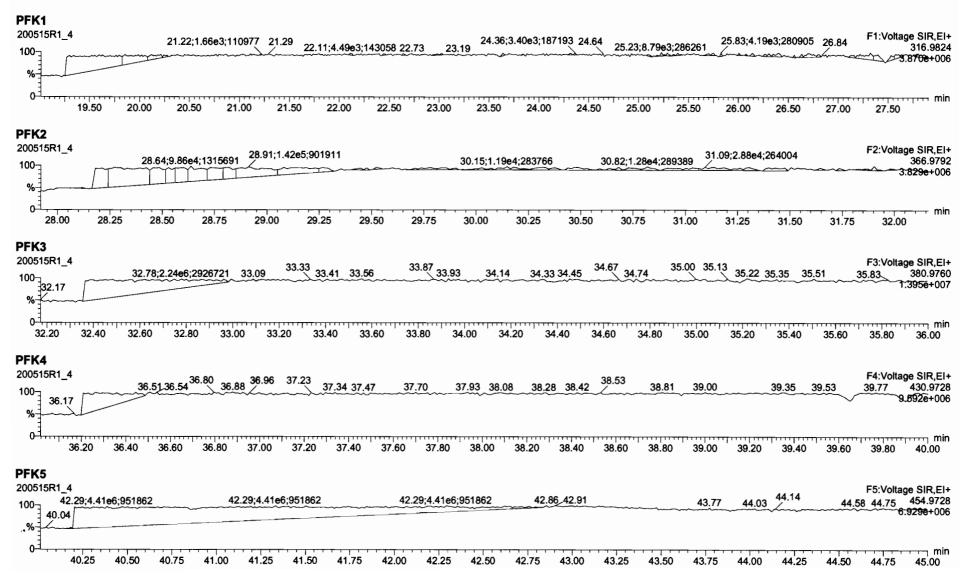


Work Order 2000945


Quantify Sam Vista Analytica	al Laboratory	MassLynx 4.1 SC	N815				Page 7 of 1
Dataset:	Untitled						
ast Altered: Printed:		5, 2020 11:20:31 AM 5, 2020 11:22:35 AM					
Name: 200515	5R1_4, Date: 1	5-May-2020, Time: 10):34:04, ID: B0D030	6-BLK1 Method Blar	k 10, Description: Method	d Blank	
2,3,7,8-TCDF 200515R1_4 100- 19.33	19.84 20.00 2	N 10.42 20.86 ^{21.04} 2	1.56 22.05 22.59 ²	23.07 22.71 23.33 23.65	23.98 24.30 24.72 25.00 2	5.35 25.54 25.83 26.02	F1:Voltage SIR,EI 303.901 26.69 27.22 27.71
0 ¹ ,,	****		*****	<mark></mark>		···· · ·····	mir
100 19.21 19.2 %- %- 0- 0- ,,,,,,,,,,,,,,,,,,,,,,,,,,,	·····	····	····	······································	23.80 24.52 24.00 25.05	25.38 25.51 26.11 26.18 25.51 26.11	F1:Voltage SIR,EI 305.89 26.57 26.93 27.20 4.863e+00
19.9		20.50 21.00 21.	50 22.00 22.50	23.00 23.50	24.00 24.50 25.00	25.50 26.00	26.50 27.00 27.50
200515R1_4							F1:Voltage SIR,EI
100-3				13C-1,2,3,4-TCDF 23.59	13C-2,3,7,8-TCDF 25.11		315.941 9.822 0+ 00
%-				8.70e5 9769790	7.56e5 9625606		
200515R1_4							mi E1:Voltace SIP E/
100-13K1_4				13C-1,2,3,4-TCDF	13C-2,3,7,8-TCDF		F1:Voltage SIR,EI 317.93
%				23.58 1.11e6	25.09 9.79e5		1.256e+00
0 ¹ ,,				12506567			mire mire and a mi
19.	50 20.00	20.50 21.00 21.	50 22.00 22.50	23.00 23.50	24.00 24.50 25.00	25.50 26.00	26.50 27.00 27.50
DPE1 200515R1_4							F1:Voltage SIR,EI
100-1 100-1					24.78	25.44	375.836
			22.05	23 58	24 64	25.44	27.28 3.414e+00
19.49 19 %	19.91 9.58 20.18 19.75 M.M.M.	20.95 21.53 20.60 21.01 MMmmMmmmM	21.95 21.71 22.23	22.85 23.0423.30	24.24 23.94 24.57	26 25.54 26.08 20	27.28 5.11 27.40
0	50 20.00	20.50 21.00 21.	50 22.00 22.50	23.00 23.50	24.00 24.50 25.00	25.50 26.00	


Ista Analytica	n ple Report al Laboratory	MassLynx 4.1 SCN815			Page 8 of 1
)ataset:	Untitled				
ast Altered: Printed:		5, 2020 11:20:31 AM Pacific Dayli 5, 2020 11:22:35 AM Pacific Dayli			
lame: 20051	5R1_4, Date: 1	5-May-2020, Time: 10:34:04, ID:	B0D0306-BLK1 Method Blank	x 10, Description: Method Blank	
st Func. Per 00515R1_4	nta-Furans				
- 100 ₇	20.06 9.54 19.94 20.1 Mmmh Mr	4 21.57 21.75 22.01	22.31 22.37 22.88 23.00 23.53 23	24.73 25.12 24.73 25.15 25.74 23.95 24.52 24.52 25.14 25.15	26.08 26.08 26.08 26.08 26.08 26.08 27.17 26.08 27.20 27.20 27.47 27.73 27.73

00515R1_4	1				F1:Voltage SIR,E
00 19.09 19.43 %	9.55 19.72 MMMMMMM	20.47 20.54 21.39 21.50 22.0 M 20.84 M M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	23.09 22.64 22.26 22.98 23.36 22.26 22.98	25.17 24.48 24.07 _{24.33} 24.67.24.75 25.20 25.41 25.69 25.41 25.69 25.41 25.69 25.41 25.69	341.86 4.049e+00 26.02 26.53 26.84 ^{26.98} 27.31 27.82 MwMMMM
0	.50 20.00	20.50 21.00 21.50 22.00	**_**	, 	26.00 26.50 27.00 27.50
PE6					
00515R1_4		21.33		24.87	F1:Voltage SIR,E 409.797 4.799e+00
00-7					
			23.	85 25.30	27.35
-	19.69 19.87	21 20	23.80		
-	19.69 19.87	21.20 15 21.16 21.53 21.89 ²	23.80		
	19.69 19.87	21.20 5 20.96 21.16 21.53 21.89 2 21.53 22.09 21.53 22.09 22.00	23.80		
- 19.46	19.69 19.87	$\begin{array}{c} 21.20\\5\\20.96\end{array}$	23.80		27.35 26.77 26.84 27.20 26.44 26.53 26.44 26.53 27.55 27.68 27.68



the second division in the second division division in the second division din the second division division divi										808							۰.											
5.1		Ang	RA	aly	RAF	water	ला	NUCT		ne DL	EMPC					an to all the state of the stat					÷;+							
2	Total Hepte-Dioxins				8579					0 0285												· -		,				
3	Total Tetra-Furana			0	7871	10 000				0 0183	3															• *		
	1at Func Pente-Furans	F			9102					0 00790																		
5	Total Panta-Furans			C	9107	10 000				0 0176																		- '
ł		- 41 141	Reap	Reality	RA	-	WAC	Cane.								ante anticipa, co									:		<u></u>	
		3 23 17	717e2 1	1 396e2	1 23	NO 0.06	63281 0	0 063281						-														
1	Total Hexa-Furans	3526 11	194e2 1	/ 131e1	16/ 1	YES 0.02	6701	0.00000																				
																						.'	• •				• •	
																					. •	. •						•
																						- A - A - A - A - A - A - A - A - A - A	•	• .				
																				· .						. :		
																					'	· · · ·		• • • •			· ·	
																										÷. "	. 1	
																											۴.	
																								:				
	R1_4 Blank 0000306-0LK1 Net	thad Blank 1	e)																•	,						,	3 Voltage SIF 3?2	821
həd E				32 8R	jj	01 33.09	<u>33 11</u>	33.26	33 35	3 45 33 56	33 67 33 62 / 83	33 80 371 /~/\	0 < <u>33 83 33</u>	96 34,08	34 16 ³⁴ 26 34 3	34 36 0 / (31 38	34 55	34 88 34 75	34 87 34 9	123	7,8,9-1 txCDF 35.18 08	35 23 171) 35 171) 35	73.4869 30 ./ <u>35.44</u>	35.56	<u>33560</u> 35.		90 35 96	821
had E	Blank B0D0306-BLK1 Net	·32 63 32	2.67 32.78	1 32 BR	jj	01 33.09	33 11	33.26	33 35	3 46 33 58	33 G7 43.62 / 83	33 80 171 //\	0 ~33 P3 33	<u>96 34,08</u>	34 16 ³⁴ 26 34 3	34 36 6 / 31 38	34 55	34 88 34 75	34 87 34 9		75.10	35 23,171) 35 35	30	35.55	3,35.60 35.	73 35	3?2 5742e- 90 35.96	821 003
had E	Blank BDC0306 BLK1 Met 29 32 42 32.47 32 62 29 32 42 32 42 R1_4 Blank BDC0306 SLK1 Met	-32 63 32	2.67 32 78		ib							· - · · · · · ·					· · · · · · · · · · · · · · · · · · ·			1,2 3	35.18 08	25 24,139	30 <u>35 44</u> 158.3760	· · ·	35.60 35.	73 35	372 6742e4 90 35.96 3 40ttage SIF	821 003 mm El+ A16
nad E 32 5156 ind E	Blank BDC0306 BLK1 Met 29 32 42 32.47 32 62 29 32 42 32 42 R1_4 Blank BDC0306 SLK1 Met	-32 63 32	2.67 32 78		ib							· - · · · · · ·					· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	03 03	25 24,139	30 <u>35 44</u> 158.3760	· · ·		73 73	322 5742e4 90 35.96 3 596 3 596 375 5 6 39e	821 -003 -003
Find E	Blank BDC0306 BLK1 Met 29 32 42 32.47 32 62 29 32 42 32 42 R1_4 Blank BDC0306 SLK1 Met	-32 63 32	2.67 32 78		ib							· - · · · · · ·					· · · · · · · · · · · · · · · · · · ·			1,2 3 20F,35 24,13	35.18 08	25 24,139	30 <u>35 44</u> 158.3760	· · ·		35 73	322 5742e4 90 35.96 3 596 3 596 375 5 6 39e	821 003 mm El+ A16 -003
had E	Blank BDC0336 BLX1 Met 29 32 42	-32 63 32	2.67 32 78		ib							· - · · · · · ·			<u>34 16 34 26 34 2</u>		· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 08	25 24,139	.30 ./ <u>35</u> .44	· · ·		35 73	372 6742e4 90 35.96 3 596 3 596 3 596 3 596 3 596 3 596 3 596 3 596 3 596	821 003 mm El+ A16 -003
	Blank BDC0336 BLK1 Met 29 32 42 32.47 32 52 21 4 21 4 Blank BDC0336 SLK1 Met 227 32.42 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47	32.63 4000 Blank 1 32.60 32.00 32.00	2.67 32 78 10 7 2.71 32		ib							· - · · · · · ·					· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 08	25 24,139	30 <u>35 44</u> 158.3760	· · ·		73 35 35 74 35 87	372 57742e- 90 35.96 35.96 35.92 35.92 35.92 35.92 35.92 35.92 35.92	821 -003
	Blank BDC0396 BLX1 Met 29 32 42 32 62 R1_4 Blank BDC0396 SLX1 Met 227 12 42 32 47 12 42 32 44 12 42 32 47	32.63 4000 Blank 1 32.60 32.00 32.00	2.67 32 78 10 7 2.71 32		ib	a. 33.07	33 16 .	· · · · 33 28	33 30 3		60 33 6 \ \ \	59 33 76 ³		35 54 07	4.15	34.37 34.42	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 08	25 24,139	30 <u>35 44</u> 158.3760	· · ·		73 35 35 74 35 87	372 5742e4 90 35.96 35.96 35.96 35.92 35.96 36.96 36.9	821 -003
Stiffe	Blank BDC0336 BLK1 Met 29 32 42 32.47 32 52 21 4 21 4 Blank BDC0336 SLK1 Met 227 32.42 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47	32.63 4000 Blank 1 32.60 32.00 32.00	2.67 32 78 10 7 2.71 32		ib	a. 33.07	33 16 .	· · · · 33 28	33 30 3	. 33 3 4532 53 /	60 33 6 \ \ \	· - · · · · · ·			4.15		· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 09 7,8.9 HxCE4 9 58,3760	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		73 35 35 74 35 87	372 57742e- 90 35.96 35.96 35.92 35.92 35.92 35.92 35.92 35.92 35.92	821 -003 min
132) 5156 Find E	Blank BDC0336 BLK1 Met 29 32 42 32.47 32 52 21 4 21 4 Blank BDC0336 SLK1 Met 227 32.42 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47	32.63 4000 Blank 1 32.60 32.00 32.00	2.67 32 78 10 7 2.71 32		ib	a. 33.07	33 16 .	· · · · 33 28	33 30 3	. 33 3 4532 53 /	60 33 6 \ \ \	59 33 76 ³		35 54 07	4.15	34.37 34.42	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 08	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		73 35 35 74 35 87	372 5742e4 90 35.96 35.96 35.96 35.92 35.96 36.96 36.9	821 -003 min
132 15156 132 15156 132 132 132 132 132 132 132 132	Blank BDC0336 BLK1 Met 29 32 42 32.47 32 52 21 4 21 4 Blank BDC0336 SLK1 Met 227 32.42 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47	32.63 4000 Blank 1 32.60 32.00 32.00	2.67 32 78 10 7 2.71 32		ib	a. 33.07	33 16 .	· · · · 33 28	33 30 3	. 33 3 4532 53 /	60 33 6 \ \ \	59 33 76 ³		35 54 07	4.15	34.37 34.42	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 09 7,8.9 HxCE4 9 58,3760	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		73 35 35 74 35 87	372 5742e4 90 35.96 35.96 35.96 35.92 35.96 36.96 36.9	821 -003
Istind E	Blank BDC0336 BLK1 Met 29 32 42 32.47 32 52 21 4 21 4 Blank BDC0336 SLK1 Met 227 32.42 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47 32.44 32 47	32.63 4000 Blank 1 32.60 32.00 32.00	2.67 32 78 10 7 2.71 32		ib	a. 33.07	33 16 .	· · · · 33 28	33 30 3	. 33 3 4532 53 /	60 33 6 \ \ \	59 33 76 ³		35 54 07	4.15	34.37 34.42	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 09 7,8.9 HxCE4 9 58,3760	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		35 74 35 8	372 6742e+ 90 35.96 35.96 35.95 5.939e+ 35.92 35.92 35.92 35.92 35.92 35.92 35.92 35.92 35.92 35.92 35.92 35.92 35.95 5.939e+ 35.95 5.939e+ 35.96 36.96 36.9	821 003 min 203 203 05 min 035 054 000 min
hod E	Blank BDD03306 BLK1 Met 29 32 42 32.47 32 62 R1.4 Blank BDD03306 BLK1 Met 2 27 32.42 32.44 32.47 12 42 27 32.44 32.47 R1_4 Blank BDD03306 BLK1 Met R1_4	32 63 32 thud Blank 1 32 61 32 60 32 60	2.67 32 78 10 7 2.71 32 10		ib	a. 33.07	33 16 .	· · · · 33 28	33 30 3	. 33 3 4532 53 /	60 33 6 \ \ \	59 33 76 ³		35 54 07	4.15	34.37 34.42	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 09 7,8.9 HxCE4 9 58,3760	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		35 74 35 8	372 5742e+ 90 35 96 35 92 35 92 35 92 35 92 36 92 36 92 36 92 36 92 36 92 37 5 5 92 39 8 048ag 516 30 8 048ag 516 30 30 30 8 048ag 516 30 30 30 30 30 30 30 30 30 30 30 30 30	821 0003 min EEL+ 0003 05 min E54 0006 min E54
had E	Blank BDD03306 BLK1 Met 29 32 42 32 52 R1_4 Blank BDC0336 SLK1 Met 227 12 42 32 44 32 47 R1_4 Brank BDD0336-BLK1 Met	32 63 32 thud Blank 1 32 61 32 60 32 60	2.67 32 78 10 7 2.71 32 10		ib	13C-	33 16	.7 8+txCDI	33 30 <u>2</u> 7,32 63;44	. 33 3 4532 53 /	792	33.76 ³		25 54 07 24 03	415 3433	34.37 <u>34.43</u>	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 09 7,8.9 HxCE4 9 58,3760	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		35 74 35 8	372 5742et 90 35.96 35.96 35.96 35.92 35.9	821 003 min Eli+ 003 05 min 05 006 min 006 min 006
132 7 15156 8 101 2 15156 8 101 15 156 156 156 156 156 156 156 156 156	Blank BDD03306 BLK1 Met 29 32 42 32.47 32 62 R1.4 Blank BDD03306 BLK1 Met 2 27 32.42 32.44 32.47 12 42 27 32.44 32.47 R1_4 Blank BDD03306 BLK1 Met R1_4	32 63 32 thud Blank 1 32 61 32 60 32 60	2.67 32 78 10 7 2.71 32 10		ib	13C-	33 16	.7 8+txCDI	33 30 <u>2</u> 7,32 63;44	. 33 3 <u>34532 53</u> / 1936 38,7688	792	59 33 76 ³		35 54 07	415 3433	34.37 34.42	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 08 24 7.8.9 HiCCV 9 58.3760 A 25 35	35 24 139 35 24 139	30 <u>35 44</u> 158.3760	· · ·		35 74 35 8	372 5742e+ 90 35 96 35 92 35 92 35 92 35 92 36 92 36 92 36 92 36 92 36 92 37 5 5 92 39 8 048ag 516 30 8 048ag 516 30 30 30 8 048ag 516 30 30 30 30 30 30 30 30 30 30 30 30 30	821 005 mm 205 05 mm 05 mm 05 mm 05 mm 05 mm 05
had E	Blank BDD03306 BLK1 Met 29 32 42 32.47 32 62 R1.4 Blank BDD03306 BLK1 Met 2 27 32.42 32.44 32.47 12 42 27 32.44 32.47 R1_4 Blank BDD03306 BLK1 Met R1_4	32 63 32 thud Blank 1 32 61 32 60 32 60	2.67 32 78 10 7 2.71 32 10		ib	13C-	33 16	.7 8+txCDI	33 30 <u>2</u> 7,32 63;44	. 33 3 <u>34532 53</u> / 1936 38,7688	792	33.76 ³		25 54 07 24 03	415 3433	34.37 <u>34.43</u>	· · · · · · · · · · · · · · · · · · ·		.3.7 8 9-Hm	1,2 3 20F,35 24,13	35.18 08 24 7.8.9 HiCCV 9 58.3760 A 25 35	22	30 <u>35 44</u> 158.3760	· · ·		35 74 35 8	372 5742et 90 35.96 35.96 35.96 35.92 35.9	821 0003 mmn 2003 005 mmn 006 006 mmn 006

Quantify Sam Vista Analytica		Page 13 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 11:20:31 AM Pacific Daylight Time Friday, May 15, 2020 11:22:35 AM Pacific Daylight Time	

Quantify San Vista Analytica	ple Summary Report MassLynx 4.1 SCN815 al Laboratory	Page 1 of 2
Dataset:	U:\VG12.PRO\Results\200515R1\200515R1-2.qld	
Last Altered: Printed:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Friday, May 15, 2020 10:33:54 AM Pacific Daylight Time	GPB 05/15/2020

Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

		en e	16 Å	مرجع في بي أو موقع	entral de			1912 - 1 1913 -		and the second second			
1 2,3,7,8-TCDD	1.02e5	0.75	NO	0.947	10.000	26.066	26.06	1.001	1.001	17.458		0.112	17.5
2 1,2,3,7,8-PeCDD	4.58e5	0.62	NO	0.942	10.000	31.146	31.14	1.001	1.000	89.746		0.122	89.7
3 1,2,3,4,7,8-HxCDD	4.35e5	1.24	NO	1.06	10.000	34.516	34.52	1.000	1.000	96.524		0.128	96.5
4 1,2,3,6,7,8-HxCDD	4.42e5	1.23	NO	0.915	10.000	34.612	34.62	1.000	1.000	99.350		0.134	99.3
5 1,2,3,7,8,9-HxCDD	4.32e5	1.23	NO	0.915	10.000	34.889	34.89	1.000	1.000	98.277		0.137	98.3
6 1,2,3,4,6,7,8-HpCDD	3.43e5	1.02	NO	0.898	10.000	38.405	38.40	1.000	1.000	100.11		0.154	100
7 OCDD	6.16e5	0.87	NO	0.933	10.000	41.364	41.38	1.000	1.000	198.41		0.150	198
8 2,3,7,8-TCDF	1.12e5	0.75	NO	0.787	10.000	25.117	25.12	1.001	1.001	19.614		0.127	19.6
9 1,2,3,7,8-PeCDF	6.39e5	1.54	NO	0.910	10.000	29.834	29.83	1.001	1.001	96.246		0.130	96.2
10 2,3,4,7,8-PeCDF	6.50e5	1.57	NO	0.966	10.000	30.850	30.83	1.001	1.000	95.830		0.115	95.8
11 1,2,3,4,7,8-HxCDF	4.94e5	1.21	NO	0.878	10.000	33.643	33.65	1.000	1.000	105.94		0.161	106
12 1,2,3,6,7,8-HxCDF	5.24e5	1.21	NO	0.874	10.000	33.770	33.77	1.000	1.000	104.36		0.160	104
13 2,3,4,6,7,8-HxCDF	5.29e5	1.20	NO	0.922	10.000	34.369	34.35	1.001	1.000	105.16		0.164	105
14 1,2,3,7,8,9-HxCDF	4.31e5	1.22	NO	0.864	10.000	35.230	35.24	1.000	1.000	105.26		0.229	105
15 1,2,3,4,6,7,8-HpCDF	3.96e5	0.99	NO	0.871	10.000	37.003	36.98	1.001	1.000	109.45		0.189	109
16 1,2,3,4,7,8,9-HpCDF	3.34e5	1.00	NO	1.01	10.000	38.968	38.98	1.000	1.000	108.18		0.197	108
17 OCDF	6.50e5	0.88	NO	0.802	10.000	41.546	41.56	1.000	1.000	211.51		0.148	212
18 13C-2,3,7,8-TCDD	1.24e6	0.78	NO	1.16	10.000	26.015	26.03	1.026	1.027	161.26	80.6	0.218	
19 13C-1,2,3,7,8-PeCDD	1.08e6	0.63	NO	0.847	10.000	31.105	31.12	1.227	1.228	193.23	96.6	0.220	
20 13C-1,2,3,4,7,8-HxCDD	8.47e5	1.28	NO	0.750	10.000	34.517	34.51	1.014	1.014	186.70	93.3	0.256	
21 13C-1,2,3,6,7,8-HxCDD	9.74e5	1.27	NO	0.963	10.000	34.629	34.61	1.017	1.017	167.15	83.6	0.199	
22 13C-1,2,3,7,8,9-HxCDD	9.60e5	1.25	NO	0.838	10.000	34.898	34.88	1.025	1.025	189.49	94.7	0.229	
23 13C-1,2,3,4,6,7,8-HpCDD	7.64e5	1.04	NO	0.641	10.000	38.390	38.39	1.128	1.128	196.92	98.5	0.295	
24 13C-OCDD	1.33e6	0.89	NO	0.586	10.000	41.385	41.36	1.216	1.215	375.26	93.8	0.282	
25 13C-2,3,7,8-TCDF	1.45e6	0.77	NO	1.03	10.000	25.075	25.09	0.989	0.990	155.37	77.7	0.411	
26 13C-1,2,3,7,8-PeCDF	1.46e6	1.58	NO	0.845	10.000	29.794	29.81	1.176	1.176	190.94	95.5	0.394	
27 13C-2,3,4,7,8-PeCDF	1.40e6	1.58	NO	0.814	10.000	30.785	30.82	1.215	1.216	190.71	95.4	0.409	
28 13C-1,2,3,4,7,8-HxCDF	1.06e6	0.51	NO	1.00	10.000	33.656	33.64	0.989	0.988	174.76	87.4	0.321	
29 13C-1,2,3,6,7,8-HxCDF	1.15e6	0.51	NO	1.14	10.000	33.778	33.76	0.992	0.992	167.18	83.6	0.284	
30 13C-2,3,4,6,7,8-HxCDF	1.09e6	0.51	NO	1.02	10.000	34.347	34.33	1.009	1.009	176.39	88.2	0.316	
31 13C-1,2,3,7,8,9-HxCDF	9.49e5	0.51	NO	0.845	10.000	35.238	35.23	1.035	1.035	185.61	92.8	0.382	

C7 05/22/2020

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200515R1\200515R1-2.qld

Last Altered: Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Printed: Friday, May 15, 2020 10:33:54 AM Pacific Daylight Time

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

		tada a inati	alan an Araba		1.24		19 S							
	32 13C-1,2,3,4,6,7,8-HpCDF	8.32e5	0.43	NO	0.771	10.000	36.971	36.97	1.086	1.086	178.22	89.1	0.323	
	33 13C-1,2,3,4,7,8,9-HpCDF	6.11e5	0.43	NO	0.482	10.000	38.982	38.97	1.145	1.145	209.38	105	0.517	[
	34 13C-OCDF	1.53e6	0.88	NO	0.669	10.000	41.556	41.55	1.221	1.221	379.11	94.8	0.280	1
	35 37CI-2,3,7,8-TCDD	5.51e5			1.10	10.000	26.046	26.06	1.028	1.028	75.899	94.9	0.0406	
	36 13C-1,2,3,4-TCDD	1.32e6	0.7 9	NO	1.00	10.000	25.350	25.35	1.000	1.000	200.00	100	0.253	
	37 13C-1,2,3,4-TCDF	1.81e6	0.7 9	NO	1.00	10.000	23.560	23.57	1.000	1.000	200.00	100	0.425	
and the second	38 13C-1,2,3,4,6,9-HxCDF	1.21e6	0.51	NO	1.00	10.000	34.000	34.04	1.000	1.000	200.00	100	0.323	
	39 Total Tetra-Dioxins				0.947	10.000	24.620		0.000		18.059		0.112	18.5
	40 Total Penta-Dioxins				0.942	10.000	29.960		0.000		90.108		0.122	90.5
	41 Total Hexa-Dioxins				0.915	10.000	33.635		0.000		294.15		0.140	294
	42 Total Hepta-Dioxins				0.898	10.000	37.640		0.000		100.73		0.154	101
	43 Total Tetra-Furans				0.787	10.000	23.610		0.000		21.030		0.127	23.1
	44 1st Func. Penta-Furans				0.910	10.000	27.090		0.000		0.29598		0.0270	0.296
	45 Total Penta-Furans				0.910	10.000	29.275		0.000		192.59		0.126	195
	46 Total Hexa-Furans				0.922	10.000	33.555		0.000		421.33		0.170	421
	47 Total Hepta-Furans				0.871	10.000	37.835		0.000		217.62	_	0.206	218

Dataset: U:\VG12.PRO\Results\200515R1\200515R1-2.qld

Last Altered:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time
Printed:	Friday, May 15, 2020 10:33:54 AM Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Callbration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

Tetra-Dioxins

		i i i i i i i i i i i i i i i i i i i	a Anna a		A Carlo and a carlo							
	Total Tetra-Dioxins	21.87	1.303e4	1.534e4	8.971e2	1.314e3	0.68	NO	2.211e3	0.37773	0.37773	0.112
	Total Tetra-Dioxins	24.28	7.293e3	1.085e4	5.913e2	7.145e2	0.83	NO	1.306e3	0.22307	0.22307	0.112
an a	Total Tetra-Dioxins	25.75	1.411e4	1.992e4	1.037e3	2.095e3	0.49	YES	0.000e0	0.00000	0.40715	0.112
	2,3,7,8-TCDD	26.06	6.245e5	8.253e5	4.374e4	5.846e4	0.75	NO	1.022e5	17.458	17.458	0.112

Penta-Dioxins

	2		. A march	and the love the	de altre de de	- <u>(</u>)					
	Total Penta-Dioxins	28.87	5.824e3	9.052e3	3.341e2	5.980e2	0.56 NO	9.321e2	0.18282	0.18282	0.122
	Total Penta-Dioxins	29.87	7.454e3	1.399e4	5.468e2	6.885e2	0.79 YES	0.000e0	0.00000	0.22013	0.122
	Total Penta-Dioxins	30.13	3.362e3	6.390e3	2.284e2	2.689e2	0.85 YES	0.000e0	0.00000	0.085978	0.122
	Total Penta-Dioxins	30.71	6.895e3	9.589e3	3.509e2	5.607e2	0.63 NO	9.116e2	0.17880	0.17880	0.122
1	1,2,3,7,8-PeCDD	31.14	3.474e6	5.557e6	1.753e5	2.823e5	0.62 NO	4.576e5	89.746	89.746	0.122
	Total Penta-Dioxins	31.54	4.873e3	3.870e3	2.705e2	3.139e2	0.86 YES	0.000e0	0.00000	0.10036	0.122

Hexa-Dioxins

2.4			S. S. S. S.	6	an Ball Mar Star Lar	a de la ca		15			14	a dan asiri
	1,2,3,4,7,8-HxCDD	34.52	4.554e6	3.629e6	2.406e5	1.944e5	1.24	NO	4.350e5	96.524	96.524	0.128
	1,2,3,6,7,8-HxCDD	34.62	4.465e6	3.677e6	2.441e5	1.983e5	1.23	NO	4.424e5	99.350	99.350	0.134
	1,2,3,7,8,9-HxCDD	34.89	4.187e6	3.416e6	2.382e5	1.935e5	1.23	NO	4.317e5	98.277	98.277	0.137

Hepta-Dioxins

¢ ^	and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·· · ·	2000 APR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				100 C		
	Level and some a start to the	A SAME SPECIA	ist a march to	A Sec. Sec.	An the new Mary					Sec. 1	Stee at a start	· · · · · · · · · · · · · · · · · · ·
	Total Hepta-Dioxins	37.37	1.420e4	1.454e4	1.053e3	1.093e3	0.96	NO	2.146e3	0.62554	0.62554	0.154
25	1,2,3,4,6,7,8-HpCDD	38.40	2.585e6	2.520e6	1.738e5	1.697e5	1.02	NO	3.435e5	100.11	100.11	0.154

Dataset: U:\VG12.PRO\Results\200515R1\200515R1-2.qld

Last Altered: Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Friday, May 15, 2020 10:33:54 AM Pacific Daylight Time

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

Tetra-Furans

			5		Alleria			در ¹		A. 3.	
:	Total Tetra-Furans	19.76	4.036e3	5.354e3	3.208e2	4.473e2	0.72 NO	7.680e2	0.13435	0.13435	0.127
	Total Tetra-Furans	20.30	4.252e3	5.970e3	3.370e2	4.656e2	0.72 NO	8.025e2	0.14039	0.14039	0.127
	Total Tetra-Furans	20. 90	9.524e3	1.029e4	7.614e2	9.031e2	0.84 NO	1.664e3	0.29117	0.29117	0.127
	Total Tetra-Furans	21.29	3.762e3	6.426e3	2.214e2	5.035e2	0.44 YES	0.000e0	0.00000	0.089043	0.127
14	Total Tetra-Furans	21.42	7.671e3	9.641e3	1.119e3	1.137e3	0.98 YES	0.000e0	0.00000	0.35215	0.127
	Total Tetra-Furans	21.74	4.209e3	4.043e3	2.378e2	2.535e2	0.94 YES	0.000e0	0.00000	0.078493	0.127
	Total Tetra-Furans	21.81	6.250e3	8.110e3	6.627e2	7.229e2	0.92 YES	0.000e0	0.00000	0.22383	0.127
	Total Tetra-Furans	22.31	7.659e3	9.230e3	6.504e2	6.476e2	1.00 YES	0.000e0	0.00000	0.20052	0.127
	Total Tetra-Furans	23.30	1.057e4	1.384e4	9.135e2	1.367e3	0.67 NO	2.281e3	0.39898	0.39898	0.127
5	Total Tetra-Furans	23.59	1.451e4	2.005e4	1.738e3	1.934e3	0.90 YES	0.000e0	0.00000	0.59869	0.127
·	Total Tetra-Furans	24.13	8.010e3	9.766e3	5.629e2	7.289e2	0.77 NO	1.292e3	0.22597	0.22597	0.127
	Total Tetra-Furans	24.45	4.000e3	6.574e3	2.934e2	4.556e2	0.64 YES	0.000e0	0.00000	0.11799	0.127
1	Total Tetra-Furans	24.61	7.622e3	8.292e3	5.923e2	6.969e2	0.85 NO	1.289e3	0.22553	0.22553	0.127
	Total Tetra-Furans	24.91	6.867e3	1.001e4	4.861e2	5.235e2	0.93 YES	0.000e0	0.00000	0.16211	0.127
	2,3,7,8-TCDF	25.12	6.306e5	8.779e5	4.804e4	6.408e4	0.75 NO	1.121e5	19.614	19.614	0.127
	Total Tetra-Furans	25.50	8.750e3	1.189e4	5.159e2	8.219e2	0.63 YES	0.000e0	0.00000	0.20744	0.127

Penta-Furans function 1

1	·	and the start of the									
1st Func. Penta-Furans	27.17	1.837e4	7.960e3	1.203e3	7.238e2	1.66	NO	1.927e3	0.29598	0.29598	0.0270

Dataset: U:\VG12.PRO\Results\200515R1\200515R1-2.qld

Last Altered:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time
Printed:	Friday, May 15, 2020 10:33:54 AM Pacific Daylight Time

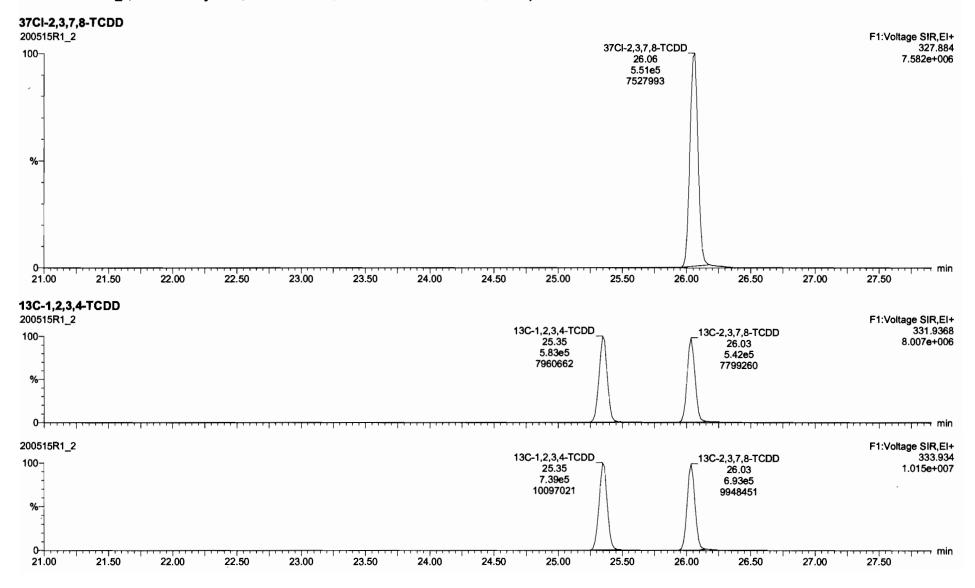
Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

Penta-Furans

		and and the second	a de la catalante i							
Total Penta-Furans	28.67	1.320e4 8.4	00e3 9.647e2	6.184e2	1.56	NO	1.583e3	0.24314	0.24314	0.126
Total Penta-Furans	28.82	2.474e4 1.2	09e4 2.304e3	6.004e2	3.84	YES	0.000 e 0	0.00000	0.23515	0.126
Total Penta-Furans	29.43	2.042e4 1.5	49e4 1.703e3	1.34 4e 3	1.27	YES	0.000e0	0.00000	0.43033	0.126
Total Penta-Furans	29.64	1.945e4 1.1	99e4 1.042e3	7.408e2	1.41	NO	1.783e3	0.27378	0.27378	0.126
1,2,3,7,8-PeCDF	29.83	7.395e6 4.8	41e6 3.876e5	2.512e5	1.54	NO	6.388e5	96.246	96.246	0.130
Total Penta-Furans	30.10	7.121e4 3.4	82e4 5.061e3	2.793e3	1.81	YES	0.000e0	0.00000	1.0940	0.126
2,3,4,7,8-PeCDF	30.83	7.825e6 4.9	15e6 3.967e5	2.530e5	1.57	NO	6.497e5	95.830	95.830	0.115
Total Penta-Furans	31.78	2.781e4 1.9	94e4 1.843e3	9.724e2	1.90	YES	0.000e0	0.00000	0.38081	0.126

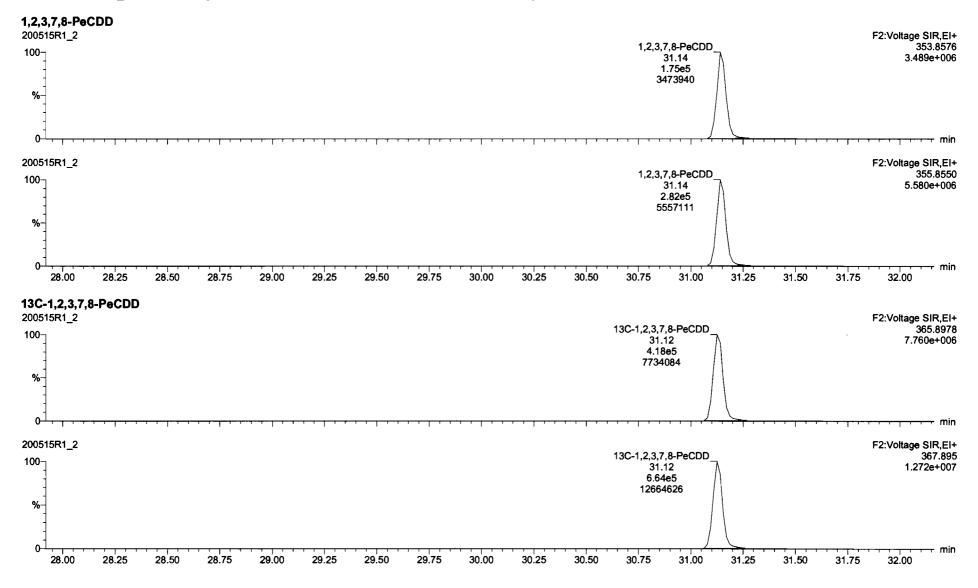
Hexa-Furans

	Barrier and the second state from the second state of the			at the state of the		1. 1. 2. 2. 2. 2.		the second s	1.4			
	Total Hexa-Furans	32.48	1.225e4	8.940e3	7.331e2	5.538e2	1.32	NO	1.287e3	0.26270	0.26270	0.170
, 4	Total Hexa-Furans	32.65	2.113e4	1.409e4	9.005e2	7.760e2	1.16	NO	1.677e3	0.34224	0.34224	0.170
	1,2,3,4,7,8-HxCDF	33. 6 5	5.597e6	4.647e6	2.702e5	2.241e5	1.21	NO	4.943e5	105.94	105.94	0.161
	1,2,3,6,7,8-HxCDF	33.77	5.667e6	4.744e6	2.876e5	2.368e5	1.21	NO	5.243e5	104.36	104.36	0.160
	2,3,4,6,7,8-HxCDF	34.35	5.288e6	4.467e6	2.884e5	2.403e5	1.20	NO	5.287e5	105.16	105.16	0.164
	1,2,3,7,8,9-HxCDF	35.24	3.990e6	3.311e6	2.371e5	1.943e5	1.22	NO	4.315e5	105.26	105.26	0.229


Hepta-Furans

			La Companya	Sec. Alex	a la ca			1.1.1.1			
1,2,3,4,6,7,8-HpCDF	36.98	3.070e6	3.040e6	1.971e5	1.994e5	0.99	NO	3.964e5	109.45	109.45	0.189
1,2,3,4,7,8,9-HpCDF	38.98	2.839e6	2.923e6	1.672e5	1.671e5	1.00	NO	3.343e5	108.18	108.18	0.197

Quantify Sam Vista Analytica		Page 1 of 13
)ataset:	Untitled	
ast Altered: Printed:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Friday, May 15, 2020 10:33:21 AM Pacific Daylight Time	
lethod: U:\V allbration: U	S12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 :\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23	
lame: 200515	R1_2, Date: 15-May-2020, Time: 09:01:39, iD: B0D0306-BS1 OPR 10, Description: OPR	
2,3,7,8-TCDD 200515R1_2	2,3,7,8-TCDD 26.06 4.37e4 624467	F1:Voltage SIR,EI 319.896 6.335e+00
0++++++++++++++++++++++++++++++++++++++		mii
200515R1_2 100- %-	2,3,7,8-TCDD 26.06 5.85e4 825344	F1:Voltage SIR,EI 321.89 8.342e+00
0- 21.00	21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00	27.50 m
13C-2,3,7,8-T (200515R1_2 100	SDD 13C-1,2,3,4-TCDD 25.35 5.83e5 7960662 13C-2,3,7,8-TCDD 26.03 5.42e5 7799260	F1:Voltage SIR,EI 331.936 8.007e+00
0		••••• mi
200515R1_2 100- %-	13C-1,2,3,4-TCDD13C-2,3,7,8-TCDD 25.35 7.39e5 100970219948451	F1:Voltage SIR,EI 333.93 1.015e+00
0- 	21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00	27.50 min


Quantify Sam Vista Analytica	mple Report MassLynx 4.1 SCN815 cal Laboratory	Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Friday, May 15, 2020 10:33:21 AM Pacific Daylight Time	

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

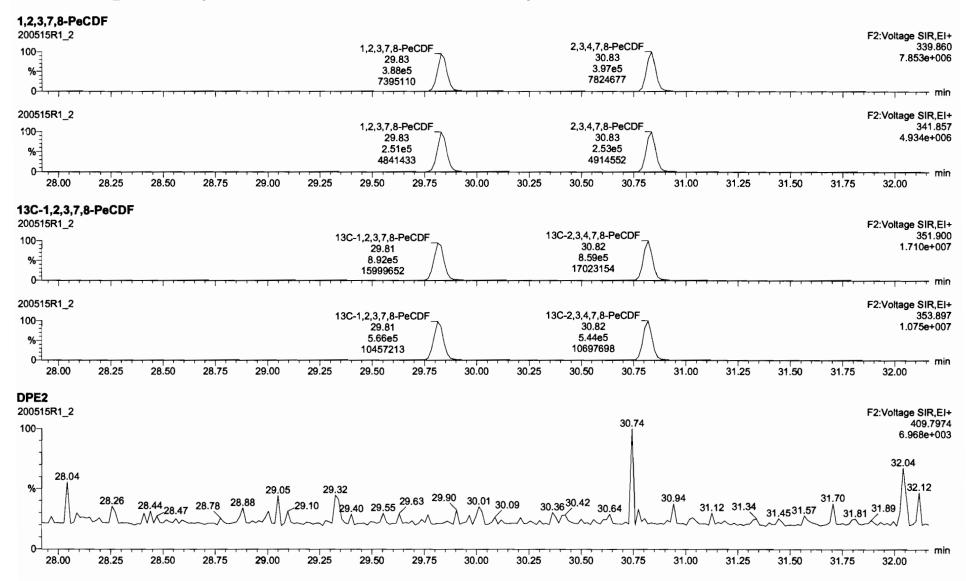
Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Friday, May 15, 2020 10:33:21 AM Pacific Daylight Time	

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR

Quantify San /ista Analytica	n ple Report al Laboratory	MassLy	mx 4.1 SC	N815										Page 4 of 1
Dataset:	Untitled													
ast Altered: Printed:	Friday, May 1 Friday, May 1	5, 2020 10:3	3:21 AM F	Pacific Da	ylight Time									
lame: 20051 ,2,3,4,7,8-Hx	5R1_2, Date: 1 (CDD	5-May-2020	, Time: 09):01:39, II	D: B0D030	06-BS1 C)PR 10, D	escriptio	on: OPR					
200515R1_2								3 2.	7,8-HxCDD_ 4.52 41e5 53931	1,2,3	,6,7,8-HxC	DD;34.62;2.44e5	;4464646	F3:Voltage SIR,EI 389.81 4.576e+00
0-+ 00515R1_2	 • • • • • • • • • • • • • • • • • • •				,,,,,,,,,,,,		,,,,,,,,,,,,,,,		┍᠇᠇᠇ᡳᡘ᠇᠇	᠇᠇ᡰ᠇᠇᠇᠇ᡝ			<u>, , , , , , , , , , , , , , , , , , , </u>	mi
%- -								1,:	2,3,6,7,8-HxC	DD;34.62;	1.98e5;367	6606		F3:Voltage SIR,EI 391.81 3.709e+00
32.40	32.60 32.8	30 33.00	33.20	33.40	33.60	33.80	34.00	34.20	34.40	34.60	34.80	35.00 35	.20 35.40	35.60 35.80
3C-1,2,3,4,7, 00515R1_2	,8-HxCDD													F3:Voltage SIR,E
%- -								13C-1	I,2,3,6,7,8-Hx	CDD;34.61	l;5.45e5;96	668080		401.85 9.772e+00
00515R1_2						,							1	F3:Voltage SIR,EI
%								13C-1	I,2,3,6,7,8-Hx	CDD;34.61	1;4.29e5;76	518715		403.85 7.702e+00
0- 32.40	32.60 32.8	33.00	33.20	33.40	33.60	33.80	34.00	34.20	34.40	- 		35.00 35	.20 35.40	mi 35.60 35.80

luantify San /ista Analytica	aple Report al Laboratory	MassL	ynx 4.1 \$	SCN815													Pag	je 5 of 1
)ataset:	Untitled																	
ast Altered: rinted:	Friday, May 15 Friday, May 15																	
ame: 20051	5R1_2, Date: 15	5-May-2020	0, Time:	09:01:39	, ID: B0)D0306-	BS1 OP	R 10, De	escriptio	on: OPI	R							
2,3,4,6,7,8-1	lpCDD																	
00515R1_2								1,2,3,4	1,6,7,8-Hp								F4:Volta	423.77
									38.40 1.74e5	\wedge							2	.604e+00
~ %									2584803									
/0																		
0			1			Further				1	, , , , , , , , , , , , , , , , , , , 			. littelite				mi ריייז mi
00515R1_2 00-								1,2,3,4	4,6,7,8-Hp	CDD							F4:Volta	ge SIR,El 425.77
									38.40 1.70e5	Λ							2	.542e+00
									2520016									
%-																		
										/ \	l							
0-\) 36.40 36.6	0 36.80	37.00	37.20	37.40	37.60	37.80	38.00	38.20	38.40	38.60) 38.80	39.00	39.20	39.40	39.60	39.80	mi 40.00
3C-1,2,3,4,6 , 00515R1_2	7,8-прсоо																F4:Volta	ge SIR,EI
00-]										1 :	3C-1,2,3,4	1,6,7,8-HpC 8.39	DD					435.81 .625e+00
-										$ \rangle$	3	90e5 89760					-	
%-											00	00100						
0	*****				,,,, ,,,,,			· · ·····				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			mi r
00515R1_2													. ,	. ,	. ,	. ,	F4:Volta	
00-							13	C-1,2,3,4,	6,7,8-HpC 3.38	 סס								437.81
-								3.7	' 4e 5	$ \rangle$							5	.423e+00
%-								539	3679									
-																		
										$) \setminus$								
36.20) 36.40 36.6	0 36.80	37.00	37.20	37.40	37.60	37.80	38.00	38.20	38.40	38.60	38.80	39.00	39.20	39.40	39.60	39.80	+++++ mi 40.00

Quantify Sam /ista Analytica		Page 6 of
ataset:	Untitled	
ast Altered: rinted:	Friday, May 15, 2020 9:50:28 AM Pacific Daylight Time Friday, May 15, 2020 10:33:21 AM Pacific Daylight Time	
ame: 20051	5R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR	
CDD		
00515R1_2 00 _]	OCDD 41.38	F5:Voltage SIR,I 457.7 4.788e+0
-	2.88e5 4749672	
%		
0 4		ע ניינידעינינענייענייענייערייענייערייענייערייערי
00515R1_2 00⊣	OCDD 41.38	F5:Voltage SIR,I 459.7 5.459e+0
	3.2965 5418078	0.4096*1
%		
0 ⁻¹	0 40.40 40.60 40.80 41.00 41.20 41.40 41.60 41.80 42.00 42.20 42.40 42.60 42.80	43.00 43.20 43.40 43.60 43.80 44.00
3C-OCDD 00515R1_2		F5:Voltage SIR,
00 _	13C-OCDD	469.7 1.006e+0
-	6.25e5 9983969	
% -		
0-4		
00515R1_2	13C-OCDD 41.36 7.06e5	F5:Voltage SIR, 471.7 1.139e+(
%	11329487	
0-1		, , , , , , , , , , , , , , , , , , ,

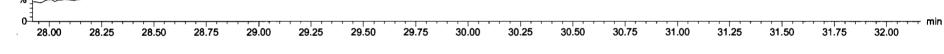

ista Analytica	a ple Report al Laboratory	MassL	ynx 4.1	SCN81	5											Page 7 of
ataset:	Untitled															
ast Altered: rinted:	Friday, May 1 Friday, May 1															
	5P1 2 Data 1	E Nov 202	0 Time	. 00.01.	20 10. 8	000208		10 Doc	rintion							
,3,7,8-TCDF	5R1_2, Date: 1	5-May-2020	u, i inte	. 09.01.	з э , ш. Б	000300	-B31 OFK	10, Dest		OFK						
00515R1_2											1005					F1:Voltage SIR,E
00										2,3,7,8- 25.1	12 \Lambda					303.90 6.372e+0
%										4.80 6306						
0 ⁻¹			.1.1.1.1.1			[,,,,,	.1				****	1	1	[,,,,,[,,,,,]		r F1:Voltage SIR,E
100 ₋₁										2,3,7,8- 25.1						305.8 8.892e+0
%										6.41 8779	e4 /\					
0 1,,,,,, ,,,,, 19.	50 20.00	20.50 2	י ין ייייי 1.00	21.50	22.00	22.50	23.00	23.50	24.00	24.50	/ () 25.00	25.50	26.00	26.50	27.00	
3C-2,3,7,8-T 00515R1_2	CDF															F1:Voltage SIR,E
100-1 100-1							13C-1,2,3,4-T			13C-2,3,7,8-1						315.94 9.030e+0
%-							23.57 7.97e5	\wedge		25.09 6.33e5	Λ					9.000e+0
0-1							8958306			7972573		,,,,,, ,,,,,	,,,,,,, ,,,,,			n
00515R1_2		, , ,		, ,	I I			,		,						F1:Voltage SIR,
100-1 100-1							13C-1,2,3,4-T	CDF_		13C-2,3,7,8-1	TCDF					317.9
1							23.57 1.01e6	Λ		25.09 8.19e5	Λ					1.179e+0
%-							1170881			1027853						
0 ⁻¹ ,-,-,,-,-,-, 19.	50 20.00	20.50 2	1.00	21.50	22.00	22.50	23.00	23.50	24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50
PE1																54.34-H 01D /
200515R1_2													26.1	2		F1:Voltage SIR, 375.83
100-																6.794 e+ 0
-								23.61								
%-		20	0,99					23.01				25.39				
19.16 ^{19.30}	0 	29 20.74	alford m	21.44 21.8 Am	4 22.08	22.25 22.	68 23.1	9 23	23.91 .74	24.40 24.7 MmmM	2 24.91 Mmmm	25.59	25.93	26.21 26.5	6 26.77	27.31 27.71 27.1 Ann ha
			•										¥			
-																

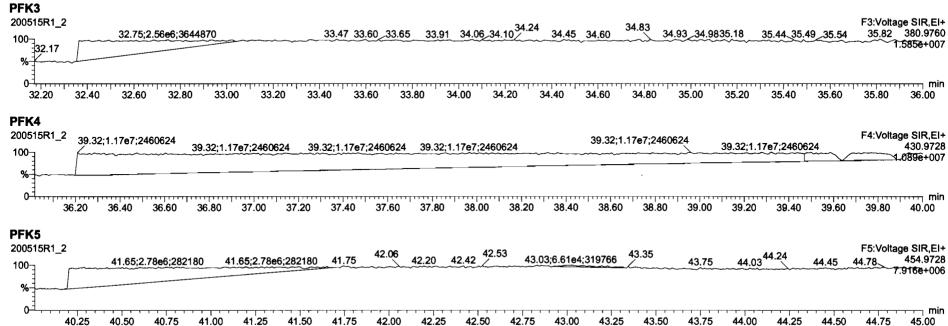
ista Analytica	n ple Report al Laboratory	MassLynx 4.1 SCN81	5							Page 8 of 13
ataset:	Untitled									
ast Altered: rinted:		2020 9:50:28 AM Pacific 2020 10:33:21 AM Pacifi								
ame: 20051 st Func. Per		May-2020, Time: 09:01:3	39, ID: B0D0306	-BS1 OPR [·]	10, Description:	OPR	,			
0515R1_2	ita-rurans									F1:Voltage SIR,EI
00_								1st F	Func. Penta-Furans 27.17	339.86 2.041e+00
-									1.20e3 18374	Λ
%-										Д
19.4	5	21.	77 22.20 22.53	22.64 23	36 23.55	24.46	25.66	26.08	^{26,45} 26,72	
0	·····				····	<u></u>	·····			mir
00515R1_2										F1:Voltage SIR,EI
00								1st F	unc. Penta-Furans 27.16	
]									7.24e2	
] %19.12			21.02						7960	\
19.12	19.81 19.93 20.4	¹ 20.50 21.2221.27 21.7	75 21.92 22.26	22.89 23.24	23,59 23,89 24.	31 24.45 2	4.99 25.23 25.53 25	6.65 26	5.29	han
		man man man	munun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~		M.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mar Man	
0- ¹	50 20.00 20	0.50 21.00 21.50	22.00 22.50	23.00	23.50 24.00	24.50	25.00 25.50	26.00	26.50 27.00	27.50
PE6										
0515R1_2										F1:Voltage SIR,EI
¹⁰ 7						24	.81			409.797 4.597e+00
-										
			2							
	19.87	21,68								
19.4	16	21.68 21.56		23.2	5 24.06		25.59			
- 19,18	19.76 19.90	21.56	22.52	23.01		24.04	25.59			27.44
- 19,18	19.76 19.90	21.56	22.52	23.01		24.64		25.96 20		27.44 27.35 27.71
- 19,18	19.76 19.90	21.56	22.52	23.01		24.64 19		25.96 20	6.18 26.69	27.44 27.35 27.71 27.80
- 19,18	19.76 19.90	21.56	22.52	23.01		24.64 19 LAMMM		25.96 21	6.18 26.69 27.20	27.44 27.35 27.71 27.80
- 19,18	19.76 19.90	21.56	22.52	23.01		24.64 19 LAMMM		25.96 21 MM	6.18 26.69 27.20	27.44 27.35 27.71 27.80
- 19.18	19.76 19.90	21.56	22.52	23.01		24.64 19 Luluuu Mu		25.96 21	6.18 26.69 27.20	27.44 27.35 27.71 27.80
- 19,18	19.76 19.90	21.56	22.52	23.01		24.64 19 Laland Markov Laland		25.96 21	6.18 26.69 27.20	27.44 27.35 27.71 27.80

Quantify San Vista Analytica		MassLynx 4.1 SCN815		
Dataset:	Untitled			

Last Altered:Friday, May 15, 2020 9:50:28 AM Pacific Daylight TimePrinted:Friday, May 15, 2020 10:33:21 AM Pacific Daylight Time

Name: 200515R1_2, Date: 15-May-2020, Time: 09:01:39, ID: B0D0306-BS1 OPR 10, Description: OPR


Page 9 of 13


	n ple Report al Laboratory	MassLynx 4.1 S	CN815					Page 10 of
taset:	Untitled							
st Altered: nted:		5, 2020 9:50:28 AM F 5, 2020 10:33:21 AM						
me: 20051	5R1_2, Date: 1	5-May-2020, Time: 0	9:01:39, ID: B0D	00306-BS1 OPR 10, D	escription: OPR	ł		
2 ,3,4,7,8-Hx 0515R1_2	CDF	-					34.35;2.88e5;5288497	F3:Voltage SIR,
0 			1	1,2,3,6,7,8-HxCDF;33.77;2.	88e5;5667168		34.33,2.0003,5200497	373.0 5.706e+0
0 ⁻¹		<u>, , , , , , , , , , , , , , , , , , , </u>			, , , , , , , , , , , , , , , , , , , 	····		F3:Voltage SIR,
0			1	1,2,3,6,7,8-HxCDF;33.77;2.	37e5;4743620	2,3,4,6,7,8-HxCDF;	34.35;2.40e5;4467065	375.0 4.773e+0
0 -1, , , , , , , , , , , , , , , , , , , 	32.40 32.60	32.80 33.00	33.20 33.40) 33.60 33.80	34.00 34.2	0 34.40 34.60	34.80 35.00	35.20 35.40
C-1,2,3,4,7 , 0515R1_2 D- _]		13C-1,2,3,4,7	8-HxCDF;33.64;3.59	e5;7546730 13C-1,2,3,4,6	,9-HxCDF;34.04;4.10	e5;7851692 13C-1,2,3,7,	8,9-HxCDF;35.23;3.21e5;5	F3:Voltage SIR, 3853.
6 0 								
0 ⁴ ,,12 0515R1_2 0 4 4				13C-1,2,3,4,6,9		5;15500942 13C-1,2,3,7,8	,9-HxCDF;35.23;6.28e5;10	F3:Voltage SIR, 385. 558772 1.560e+
0 ⁴	32.40 32.60		33.20 33.40		HxCDF;34.03;8.00e:		,9-HxCDF;35.23;6.28e5;10 34.80 35.00	F3:Voltage SIR, 385. 558772 1.560e+(
0 ⁴			,,,,,,,,,		34.00 34.2			F3:Voltage SIR, 385. 558772 1.560e+ 35.20 35.40 F3:Voltage SIR, 445.7
0 5 5 5 5 5 5 5 5 5 5 5 5 5		B 32.74 32.90 33.00		33.60 33.80	34.00 34.2	0 34.40 34.60		F3:Voltage SIR, 385. 558772 1.560e+ 35.20 35.40 F3:Voltage SIR, 445.7 4.908e+
0				33.60 33.80	33.99	34.27	34.80 35.00	F3:Voltage SIR, 385. 558772 1.560e+(35.20 35.40 F3:Voltage SIR, 445.7 4.908e+(

	a ple Report Al Laboratory	Massl	_ynx 4.1 \$	SCN815													Page	11 of 1
ataset:	Untitled																	
st Altered: inted:	Friday, May Friday, May																	
ame: 20051	5R1_2, Date: *	15-May-202	20, Time:	09:01:3	9, ID: B0)D0306-	B\$1 OP	R 10, De	scriptio	n: OPR								
2,3,4,6,7,8-1	HpCDF	-							-									
0515R1_2 00 ₃	1,2	2,3,4,6,7,8-Hp	CDF;36.98;	1.97e5;306	9953						1,2,3,4,	7,8,9-HpC	DF;38.98;	1.67e5;283	88888		F4:Voltag	407.7
%			\bigwedge										\bigwedge					.084e+0
0515R1_2	1.3	2.3.4.6.7.8-Hp	CDF:36.98:	1.99e5:304	0015	1			1	1	1234	7.8.9-HoC	DF:38.98	1.67e5;292	2675		F4:Voltag	
90	.,.										1,2,0,4,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.07 00,202	2070		3	.046e+0
0 ¹	0 36.40 36	.60 36.80		37.20	37.40	37.60	37.80	38.00	38.20	38.40	38.60	38.80	39.00	39.20	39.40	39.60	39.80	40.00
0 0 	13C-	I,2,3,4,6,7,8-H	lpCDF;36.97	7;2.51e5;3	868515						13C-1,2,3,	4,7,8,9-Hp	CDF;38.9	7;1.85e5;3	186672		3	417.8 .900e+0
0515R1_2								1.1.1.1.1.1.1		1		[[ليتبلينيا	F4:Volta	
90	13C-	I,2,3,4,6,7,8-H		7;5.80 e 5;8	794190						13C-1,2,3,4	4,7,8,9-Hp	CDF;38.9	7;4.26e5;7	387175		8	419.8 849e+0
0 -1	0 36.40 36	.60 36.80	37.00	37.20	37.40	37.60	37.80	38.00	38.20	38.40	38.60	38.80	39.00	39.20	39.40	39.60	39.80	40.00
PE4 00515R1_2 ⁰⁰]										38.	48						F4:Voltag 3	ge SIR,E 479.71 .744e+0
36.08	36.28 ↓ 36.42 36.6	1 _{36.68} 36,81	36.92 36.94	37 37,16	7.32 37.42	37.6	6 37.8	5 38,01	38 15	38.41	38.51 38.	74 38 81	38.86 39.	.09 39	.35 39.46	6 39,59 a	39.84	39.9
%-1.Å	Inn	36.68 30.61	nlKnin	M	JL-W	Cul	Mul	M	when	M	Km	MA	LM	39.18	MM	n.h.	n.M.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hum																		
0																		ריייז מ

Quantify Sample Report Vista Analytical Laboratory		MassLynx 4.1 SCN815											Page 12 of 7				
ataset:	Untitled																
ast Altered: rinted:	Friday, May 15 Friday, May 15					_	_			_							
ame: 20051!	5R1_2, Date: 15	-May-2020, Ti	ime: 09:01:39), ID: B0D	0306-E	3 S1 OPI	R 10, De:	scriptio	n: OPR								
CDF																	
00515R1_2 00⊣		c	OCDF;41.56;3.04	e5;4824788												F5:Voltag	441.7
%		· · · · · · · · · · · · · · · · · · ·	\square	<u> </u>												4	.858e+(
0515R1_2																F5:Voltag	ge SIR,
00		(DCDF;41.56;3.47	e5;5568236	I											5	443. 5.607e+0
			/ \						- , , - , , , ,-	······································				····		_, , , , ,	I
40.25	5 40.50 40.7	5 41.00 4	1.25 41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0
C-OCDF																	
00515R1_2 00⊣		13C	-OCDF;41.55;7.1	7e5;113476	18											F5:Voltag	453.7
%-																1	.141e+
0 ¹				`````````````````````````````````````				· • - · •	- , , , , , ,						· · · · · · ·		
0515R1_2																F5:Volta	
ю <u>-</u>		13C	-OCDF;41.55;8.1	6e5;130084	74											1	455. -310e+
%																	
0 ⁻¹	5 40.50 40.7	5 41.00 4	1.25 41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0
PE5																	
0515R1_2																F5:Voltag	
²⁰] ⁴).32	41.03						Δ	2.91							3	513.6 8.648e+
	40.59 40.36									43.29							
% -	40.40	40.99	41.39_41.44 MMM	41.69 41.9	96 42.07	42.25	42.37 42	62 42.8	9 43.06		43.56	43 .9	043.97 44	.13 44.30	44.54	. 44.75	44.95
		•	-														
0-1	· · · · · · · · · · · · · · · · · · ·			,							,						<u>.</u>
40.2	5 40.50 40.7	5 41.00 4	1.25 41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0

Quantify Sample Report Vista Analytical Laboratory		MassLynx 4.1 SCN815	assLynx 4.1 SCN815								
Dataset:	Untitled										
ast Altered: Printed:		5, 2020 9:50:28 AM Pacific 5, 2020 10:33:21 AM Pacifi									
FK1		⊢May-2020, Time: 09:01:3	9, ID: B0D0306-BS1 OPR	10, Description: OPR							
00515R1_2 19.	39;8.10e5;1856670	20.54 ^{20.68} 21.20 21.7521	33 22.34 22.77 23.	27 23.45 23.88 24.30 24.5	1 24.66 25.48 25.66	26.18 26.36 26.45 27.10) F1:Voltage SIR,EI+ 27.34 316.9824 4:4036+006				
0-1	50 20.00	20.50 21.00 21.50	22.00 22.50 23.00	23.50 24.00 24.5	0 25.00 25.50	26.00 26.50 27.0	0 27.50				
200515R1_2 200515R1_2 100_28.16;5.484 %_28.00	28.16;	5.48e5;2063708 28.99 29.19	29.26 29.61 29.72 29.78 29.	95 ^{30.13} 30.22 30.36 ^{30.45}	30.74_30.7931.0031.1	231.3431.46.31.51 31.61	F2:Voltage SIR,EI+ 31.89 366.9792 4.370@+006				

Quantify Sample Summary Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5B.qld

Last Altered:	Friday, June 05, 2020 11:07:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:08:53 Pacific Daylight Time

DB 6/5/20 C706/05/2020

Method: Untitled 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200604D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.86e2	0.81	NO	0.987	10.057	26.127	26.13	1.001	1.001	0.39978		0.178	0.400
2	2 1,2,3,7,8-PeCDD	3.71e2	0.83	YES	0.982	10.057	30.669	30.67	1.001	1.001	0.6 686 8		0,169	0.597
3	3 1,2,3,4,7,8-HxCDD	3.99e2	1.25	NO	1.17	10.057	33.971	33.96	1.000	1.000	0.79400		0.251	0.794
4	4 1,2,3,6,7,8-HxCDD	1.64e3	1.21	NO	1.04	10.057	34.060	34.08	1.000	1.001	3.1870		0.228	3.19
5	5 1,2,3,7,8,9-HxCDD	7.99e2	1.22	NO	1.00	10.057	34.390	34.37	1.001	1.000	1.6539		0.278	1.65
6	6 1,2,3,4,6,7,8-HpCDD	3.81e4	1.05	NO	0.992	10.057	37.834	37.85	1.000	1.001	97.873		0.667	97.9
7	7 OCDD	3.15e5	0.88	NO	1.04	10.057	41.093	41.10	1.000	1.000	1014.6		0.596	1010
8	8 2,3,7,8-TCDF	6.68e3	0.80	NO	0.882	10.057	25.326	25.33	1.001	1.001	8.2803	(7,16)	0.209	8.28
9	9 1,2,3,7,8-PeCDF	8.52e3	1.54	NO	1.05	10.057	29.482	29.48	1.001	1.001	9.9457	C	0.111	9.95
10	10 2,3,4,7,8-PeCDF	4.03e3	1.41	NO	1.06	10.057	30.367	30.37	1.000	1.000	4.8516		0.120	4.85
11	11 1,2,3,4,7,8-HxCDF	1.35e4	1.22	NO	1.08	10.057	33.061	33.08	1.000	1.001	20.329		0.248	20.3
12	12 1,2,3,6,7,8-HxCDF	4.04e3	1.20	NO	1.04	10.057	33.203	33.20	1.000	1.000	6.0878		0.258	6.09
13	13 2,3,4,6,7,8-HxCDF	1.70e3	1.20	NO	1.11	10.057	33.819	33.80	1.001	1.000	2.6052		0.278	2.61
14	14 1,2,3,7,8,9-HxCDF	7.02e2	1.06	NO	1.06	10.057	34.729	34.76	1.000	1.001	1.2393		0.362	1.24
15	15 1,2,3,4,6,7,8-HpCDF	1.51e4	1.03	NO	1.13	10.057	36.598	36.58	1.001	1.001	28.092		0.273	28.1
16	16 1,2,3,4,7,8,9-HpCDF	2.08e3	1.09	NO	1.33	10.057	38.361	38.37	1.000	1.000	4.4374		0.264	4.44
17	17 OCDF	1.84e4	0.88	NO	0.933	10.057	41.313	41.32	1.000	1.000	53.102		0.347	53.1
18	18 13C-2,3,7,8-TCDD	1.44e5	0.77	NO	1.21	10.057	26.195	26.10	1.026	1.022	179.52	90.3	0.474	
19	19 13C-1,2,3,7,8-PeCDD	1.12e5	0.62	NO	0.996	10.057	30.688	30.65	1.202	1.200	169.52	85.2	0.343	
20	20 13C-1,2,3,4,7,8-HxCDD	8.51e4	1.26	NO	0.679	10.057	33.947	33.96	1.014	1.014	187.35	94.2	0.548	
21	21 13C-1,2,3,6,7,8-HxCDD	9.85e4	1.27	NO	0.850	10.057	34.057	34.06	1.017	1.017	173.22	87.1	0.437	
22	22 13C-1,2,3,7,8,9-HxCDD	9.58e4	1.30	NO	0.798	10.057	34.328	34.36	1.025	1.026	179.37	90.2	0.466	
23	23 13C-1,2,3,4,6,7,8-HpCDD	7.80e4	1.04	NO	0.697	10.057	37.797	37.82	1.129	1.130	167.31	84.1	0.559	
24	24 13C-OCDD	1.19e5	0.89	NO	0.579	10.057	40.823	41.09	1.219	1.227	307.60	77.3	0.639	
25	25 13C-2,3,7,8-TCDF	1.82e5	0.77	NO	1.13	10.057	25.276	25.30	0.990	0.991	172.24	86.6	0.588	
26	26 13C-1,2,3,7,8-PeCDF	1.63e5	1.64	NO	0.996	10.057	29.506	29.46	1.156	1.154	174.65	87.8	0.522	
27	27 13C-2,3,4,7,8-PeCDF	1.56e5	1.63	NO	0.969	10.057	30.407	30.37	1.191	1.189	171.62	86.3	0.536	
28	28 13C-1,2,3,4,7,8-HxCDF	1.22e5	0.50	NO	1.06	10.057	33.076	33.06	0.988	0.988	172.30	86.6	0.589	
29	29 13C-1,2,3,6,7,8-HxCDF	1.27e5	0.51	NO	1.18	10.057	33.210	33.19	0.992	0.991	160.86	80.9	0.530	
30	30 13C-2,3,4,6,7,8-HxCDF	1.17e5	0.49	NO	1.06	10.057	33.783	33.78	1.009	1.009	164.84	82.9	0.589	
31	31 13C-1,2,3,7,8,9-HxCDF	1.07e5	0.50	NO	0.879	10.057	34.683	34.73	1.036	1.037	181.08	91.1	0.708	

Quantify Sam Vista Analytica	aple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	604D1\200604D1_5B.qld	
Last Altered: Printed:		07:36 Pacific Daylight Time 08:53 Pacific Daylight Time	

Name: 200604D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

	# Name	Resp	ŔA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	9.48e4	0.42	NO	0.893	10.057	36.391	36.56	1.087	1.092	158.69	79.8	0.521	
33	33 13C-1,2,3,4,7,8,9-HpCDF	6.98e4	0.41	NO	0.613	10.057	38.399	38.36	1.147	1.146	170.09	85.5	0.757	
34	34 13C-OCDF	1.48e5	0.86	NO	0.741	10.057	40.977	41.31	1.224	1.234	298.53	75.1	0.400	
35	35 37CI-2,3,7,8-TCDD	5.30e4			1.18	10.057	26.192	26.11	1.026	1.023	67.655	85.1	0.0892	
36	36 13C-1,2,3,4-TCDD	1.32e5	0.79	NO	1.00	10.057	25.480	25.53	1.000	1.000	198.86	100	0.572	
37	37 13C-1,2,3,4-TCDF	1.86e5	0.77	NO	1.00	10.057	24.020	24.08	1.000	1.000	198.86	100	0.663	
38	38 13C-1,2,3,4,6,9-HxCDF	1.33e5	0.51	NO	1.00	10.057	33.530	33.48	1.000	1.000	198.86	100	0.623	
39	39 Total Tetra-Dioxins				0.987	10.057	24.620		0.000		3.0893		0.178	4.14
40	40 Total Penta-Dioxins				0.982	10.057	29.960		0.000		14.534		0.169	16.9
41	41 Total Hexa-Dioxins				1.04	10.057	33.635		0.000		54.044		0.259	55.6
42	42 Total Hepta-Dioxins				0.992	10.057	37.640		0.000		222.91		0.667	223
43	43 Total Tetra-Furans				0.882	10.057	23.610		0.000		32.877		0.209	37.4
44	44 1st Func. Penta-Furans				1.05	10.057	27.090		0.000		6.5926		0.0547	6.59
45	45 Total Penta-Furans				1.05	10.057	29.275		0.000		30.593		0.116	34.3
46	46 Total Hexa-Furans				1.11	10.057	33.555		0.000		55.759		0.274	55.8
47	47 Total Hepta-Furans				1.13	10.057	37.835		0.000		71.650		0.289	71.7

Quantify Totals Report MassLynx 4.1

U:\VG7.PRO\Results\200604D1\200604D1_5B.qld Dataset:

Last Altered:	Friday, June 05, 2020 11:07:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:08:53 Pacific Daylight Time

Method: Untitled 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200604D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

Tetra-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22.67	5.283e3	6.218e3	4.113e2	5.128e2	0.80	NO	9.241e2	1.2936	1.2936	0.178
2	Total Tetra-Dioxins	23.05	1.924e3	3.230e3	1.418e2	1.965e2	0.72	NO	3.383e2	0.47356	0.47356	0.178
3	Total Tetra-Dioxins	23.45	1.194e3	8.150e2	6.216e1	7.280e1	0.85	NO	1.350e2	0.18892	0.18892	0.178
4	Total Tetra-Dioxins	24.20	8.860e2	1.064e3	4.707e1	5.584e1	0.84	NO	1.029e2	0.14406	0.14406	0.178
5	Total Tetra-Dioxins	24.43	1.051e3	1.738e3	7.014e1	9.244e1	0.76	NO	1.626e2	0.22759	0.22759	0.178
6	Total Tetra-Dioxins	24.61	2.252e3	2.938e3	1.197e2	1.388e2	0.86	NO	2.584e2	0.36178	0.36178	0.178
7	Total Tetra-Dioxins	25.16	9.970e2	1.421e3	6.257e1	6.100e1	1.03	YES	0.000e0	0.00000	0.15115	0.178
8	Total Tetra-Dioxins	25.87	4.951e3	5.596e3	3.477e2	3.611e2	0.96	YES	0.000e0	0.00000	0.89463	0.178
9	2,3,7,8-TCDD	26.13	1.865e3	2.627e3	1.275e2	1.581e2	0.81	NO	2.856e2	0.39978	0.39978	0.178

Penta-Dloxins

1	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.60	1.663e4	2.658e4	1.114e3	1.856e3	0.60	NO	2.970e3	5.35 92	5.3592	0.169
2	Total Penta-Dioxins	29.04	1.878e3	3.520e3	9.407e1	2.087e2	0.45	YES	0.000e0	0.00000	0.43917	0.169
3	Total Penta-Dioxins	29.50	1.784e4	3.089e4	9.558e2	1.536e3	0.62	NO	2.492e3	4.4962	4.4962	0.169
4	Total Penta-Dioxins	29.66	2.903e3	3.813e3	1.299e2	1.918e2	0.68	NO	3.217e2	0.58044	0.58044	0.169
5	Total Penta-Dioxins	29.74	1.234e4	2.037e4	6.489e2	1.104e3	0.59	NO	1.753e3	3.1637	3.1637	0.169
6	Total Penta-Dioxins	29.98	1.811e3	4.155e3	1.710e2	3.546e2	0.48	YES	0.000e0	0.00000	0.79828	0.169
7	Total Penta-Dioxins	30.25	3.969e3	6.476e3	2.023e2	3.155e2	0.64	NO	5.178e2	0.93440	0.93440	0.169
8	1,2,3,7,8-PeCDD	30.67	3.147e3	3.750e3	1.676e2	2.030e2	0.83	YES	3.706e2	0.00000	0.59700	0.169
9	Total Penta-Dioxins	30.73	9.850e2	1.334e3	3.775e1	7.389e1	0.51	YES	0.000e0	0.00000	0.17623	0.169
10	Total Penta-Dioxins	31.01	1.403e3	1.899e3	6.619e1	1.314e2	0.50	YES	0.000e0	0.00000	0.30900	0.169

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5B.qld

Last Altered:	Friday, June 05, 2020 11:07:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:08:53 Pacific Daylight Time

Name: 200604D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxin s	32.44	7.285e4	6.307e4	3.573e3	2.987e3	1.20	NO	6.560e3	13.516	13.516	0.259
2	Total Hexa-Dioxins	33.01	1.093e5	8.334e4	5.872e3	4.431e3	1.33	NO	1.030e4	21.227	21.227	0.259
3	Total Hexa-Dioxins	33.27	5.778e4	4.533e4	3.707e3	2.925e3	1.27	NO	6.633e3	13.666	13.666	0.259
4	Total Hexa-Dioxins	33.39	4.586e3	4.241e3	2.041e2	2.023e2	1.01	YES	0.000e0	0.00000	0.75961	0.259
5	1,2,3,4,7,8-HxCDD	33.96	3.961e3	3.594e3	2.220e2	1.770e2	1.25	NO	3.990e2	0.79400	0.79400	0.251
6	1,2,3,6,7,8-HxCDD	34.08	1.533e4	1.323e4	8.941e2	7.417e2	1.21	NO	1.636e3	3.1870	3.1870	0.228
7	Total Hexa-Dioxins	34.27	4.803e3	4.163e3	2.080e2	2.286e2	0.91	YES	0.000e0	0.00000	0.77419	0.259
8	1,2,3,7,8,9-HxCDD	34.37	6.305e3	5.405e3	4.392e2	3.602e2	1.22	NO	7.994e2	1.6539	1.6539	0.278

Hepta-Dioxins

Γ	Name	रा	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.98	4.025e5	3.869e5	2.467e4	2.399e4	1.03	NO	4.865e4	125.04	125.04	0.667
2	2 1,2,3,4,6,7,8-HpCDD 3	87.85	3.695e5	3.414e5	1.952e4	1.857e4	1.05	NO	3.808e4	97.873	97.873	0.667

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5B.qld

Last Altered:	Friday, June 05, 2020 11:07:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:08:53 Pacific Daylight Time

Name: 200604D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.52	1.517e3	2.027e3	1.389e2	1.698e2	0.82	NO	3.087e2	0.38295	0.38295	0.209
2	Total Tetra-Furans	21.03	1.801e3	2.875e3	1.619e2	2.285e2	0.71	NO	3.904e2	0.48419	0.48419	0.209
3	Total Tetra-Furans	21.72	9.869e3	1.117e4	8.431e2	1.025e3	0.82	NO	1.868e3	2.3175	2.3175	0.209
4	Total Tetra-Furans	22.31	4.279e3	3.929e3	4.995e2	5.751e2	0.87	NO	1.075e3	1.3329	1.3329	0.209
5	Total Tetra-Furans	22.64	1.374e4	1.595e4	1.304e3	1.427e3	0.91	YES	0.000e0	0.00000	3.1325	0.209
6	Total Tetra-Furans	23.05	8.569e3	9.004e3	6.368e2	7.554e2	0.84	NO	1.392e3	1.7267	1.7267	0.209
7	Total Tetra-Furans	23.22	1.245e3	2.665e3	1.080e2	1.520e2	0.71	NO	2.600e2	0.32253	0.32253	0.209
8	Total Tetra-Furans	23.36	3.427e3	3.834e3	2.295e2	3.046e2	0.75	NO	5.341e2	0.66250	0.66250	0.209
9	Total Tetra-Furans	23.85	2.917e3	2.388e3	1.791e2	1.816e2	0.99	YES	0.000e0	0.00000	0.39877	0.209
10	Total Tetra-Furans	23.97	5.975e3	8.911e3	4.605e2	6.359e2	0.72	NO	1.096e3	1.3600	1.3600	0.209
11	Total Tetra-Furans	24.08	1.418e4	1.698e4	1.197e3	1.481e3	0.81	NO	2.678e3	3.3220	3.3220	0.209
12	Total Tetra-Furans	24.51	4.322e4	5.440e4	2.973e3	3.871e3	0.77	NO	6.844e3	8.4892	8.4892	0.209
13	Total Tetra-Furans	24.77	2.585e3	3.170e3	1.775e2	2.104e2	0.84	NO	3.879e2	0.48117	0.48117	0.209
14	Total Tetra-Furans	24.93	1.958e3	2.911e3	1.607e2	1.913e2	0.84	NO	3.519e2	0.43653	0.43653	0.209
15	Total Tetra-Furans	25.22	1.340e4	1.825e4	8.475e2	1.1 34e 3	0.75	NO	1.981e3	2.4577	2.4577	0.209
16	2,3,7,8-TCDF	25.33	4.345e4	5.669e4	2.977e3	3.699e3	0.80	NO	6.676e3	8.2803	8.2803	0.20 9
17	Total Tetra-Furans	25.65	4.632e3	5.318e3	2.935e2	3.680e2	0.80	NO	6.615e2	0.82055	0.82055	0.209
18	Total Tetra-Furans	27.12	6.860e3	6.293e3	4.351e2	4.331e2	1.00	YES	0.000e0	0.00000	0.95090	0.209

Penta-Furans function 1

Name	RT	m1 Heigh	t m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 1st Fu	nc. Penta-Furans 27.10) 6.161e	3.501e4	3.460e3	2.062e3	1.68	NO	5.522e3	6.5926	6.5926	0.0547

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5B.qld

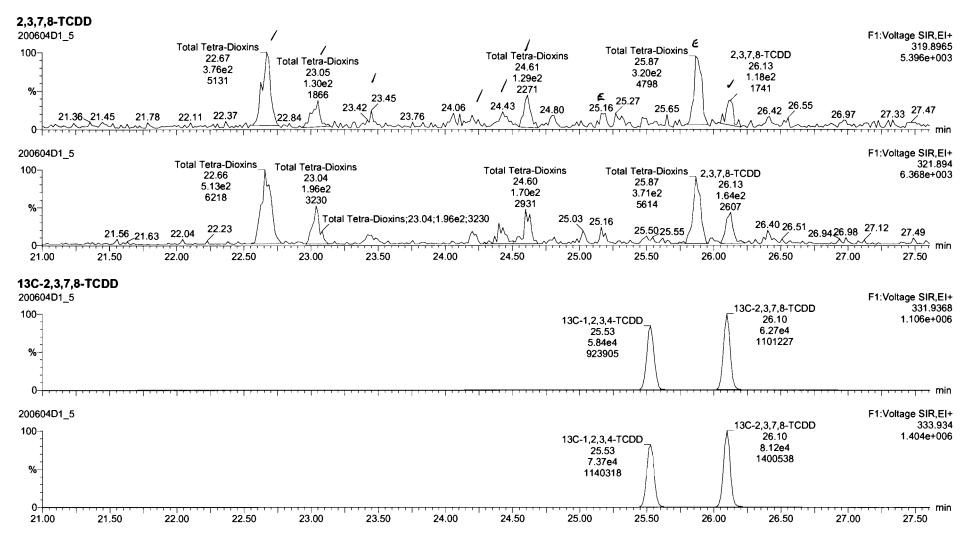
Last Altered:	Friday, June 05, 2020 11:07:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:08:53 Pacific Daylight Time

Name: 200604D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

Penta-Furans

ſ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.43	6.550e3	5.170e3	4.975e2	4.275e2	1.16	YES	0.000e0	0.00000	0.97720	0.116
2	Total Penta-Furans	28.58	5.663e4	3.912e4	4.187e3	2.822e3	1.48	NO	7.009e3	8.3682	8.3682	0.116
3	Total Penta-Furans	29.10	1.617e4	1.288e4	1.209e3	9.308e2	1.30	YES	0.000e0	0.00000	2.3746	0.116
4	Total Penta-Furans	29.30	1.627e4	1.079e4	8.330e2	5.638e2	1.48	NO	1.397e3	1.6676	1.6676	0.116
5	1,2,3,7,8-PeCDF	29.48	1.012e5	6.986e4	5.168e3	3.350e3	1.54	NO	8.518e3	9.9457	9.9457	0.111
6	Total Penta-Furans	29.72	3.669e4	2.539e4	2.049e3	1.393e3	1.47	NO	3.442e3	4.1091	4.1091	0.116
7	Total Penta-Furans	30.29	3.360e3	2.491e3	1.665e2	1.310e2	1.27	YES	0.000e0	0.00000	0.32713	0.116
8	2,3,4,7,8-PeCDF	30.37	4.335e4	3.116e4	2.357e3	1.671e3	1.41	NO	4.028e3	4.8516	4.8516	0.120
9	Total Penta-Furans	30.41	2.780e4	1.730e4	6.797e2	4.475e2	1.52	NO	1.127e3	1.3457	1.3457	0.116
10	Total Penta-Furans	31.25	3.254e3	2.469e3	1.621e2	9.325e1	1.74	NO	2.554e2	0.30489	0.30489	0.116

Hexa-Furans

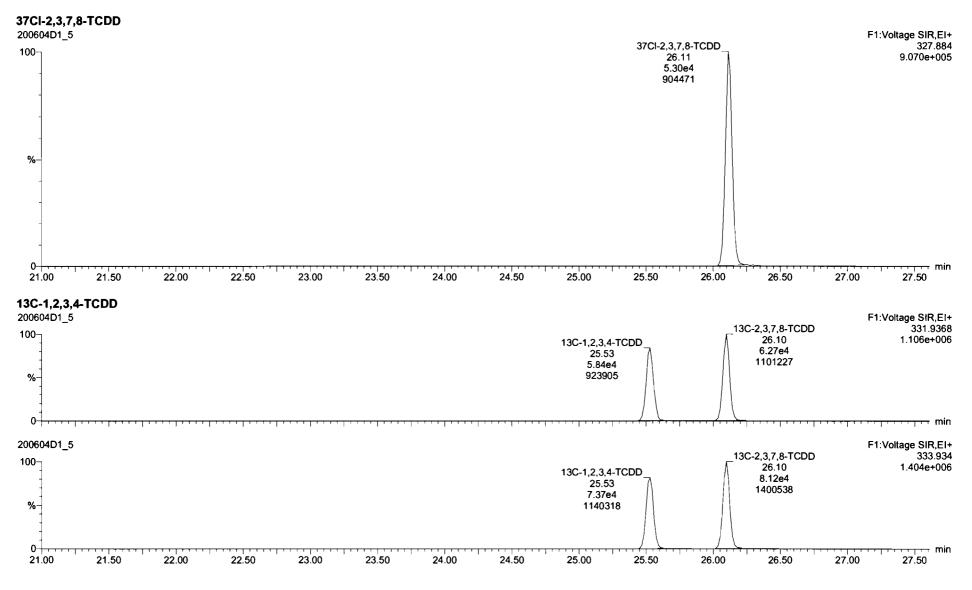

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.91	2.926e4	2.085e4	1.370e3	1.090e3	1.26	NO	2.460e3	3.7339	3.7339	0.274
2	Total Hexa-Furans	32.06	6.939e4	5.897e4	3.445e3	2.819e3	1.22	NO	6.264e3	9.5093	9.5093	0.274
3	Total Hexa-Furans	32.60	7.682e4	6.142e4	3.757e3	3.032e3	1.24	NO	6.789e3	10.306	10.306	0.274
4	Total Hexa-Furans	32.98	5.213e3	3.809e3	2.687e2	2.003e2	1.34	NO	4.690e2	0.71199	0.71199	0.274
5	1,2,3,4,7,8-HxCDF	33.08	1.385e5	1.126e5	7.422e3	6.082e3	1.22	NO	1.350e4	20.329	20.329	0.248
6	1,2,3,6,7,8-HxCDF	33.20	3.982e4	3.228e4	2.200e3	1.838e3	1.20	NO	4.038e3	6.0878	6.0878	0.258
7	2,3,4,6,7,8-HxCDF	33.80	1.641e4	1.469e4	9. 2 43e2	7.726e2	1.20	NO	1.697e3	2.6052	2 .6052	0.278
8	1,2,3,7,8,9-HxCDF	34.76	1.011e4	9.676e3	3.617e2	3.400e2	1.06	NO	7.018e2	1.2393	1.2393	0.362
9	Total Hexa-Furans	34.78	1.217e4	9.701e3	4.540e2	3.603e2	1.26	NO	8.143e2	1.2362	1.2362	0.274


Hepta-Furans

Г	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.58	1.113e5	1.108e5	7.675e3	7.433e3	1.03	NO	1.511e4	28.092	28.092	0.273
2	Total Hepta-Furans	37.18	1.587e5	1.474e5	9.318e3	8.951e3	1.04	NO	1.827e4	39.121	39.121	0.289
3	1,2,3,4,7,8,9-HpCDF	38.37	2.016e4	2.000e4	1.083e3	9.948e2	1.09	NO	2.077e3	4.4374	4.4374	0.264

Quantify San Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	

Method: C:\MassLynx\Default.pro\Methdb\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

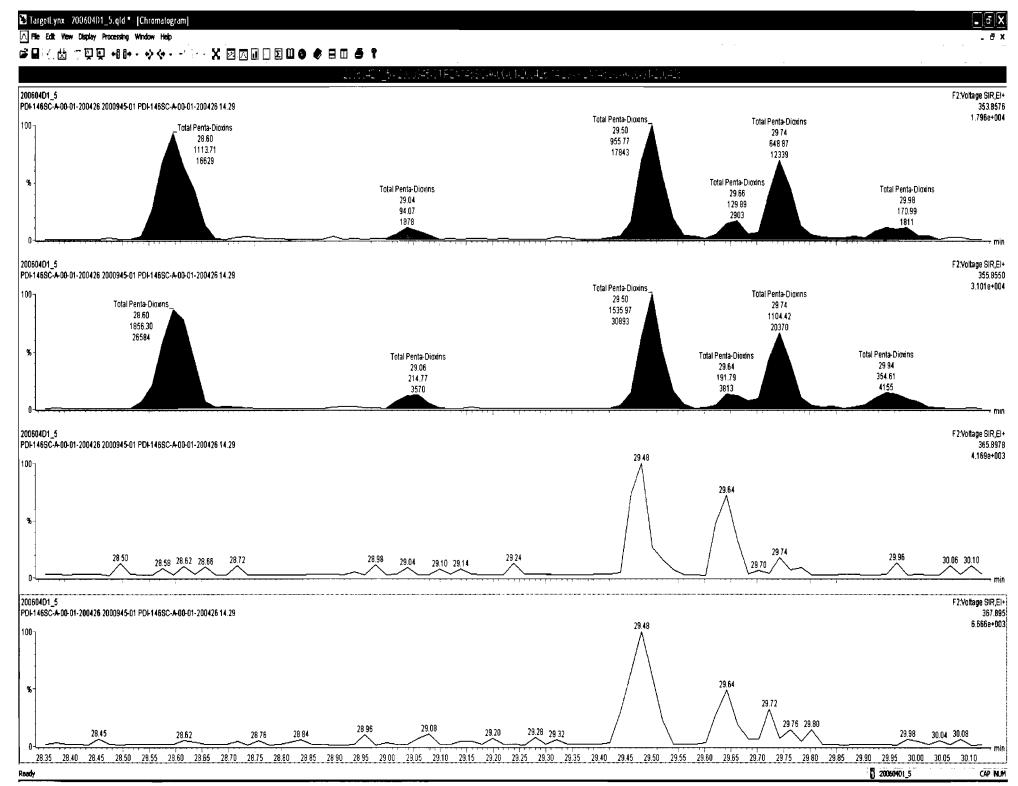


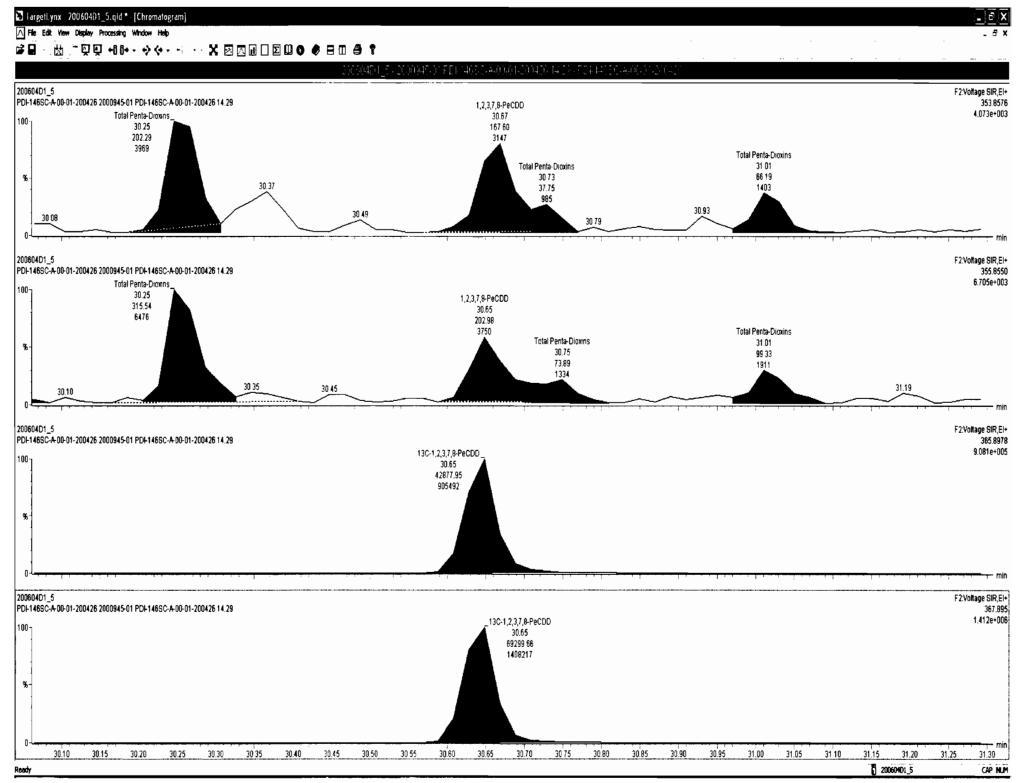
Work Order 2000945

WOIK OIGEI 2000945

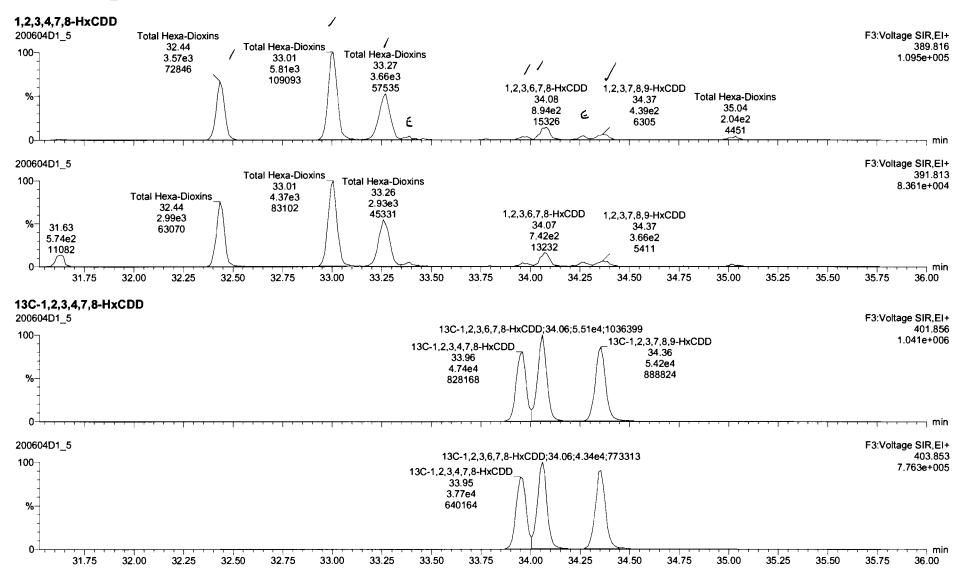
Page 78 of 769

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	



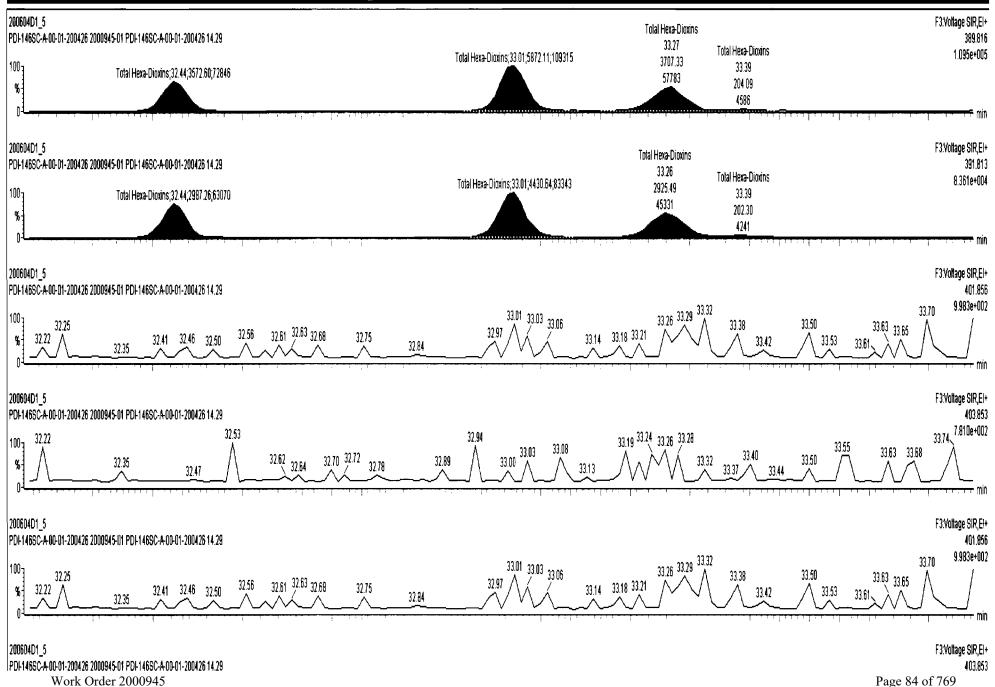

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5.qld


Last Altered:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:16 Pacific Daylight Time

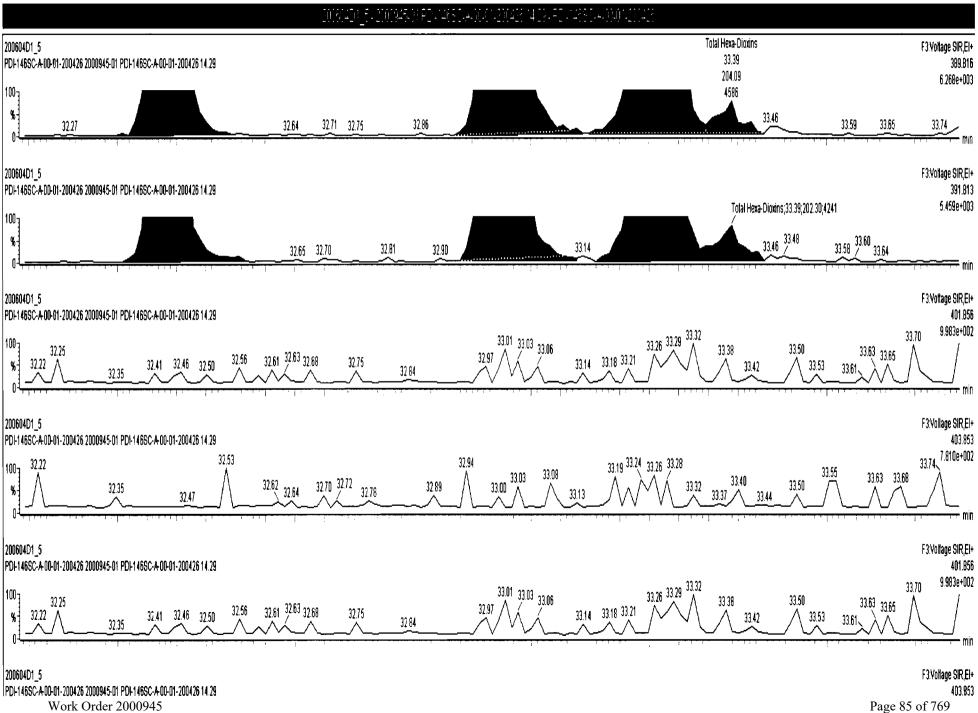
Quantify Sample Report MassLynx 4.1 Page 4 of 13 Vista Analytical Laboratory Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5.qld Last Altered: Friday, June 05, 2020 09:31:33 Pacific Daylight Time Printed: Friday, June 05, 2020 09:43:16 Pacific Daylight Time

🛿 TargetLynx - 200604D1_5.qld * - [Chromatogram]


∧ File Edit View Display Processing Window Help

ᄚᇻᇲᄨᄚᅑᆗᅋᆕᅾᅆᅲᆞᄽᄿᆞᆞᆞᆞᄊᇏᄰᄶᆒᆸᄫᄪᅌᆥᅣᄇᄪᄻᆗᆥ

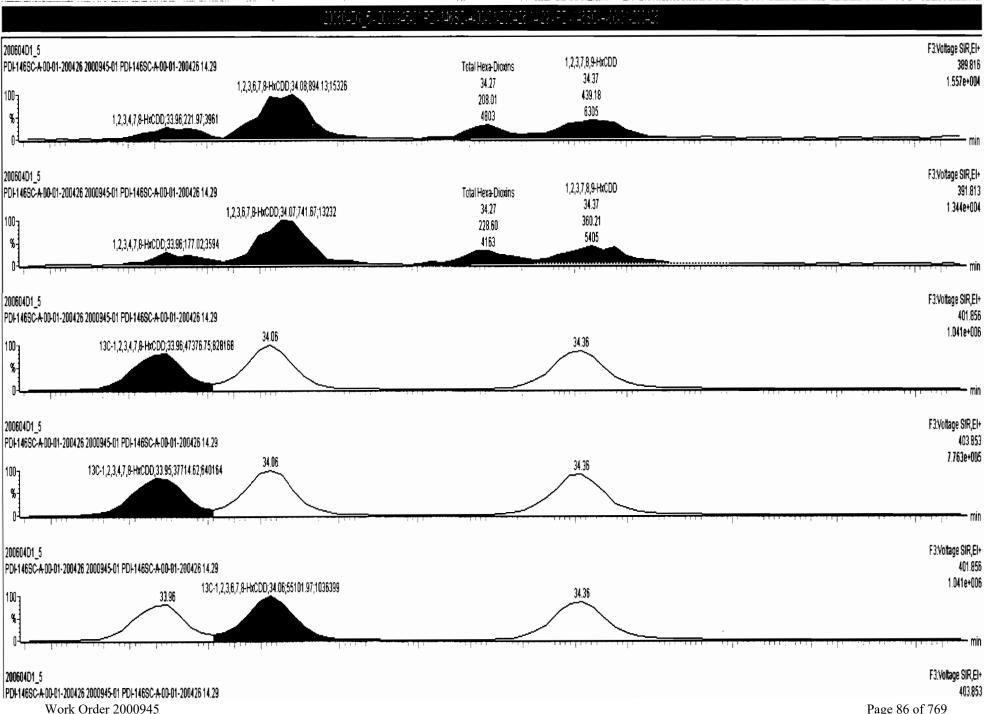
- E X


. 7 X

TargetLynx - 200604D1_5.qld * - [Chromatogram]

\Lambda File Edit View Display Processing Window Help

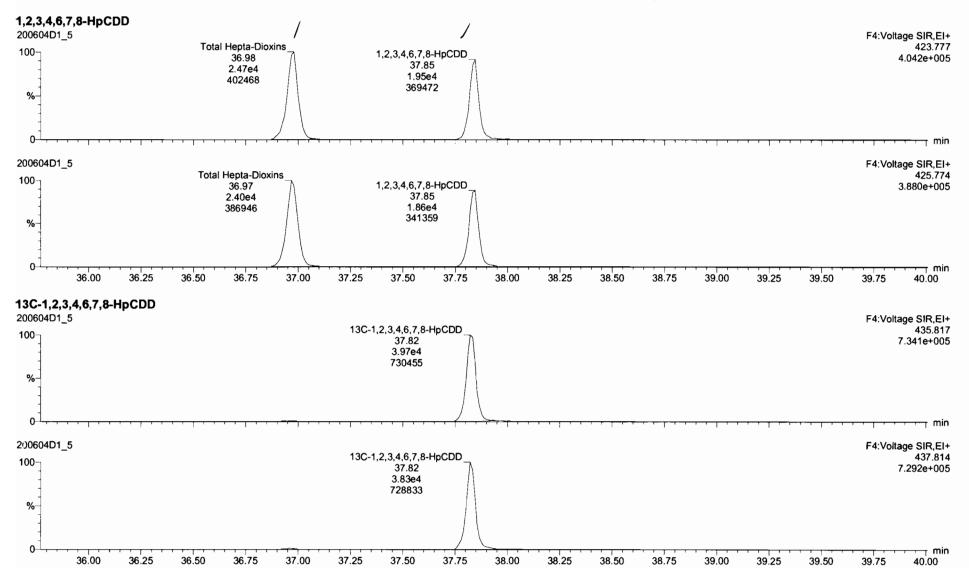
▆▋☆₩☆₽₽₩₽··ŶŶ·☆Ŀ☆X₂⊼₪□Σ₩♦♥₽□₿



. 5 X

🖹 TargetLynx - 200604D1_5.qld * - [Chromatogram]

∧ File Edit View Display Processing Window Help


ᄚᆗᇲᇲᄚᅋᆞᅋᆞᆞᆊᆘᆞᄼᄽᆞᆞᆞᆞᆞⅩᄚᄶᆒᆋᄫᄔᅆᆥᅣᄇᄪᄻᆙᆥ

Page 86 of 769

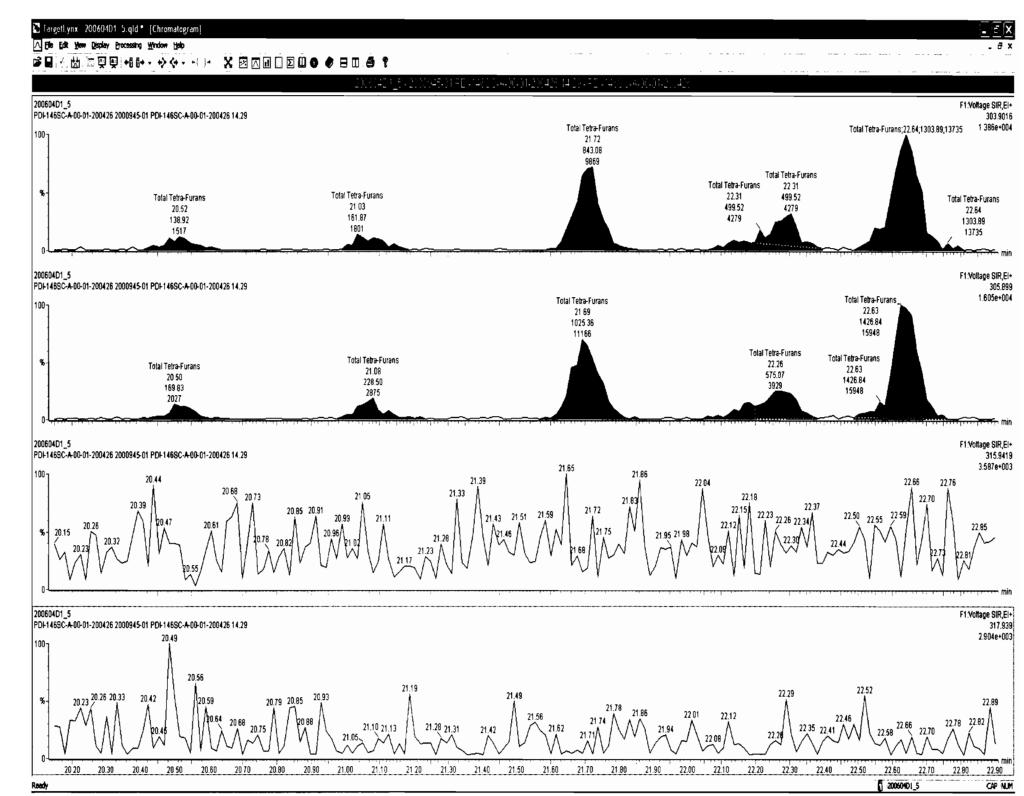
5 X . ð X

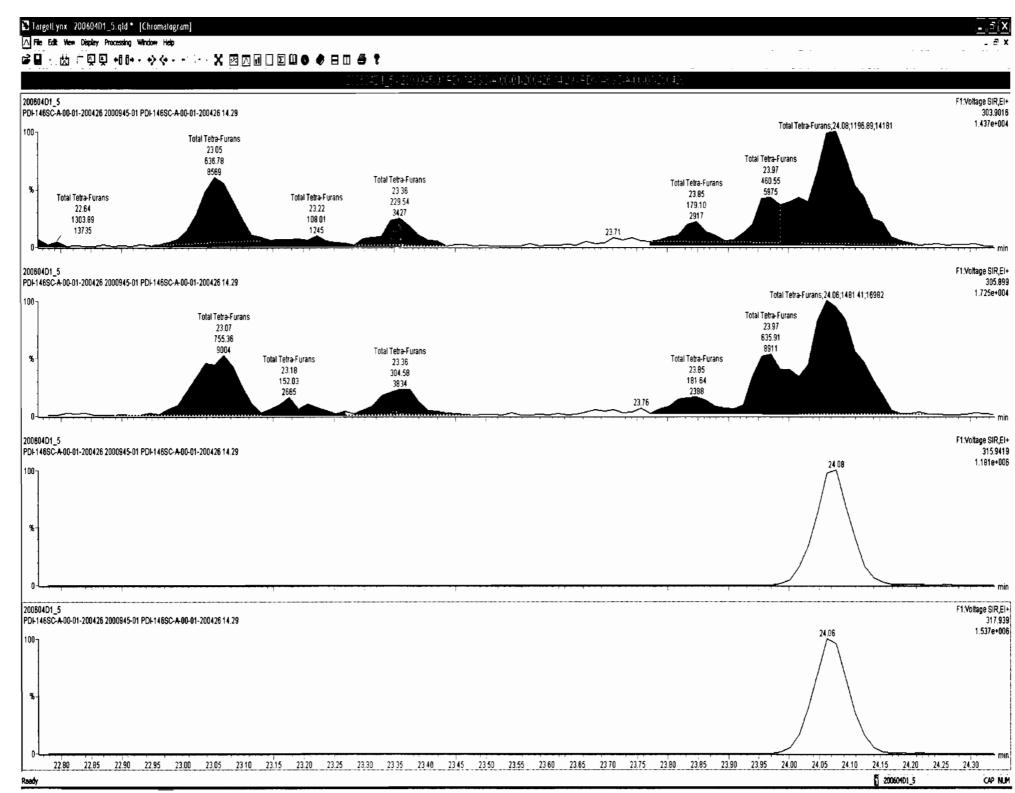
Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

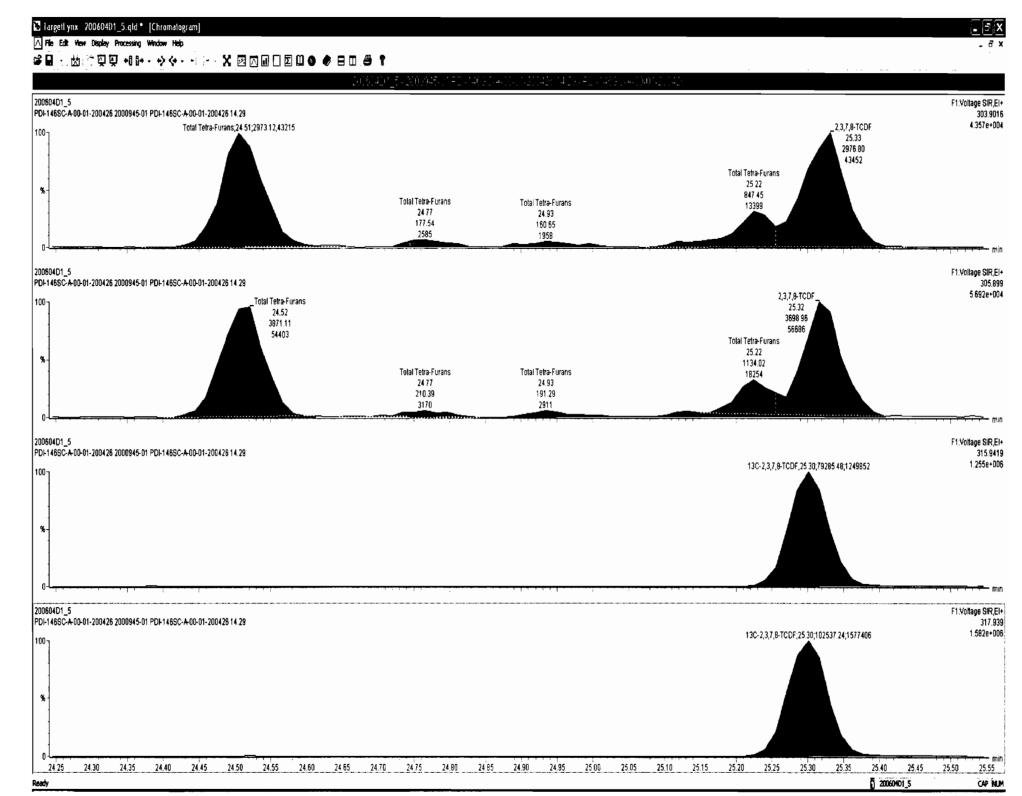
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5.qld

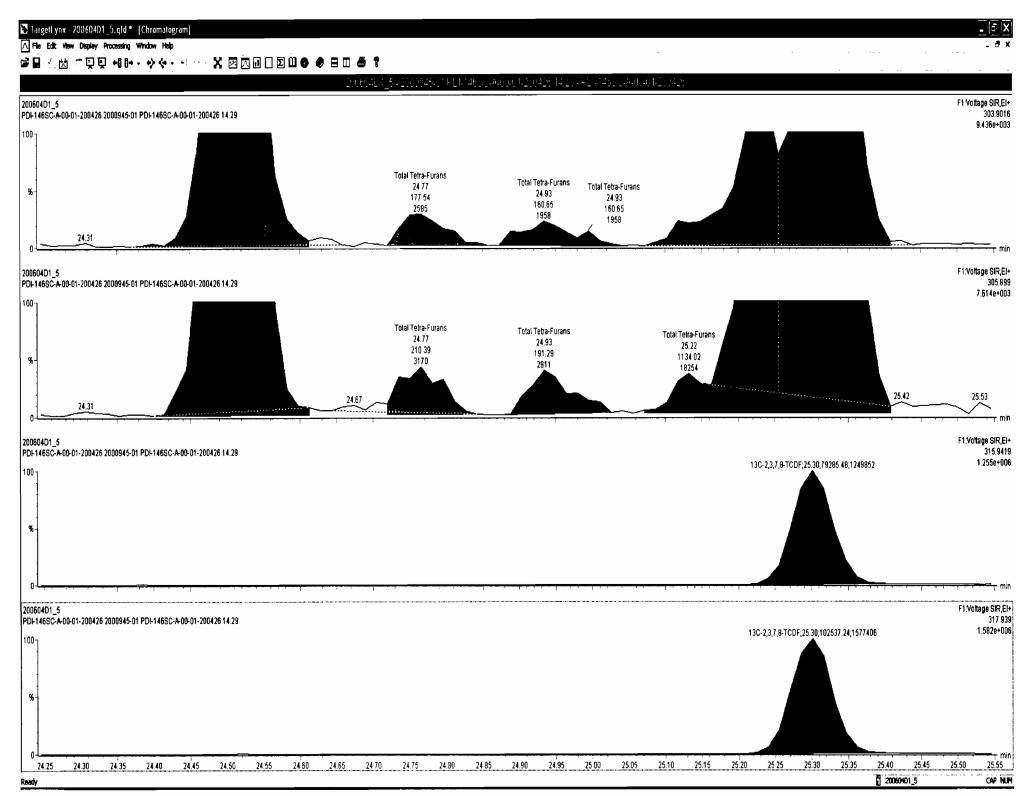
Last Altered:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:16 Pacific Daylight Time



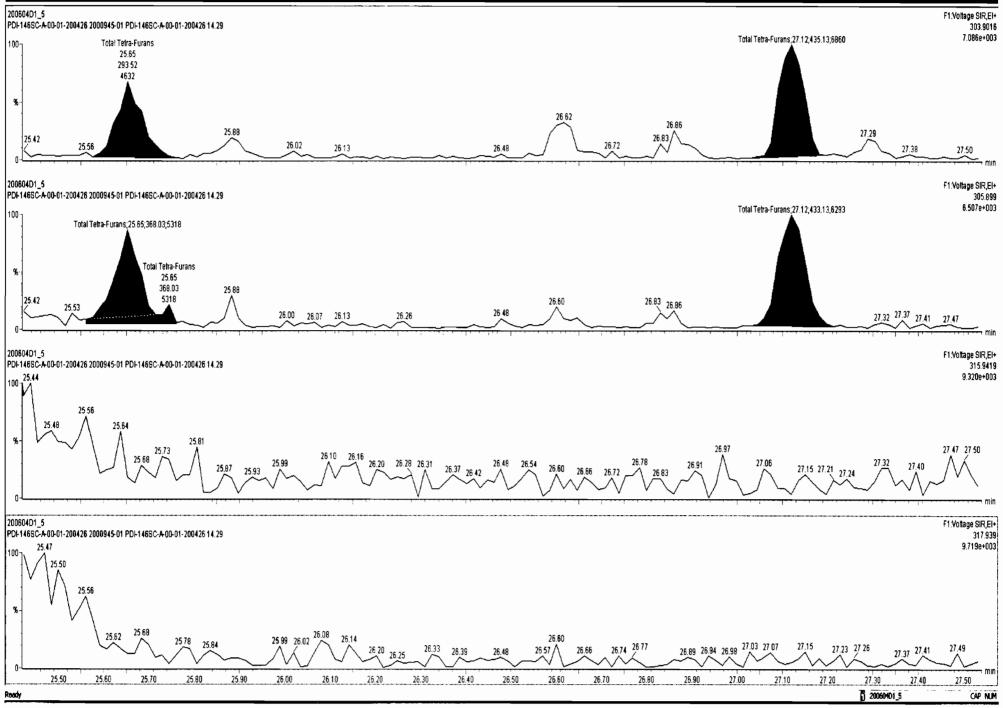

Quantify Sample ReportMassLynx 4.1Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5.qld


Last Altered:Friday, June 05, 2020 09:31:33 Pacific Daylight TimePrinted:Friday, June 05, 2020 09:43:16 Pacific Daylight Time


2,3,7,8-TCDF 200604D1_5 100	Total Tetra-Furans 20.52 1.39e2 1517	/ Total Tetra-Furans 21.72 / 8.43e2 9869 21.04 	Total Tetra-Furans;24.51;2.99e3	2;43195 2,3,7,8-TCD 2,3,7,8-TCD 2,3,7,8-TCD 2,3,7,8-TCD 2,3,7,8-TCD 2,3,7,8-TCD 2,3,7,8-TCD 2,98e3 43402	F1:Voltage SIR,EI+ - 303.9016 26.62 ت 1.59e2 2200 میں
200604D1_5	Total Tetra-Furan 20.50 1.70e2 2027	21.08 21.09 2.28e2 1.03e3 2.28e2 11166 2875	Total Tetra-Furans;24.06;1.50e3;17001	2,3,7,6-10, 25.32 3.56e3 55712	5.692e+004
19.00 19.5 13C-2,3,7,8-TCDF 200604D1_5 100 % 0 	0 20.00 20.50	21.00 21.50 22.00	22.50 23.00 23.50 24.00 13C-1,2,3,4-TCDF 24.08 8.08e4 1176015	24.50 25.00 25.50 26 13C-2,3,7,8-TCDF 25.30 7.93e4 1249852	6.00 26.50 27.00 27.50 F1:Voltage SIR,EI+ 315.9419 1.255e+006
200604D1_5 100 % 0 	0 20.00 20.50	21.00 21.50 22.00	13C-1,2,3,4-TCDF 24,06 1.05e5 1533143) 22.50 23.00 23.50 24.00	13C-2,3,7,8-TCDF 25.30 1.03e5 1577406 24.50 25.00 25.50 26	F1:Voltage SIR,EI+ 317.939 1.582e+006 0.00 26.50 27.00 27.50
DPE1 200604D1_5 100 18.54 18.62 % 19.20 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34	4 20.12 20.41	20.84	$\begin{array}{c} 22.37 \\ 22.96 \\ 23.39 \\ 22.90 \\ 22.50 \\ 23.57 \\ 23.57 \\ 24.00 \\ 22.50 \\ 23.50 \\ 23.50 \\ 23.50 \\ 24.00 \\$	when have all in the second	F1:Voltage SIR,EI+ 375.8364 6.707e+002 26.86 26.05 26.05 26.31 26.91 27.52 27.52 27.52 min 5.00 26.50 27.00 27.50

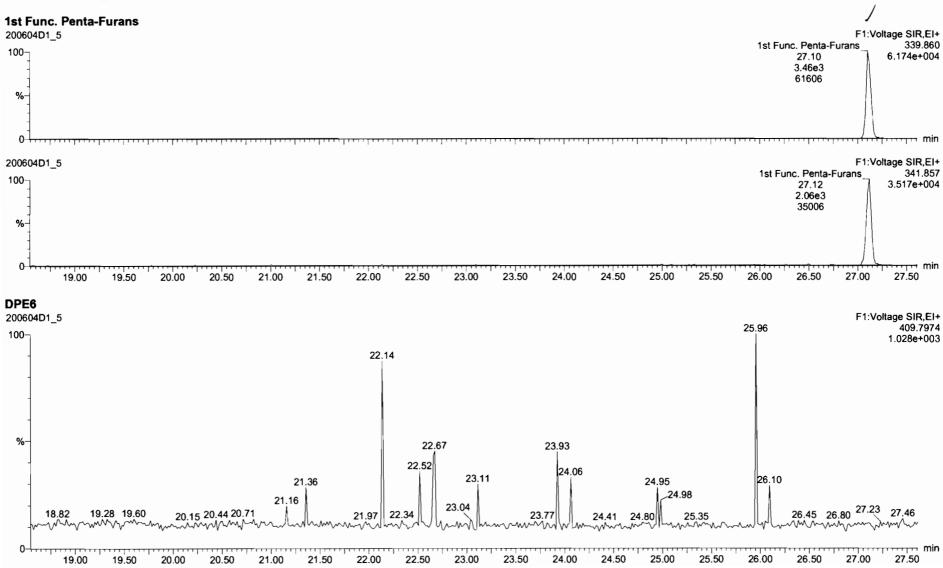
Page 91 of 769



TargetLynx - 200604D1_5.qld * [Chromatogram]

A File Edit View Display Processing Window Help

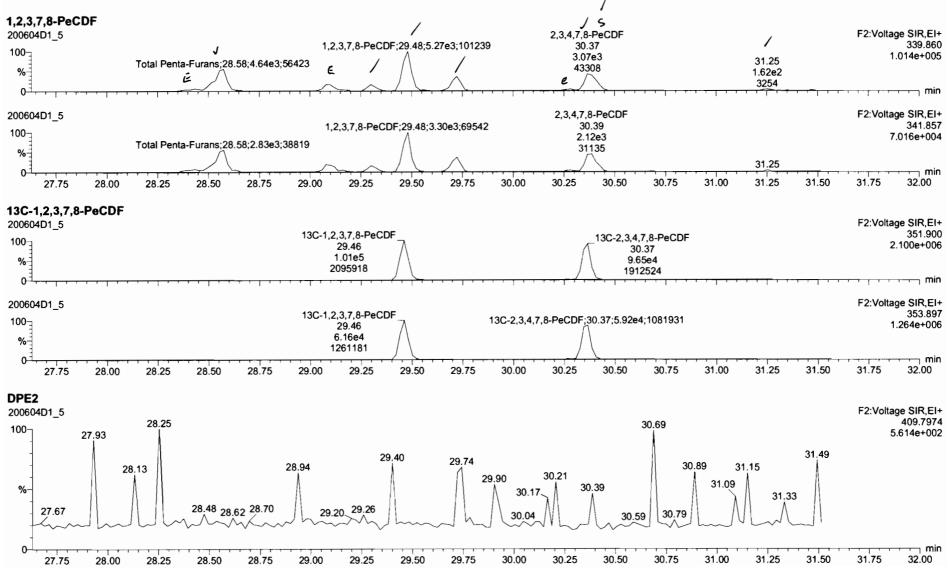
📽 🖩 (1) 故 口 架 架 📲 🖬 • • • • • • • • • • • 🗙 図 四 面 🗋 図 🛯 🔮 🌹


20060401115-200945211PEN/4650440001421042014204-051-149204401014211420

Work Order 2000945

Page 94 of 769

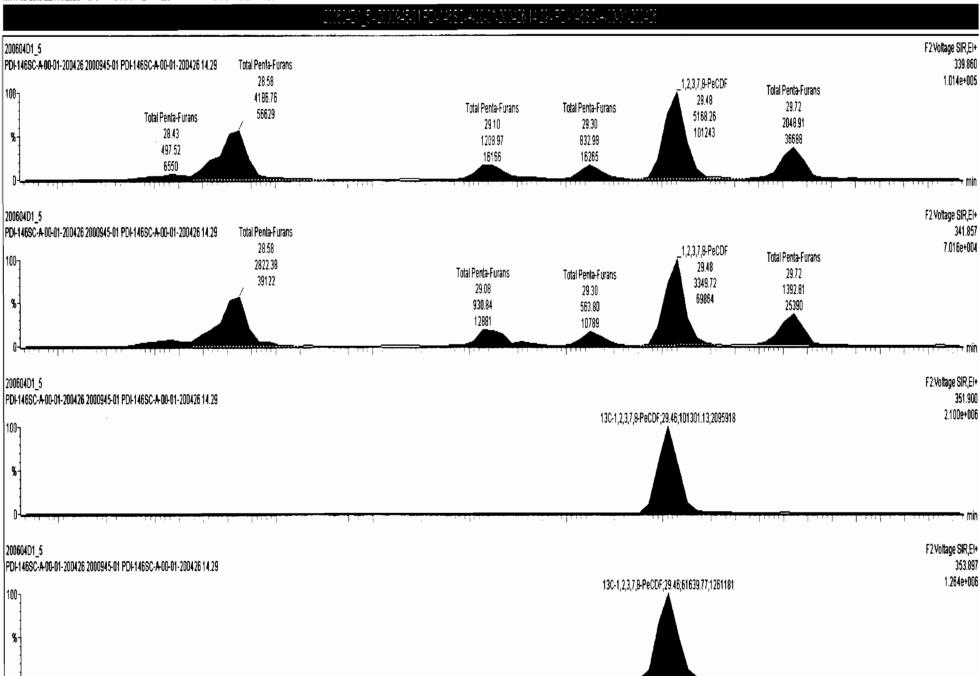
Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Page 9 of 13

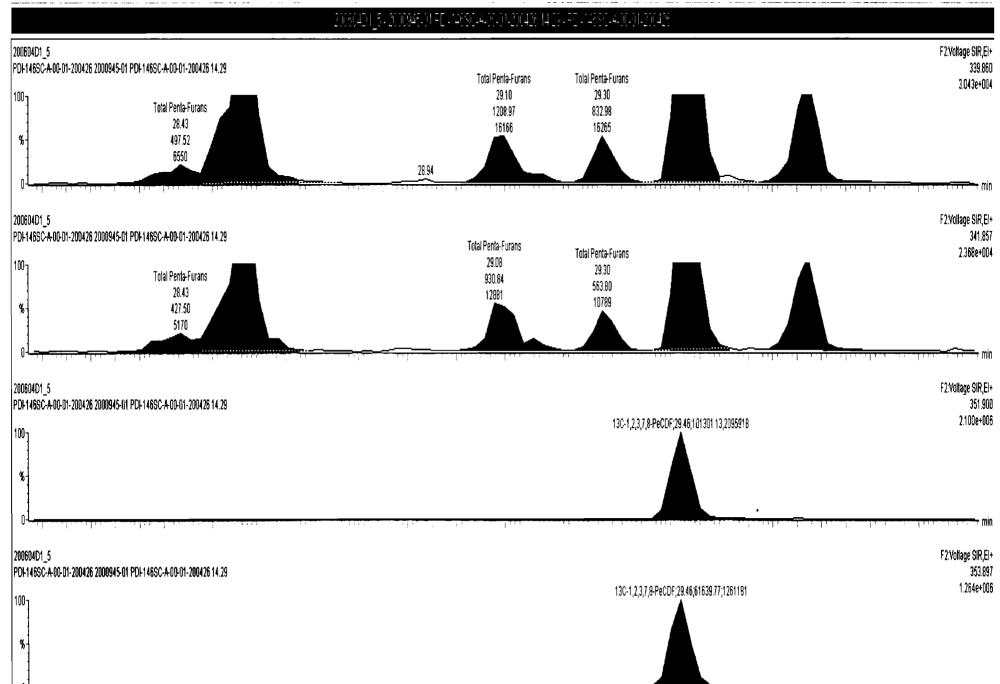
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_5.qld


Last Altered: Friday, June 05, 2020 09:31:33 Pacific Daylight Time Printed: Friday, June 05, 2020 09:43:16 Pacific Daylight Time

🗄 TargelLynx - 200604D1_5B.qld • - [Chromatogram]

A File Edit Yew Display Processing Window Help

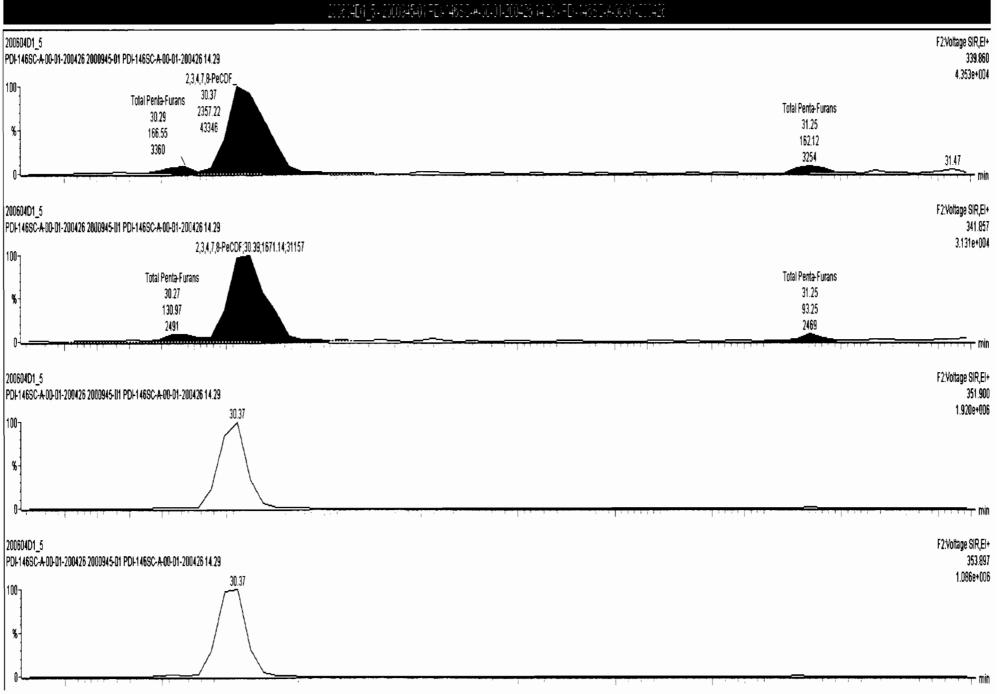
ᄚ虽《茵意望夏+181+• ◆◆• - ▷ - Ⅹ☑☑〗⊇☑● ◈ ⊟□ ♣ १


Work Order 2000945

. ∂X . ∂X

TargetLynx - 200604D1_5B.qld * - [Chromatogram]

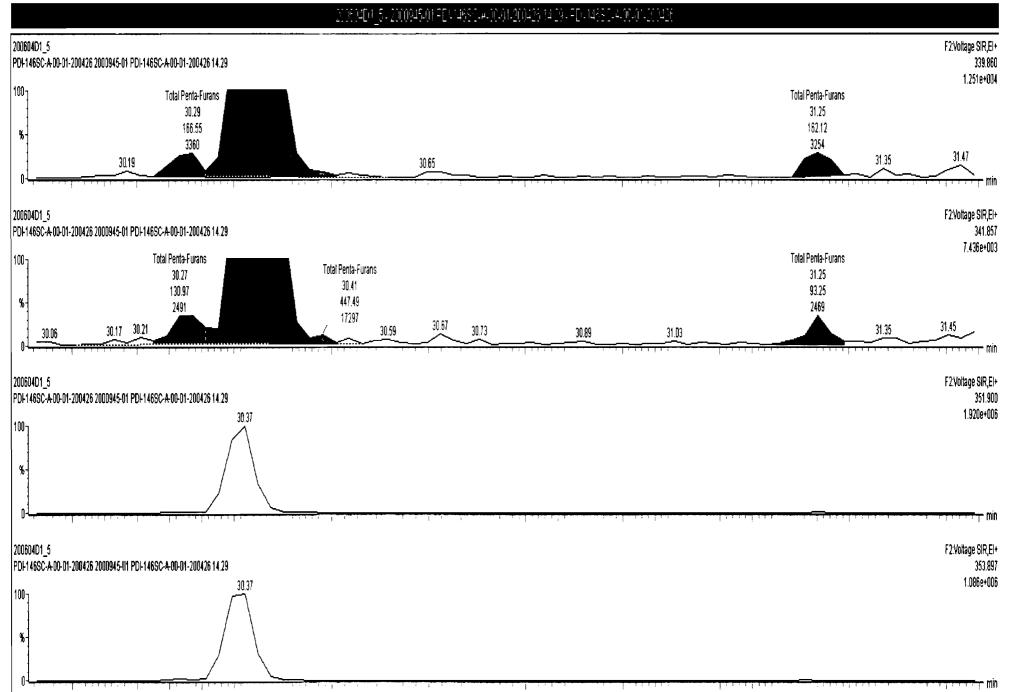
A File Edit Wew Display Processing Window Help



🖹 TargetLynx - 200604D1_5B.qld * - [Chromatogram]

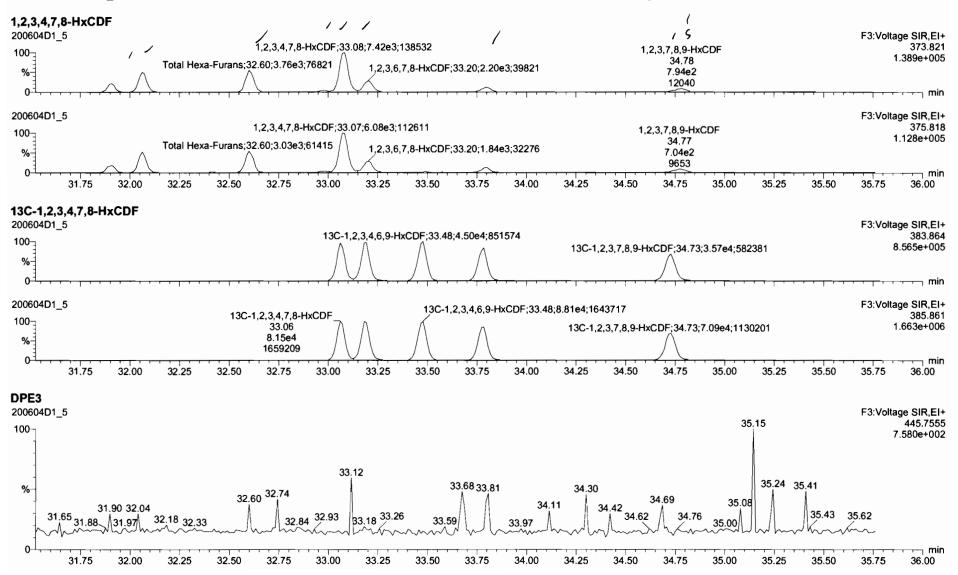
A File Edit Wew Display Processing Window Help

ᄚᇛᆞᅓᄚᅍᆠᅋᆠᆊᆘᆞ᠅᠅ᆞᆞᆞᆞХ◪дӣ▯◪◫◕◈◲◻兽१



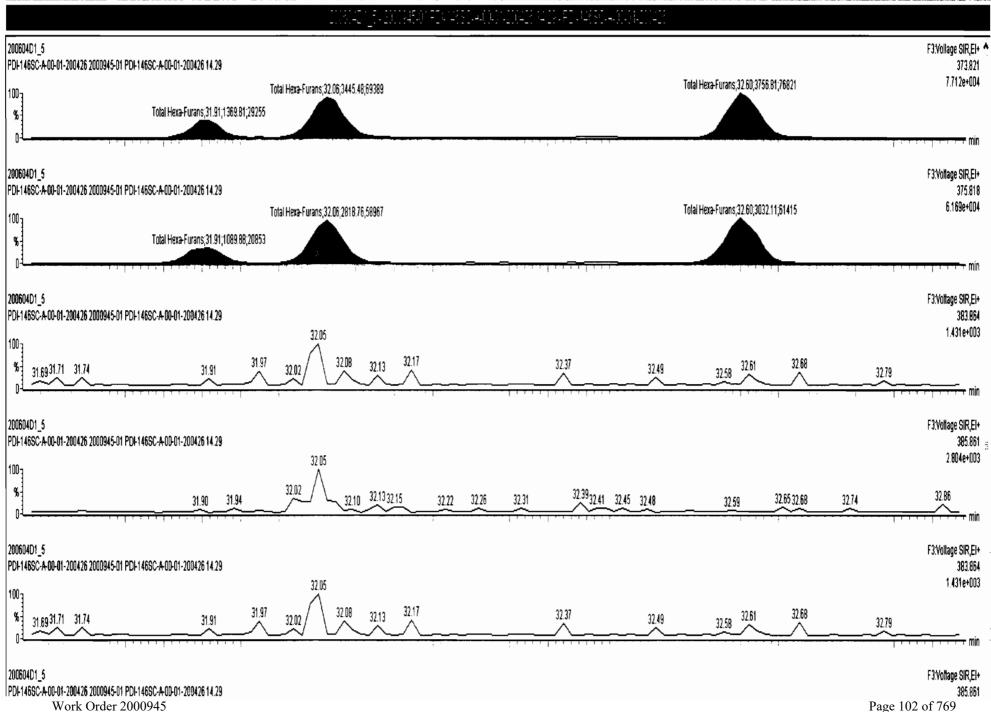
. ∂ X . ∂ x

🖹 TargetLynx - 200604D1_5B.qld * - [Chromatogram]


A File Edit View Display Processing Window Help

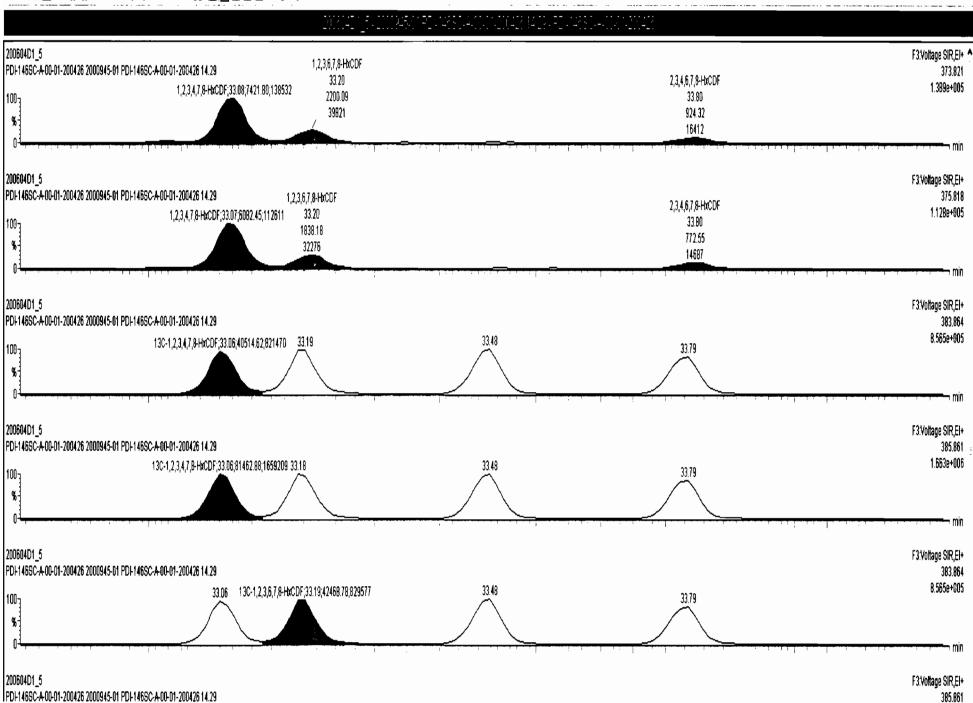
ᄚ虽⋄做ె፼፼ҹ₀⊶♀⊹⋯⋯≻Х⊠д⊒⊇⊇♀◈∈□₿१

. I X


Quantify San Vista Analytica		Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	

🖹 TargetLynx - 200604D1_5B.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

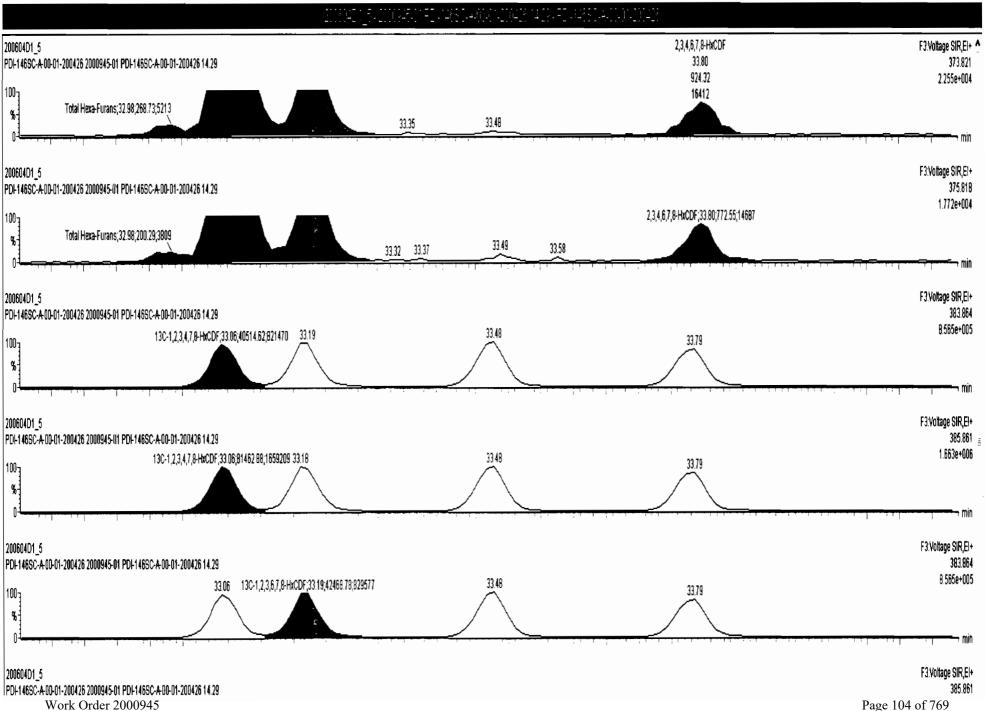

ᄚᇛᆺᄲᇕᅓᆆᆑᆊᆄᆞ᠅᠅ᆞᆡᆞᆞᅟҲᄚᄶᄪᇊᄫᇞᅌᆥᄇᄪᇦᆙ

🖹 TargetLynx - 200604D1_5B.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

ᄚ虽《故○意學學・₺₧・◇◇・ビー ※図△□□ΣЦ●● 8□ ● ?

Work Order 2000945

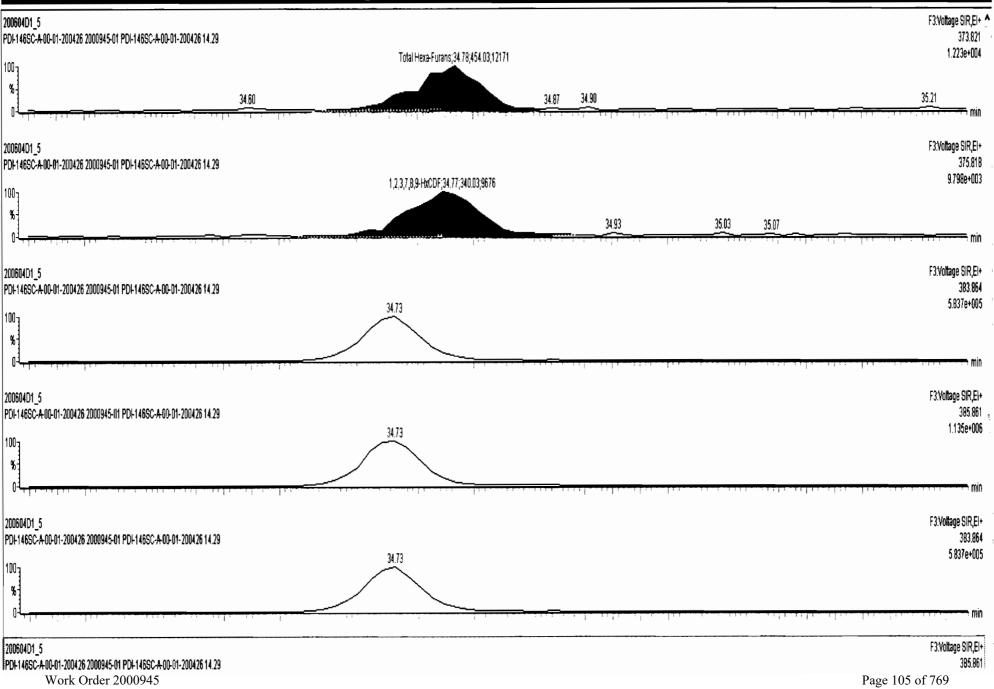

385.8 Page 103 of 769

. . . X

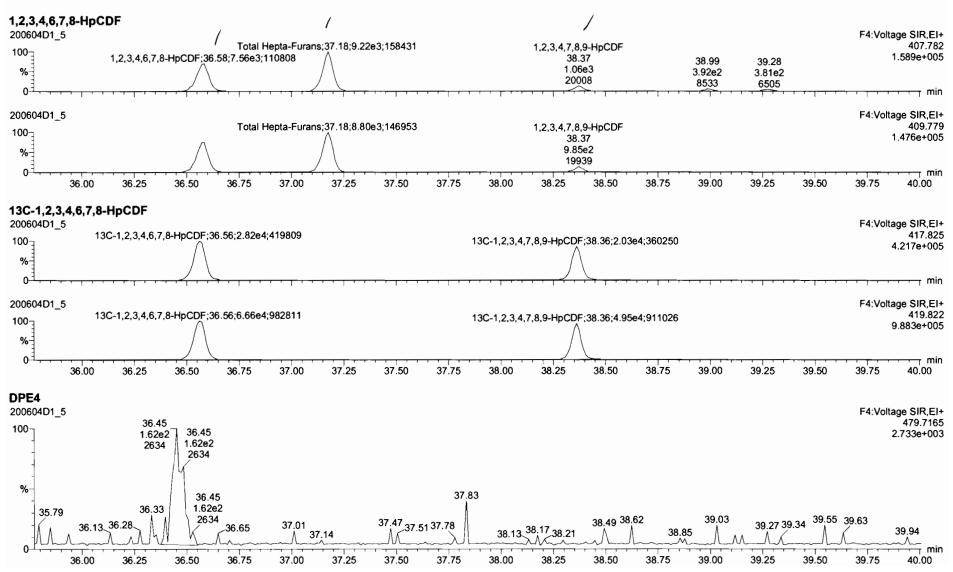
🖹 TargetLynx - 200604D1_5B.qid * - [Chromatogram]

∧ File Edit View Display Processing Window Help

☞묘 ☆ ⋈ ៑ ፵ 및 +80+ • → ↔ • - • ► Ⅹ 図 ☐ ፴ ፬ 및 ● ● ⊟ □ ● १


. 3 X

🎽 TargetLynx - 200604D1_5B.qld * - [Chromatogram]


A File Edit View Display Processing Window Help

☞묘☆☆☆♀♀+⊪・◇◇・・・・Х図Д╻日ΣЦ●●₽□●?

1814D (S. MARERA FELARELA INALIYA MARAFELARELA ILA 1993)

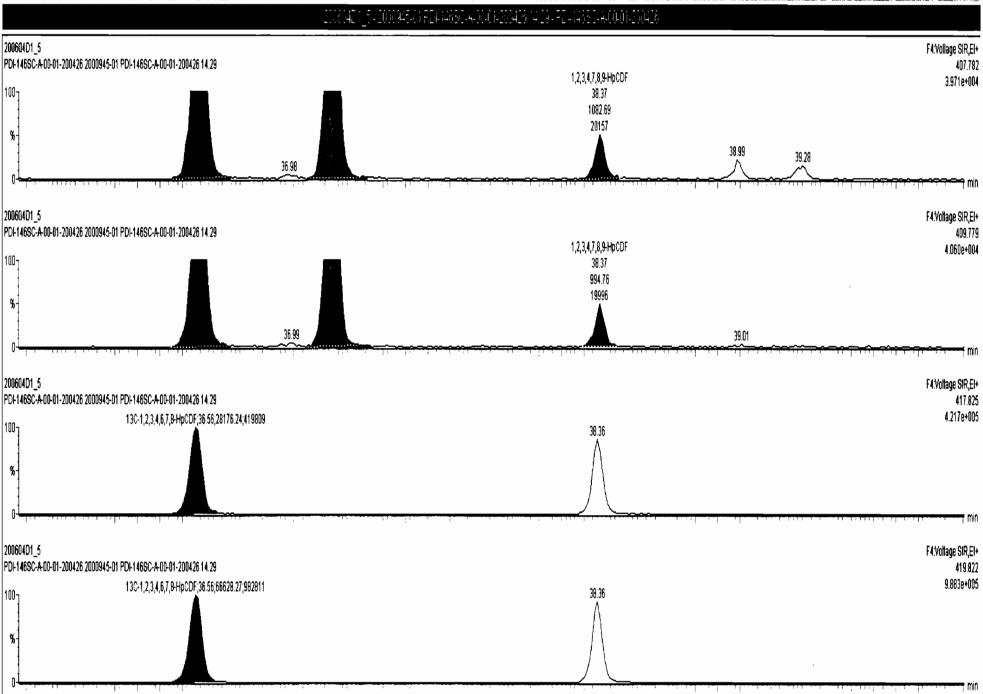
Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	

TargetLynx - 200604D1_5B.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

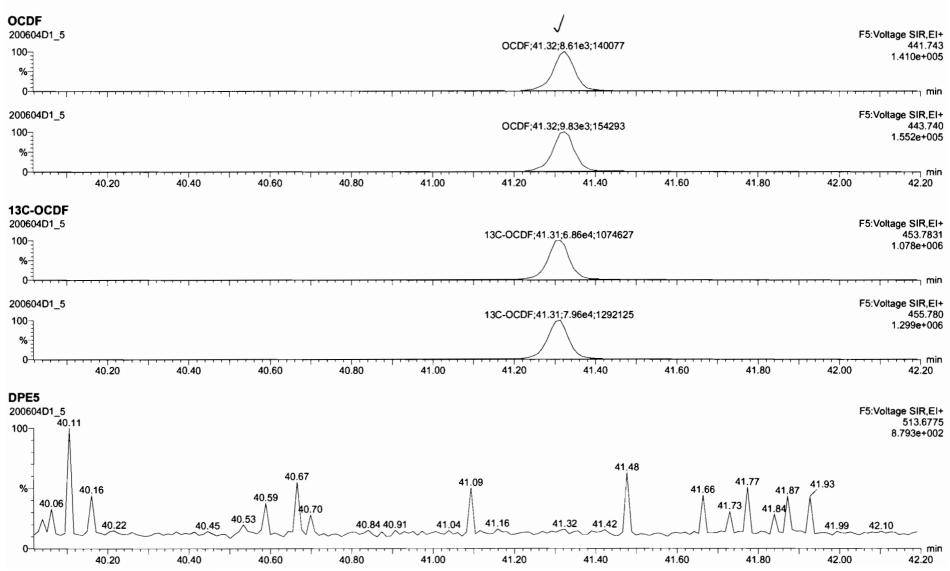
°₽ ⟨₩©₽₽+₩++++++X ⊠∆₩∃≥₽♦ ♦ 80 ₽ ₹

604D1_5 1465C-A-0D-01-200426 2000945-01 PDF1465C-A-0D-D1-200426 14.29				F4:Voltage SIR,E 407.78
Total Hepta-Furans,37.18,9317.77,158699				1.589e+00
1,2,3,4,6,7,8-HpCDF;36,58;7674.85;111268	1,2,3,4,7,8,9-HpCDF			
	38.37 1082.69			
	20157	38.99	39.28	
604D1_5				F4:Voltage SIR,E
146SC-#10-01-200426 2000945-01 PDF 146SC-#00-01-200426 14.29				409.77
Total Hepta-Furans; 37, 18;8951, 32, 147436				1.476e+00
1,2,3,4,6,7,8-HpCDF;36,58;7433.39;110797	1,2,3,4,7,8,9-HpCDF 38.37			
	994.76 19996			
		·····	····	
604D1_5				F4:Voitage SIR,E
146SC-ADD-01-200426 2000945-01 PDF 146SC-ADD-01-200426 14.29				417.82 4.217e+00
13C-1,2,3,4,6,7,8-HpCDF;36.56;28176.24,419809	38.36			4.2176700
	\wedge			
		······		
604D1_5				F4:Voltage SIR,E
146SC-A-00-01-200426 2000945-01 PDF146SC-A-00-01-200426 14 29				419.92 9.883e+00
13C-1,2,3,4,6,7,8-HpCDF;36.56,66628.27,982811	38.36 A			0.0000 0
	\square			

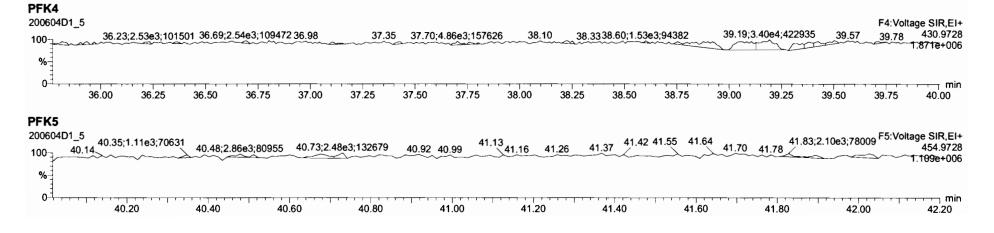

Work Order 2000945

. 5 X

TargetLynx - 200604D1_5B.qld * - [Chromatogram]


A File Edit View Display Processing Window Help

▆▋ۯ做ॕॕॷॷॳफ़੶৵ᡧ੶੶੶⊱੶Х፼囚◨⊟◙॥♥♥₿॥₿१



. C X

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	

Quantify Sam /ista Analytica		Page 13 of 1
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_5.qld	
ast Altered: Printed:	Friday, June 05, 2020 09:31:33 Pacific Daylight Time Friday, June 05, 2020 09:43:16 Pacific Daylight Time	
lame: 200604	4D1_5, Date: 04-Jun-2020, Time: 15:00:59, ID: 2000945-01 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-	-200426
PFK1 200604D1_5 10018.74_19. %		F1:Voltage SIR,EI- 35077 26.86 316.9822 5:748e+005
PFK2 200604D1_5 100_27.77_27.81 % 0 27.80	27.89 28.11 28.33 28.50 28.66 28.88 29.08 29.30 29.42 29.74;3.10e3;71944 30.15 30.41 30.61;1.33e3;65828 31.21;3	
PFK3 200604D1_5 100 %	32.24;3.15e3;154552 32.38 32.64;3.57e3;165632 32.93;1.24e4;202784 33.52 33.58 34.41;3.98e3;161015 34.61 34.85;7.88e3;199539 35.35;6.26	F3:Voltage SIR,EI- e3;189707 35.69 380.9760 2.917e+006
0 ⁻¹	5 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25	35.50 35.75 36.00

Quantify Sample Summary Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

Last Altered:	Friday, June 05, 2020 11:47:14 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:50:15 Pacific Daylight Time

DB 6/5/70 COUGUSTROZU

Method: Untitled 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.59e2	0.79	NO	0.987	10.580	26.142	26.14	1.001	1.001	0.36110		0.156	0.361
2	2 1,2,3,7,8-PeCDD	2.03e2	0.85	YES	0.982	10.580	30.669	30.67	1.001	1.001	0.34 64 8		0. 186	0.305
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	10.580	33.971		1.000				0.232	
4	4 1,2,3,6,7,8-HxCDD	4.21e2	1.07	NO	1.04	10.580	34.070	34.09	1.000	1.001	0.72460		0.241	0.725
5	5 1,2,3,7,8,9-HxCDD	2.24e2	1.38	NO	1.00	10.580	34.401	34.38	1.001	1.000	0.39968		0.251	0.400
6	6 1,2,3,4,6,7,8-HpCDD	1.07e4	1.02	NO	0.992	10.580	37.856	37.86	1.000	1.000	23.721		0.403	23.7
7	7 OCDD	9.38e4	0.89	NO	1.04	10.580	41.115	41.13	1.000	1.000	238.44		0.382	238
8	8 2,3,7,8-TCDF	5.01e3	0.75	NO	0.882	10.580	25.341	25.35	1.001	1.001	6.4065 (1	0.25)	0.197	6.41
9	9 1,2,3,7,8-PeCDF	5.16e3	1.58	NO	1.05	10.580	29.502	29.48	1.001	1.000	5.6709		0.126	5.67
10	10 2,3,4,7,8-PeCDF	2.41e3	1.65	NO	1.06	10.580	30.387	30.39	1.001	1.001	2.6579		0.116	2.66
11	11 1,2,3,4,7,8-HxCDF	5.88e3	1.21	NO	1.08	10.580	33.083	33.09	1.000	1.000	7.9900		0.125	7.99
12	12 1,2,3,6,7,8-HxCDF	1.79e3	1.12	NO	1.04	10.580	33.213	33.22	1.000	1.000	2.3951		0.122	2.40
13	13 2,3,4,6,7,8-HxCDF	5.12e2	1.36	NO	1.11	10.580	33.830	33.81	1.001	1.000	0.68077		0.137	0.681
14	14 1,2,3,7,8,9-HxCDF	1.63e2	1.21	NO	1.06	10.580	34.740	34.75	1.000	1.000	0.25128		0.175	0.251
15	15 1,2,3,4,6,7,8-HpCDF	3.76e3	0.99	NO	1.13	10.580	36.620	36.59	1.001	1.000	6.1227		0.178	6.12
16	16 1,2,3,4,7,8,9-HpCDF	9.27e2	1.03	NO	1.33	10.580	38.383	38.40	1.000	1.001	1.6743		0.170	1.67
17	17 OCDF	6.23e3	0.87	NO	0.933	10.580	41.334	41.35	1.000	1.000	14.294		0.196	14.3
18	18 13C-2,3,7,8-TCDD	1.37e5	0.77	NO	1.21	10.580	26.210	26.11	1.026	1.022	145.08	76.7	0.362	
19	19 13C-1,2,3,7,8-PeCDD	1.13e5	0.63	NO	0.996	10.580	30.706	30.65	1.202	1.200	144.50	76.4	0.271	
20	20 13C-1,2,3,4,7,8-HxCDD	9.12e4	1.28	NO	0.679	10.580	33.958	33.96	1.014	1.014	164.17	86.9	0.611	
21	21 13C-1,2,3,6,7,8-HxCDD	1.06e5	1.34	NO	0.850	10.580	34.068	34.07	1.017	1.017	152.31	80.6	0.488	
22	22 13C-1,2,3,7,8,9-HxCDD	1.06e5	1.28	NO	0.798	10.580	34.340	34.37	1.025	1.026	161.77	85.6	0.519	
23	23 13C-1,2,3,4,6,7,8-HpCDD	8.63e4	1.07	NO	0.697	10.580	37.809	37.85	1.129	1.130	151.26	80.0	0.515	
24	24 13C-OCDD	1.44e5	0.89	NO	0.579	10.580	40.836	41.12	1.219	1.228	302.89	80.1	0.493	
25	25 13C-2,3,7,8-TCDF	1.68e5	0.78	NO	1.13	10.580	25.291	25.32	0.990	0.991	136.24	72.1	0.466	
26	26 13C-1,2,3,7,8-PeCDF	1.65e5	1.58	NO	0.996	10.580	29.524	29.48	1.156	1.154	151.44	80.1	0.319	
27	27 13C-2,3,4,7,8-PeCDF	1.62e5	1.59	NO	0.969	10.580	30.425	30.37	1.191	1.189	153.10	81.0	0.328	
28	28 13C-1,2,3,4,7,8-HxCDF	1.29e5	0.50	NO	1.06	10.580	33.087	33.08	0.988	0.988	148.35	78.5	0.533	
29	29 13C-1,2,3,6,7,8-HxCDF	1.36e5	0.50	NO	1.18	10.580	33.221	33.20	0.992	0.991	140.96	74.6	0.480	
30	30 13C-2,3,4,6,7,8-HxCDF	1.28e5	0.50	NO	1.06	10.580	33.794	33.80	1.009	1.009	147.84	78.2	0.534	
31	31 13C-1,2,3,7,8,9-HxCDF	1.16e5	0.49	NO	0.879	10.580	34.695	34.74	1.036	1.037	161.62	85.5	0.641	

Quantify Sample Summary Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

Last Altered:	Friday, June 05, 2020 11:47:14 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:50:15 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.03e5	0.42	NO	0.893	10.580	36.403	36.58	1.087	1.092	140.69	74.4	0.458	
33	33 13C-1,2,3,4,7,8,9-HpCDF	7.85e4	0.41	NO	0.613	10.580	38.412	38.38	1.147	1.146	156.29	82.7	0.666	
34	34 13C-OCDF	1.77e5	0.89	NO	0.741	10.580	40.991	41.33	1.224	1.234	290.88	76. 9	0.472	
35	35 37CI-2,3,7,8-TCDD	5.51e4			1.18	10.580	26.208	26.13	1.026	1.023	59.524	78.7	0.0744	
36	36 13C-1,2,3,4-TCDD	1.48e5	0.82	NO	1.00	10.580	25.480	25.55	1.000	1.000	189.03	100	0.437	
37	37 13C-1,2,3,4-TCDF	2.06e5	0.78	NO	1.00	10.580	24.020	24.09	1.000	1.000	189.03	100	0.526	
38	38 13C-1,2,3,4,6,9-HxCDF	1.55e5	0.50	NO	1.00	10.580	33.530	33.49	1.000	1.000	189.03	100	0.564	
39	39 Total Tetra-Dioxins				0.987	10.580	24.620		0.000		0.87585		0.156	0.876
40	40 Total Penta-Dioxins				0.982	10.580	29.960		0.000		0.81965		0.186	1.13
41	41 Total Hexa-Dioxins				1.04	10.580	33.635		0.000		8.1407		0.249	8.14
42	42 Total Hepta-Dioxins				0.992	10.580	37.640		0.000		56.720		0.403	56.7
43	43 Total Tetra-Furans				0.882	10.580	23.610		0.000		22.371		0.197	27.1
44	44 1st Func. Penta-Furans				1.05	10.580	27.090		0.000		1.3917		0.0497	1.39
45	45 Total Penta-Furans				1.05	10.580	29.275		0.000		17.349		0.122	19.3
48	46 Total Hexa-Furans				1.11	10.580	33.555		0.000		17.218		0.134	17.2
47	47 Total Hepta-Furans				1.13	10.580	37.835		0.000		16.130		0.188	16.1

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

Last Altered:	Friday, June 05, 2020 11:47:14 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:50:15 Pacific Daylight Time

Method: Untitled 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200604D1_6, Date: 04-Jun-2020, Time: 15:46:07, ID: 2000945-02 PDI-146SC-A-01-02-200426 12.02, Description: PDI-146SC-A-01-02-200426

Tetra-Dioxins

Г	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22.72	1.658e3	2.661e3	1.720e2	1.974e2	0.87	NO	3.694e2	0.51474	0.51474	0.156
2	2 2,3,7,8-TCDD	26.14	1.791e3	2.384e3	1.144e2	1.448e2	0.79	NO	2.591e2	0.36110	0.36110	0.156

Penta-Dioxins

Γ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1 Total Penta-Dioxins	28.62	1.747e3	2.855e3	1.058e2	1.668e2	0.63	NO	2.726e2	0.46410	0.46410	0.186
2	2 Total Penta-Dioxins	29.50	1.688e3	2.287e3	8.607e1	1.227e2	0.70	NO	2.088e2	0.35555	0.35555	0.186
3	3 1,2,3,7,8-PeCDD	30.67	1.970e3	1.807e3	9.344e1	1.100e2	0.85	YES	2.035e2	0.00000	0.30542	0.186

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.45	2.334e4	1.936e4	1.224e3	9.824e2	1.25	NO	2.207e3	3.9857	3.9857	0.249
2	Total Hexa-Dioxins	33.02	2.876e3	2.650e3	1.545e2	1.190e2	1.30	NO	2.735e2	0.49394	0.49394	0.249
3	Total Hexa-Dioxins	33.29	1.289e4	1.025e4	7.343e2	6.702e2	1.10	NO	1.405e3	2.5368	2.5368	0.249
4	1,2,3,6,7,8-HxCDD	34.09	4.257e3	3.507e3	2.175e2	2.034e2	1.07	NO	4.210e2	0.72460	0.72460	0.241
5	1,2,3,7,8,9-HxCDD	34.38	2.175e3	1.799e3	1.301e2	9.416e1	1.38	NO	2.243e2	0.39968	0.39968	0.251

Hepta-Dioxins

Γ	Name	रा	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	Total Hepta-Dioxins	36.99	1.175e5	1.209e5	7.429e3	7.516e3	0.99	NO	1.494e4	32.999	32.999	0.403
ł	2 1,2,3,4,6,7,8-HpCDD 3	37.86	9.804e4	9.475e4	5.426e3	5.316e3	1.02	NO	1.074e4	23.721	23.721	0.403

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

Last Altered:	Friday, June 05, 2020 11:47:14 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:50:15 Pacific Daylight Time

Name: 200604D1_6, Date: 04-Jun-2020, Time: 15:46:07, ID: 2000945-02 PDI-146SC-A-01-02-200426 12.02, Description: PDI-146SC-A-01-02-200426

Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.59	7.400e2	1.792e3	8.770e1	1.172e2	0.75	NO	2.049e2	0.26222	0.26222	0.197
2	Total Tetra-Furans	21.08	9.450e2	1.104e3	5.633e1	8.564e1	0.66	NO	1.420e2	0.18169	0.18169	0.197
3	Total Tetra-Furans	21.74	5.545e3	5.338e3	3.869e2	5.433e2	0.71	NO	9.302e2	1.1905	1.1905	0.197
4	Total Tetra-Furans	22.34	2.012e3	1.930e3	2.270e2	2.701e2	0.84	NO	4.971e2	0.63617	0.63617	0.197
5	Total Tetra-Furans	22.69	9.104e3	1.186e4	7.023e2	9.882e2	0.71	NO	1.691e3	2.1636	2.1636	0.197
6	Total Tetra-Furans	23.10	3.627e3	4.681e3	2.634e2	3.972e2	0.66	NO	6.606e2	0.84544	0.84544	0.197
7	Total Tetra-Furans	23.41	1.997e3	2.721e3	1.253e2	1.641e2	0.76	NO	2.893e2	0.37030	0.37030	0.197
8	Total Tetra-Furans	24.02	3.284e3	4.654e3	1.849e2	2.285e2	0.81	NO	0.000e0	0.00000	0.52912	0.197
9	Total Tetra-Furans	24.09	1.382e4	1.606e4	1.195e3	1.470e3	0.81	NO	0.000e0	0.00000	3.4115	0.197
10	Total Tetra-Furans	24.54	3.176e4	3.945e4	2.326e3	2.987e3	0.78	NO	5.314e3	6.8007	6.8007	0.197
11	Total Tetra-Furans	24.81	2.501e3	2.846e3	1.510e2	1.817e2	0.83	NO	3.327e2	0.42585	0.42585	0.197
12	Total Tetra-Furans	24.96	1.103e3	1.942e3	7.316e1	1.064e2	0.69	NO	1.795e2	0.22976	0.22976	0.197
13	Total Tetra-Furans	25.24	1.120e4	1.911e4	7.691e2	1.076e3	0.71	NO	1.845e3	2.3618	2.3618	0.197
14	2,3,7,8-TCDF	25.35	3.257e4	4.321e4	2.153e3	2.852e3	0.75	NO	5.006e3	6.4065	6.4065	0.197
15	Total Tetra-Furans	25.67	2.906e3	4.181e3	1.546e2	2.336e2	0.66	NO	3.882e2	0.49677	0.49677	0.197
16	Total Tetra-Furans	27.14	6.128e3	7.643e3	3.333e2	3.501e2	0.95	YES	0.000e0	0.00000	0.79300	0.197

Penta-Furans function 1

Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 1st Func. Penta-Furans	27.14	1.390e4	8.686e3	7.688e2	4.871e2	1.58	NO	1.256e3	1.3917	1.3917	0.0497

Penta-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.58	3.357e4	1.840e4	2.645e3	1.669e3	1.58	NO	4.314e3	4.7809	4.7809	0.122
2	Total Penta-Furans	29.10	2.599e4	1.243e4	1.341e3	7.039e2	1.91	YES	0.000e0	0.00000	1.9888	0.122
3	Total Penta-Furans	29.32	1.071e4	6.820e3	6.032e2	3.696e2	1.63	NO	9.729e2	1.0780	1.0780	0.122
4	1,2,3,7,8-PeCDF	29.48	5.994e4	4.179e4	3.159e3	2.001e3	1.58	NO	5.160e3	5.6709	5.6709	0.126
5	Total Penta-Furans	29.74	1.970e4	1.363e4	1.143e3	7.865e2	1.45	NO	1.929e3	2.1380	2.1380	0.122
6	2,3,4,7,8-PeCDF	30.39	3.525e4	2.017e4	1.502e3	9.106e2	1.65	NO	2.412e3	2.6579	2.6579	0.116
7	Total Penta-Furans	30.41	2.123e4	1.108e4	5.537e2	3.695e2	1.50	NO	9.232e2	1.0230	1.0230	0.122

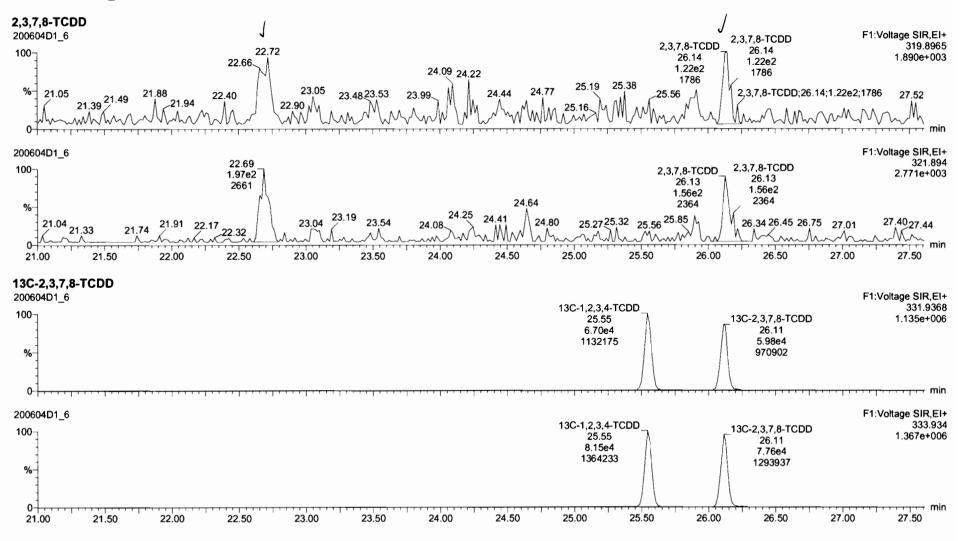
Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

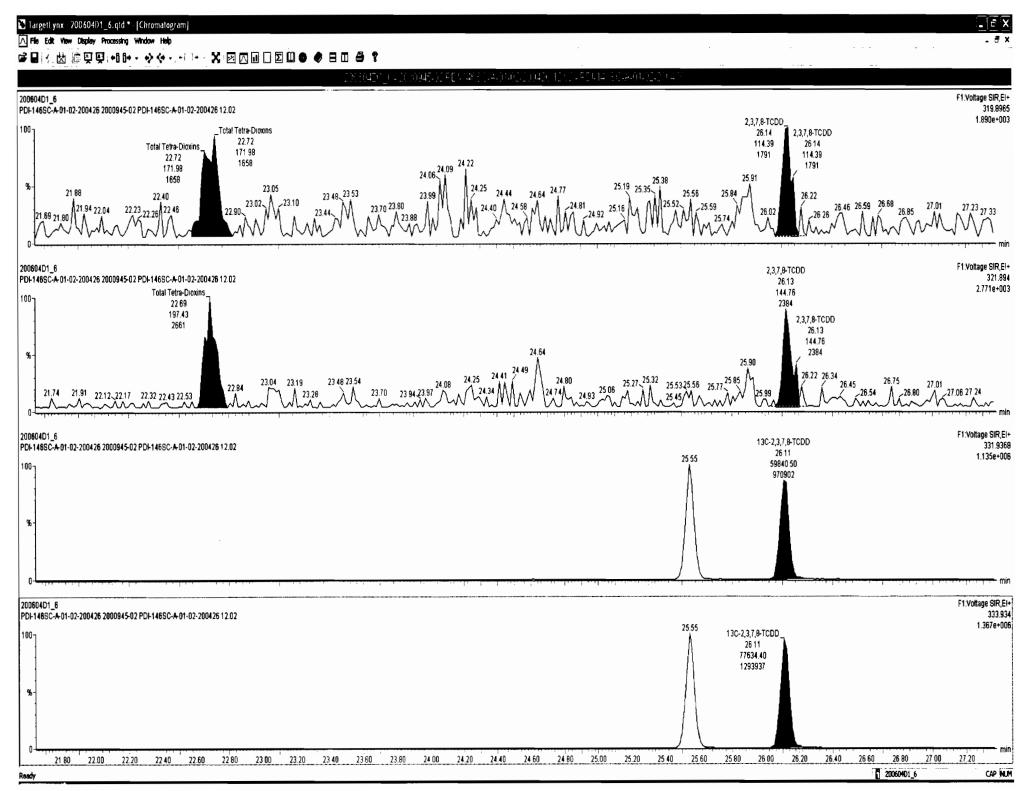
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

Last Altered:	Friday, June 05, 2020 11:47:14 Pacific Daylight Time
Printed:	Friday, June 05, 2020 11:50:15 Pacific Daylight Time

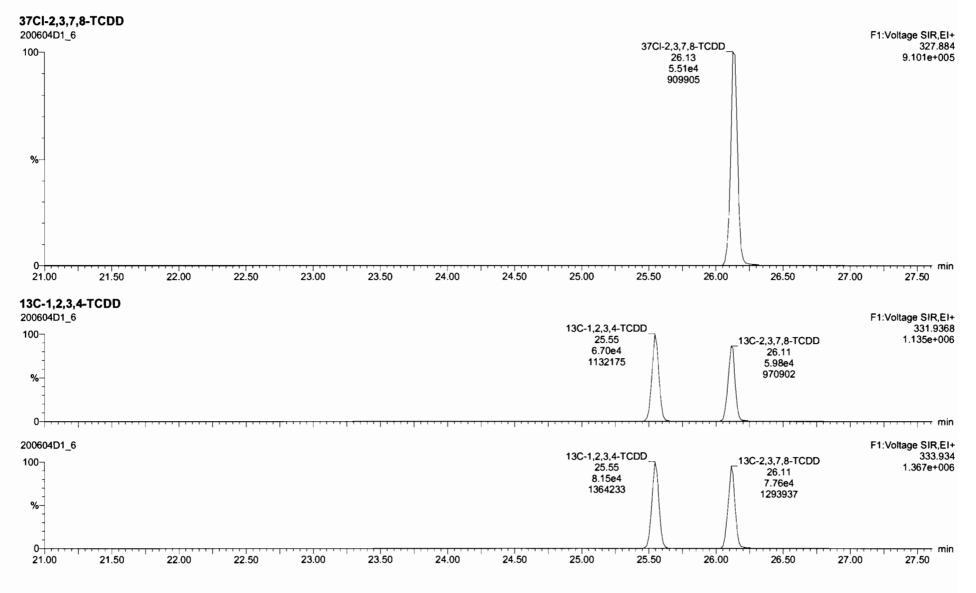
Name: 200604D1_6, Date: 04-Jun-2020, Time: 15:46:07, ID: 2000945-02 PDI-146SC-A-01-02-200426 12.02, Description: PDI-146SC-A-01-02-200426

Hexa-Furans

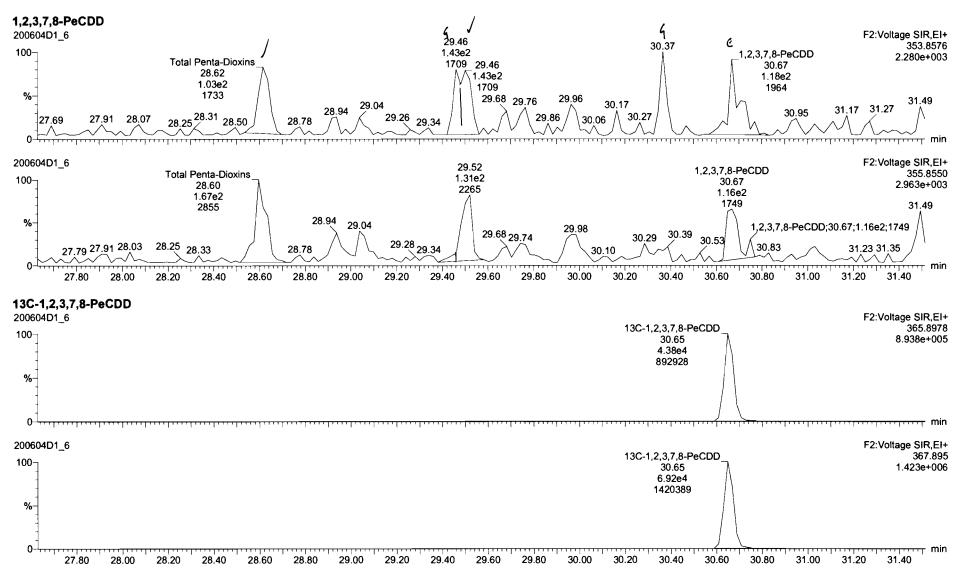

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.92	7.955e3	6.214e3	3.647e2	2.649e2	1.38	NO	6.296e2	0.84261	0.84261	0.134
2	Total Hexa-Furans	32.07	1.615e4	1.482e4	8.531e2	7.178e2	1.19	NO	1.571e3	2.1024	2.1024	0.134
3	Total Hexa-Furans	32.62	1.824e4	1.567e4	9.571e2	7.585e2	1.26	NO	1.716e3	2.2961	2.2961	0.134
4	1,2,3,4,7,8-HxCDF	33.09	6.158e4	4.993e4	3.218e3	2.665e3	1.21	NO	5.883e3	7.9900	7.9900	0.125
5	1,2,3,6,7,8-HxCDF	33.22	1.721e4	1.531e4	9.476e2	8.446e2	1.12	NO	1.792e3	2.3951	2.3951	0.122
6	2,3,4,6,7,8-HxCDF	33.81	5.278e3	3.462e3	2.948e2	2.171e2	1.36	NO	5.120e2	0.68077	0.68077	0.137
7	1,2,3,7,8,9-HxCDF	34.75	3.086e3	2.349e3	8.947e1	7.403e1	1.21	NO	1.635e2	0.25128	0.25128	0.175
8	Total Hexa-Furans	34.78	4.865e3	4.404e3	2.896e2	2.032e2	1.43	NO	4.928e2	0.65956	0.65956	0.134

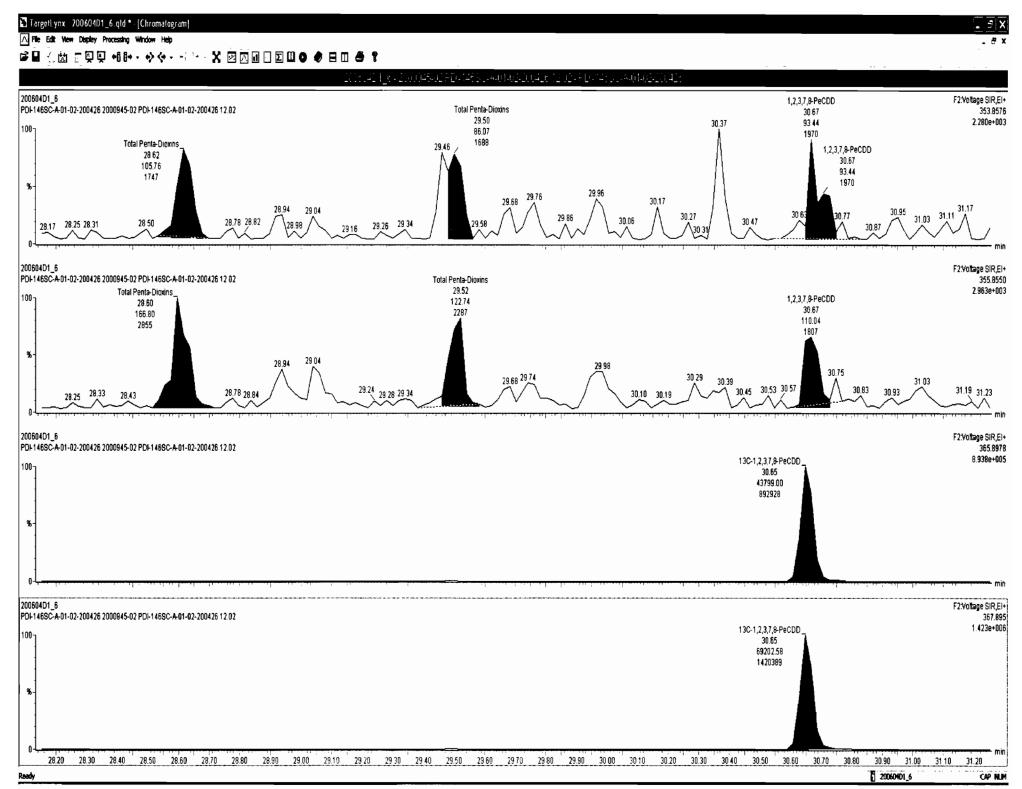

Hepta-Furans

Γ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.59	2.437e4	2.689e4	1.866e3	1.892e3	0.99	NO	3.758e3	6.1227	6.1227	0.178
2	Total Hepta-Furans	37.20	3.932e4	3.320e4	2.389e3	2.121e3	1.13	NO	4.510e3	8.3334	8.3334	0.188
3	1,2,3,4,7,8,9-HpCDF	38.40	8.544e3	9.186e3	4.713e2	4.559e2	1.03	NO	9.272e2	1.6743	1.6743	0.170


Quantify Sam Vista Analytica	· · ·	Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28


Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PR0\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

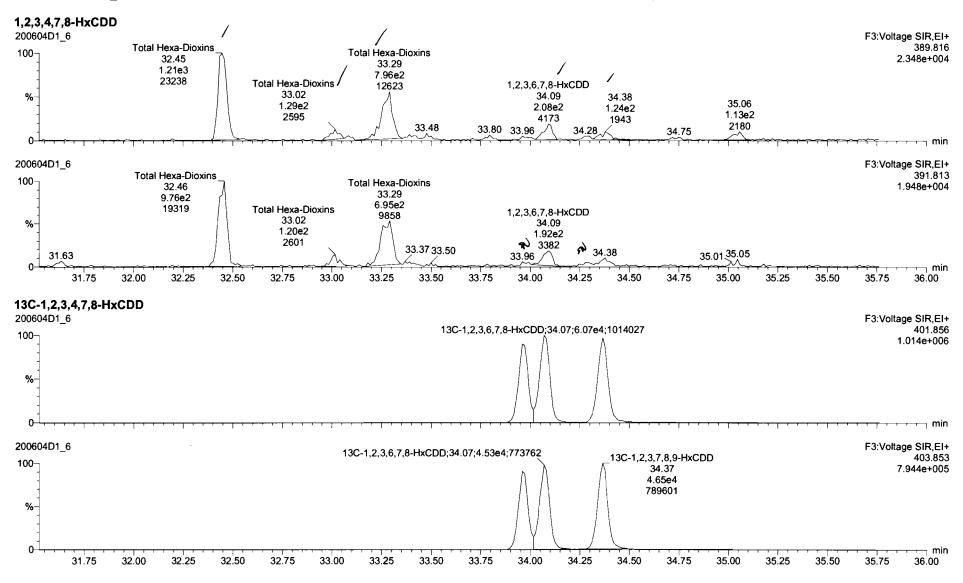


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

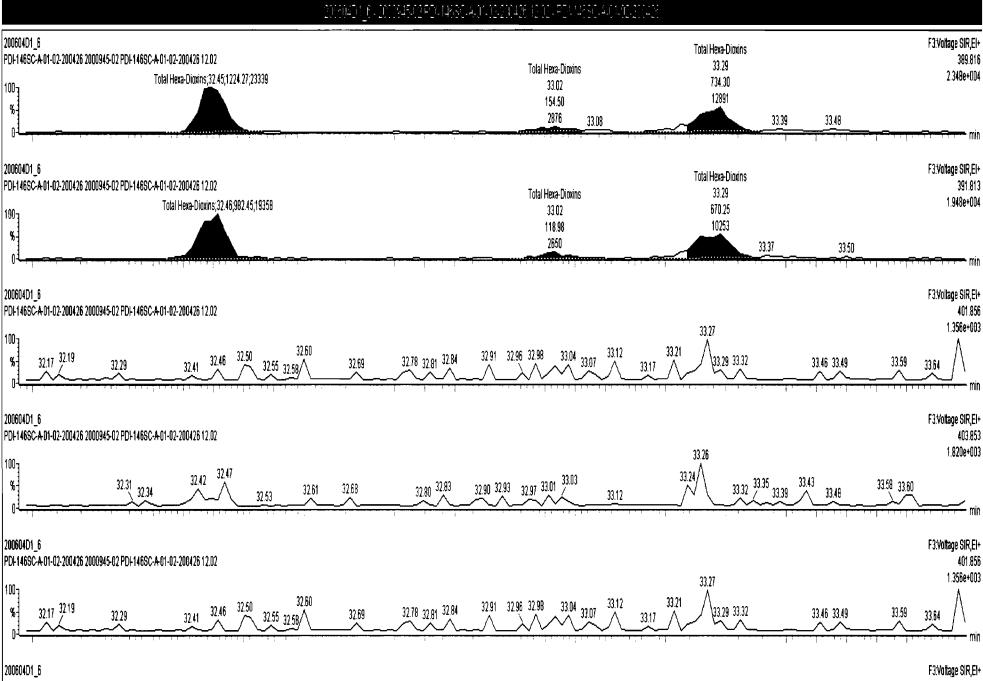
Last Altered:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:37 Pacific Daylight Time

Work Order 2000945


Page 120 of 769

Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

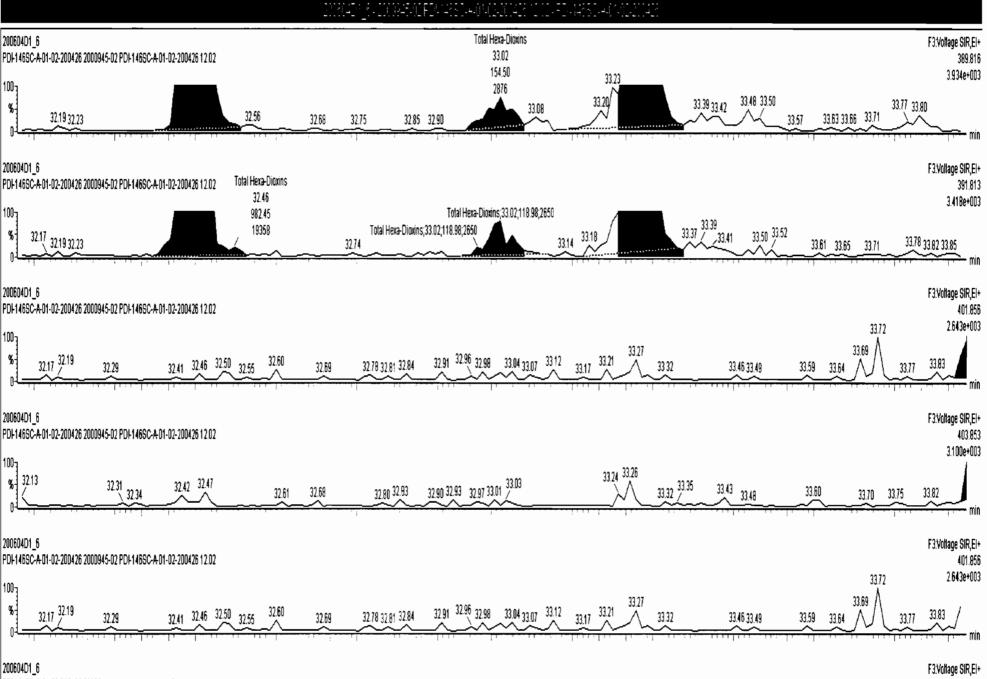

U:\VG7.PRO\Results\200604D1\200604D1_6.qld Dataset:

Last Altered:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:37 Pacific Daylight Time

🕌 Targeti ynx - 200604D1_6. gld * - [Chromatogram]

☞目 (1)出版(幕架架)+1 ┣+ • • • • • · · X 図広回目図(0) ● 日日 ● ?

PDF146SC-A 01-02-200426 2000945-02 PDF146SC-A 01-02-200426 12.02 Work Order 2000945


Page 122 of 769

^{403.853}

🔁 TargetLynx - 200604D1_6.qld * - [Chromatogram]

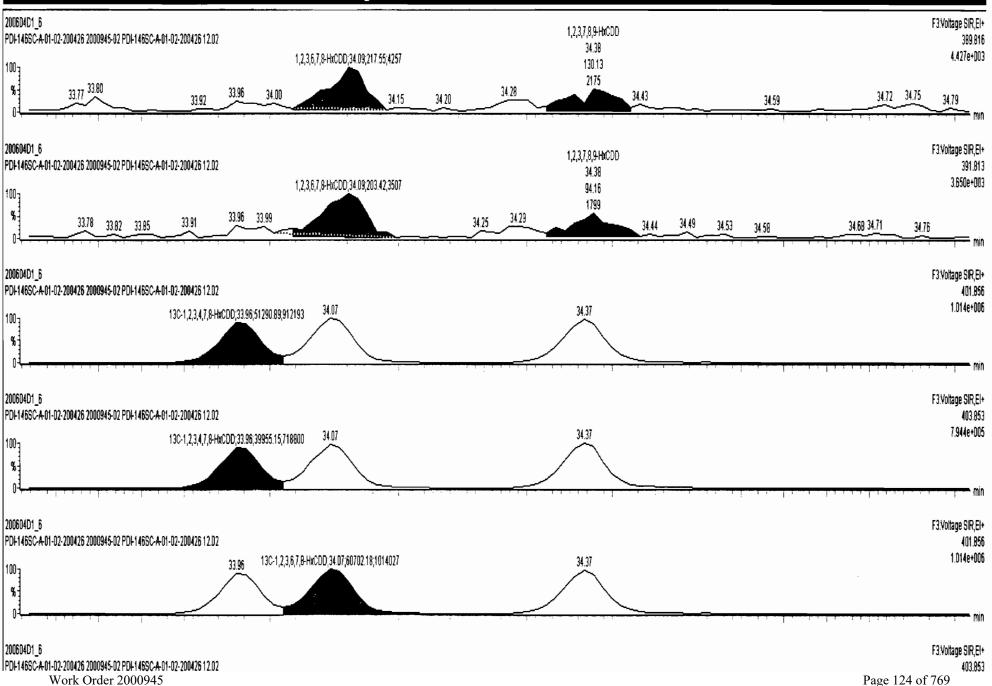
|∧| File Edit View Display Processing Window Help

403.853

. č X

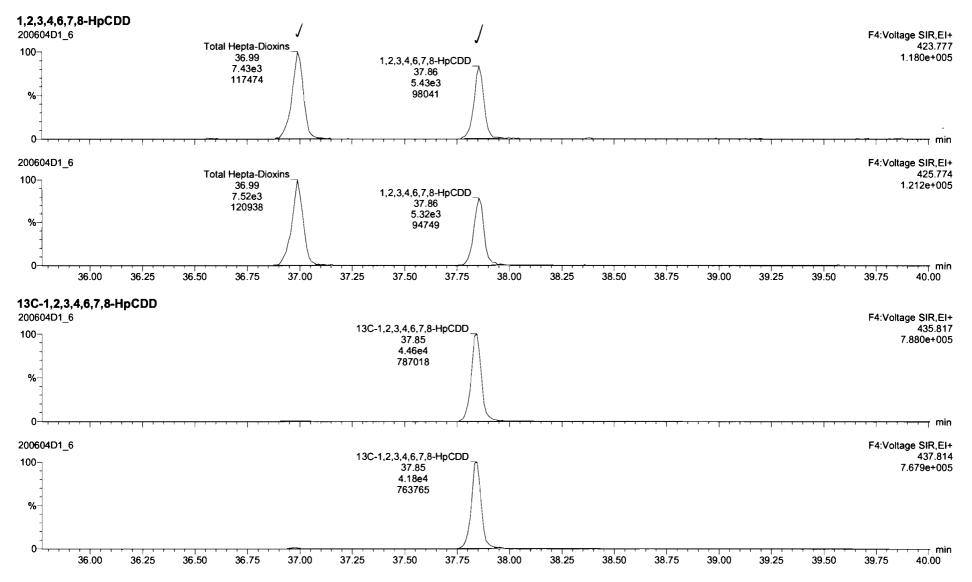
- 8 X

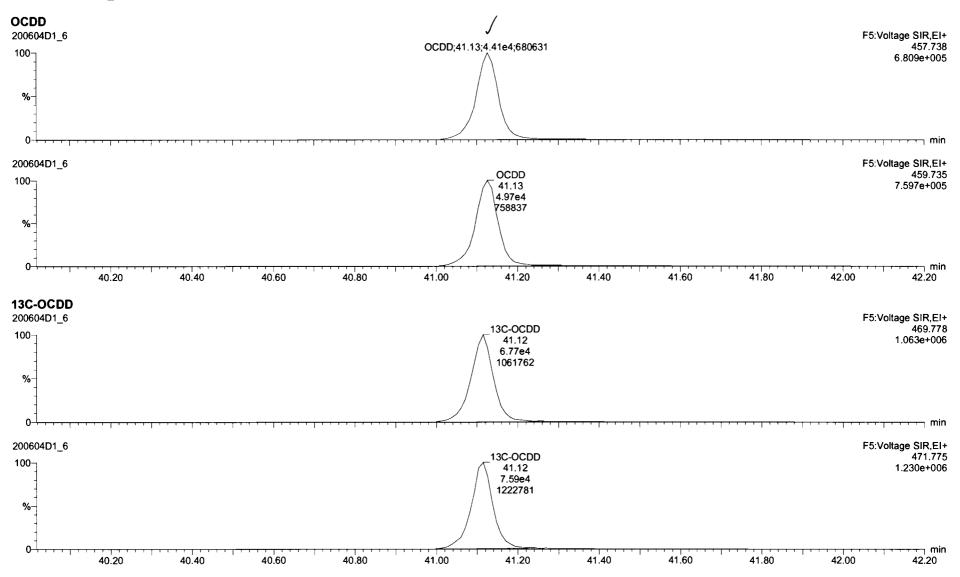
Page 123 of 769


PDF146SC-A-01-02-200426 2000945-02 PDF146SC-A-01-02-200426 12:02 Work Order 2000945

📱 TargetLynx - 200604D1_6.qld * - [Chromatogram]

A File Edit Wew Display Processing Window Help


☞▋《법》፟፼፼→ଶ୲⊶・৵ᡧ・▫□⊶╴Ҳ፼፟ፙ፼፼ዾዸዸዸዸኇ



. : X

Quantify San Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

Quantify San Vista Analytic		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

Quantify Sample ReportMassLynx 4.1Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

Last Altered:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:37 Pacific Daylight Time

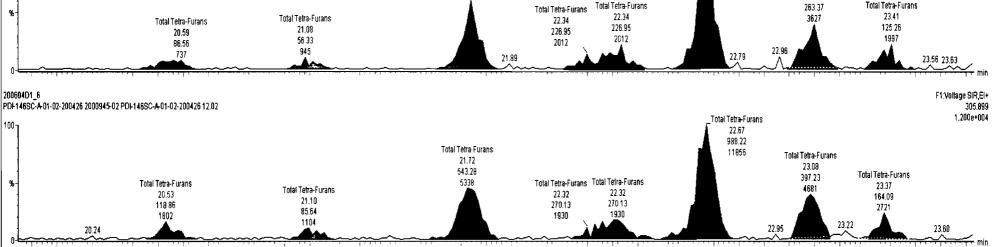
2,3,7,8-TCDF 200604D1_6	/ / / Total Tetra-Furans;24.54;2.33e3;31731 Total Tetra-Furans;24.09;1.36e3;13771 / 3.87e2 / / / 5545 22.34 / / / / / /	F1:Voltage SIR,EI+ 2,3,7,8-TCDF 303.9016 25.35 3.270e+004 2.10e3 6 32240 26.63 27.32 min
200604D1_6 100 % 20.53 0 19.00 19.50 20.00 20.50 21.00	Total Tetra-Furans Total Tetra-Furans;24.54;2.95e3;39256 21.72 Total Tetra-Furans;24.11;1.47e3;16057 5.43e2 5338 22.32 21.50 22.00 22.50 23.00 23.50 24.00 24.50	F1:Voltage SIR,EI+ 2,3,7,8-TCDF 305.899 25.35 4.333e+004 2.77e3 42717 26.65
13C-2,3,7,8-TCDF 200604D1_6 100	13C-1,2,3,4-TCDF 13C-2,3,7 24,09 25 9.04e4 7.3 1306793 1176	.32 1.310e+006 6e4
200604D1_6 100 % 019.00 19.50 20.00 20.50 21.00	13C-1,2,3,4-TCDF 13C-2,3,7 24.09 25 1.16e5 9.3 1658610 1512 21.50 22.00 22.50 23.00 23.50 24.00 24.50	.32 1.662e+006 9e4
DPE1 200604D1_6 100 %- 18.77 19.22 19.4319.69 19.89 20.65 20.96	$\begin{array}{c} 22.29\\ 21.34\\ 21.42\\ 21.6221.88\\ 22.69\\ 22.79\\ 23.24\\ 23.76\\ 23.85\\ 24.11\\ 24.58\\ 24.43\\ 24.4$	25.68.25.76 27.46
0	21.50 22.00 22.50 23.00 23.50 24.00 24.50	25.00 25.50 26.00 26.50 27.00 27.50

Targetl ynx 200604D1_6.gld * [Chromatogram]

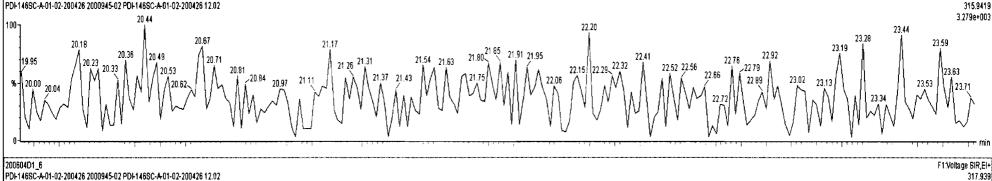
\Lambda File Edit Yew Display Processing Window Help

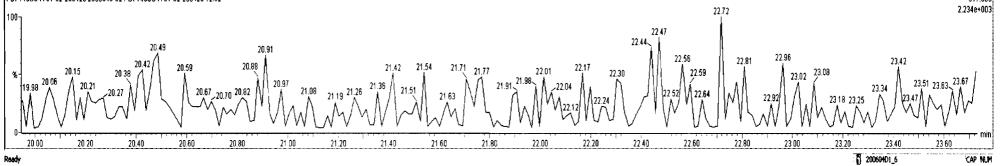
200604D1_6

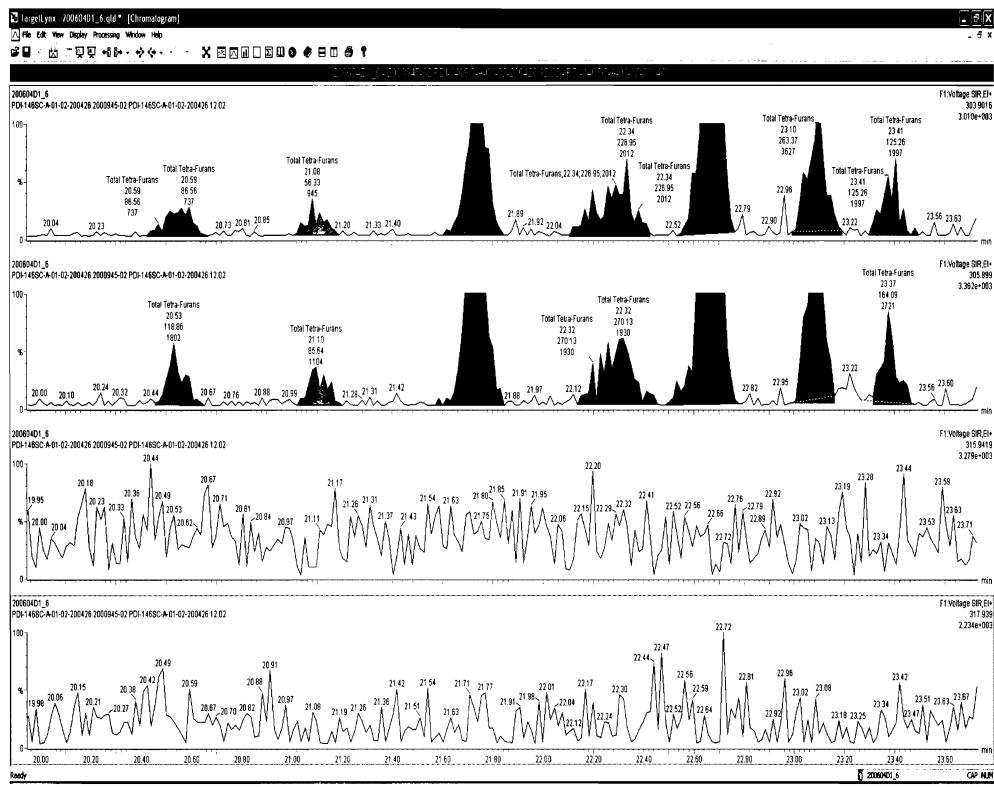
100-


F1:Voltage SIR EI+

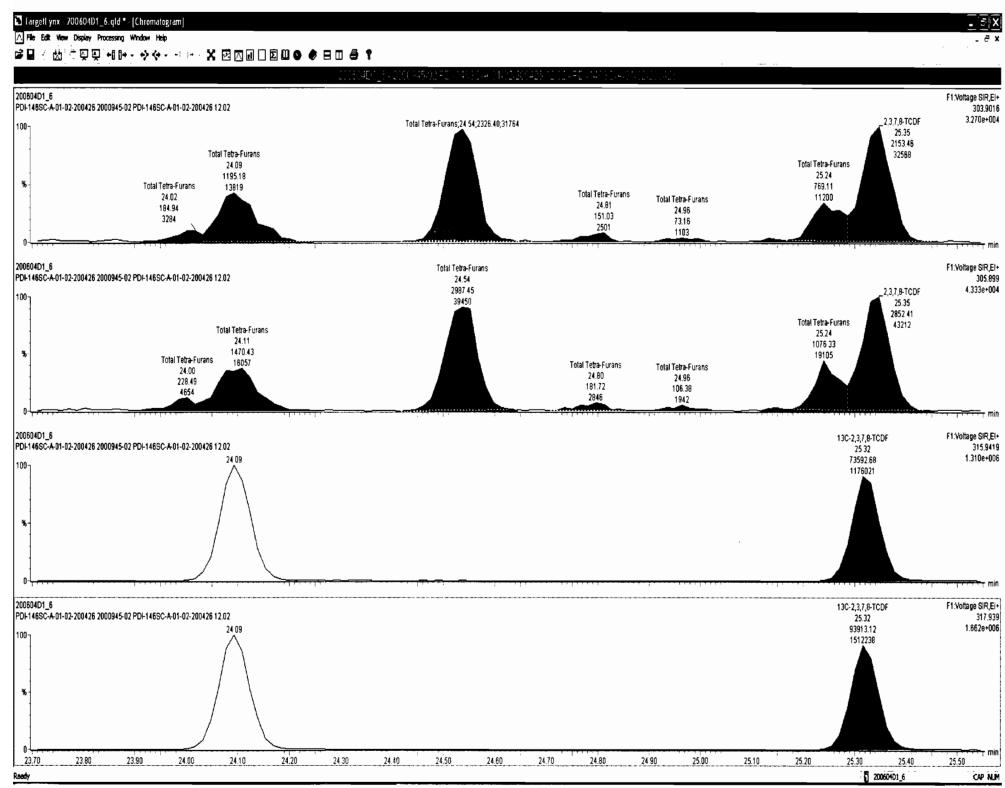
F1:Voltage SIR,EI+


303.9016

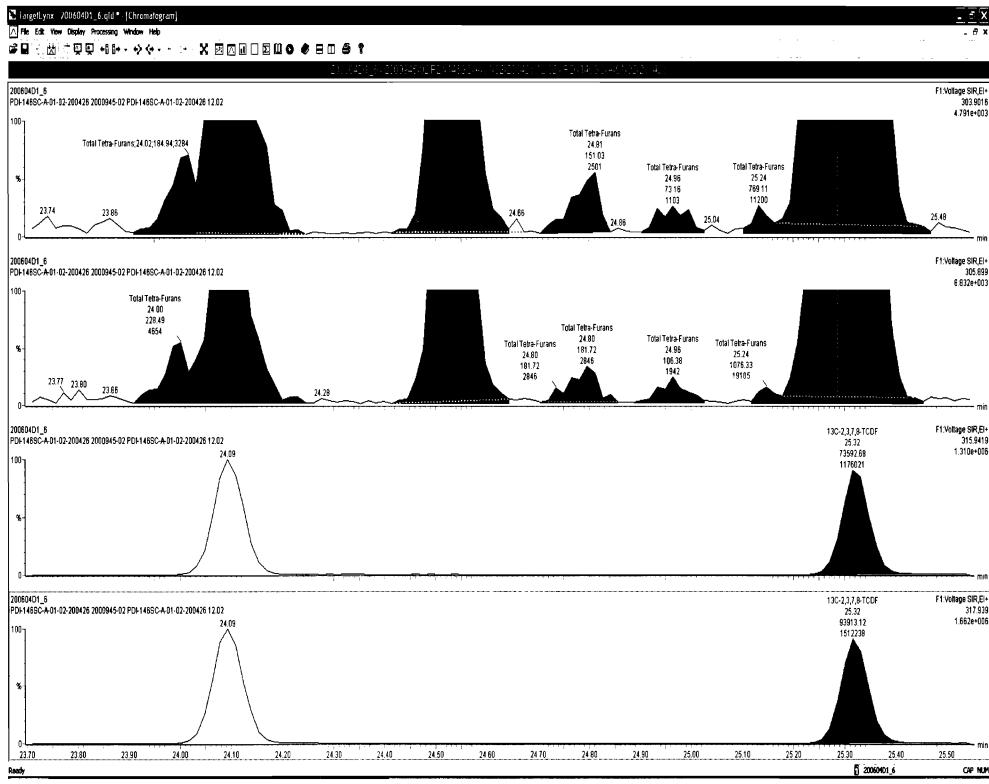

9.268e+003



200604D1_6 PDF146SC-A-01-02-200426 2000945-02 PDF146SC-A-01-02-200426 12.02



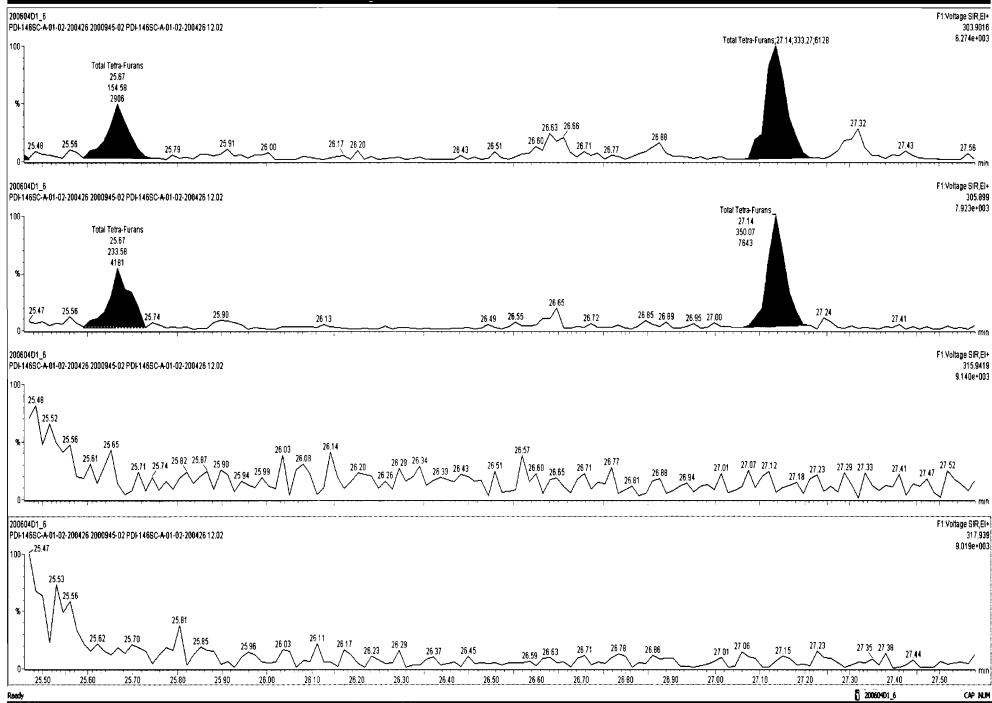
Page 128 of 769


Work Order 2000945

Page 129 of 769

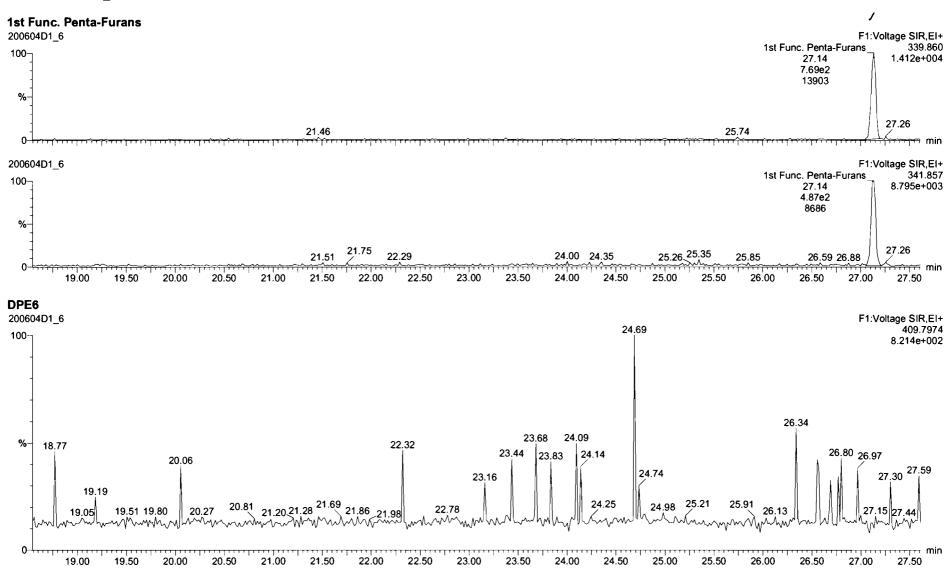
Work Order 2000945

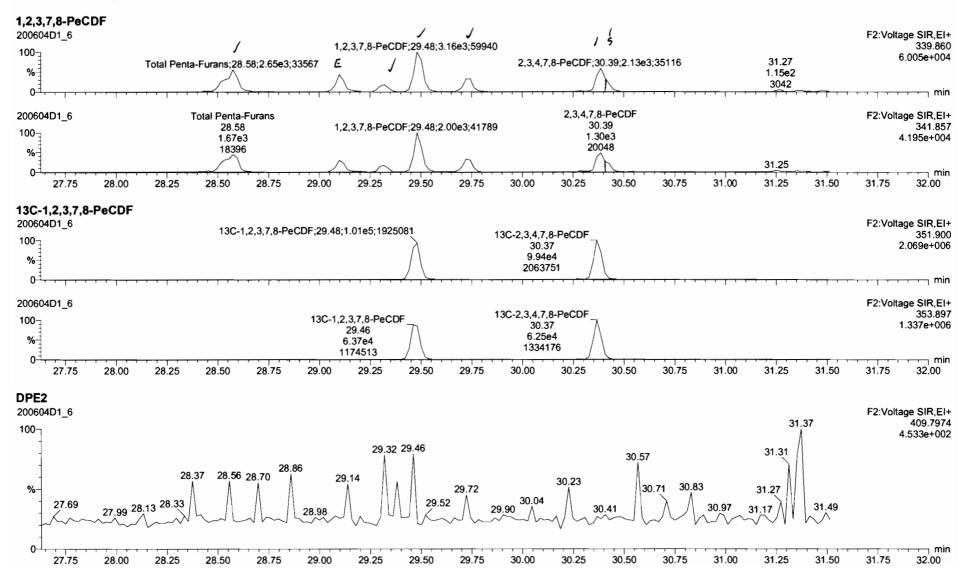
Page 130 of 769


Work Order 2000945

TargetLynx - 200604D1_6.qld * - [Chromatogram]

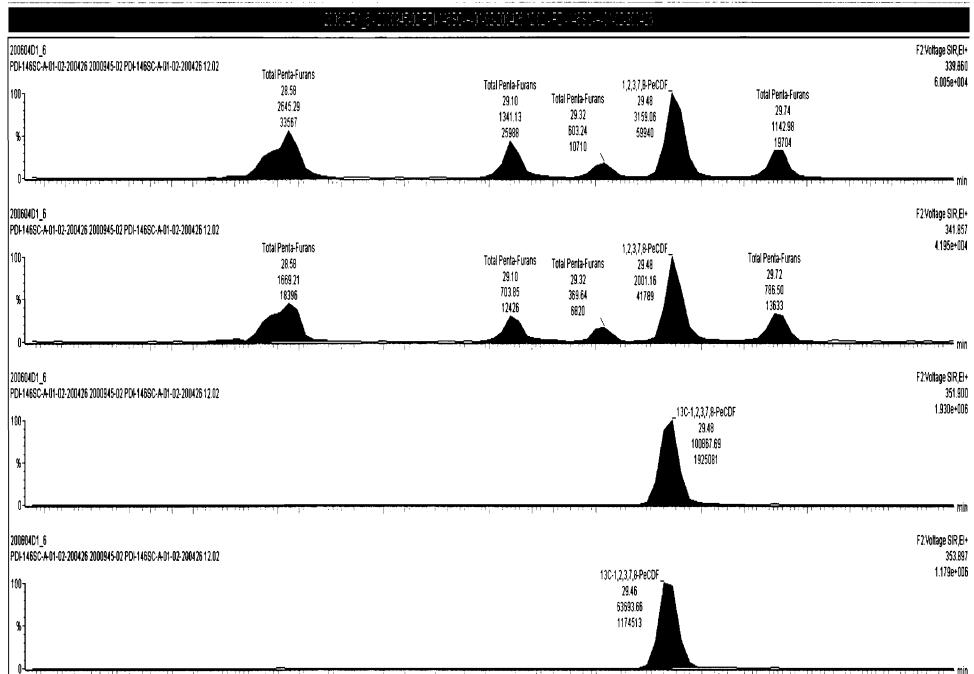
∧ File Edit View Display Processing Window Help


0(8)4201 8 - 2000 945-0240 - 14680 - 440 1402 2004 28 12 12 - 420 - 1469 - 440 4-02-2014 1


Work Order 2000945

- 5 X

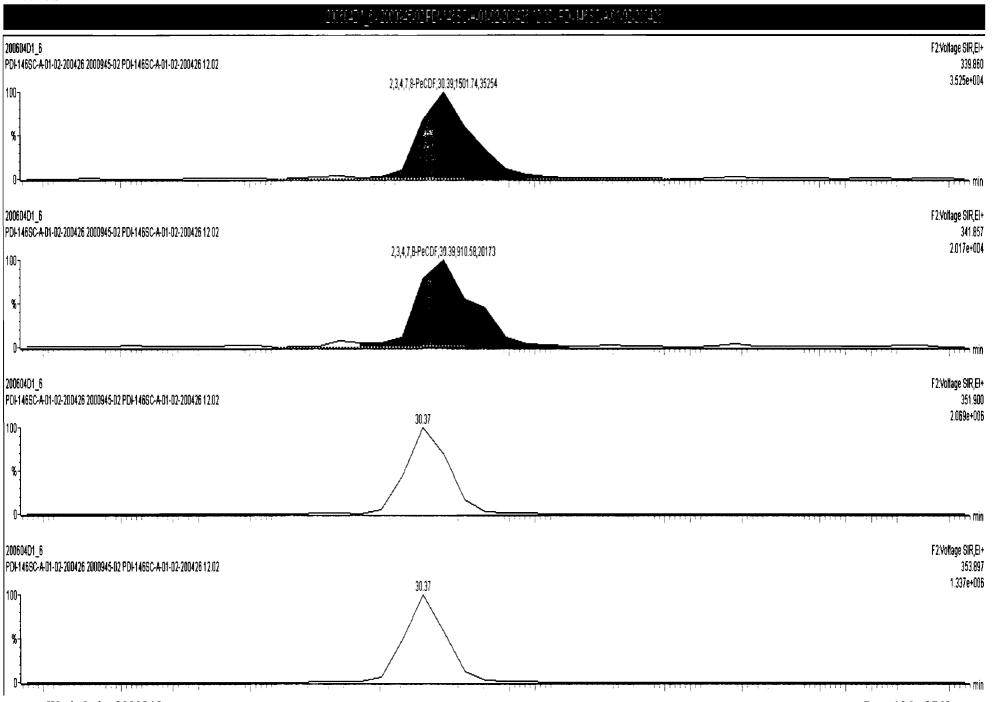
Quantify San Vista Analytic		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

📱 TargetLynx - 200604D1_6.qld * - [Chromatogram]

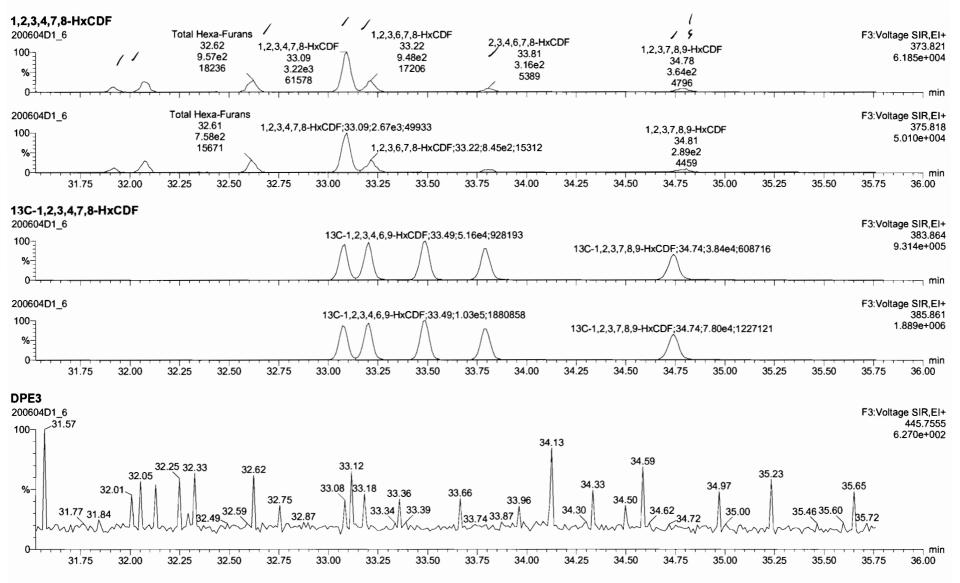
A File Edit Yew Display Processing Window Help

ᄚ虽ۦ⟨◬ё҇突突ҹӏҹ・ᄽᡧ・・()・·Х ◙Дӣ፤ΣЩ� ♥ В□ 兽 १



🎽 TargetLynx - 200604D1_6.qld * - [Chromatogram]

A File Edit Yiew Display Processing Window Help

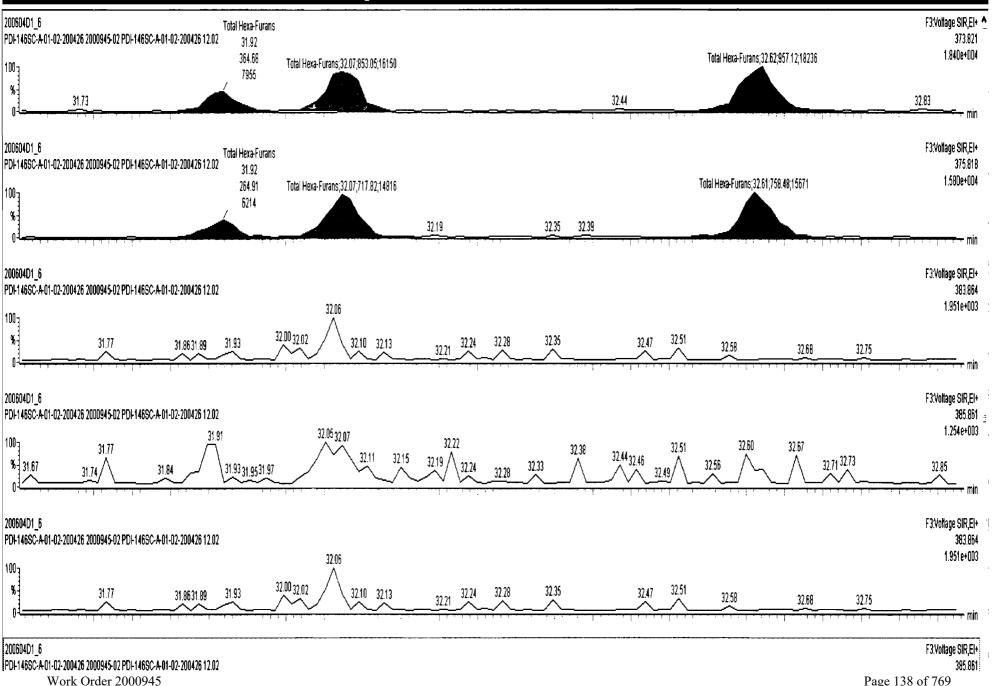

'⁼∫X

. 🗄 X

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_6.qld

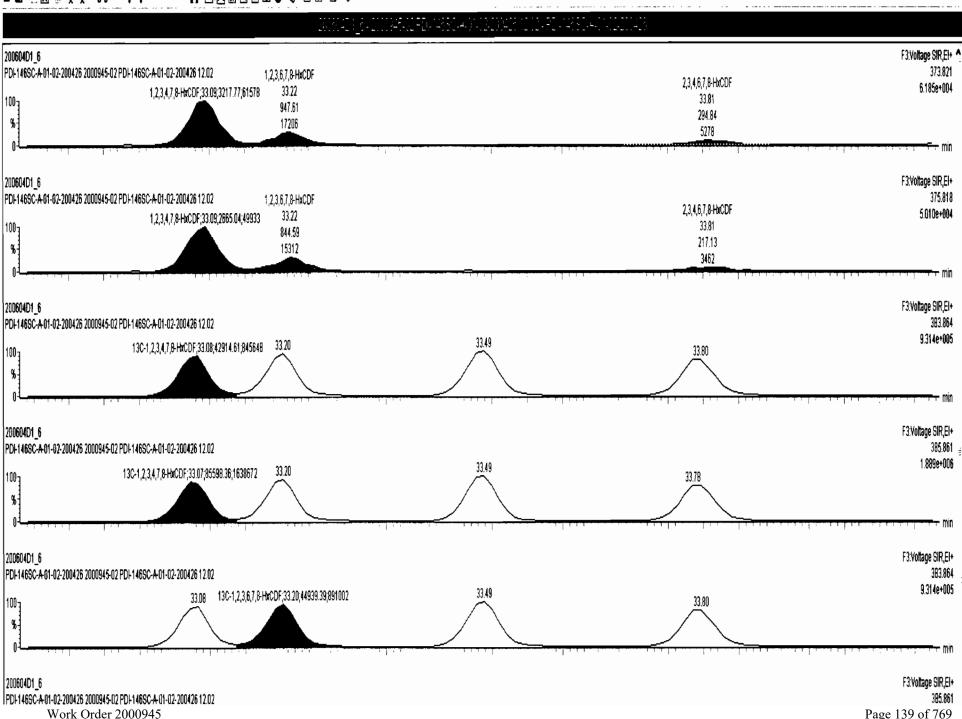
Last Altered: Friday, June 05, 2020 09:32:39 Pacific Daylight Time Printed: Friday, June 05, 2020 09:43:37 Pacific Daylight Time



🎽 TargetLynx · 200604D1 6.gld * · [Chromatogram]

🕂 File Edit View Display Processing Window Help

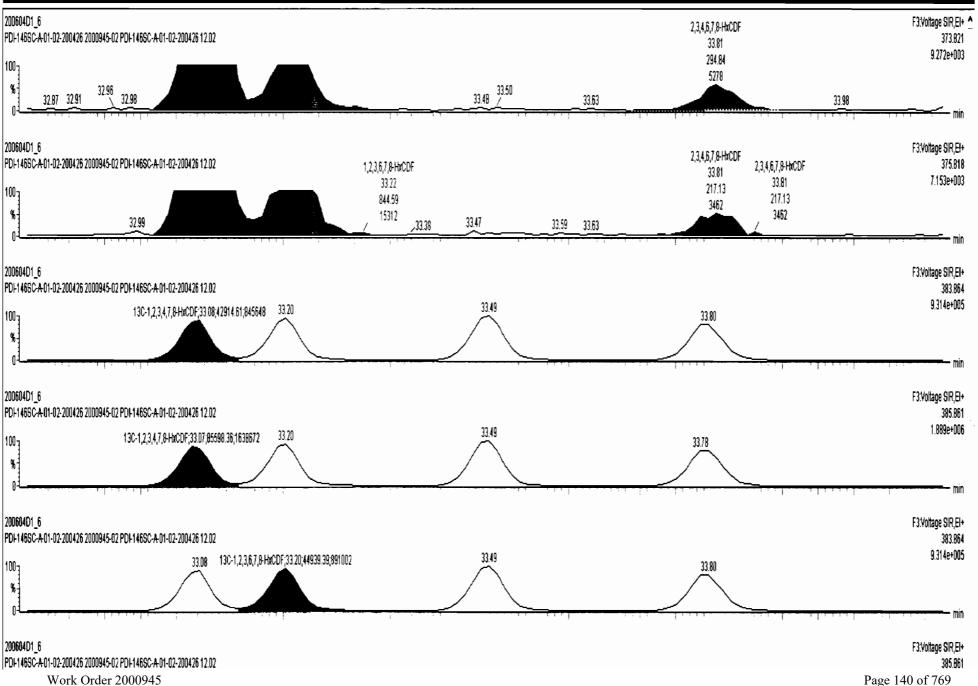
☞ 🖬 《 🖄 🚋 및 🕫 🕪 • ♦ ♦ • • 🖓 • • 🐰 🗵 🗖 🗍 🖓 🛯 🖉 🗳 🗄 🛛 🖨 🤋


nne. 435

👌 TargetLynx - 200604D1_6.qld * - [Chromatogram]

🕅 File Edit View Display Processing Window Help

Page 139 of 769

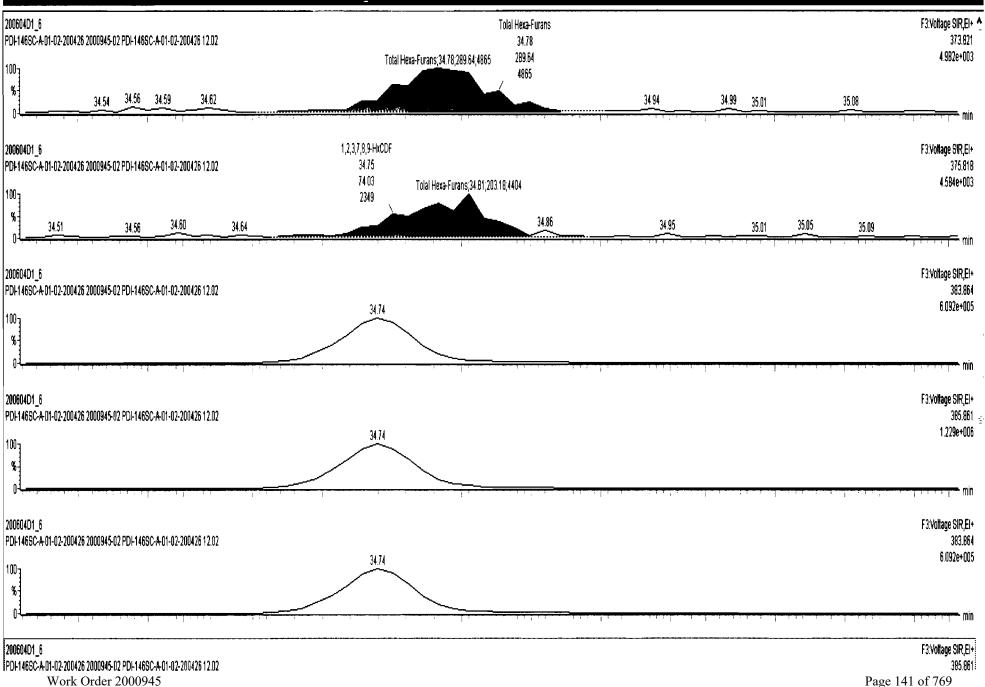

• C X . ō X

👌 TargetLynx - 200604D1_6.qld * - [Chromatogram]

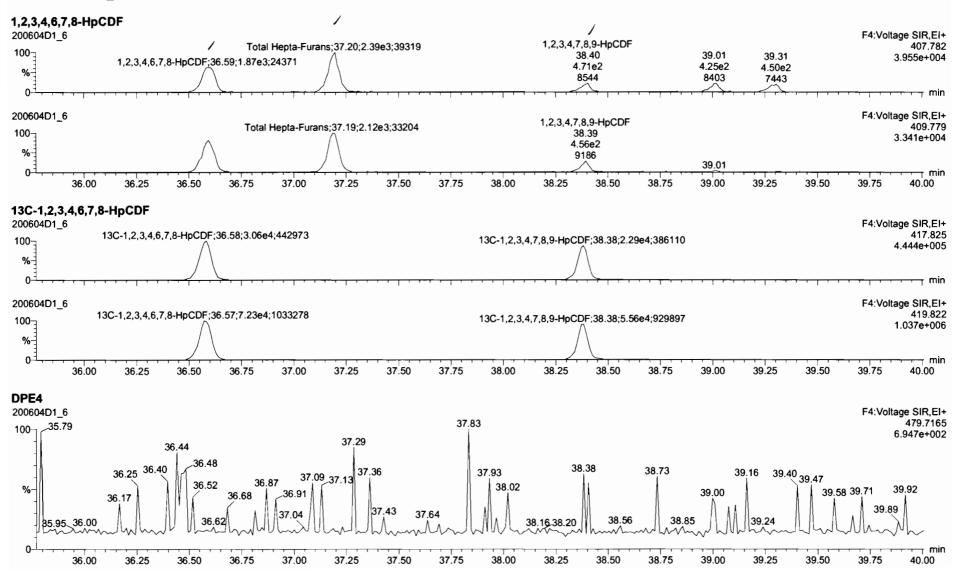
A File Edit View Display Processing Window Help

ᄚᇛᇲᄡᆙᄚᅋᆞᅋᆞᆊᆘᆞᄽᄿᆞᄼᆣᆞXᄚᄶᆒᆒᅒᄢᅅᆥᄇᇟᄻᆥ

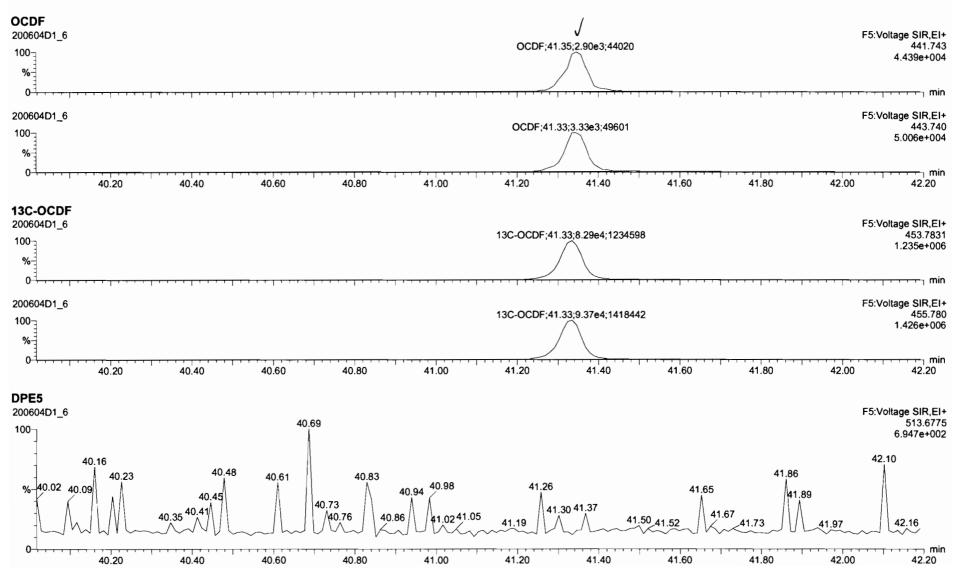
📱 TargetLynx - 200604D1_6.qld * - [Chromatogram]

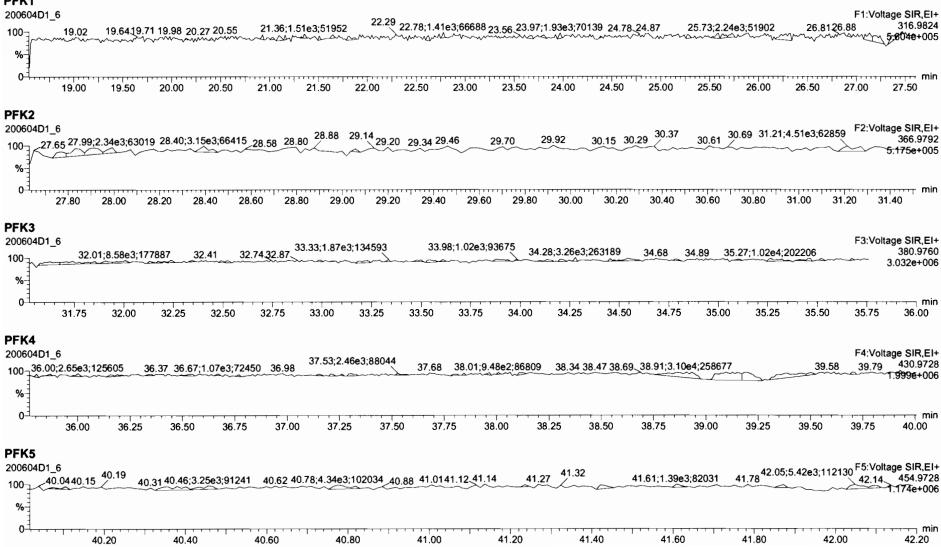

A File Edit View Display Processing Window Help

ᄚᇛᇲᇓᆴᅋᆞᅋᆘᅆᅆᆞᅆᅆᆞᆞᅆᅆᅟᄶᄚᇟᇞᇊᇗᄪᅌᆥᇊᇊᇔᆥ



5)


. 🗟 X


Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_6.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:32:39 Pacific Daylight Time Friday, June 05, 2020 09:43:37 Pacific Daylight Time	

Page 13 of 13
-01-02-200426
-01-02-200420

 Quantify Sample Summary Report
 MassLynx 4.1

 Vista Analytical Laboratory
 MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7B.qld

Last Altered: Friday, June 05, 2020 12:54:54 Pacific Daylight Time Printed: Friday, June 05, 2020 12:57:46 Pacific Daylight Time

DB 6/5/20 CT 06/04/2020

Method: Untitled 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.59e2	0.68	NO	0.987	10.026	26.142	26.14	1.001	1.001	0.37518		0.164	0.375
2	2 1,2,3,7,8-PeCDD	1.44e2	0.46	YES	0.982	10.026	30.669	30.67	1.001	1.001	0.24876		0.288	0.204
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	10.026	33.971		1.000				0.234	
4	4 1,2,3,6,7,8-HxCDD	4.67e2	1.08	NO	1.04	10.026	34.070	34.08	1.000	1.000	0.81479		0.230	0.815
5	5 1,2,3,7,8,9-HxCDD	2.27e2	1.40	NO	1.00	10.026	34.401	34.41	1.001	1.001	0.41750		0.246	0.417
6	6 1,2,3,4,6,7,8-HpCDD	1.12e4	1.06	NO	0.992	10.026	37.845	37.86	1.000	1.001	24.141		0.371	24.1
7	7 OCDD	1.17e5	0.87	NO	1.04	10.026	41.104	41.12	1.000	1.000	293.83		0.529	294
8	8 2,3,7,8-TCDF	4.35e3	0.72	NO	0.882	10.026	25.341	25.35	1.001	1.001	5.8735	OK.	0.247	5.87
9	9 1,2,3,7,8-PeCDF	4.33e3	1.48	NO	1.05	10.026	29.502	29.50	1.001	1.001	4.8145		0.133	4.81
10	10 2,3,4,7,8-PeCDF	1.83e3	1.45	NO	1.06	10.026	30.385	30.39	1.001	1.001	2.0523		0.129	2.05
11	11 1,2,3,4,7,8-HxCDF	6.76e3	1.19	NO	1.08	10.026	33.072	33.09	1.000	1.001	9.1283		0.135	9.13
12	12 1,2,3,6,7,8-HxCDF	1.89e3	1.24	NO	1.04	10.026	33.214	33.22	1.000	1.000	2.5764		0.137	2.58
13	13 2,3,4,6,7,8-HxCDF	6.68e2	1.40	NO	1.11	10.026	33.830	33.81	1.001	1.000	0.88036		0.143	0.880
14	14 1,2,3,7,8,9-HxCDF	1.40e2	1.40	NO	1.06	10.026	34,740	34.76	1.000	1.001	0.21733		0.174	0.217
15	15 1,2,3,4,6,7,8-HpCDF	4.80e3	1.02	NO	1.13	10.026	36.620	36.59	1.001	1.000	7.6181		0.213	7.62
16	16 1,2,3,4,7,8,9-HpCDF	1.36e3	1.07	NO	1.33	10.026	38.372	38.39	1.000	1.001	2.3907		0.212	2.39
17	17 OCDF	8.17e3	0.90	NO	0.933	10.026	41.324	41.33	1.000	1.000	18.001		0.231	18.0
18	18 13C-2,3,7,8-TCDD	1.40e5	0.77	NO	1.21	10.026	26.210	26.11	1.026	1.022	155.23	77.8	0.373	
19	19 13C-1,2,3,7,8-PeCDD	1.18e5	0.64	NO	0.996	10.026	30.706	30.65	1.202	1.200	158.86	79.6	0.427	
20	20 13C-1,2,3,4,7,8-HxCDD	9.34e4	1.27	NO	0.679	10.026	33.958	33.96	1.014	1.014	173.54	87.0	0.500	
21	21 13C-1,2,3,6,7,8-HxCDD	1.10e5	1.22	NO	0.850	10.026	34.068	34.07	1.017	1.017	163.75	82.1	0.399	
22	22 13C-1,2,3,7,8,9-HxCDD	1.08e5	1.31	NO	0.798	10.026	34.340	34.37	1.025	1.026	170.61	85.5	0.425	
23	23 13C-1,2,3,4,6,7,8-HpCDD	9.31e4	1.01	NO	0.697	10.026	37.809	37.83	1.129	1.130	168.31	84.4	0.547	
24	24 13C-OCDD	1.53e5	0.88	NO	0.579	10.026	40.836	41.10	1.219	1.227	332.71	83.4	0.592	
25	25 13C-2,3,7,8-TCDF	1.67e5	0.78	NO	1.13	10.026	25.291	25.32	0.990	0.991	140.54	70.5	0.447	
26	26 13C-1,2,3,7,8-PeCDF	1.72e5	1.59	NO	0.996	10.026	29.524	29.48	1.156	1.154	163.09	81.8	0.561	
27	27 13C-2,3,4,7,8-PeCDF	1.68e5	1.60	NO	0.969	10.026	30.425	30.37	1.191	1.189	164.19	82.3	0.576	
28	28 13C-1,2,3,4,7,8-HxCDF	1.36e5	0.51	NO	1.06	10.026	33.087	33.07	0.988	0.988	162.52	81.5	0.530	
29	29 13C-1,2,3,6,7,8-HxCDF	1.40e5	0.50	NO	1.18	10.026	33.221	33.20	0.992	0.991	150.66	75.5	0.477	
30	30 13C-2,3,4,6,7,8-HxCDF	1.36e5	0.49	NO	1.06	10.026	33.794	33.80	1.009	1.009	162.45	81.4	0.531	
31	31 13C-1,2,3,7,8,9-HxCDF	1.21e5	0.49	NO	0.879	10.026	34.695	34.74	1.036	1.037	173.92	87.2	0.638	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7B.qld

Last Altered:	Friday, June 05, 2020 12:54:54 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:57:46 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.11e5	0.42	NO	0.893	10.026	36.403	36.58	1.087	1.092	157.41	78.9	0.559	
33	33 13C-1,2,3,4,7,8,9-HpCDF	8.52e4	0.42	NO	0.613	10.026	38.412	38.37	1.147	1.146	175.13	87.8	0.813	
34	34 13C-OCDF	1.94e5	0.86	NO	0.741	10.026	40.991	41.32	1.224	1.234	330.12	82.7	0.452	
35	35 37CI-2,3,7,8-TCDD	6.34e4			1.18	10.026	26.208	26.13	1.026	1.023	72.079	90.3	0.113	
36	36 13C-1,2,3,4-TCDD	1.49e5	0.77	NO	1.00	10.026	25.480	25.55	1.000	1.000	199.49	100	0.450	
37	37 13C-1,2,3,4-TCDF	2.11e5	0.75	NO	1.00	10.026	24.020	24.08	1.000	1.000	199.49	100	0.504	
38	38 13C-1,2,3,4,6,9-HxCDF	1.58e5	0.50	NO	1.00	10.026	33.530	33.49	1.000	1.000	199.49	100	0.561	
39	39 Total Tetra-Dioxins				0.987	10.026	24.620		0.000		1.1470		0.164	2.70
40	40 Total Penta-Dioxins				0.982	10.026	29.960		0.000		1.4242		0.238	2.31
41	41 Total Hexa-Dioxins				1.04	10.026	33.635		0.000		9.0668		0.243	9.07
42	42 Total Hepta-Dioxins				0.992	10.026	37.640		0.000		56.936		0.371	56.9
43	43 Total Tetra-Furans				0.882	10.026	23.610		0.000		29.868		0.247	32.2
44	44 1st Func. Penta-Furans				1.05	10.026	27.090		0.000		1.7845		0.0481	1.78
45	45 Total Penta-Furans				1.05	10.026	29.275		0.000		18.135		0.132	18.1
46	46 Total Hexa-Furans				1.11	10.026	33.555		0.000		19.339		0.141	19.3
47	47 Total Hepta-Furans				1.13	10.026	37.835		0.000		19.375		0.229	19.4

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

U:\VG7.PRO\Results\200604D1\200604D1_7B.qld Dataset:

Last Altered:	Friday, June 05, 2020 12:54:54 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:57:46 Pacific Daylight Time

Method: Untitled 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200604D1_7, Date: 04-Jun-2020, Time: 16:31:15, ID: B0D0306-DUP1 Duplicate 11.39, Description: Duplicate

Tetra-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22.69	3.835e3	3.622e3	3.145e2	3.317e2	0.95	YES	0.000e0	0.00000	0.85046	0.164
2	Total Tetra-Dioxins	23.05	1.981e3	1.502e3	1.201e2	1.312e2	0.92	YES	0.000e0	0.00000	0.33636	0.164
3	Total Tetra-Dioxins	24.44	1.220e3	1.425e3	8.139e1	1.005e2	0.81	NO	1.819e2	0.26351	0.26351	0.164
4	Total Tetra-Dioxins	24.61	2.491e3	2.195e3	1.430e2	1.428e2	1.00	YES	0.000e0	0.00000	0.36598	0.164
5	Total Tetra-Dioxins	25.85	1.948e3	2.517e3	1.578e2	1.932e2	0.82	NO	3.509e2	0.50831	0.50831	0.164
6	2,3,7,8-TCDD	26.14	2.130e3	2.704e3	1.050e2	1.541e2	0.68	NO	2.590e2	0.37518	0.37518	0.164

Penta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RĂ	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.62	2.238e3	2.698e3	1.473e2	2.035e2	0.72	NO	3.508e2	0.60435	0.60435	0.238
2	Total Penta-Dioxins	29.06	1.430e3	1.101e3	5.430e1	5.430e1	1.00	YES	0.000e0	0.00000	0.15248	0.238
3	Total Penta-Dioxins	29.52	2.176e3	3.696e3	7.824e1	1.409e2	0.56	NO	2.191e2	0.37743	0.37743	0.238
4	Total Penta-Dioxins	29.66	1.249e3	1.543e3	3.646e1	5.767e1	0.63	NO	9.413e1	0.16216	0.16216	0.238
5	Total Penta-Dioxins	29.76	1.149e3	1.858e3	5.985e1	1.028e2	0.58	NO	1.627e2	0.28027	0.28027	0.238
6	Total Penta-Dioxins	29.96	9.790e2	1.474e3	5.863e1	1.105e2	0.53	YES	0.000e0	0.00000	0.26133	0.238
7	Total Penta-Dioxins	30.27	7.830e2	2.215e3	3.724e1	8.275e1	0.45	YES	0.000e0	0.00000	0.16598	0.238
8	1,2,3,7,8-PeCDD	30.67	1.276e3	1.613e3	4.570e1	9.870e1	0.46	YES	1.444e2	0.00000	0.20371	0.238
9	Total Penta-Dioxins	30.75	8.460e2	7.050e2	3.701e1	3.789e1	0.98	YES	0.000e0	0.00000	0.10639	0.238

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.46	2.597e4	1.875e4	1.225e3	9.444e2	1.30	NO	2.169e3	4.0178	4.0178	0.243
2	Total Hexa-Dioxins	33.02	4.684e3	2.905e3	2.296e2	1.676e2	1.37	NO	3.972e2	0.73564	0.73564	0.243
3	Total Hexa-Dioxins	33.28	1.328e4	1.143e4	9.026e2	7.610e2	1.19	NO	1.664e3	3.0810	3.0810	0.243
4	1,2,3,6,7,8-HxCDD	34.08	4.220e3	5.027e3	2.430e2	2.241e2	1.08	NO	4.671e2	0.81479	0.81479	0.230
5	1,2,3,7,8,9-HxCDD	34.41	2.635e3	2.151e3	1.324e2	9.443e1	1.40	NO	2.268e2	0.41750	0.41750	0.246

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7B.qld

Last Altered:	Friday, June 05, 2020 12:54:54 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:57:46 Pacific Daylight Time

Name: 200604D1_7, Date: 04-Jun-2020, Time: 16:31:15, ID: B0D0306-DUP1 Duplicate 11.39, Description: Duplicate

Hepta-Dioxins

[Name	RŤ	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1 Total Hepta-Dioxins	36.99	1.264e5	1.159e5	7.778e3	7.391e3	1.05	NO	1.5 17e4	32.796	32.796	0.371
	2 1,2,3,4,6,7,8-HpCDD	37.86	1.051e5	9.530e4	5.755e3	5.411e3	1.06	NO	1.117e4	24.141	24.141	0.371

Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.55	2.187e3	2.767e3	1.517e2	2.249e2	0.67	NO	3.766e2	0.50893	0.50893	0.247
2	Total Tetra-Furans	21.11	1.813e3	2.016e3	1.153e2	1.840e2	0.63	YES	0.000e0	0.00000	0.35802	0.247
3	Total Tetra-Furans	21.74	6.843e3	6.787e3	5.337e2	6.415e2	0.83	NO	1.175e3	1.5881	1.5881	0.247
4	Total Tetra-Furans	22.32	2.480e3	5.097e3	4.148e2	5.774e2	0.72	NO	9.922e2	1.3407	1.3407	0.247
5	Total Tetra-Furans	22.67	9.453e3	1.245e4	8.997e2	1.138e3	0.79	NO	2.037e3	2.7532	2.7532	0.247
6	Total Tetra-Furans	23.08	4.544e3	7.758e3	3.943e2	5.809e2	0.68	NO	9.751e2	1.3177	1.3177	0.247
7	Total Tetra-Furans	23.38	2.603e3	2.384e3	1.636e2	1.583e2	1.03	YES	0.000e0	0.00000	0.37868	0.247
8	Total Tetra-Furans	23.73	1.202e3	1.504e3	8.504e1	1.010e2	0.84	NO	1.860e2	0.25138	0.25138	0.247
9	Total Tetra-Furans	23.85	2.281e3	3.391e3	1.419e2	2.762e2	0.51	YES	0.000e0	0.00000	0.44085	0.247
10	Total Tetra-Furans	24.05	5.503e3	7.740e3	3.762e2	6.080e2	0.62	YES	0.000e0	0.00000	1.1686	0.247
11	Total Tetra-Furans	24.12	1.497e4	1.840e4	1.289e3	1.592e3	0.81	NO	2.881e3	3.8933	3.8933	0.247
12	Total Tetra-Furans	24.54	3.236e4	3.563e4	2.208e3	2.646e3	0.83	NO	4.855e3	6.5599	6.5599	0.247
13	Total Tetra-Furans	24.78	3.984e3	3.620e3	1.826e2	2.612e2	0.70	NO	4.438e2	0.59976	0.59976	0.247
14	Total Tetra-Furans	24.98	2.916e3	3.110e3	1.802e2	2.480e2	0.73	NO	4.282e2	0.57866	0.57866	0.247
15	Total Tetra-Furans	25.26	1.253e4	1.731e4	9.287e2	1.281e3	0.73	NO	2.209e3	2.9854	2.9854	0.247
16	2,3,7,8-TCDF	25.35	2.710e4	4.267e4	1.825e3	2.522e3	0.72	NO	4.347e3	5.8735	5.8735	0.247
17	Total Tetra-Furans	25.67	3.472e3	4.327e3	2.213e2	3.318e2	0.67	NO	5.531e2	0.74737	0.74737	0.247
18	Total Tetra-Furans	27.14	4.710e3	7.692e3	2.729e2	3.711e2	0.74	NO	6.440e2	0.87024	0.87024	0.247

Penta-Furans function 1

Г	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	27.12	1.607e4	9.886e3	9.541e2	6.349e2	1.50	NO	1.589e3	1.7845	1.7845	0.0481

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

U:\VG7.PRO\Results\200604D1\200604D1_7B.qld Dataset:

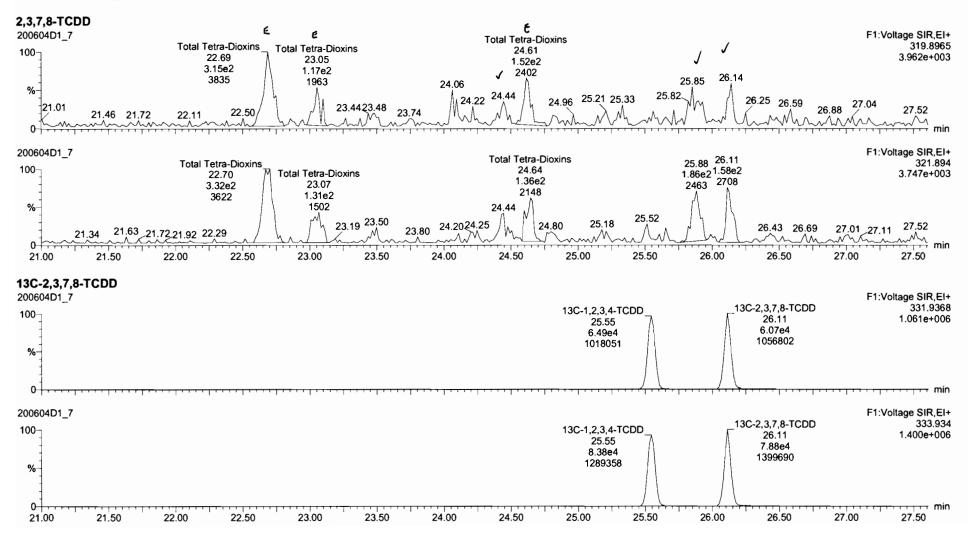
Last Altered:	Friday, June 05, 2020 12:54:54 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:57:46 Pacific Daylight Time

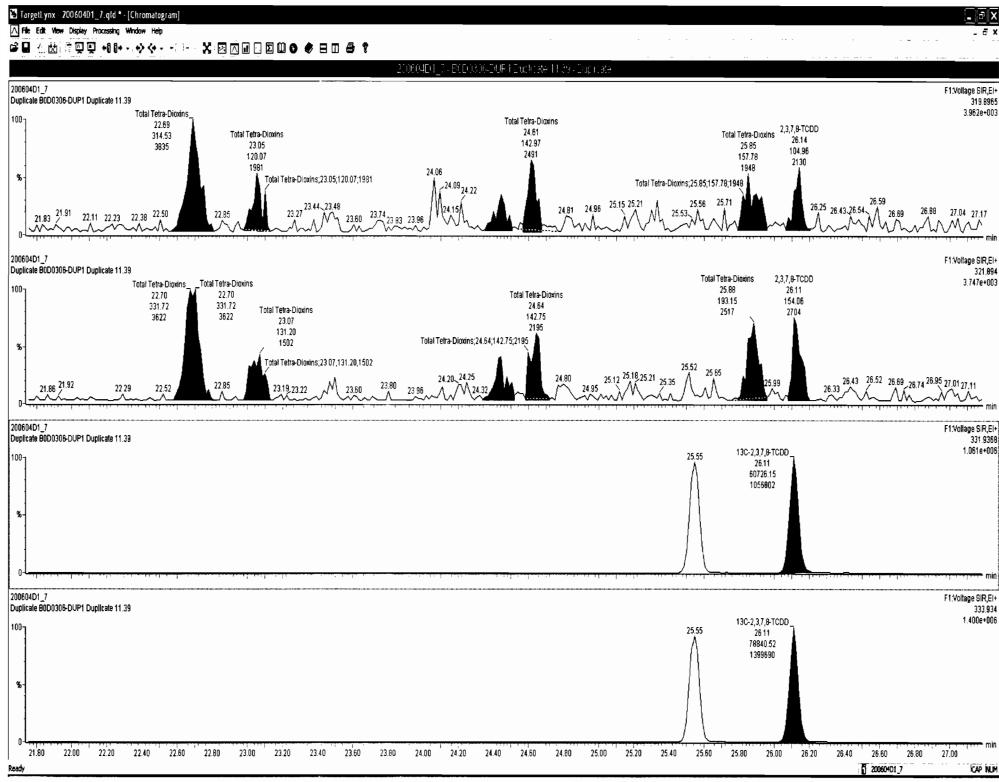
Name: 200604D1_7, Date: 04-Jun-2020, Time: 16:31:15, ID: B0D0306-DUP1 Duplicate 11.39, Description: Duplicate

Penta-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.58	3.090e4	1.951e4	2.639e3	1.782e3	1.48	NO	4.421e3	4.9653	4.9653	0.132
2 <i>2</i>	Total Penta-Furans	29.10	1.914e4	1.318e4	1.111e3	7.795e2	1.43	NO	1.890e3	2.1230	2.1230	0.132
3	Total Penta-Furans	29.32	8.497e3	5.381e3	4.717e2	3.018e2	1.56	NO	7.735e2	0.86862	0.86862	0.132
4	1,2,3,7,8-PeCDF	29.50	4.566e4	3.199e4	2.586e3	1.745e3	1.48	NO	4.332e3	4.8145	4.8145	0.133
5	Total Penta-Furans	29.72	1.786e4	1.341e4	1.018e3	7.306e2	1.39	NO	1.748e3	1.9636	1.9636	0.132
6	Total Penta-Furans	30.29	2.715e3	1.682e3	1.188e2	7.867e1	1.51	NO	1.975e2	0.22179	0.22179	0.132
7	2,3,4,7,8-PeCDF	30.39	2.748e4	1.730e4	1.085e3	7.487e2	1.45	NO	1.834e3	2.0523	2.0523	0.129
8	Total Penta-Furans	30.41	1.958e4	1.527e4	6.398e2	3.624e2	1.77	NO	1.002e3	1.1256	1.1256	0.132

Hexa-Furans


	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.92	8.074e3	6.598e3	3.476e2	2.878e2	1.21	NO	6.354e2	0.85405	0.85405	0.141
2	Total Hexa-Furans	32.08	2.302e4	1.702e4	1.047e3	7.972e2	1.31	NO	1.845e3	2.4793	2.4793	0.141
3	Total Hexa-Furans	32.61	1.688e4	1.622e4	9.775e2	8.039e2	1.22	NO	1.781e3	2.3944	2.3944	0.141
4	1,2,3,4,7,8-HxCDF	33.09	7.241e4	6.185e4	3.667e3	3.091e3	1.19	NO	6.758e3	9.1283	9.1283	0.135
5	1,2,3,6,7,8-HxCDF	33.22	2.142e4	1.644e4	1.046e3	8.451e2	1.24	NO	1.891e3	2.5764	2.5764	0.137
6	2,3,4,6,7,8-HxCDF	33.81	6.300e3	5.255e3	3.896e2	2.781e2	1.40	NO	6.678e2	0.88036	0.88036	0.143
7	1,2,3,7,8,9-HxCDF	34.76	3.127e3	1.888e3	8.152e1	5.815e1	1.40	NO	1.397e2	0.21733	0.21733	0.174
8	Total Hexa-Furans	34.79	6.087e3	4.845e3	3.285e2	2.733e2	1.20	NO	6.019e2	0.80898	0.80898	0.141

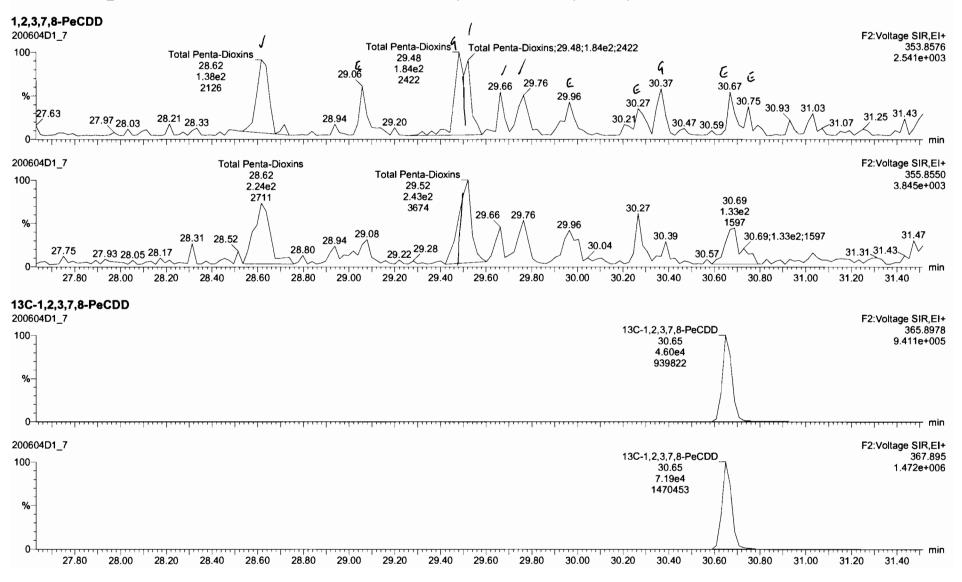

Hepta-Furans

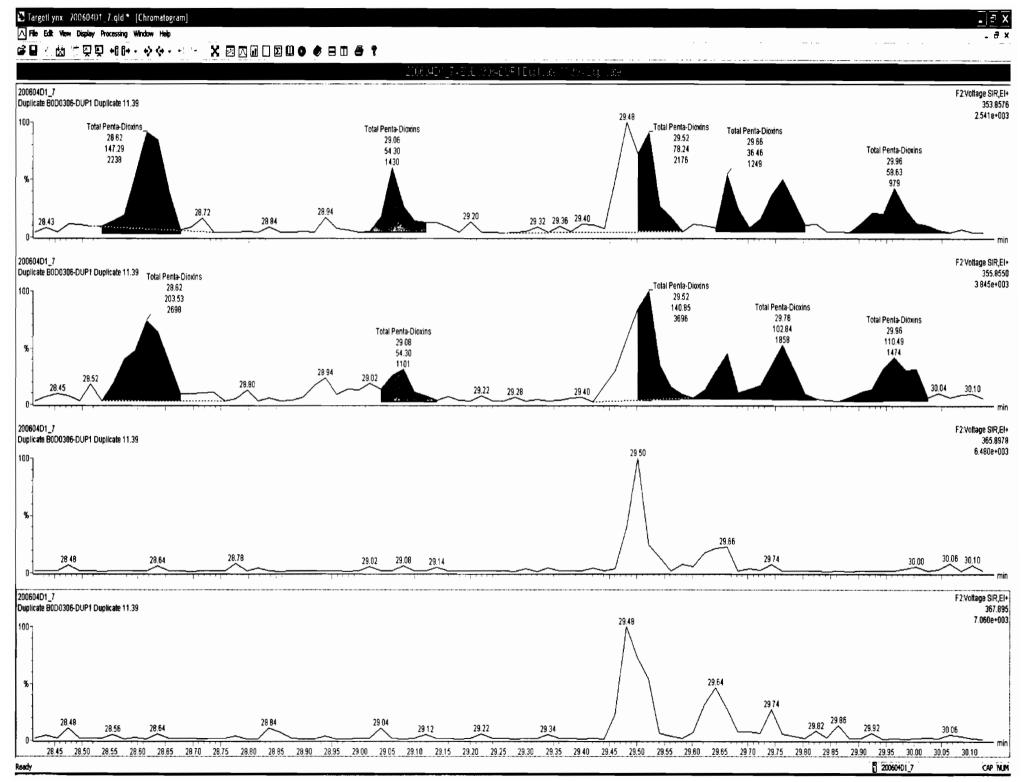
Γ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.59	3.678e4	3.487e4	2.427e3	2.375e3	1.02	NO	4.802e3	7.6181	7.6181	0.213
2	2 Total Hepta-Furans	37.19	4.466e4	4.238e4	2.652e3	2.557e3	1.04	NO	5.209e3	9.3659	9.3659	0.229
3	1,2,3,4,7,8,9-HpCDF	38.39	1.163e4	1.190e4	7.042e2	6.575e2	1.07	NO	1.362e3	2.3907	2.3907	0.212

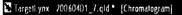
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PR0\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	

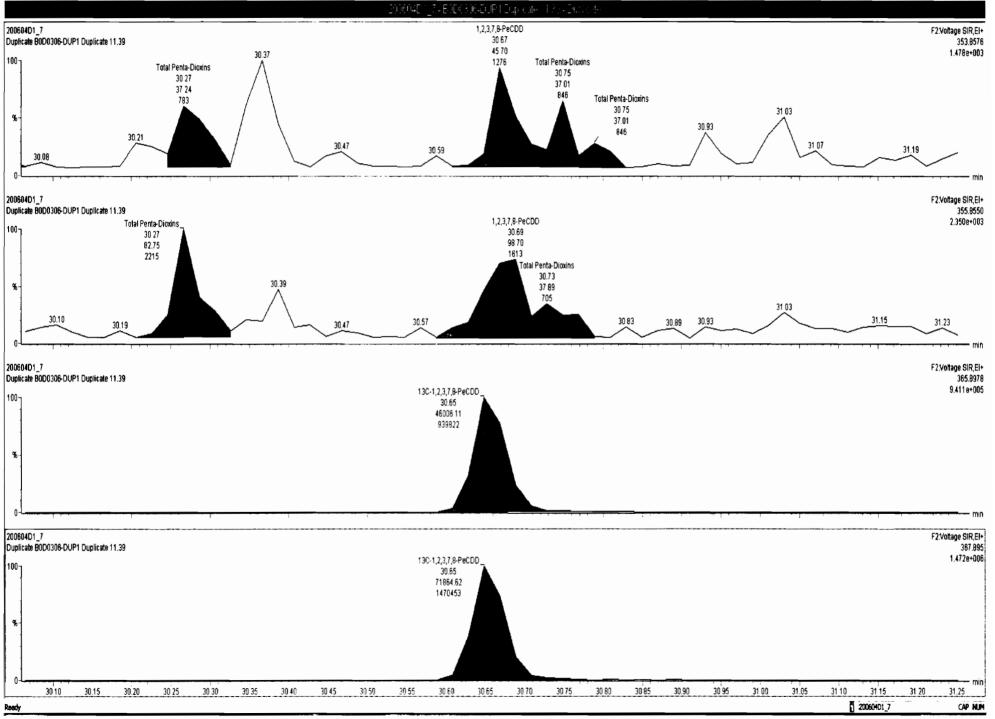

Name: 200604D1_7, Date: 04-Jun-2020, Time: 16:31:15, ID: B0D0306-DUP1 Duplicate 11.39, Description: Duplicate


37CI-2,3,7,8-TCDD F1:Voltage SIR,EI+ 327.884 1.059e+006 200604D1_7 37CI-2,3,7,8-TCDD_ 100-26.13 6.34e4 1056935 %-0---- min 25.50 26.00 26.50 27.00 27.50 22.00 23.50 24.00 24.50 25.00 21.00 21.50 22.50 23.00 13C-1,2,3,4-TCDD F1:Voltage SIR,EI+ 331.9368 1.061e+006 200604D1_7 13C-2,3,7,8-TCDD 13C-1,2,3,4-TCDD 100-26.11 25.55 6.07e4 6.49e4 1056802 1018051 %-0-🖵 min 200604D1_7 F1:Voltage SIR,EI+ _13C-2,3,7,8-TCDD 26.11 7.88e4 333.934 13C-1,2,3,4-TCDD 100-1.400e+006 25.55 8.38e4 1399690 1289358 %-0min 26.50 25.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 26.00 27.00 27.50


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

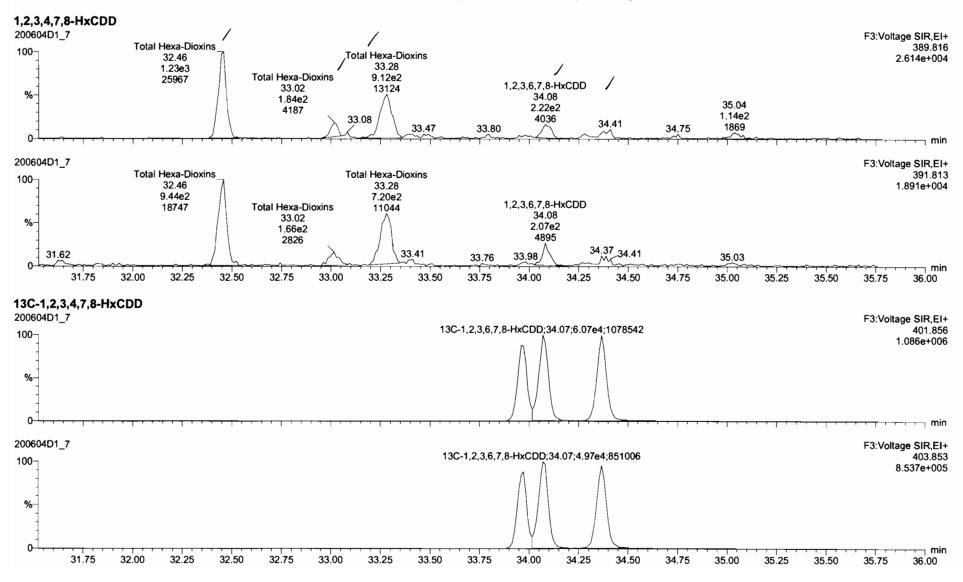
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7.qld

Last Altered:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:55 Pacific Daylight Time



A File Edit View Display Processing Window Help

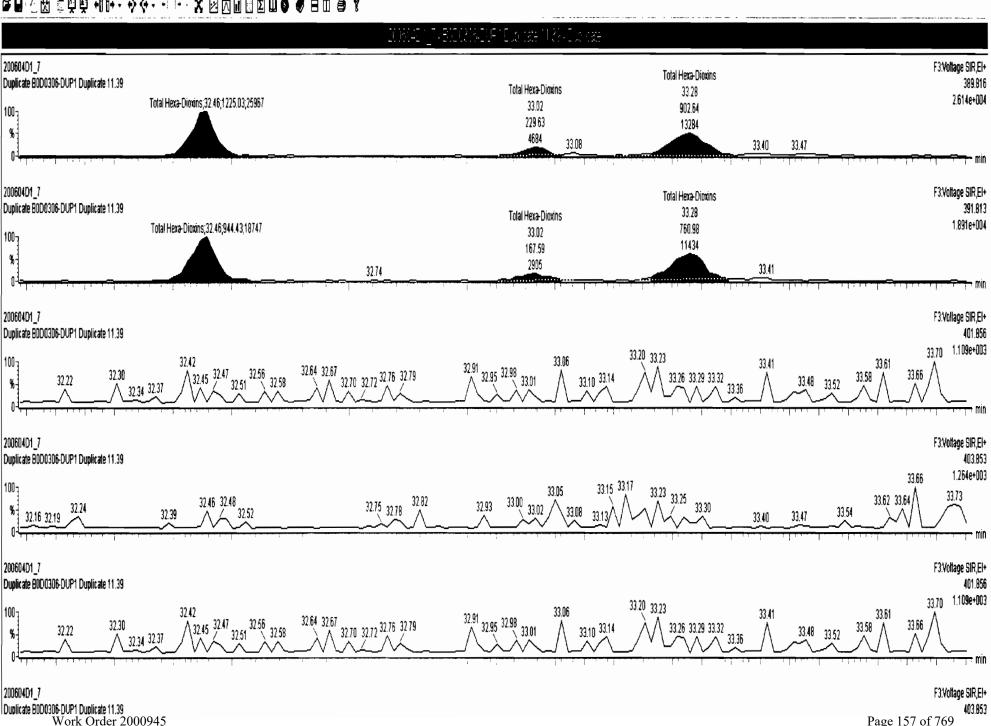
ᄚᇦᆞᄨᆣᆥᄜᆞ♀♀♀・゜゜Х▨Д◨▯ΣѠ�♥⊟띠兽ᆥ



Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7.qld


Last Altered:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:43:55 Pacific Daylight Time

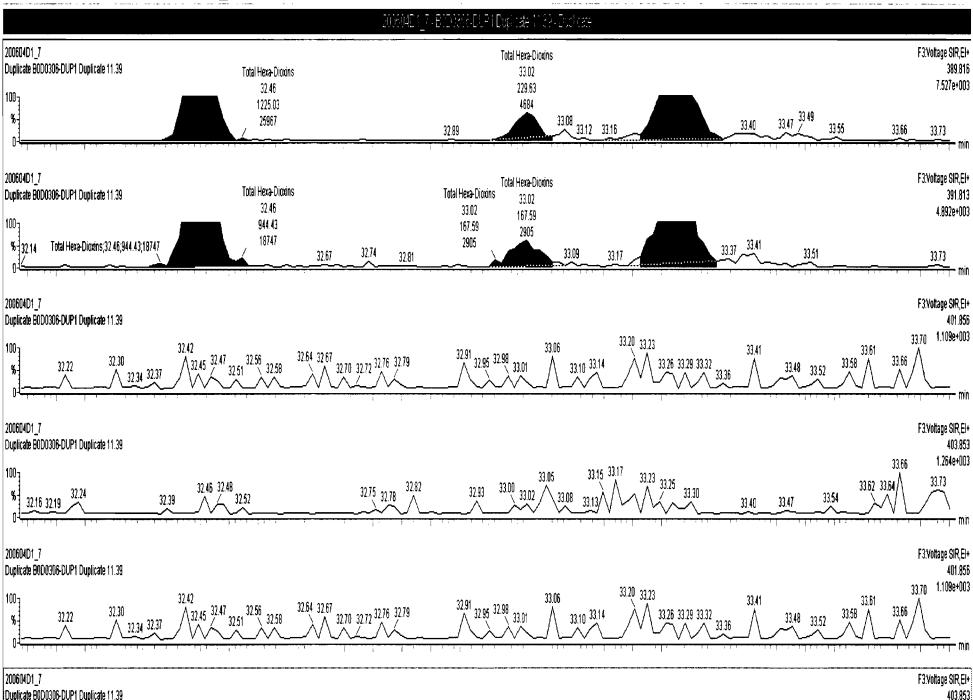
TargetLynx - 200604D1_7.qld * - [Chromatogram]

∧ File Edit View Display Processing Window Help

☞ 🖬 신 🖞 호텔 및 40 🕪 - ♦ ♦ - • 🕬 - 🗙 🛛 🖓 🖬 🖉 🌒 🖨 🖉 🔮

. ē X

- 3 X

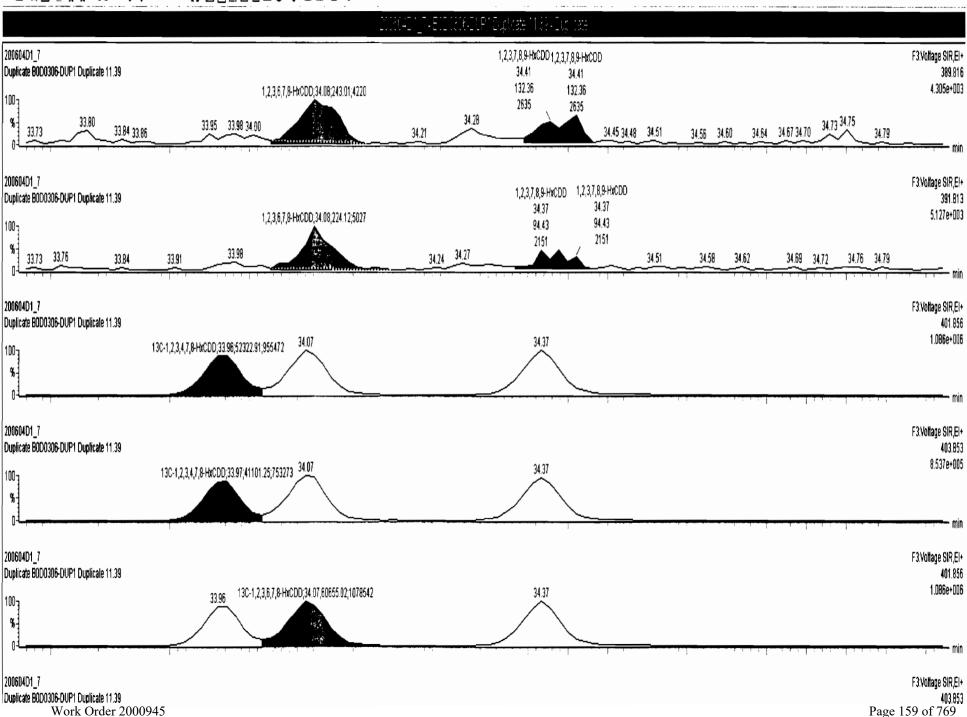

🖹 TargetLynx - 200604D1_7.qld * - [Chromatogram]

🗚 File Edit View Display Processing Window Help

ᄚᇛᇲᄨᄚᅋᆞᅋᆞᆐᆘᆞᄽᄿᆞᄰᆣᆞᄊᇏᅒᇟᇑᇊᅒᄱᅌᆥᅣᇊᅋᆥᆙ

đΧ

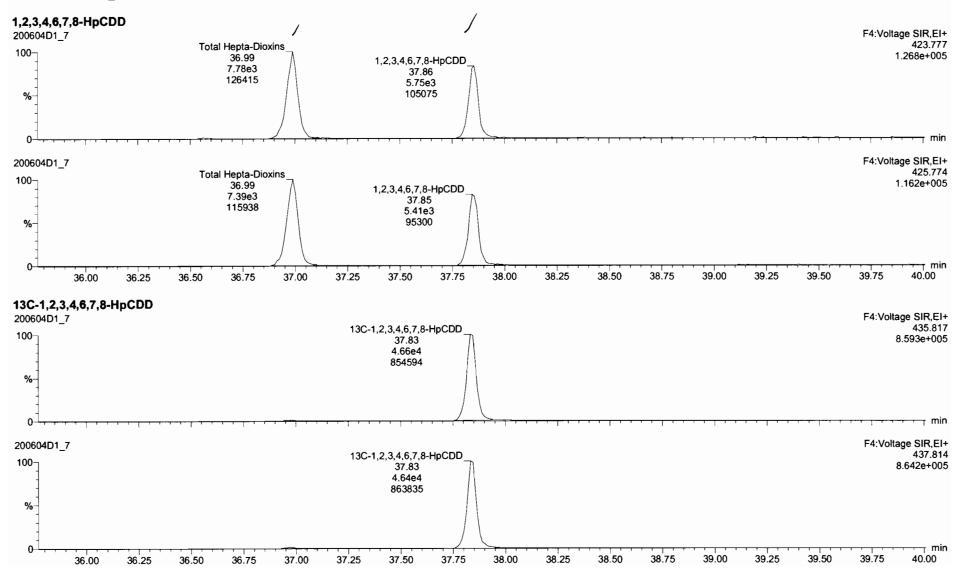
. 8 X


Work Order 2000945

Page 158 of 769

TargetLynx - 200604D1_7.qld * - [Chromatogram]

A File Edit Yew Display Processing Window Help

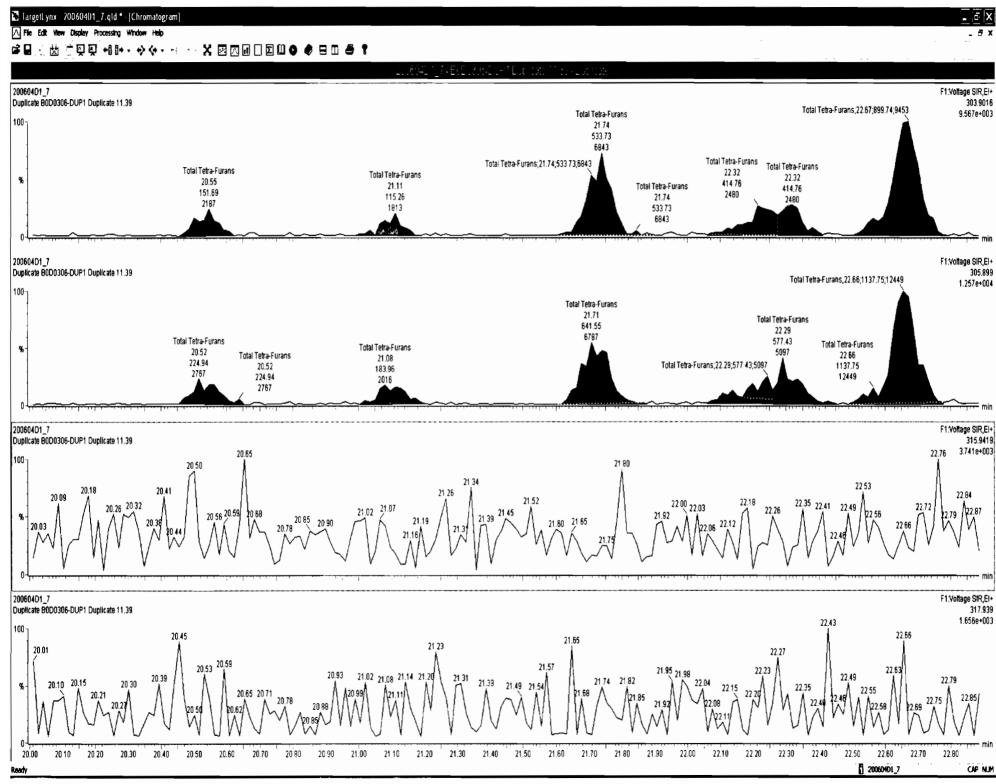

☞▋░做출架및・ଶ⋫・→ᡧ・・・ Χ፼⊼፴∁ΣΩ♀♦₿□₿१


. đ X

. 8 X

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	

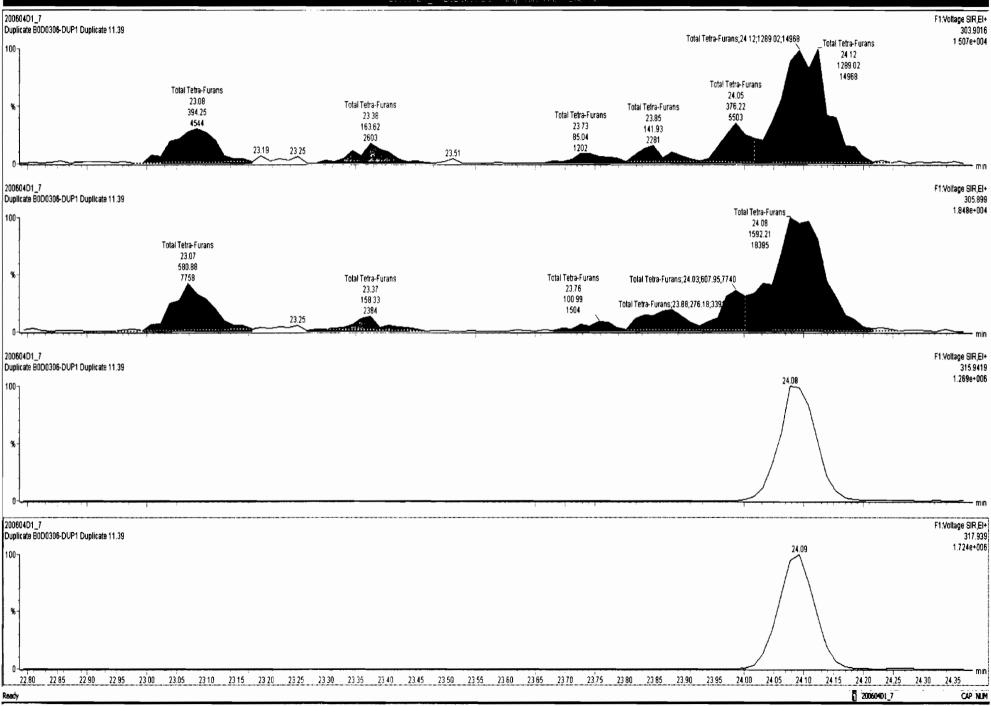
Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	


Quantify Sample Report MassLynx 4.1

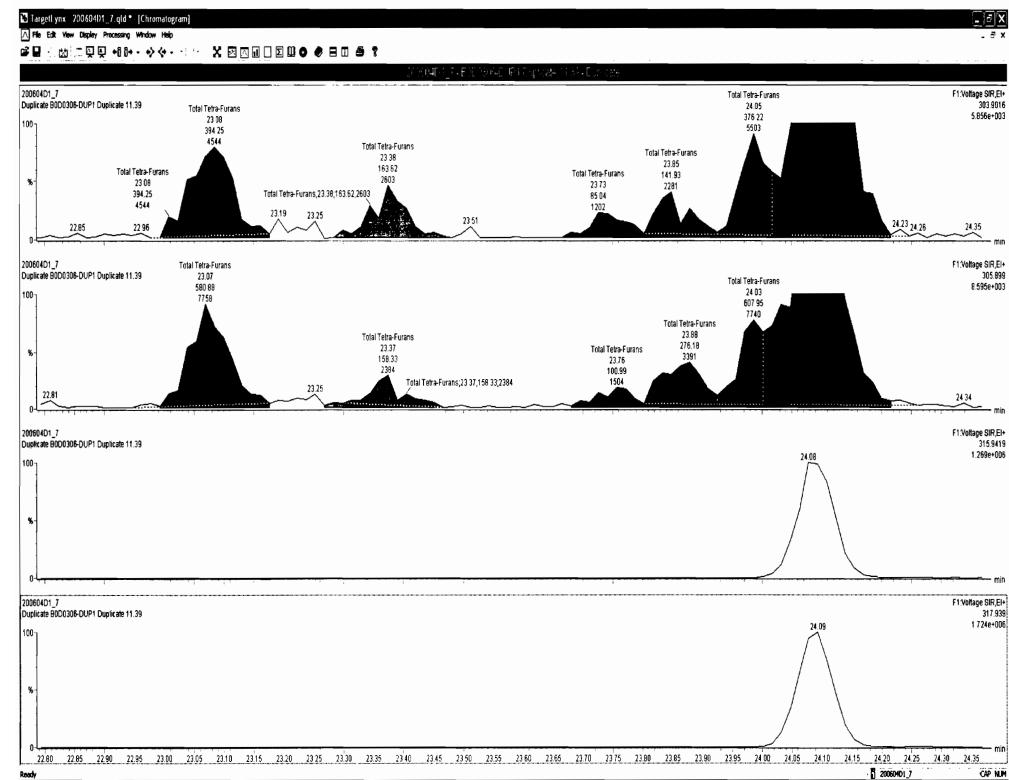
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7.qld

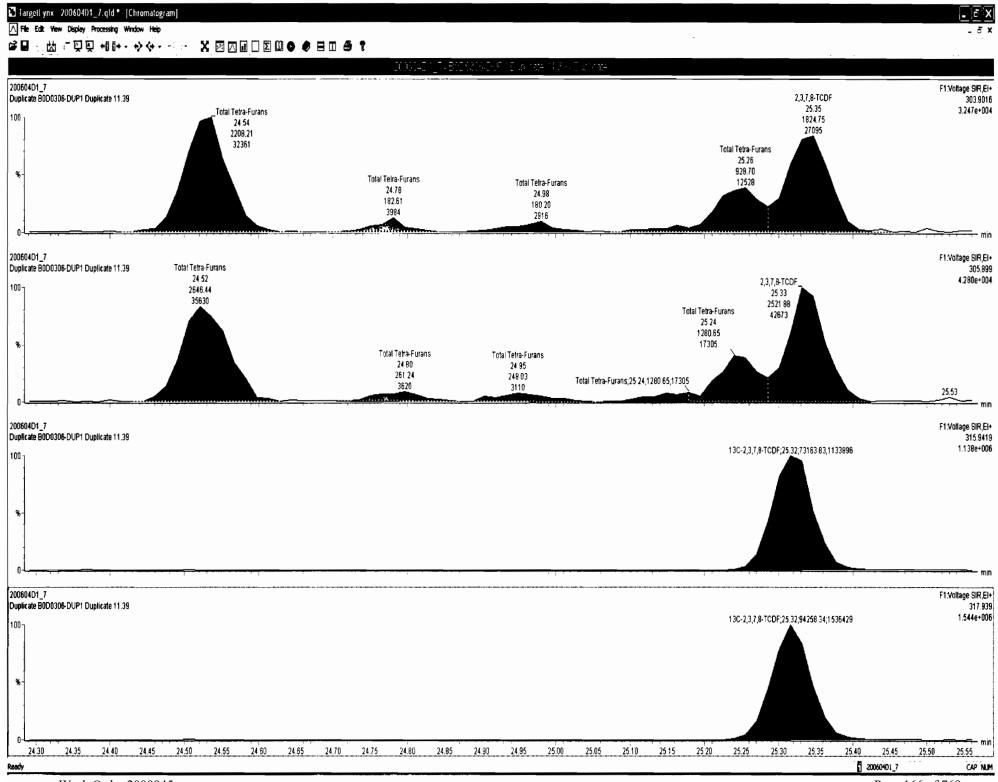
Last Altered: Friday, June 05, 2020 09:33:36 Pacific Daylight Time Printed: Friday, June 05, 2020 09:43:55 Pacific Daylight Time

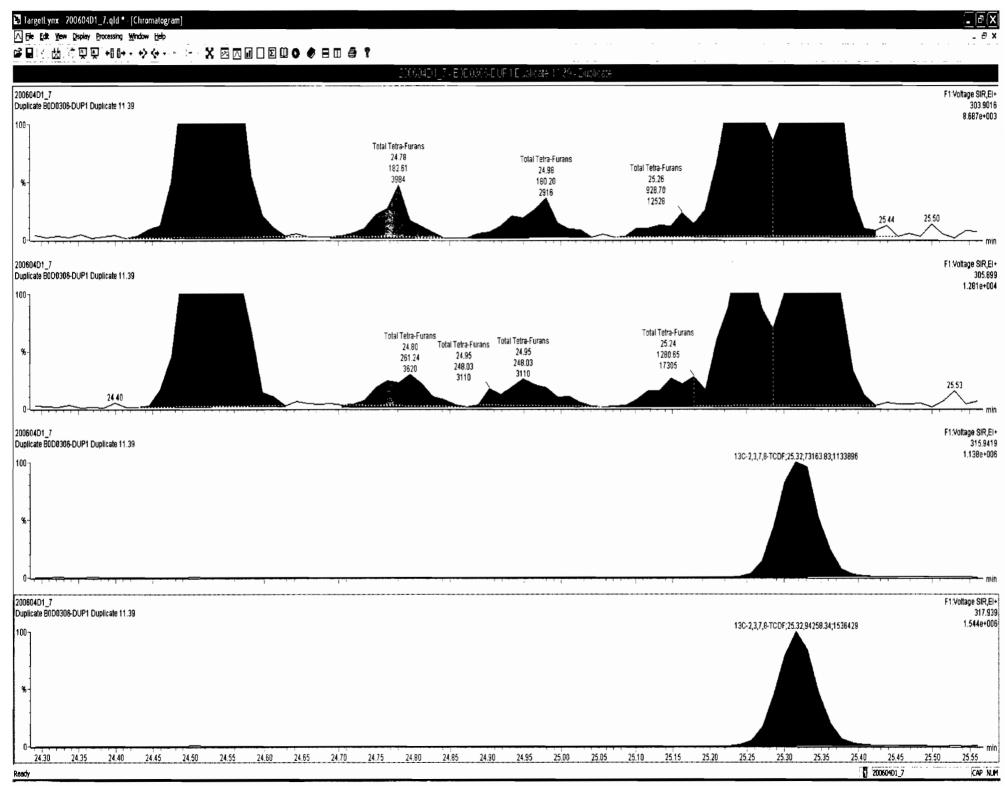

Page 163 of 769

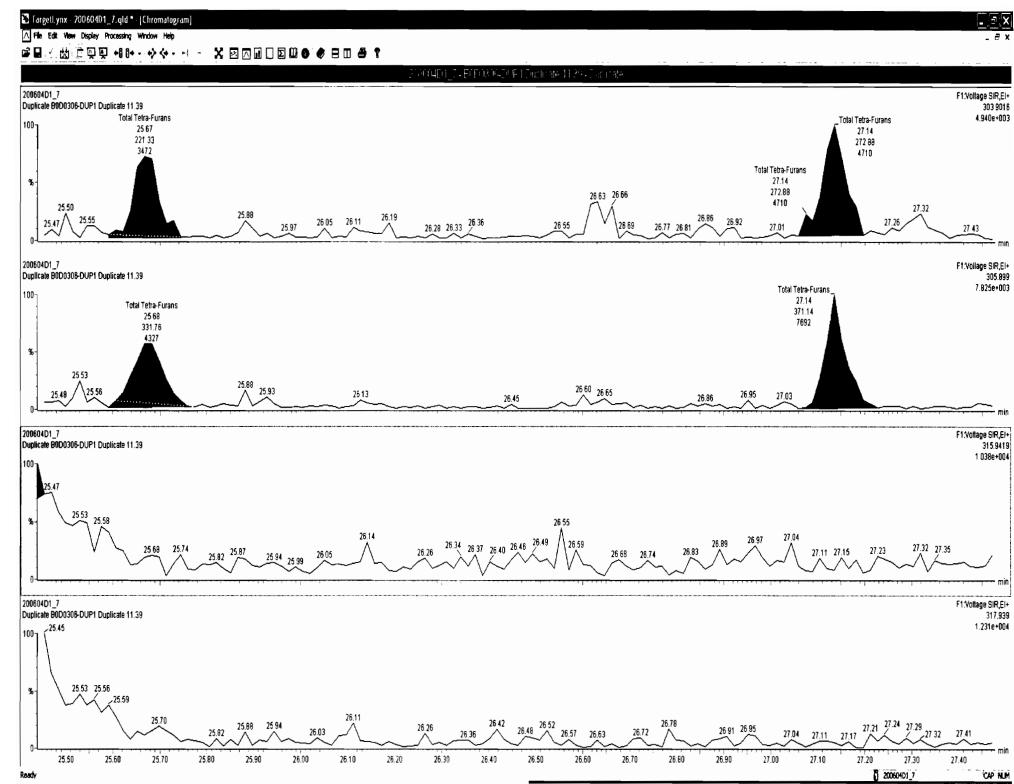
Targetl ynx - 200604D1_7.qld * - {Chromatogram}


A File Edit View Display Processing Window Help

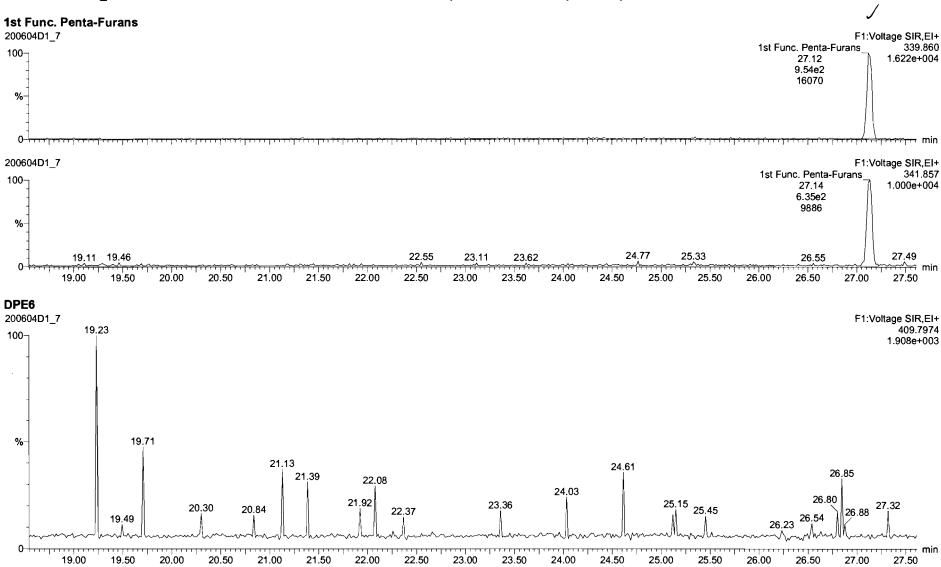

☞묘 · 协 ੱ與與 +⊪ • • • • · · · Х 図ДШО ΣШО ♥ В □ ♣ \$


200604E 1 7 - 5050316-5061 E up date 11 3 - 565 de


đΧ

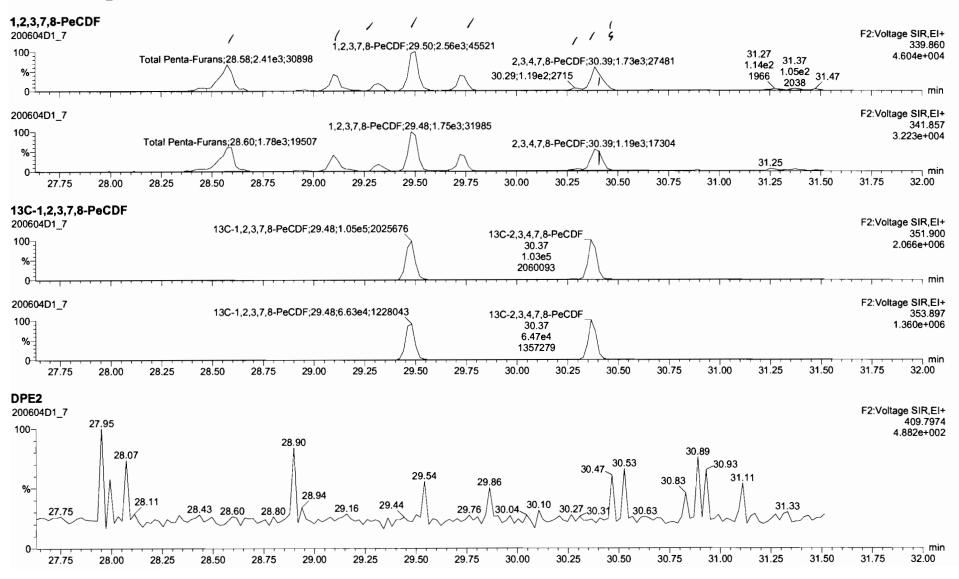


Page 166 of 769



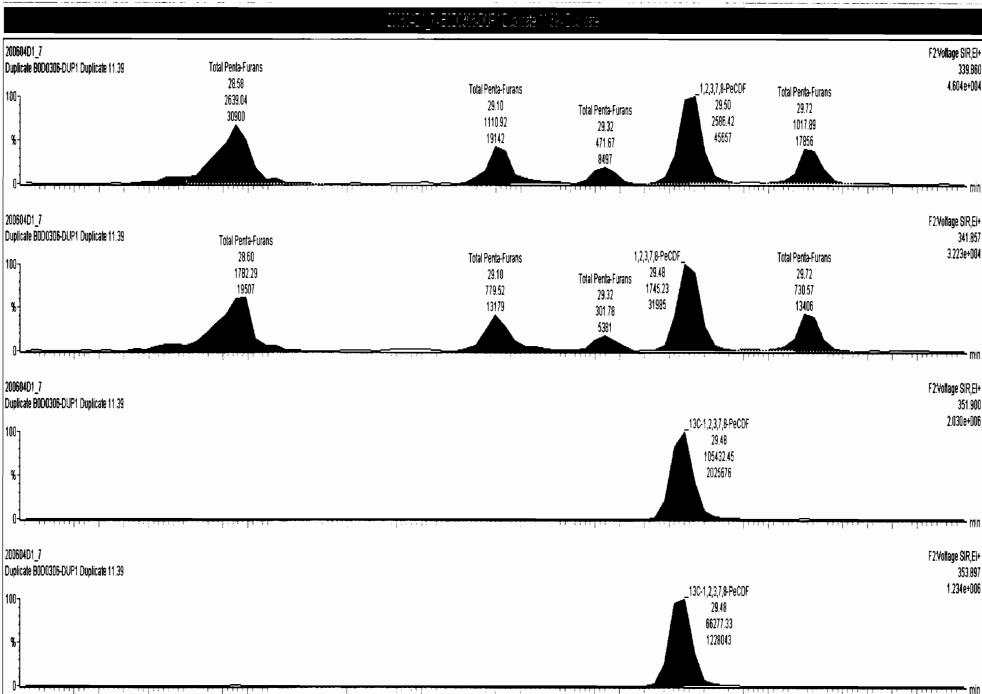
Page 167 of 769

Page 168 of 769


Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7.qld


Last Altered: Friday, June 05, 2020 09:33:36 Pacific Daylight Time Printed: Friday, June 05, 2020 09:43:55 Pacific Daylight Time

🖹 TargetLynx - 200604D1_78.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

ᄚᆋᇲᄨᄫᅋᆓᆊᆘᆞᄽ᠅ᆞᅥᆞᆞҲ◙▯◨◙◧◕◈▤◧兽१

Work Order 2000945

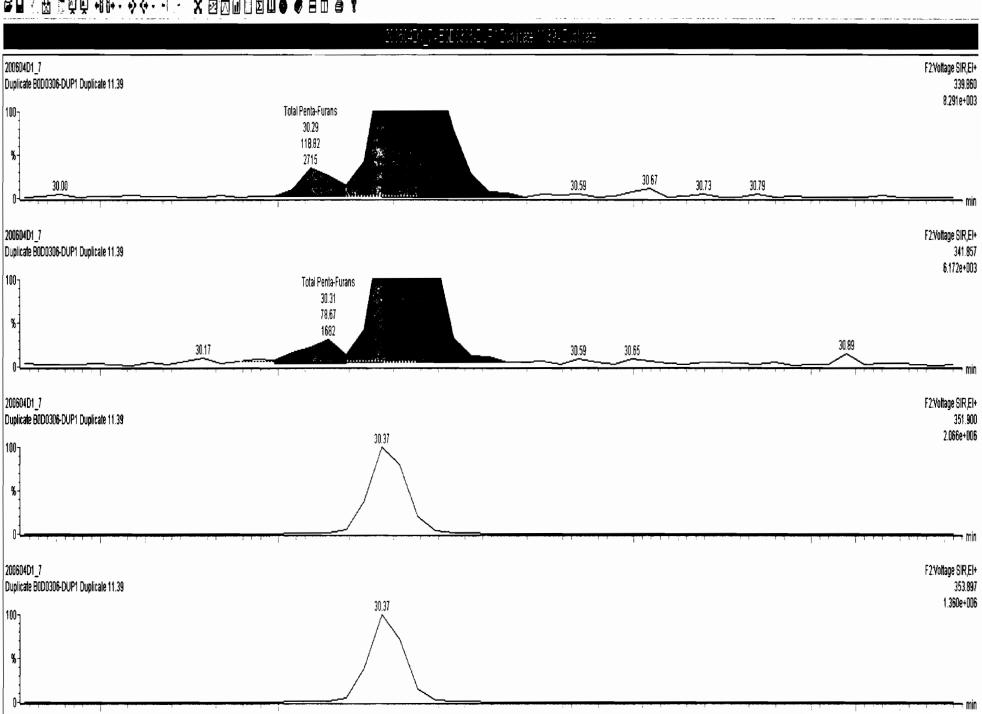
5 X

TargetLynx · 200604D1_7B.qld * · [Chromatogram]

A File Edit View Display Processing Window Help

╔╗╱╫╔╗╕╫┿╴┿┽╸╸╱╻╔╖║┓║╸┢┍╖╒╻

00604D1_7 uplicate B0D0306-DUP1 Duplicate 11.39		F2:Voltage SIR,E/ 339.86
⁰⁰ 7	2,3,4,7,8-PeCDF,30.39,1085.34,27476	2.764e+00
%	Total Penta-Furans 30.29 118.02 2715	
D0604D1_7 uplicate BDD03D6-DUP1 Duplicate 11.39	<u> </u>	F2:Voltage SIR,EI 341.85
00g	2,3,4,7,8-PeCDF;30.39,748.66;17301	1.763e+00
<u>1</u> %-	Total Penta-Furans 30.31	
n	78.67 1682	30.89
10604D1_7 uplicate B0D0306-DUP1 Duplicate 11.39		F2:Voltage SIR,EI 351.90
°,	30.37	2.066e+00
00604D1_7 uplicate B0D0306-DUP1 Duplicate 11.39		F2:Voltage SIR,EI 353.89
[00	30.37	1.360e+00
%		

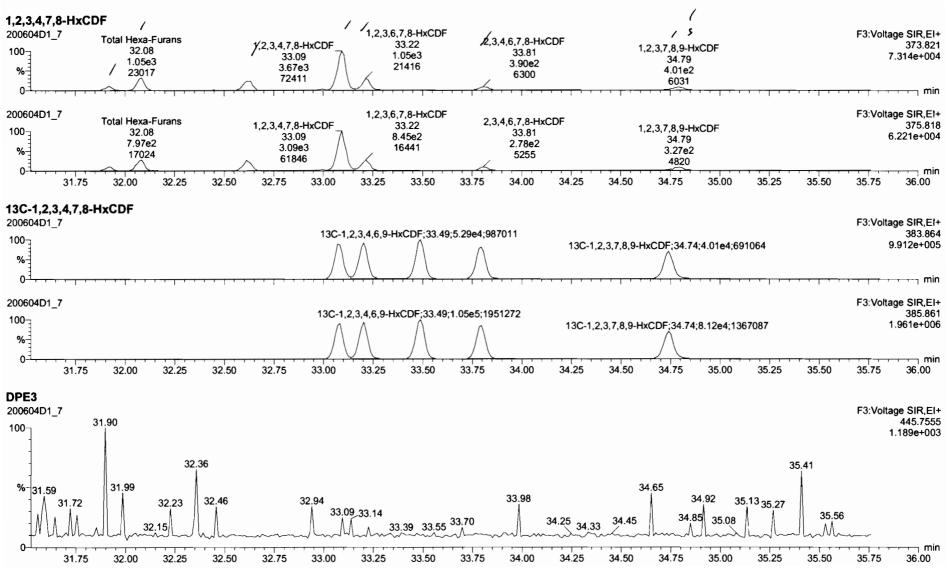

. 7 X

.đX

TargetLynx - 200604D1_7B.qld * - [Chromatogram]

Rile Edit View Display Processing Window Help

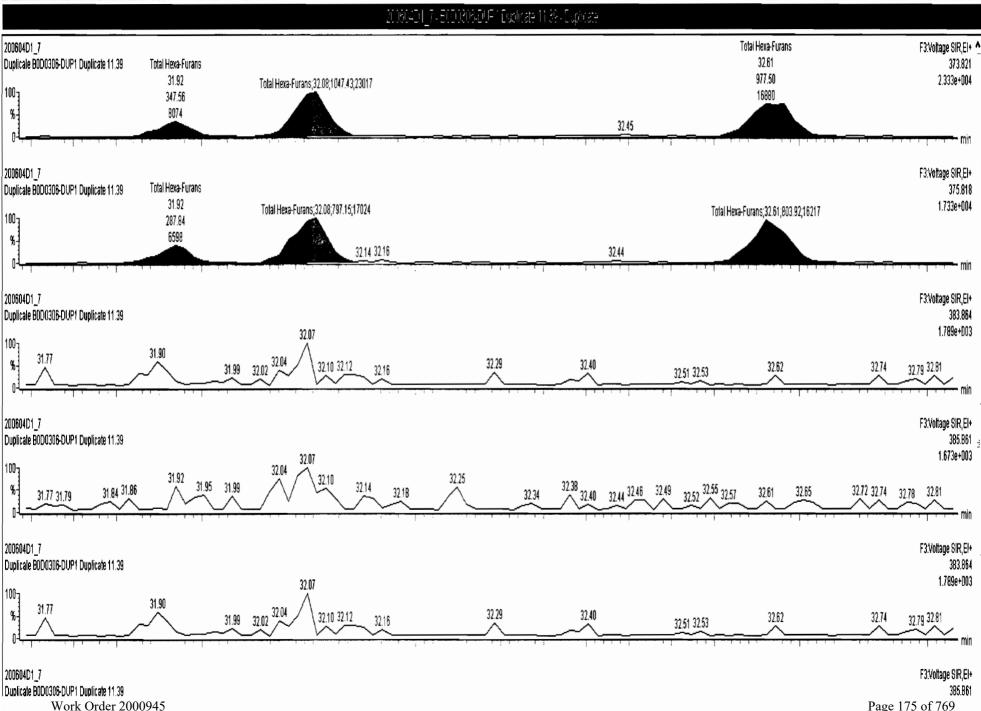
☞▋⟨᠔╔╤╤♀ҹ┉・◇ᡧ・・/。Х፼⋈║┇┇╙●♥⊟□₿१



. [= X . 🗄 X

Quantify Sample ReportMassLynx 4.1Vista Analytical Laboratory

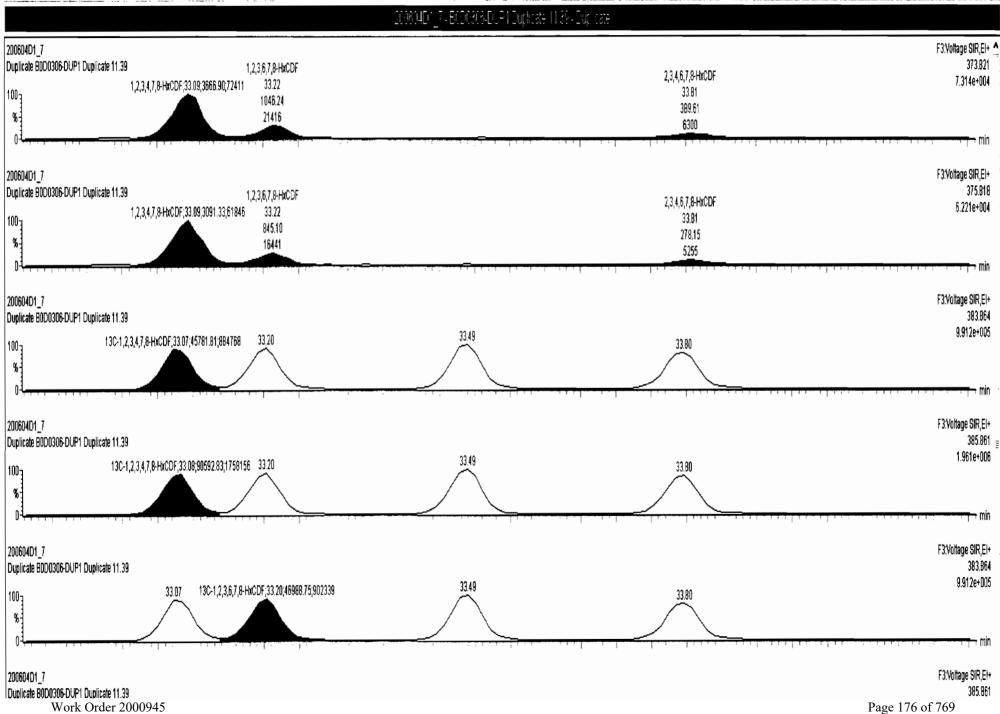
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_7.qld


Last Altered: Friday, June 05, 2020 09:33:36 Pacific Daylight Time Printed: Friday, June 05, 2020 09:43:55 Pacific Daylight Time

🎽 TargetLynx - 200604D1_7B.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

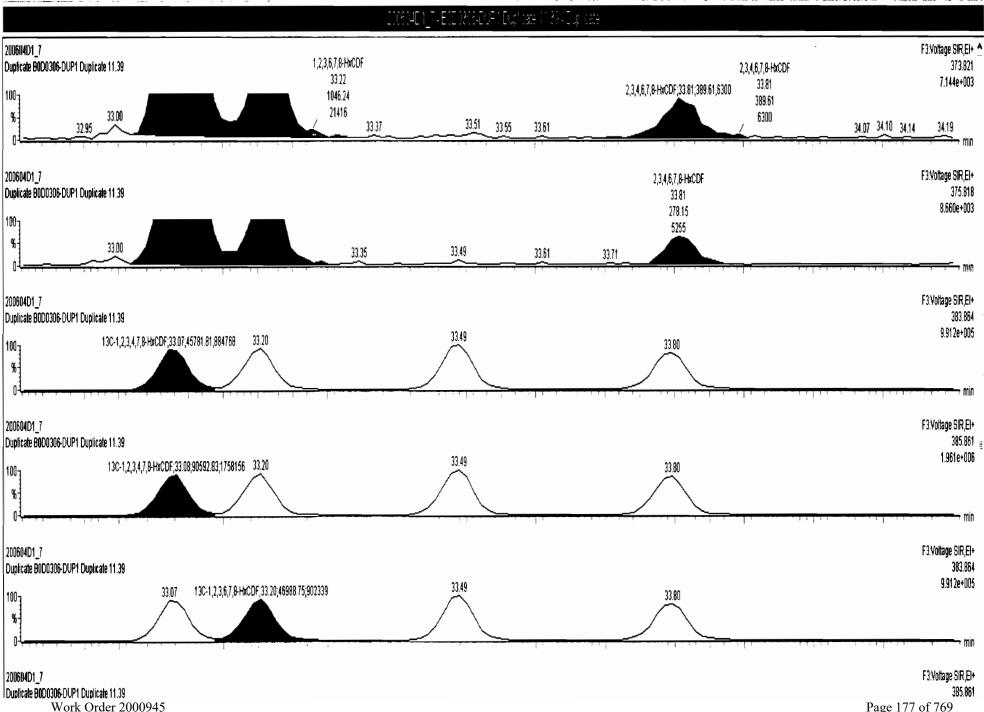
☞ 🗄 ﴿ 🖞 🗑 👰 📢 🕪 • • ♦ • • ()• • 🗙 🛛 🖓 🗍 🖄 🖉 🖉 🗄 🖉 🔮 🖇


Page 175 of 769

. ð X _ 7 X

TargetLynx - 200604D1_7B.qld * - [Chromatogram]

A File Edit View Display Processing Window Help

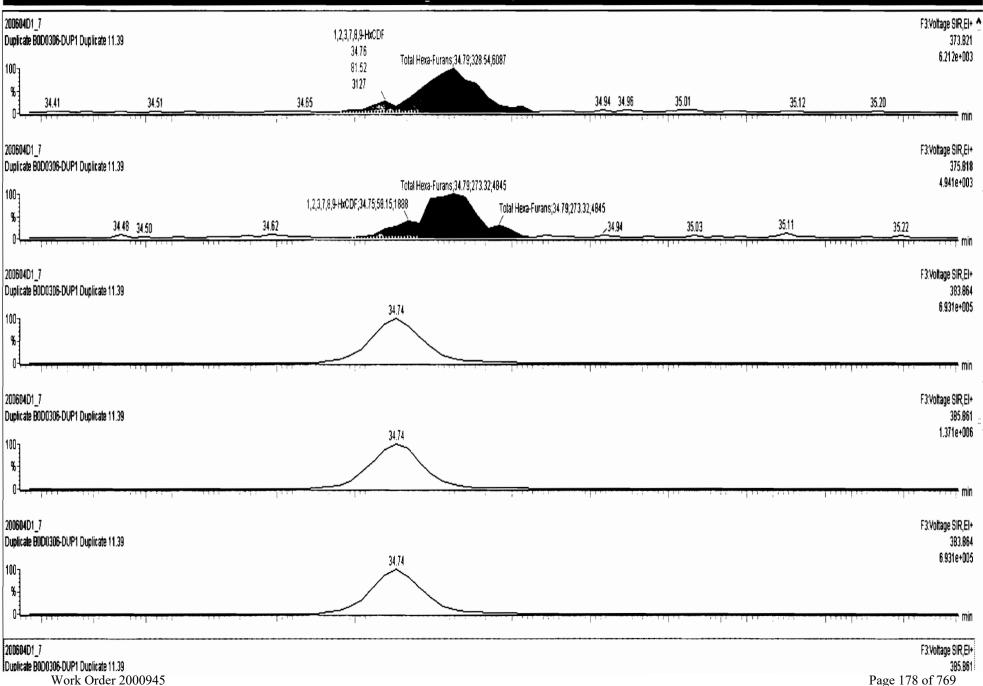

☞묘순故意興興н⊪・◇◇・・▷・X図Д┛目Σ単爻●日□ ♣ ?

TargetLynx - 200604D1_7B.qld * - [Chromatogram]

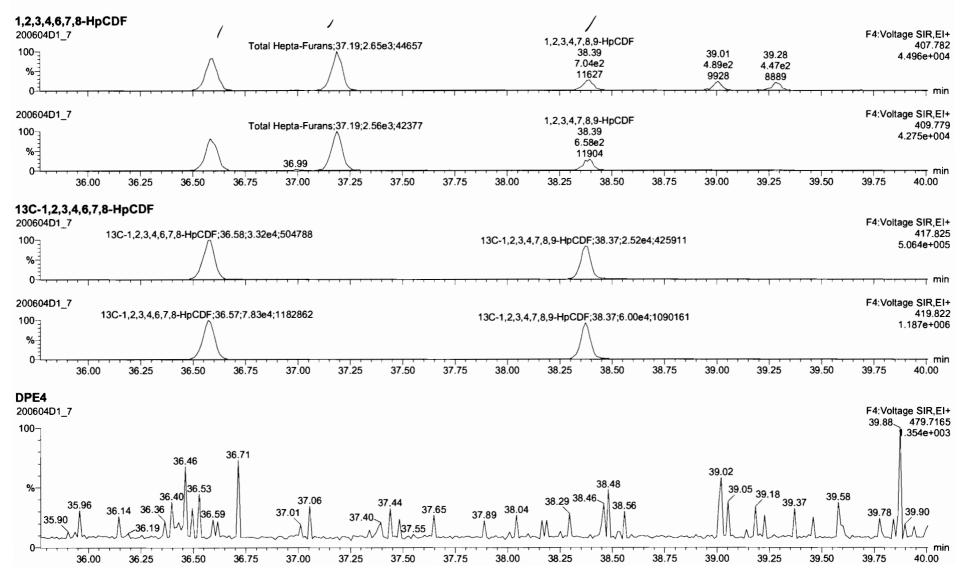
A File Edit View Display Processing Window Help

☞▋∄做電空空+⊪・◆◆・ビビーX図図』目図일●●目□● \$

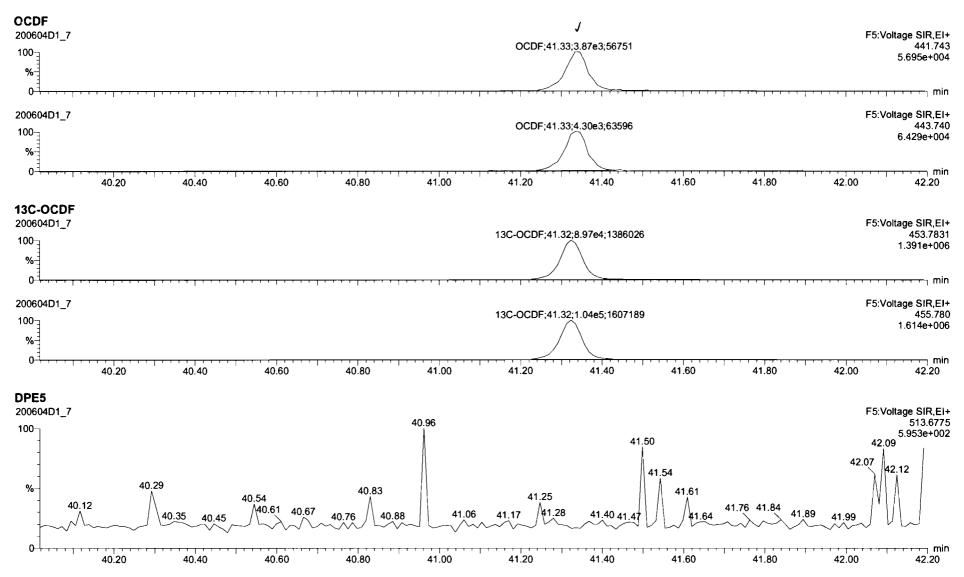
đΧ


🖁 TargetLynx - 200604D1_7B.qld * - [Chromatogram]

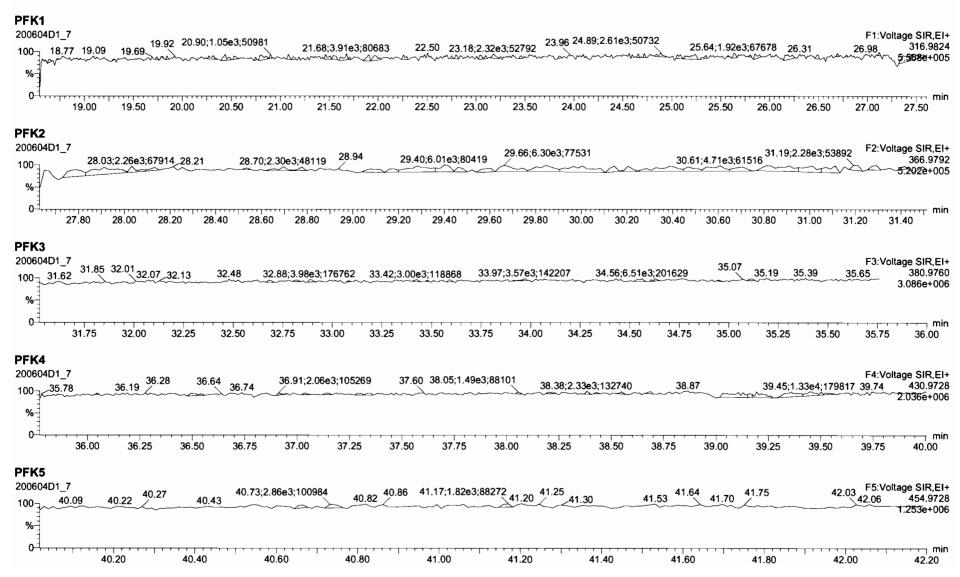
A File Edit View Display Processing Window Help


ᄚᇳᆞᆟᇓᄚᅋᆓᆘᆘᆞᄽᄿᆞᆘᆞᅟᄊᄧᇟᇜᆸΣ╙�♥ᆷᇚᅀᆂᆥ

. 5 X


. ā X

Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	



Quantify San Vista Analytic		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_7.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:33:36 Pacific Daylight Time Friday, June 05, 2020 09:43:55 Pacific Daylight Time	

n tify Sample a Analytical Lal		Page 13 of 1
aset: U:\	\VG7.PRO\Results\200604D1\200604D1_7.qld	
	day, June 05, 2020 09:33:36 Pacific Daylight Time day, June 05, 2020 09:43:55 Pacific Daylight Time	
.ed: Fri	day, June 05, 2020 09:43:55 Pacific Daylight Time	

Name: 200604D1_7, Date: 04-Jun-2020, Time: 16:31:15, ID: B0D0306-DUP1 Duplicate 11.39, Description: Duplicate

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\20	0604D1\200604D1_8.qld	
Last Altered: Printed:		2:12:36 Pacific Daylight Time 2:13:50 Pacific Daylight Time	DB

DB 6/5/20 Cr04/05/2020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.987	10.024 -	- 26.142		1.001				0.120	
2	2 1,2,3,7,8-PeCDD			NO	0.982	10.024	30.670		1.001				0.133	
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	10.024	33.982		1.000				0.168	
4	4 1,2,3,6,7,8-HxCDD			NO	1.04	10.024	34.082		1.000				0.174	
5	5 1,2,3,7,8,9-HxCDD			NO	1.00	10.024	34.401		1.001				0.181	
6	6 1,2,3,4,6,7,8-HpCDD	3.79e2	0.91	NO	0.992	10.024	37.856	37.87	1.000	1.001	0.71348		0.144	0.713
7	7 OCDD	2.37e3	0.89	NO	1.04	10.024	41.104	41.12	1.000	1.000	5.0466		0.191	5.05
8	8 2,3,7,8-TCDF			NO	0.882	10.024	25.341		1.001				0.0851	
9	9 1,2,3,7,8-PeCDF			NO	1.05	10.024	29.503		1.001				0.0630	
10	10 2,3,4,7,8-PeCDF			NO	1.06	10.024	30.397		1.001				0.0583	
11	11 1,2,3,4,7,8-HxCDF			NO	1.08	10.024	33.083		1.000				0.0732	
12	12 1,2,3,6,7,8-HxCDF			NO	1.04	10.024	33.214		1.000				0.0779	
13	13 2,3,4,6,7,8-HxCDF			NO	1.11	10.024	33.831		1.001				0.0768	
14	14 1,2,3,7,8,9-HxCDF	6.67e1	1.76	YES	1.06	10.024	34.740	34.73	1.000	1.000	0.087267		0.0564	0.0708
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.13	10.024	36.620		1.001				0.108	(
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.33	10.024	38.372		1.000				0.109	
17	17 OCDF			NO	0.933	10.024	41.324		1.000				0.154	
18	18 13C-2,3,7,8-TCDD	1.73e5	0.78	NO	1.21	10.024	26.210	26.11	1.026	1.022	183.99	92.2	0.358	
19	19 13C-1,2,3,7,8-PeCDD	1.36e5	0.65	NO	0.996	10.024	30.706	30.65	1.202	1.200	174.60	87.5	0.315	
20	20 13C-1,2,3,4,7,8-HxCDD	1.10e5	1.27	NO	0.679	10.024	33.958	33.97	1.014	1.014	193.55	97.0	0.604	
21	21 13C-1,2,3,6,7,8-HxCDD	1.34e5	1.29	NO	0.850	10.024	34.068	34.08	1.017	1.018	188.38	94.4	0.482	
22	22 13C-1,2,3,7,8,9-HxCDD	1.30e5	1.26	NO	0.798	10.024	34.340	34.37	1.025	1.026	194.19	97.3	0.513	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.07e5	1.03	NO	0.697	10.024	37.809	37.85	1.129	1.130	182.92	91.7	0.528	
24	24 13C-OCDD	1.81e5	0.89	NO	0.579	10.024	40.836	41.10	1.219	1.227	372.44	93.3	0.611	
25	25 13C-2,3,7,8-TCDF	2.18e5	0.75	NO	1.13	10.024	25.291	25.32	0.990	0.991	173.45	86.9	0.459	
26	26 13C-1,2,3,7,8-PeCDF	2.10e5	1.61	NO	0.996	10.024	29.524	29.48	1.156	1.154	188.92	94.7	0.695	
27	27 13C-2,3,4,7,8-PeCDF	2.04e5	1.61	NO	0.969	10.024	30.425	30.37	1.191	1.189	188.79	94.6	0.714	
28	28 13C-1,2,3,4,7,8-HxCDF	1.64e5	0.49	NO	1.06	10.024	33.087	33.08	0.988	0.988	185.16	92.8	0.593	
29	29 13C-1,2,3,6,7,8-HxCDF	1.71e5	0.49	NO	1.18	10.024	33.221	33.20	0.992	0.991	173.07	86.7	0.534	
30	30 13C-2,3,4,6,7,8-HxCDF	1.63e5	0.50	NO	1.06	10.024	33.794	33.80	1.009	1.009	184.28	92.4	0.594	
31	31 13C-1,2,3,7,8,9-HxCDF	1.44e5	0.48	NO	0.879	10.024	34.695	34.74	1.036	1.037	195.67	98.1	0.714	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory Dataset: Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld Last Altered: Friday, June 05, 2020 12:12:36 Pacific Daylight Time Printed: Friday, June 05, 2020 12:13:50 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.32e5	0.42	NO	0.893	10.024	36.403	36.58	1.087	1.092	176.58	88.5	0.648	
33	33 13C-1,2,3,4,7,8,9-HpCDF	9.91e4	0.44	NO	0.613	10.024	38.412	38.37	1.147	1.146	192.60	96.5	0.943	
34	34 13C-OCDF	2.28e5	0.85	NO	0.741	10.024	40.991	41.32	1.224	1.234	367.56	92.1	0.442	
35	35 37CI-2,3,7,8-TCDD	6.82e4			1.18	10.024	26.208	26.13	1.026	1.023	74.061	92.8	0.100	ļ
36	36 13C-1,2,3,4-TCDD	1.56e5	0.78	NO	1.00	10.024	25.480	25.55	1.000	1.000	199.52	100	0.432	
37	37 13C-1,2,3,4-TCDF	2.22e5	0.78	NO	1.00	10.024	24.020	24.09	1.000	1.000	199.52	100	0.517	
38	_38 13C-1,2,3,4,6,9-HxCDF	1.67e5	0.50	NO	1.00	10.024	33.530	33.49	1.000	1.000	199.52	100	0.628	
39	39 Total Tetra-Dioxins				0.987	10.024	24.620		0.000		0.00000		0.0838	0.111
40	40 Total Penta-Dioxins				0.982	10.024	29.960		0.000				0.0563	
41	41 Total Hexa-Dioxins				1.04	10.024	33.635		0.000		0.49288		0.179	0.636
42	42 Total Hepta-Dioxins				0.992	10.024	37.640		0.000		1.9013		0.144	1.90
43	43 Total Tetra-Furans				0.882	10.024	23.610		0.000				0.0380	
44	44 1st Func. Penta-Furans				1.05	10.024	27.090		0.000				0.0164	
45	45 Total Penta-Furans				1.05	10.024	29.275		0.000				0.0278	
46	46 Total Hexa-Furans				1.11	10.024	33.555		0.000		0.00000		0.0458	0.0708
47	47 Total Hepta-Furans				1.13	10.024	37.835		0.000				0.0635	

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

U:\VG7.PRO\Results\200604D1\200604D1_8.qld Dataset:

Last Altered:	Friday, June 05, 2020 12:12:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:13:50 Pacific Daylight Time

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200604D1_8, Date: 04-Jun-2020, Time: 17:16:22, ID: 2000945-03 PDI-146SC-A-02-03-200426 12.11, Description: PDI-146SC-A-02-03-200426

Tetra-Dioxins

-	Name	RT	m1 Height r	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	24.25	8.360e2	9.500e2	5.256e1	5.363e1	0.98	YES	0.000e0	0.00000	0.11069	0.0838

Penta-Dioxins

Г	Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Hexa-Dioxins

[Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1 Total Hexa-Dioxins	32.46	3.193e3	3.320e3	1.670e2	1.524e2	1.10	NO	3.194e2	0.49288	0.49288	0.179
	2 Total Hexa-Dioxins	33.30	1.023e3	1.378e3	5.145e1	5.738e1	0.90	YES	0.000e0	0.00000	0.14342	0.179

Hepta-Dioxins

Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 Total Hepta-Dioxins	36.99	4.619e3	4.494e3	2.984e2	3.326e2	0.90	NO	6.310e2	1.1878	1.1878	0.144
2 1,2,3,4,6,7,8-HpCDD	37.87	4.039e3	2.996e3	1.810e2	1.980e2	0.91	NO	3.790e2	0.71348	0.71348	0.144

Tetra-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld

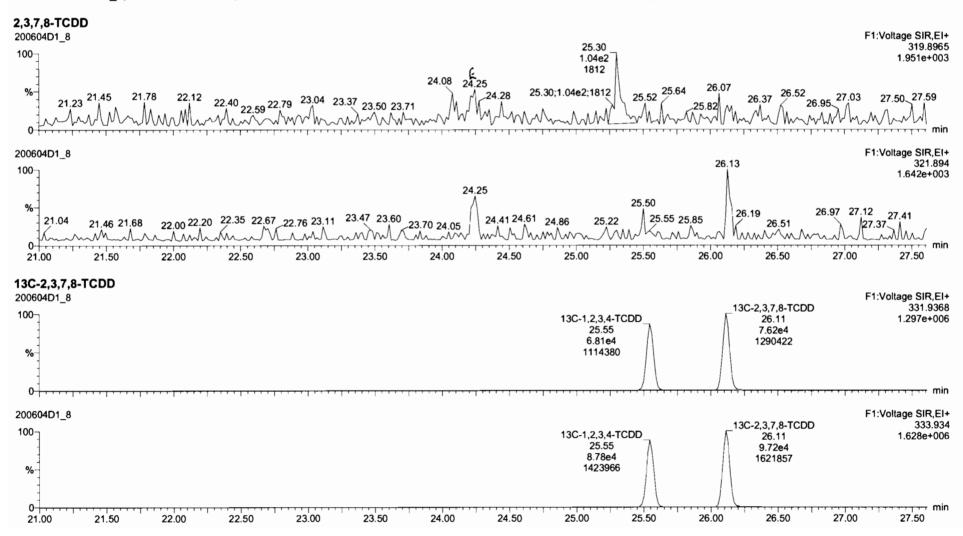
Last Altered:	Friday, June 05, 2020 12:12:36 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:13:50 Pacific Daylight Time

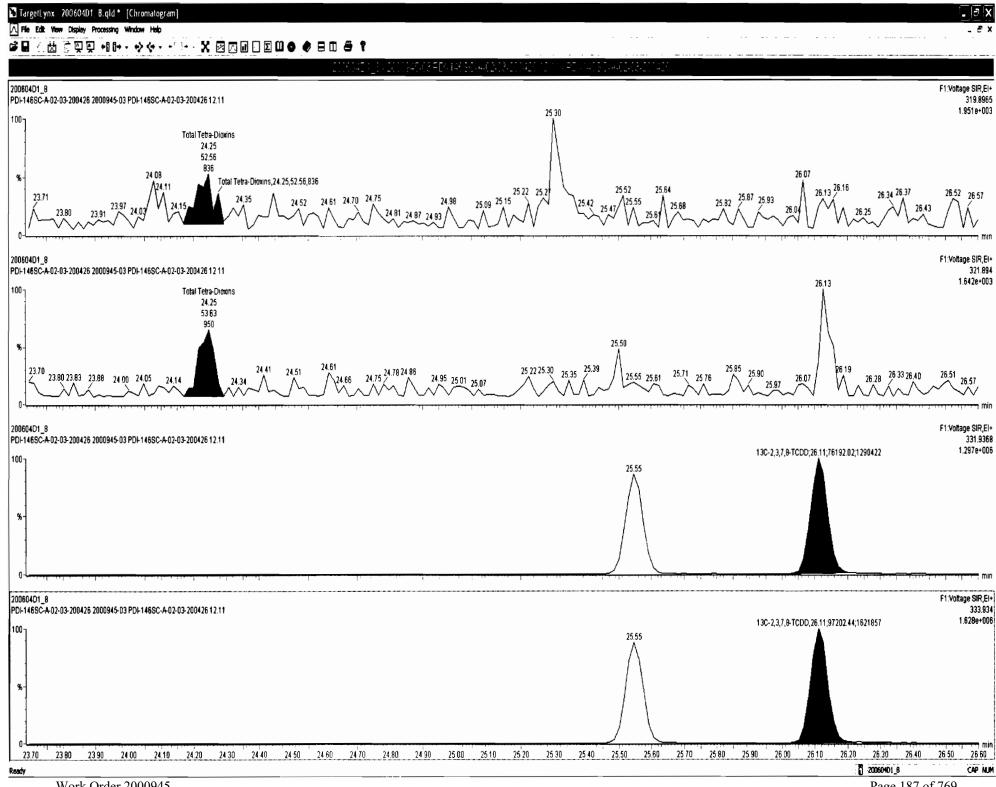
Name: 200604D1_8, Date: 04-Jun-2020, Time: 17:16:22, ID: 2000945-03 PDI-146SC-A-02-03-200426 12.11, Description: PDI-146SC-A-02-03-200426

Penta-Furans

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Hexa-Furans

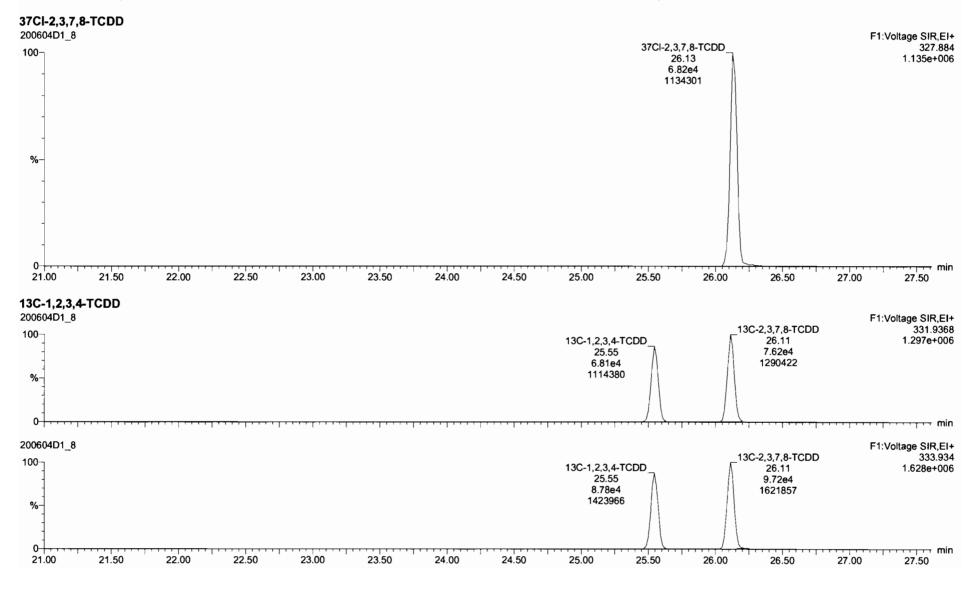

	Name	RŤ	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,7,8,9-HxCDF	34.73	1.000e3	6.610e2	4.254e1	2.415e1	1.76	YES	6.669e1	0.00000	0.070800	0.0584


Hepta-Furans

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	ŔĂ	n/y	Resp	Conc.	EMPC	DL
1										

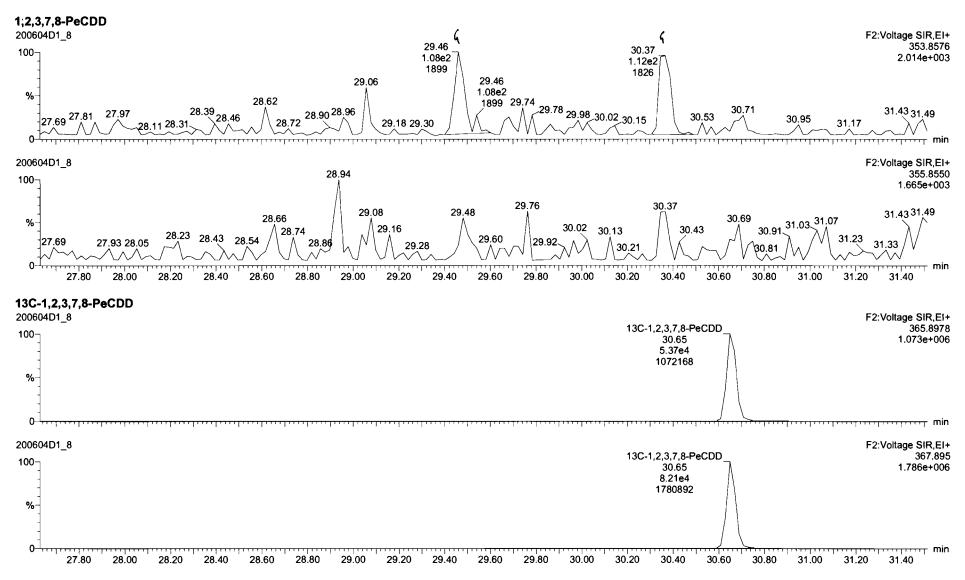
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_8.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time Friday, June 05, 2020 09:44:14 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28



Work Order 2000945

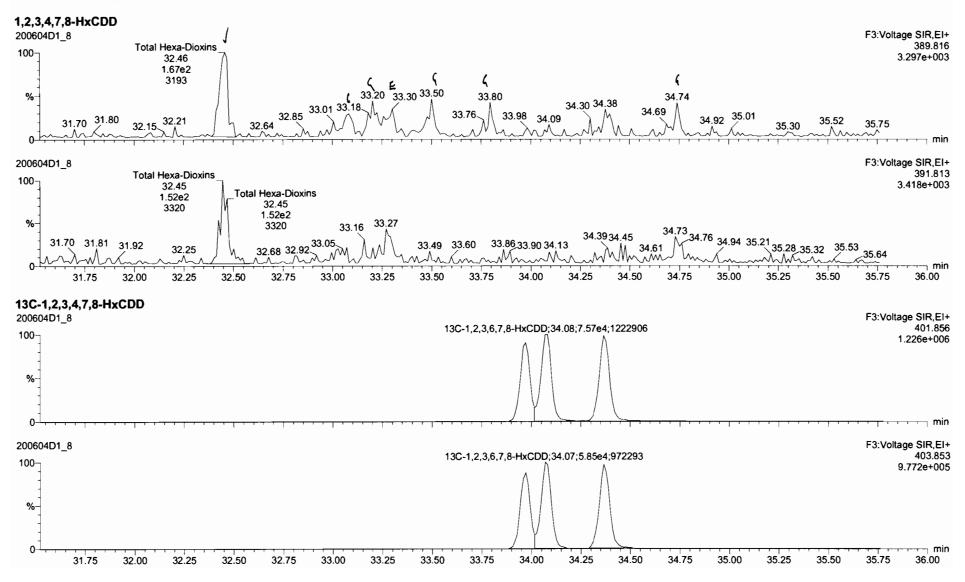
Page 187 of 769


Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_8.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time Friday, June 05, 2020 09:44:14 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld

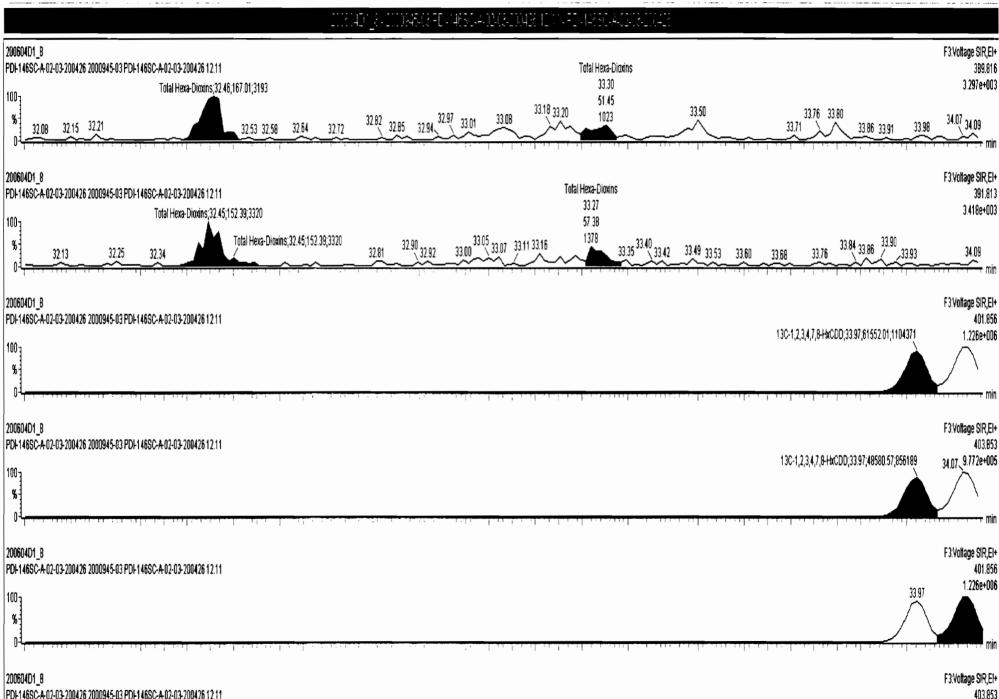
Last Altered:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:14 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

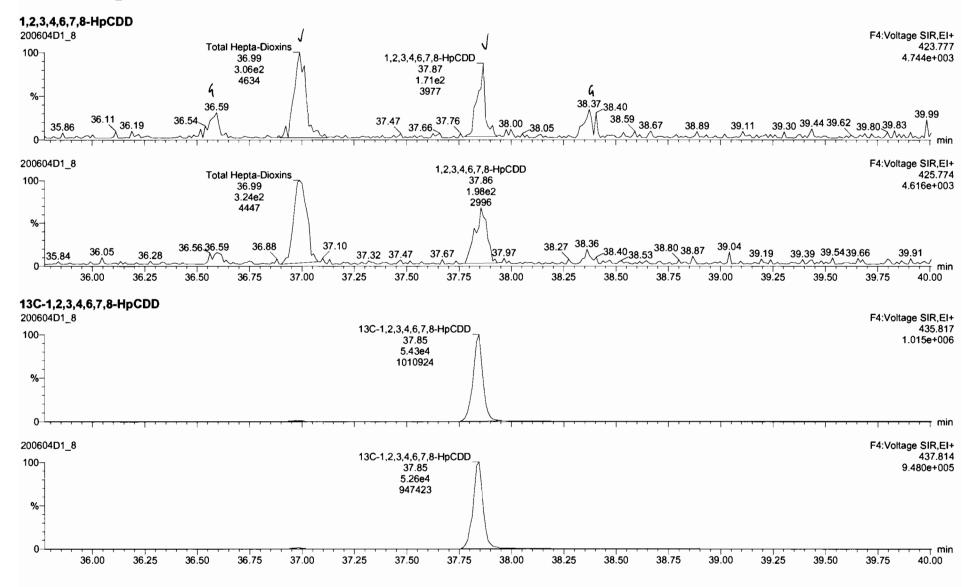
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld

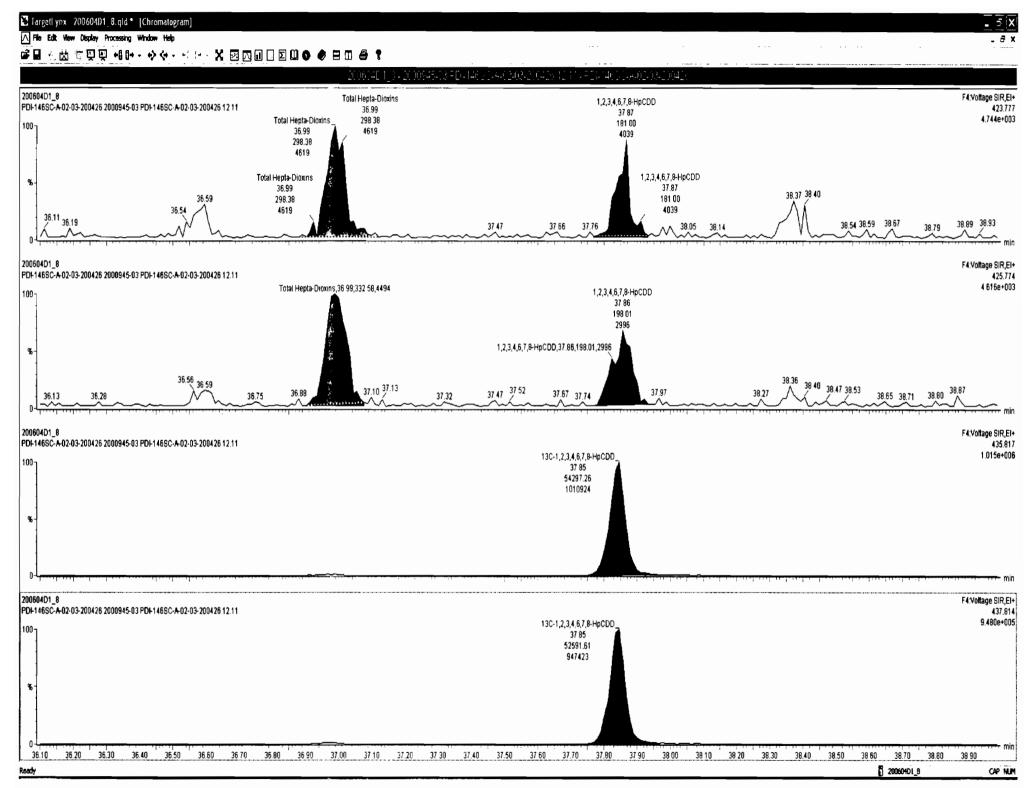

Last Altered:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:14 Pacific Daylight Time

TargetLynx · 200604D1_8.qld * [Chromatogram]

A File Edit View Display Processing Window Help

☞묘소做意與與+NH+・◇◇・+I/+·X 図ΔΠ目ΣЩ◎ ♥日Ⅱ ♣ ?

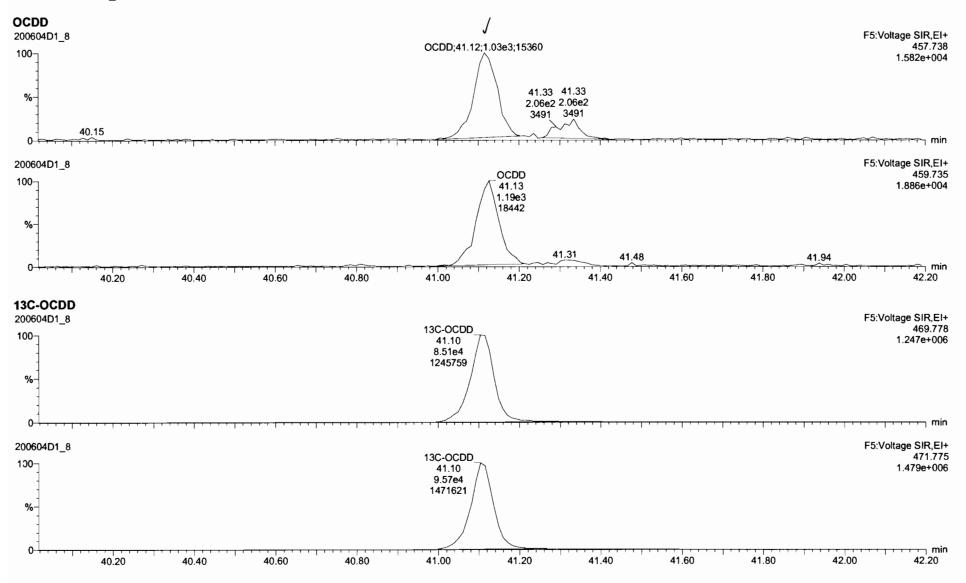

Work Order 2000945

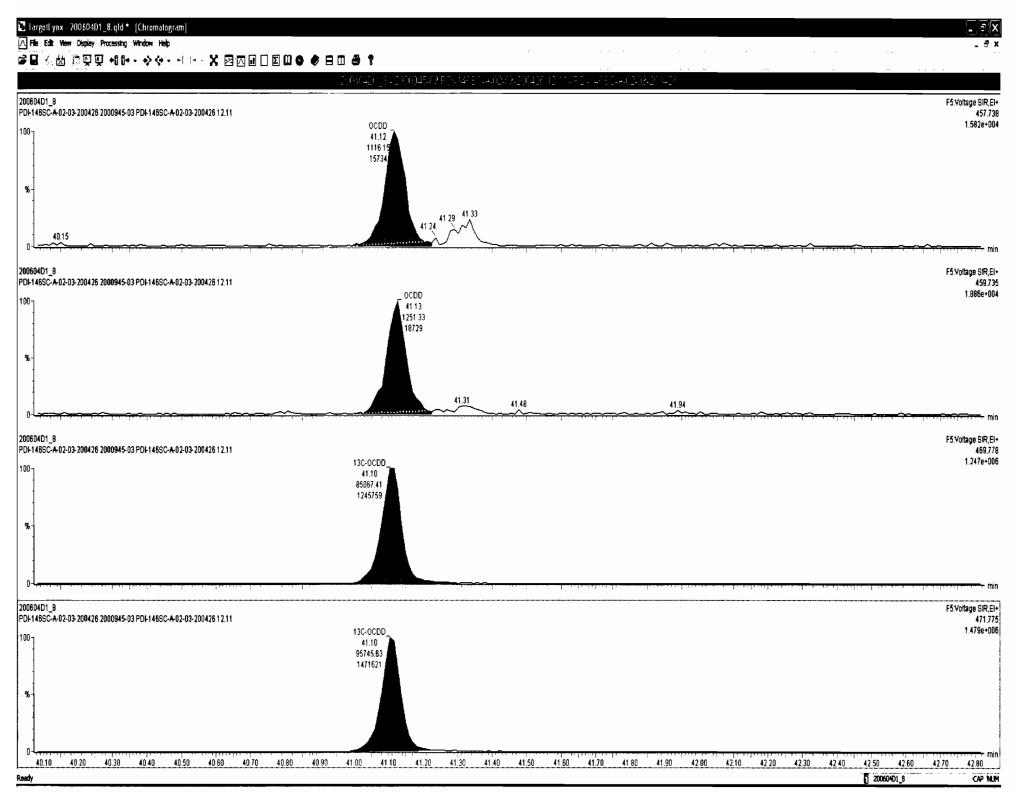

. ₿ X . 7 x

Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	-

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld

Last Altered:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:14 Pacific Daylight Time

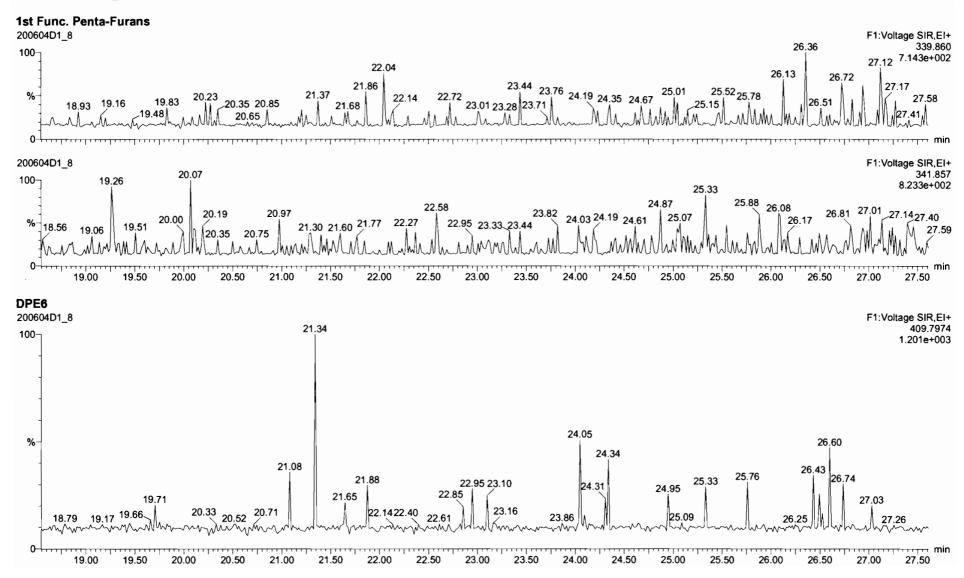


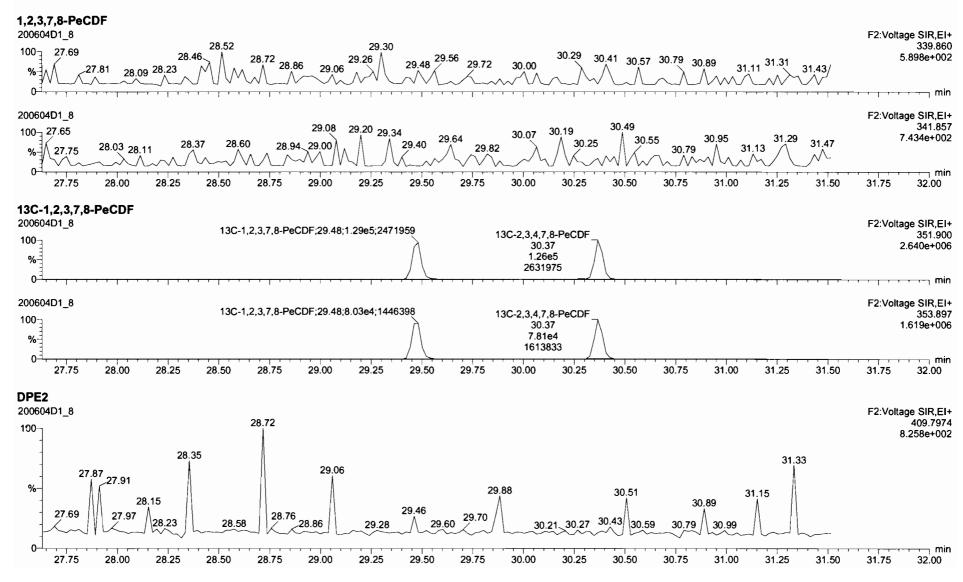


Work Order 2000945

Page 193 of 769

Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_8.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time Friday, June 05, 2020 09:44:14 Pacific Daylight Time	

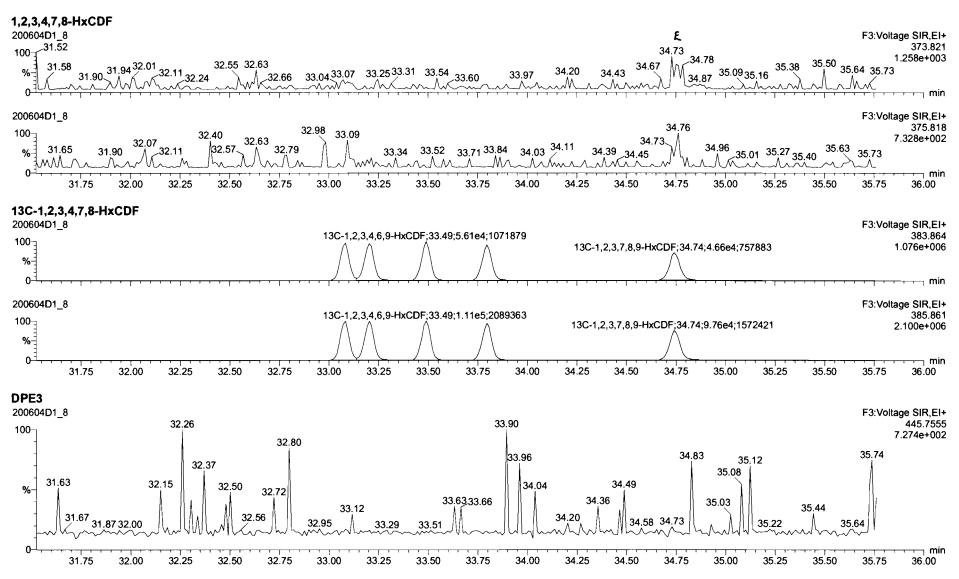


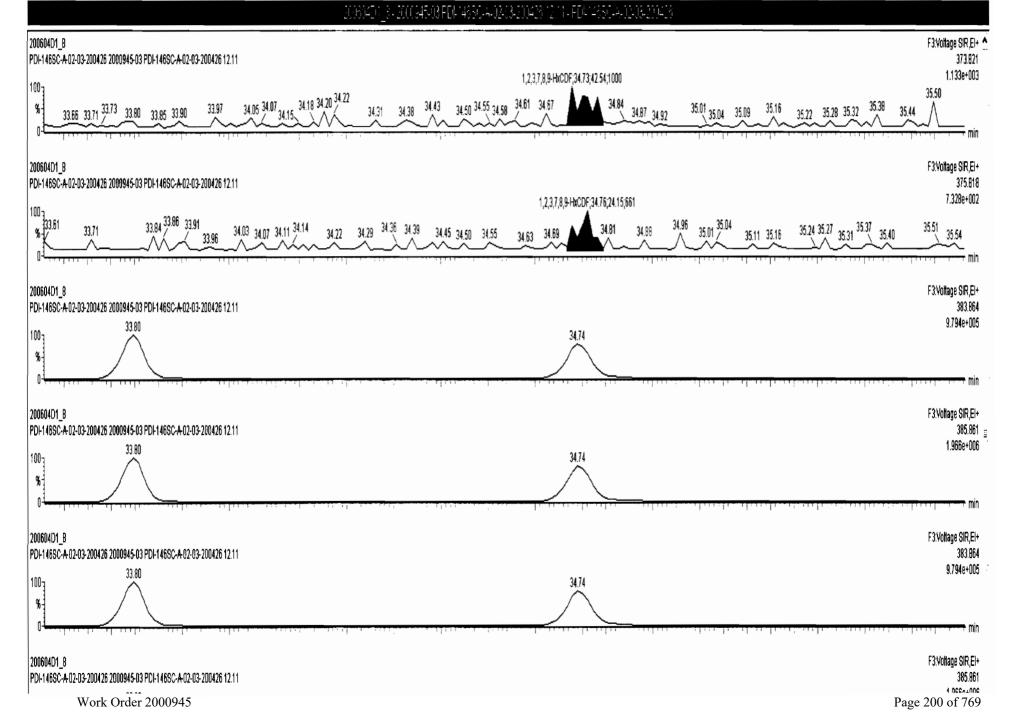

Work Order 2000945

/ista Analytica	Iple Report MassLy Al Laboratory	ynx 4.1					Page 7 of 13
Dataset:	U:\VG7.PRO\Results\2000)604D1\200604D1_8.qld					
ast Altered: Printed:	Friday, June 05, 2020 09: Friday, June 05, 2020 09:4						
lame: 200604	4D1_8, Date: 04-Jun-2020,	, Time: 17:16:22, ID: 200	00945-03 PDI-146SC-	-A-02-03-200426 12.	11, Description: P	DI-146SC-A-02-03-20	0426
2, 3,7,8-TCDF							
00 18.62 18. 0	94 19.67 19.81 20.19 20.	.44 20.81 21.36 21.75	22.95 22.26 22.82	23.39 23.76 24.11	24.55 25.04	25.55 26.19.26.28	F1:Voltage SIR,EI+ 27.29 303.9016 1.375e+003 26.92 ^{26.98} 27.58 min min
00604D1_8				, , , , , , , , , , , , , , , , , , ,	111		F1:Voltage SIR,EI
"mm	2 9.12 19.54 19.93 20.39 Marad Marad Mar	21.71 20.65 21.65 22 21.04	23 .06 22.30 22.44 22.89 	.10 23.34 23.74 24.09	24.24	5.33 25.79 26.16 ²	305.899 6.56 8.659e+002 26.86 27.37 27.52
0-\	0 19.50 20.00 20.5	50 21.00 21.50 2	2.00 22.50 23.00) 23.50 24.00	24.50 25.00	25.50 26.00 26	.50 27.00 27.50 min
3C-2,3,7,8-T							
	CDF						E1:Voltage SIR EI+
00604D1_8 00	CDF			13C-1,2,3,4-TCDF 24,09 9.77e4 1412685	13C-2,3,7,8-TCDF_ 25.32 9.31e4 1428135	$\left(\right)$	315.9419
00604D1_8	····			24.09 9.77e4	25.32 9.31e4		F1:Voltage SIR,EI+ 315.9419 1.433e+006
200604D1_8 100 0 0 200604D1_8 100 %		·····		24.09 9.77e4	25.32 9.31e4	<u>\</u>	315.9419 1.433e+006 7
200604D1_8 100 0 0 100 200604D1_8 100				24.09 9.77e4 1412685 13C-1,2,3,4-TCDF 24.09 1.25e5 1749784	25.32 9.31e4 1428135 13C-2,3,7,8-TCDF 25.32 1.25e5	25.50 26.00 26	315.9419 1.433e+006 7
200604D1_8 100 0 0 0 0 0 0 0 0 0 0 0 0				24.09 9.77e4 1412685 13C-1,2,3,4-TCDF 24.09 1.25e5 1749784	25.32 9.31e4 1428135 13C-2,3,7,8-TCDF 25.32 1.25e5 1881572 24.50 25.00		315.9419 1.433e+006 THE SIR,EI+ 317.939 1.886e+006 THE SIR,EI+ 50 27.00 27.50 F1:Voltage SIR,EI+ 26.78 375.8364
200604D1_8 100 0 0 200604D1_8 100 % 0 0 4 ,			22.03	24.09 9.77e4 1412685 13C-1,2,3,4-TCDF 24.09 1.25e5 1749784 0 23.50 24.00	25.32 9.31e4 1428135 13C-2,3,7,8-TCDF 25.32 1.25e5 1881572 24.50 25.00	25.41 25.79 25.79	315.9419 1.433e+006 TI:Voltage SIR,EI+ 317.939 1.886e+006 TI:Voltage SIR,EI+ 50 27.00 27.50 F1:Voltage SIR,EI+ 26.78 375.8364 27.03 6.040e+002

Quantify Sam Vista Analytica	• • •	Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_8.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time Friday, June 05, 2020 09:44:14 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_8.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time Friday, June 05, 2020 09:44:14 Pacific Daylight Time	

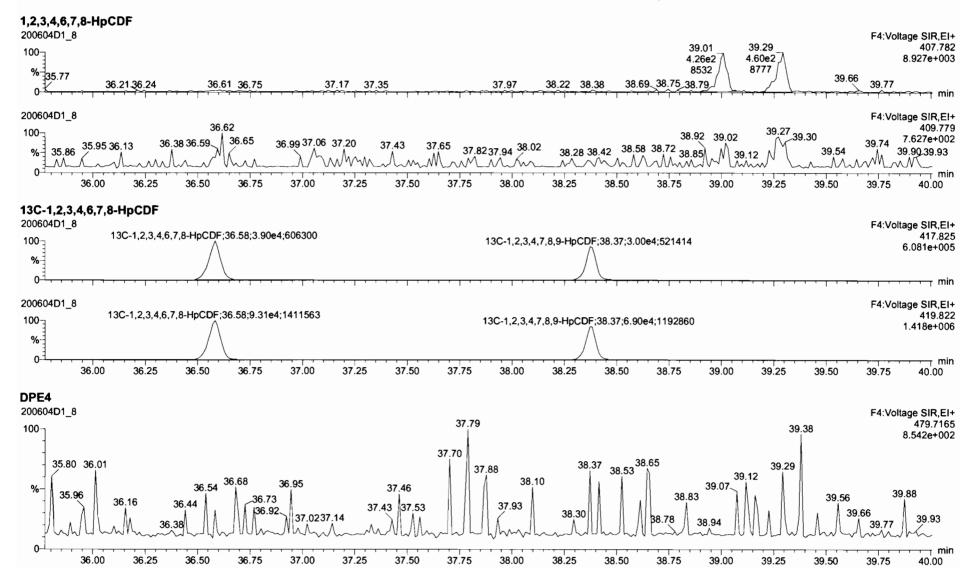



Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld

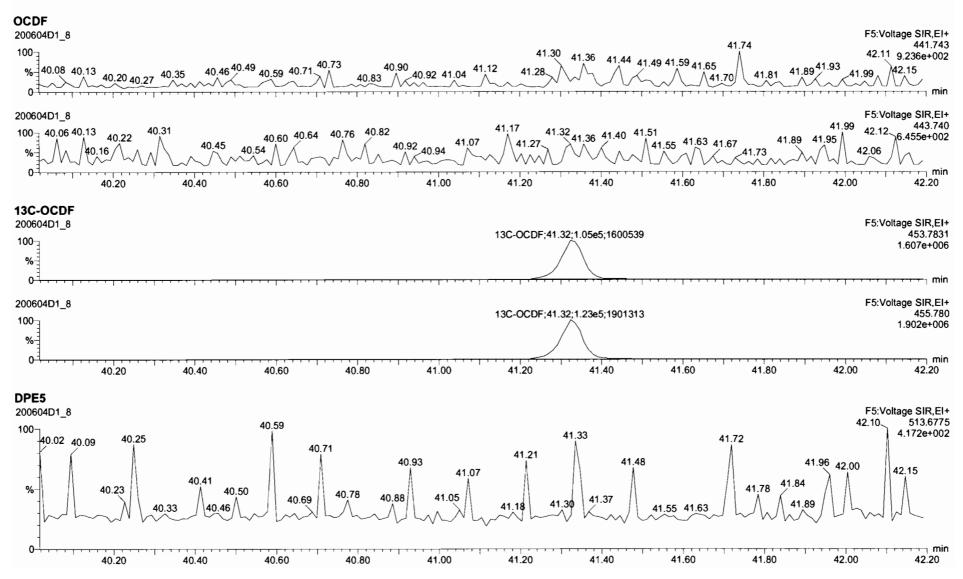
Last Altered:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:14 Pacific Daylight Time


▆▋ۯᄨᇕᅋᆞᆊᆘᆞᄽᡧᆞᆞᆞᆞⅩ▨◙◨▯◙▯◑◈▤◧▤ਃ

A File Edit Yew Display Processing Window Help

TargetLynx - 200604D1_8.qld * - [Chromatogram]

. d X


Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_8.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time Friday, June 05, 2020 09:44:14 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200604D1\200604D1_8.qld

Last Altered:	Friday, June 05, 2020 09:34:31 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:14 Pacific Daylight Time

Vista Analytica		sLynx 4.1								Page 13 of 1
Dataset:	U:\VG7.PRO\Results\2	200604D1\20060	4D1_8.qld							
ast Altered: Printed:	Friday, June 05, 2020 Friday, June 05, 2020									
ame: 20060	4D1_8, Date: 04-Jun-20	20, Time: 17:16	:22, ID: 200094	5-03 PDI-146SC	- A-02-03-200 4	l26 12.11, Desc	ription: PDI	-146SC-A-02-0	3-200426	
FK1 00604D1 8									F	1:Voltage SIR,EI
_	.05 19.40 19.67 20.0920.1	20.96 21.49;	2.19e3;77340	22.32 22.66 23.05	23.30, 23.39 23	.74 24.48 24	.70 24.98 25.16	25.56 25.74 26.3	4 26.43 26.94	• • • • • • •
0		······		···						mir
19.0	00 19.50 20.00 2	20.50 21.00	21.50 22.00	22.50 23.00	0 23.50	24.00 24.50	25.00	25.50 26.00	26.50 27.0	0 27.50
PFK2 00604D1_8	28.09;3.71e3;58795	28.92	;1.06e4;102848	2	9.74;5.61e3;8454	1 30.35;2.80e3;59	603 30.55;8.19	e3;82407 31.15;1.	15e3;36072 F	2:Voltage SIR,EI 3 366.9792
00 27.65		Y Y		4		* +		<u></u>		0.1000+00
00 27.65 %-										
KAI		40 28.60 28.8	80 29.00 2	9.20 29.40 29	9.60 29.80	30.00 30.20	30.40 3	0.60 30.80	31.00 31.20	
% 0 27.80 27.80 27.80 27.80		40 28.60 28.6 32.58 32.81.33.02		22.74		30.00 30.20 576 <u>34.30</u> <u>34.47</u>	30.40 3 35.11;1.24e			3:Voltage SIR,EI 380.976
0 +,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 28.00 28.20 28.4			22.74					F	31.40 3:Voltage SIR,EI

PFK4

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	0603D1\200603D1_10.qld	
Last Altered: Printed:		09:58:06 Pacific Daylight Time 09:59:57 Pacific Daylight Time	

B 6/4/20 Cr 06/05/2020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RŤ	Pred.RRT	RRT	Conc.	%Rec	DL	ÉMPC
1	1 2,3,7,8-TCDD			NO	0.987	9.933 -	- 26.127		1.001				0.122	
2	2 1,2,3,7,8-PeCDD			NO	0.982	9.933	30.669		1.001				0.121	
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	9.933	33.971		1.000				0.171	
4	4 1,2,3,6,7,8-HxCDD			NO	1.04	9.933	34.070		1.000				0.175	
5	5 1,2,3,7,8,9-HxCDD			NO	1.00	9.933	34.390		1.001				0.192	
6	6 1,2,3,4,6,7,8-HpCDD	3.07e2	1.29	YES	0.992	9.933	37.845	37.86	1.000	1.001	0.49545		0.121	0.441
7	7 OCDD	2.04e3	0.89	NO	1.04	9.933	41.104	41.12	1.000	1.000	3.8286		0.315	3.83
8	8 2,3,7,8-TCDF			NO	0.882	9.933	25.326		1.001				0.0964	
9	9 1,2,3,7,8-PeCDF			NO	1.05	9.933	29.482		1.001				0.0776	
10	10 2,3,4,7,8-PeCDF			NO	1.06	9.933	30.397		1.001				0.0703	
11	11 1,2,3,4,7,8-HxCDF			NO	1.08	9.933	33.072		1.000				0.0847	
12	12 1,2,3,6,7,8-HxCDF			NO	1.04	9.933	33.203		1.000				0.0884	
13	13 2,3,4,6,7,8-HxCDF			NO	1.11	9.933	33.819		1.001				0.0947	
14	14 1,2,3,7,8,9-HxCDF	1.14e2	1.41	NO	1.06	9.933	34.729	34.75	1.000	1.001	0.12214		0.0704	0.122
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.13	9.933	36.609		1.001				0.121	
16 .	16 1,2,3,4,7,8,9-HpCDF			NO	1.33	9.933	38.372		1.000				0.118	
17	17 OCDF			NO	0.933	9.933	41.324		1.000				0.119	
18	18 13C-2,3,7,8-TCDD	2.04e5	0.77	NO	1.21	9.933	26.195	26.10	1.026	1.022	180.98	89.9	0.328	
19	19 13C-1,2,3,7,8-PeCDD	1.68e5	0.62	NO	0.996	9.933	30.688	30.65	1.202	1.200	180.94	89.9	0.307	
20	20 13C-1,2,3,4,7,8-HxCDD	1.45e5	1.31	NO	0.679	9.933	33.947	33.96	1.014	1.014	211.25	105	0.763	
21	21 13C-1,2,3,6,7,8-HxCDD	1.61e5	1.31	NO	0.850	9.933	34.057	34.07	1.017	1.018	187.96	93.3	0.610	
22	22 13C-1,2,3,7,8,9-HxCDD	1.60e5	1.26	NO	0.798	9.933	34.328	34.36	1.025	1.026	199.05	98.9	0.649	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.26e5	1.04	NO	0.697	9.933	37.797	37.83	1.129	1.130	178.96	88.9	0.528	
24	24 13C-OCDD	2.07e5	0.87	NO	0.579	9.933	40.823	41.10	1.219	1.228	354.12	87.9	0.273	
25	25 13C-2,3,7,8-TCDF	2.71e5	0.77	NO	1.13	9.933	25.276	25.30	0.990	0.991	164.76	81.8	0.483	
26.	26 13C-1,2,3,7,8-PeCDF	2.61e5	1.62	NO	0.996	9.933	29.506	29.46	1.156	1.154	179.37	89.1	0.592	
27	27 13C-2,3,4,7,8-PeCDF	2.58e5	1.62	NO	0.969	9.933	30.407	30.37	1.191	1.189	182.28	90.5	0.608	
28	28 13C-1,2,3,4,7,8-HxCDF	1.96e5	0.51	NO	1.06	9.933	33.076	33.07	0.988	0.988	183.55	91.2	0.617	
29	29 13C-1,2,3,6,7,8-HxCDF	2.07e5	0.50	NO	1.18	9.933	33.210	33.19	0.992	0.991	174.46	86.6	0.555	
30	30 13C-2,3,4,6,7,8-HxCDF	1.96e5	0.49	NO	1.06	9.933	33.783	33.78	1.009	1.009	183.42	91.1	0.618	
31	31 13C-1,2,3,7,8,9-HxCDF	1.78e5	0.50	NO	0.879	9.933	34.683	34.73	1.036	1.037	201.06	99.8	0.742	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:	Thursday, June 04, 2020 09:58:06 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:59:57 Pacific Daylight Time

. ____ _ _ _ _ _ _ _ _ _ _ _ _ _

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.57e5	0.43	NO	0.893	9.933	36.391	36.57	1.087	1.092	174.30	86.6	0.515	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.20e5	0.43	NO	0.613	9.933	38.399	38.37	1.147	1.146	194.52	96.6	0.750	
34	34 13C-OCDF	2.49e5	0.88	NO	0.741	9.933	40.977	41.32	1.224	1.234	333.05	82.7	0.138	
35	35 37CI-2,3,7,8-TCDD	8.48e4			1.18	9.933	26.192	26.13	1.026	1.023	76.959	95.5	0.0990	
36	36 13C-1,2,3,4-TCDD	1.88e5	0.79	NO	1.00	9.933	25.480	25.53	1.000	1.000	201.36	100	0.395	
37	37 13C-1,2,3,4-TCDF	2.94e5	0.79	NO	1.00	9.933	24.020	24.08	1.000	1.000	201.36	100	0.545	
38	38 13C-1,2,3,4,6,9-HxCDF	2.03e5	0.50	NO	1.00	9.933	33.530	33.48	1.000	1.000	201.36	100	0.653	
39	39 Total Tetra-Dioxins				0.987	9.933	24.620		0.000		0.18234		0.0737	0.182
40	40 Total Penta-Dioxins				0.982	9.933	29.960		0.000				0.0449	
41	41 Total Hexa-Dioxins				1.04	9.933	33.635		0.000		0.44645		0.185	0.446
42	42 Total Hepta-Dioxins				0.992	9.933	37.640		0.000		0.98705		0.121	1.43
43	43 Total Tetra-Furans				0.882	9.933	23.610		0.000				0.0430	
44	44 1st Func. Penta-Furans				1.05	9.933	27.090		0.000				0.0140	
45	45 Total Penta-Furans				1.05	9.933	29.275		0.000				0.0354	
46	46 Total Hexa-Furans				1.11	9.933	33.555		0.000		0.12214		0.0538	0.122
47	47 Total Hepta-Furans				1.13	9.933	37.835		0.000				0.0588	

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:	Thursday, June 04, 2020 09:58:06 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:59:57 Pacific Daylight Time

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200603D1_10, Date: 03-Jun-2020, Time: 21:26:43, ID: 2000945-04 PDI-146SC-A-03-04-200426 12.98, Description: PDI-146SC-A-03-04-200426

Tetra-Dioxins

Name	RŤ	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 Total Tetra-Dioxins	24.22	1.728e3	1.394 e 3	8.546e1	9.673 e 1	0.88	NO	1.822e2	0.18234	0.18234	0.0737

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.44	4.049 e 3	3.520e3	1.853e2	1.715e2	1.08	NO	3.568e2	0.44645	0.44645	0.185

Hepta-Dioxins

ſ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1 Total Hepta-Dioxins	36.98	4.814e3	4.186e3	3.153e2	2.961e2	1.06	NO	6.114e2	0.98705	0.98705	0.121
	2 1,2,3,4,6,7,8-HpCDD	37.86	3.355e3	2.539e3	1.730e2	1.339e2	1.29	YES	3.069e2	0.00000	0.44090	0.121

Tetra-Furans

Name	ŔŢ	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1											

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:	Thursday, June 04, 2020 09:58:06 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:59:57 Pacific Daylight Time

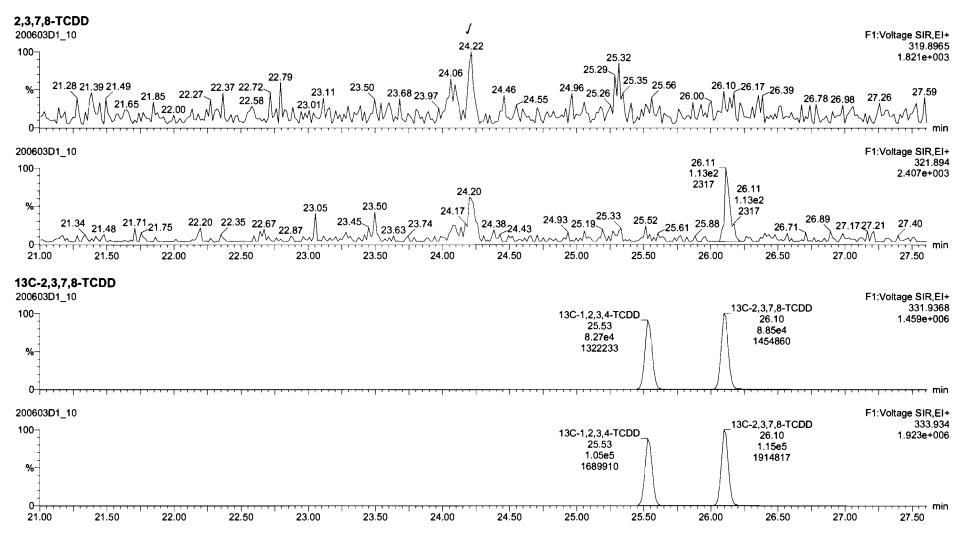
Name: 200603D1_10, Date: 03-Jun-2020, Time: 21:26:43, ID: 2000945-04 PDI-146SC-A-03-04-200426 12.98, Description: PDI-146SC-A-03-04-200426

Penta-Furans

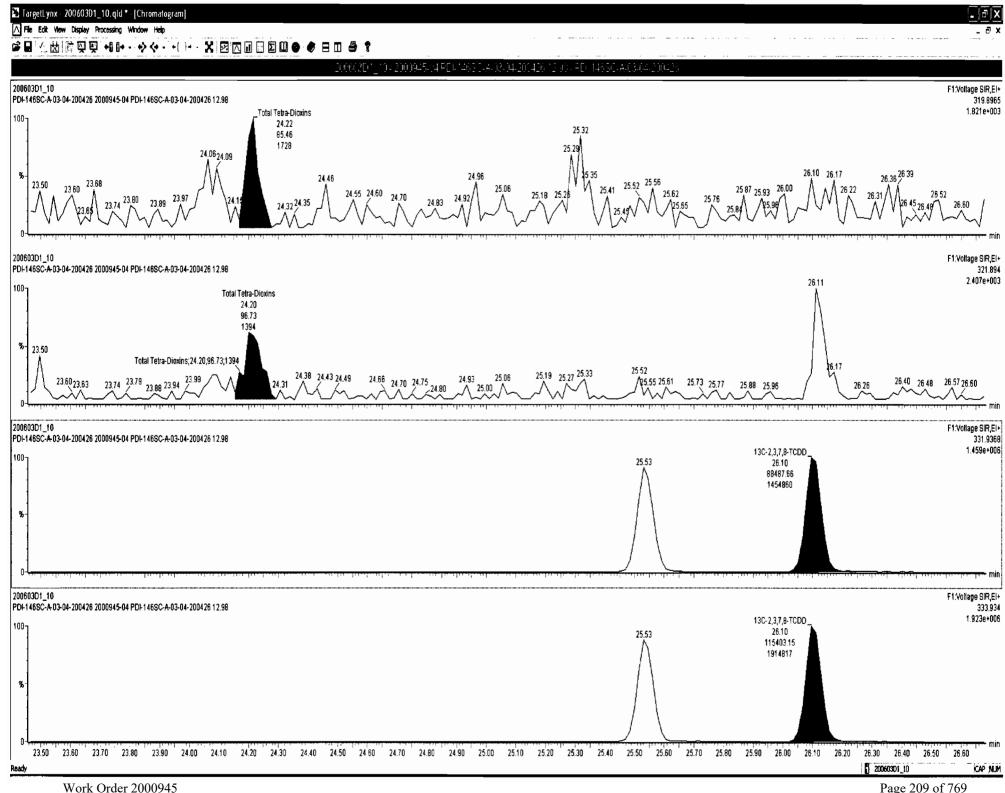
Name	RŤ	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
		interiorgine interiorigine	minioop minitoop	100 109	rtoop	00110.		
4								
•								

Hexa-Furans

ſ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1,2,3,7,8,9-HxCDF	34.75	1.026e3	1.057e3	6.689e1	4.741e1	1.41	NO	1.143e2	0.12214	0.12214	0.0704

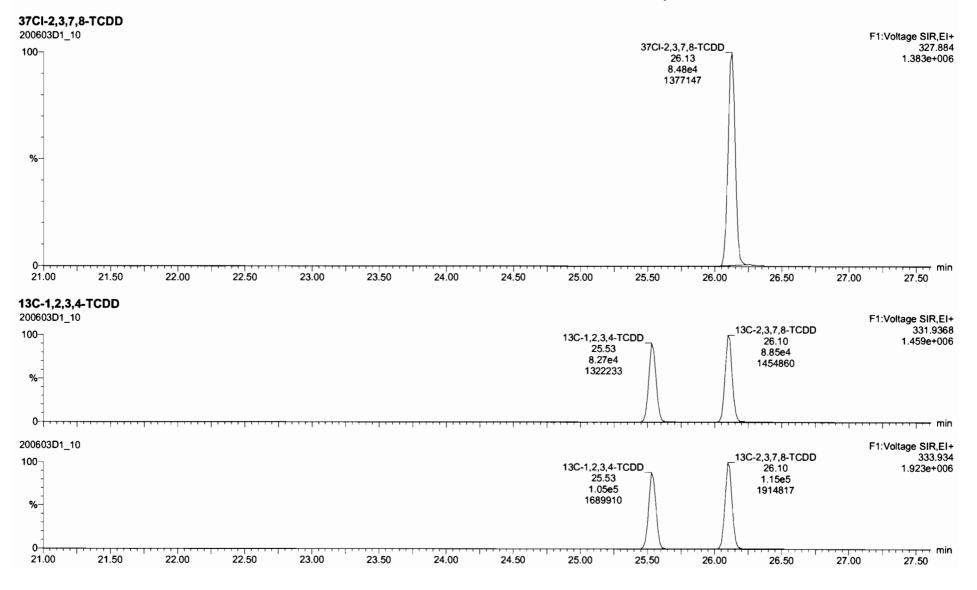

Hepta-Furans

Г	Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1											


Quantify San Vista Analytica	
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_10.qld
Last Altered: Printed:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

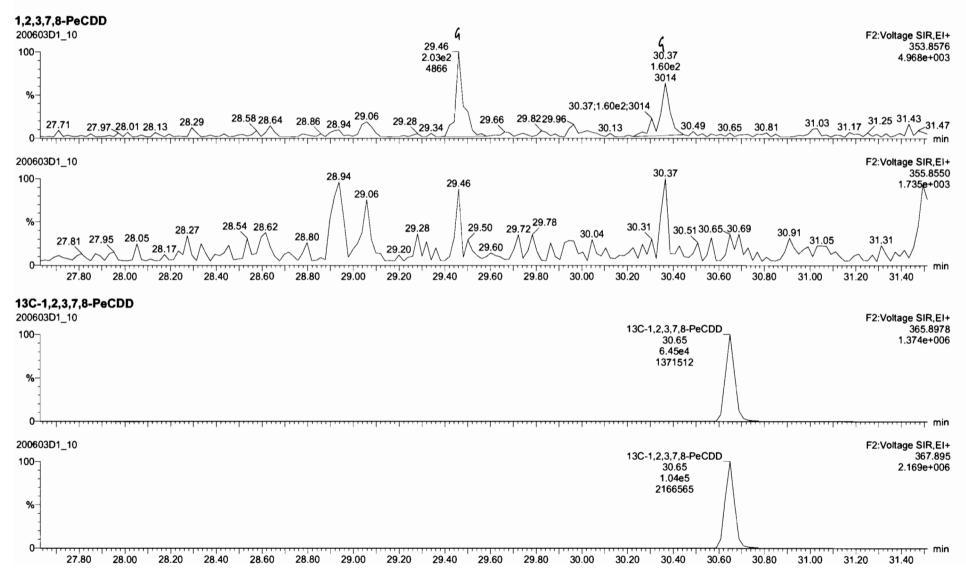
Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200603D1_10, Date: 03-Jun-2020, Time: 21:26:43, ID: 2000945-04 PDI-146SC-A-03-04-200426 12.98, Description: PDI-146SC-A-03-04-200426



Page 1 of 13

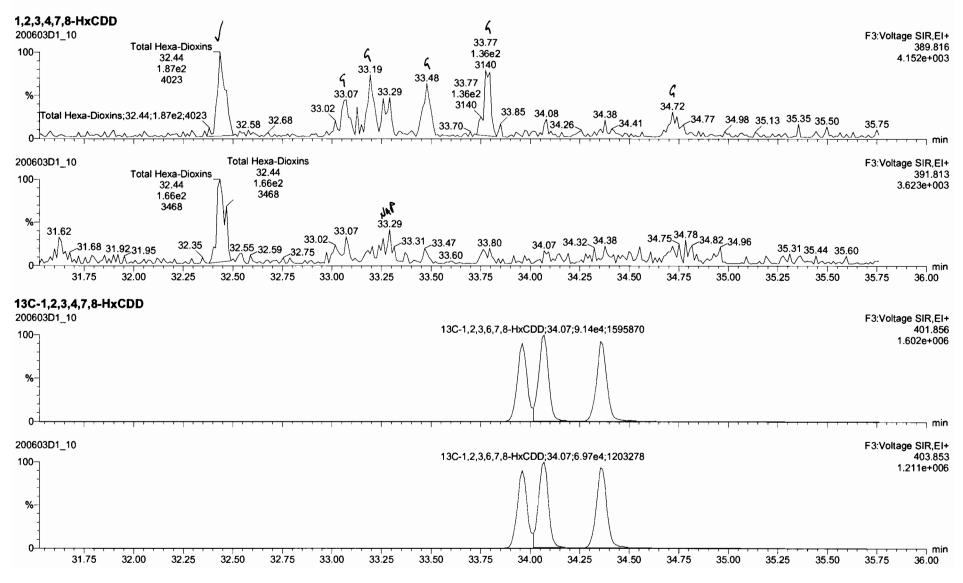
Page 209 of 769


Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_10.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time Thursday, June 04, 2020 09:49:34 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

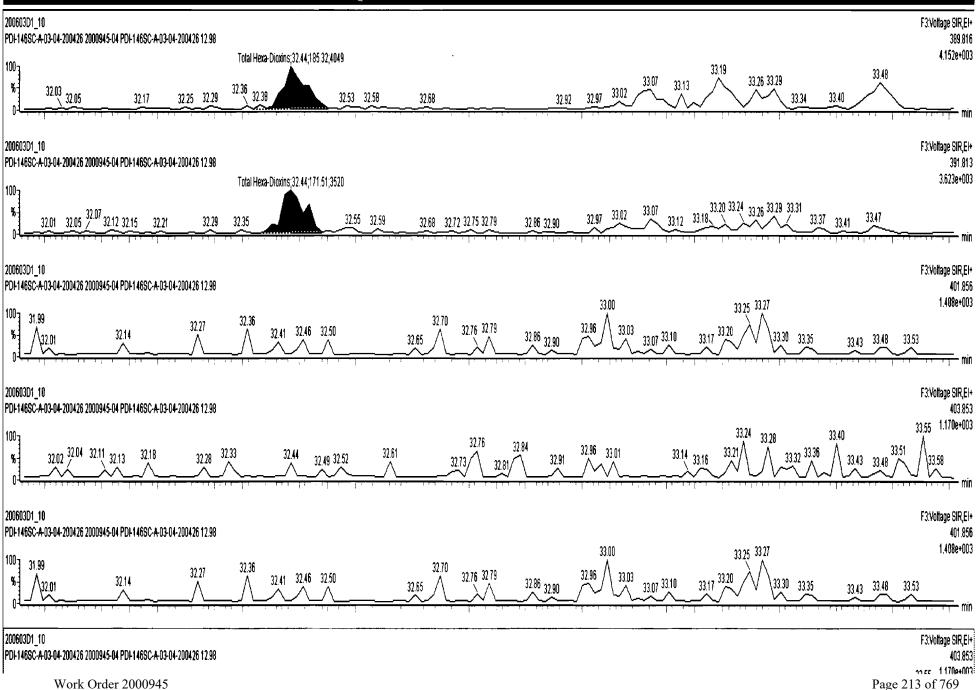


Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

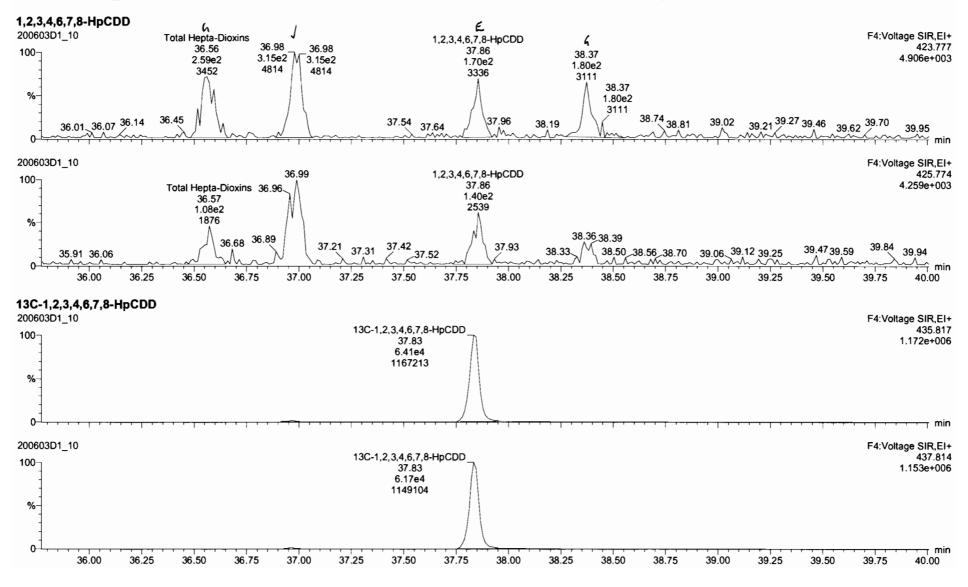
Last Altered:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

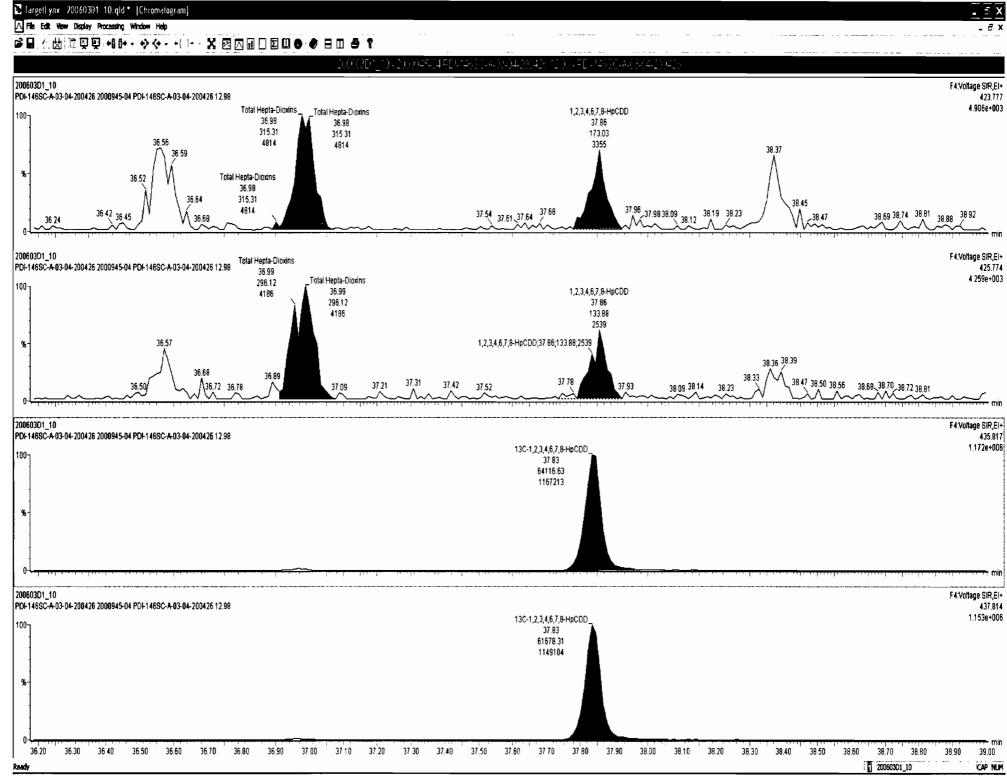


🎽 TargelLynx - 200603D1_10.qld * - [Chromatogram]

🛆 File Edit View Display Processing Window Help

☞=:</>:

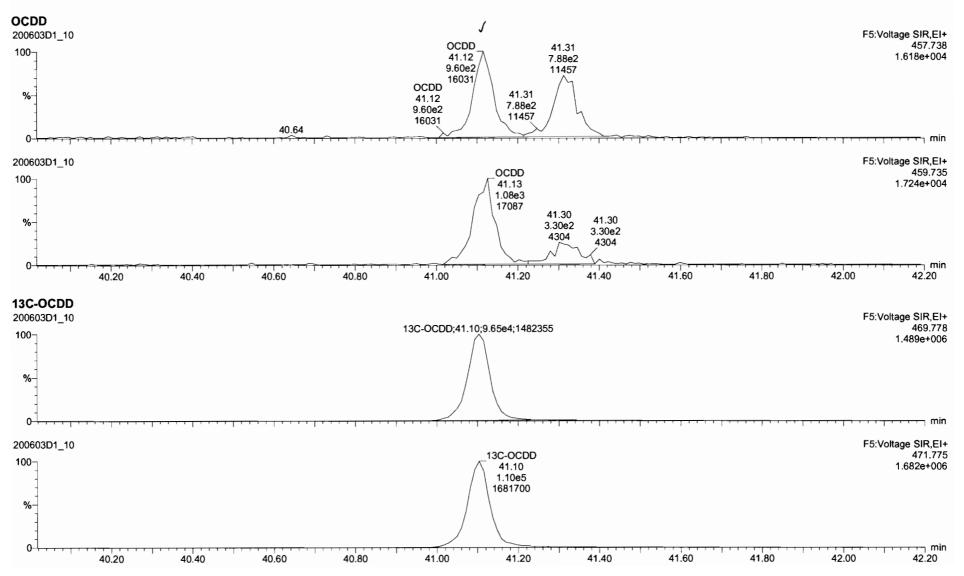


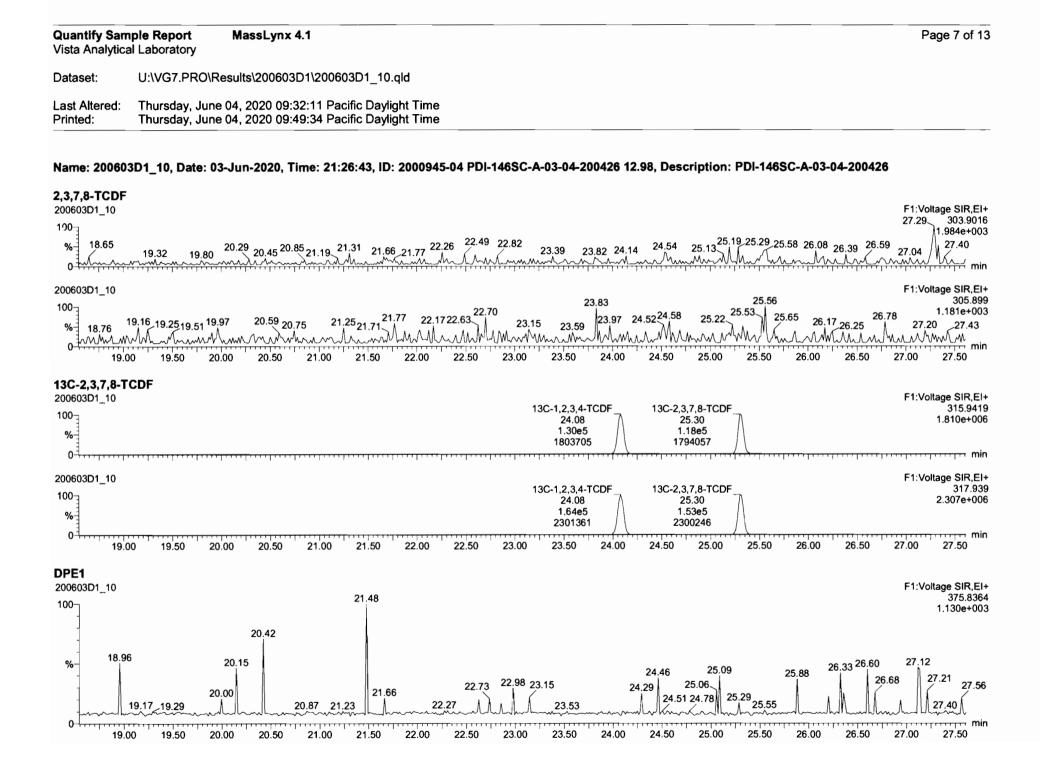

Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

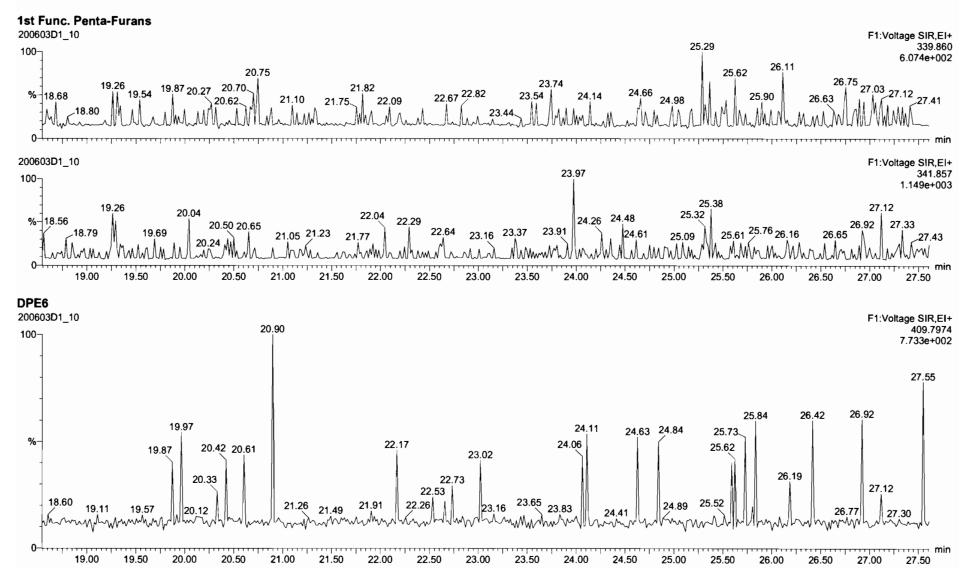
Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:49:34 Pacific Daylight Time



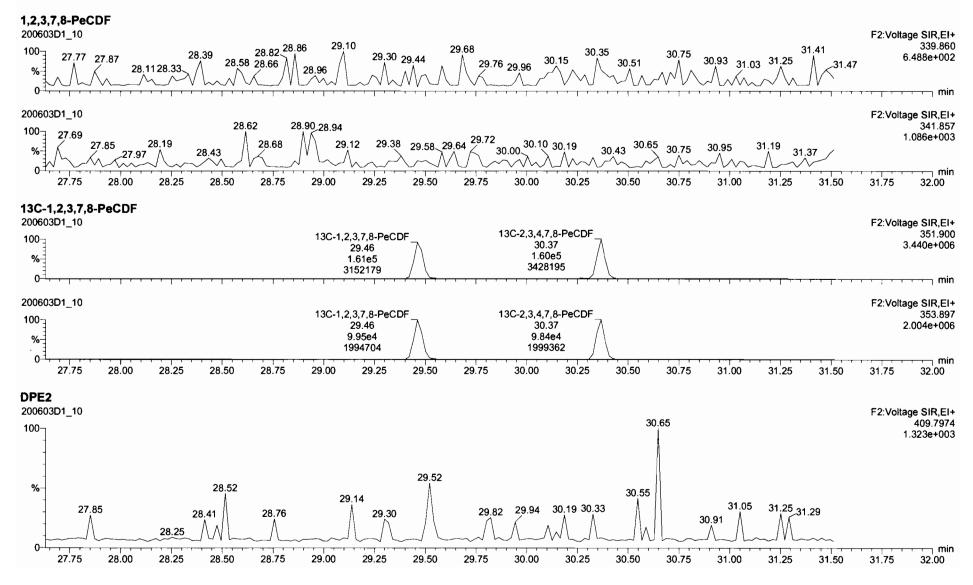


Work Order 2000945

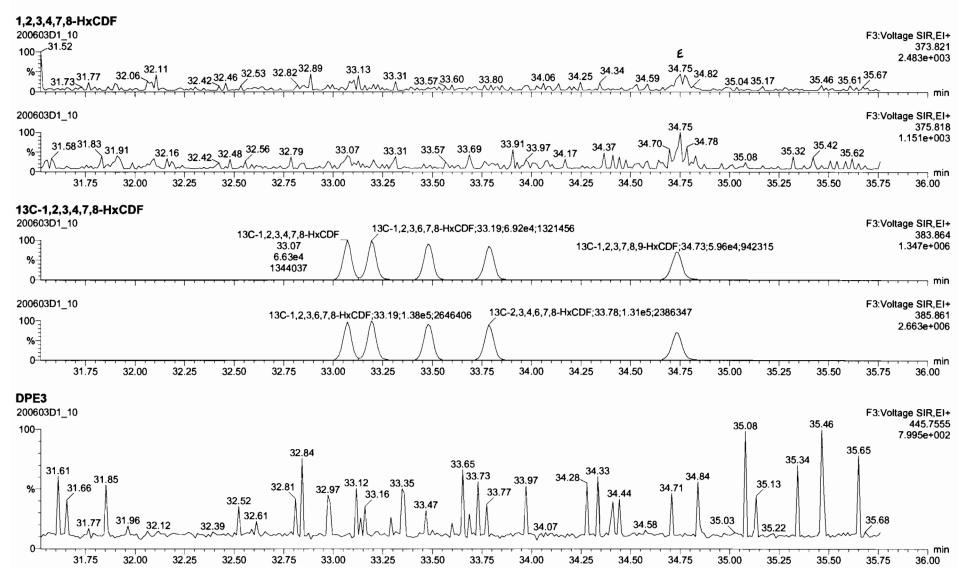

Page 215 of 769

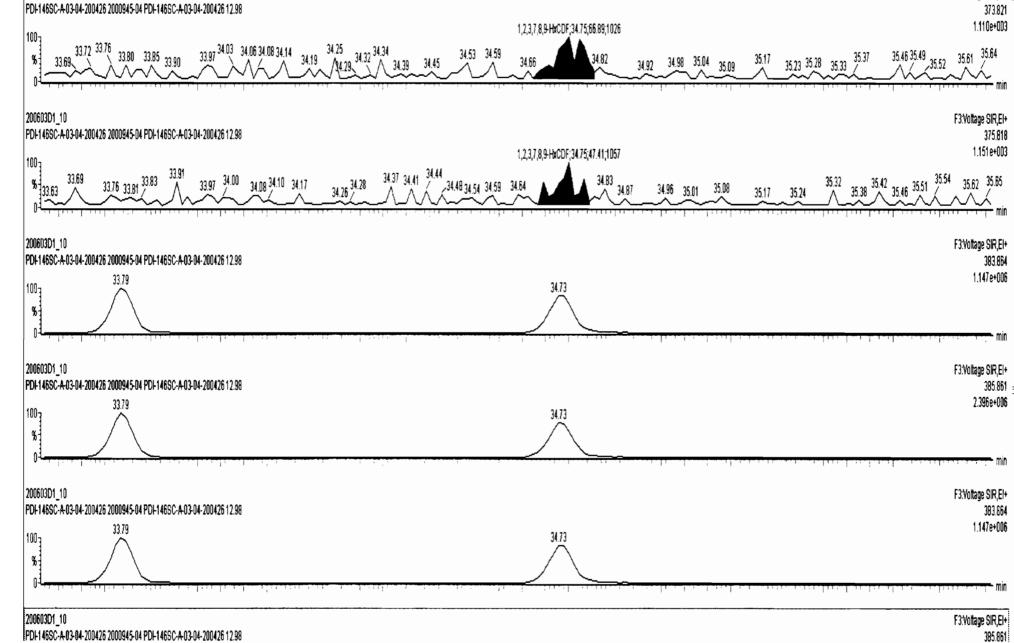
Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_10.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time Thursday, June 04, 2020 09:49:34 Pacific Daylight Time	

Quantify Sam Vista Analytica	· · · ·	Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_10.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time Thursday, June 04, 2020 09:49:34 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:Thursday, June 04, 2020 09:32:11 Pacific Daylight TimePrinted:Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

Quantify Sam Vista Analytica	· · ·	Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_10.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time Thursday, June 04, 2020 09:49:34 Pacific Daylight Time	

- 佐藤 意興奥 +1 ┣+ + � ↔ + + | + - 🐰 図内回日図出る ♦ 日田 🗳 🔋 r i

1000

A File Edit View Display Processing Window Help

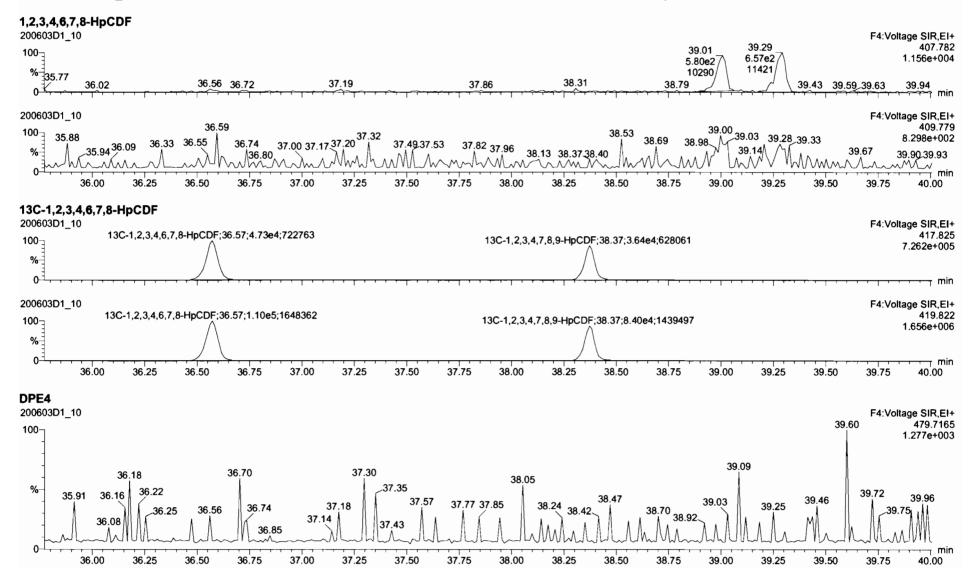
200603D1 10

TargetLynx - 200603D1_10.gld * - [Chromatogram]

Work Order 2000945

. C X

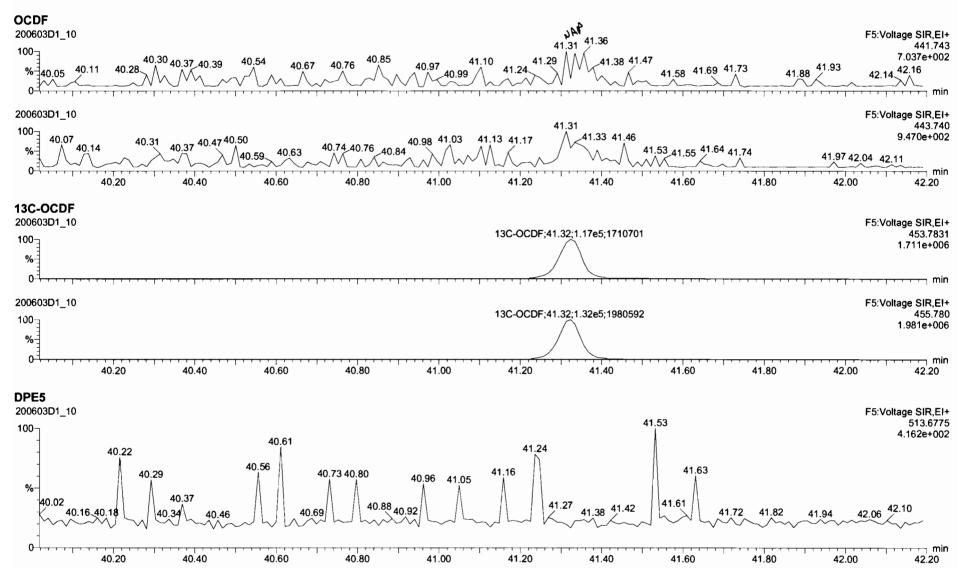
F3: Yoltage SIR, EI+ 🛕


. ā X

Page 221 of 769

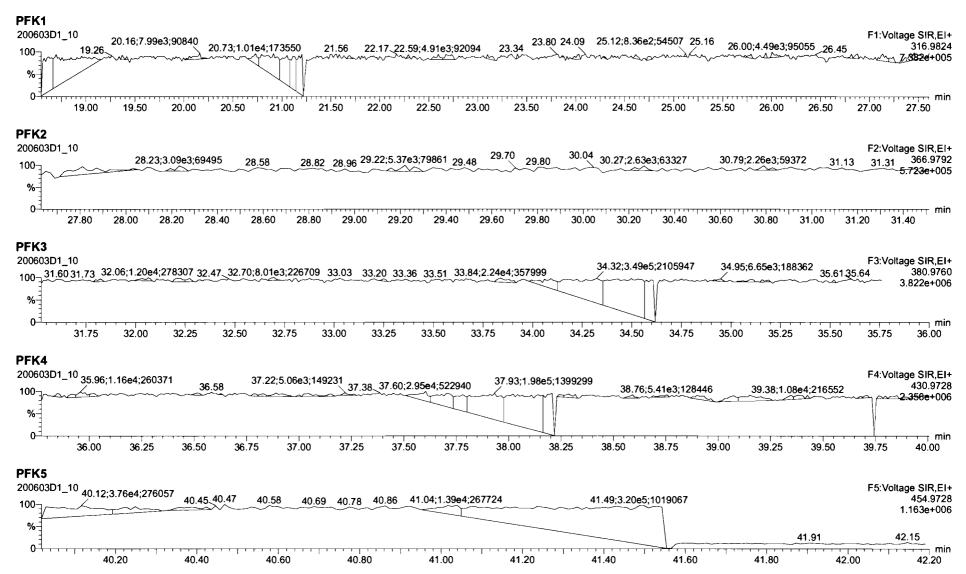
Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld


Last Altered:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld


Last Altered:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_10.qld

Last Altered:	Thursday, June 04, 2020 09:32:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 09:49:34 Pacific Daylight Time

Quantify Sam Vista Analytica	ple Summary Report I Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\2006	604D1\200604D1_9.qld	
Last Altered: Printed:		00:41 Pacific Daylight Time 02:25 Pacific Daylight Time	De

B 6/5/20 Con 66/047020

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.987	10.145	- 26.158		1.001				0.0894	
2	2 1,2,3,7,8-PeCDD			NO	0.982	10.145	30.690		1.001				0.125	
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	10.145	33.982		1.000				0.165	
4	4 1,2,3,6,7,8-HxCDD			NO	1.04	10.145	34.082		1.000				0.156	
5	5 1,2,3,7,8,9-HxCDD			NO	1.00	10.145	34.412		1.001				0.174	
6	6 1,2,3,4,6,7,8-HpCDD	4.09e2	1.17	NO	0.992	10.145	37.856	37.88	1.000	1.001	0.67980		0.136	0.680
7	7 OCDD	2.72e3	0.95	NO	1.04	10.145	41.115	41.14	1.000	1.001	5.1809		0.196	5.18
8	8 2,3,7,8-TCDF			NO	0.882	10.145	25.357		1.001				0.0805	
9	9 1,2,3,7,8-PeCDF			NO	1.05	10.145	29.502		1.001				0.0569	
10	10 2,3,4,7,8-PeCDF			NO	1.06	10.145	30.397		1.001				0.0647	
11	11 1,2,3,4,7,8-HxCDF			NO	1.08	10.145	33.083		1.000				0.0704	
12	12 1,2,3,6,7,8-HxCDF			NO	1.04	10.145	33.214		1.000				0.0762	
13	13 2,3,4,6,7,8-HxCDF			NO	1.11	10.145	33.830		1.001				0.0772	
14	14 1,2,3,7,8,9-HxCDF			NO	1.06	10.145	34.751		1.000				0.104	
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.13	10.145	36.631		1.001				0.119	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.33	10.145	38.383		1.000				0.110	
17	17 OCDF			NO	0.933	10.145	41.334		1.000				0.157	
18	18 13C-2,3,7,8-TCDD	1.82e5	0.78	NO	1.21	10.145	26.226	26.13	1.026	1.022	185.49	94.1	0.317	
19	19 13C-1,2,3,7,8-PeCDD	1.49e5	0.62	NO	0.996	10.145	30.724	30.67	1.202	1.200	183.57	93.1	0.239	
20	20 13C-1,2,3,4,7,8-HxCDD	1.27e5	1.28	NO	0.679	10.145	33.958	33.97	1.014	1.014	207.90	105	0.547	
21	21 13C-1,2,3,6,7,8-HxCDD	1.49e5	1.30	NO	0.850	10.145	34.068	34.08	1.017	1.018	193.69	98.2	0.437	
22	22 13C-1,2,3,7,8,9-HxCDD	1.45e5	1.26	NO	0.798	10.145	34.340	34.38	1.025	1.027	201.61	102	0.465	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.20e5	1.04	NO	0.697	10.145	37.809	37.85	1.129	1.130	189.94	96.3	0.572	
24	24 13C-OCDD	2.00e5	0.86	NO	0.579	10.145	40.836	41.12	1.219	1.228	381.86	96.8	0.492	
25	25 13C-2,3,7,8-TCDF	2.33e5	0.77	NO	1.13	10.145	25.305	25.33	0.990	0.991	176.97	89.8	0.458	
26	26 13C-1,2,3,7,8-PeCDF	2.33e5	1.62	NO	0.996	10.145	29.541	29.48	1.156	1.153	200.44	102	0.688	
27	27 13C-2,3,4,7,8-PeCDF	2.24e5	1.59	NO	0.969	10.145	30.443	30.37	1.191	1.188	198.34	101	0.707	
28	28 13C-1,2,3,4,7,8-HxCDF	1.82e5	0.52	NO	1.06	10.145	33.087	33.08	0.988	0.988	190.01	96.4	0.709	
29	29 13C-1,2,3,6,7,8-HxCDF	1.88e5	0.50	NO	1.18	10.145	33.221	33.20	0.992	0.991	177.06	89.8	0.639	
30	30 13C-2,3,4,6,7,8-HxCDF	1.82e5	0.50	NO	1.06	10.145	33.794	33.80	1.009	1.009	191.09	96.9	0.710	
31	31 13C-1,2,3,7,8,9-HxCDF	1.64e5	0.51	NO	0.879	10.145	34.695	34.75	1.036	1.038	206.03	105	0.854	

Quantify Sample Summary Report Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_9.qld

Last Altered:	Friday, June 05, 2020 12:00:41 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:02:25 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.47e5	0.43	NO	0.893	10.145	36.403	36.59	1.087	1.093	182.00	92.3	0.504	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.10e5	0.43	NO	0.613	10.145	38.412	38.38	1.147	1.146	198.67	101	0.733	
34	34 13C-OCDF	2.47e5	0.87	NO	0.741	10.145	40.991	41.33	1.224	1.234	369.36	93.7	0.382	
35	35 37CI-2,3,7,8-TCDD	6.87e4			1.18	10.145	26.223	26.14	1.026	1.023	71.628	90.8	0.0824	
36	36 13C-1,2,3,4-TCDD	1.60e5	0.78	NO	1.00	10.145	25.480	25.56	1.000	1.000	197.15	100	0.382	
37	37 13C-1,2,3,4-TCDF	2.30e5	0.79	NO	1.00	10.145	24.020	24.11	1.000	1.000	197.15	100	0.516	
38	38 13C-1,2,3,4,6,9-HxCDF	1.78e5	0.50	NO	1.00	10.145	33.530	33.49	1.000	1.000	197.15	100	0.750	
39	39 Total Tetra-Dioxins				0.987	10.145	24.620		0.000				0.0555	
40	40 Total Penta-Dioxins				0.982	10.145	29.960		0.000				0.0553	
41	41 Total Hexa-Dioxins				1.04	10.145	33.635		0.000		0.42692		0.170	0.556
42	42 Total Hepta-Dioxins				0.992	10.145	37.640		0.000		1.7361		0.136	1.74
43	43 Total Tetra-Furans				0.882	10.145	23.610		0.000				0.0331	
44	44 1st Func. Penta-Furans				1.05	10.145	27.090		0.000				0.0138	
45	45 Total Penta-Furans				1.05	10.145	29.275		0.000				0.0283	
46	46 Total Hexa-Furans				1.11	10.145	33.555		0.000				0.0419	
47	47 Total Hepta-Furans				1.13	10.145	37.835		0.000				0.0585	

Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_9.qld

Last Altered:	Friday, June 05, 2020 12:00:41 Pacific Daylight Time
Printed:	Friday, June 05, 2020 12:02:25 Pacific Daylight Time

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200604D1_9, Date: 04-Jun-2020, Time: 18:01:30, ID: 2000945-05 PDI-146SC-A-04-05-200426 11.68, Description: PDI-146SC-A-04-05-200426

Tetra-Dioxins

Γ	Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1										

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.45	3.031e3	3.455e3	1.712e2	1.441e2	1.19	NO	3.153e2	0.42692	0.42692	0.170
2	Total Hexa-Dioxins	33.30	2.014e3	1.172e3	7.165e1	4.240e1	1.69	YES	0.000e0	0.00000	0.12859	0.170

Hepta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	37.01	5.146e3	4.289e3	3.064e2	3.290e2	0.93	NO	6.354e2	1.0563	1.0563	0.136
2	1,2,3,4,6,7,8-HpCDD	37.88	3.478e3	3.026e3	2.201e2	1.888e2	1.17	NO	4.089e2	0.67980	0.67980	0.136

Tetra-Furans

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_9.qld

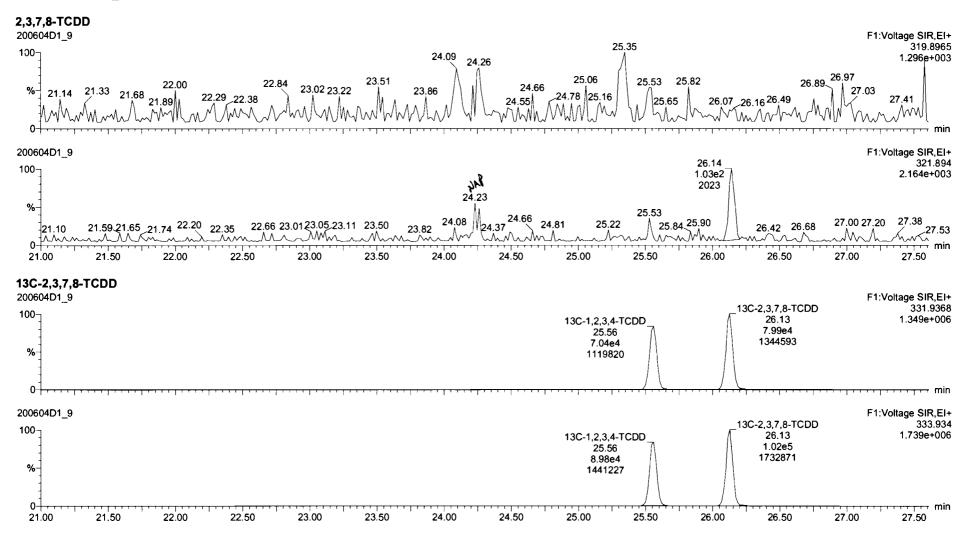
Last Altered: Friday, June 05, 2020 12:00:41 Pacific Daylight Time Friday, June 05, 2020 12:02:25 Pacific Daylight Time

Name: 200604D1_9, Date: 04-Jun-2020, Time: 18:01:30, ID: 2000945-05 PDI-146SC-A-04-05-200426 11.68, Description: PDI-146SC-A-04-05-200426

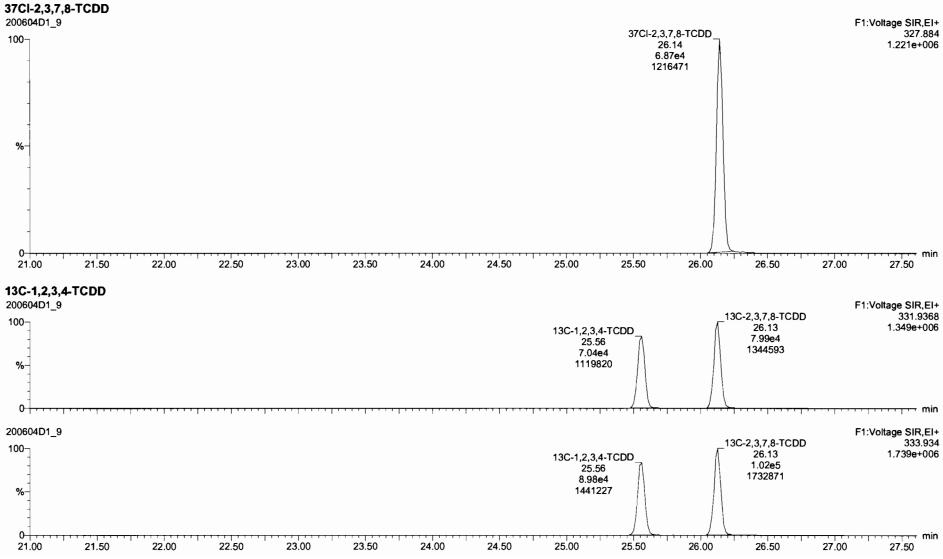
Penta-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Hexa-Furans

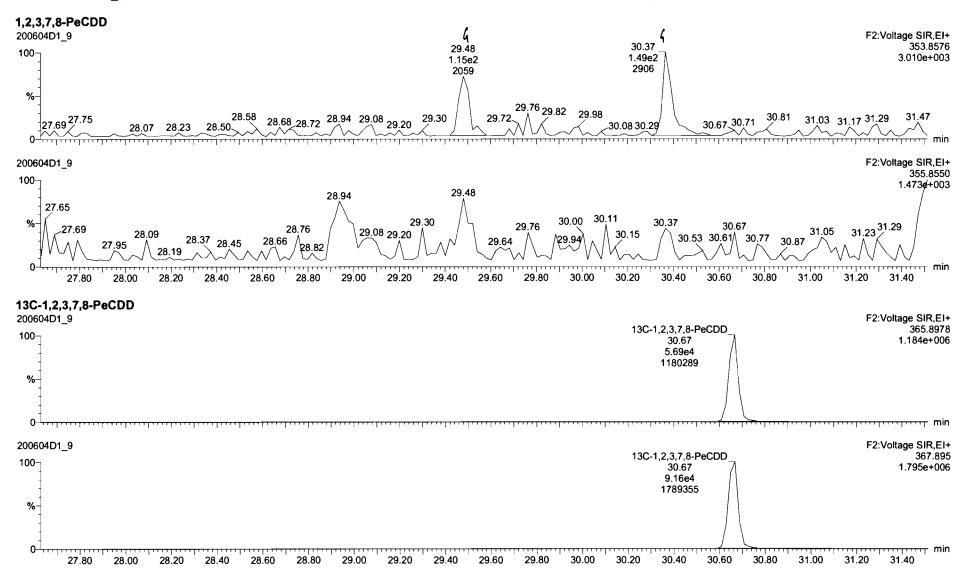

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Hepta-Furans


Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Quantify San Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	

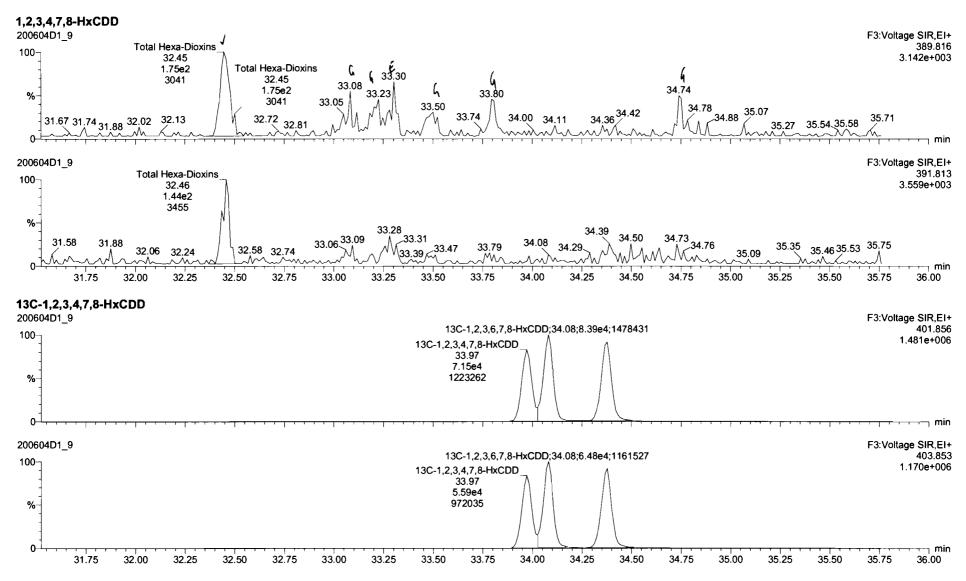
Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28


Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_9.qld

Last Altered:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:33 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_9.qld

Last Altered:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:33 Pacific Daylight Time

🔁 TargetLynx - 200604D1_9.qld * - [Chromatogram]

PDF146SC-A-04-05-200426 2000945-05 PDF146SC-A-04-05-200426 11.68

32.22 32.28

A File Edit Yiew Display Processing Window Help

200604D1 9

100-

%

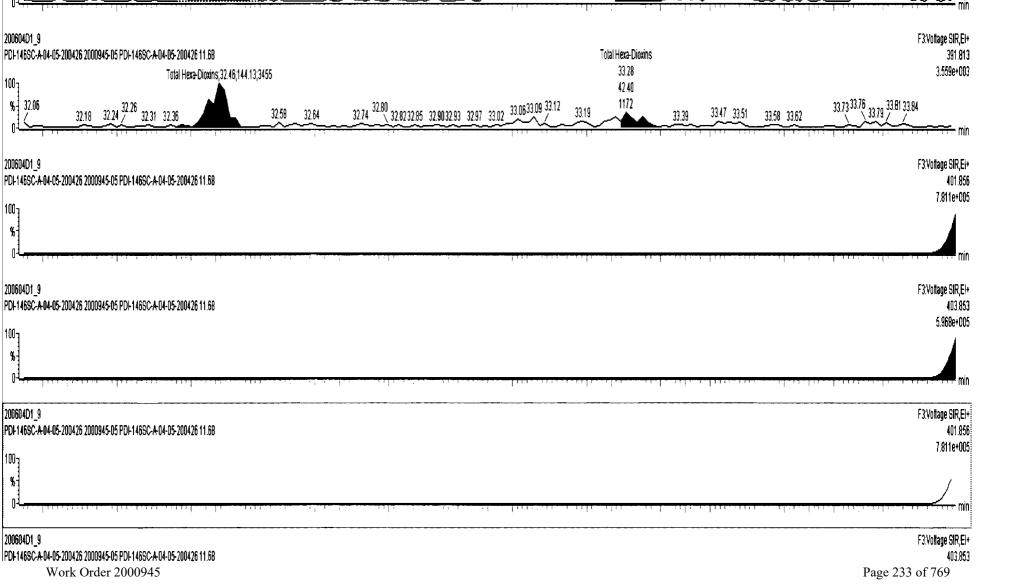
1005

1007 %-

1007 **%**-

100-**%**1

32.13


☞目:61故(遼興興+11)+・◇◆・+)+・Х:図丙回日図Ц● ●日田 ● 🕈

Total Hexa Dioxins; 32, 45; 171, 21; 3031

Total Hexa-Dioxins; 32.45;171.21;3031 32.72

l al a malfinget i des l'al de

32.81

32.90 32.96^{33.00} 33.05^{33.00} 33.12 33.18^{33.23} 33.0B

Total Hexa-Dioxins

33.30 71.65

2014

<u>33.3733.40</u> 33.42 33.50 33.52

, six _ 3 X

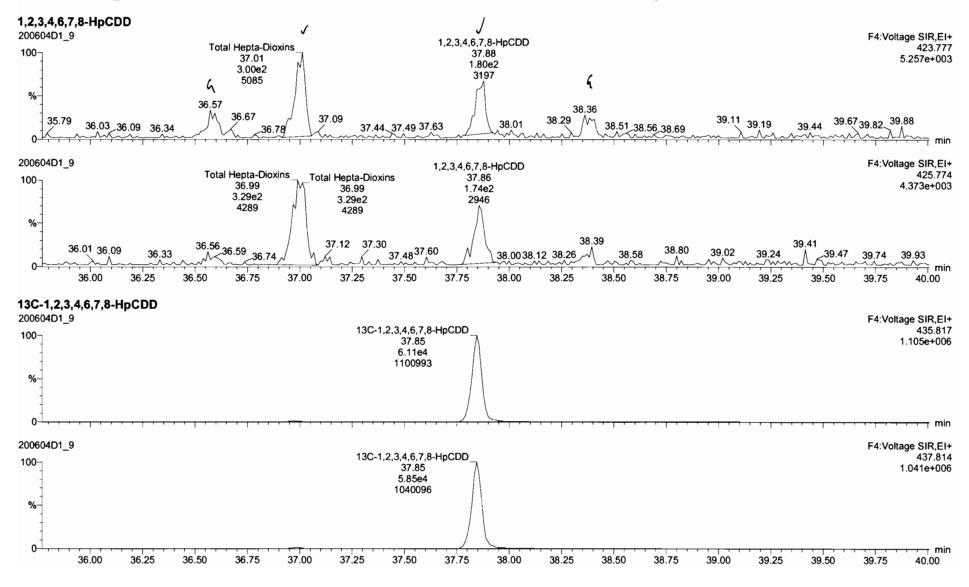
F3:Vollage SIR EI+

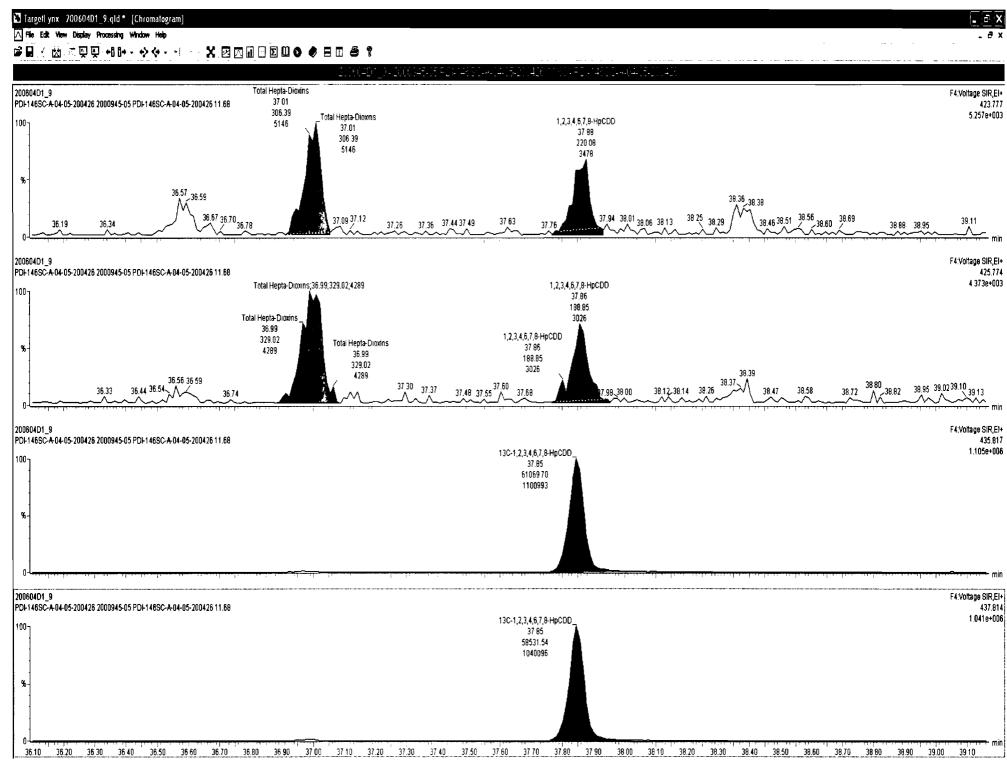
33.90

33.80

33.59 33.64 33.68 33.74

389.816


3.142e+003


Quantify Sample Report MassLynx 4.1

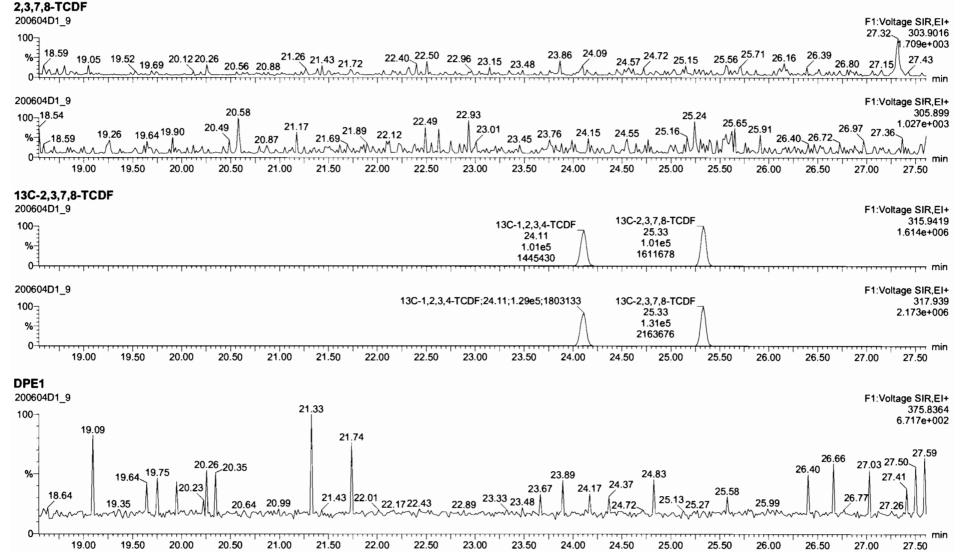
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_9.qld

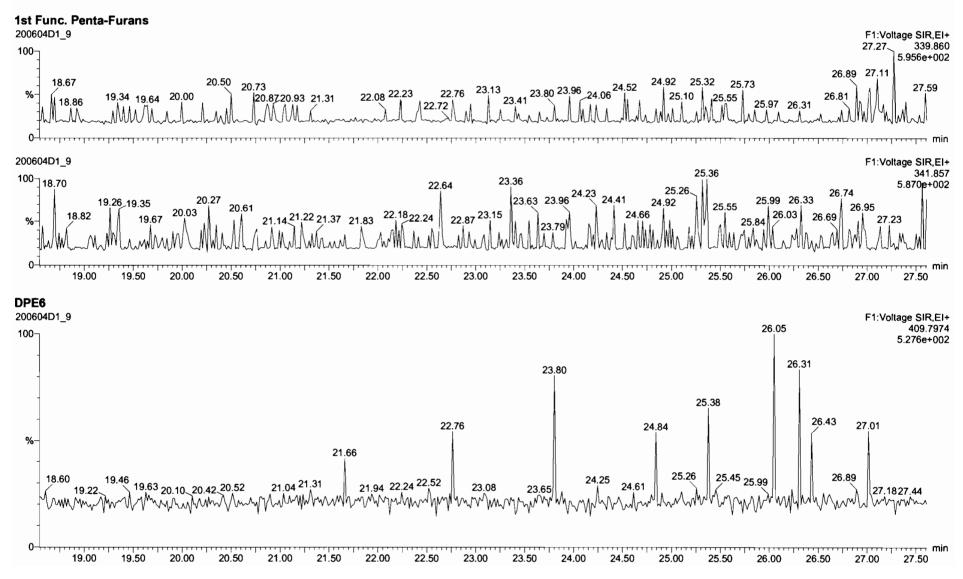
Last Altered:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:33 Pacific Daylight Time

Ready

Work Order 2000945

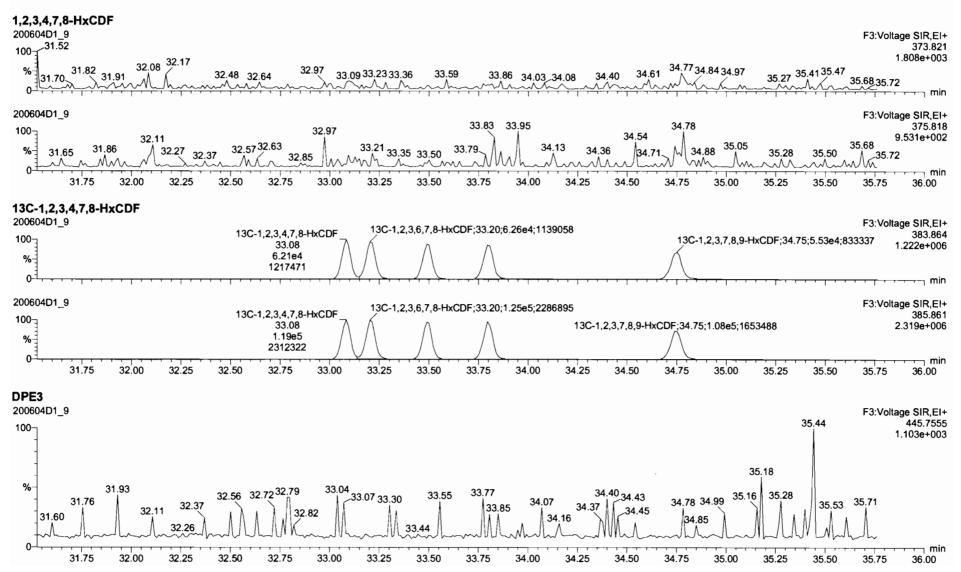

CAP NUM

200604D1 9

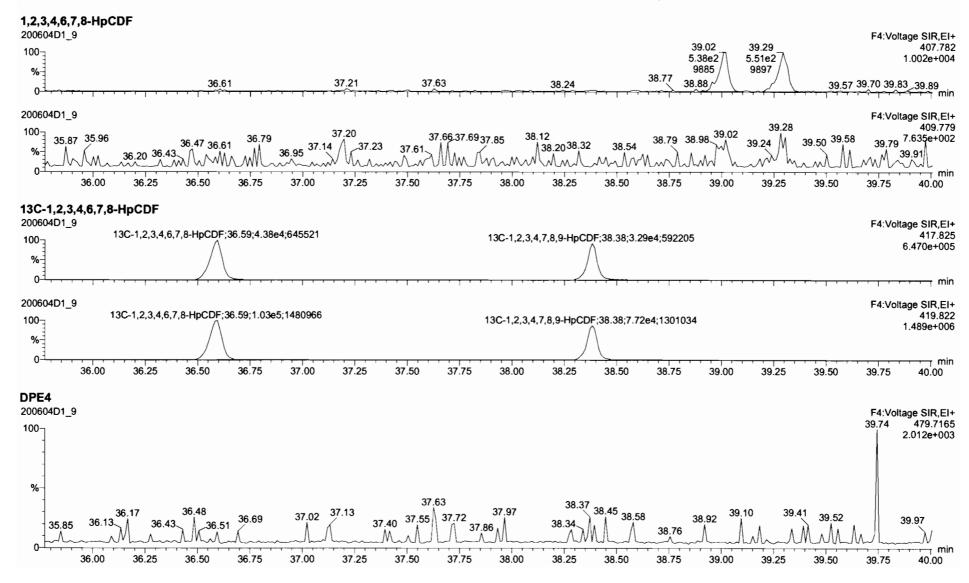

Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	

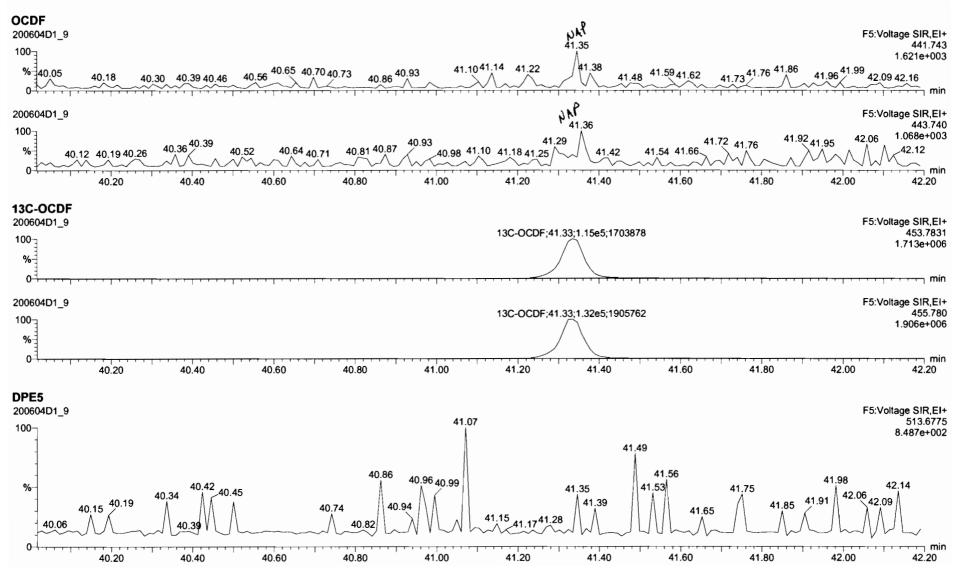
Quantify Sam Vista Analytica		Page 7 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	
Printed:		
Name: 200604	D1_9, Date: 04-Jun-2020, Time: 18:01:30, ID: 2000945-05 PDI-146SC-A-04-05-200426 11.68, Description: PDI-146SC-A-04-05-200426	


Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	


Quantify Sample Report MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200604D1\200604D1 9.gld


Last Altered:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time
Printed:	Friday, June 05, 2020 09:44:33 Pacific Daylight Time


Quantify San Vista Analytica		Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_9.qld	
Last Altered: Printed:	Friday, June 05, 2020 09:35:29 Pacific Daylight Time Friday, June 05, 2020 09:44:33 Pacific Daylight Time	

Quantify Sam /ista Analytica		MassLynx 4.1									Page 13 of
)ataset:	U:\VG7.PRO\R	esults\200604D1\20	0604D1_9.qld								
ast Altered: Printed:		5, 2020 09:35:29 Pac 5, 2020 09:44:33 Pac									
lama: 20060		hun 2020 Times 46			C A 04 05 00	0400 44 CO D					
FK1	101_9, Date: 04	Jun-2020, Time: 18	.01:30, ID: 20009	45-05 PDI-1405	C-A-04-05-20	0420 11.08, D	escription: r	PDI-1465C	-A-U4-U5-2		
00604D1_9	.43;1.78e3;69998	20.62;1.62e3;41797	21.65.21.72 22.7	9;1.25e3;35035 22.	95 23.56;9.10e2;4	47033 24.52	24.83 25.35;2	.70e3;59551	26.92;1.	.06e3;69234 F	1:Voltage SIR,I 316.98 5: 407e +(
%		Martin De Martin M					Villevi				y.solett
0 ⁻¹	0 19.50 20	.00 20.50 21.00) 21.50 22.00) 22.50 23	.00 23.50	24.00 24.	50 25.00	25.50	26.00	26.50 27.0	00 27.50
- K2										_	
0604D1_9 0-3 ^{27.65} 27.9	99;1.02e4;100001	28.53;2.87e3;89170	29.	28;2.82e3;78026	29.66 29.9	98;3.78e3;65004	3	0.85;1.59e3;4	49900 31	F 13;9.52e2;474.	
%	YY		<u> </u>								
0		**[*********************									·····
27.80	28.00 28.20	28.40 28.60	28.80 29.00	29.20 29.40	29.60 29.80	30.00 30	.20 30.40	30.60	30.80 31	1.00 31.20	31.40
FK3 00604D1 9										-	
00-1 31.76 (32.03 32.51;6	.68e3;97605 32.78;4.90e	3;161565	33.77;1.13e4;1878	88 34.09;8.76	e3;172634		35.11;5.52	e3;199202	35.40 35.54	3:Voltage SIR, 380.9
%											~ 3.110e+
0			· · · · · · · · · · · · · · · · · · ·				····			.	
31.7	5 32.00 32	.25 32.50 32.7	5 33.00 33.2	5 33.50 3	3.75 34.00	34.25 34	.50 34.75	35.00	35.25	35.50 3	5.75 36.0
FK4										_	
0604D1_9 0035.97	9;2.10e3;155459	36,69;1.44e3;127920	37.60;5.16e	3;96929 38	.01;3.10e3;10710	0	8.61	39.22;4	.04e4;307289		4:Voltage SIR, 430.9
%-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										2.002e+
0											, , , , , , , , , , , , , , , , , , ,
36.0	0 36.25	36.50 36.75 3	7.00 37.25	37.50 37.75	38.00	38.25 38.50	38.75	39.00	39.25	39.50 39	.75 40.0
FK5											
00604D1_9 0040.09	40.22 40.34	40.38 40.60	40.71_40.81;1.85e3;71	498 41.01	41.20;4.39e3;98	135 41.39	41.54 41.56	41.66 41.73	41.86 41.8	8 42.04 F	5:Voltage SIR, 42.14 454.9
							~~~~~				1.224e+
•											
%											

Work Order 2000945

<b>Quantify Sam</b> Vista Analytica	aple Summary Report MassLynx 4.1		Page 1 o
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld		
Last Altered: Printed:	Thursday, June 04, 2020 10:45:06 Pacific Daylight Time Thursday, June 04, 2020 10:46:24 Pacific Daylight Time	7)B 61	14/20 0-106/05/2020

### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RŤ	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.987	11.243	26.158		1.001				0.100	
2	2 1,2,3,7,8-PeCDD			NO	0.982	11.243	30.670		1.001				0.135	
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	11.243	33.982		1.000				0.201	
4	4 1,2,3,6,7,8-HxCDD			NO	1.04	11.243	34.070		1.000				0.203	
5	5 1,2,3,7,8,9-HxCDD			NO	1.00	11.243	34.401		1.001				0.228	
6.	6 1,2,3,4,6,7,8-HpCDD	6.41e2	1.05	NO	0.992	11.243	37.856	37.86	1.000	1.000	0.95282		0.130	0.953
7	7 OCDD	4.09e3	0.86	NO	1.04	11.243	41.104	41.13	1.000	1.001	6.7446		0.138	6.74
8	8 2,3,7,8-TCDF			NO	0.882	11.243	25.357		1.001				0.0624	
9	9 1,2,3,7,8-PeCDF			NO	1.05	11.243	29.502		1.001				0.0484	
10	10 2,3,4,7,8-PeCDF			NO	1.06	11.243	30.397		1.001				0.0490	
11	11 1,2,3,4,7,8-HxCDF			NO	1.08	11.243	33.083		1.000				0.0674	
12	12 1,2,3,6,7,8-HxCDF			NO	1.04	11.243	33.214		1.000				0.0696	
13	13 2,3,4,6,7,8-HxCDF			NO	1.11	11.243	33.830		1.001				0.0729	
14	14 1,2,3,7,8,9-HxCDF			NO	1.06	11.243	34.740		1.000				0.0975	
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.13	11.243	36.620		1.001				0.110	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.33	11.243	38.372		1.000				0.109	
17.	17 OCDF			NO	0.933	11.243	41.324		1.000				0.116	
18	18 13C-2,3,7,8-TCDD	1.96e5	0.79	NO	1.21	11.243	26.226	26.13	1.026	1.022	165.76	93.2	0.290	
19	19 13C-1,2,3,7,8-PeCDD	1.56e5	0.61	NO	0.996	11.243	30.724	30.65	1.202	1.199	159.99	89.9	0.285	
20	20 13C-1,2,3,4,7,8-HxCDD	1.34e5	1.30	NO	0.679	11.243	33.958	33.97	1.014	1.014	182.94	103	0.535	
21	21 13C-1,2,3,6,7,8-HxCDD	1.58e5	1.28	NO	0.850	11.243	34.068	34.07	1.017	1.017	172.64	97.0	0.427	
22	22 13C-1,2,3,7,8,9-HxCDD	1.52e5	1.28	NO	0.798	11.243	34.340	34.37	1.025	1.026	176.13	99.0	0.454	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.21e5	1.04	NO	0.697	11.243	37.809	37.85	1.129	1.130	160.40	90.2	0.498	
24	24 13C-OCDD	2.08e5	0.91	NO	0.579	11.243	40.836	41.10	1.219	1.227	333.24	93.7	0.610	
25	25 13C-2,3,7,8-TCDF	2.85e5	0.78	NO	1.13	11.243	25.305	25.33	0.990	0.991	157.95	88.8	0.342	
28	26 13C-1,2,3,7,8-PeCDF	2.51e5	1.62	NO	0.996	11.243	29.541	29.48	1.156	1.153	157.19	88.4	0.308	
27	27 13C-2,3,4,7,8-PeCDF	2.44e5	1.64	NO	0.969	11.243	30.443	30.37	1.191	1.18 <b>8</b>	157.39	88.5	0.317	
28	28 13C-1,2,3,4,7,8-HxCDF	1.88e5	0.51	NO	1.06	11.243	33.087	33.08	0.988	0.988	164.72	92.6	0.494	
29	29 13C-1,2,3,6,7,8-HxCDF	1.99e5	0.51	NO	1.18	11.243	33.221	33.20	0.992	0.991	156.84	88.2	0.445	
30	30 13C-2,3,4,6,7,8-HxCDF	1.85e5	0.49	NO	1.06	11.243	33.794	33.80	1.009	1.009	162.52	91.4	0.494	
31	31 13C-1,2,3,7,8,9-HxCDF	1.62e5	0.51	NO	0.879	11.243	34.695	34.74	1.036	1.037	170.93	96.1	0.594	

# Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

# Dataset: U:\VG7.PRO\Results\200603D1\200603D1_12.qld

Last Altered:	Thursday, June 04, 2020 10:45:06 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:46:24 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.55e5	0.43	NO	0.893	11.243	36.403	36.58	1.087	1.092	161.24	90.6	0.455	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.14e5	0.43	NO	0.613	11.243	38.412	38.37	1.147	1.146	171.36	96.3	0.662	
34	34 13C-OCDF	2.42e5	0.89	NO	0.741	11.243	40.991	41.32	1.224	1.234	302.14	84.9	0.444	
35	35 37CI-2,3,7,8-TCDD	8.16e4			1.18	11.243	26.223	26.14	1.026	1.023	70.740	99.4	0.0722	
36	36 13C-1,2,3,4-TCDD	1.74e5	0.78	NO	1.00	11.243	25.480	25.56	1.000	1.000	177.90	100	0.349	
37	37 13C-1,2,3,4-TCDF	2.85e5	0.78	NO	1.00	11.243	24.020	24.11	1.000	1.000	177.90	100	0.386	
38	38 13C-1,2,3,4,6,9-HxCDF	1.92e5	0.50	NO	1.00	11.243	33.530	33.49	1.000	1.000	177.90	100	0.523	
39	39 Total Tetra-Dioxins				0.987	11.243	24.620		0.000		0.00000		0.0634	0.169
40	40 Total Penta-Dioxins				0.982	11.243	29.960		0.000		0.14080		0.0533	0.233
41	41 Total Hexa-Dioxins				1.04	11.243	33.635		0.000		0.70072		0.216	0.952
42	42 Total Hepta-Dioxins				0.992	11.243	37.640		0.000		2.5134		0.130	2.51
43	43 Total Tetra-Furans				0.882	11.243	23.610		0.000				0.0303	
44	44 1st Func. Penta-Furans				1.05	11.243	27.090		0.000				0.0109	
45	45 Total Penta-Furans				1.05	11.243	29.275		0.000				0.0252	
46	46 Total Hexa-Furans				1.11	11.243	33.555		0.000				0.0397	
47	47 Total Hepta-Furans				1.13	11.243	37.835		0.000				0.0655	

# Quantify Totals Report MassLynx 4.1

-- --

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_12.qld

Last Altered:	Thursday, June 04, 2020 10:45:06 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:46:24 Pacific Daylight Time

### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

### Name: 200603D1_12, Date: 03-Jun-2020, Time: 22:56:57, ID: 2000945-06 PDI-146SC-A-05-06-200426 12.84, Description: PDI-146SC-A-05-06-200426

### **Tetra-Dioxins**

Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 Total Tetr	a-Dioxins 24.23	1.055e3	1.853e3	7.987e1	1.342e2	0.60 ۲	YES	0.000e0	0.00000	0.16920	0.100

### Penta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.62	9.550e2	7.620e2	5.817e1	4.847e1	1.20	YES	0.000e0	0.00000	0.091813	0.0533
2	Total Penta-Dioxins	29.08	9.480e2	1.360e3	4.517e1	7.598e1	0.59	NO	1.212e2	0.14080	0.14080	0.0533

### **Hexa-Dioxins**

Г	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1 Total Hexa-Dioxins	32.45	6.970e3	4.814e3	3.371e2	2.674e2	1.26	NO	6.045e2	0.70072	0.70072	0.216
	2 Total Hexa-Dioxins	33.27	2.857e3	1.722e3	1.201e2	1.220e2	0.98	YES	0.000e0	0.00000	0.25142	0.216

### **Hepta-Dioxins**

Г	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
ł	t Total Hepta-Dioxins	36.99	7.781e3	8.800e3	5.228e2	5.272e2	0.99	NO	1.050e3	1.5606	1.5606	0.130
	2 1,2,3,4,6,7,8-HpCDD	37.86	6.320e3	5.929e3	3.281e2	3.129e2	1.05	NO	6.410e2	0.95282	0.95282	0.130

### **Tetra-Furans**

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

### Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									

-	Totals Report MassLynx 4.1 ytical Laboratory	
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	

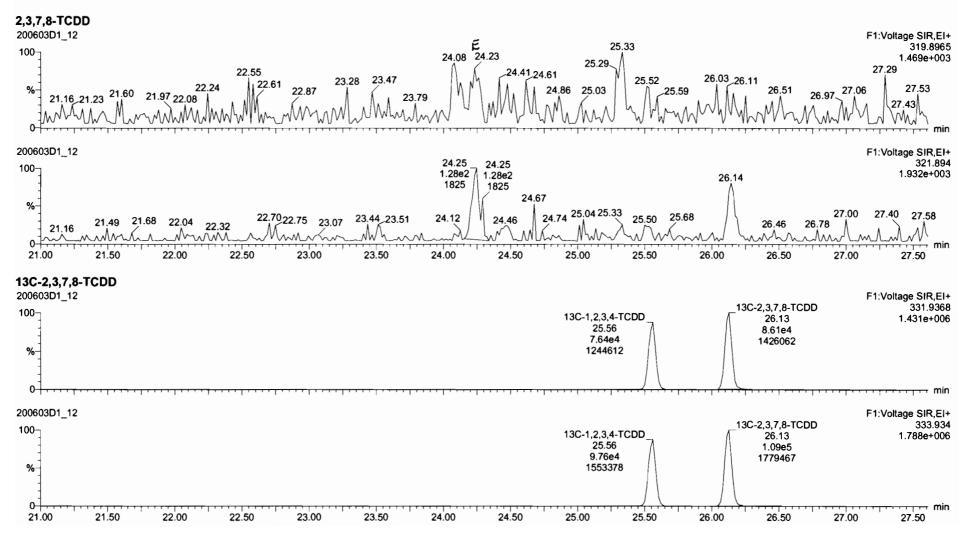
Last Altered:Thursday, June 04, 2020 10:45:06 Pacific Daylight TimePrinted:Thursday, June 04, 2020 10:46:24 Pacific Daylight Time

Name: 200603D1_12, Date: 03-Jun-2020, Time: 22:56:57, ID: 2000945-06 PDI-146SC-A-05-06-200426 12.84, Description: PDI-146SC-A-05-06-200426

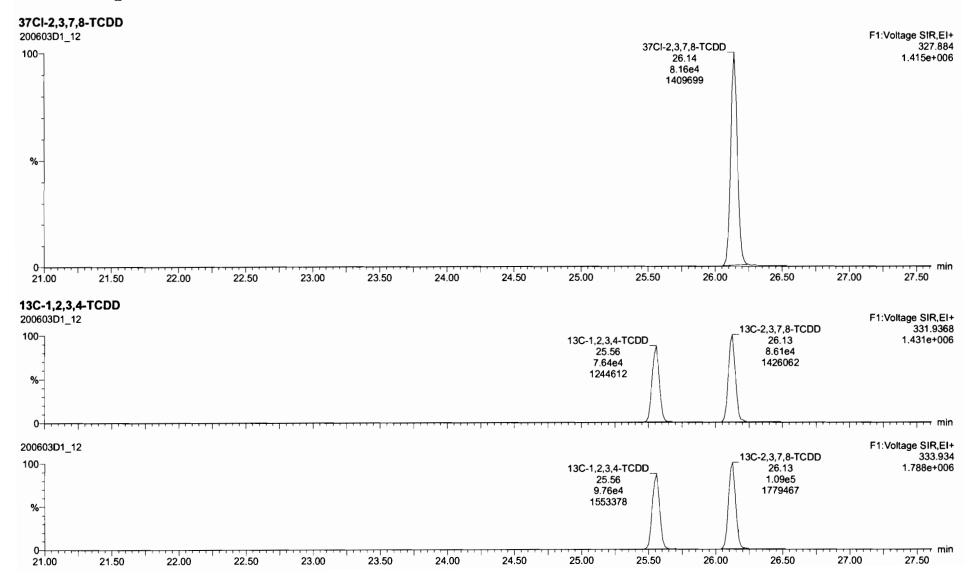
### Penta-Furans

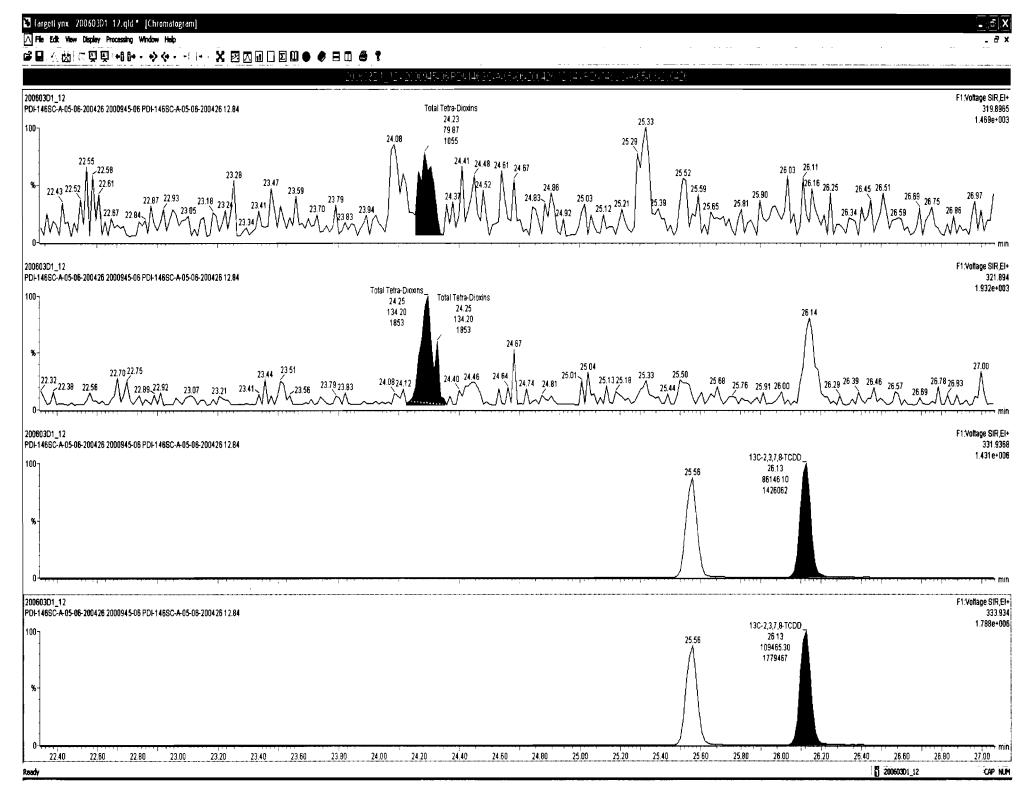
Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									

### Hexa-Furans


Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y Res	p Conc.	EMPC	DL
1								

### Hepta-Furans


Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										


Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	

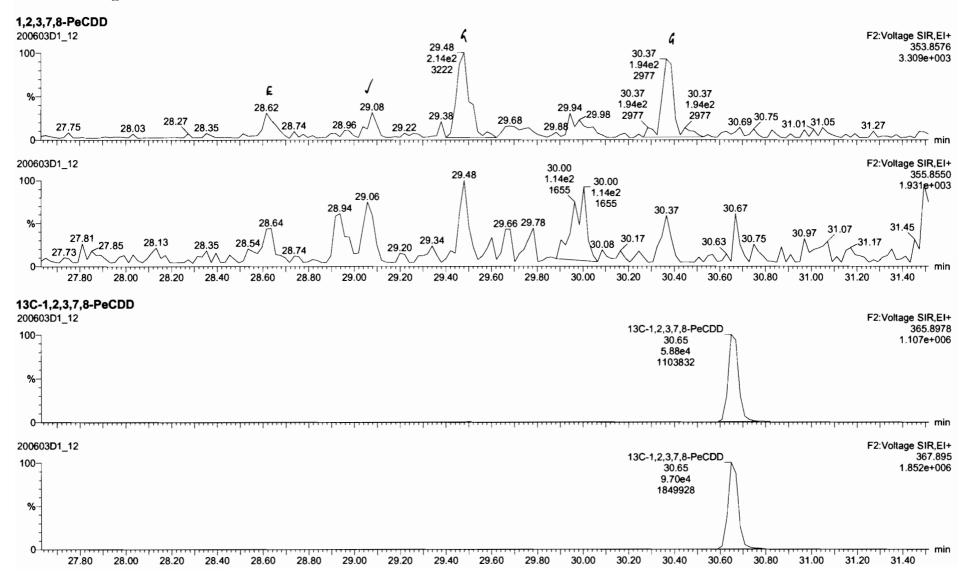
### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

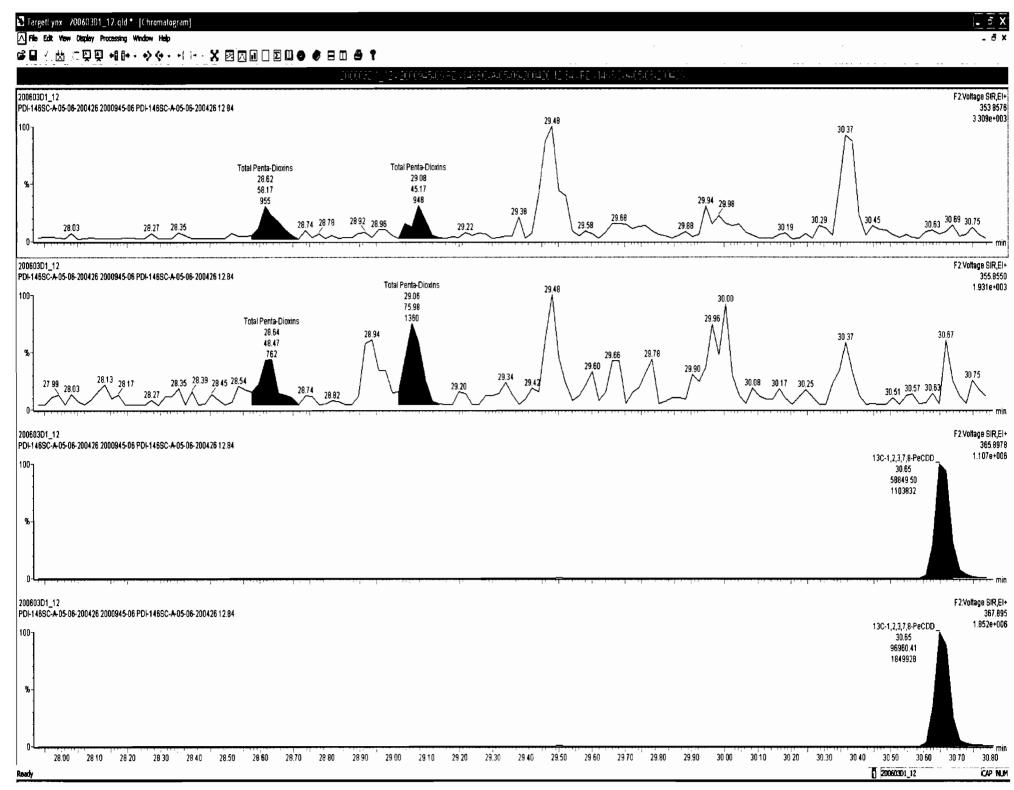


Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	

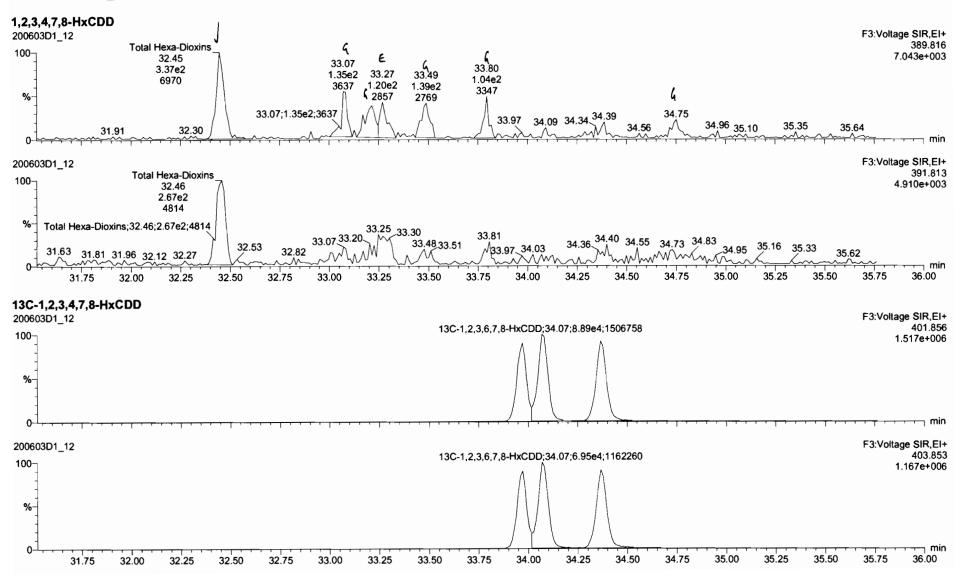





Page 250 of 769


Work Order 2000945

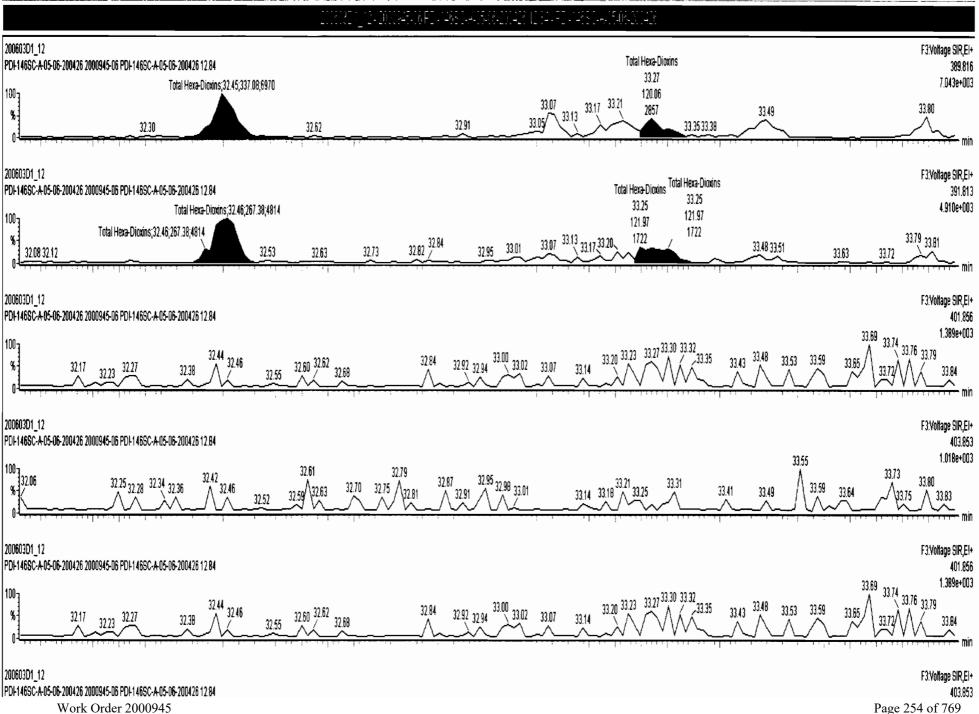
# Quantify Sample ReportMassLynx 4.1Vista Analytical Laboratory


### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_12.qld

Last Altered:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:04:22 Pacific Daylight Time



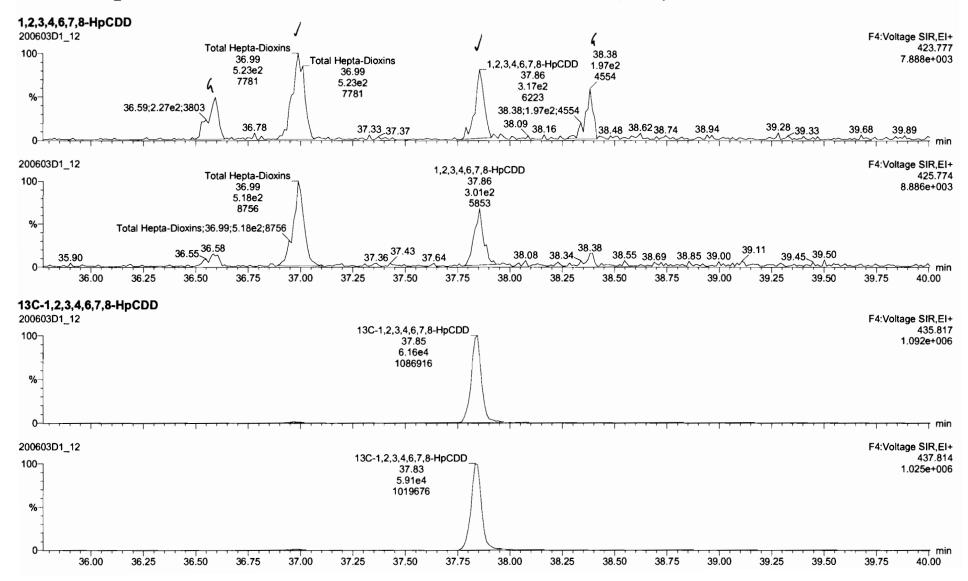


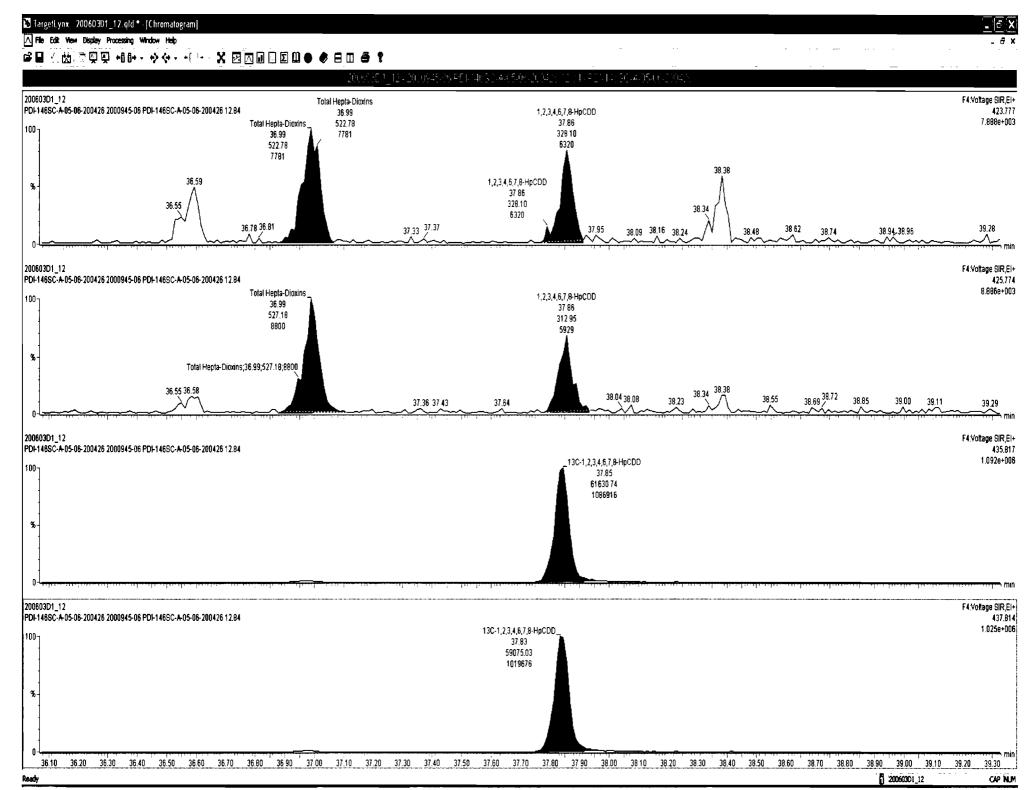

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	



### 🖁 TargetLynx - 200603D1_12.qld * - [Chromatogram]

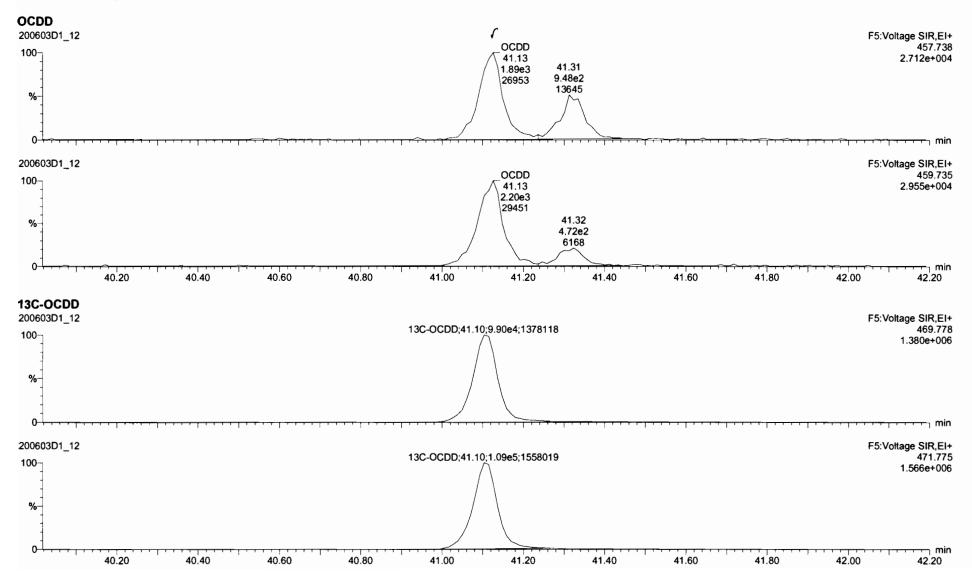
### A File Edit Yew Display Processing Window Help


## ᄚᇛᇲᄨᄚᅋᆞᅊᆘᆞ᠅᠅ᆞᆞХᄚᇟᇜᇗᄱᅌᆥᆥᇊᅆ



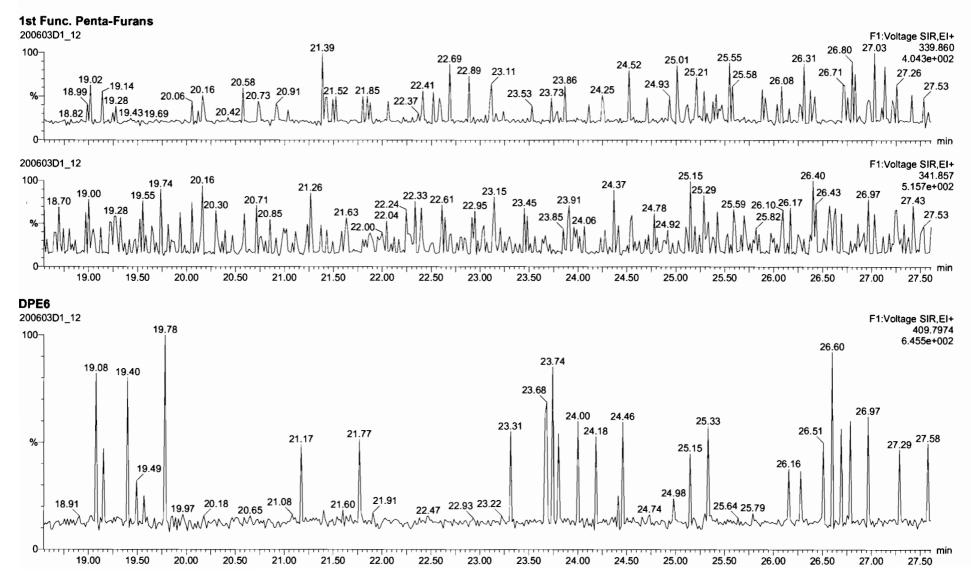

5 X

. 3 X

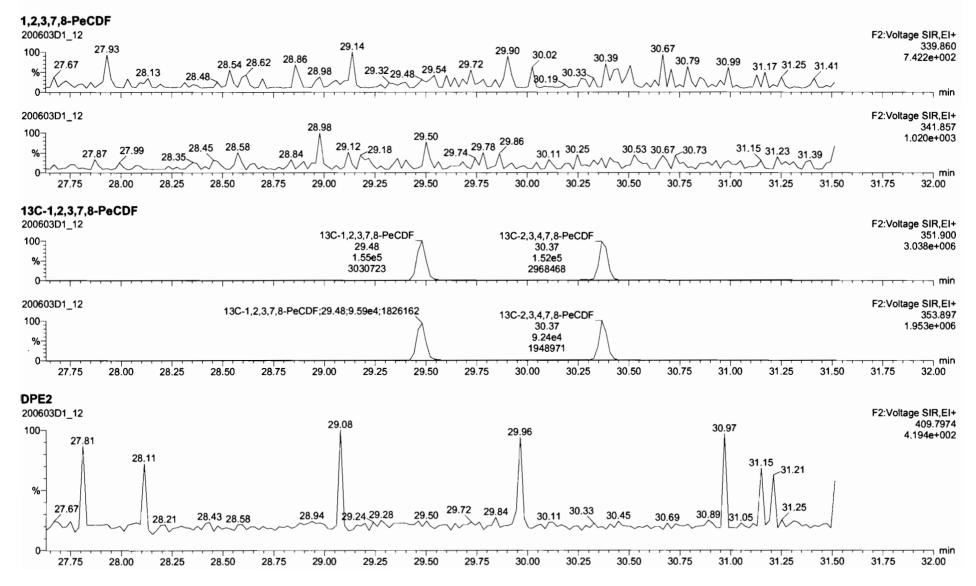

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	

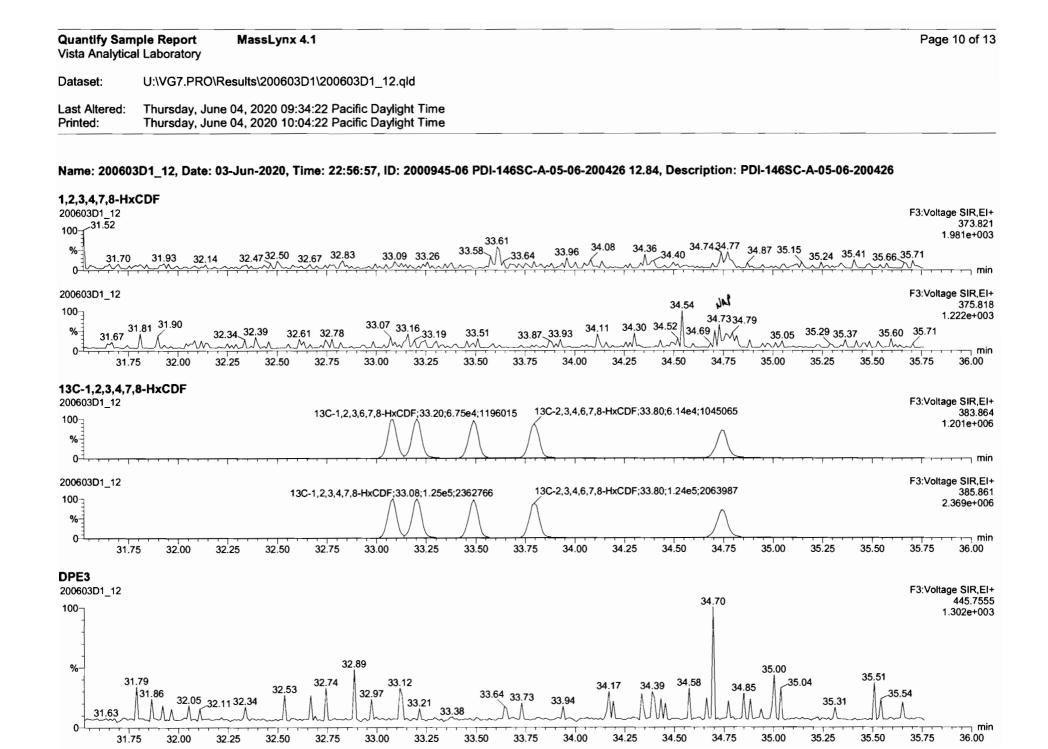




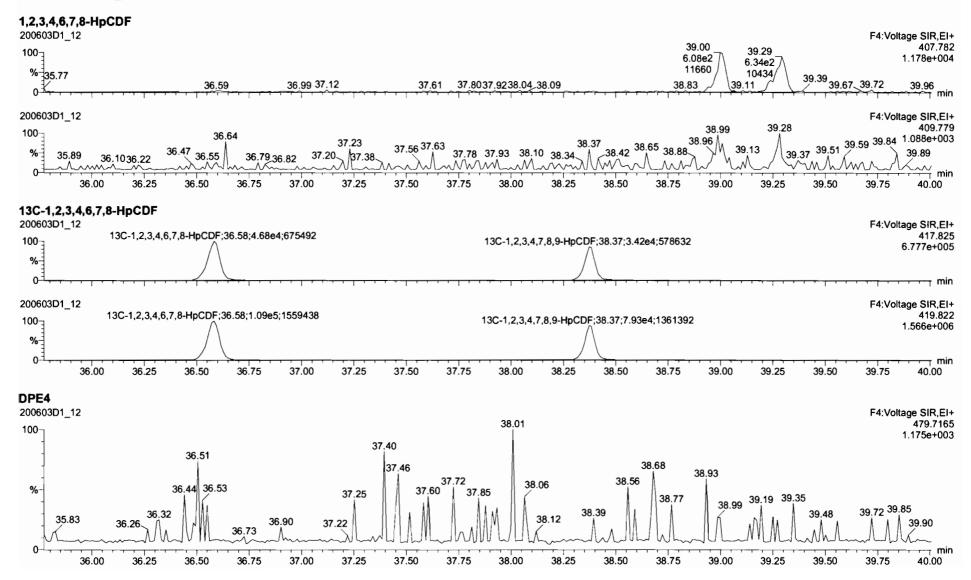

Work Order 2000945

Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	

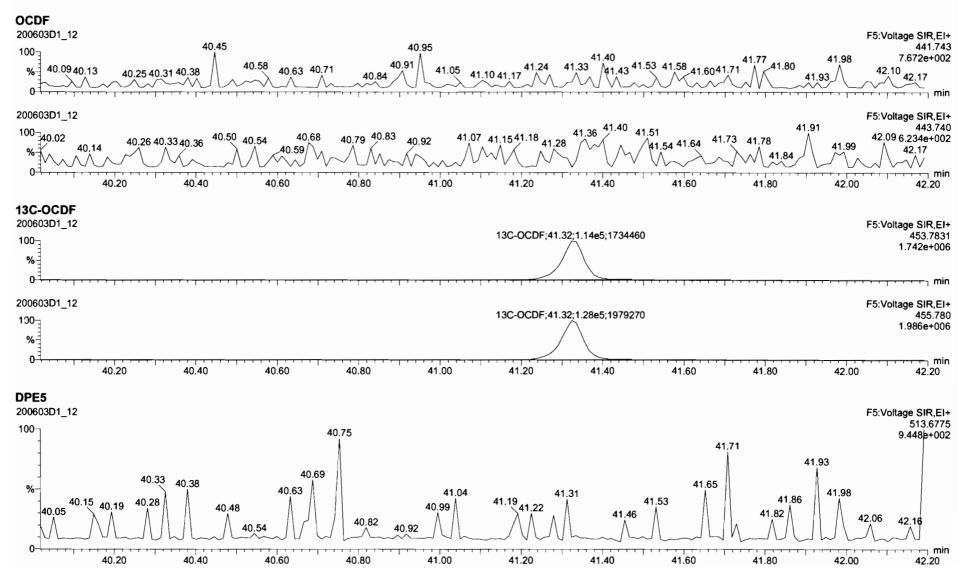




uantify Sam ista Analytica		MassLynx 4.	.1								P	age 7 of 1
ataset:	U:\VG7.PRO\	Results\200603D	1\200603D1_1	2.qld								
ast Altered: rinted:		ne 04, 2020 09:34 ne 04, 2020 10:04										
ame: 200601	3D1 12 Date:	03-Jun-2020, Tin	no: 22:56:57 [	D: 2000045-0		0-05-06-20042	6 12 84 D	ecription		C-A-05-06-20	10426	
3,7,8-TCDF	501_12, Date.	<b>03-3011-2020</b> , 1111	10. 22.30.37,1	D. 2000343-0	0 - 01- 1403 0-/	~~03~00~20042	0 12.04, De	scription.	FDF1403	5-7-05-00-20		
00603D1_12 00⊣											27.30	tage SIR,E
% 18.90 19.0	)2 19.55 19.78	20.06 20.58 20.70	21.04 21.23	21.77_21.8822.1	4 22.73	23.30 23.77	23.99 24.9	25. 58 24.96	22 25.55 25	.96 26.11	1.00e2 1976 26.63 26.97	2.066e+00 27.44
00603D1_12				1		1			•		F1:Vo	tage SIR,E
00 % 18.86	9.12 19.57	20.12 20.42 21.0	.0421.10 21.51	21.75 22.2322.29	22.73 22.90	23.33 23.73	24.18 24.5	24.74	.24 25.68	25.93 26.20 26.	29 26.83 27.33	305.89 8.368e+00
0 ⁴ ////////////////////////////////////	0 <b>19.50</b>	20.00 20.50	21.00 21.50	22.00	22.50 23.00	23.50 24	.00 24.50	25.00	25.50	26.00 26.	50 27.00	27.50
3C-2,3,7,8-T	CDE											
00603D1_12							130	-2,3,7,8-TCDF			F1:Vo	tage SIR,E 315.941
00						13C-1,2,3,4-TCDI 24.11	7	25.33 1.25e5	7			2.034e+0
%						1.25e5 1784048	Д	2026484	Λ			m
00603D1_12									[]		F1·Vo	itage SIR,E
00 ₇				130	-1,2,3,4-TCDF;24	.11;1.60e5;228284	¹⁶ 13C	-2,3,7,8-TCDF 25.33	: אר			317.9 2.595e+0
%							$\wedge$	1.60e5 2584161	$\Lambda$			2.0000.0
0- ¹	0 19.50 2	20.00 20.50	21.00 21.50	22.00	22.50 23.00	23.50 24	.00 24.50	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	25.50	26.00 26.	50 27.00	27.50
<b>PE1</b> 00603D1_12											F1:Vo	ltage SIR,E
007			21.04								27.07	375.834 4,992e+00
18.90	19.38	20.67			22.89 22.96	23.36 23.82 23.56	24.31 24.	48 25. 24.80		25.90		
Julia	19.19 19.74 1	9.98 20.44 20.	.97 21.36 21	.46 22.26 2	2.47 23.		han ha	24.87	25.47	26.03 26.62	2.26.71	Nhur

Quantify Sam Vista Analytica	· · ·	Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	




Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	






Quantify San Vista Analytica	· · ·	Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	



ratory	
G7.PRO\Results\200603D1\200603D1_12.qld	
sday, June 04, 2020 09:34:22 Pacific Daylight Time sday, June 04, 2020 10:04:22 Pacific Daylight Time	
G	67.PRO\Results\200603D1\200603D1_12.qld sday, June 04, 2020 09:34:22 Pacific Daylight Time



Quantify San Vista Analytica	• • •	Page 13 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_12.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:34:22 Pacific Daylight Time Thursday, June 04, 2020 10:04:22 Pacific Daylight Time	

100- 19.34;4.02e3;115476 20.59;1.42e3;53796 21.60;3.10e3;62335 22.23 22.56 23.53;2.29e3;66580 24.32 25.04;2.70e3;70931 26.30;6.48e3;84913	bitage SIR,EI+ 316.9824 ∖ 6∕ <b>393e</b> +005
0 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00	27.50
PFK2 200603D1_12 100	oltage SIR,EI+ 1 366.9792 5.222e+005
	min 31.40
PFK3 200603D1_12 100 32.24;6.78e3;290193 32.59;1.77e4;281847 33.12;6.09e3;264428 33.93;1.30e4;281663 34.34 34.66 34.90;1.91e3;174547 35.29 35.50 55.29 35.50	oltage SIR,EI+ 380.9760 3.392e+006
31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 PFK4	
100 35.89 36.19 36.30 36.50.36.53.36.65 36.81 37.07 37.44;3.94e5;956754.37.72 37.87 37.95 38.20 38.36 38.50 38.68 38.77 39.17;1.57e4;278580 39.5139.63	430.9728 2.058e+006
0 ⁻¹ ,	40.00
PFK5 200603D1_12 100 40.08 40.42;1.44e3;84312 40.59 40.6140.72 40.74 40.88 41.03 41.05 41.24;2.15e3;91536 41.38;3.97e3;84941 41.60 41.81 41.91	bitage SIR,EI+ 454.9728 <del>∽1.059e</del> +006
0 ¹ 40.20 40.40 40.60 40.80 41.00 41.20 41.40 41.60 41.80 42.00	42.20

<b>Quantify Sample Summary Report</b>	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_13.qld

Last Altered:	Thursday, June 04, 2020 11:02:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:03:28 Pacific Daylight Time

DB 6/4/20 C706/05/2020

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.987	10.811	26.158		1.001				0.103	
2	2 1,2,3,7,8-PeCDD			NO	0.982	10.811	30.690		1.001				0.117	
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	10.811	33.982		1.000				0.130	
4	4 1,2,3,6,7,8-HxCDD			NO	1.04	10.811	34.082		1.000				0.127	
5	5 1,2,3,7,8,9-HxCDD			NO	1.00	10.811	34.412		1.001				0.146	
6	6 1,2,3,4,6,7,8-HpCDD	1.15e3	0.98	NO	0.992	10.811	37.856	37.87	1.000	1.001	1.4372		0.0980	1.44
7	7 OCDD	8.07e3	0.87	NO	1.04	10.811	41.115	41.13	1.000	1.000	11.878		0.183	11.9
8	8 2,3,7,8-TCDF			NO	0.882	10.811	25.357		1.001				0.0774	
9	9 1,2,3,7,8-PeCDF	9.69e1	0.94	YES	1.05	10.811	29.502	29.50	1.001	1.001	0.062955		0.0228	0.0503
10	10 2,3,4,7,8-PeCDF			NO	1.06	10.811	30.417		1.001				0.0664	
11	11 1,2,3,4,7,8-HxCDF	2.47e2	1.70	YES	1.08	10.811	33.083	33.09	1.000	1.000	0.19593		0.0381	0.163
12	12 1,2,3,6,7,8-HxCDF			NO	1.04	10.811	33.214		1.000				0.0724	
13	13 2,3,4,6,7,8-HxCDF			NO	1.11	10.811	33.841		1.001				0.0716	
14	14 1,2,3,7,8,9-HxCDF	1.02e2	1.07	NO	1.06	10.811	34.751	34.76	1.000	1.000	0.093225		0.0535	0.0932
15	15 1,2,3,4,6,7,8-HpCDF	1.97e2	0.90	NO	1.13	10.811	36.620	36.62	1.001	1.001	0.17576		0.0478	0.176
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.33	10.811	38.383		1.000				0.108	
17	17 OCDF	1.03e2	0.47	YES	0.933	10.811	41.335	41.35	1.000	1.000	0.14473		0.141	0.0983
18	18 13C-2,3,7,8-TCDD	1.95e5	0.81	NO	1.21	10.811	26.226	26.13	1.026	1.022	141.04	76.2	0.254	
19	19 13C-1,2,3,7,8-PeCDD	1.74e5	0.61	NO	0.996	10.811	30.724	30.67	1.202	1.200	152.20	82.3	0.155	
20	20 13C-1,2,3,4,7,8-HxCDD	1.56e5	1.26	NO	0.679	10.811	33.958	33.97	1.014	1.014	184.16	99.5	0.794	1
21	21 13C-1,2,3,6,7,8-HxCDD	1.83e5	1.32	NO	0.850	10.811	34.068	34.08	1.017	1.018	172.14	93.0	0.634	
22	22 13C-1,2,3,7,8,9-HxCDD	1.81e5	1.31	NO	0.798	10.811	34.340	34.38	1.025	1.027	181.42	98.1	0.675	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.49e5	1.01	NO	0.697	10.811	37.809	37.85	1.129	1.130	171.09	92.5	0.459	
24	24 13C-OCDD	2.43e5	0.93	NO	0.579	10.811	40.836	41.12	1.219	1.228	335.16	90.6	0.448	
25	25 13C-2,3,7,8-TCDF	2.56e5	0.77	NO	1.13	10.811	25.305	25.33	0.990	0.991	124.36	67.2	0.352	
26	26 13C-1,2,3,7,8-PeCDF	2.72e5	1.64	NO	0.996	10.811	29.541	29.48	1.156	1.153	149.90	81.0	0.562	[
27	27 13C-2,3,4,7,8-PeCDF	2.66e5	1.64	NO	0.969	10.811	30.443	30.39	1.191	1.189	150.42	81.3	0.577	
28	28 13C-1,2,3,4,7,8-HxCDF	2.15e5	0.52	NO	1.06	10.811	33.087	33.08	0.988	0.988	162.49	87.8	0.474	
29	29 13C-1,2,3,6,7,8-HxCDF	2.28e5	0.52	NO	1.18	10.811	33.221	33.20	0.992	0.991	155.13	83.9	0.426	
30	30 13C-2,3,4,6,7,8-HxCDF	2.22e5	0.52	NO	1.06	10.811	33.794	33.81	1.009	1.009	168.07	90.8	0.474	
31	31 13C-1,2,3,7,8,9-HxCDF	1.92e5	0.52	NO	0.879	10.811	34.695	34.75	1.036	1.038	174.22	94.2	0.570	

Quantify Sample Summary Report Vista Analytical Laboratory	MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_13.qld

Last Altered:	Thursday, June 04, 2020 11:02:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:03:28 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.84e5	0.44	NO	0.893	10.811	36.403	36.58	1.087	1.092	164.56	89.0	0.474	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.37e5	0.45	NO	0.613	10.811	38.412	38.38	1.147	1.146	178.41	96.4	0.689	
34	34 13C-OCDF	2.84e5	0.89	NO	0.741	10.811	40.991	41.33	1.224	1.234	305.91	82.7	0.440	
35	35 37CI-2,3,7,8-TCDD	7.80e4			1.18	10.811	26.223	26.14	1.026	1.023	57.545	77.8	0.0769	
36	36 13C-1,2,3,4-TCDD	2.13e5	0.78	NO	1.00	10.811	25.480	25.56	1.000	1.000	185.00	100	0.307	
37	37 13C-1,2,3,4-TCDF	3.37e5	0.77	NO	1.00	10.811	24.020	24.11	1.000	1.000	185.00	100	0.397	
38	38 13C-1,2,3,4,6,9-HxCDF	2.31e5	0.51	NO	1.00	10.811	33.530	33.49	1.000	1.000	185.00	100	0.501	[
39	39 Total Tetra-Dioxins				0.987	10. <b>81</b> 1	24.620		0.000		0.00000		0.0621	0.0700
40	40 Total Penta-Dioxins				0.982	10.811	29.960		0.000				0.0435	
41	41 Total Hexa-Dioxins				1.04	10.811	33.635		0.000		0.63116		0.138	0.889
42	42 Total Hepta-Dioxins				0.992	10.811	37.640		0.000		3.2106		0.0980	3.21
43	43 Total Tetra-Furans				0.882	10.811	23.610		0.000		0.073303		0.0363	0.0733
44	44 1st Func. Penta-Furans				1.05	10.811	27.090		0.000				0.00996	
45	45 Total Penta-Furans				1.05	10.811	29.275		0.000		0.00000		0.0245	0.0503
46	46 Total Hexa-Furans				1.11	10.811	33.555		0.000		0.093225		0.0409	0.256
47	47 Total Hepta-Furans				1.13	10.811	37.835		0.000		0.17576		0.0504	0.176

## Quantify Totals Report MassLynx 4.1

Vista Analytical Laboratory

#### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_13.qld

Last Altered:	Thursday, June 04, 2020 11:02:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:03:28 Pacific Daylight Time

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

#### Name: 200603D1_13, Date: 03-Jun-2020, Time: 23:42:05, ID: 2000945-07 PDI-146SC-A-06-07-200426 14.13, Description: PDI-146SC-A-06-07-200426

#### **Tetra-Dioxins**

Γ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RĀ	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	24.25	1.906e3	8.430e2	5.600e1	4.125e1	1.36	YES	0.000e0	0.00000	0.070023	0.0621

#### Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

#### **Hexa-Dioxins**

ſ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
ŀ	1 Total Hexa-Dioxins	32.47	6.498e3	4.811e3	3.575e2	2.556e2	1.40	NO	6.131e2	0.63116	0.63116	0.138
	2 Total Hexa-Dioxins	33.27	2.939e3	2.091e3	1.741e2	1.117e2	1.56	YES	0.000e0	0.00000	0.25762	0.138

#### **Hepta-Dioxins**

Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 Total Hepta-Dioxins	37.00	1.093e4	1.174e4	7.293e2	6.880e2	1.06	NO	1.417e3	1.7734	1.7734	0.0980
2 1,2,3,4,6,7,8-HpCDD	37.87	9.213e3	1.125e4	5.696e2	5.791e2	0.98	NO	1.149e3	1.4372	1.4372	0.0980

#### Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	25.58	9.890e2	7.660e2	4.188e1	4.744e1	0.88	NO	8.932e1	0.073303	0.073303	0.0363

#### **Penta-Furans function 1**

Г	Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n	n/y Resp	Conc.	EMPC	DL
1									

#### Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

#### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_13.qld

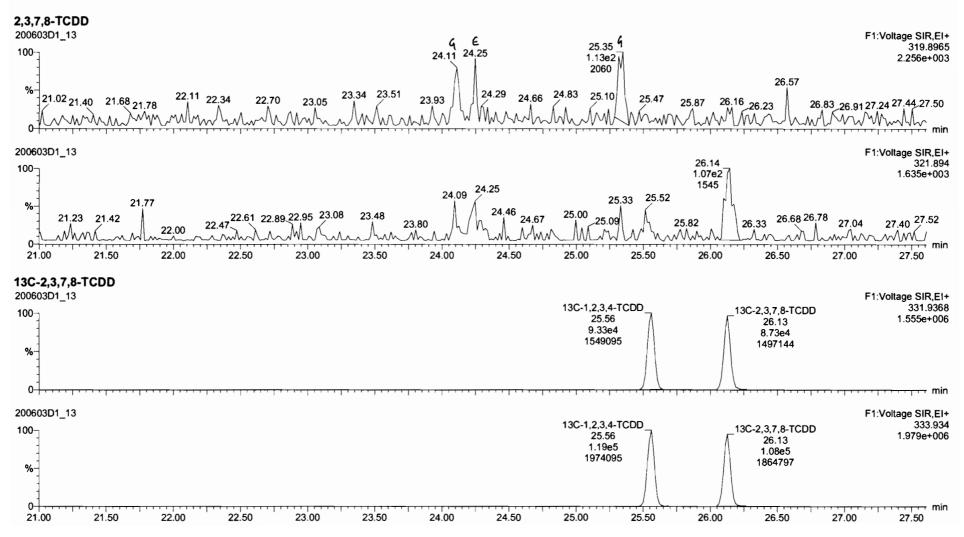
Last Altered:	Thursday, June 04, 2020 11:02:11 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:03:28 Pacific Daylight Time

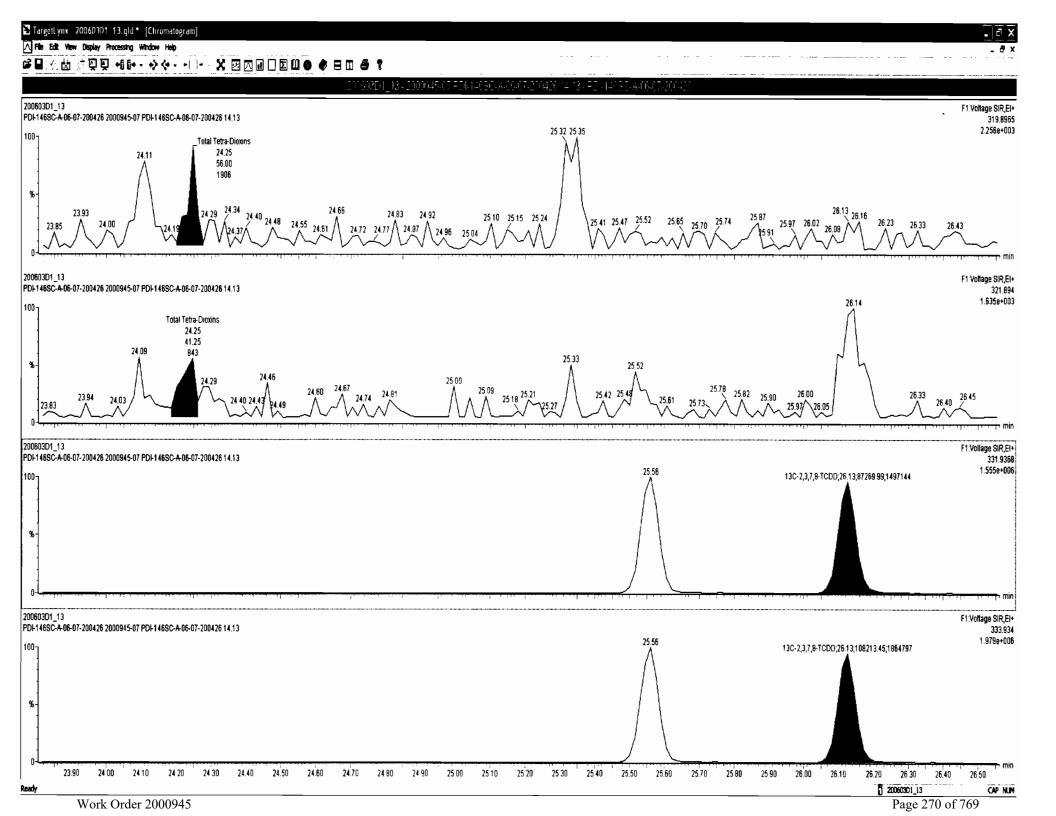
#### Name: 200603D1_13, Date: 03-Jun-2020, Time: 23:42:05, ID: 2000945-07 PDI-146SC-A-06-07-200426 14.13, Description: PDI-146SC-A-06-07-200426

#### Penta-Furans

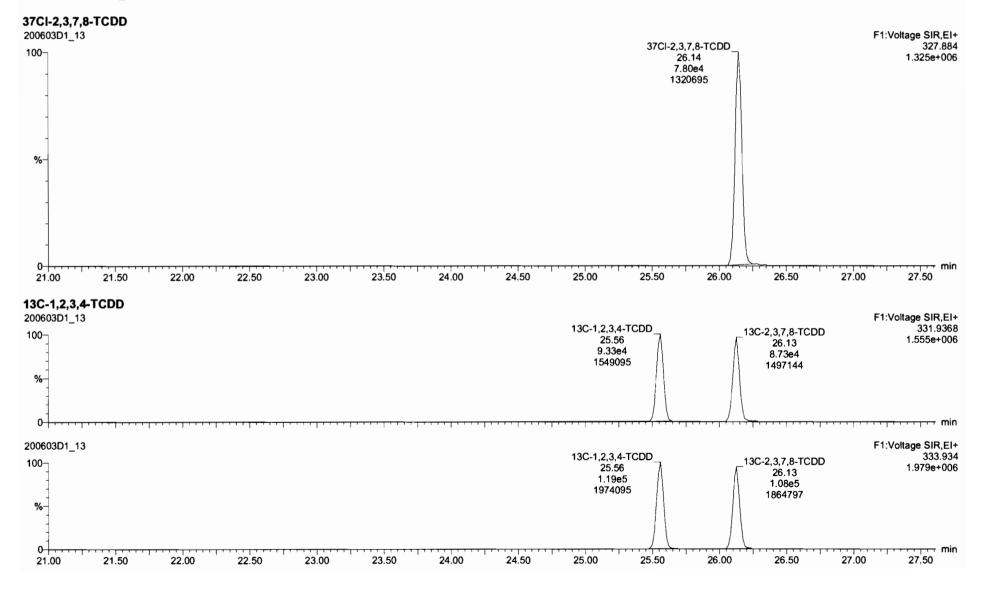
ſ		Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RĀ	n/y	Resp	Conc.	EMPC	DL
	1 1	1,2,3,7,8-PeCDF	29.50	8.730e2	1.265e3	4.704e1	4.983e1	0.94	YES	9.687e1	0.00000	0.050294	0.0228

#### Hexa-Furans

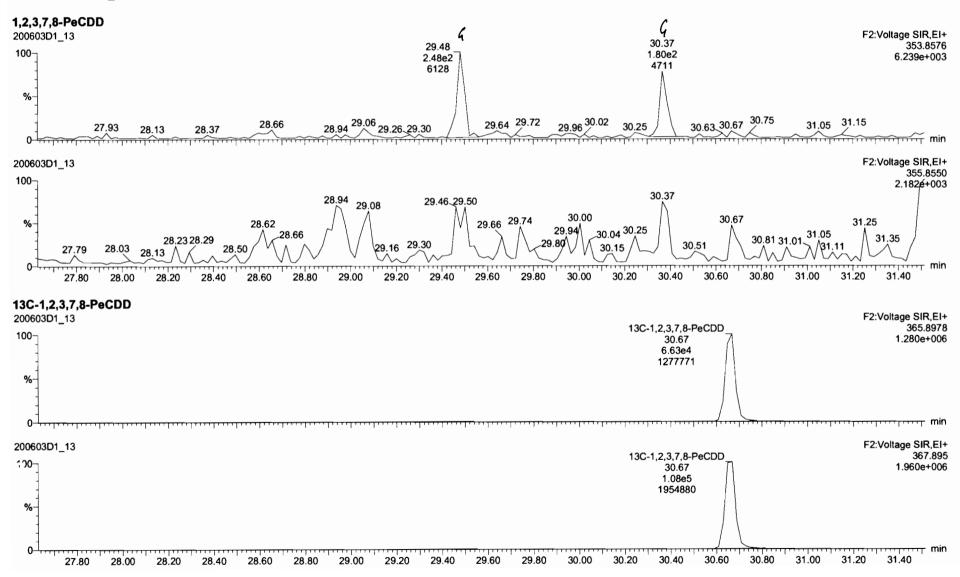

Γ	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,7,8-HxCDF	33.09	3.250e3	1.972e3	1.552e2	9.137e1	1.70	YES	2.465e2	0.00000	0.16266	0.0381
2	1,2,3,7,8,9-HxCDF	34.76	9.090e2	1.054e3	5.283e1	4.918e1	1.07	NO	1.020e2	0.093225	0.093225	0.0535


#### Hepta-Furans

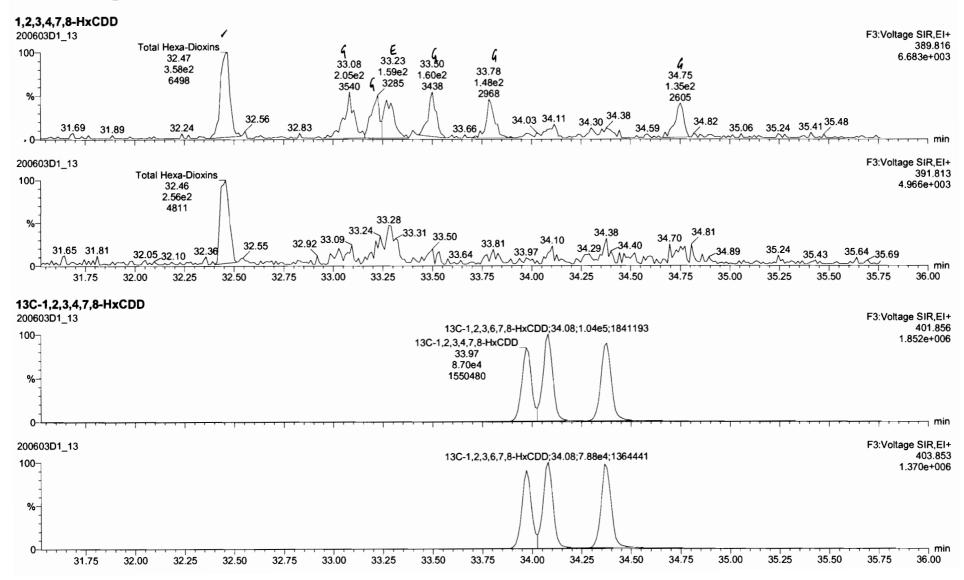
	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.62	2.121e3	2.048e3	9.307e1	1.038e2	0.90	NO	1.969e2	0.17576	0.17576	0.0478


Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28



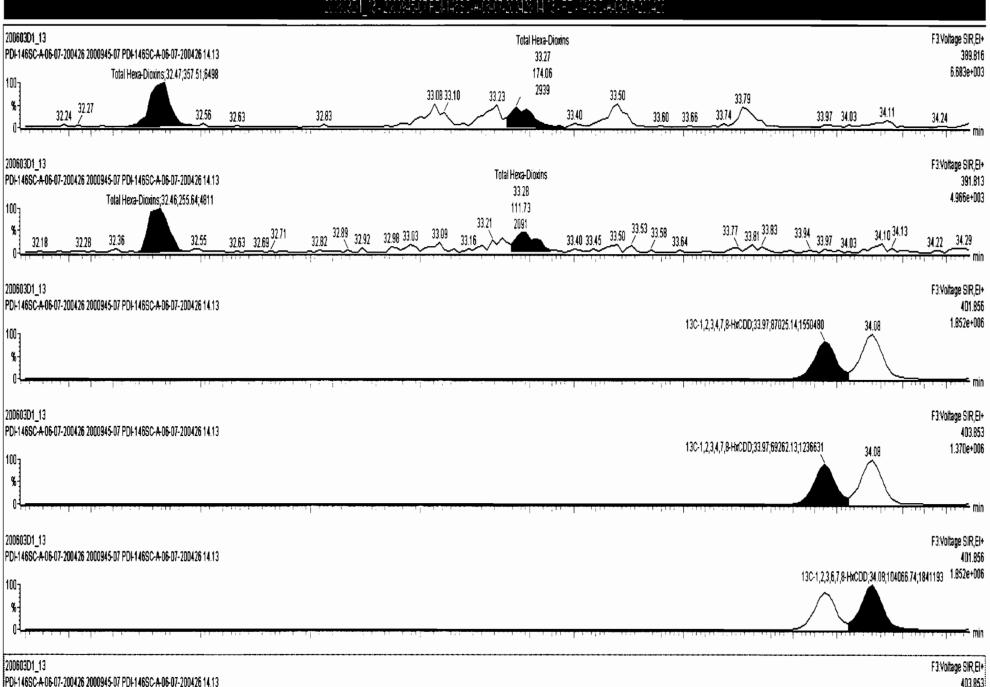




Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	




Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	



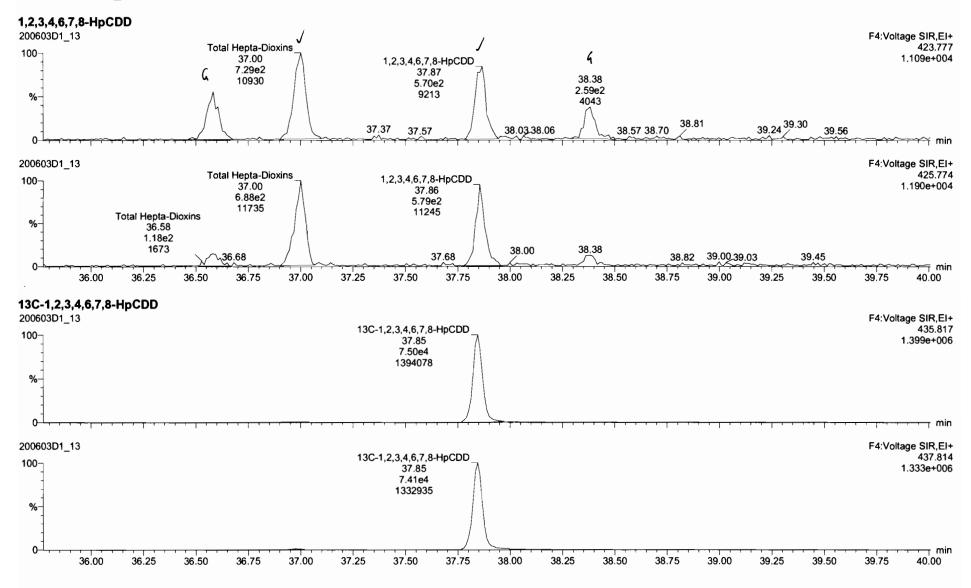
### TargetLynx - 200603D1 13.gld * - [Chromatogram]

### 🕅 File Edit Yew Display Processing Window Help

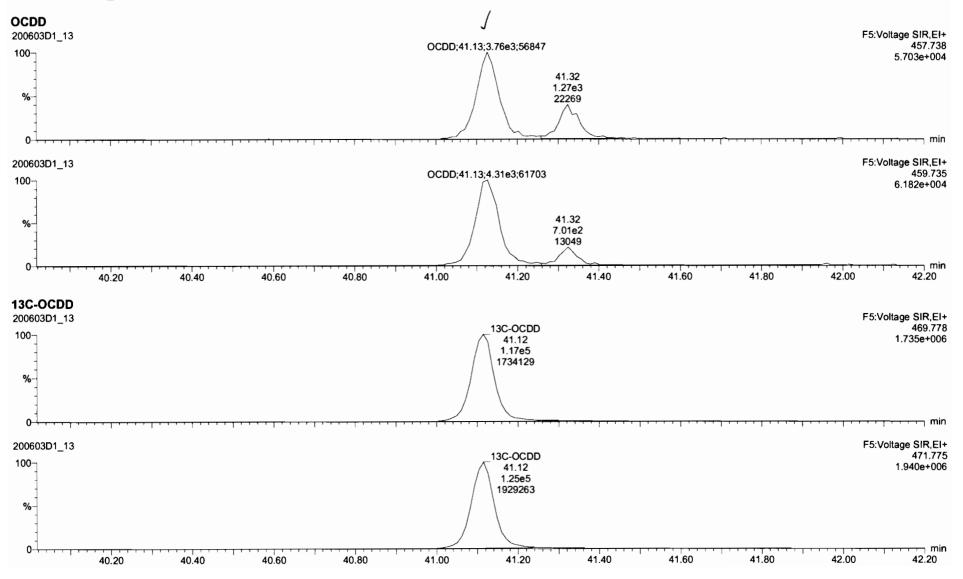




Work Order 2000945


#### 403,853 Page 274 of 769

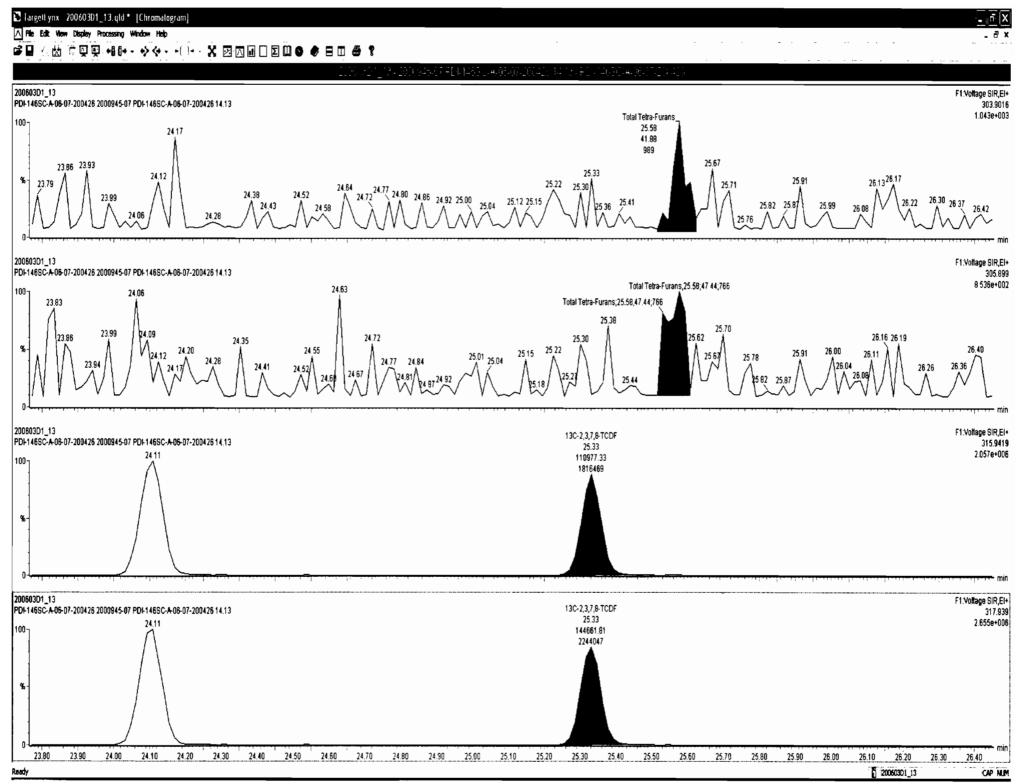
_ # X


#### Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

#### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_13.qld

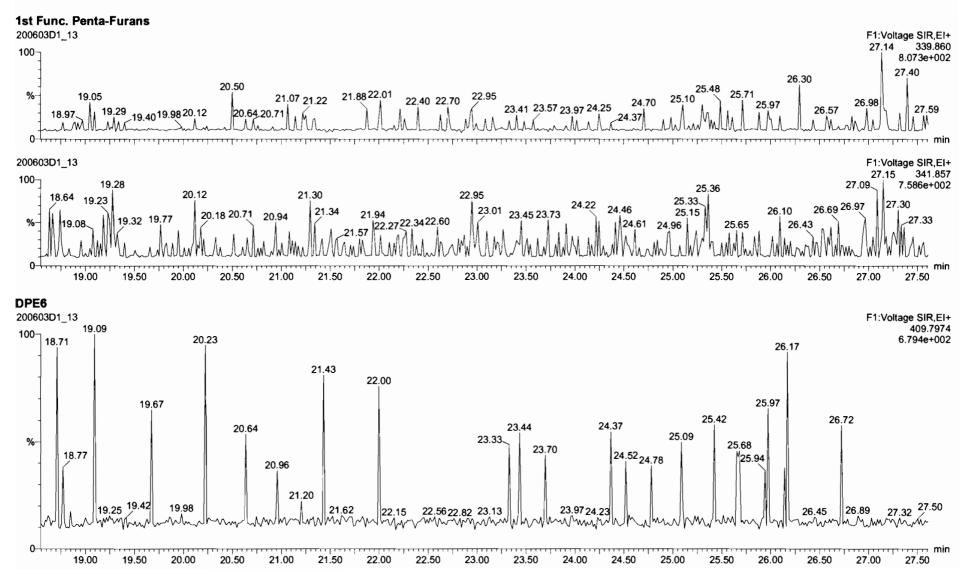
Last Altered:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:04:50 Pacific Daylight Time



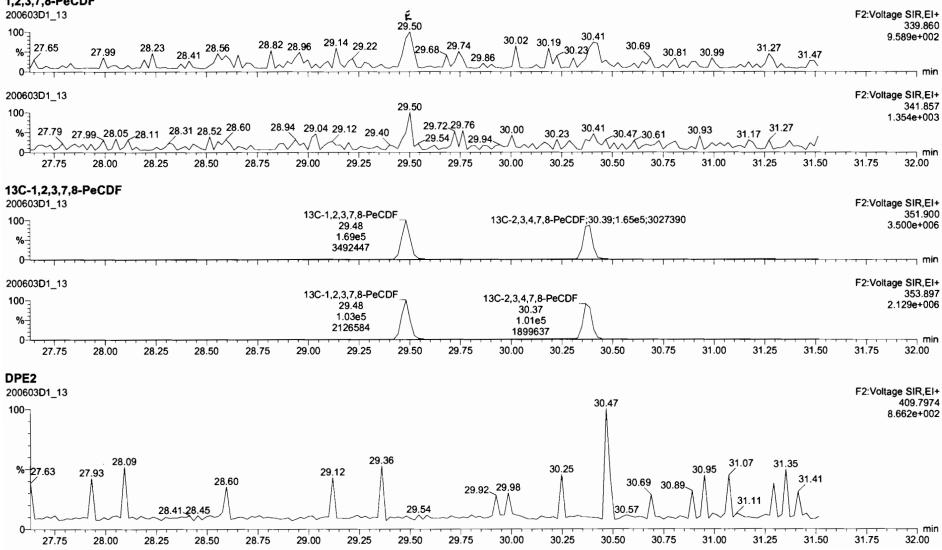

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	

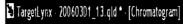


<b>Quantify Sam</b> /ista Analytica		MassLynx 4.1						Page 7 of 1
)ataset:	U:\VG7.PRO	\Results\200603D1\;	200603D1_13.qld					
ast Altered: rinted:			2 Pacific Daylight Tim 0 Pacific Daylight Tim					
ame: 200603	D1_13, Date:	03-Jun-2020, Time	: 23:42:05, ID: 20009	45-07 PDI-146S0	C-A-06-07-200426 ⁻	14.13, Description	: PDI-146SC-A-06-07	-200426
<b>,3,7,8-TCDF</b> 00603D1_13								F1:Voltage SIR,E
18.68 19.0	2 19.52.19.6 MMMM	1 20.09 20.52 20.79	21.04 21.59 21.75 21.91	22.32.22.41 23	.10 23.62	1.17 1 24.3824.64 25.22	25.58 25.33 / ^{25.67} 26.17 2	27.30 303.901 1.688e+00 27.55
0-11-13		<del></del>				, , , , , , , , , , , , , , , , , , ,	•••••••	F1:Voltage SIR,E
18.80 %	) 19.43 	19.98 20.50 20.58 21	21.28 19 1 21.72 22.08	22.66 22.72 22.8	23.36 23.83 24.0 2 23.71	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.38 25.58	305.89 1.029e+00 26.40 27.18 27.43
0-17-17-17-17-17-17-17-17-17-17-17-17-17-	0 19.50	20.00 20.50 21	.00 21.50 22.00	22.50 23.00	) 23.50 24.00	24.50 25.00	25.50 26.00	26.50 27.00 27.50
3C-2,3,7,8-T	CDF							
200603D1_13 100 %					13C-1,2,3,4-TCDF 24.11 1.47e5 2050612	13C-2,3,7,8-TCD 25.33 1.11e5	F	F1:Voltage SIR,EI 315.941 2.057e+00
0-1						1816469		
00603D1_13					13C-1,2,3,4-TCDF			F1:Voltage SIR,E 317.93
00- %- 0					24.11 1.90e5 2648479	130-2,3,7,0-10DF	;25.33;1.45e5;2244047	2.655e+00
0	0 19.50	20.00 20.50 21	.00 21.50 22.00	22.50 23.0	) 23.50 24.00	24.50 25.00	25.50 26.00	26.50 27.00 27.50
OPE1								
00603D1_13		20.64		2	3.16		26.05	F1:Voltage SIR,E 375.83 5.614e+0
-		20.39	21.66 22.7	4	23.56	24.84	26.10	27.53
%19 18.59	19.34 19 .09 19.4919.75	.89 20.10 20.	21.57 21.00	22.5022.76.22.86	23.56		26.19 .21 25.78 25.62 25.55 25.55 26.5	27.37 26.59
1	• · · · ·	•			vv-			


Work Order 2000945

 $\cdot$ 





Work Order 2000945

Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	



3D1\200603D1_13.qld
:35:42 Pacific Daylight Time :04:50 Pacific Daylight Time
9:





29.14

200603D1 13

100-

%

200603D1_13

29.D4

200603D1_13

100-

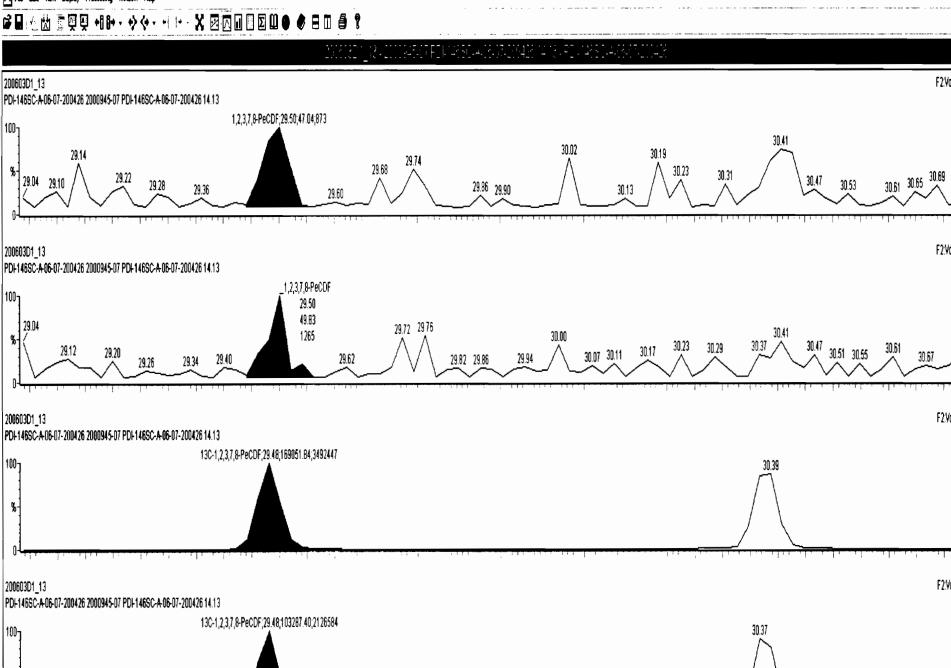
%-

200603D1_13

100-

%-

Work Order 2000945


29.12

100 ו

8

29.04 29.10

#### î I



. 5 X

. 3 X

F2:Voltage SIR,EI+

F2:Voltage SIR EI+

30,73

F2:Voltage SIR,EI+

F2:Vollage SIR,EI+

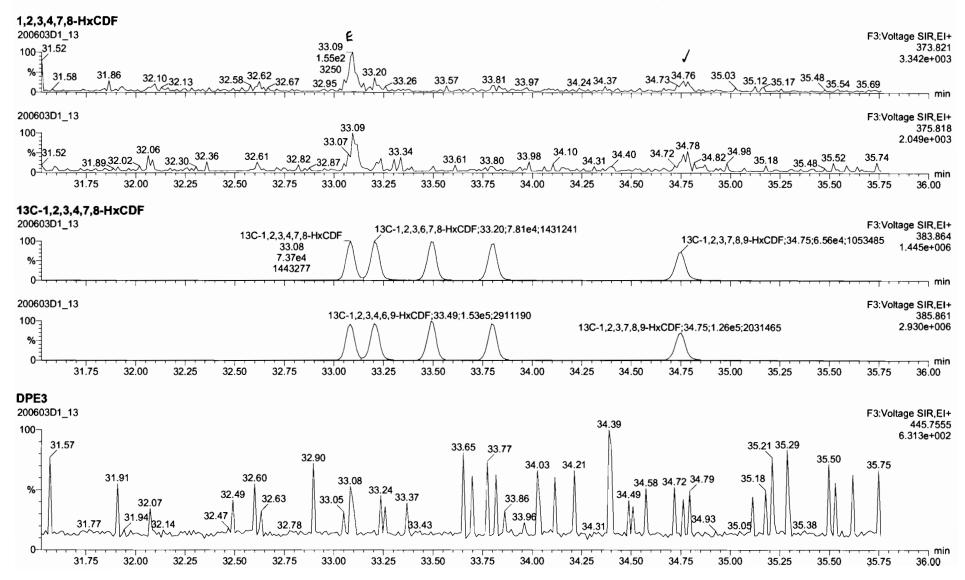
353.897

2.129e+006

351,900

3.500e+006

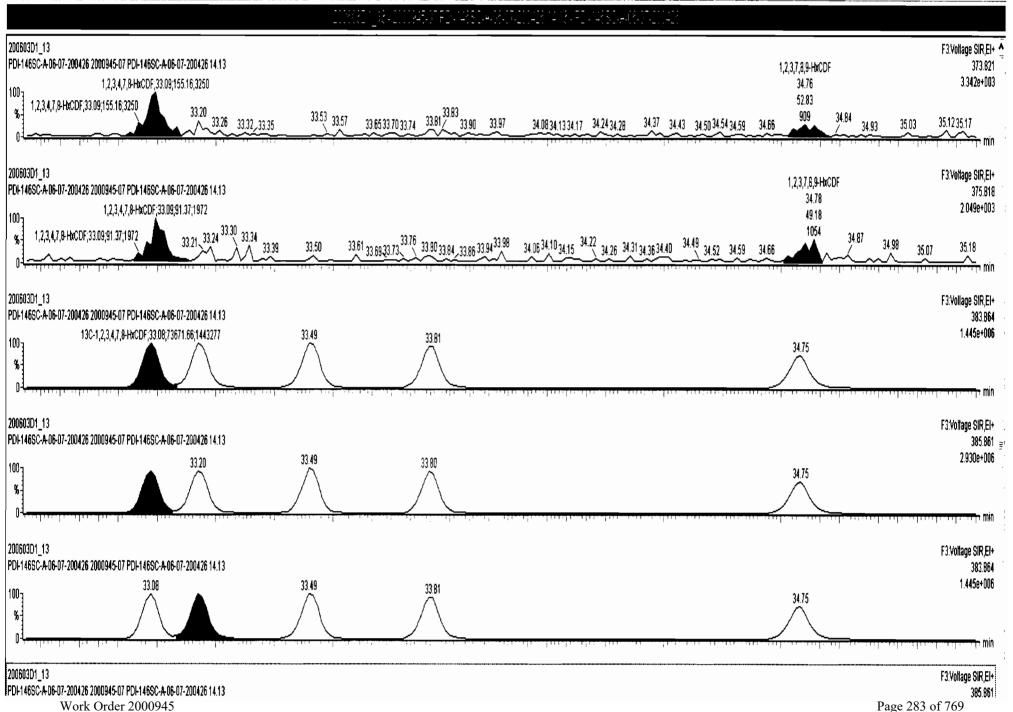
30.67


3**4**1.B57

1.354e+003

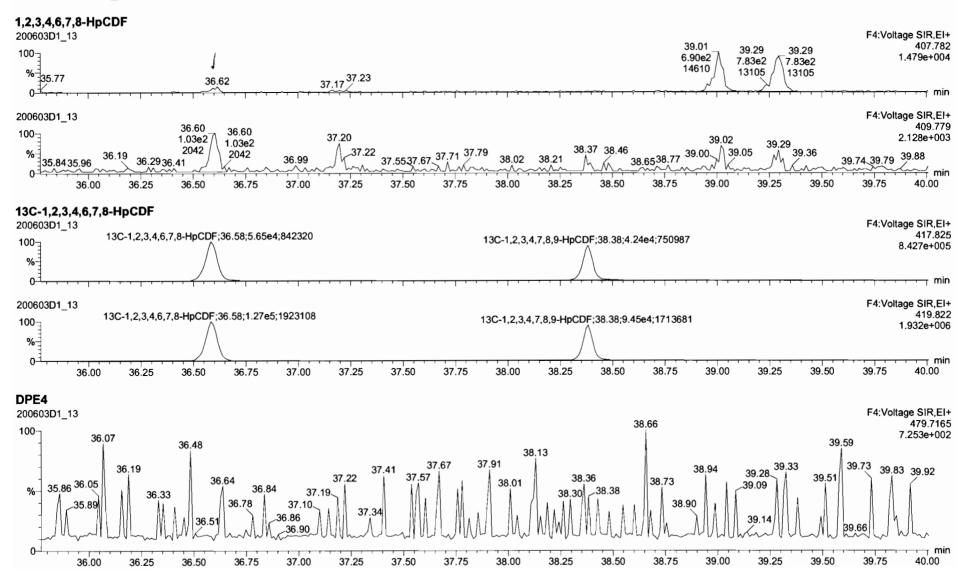
339.B60

9,589e+002


•	Page 10 of 13
U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
I	Dele Report       MassLynx 4.1         Laboratory       U:\VG7.PRO\Results\200603D1\200603D1_13.qld         Thursday, June 04, 2020 09:35:42 Pacific Daylight Time         Thursday, June 04, 2020 10:04:50 Pacific Daylight Time



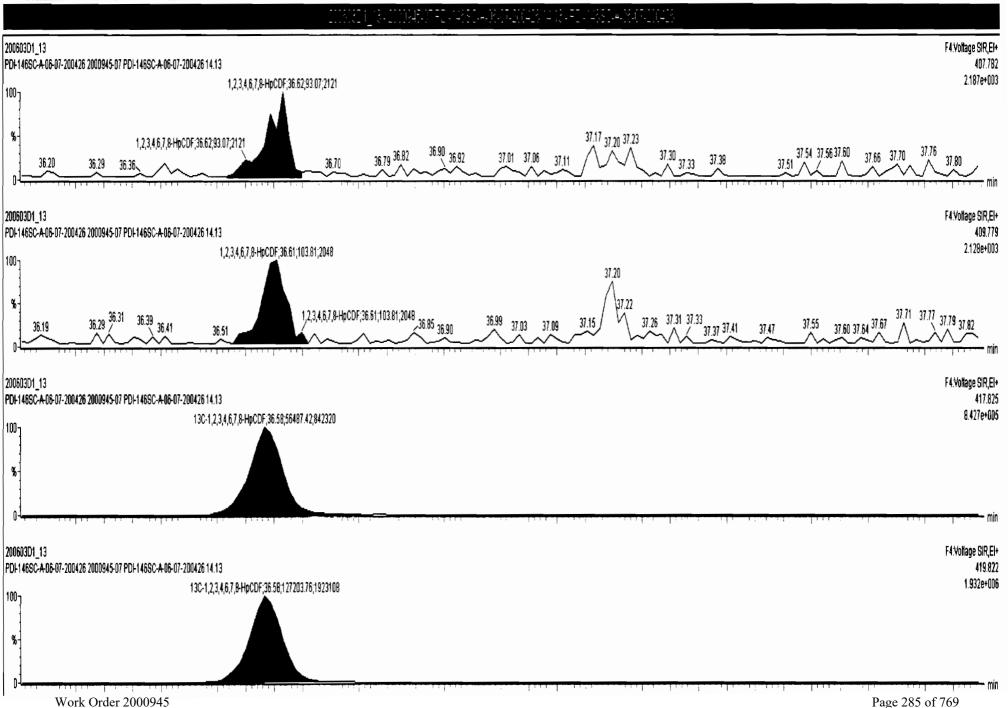
### TargetLynx - 200603D1_13.qld * - [Chromatogram]


A File Edit View Display Processing Window Help

## ᄚᇛᇲᄨᄚݡݡ,ҹҌ╸��・₁・□・꽃เ⊠⊼ᇜ◧◙◫●◈ ◓◧ 兽 ៖

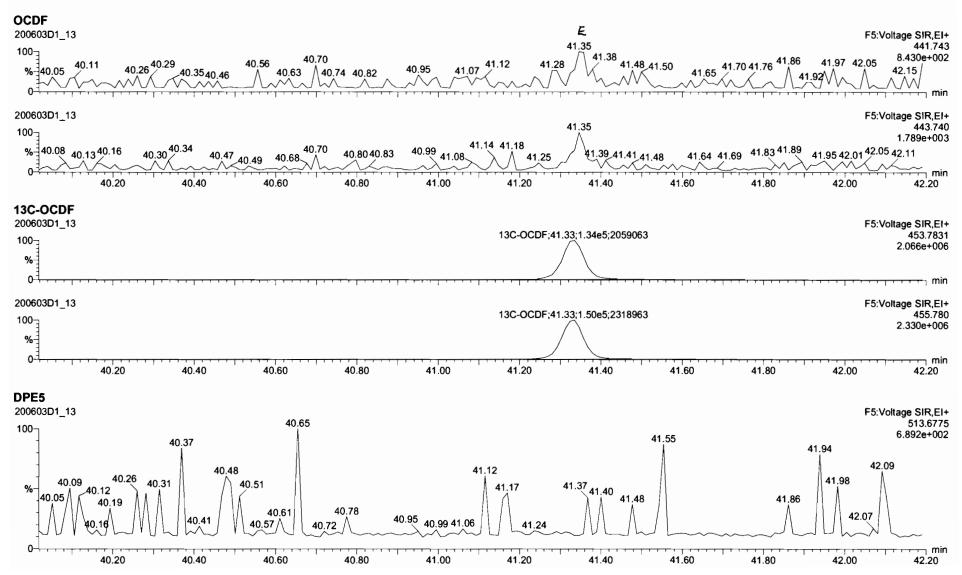


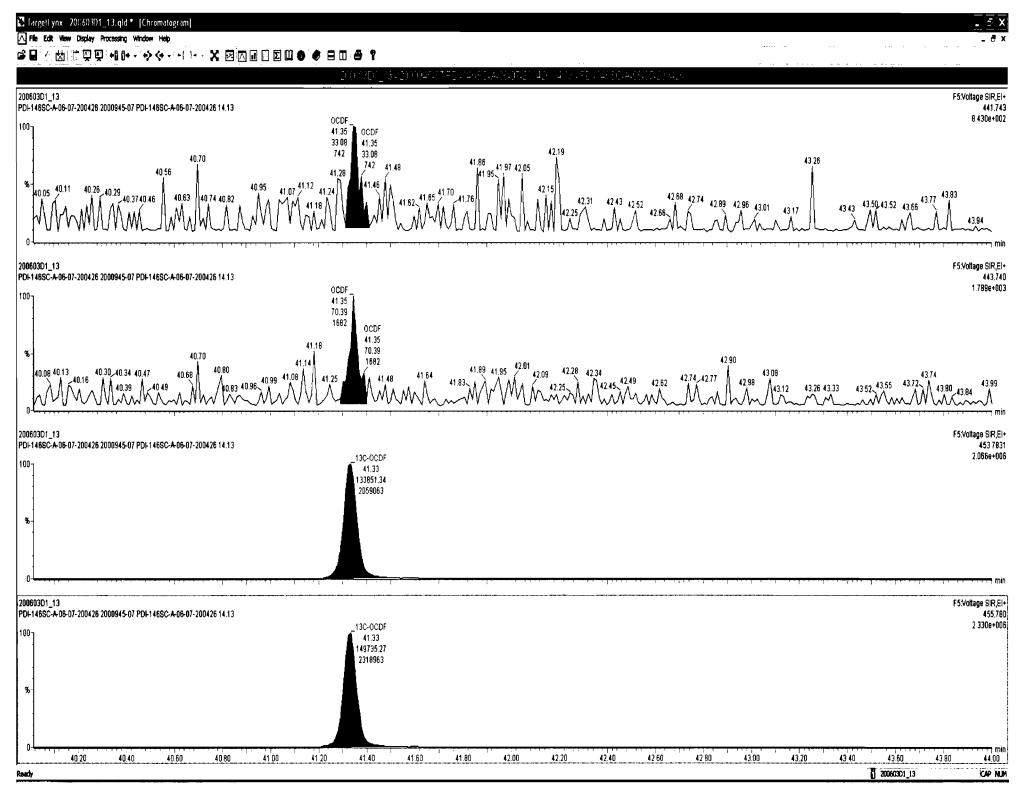
	ample Report ical Laboratory	MassLynx 4.1
Dataset:		Results\200603D1\200603D1_13.ald


Last Altered:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:04:50 Pacific Daylight Time



### TargetLynx - 200603D1_13.qld * - [Chromatogram]


### A File Edit View Display Processing Window Help


# ☞ 🖬 김 전철 🕸 👳 🖳 • 🛯 • • • • ♦ • • • • • • 🗙 🛛 🗖 🖬 🗖 🖉 🗶 🖶 🛛 🎒 🎖



_ 7 X

Quantify San Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	





Work Order 2000945

Quantify San Vista Analytica		Page 13 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_13.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:35:42 Pacific Daylight Time Thursday, June 04, 2020 10:04:50 Pacific Daylight Time	

PFK1 200603D1_13 1)07 18,9019,16 20,47;1,86e3;64412_20,90 ^{21.68} 21,85 22.47;1,26e3;62407 23,41,23,50 24,03 ²⁴ ,38 25.00 25,10 ^{25.52} 25,70 26,43;4,94e3;95552 27,18 316.9824
%
0 ⁻¹
PFK2 200603D1_13 F2:Voltage SIR,EI+
100 27.83 27.93 28.17 28.21 28.29 28.48 28.70 28.92 28.96 29.30 29.34 29.42 29.68 29.80 29.98 30.09 30.27 30.45 30.67 30.71 30.91 31.09 31.23 366.9792 5.418e+005
0 ⁻¹
PFK3 200603D1_13 F3:Voltage SIR,EI+
200603D1_13 32.03;2.44e4;317773 32.70;6.20e3;187255 33.04 33.35;7.46e3;237651 34.17;7.72e3;184722 34.48;6.53e3;147708 55.13 35.37;2.77e3;206134 380.9760 3.322e+006 %
0 ⁻¹ , 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00
PFK4 200603D1_13_25_08:6.2552:311634.26_44:5.8053:137040 F4:Voltage SIR,EI+
200603D1_13 35.98;6.35e3;211634 36.44;5.89e3;127049 100
%
0 ⁻¹ ,
<b>PFK5</b> 200603D1_13 100_ 40.12 40.23 40.34 40.37 40.45 40.54 40.67 40.70 40.86 40.95 41.07 41.13 41.28 41.38 41.38 41.55 41.62 41.72 41.76 41.81 41.89 F5:Voltage SIR,EI+ 42.08 454.9728
1.055e+006
0 ⁻¹

Quantify Sample Summary Report Vista Analytical Laboratory		MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\20	0603D1\200603D1_1 <b>4</b> .qld	
Last Altered: Printed:		) 11:25:52 Pacific Daylight Time ) 11:26:42 Pacific Daylight Time	7)B 6/4/20

C7 06/05/20

## Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.987	9.970 ⁻	26.158		1.001				0.0913	
2	2 1,2,3,7,8-PeCDD			NO	0.982	9.970	30.690		1.001				0.114	
3	3 1,2,3,4,7,8-HxCDD			NO	1.17	9.970	33.982		1.000				0.124	
4	4 1,2,3,6,7,8-HxCDD			NO	1.04	9.970	34.082		1.000				0.123	
5	5 1,2,3,7,8,9-HxCDD			NO	1.00	9.970	34.412		1.001				0.146	
6	6 1,2,3,4,6,7,8-HpCDD	1.55e2	1.09	NO	0.992	9.970	37.856	37.87	1.000	1.001	0.20394		0.120	0.204
7	7 OCDD	7.94e2	0.84	NO	1.04	9.970	41.115	41.12	1.000	1.000	1.2065		0.143	1.21
8	8 2,3,7,8-TCDF			NO	0.882	9.970	25.357		1.001				0.0610	
9	9 1,2,3,7,8-PeCDF			NO	1.05	9.970	29.502		1.001				0.0546	
10	10 2,3,4,7,8-PeCDF			NO	1.06	9.970	30.417		1.001				0.0570	
11	11 1,2,3,4,7,8-HxCDF			NO	1.08	9.970	33.083		1.000				0.0593	
12	12 1,2,3,6,7,8-HxCDF			NO	1.04	9.970	33.214		1.000				0.0646	
13	13 2,3,4,6,7,8-HxCDF			NO	1.11	9.970	33.830		1.001				0.0659	
14	14 1,2,3,7,8,9-HxCDF	8.46e1	0.90	YES	1.06	9.970	34.751	34.76	1.000	1.000	0.081373		0.0486	0.0697
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.13	9.970	36.620		1.001		-		0.0868	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.33	9.970	38.383		1.000				0.0798	
17	17 OCDF			NO	0.933	9.970	41.335		1.000				0.115	
18	18 13C-2,3,7,8-TCDD	2.38e5	0.78	NO	1.21	9.970	26.226	26.13	1.026	1.022	190.65	95.0	0.326	
19	19 13C-1,2,3,7,8-PeCDD	1.89e5	0.64	NO	0.996	9.970	30.724	30.67	1.202	1.200	183.54	91.5	0.271	
20	20 13C-1,2,3,4,7,8-HxCDD	1.62 <b>e</b> 5	1.30	NO	0.679	9.970	33.969	33.97	1.014	1.014	212.05	106	0.722	
21	21 13C-1,2,3,6,7,8-HxCDD	1.85e5	1.31	NO	0.850	9.970	34.080	34.08	1.017	1.017	193.06	96.2	0.577	
22	22 13C-1,2,3,7,8,9-HxCDD	1.80e5	1.30	NO	0.798	9.970	34.351	34.38	1.025	1.026	199.87	99.6	0.614	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.53e5	1.04	NO	0.697	9.970	37.821	37.85	1.129	1.130	195.18	97.3	0.612	
24	24 13C-OCDD	2.55e5	0.94	NO	0.579	9.970	40.850	41.12	1.219	1.227	390.56	97.3	0.558	
25	25 13C-2,3,7,8-TCDF	3.33e5	0.78	NO	1.13	9.970	25.305	25.33	0.990	0.991	175.65	87.6	0.352	
26	26 13C-1,2,3,7,8-PeCDF	2.98e5	1.63	NO	0.996	9.970	29.541	29.48	1.156	1.153	178.02	88.7	0.341	
27	27 13C-2,3,4,7,8-PeCDF	2.94e5	1.59	NO	0.969	9.970	30.443	30.39	1.191	1.189	180.54	90.0	0.351	
28	28 13C-1,2,3,4,7,8-HxCDF	2.26e5	0.51	NO	1.06	9.970	33.098	33.08	0.988	0.988	189.08	94.3	0.570	
29	29 13C-1,2,3,6,7,8-HxCDF	2.36e5	0.53	NO	1.18	9.970	33.232	33.20	0.992	0.991	178.17	88.8	0.513	
30	30 13C-2,3,4,6,7,8-HxCDF	2.23e5	0.52	NO	1.06	9.970	33.805	33.80	1.009	1.009	186.91	93.2	0.570	
31	31 13C-1,2,3,7,8,9-HxCDF	1.97e5	0.50	NO	0.879	9.970	34.706	34.75	1.036	1.037	199.10	99.3	0.686	

Quantify Sample Summary Report Vista Analytical Laboratory	MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_14.qld

Last Altered:	Thursday, June 04, 2020 11:25:52 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:26:42 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.90e5	0.44	NO	0.893	9.970	36.415	36.58	1.087	1.092	188.29	93.9	0.518	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.38e5	0.44	NO	0.613	9.970	38.424	38.38	1.147	1.146	199.10	99.3	0.754	
34	34 13C-OCDF	3.00e5	0.87	NO	0.741	9.970	41.004	41.33	1.224	1.234	358.45	89.3	0.595	
35	35 37CI-2,3,7,8-TCDD	9.60e4			1.18	9.970	26.223	26.14	1.026	1.023	78.746	98.1	0.119	
36	36 13C-1,2,3,4-TCDD	2.07e5	0.79	NO	1.00	9.970	25.480	25.56	1.000	1.000	200.60	100	0.393	
37	37 13C-1,2,3,4-TCDF	3.38e5	0.78	NO	1.00	9.970	24.020	24.11	1.000	1.000	200.60	100	0.396	
38	38 13C-1,2,3,4,6,9-HxCDF	2.26e5	0.51	NO	1.00	9.970	33.530	33.50	1.000	1.000	200.60	100	0.603	
39	39 Total Tetra-Dioxins				0.987	9.970	24.620		0.000				0.0583	
40	40 Total Penta-Dioxins				0.982	9.970	29.960		0.000				0.0471	
41	41 Total Hexa-Dioxins				1.04	9.970	33.635		0.000		0.12674		0.0652	0.127
42	42 Total Hepta-Dioxins				0.992	9.970	37.640		0.000		0.50139		0.120	0.501
43	43 Total Tetra-Furans				0.882	9.970	23.610		0.000		0.00000		0.0281	0.0428
44	44 1st Func. Penta-Furans				1.05	9.970	27.090		0.000				0.0114	
45	45 Total Penta-Furans				1.05	9.970	29.275		0.000				0.0253	
46	46 Total Hexa-Furans				1.11	9.970	33.555		0.000		0.00000		0.0364	0.0697
47	47 Total Hepta-Furans				1.13	9.970	37.835		0.000				0.0503	

#### Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

U:\VG7.PRO\Results\200603D1\200603D1_14.qld Dataset:

Last Altered:	Thursday, June 04, 2020 11:25:52 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:26:42 Pacific Daylight Time

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

#### Name: 200603D1_14, Date: 04-Jun-2020, Time: 00:27:11, ID: 2000945-08 PDI-146SC-A-07-08-200426 13.17, Description: PDI-146SC-A-07-08-200426

#### **Tetra-Dioxins**

1	Name	RT	m1 Height m2 Helght	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1										

#### Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									

#### Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.47	1.672e3	1.300e3	6.526e1	4.981e1	1.31	NO	1.151e2	0.12674	0.12674	0.0652

#### Hepta-Dioxins

ſ	Name	RŤ	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
	1 Total Hepta-Dioxins	37.00	2.152e3	1.519e3	1.076e2	1.180e2	0.91	NO	2.256e2	0.29744	0.29744	0.120
	2 1,2,3,4,6,7,8-HpCDD	37.87	1.486e3	1.737e3	8.056e1	7.411e1	1.09	NO	1.547e2	0.20394	0.20394	0.120

#### **Tetra-Furans**

Г	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	25.58	9.910e2	8.000e2	3.706e1	3.540e1	1.05	YES	0.000e0	0.00000	0.042783	0.0281

#### Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

## Quantify Totals Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\2006	03D1\200603D1_14.qld
----------------------------------	----------------------

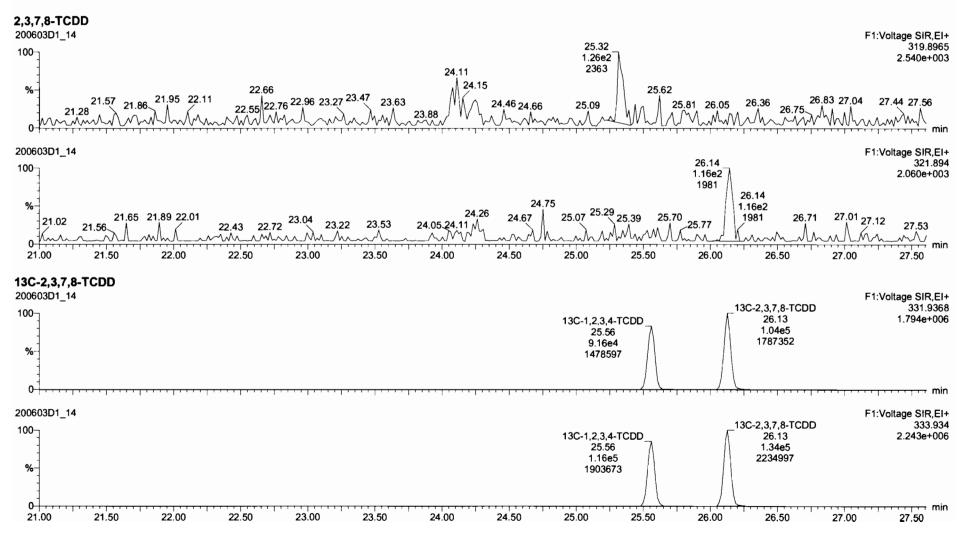
Last Altered:	Thursday, June 04, 2020 11:25:52 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 11:26:42 Pacific Daylight Time

Name: 200603D1_14, Date: 04-Jun-2020, Time: 00:27:11, ID: 2000945-08 PDI-146SC-A-07-08-200426 13.17, Description: PDI-146SC-A-07-08-200426

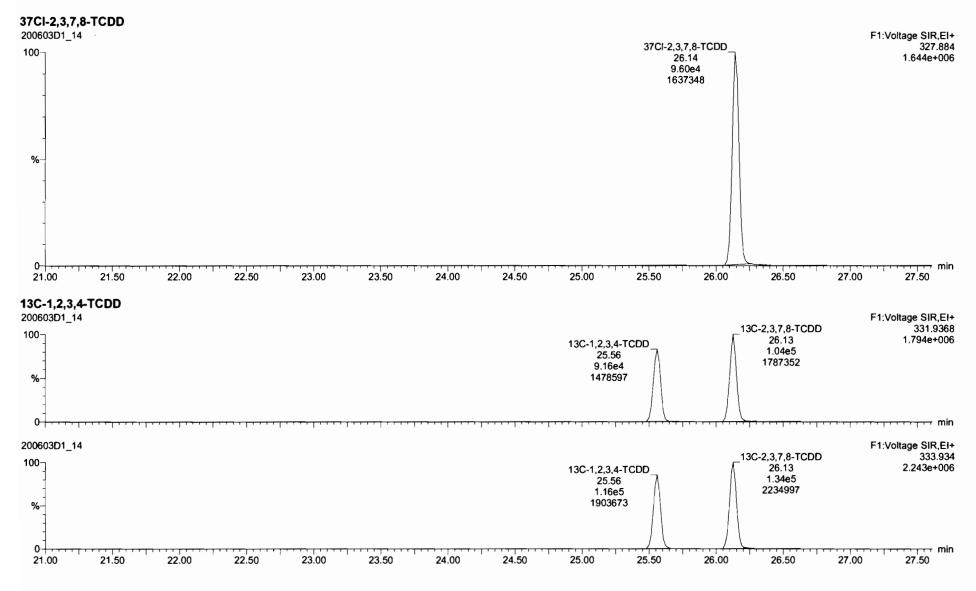
## Penta-Furans

Conc	ENDO	DL
0010.	EMI-C	
	Conc.	Conc. EMPC

## Hexa-Furans

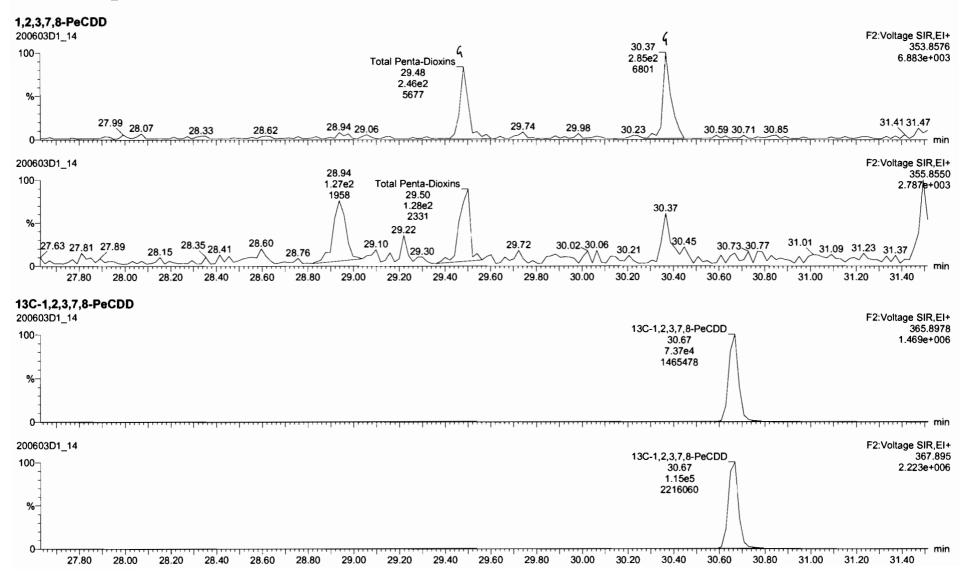

Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1 1,2,3,7,8,9-HxCDF	34.76	9.870e2	8.510e2	4.015e1	4.449e1	0.90 YES	8.464e1	0.00000	0.069729	0.0486

#### Hepta-Furans


Name	RŤ	m1 Height m2 Height	m1 Resp m	n2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

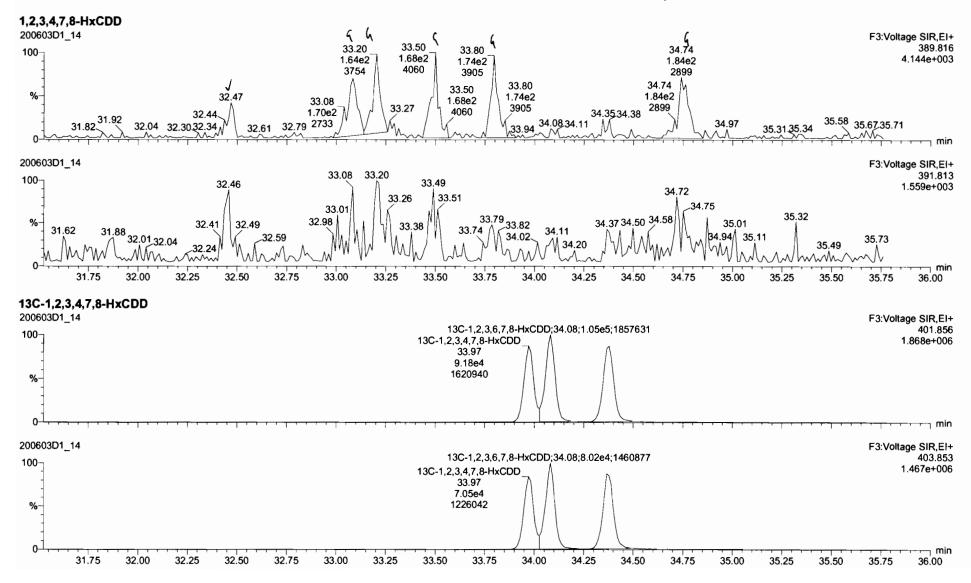
Quantify San Vista Analytica	· · ·	Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time	

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28




Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time	




#### Work Order 2000945

Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time	

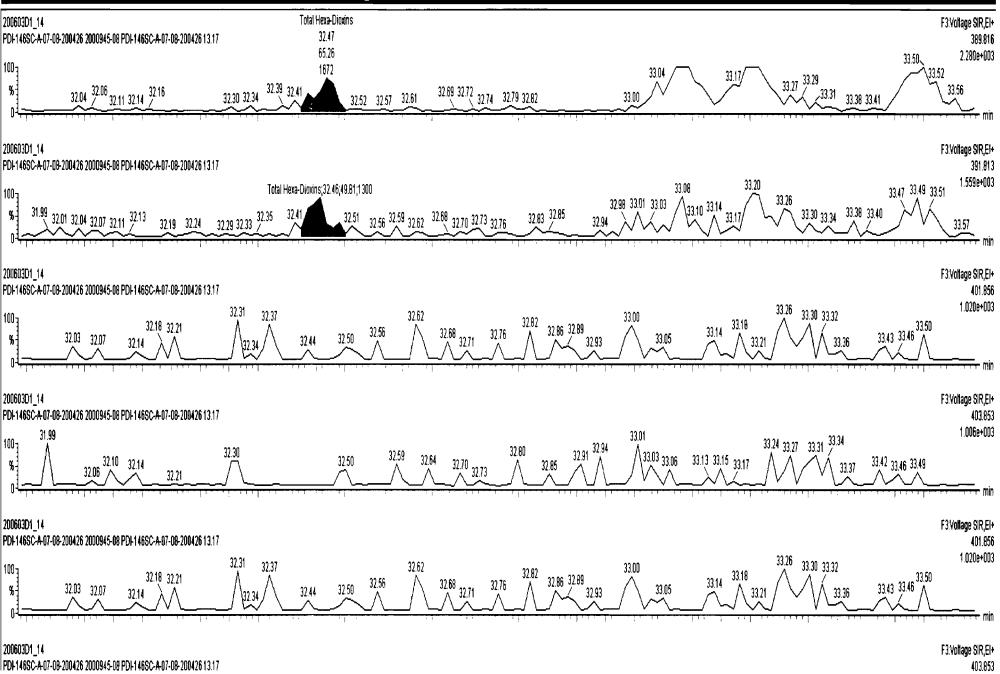


Work Order 2000945

Quantify Sam Vista Analytica	• • •	Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time	



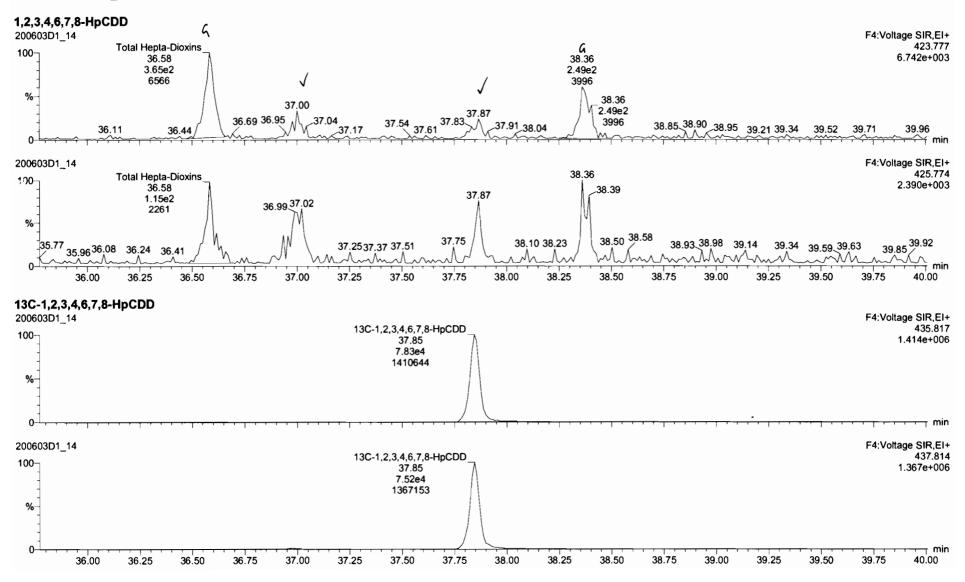
# TargetLynx - 200603D1_14.qld * - [Chromatogram]

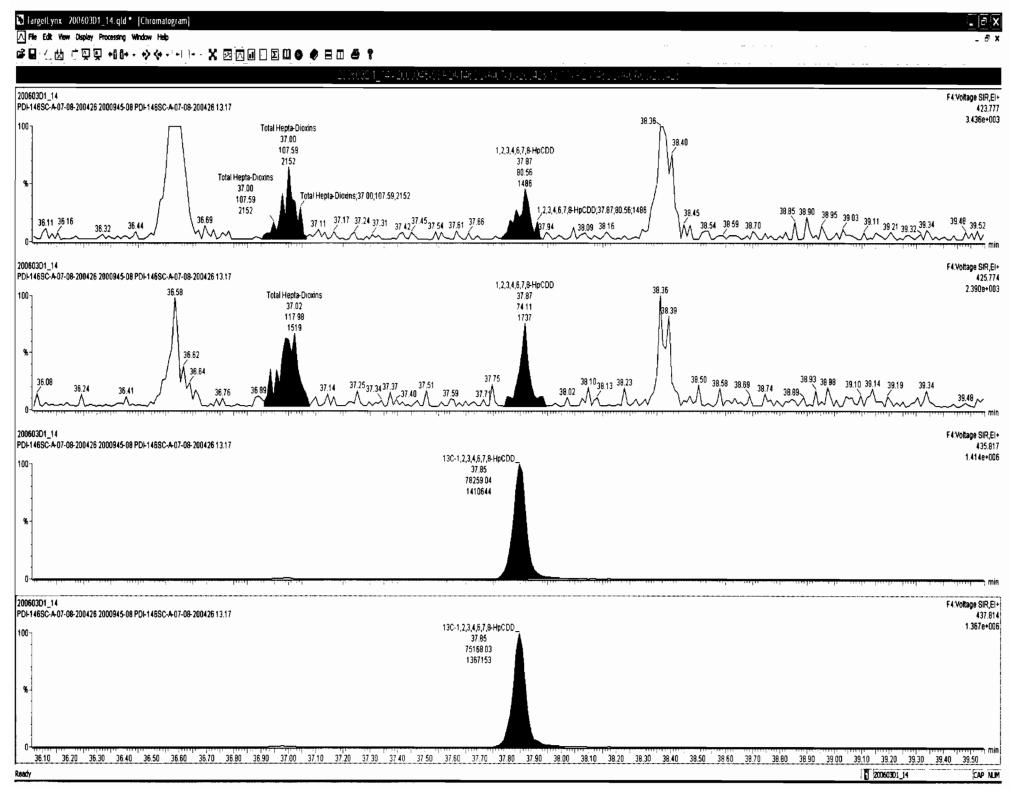

Page 297 of 769

A File Edit View Display Processing Window Help

Work Order 2000945

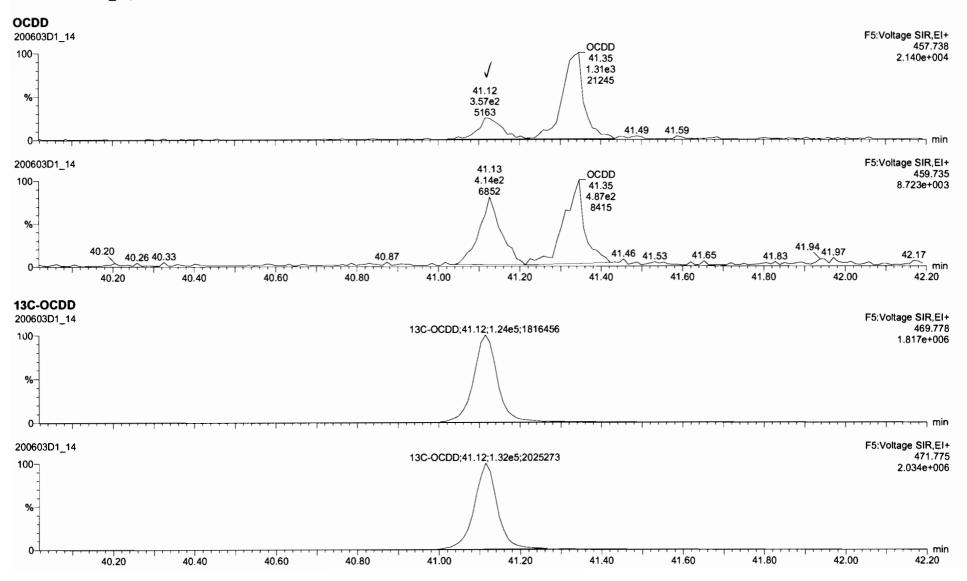
# ᄚᇛᇲᄨᄚᅋᆞᅋᆘᆞ᠅᠅ᆞᆞᅜᆞᆞ▓▨ᇟᇜ▯◙◫◓◈ᇡᇟᄻᆥ

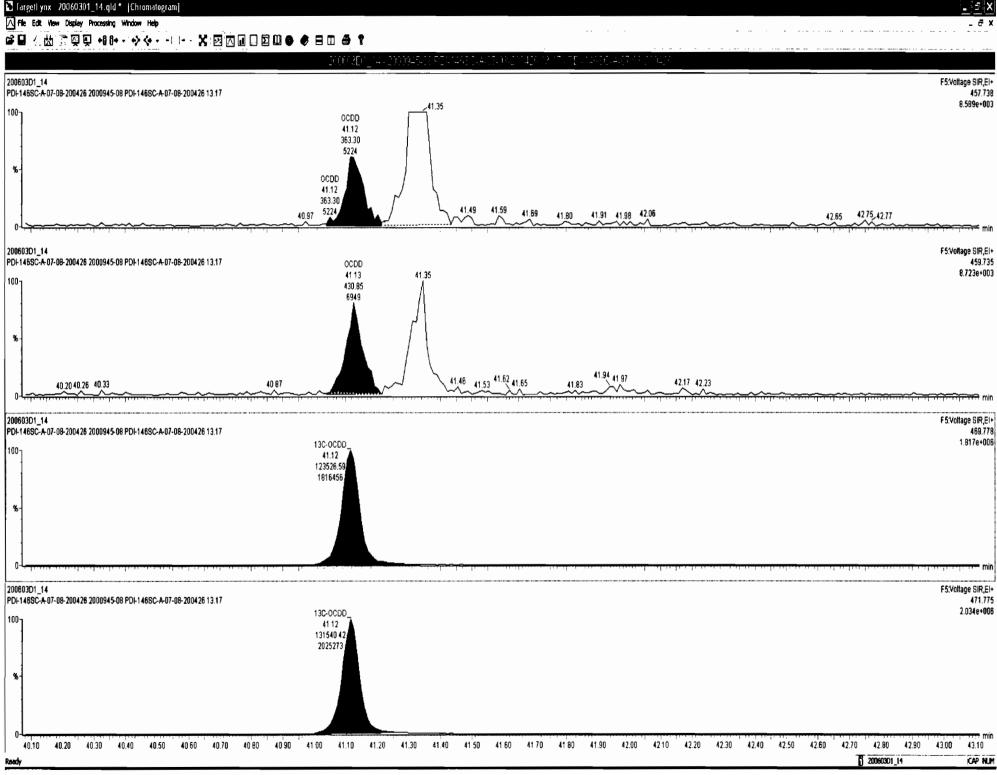

# .0308DV_14+230084503FDM4458C440708420426131074FDM445SD4407484200428




#### Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_14.qld


Last Altered:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:05:18 Pacific Daylight Time

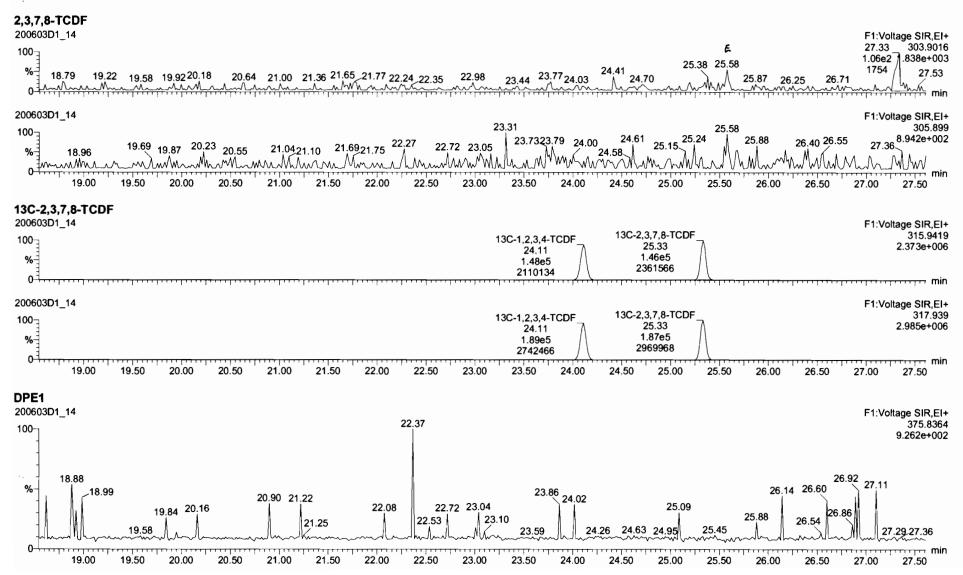


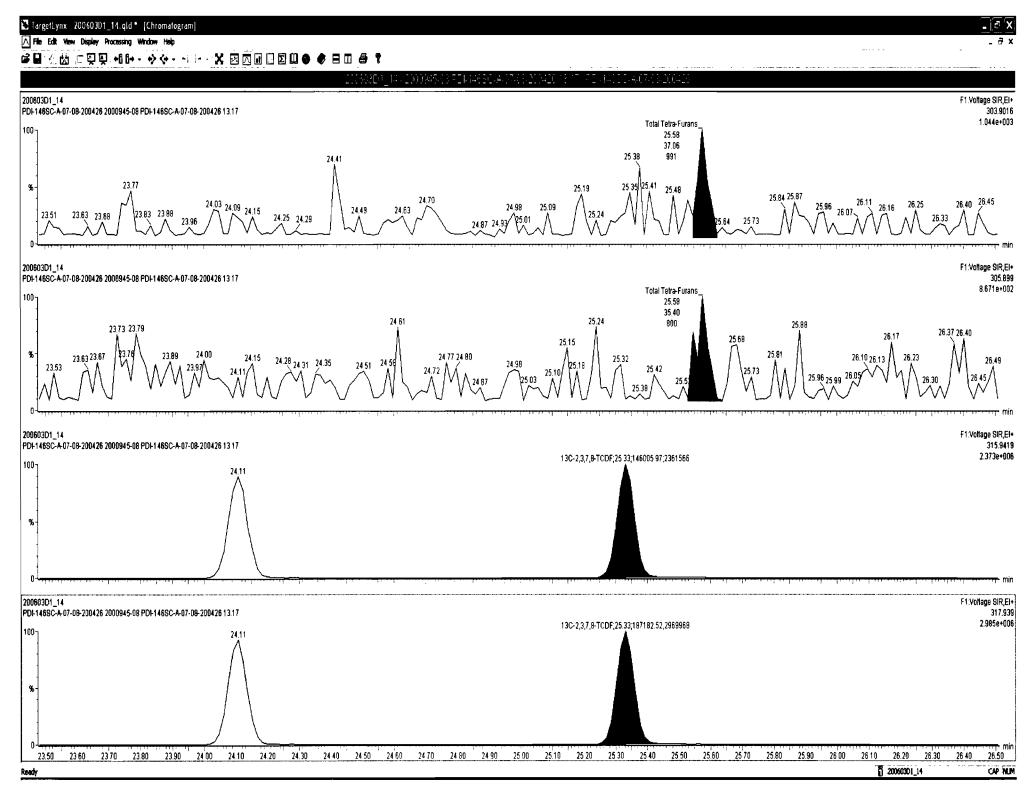



Work Order 2000945

Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time	

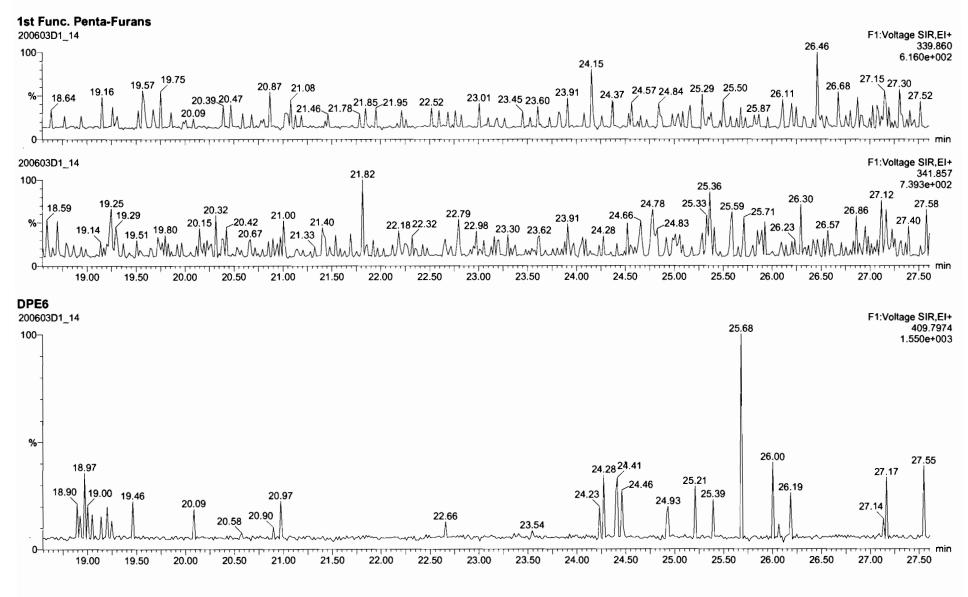






Work Order 2000945

# Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

#### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_14.qld


Last Altered:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:05:18 Pacific Daylight Time






Work Order 2000945

Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered: Printed:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time	



Quantify Sam /ista Analytica			MassLy	n <b>x 4.1</b>													Page	9 of 1:
)ataset:	U:\VG7	.PRO\Re	sults\2006	603D1\200	)603D1_1	4.qld												
ast Altered: Printed:			04, 2020 ( 04, 2020 /															
lame: 200603	3D1_14, I	Date: 04-	Jun-2020	), Time: 0	0:27:11,	D: 20009	45-08 PI	DI-146SC	- <b>A-07-08</b> -	-200426 ⁻	13.17, D	escriptio	on: PDI-	146SC	C-A-07-08	3-200426		
<b>,2,3,7,8-PeCI</b> 200603D1_14	DF													21.07			F2:Voltage	SIR,EI+ 339.860
27.73 2	7.85 28.13	28.21 28	3.37 28.43	28.70	29.04	10 29.26	9.40 29.60	29.80.29.	84 30.04	30.29 30.08	9 30	63 63 63 63 63 63 63 63 63 63	30.91	31.07	31.13 ³¹	.39	6.55	58e+002
200603D1_14	,		, , , , , ,								,			1			F2:Voltage	
100 %-27.71 27.8	5 28.09	28.21 28.	35 28.54 \ ∕\ ∕\~	28.84 28.74	28.94 29.0	⁸ 29.24	29.42	29.68	29.98	30.17 30	0.35 <b>3</b>	30.63 _{30.}	67 30.87 ⁻ 3	1.01 \langle \langle \langle	31.23 31	31.49 .45		341.85 18e+00
27.75	28.00	28.25	28.50	28.75	29.00	29.25	29.50	29.75	30.00	30.25	30.5	0 30.7	75 31	.00	31.25	31.50	31.75	, mir 32.00
3C-1,2,3,7,8-	PeCDF																F2:Voltage	810 EI
200603D1_14 100-]					13C-1,	2,3,7,8-PeC 29.48					_13C-	2,3,4,7,8-P	eCDF					351.90 16e+00
%-	<del>,</del>					29.48 1.85e5 3708704	$\Lambda$		<u> </u>	· · · · · · · · · · · · · · · · · · ·	$\bigwedge$	30.39 1.81e5 3474588			· · · · ·	<del></del>	3.71	mii
200603D1_14			,							, .		1		1			F2:Voltage	,
100- %						2,3,7,8-PeC 29.48 1.14e5 2277357				.37 4e5								353.897 32e+006
0 ⁻¹	28.00	28.25	28.50	28.75	29.00	29.25	29.50	29.75	30.00	30.25	30.5	0 30.	75 31	.00	31.25	31.50	31.75	
<b>DPE2</b> 200603D1_14 100¬									29,96									09.7974
										30	.39 30.47			31,05			5.11	12e+002
27.81				28.68								30.65		Å	10 31.3	31,43		



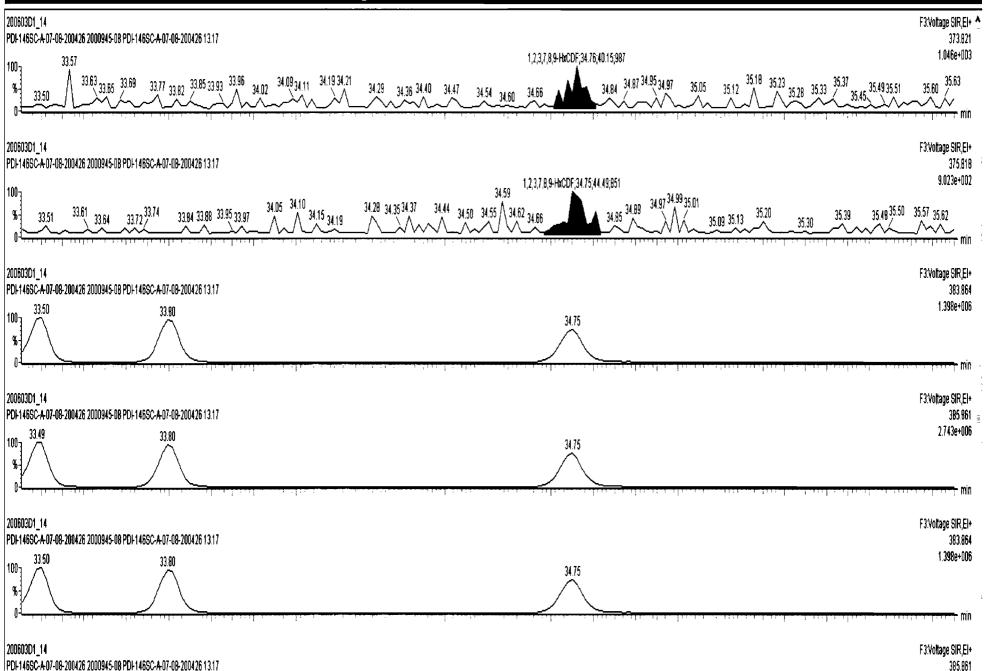
Quantify Sam Vista Analytica	· · ·	Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_14.qld	
Last Altered:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time	

Printed: Thursday, June 04, 2020 10:05:18 Pacific Daylight Time



# TargetLynx - 200603D1_14.gid * - [Chromatogram]

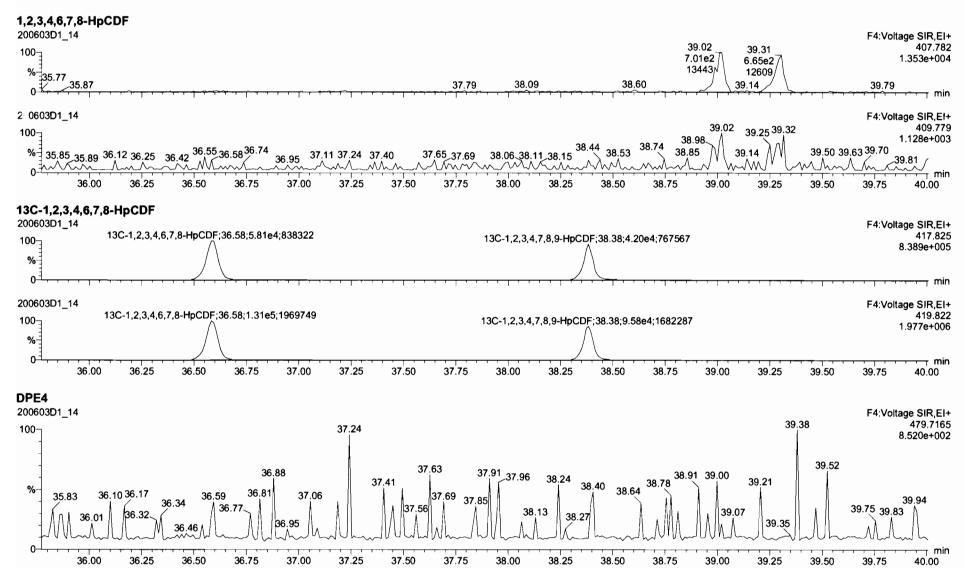
Work Order 2000945


# . 5 X . đ X

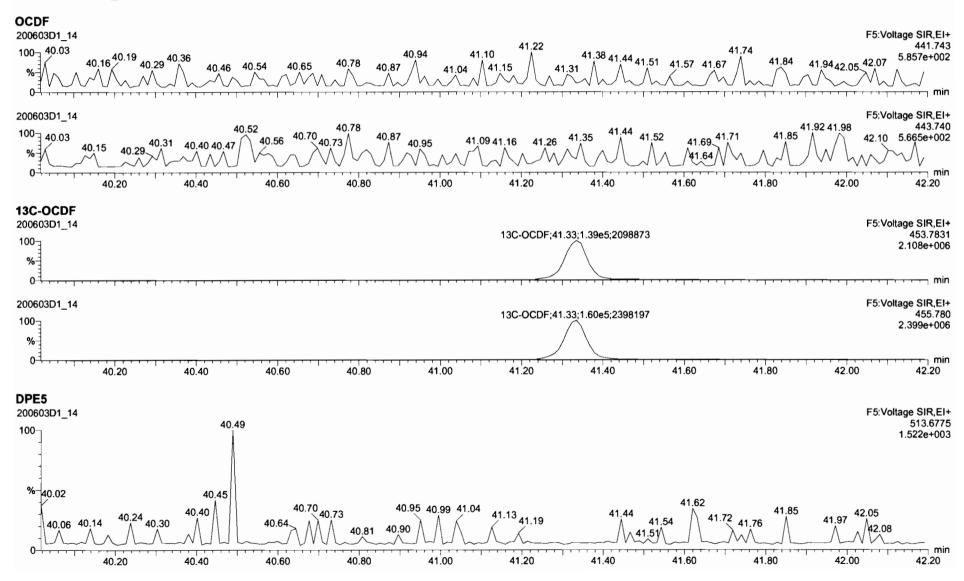
Page 307 of 769

A File Edit View Display Processing Window Help

# ☞ 🛛 (()) 🗿 👰 📲 🕪 • • • () • • 🗙 🛛 🖓 🖓 🖓 🖓 🖉 🖉 🖉 🖉



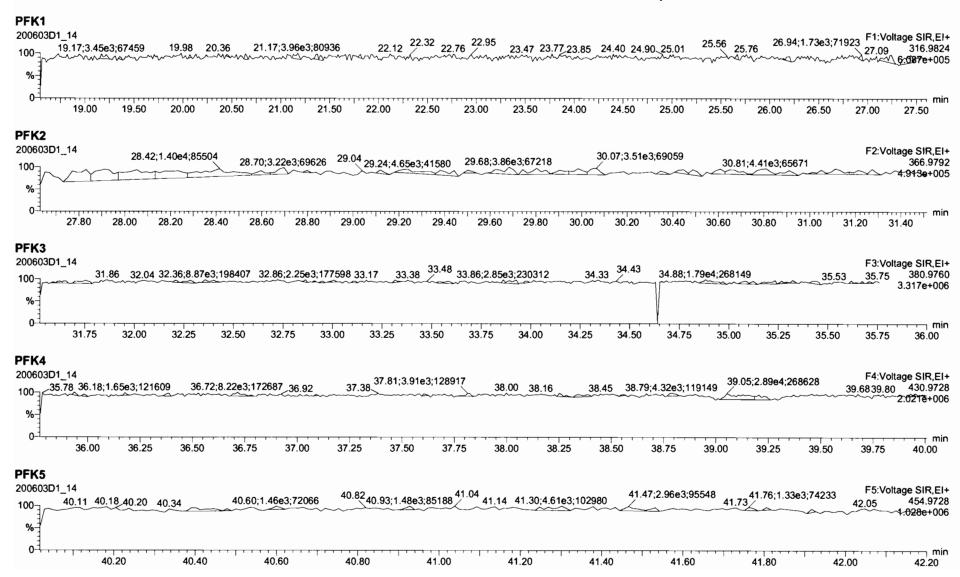




# Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

#### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_14.qld

Last Altered:	Thursday, June 04, 2020 09:36:49 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 10:05:18 Pacific Daylight Time




# Quantify Sample Report MassLynx 4.1 Page 12 of 13 Vista Analytical Laboratory Dataset: U:\VG7.PRO\Results\200603D1\200603D1_14.qld Last Altered: Thursday, June 04, 2020 09:36:49 Pacific Daylight Time Thursday, June 04, 2020 10:05:18 Pacific Daylight Time



Quantify San Vista Analytica		MassLynx 4.1	
Dataset:	U:\VG7.PRO\F	Results\200603D1\200603D1_14.qld	
Last Altered:	Thursday Jun	e 04, 2020 09:36:49 Pacific Davlight Time	

Thursday, June 04, 2020 10:05:18 Pacific Daylight Time

#### Name: 200603D1_14, Date: 04-Jun-2020, Time: 00:27:11, ID: 2000945-08 PDI-146SC-A-07-08-200426 13.17, Description: PDI-146SC-A-07-08-200426



Printed:

Page 13 of 13

# CONFIRMATION

<b>Quantify Sample Summary Report</b>	rt MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200609D1\200609D1_5.qld

Last Altered:	Tuesday, June 09, 2020 17:00:13 Pacific Daylight Time
Printed:	Tuesday, June 09, 2020 17:01:02 Pacific Daylight Time

DB 6/9/20 CT06/10/2020

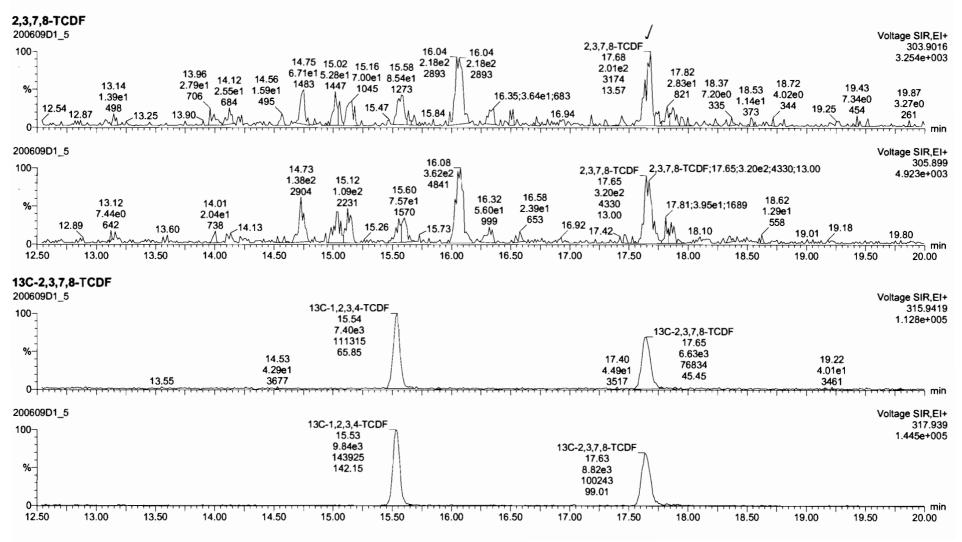
#### Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

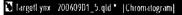
#### Name: 200609D1_5, Date: 09-Jun-2020, Time: 15:33:55, ID: 2000945-01RE1 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDF	5.46e2	0.71	NO	0.982	10.057 -	17.666	17.68	1.000	1.002	7.1566		1.92	7.16
2	2 13C-2,3,7,8-TCDF	1.55e4	0.75	NO	1.08	10.057	17.701	17.65	1.133	1.135	164.54	82.7	5.74	
3	3 13C-1,2,3,4-TCDF	1.72e4	0.75	NO	1.00	10.057	15.660	15.54	1.000	1.000	198.86	100	6.22	

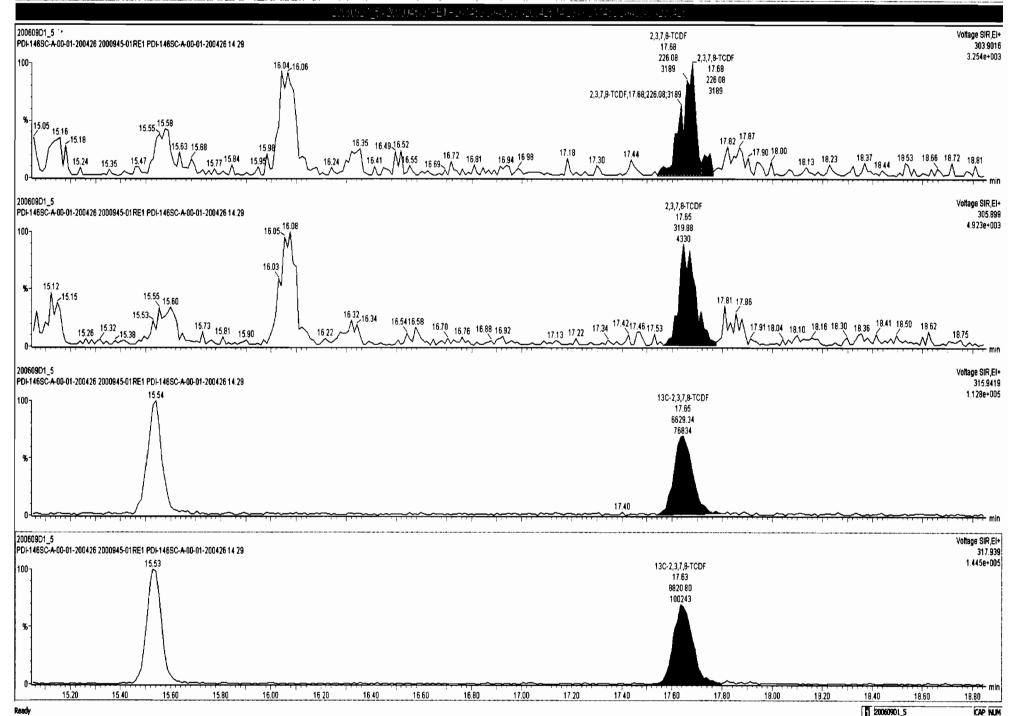
Page 1 of 1

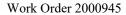
#### Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory VG-10


Dataset: U:\VG7.PRO\Results\200609D1\200609D1_5.qld

Last Altered:Tuesday, June 09, 2020 16:58:38 Pacific Daylight TimePrinted:Tuesday, June 09, 2020 16:59:53 Pacific Daylight Time


#### Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56


#### Name: 200609D1_5, Date: 09-Jun-2020, Time: 15:33:55, ID: 2000945-01RE1 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426

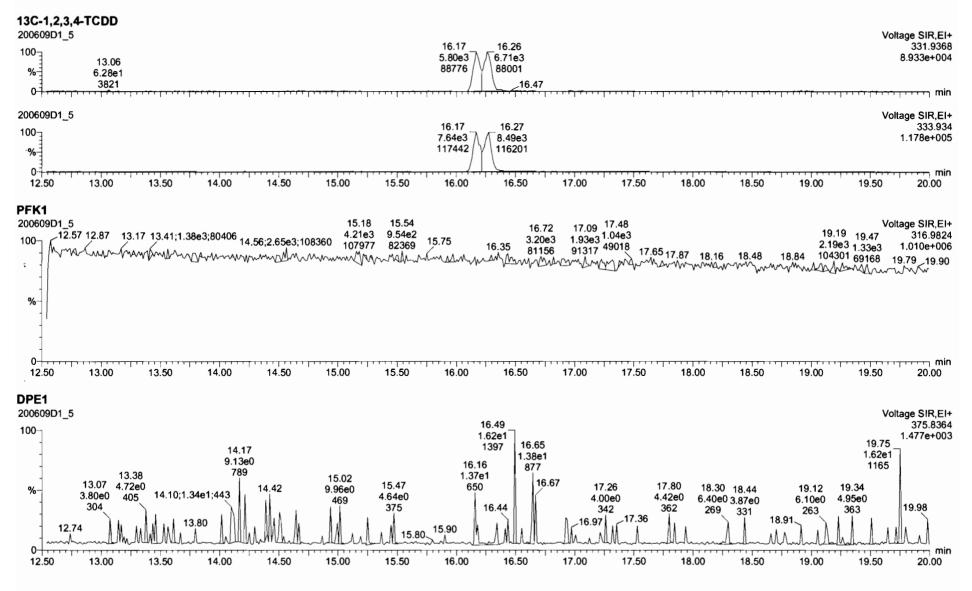




#### A File Edit View Display Processing Window Help






#### Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory VG-10

#### Dataset: U:\VG7.PRO\Results\200609D1\200609D1_5.qld

Last Altered:	Tuesday, June 09, 2020 16:58:38 Pacific Daylight Time
Printed:	Tuesday, June 09, 2020 16:59:53 Pacific Daylight Time

#### Name: 200609D1_5, Date: 09-Jun-2020, Time: 15:33:55, ID: 2000945-01RE1 PDI-146SC-A-00-01-200426 14.29, Description: PDI-146SC-A-00-01-200426



Quantify San Vista Analytica	n <b>ple Summary Report</b> al Laboratory	MassLynx 4.1			Page
Dataset:	U:\VG7.PRO\Results\200	0609D1\200609D1_6.qld			
Last Altered: Printed:		17:03:12 Pacific Daylight Time 17:04:22 Pacific Daylight Time	NB	6/9/20	C7 06/11/2020

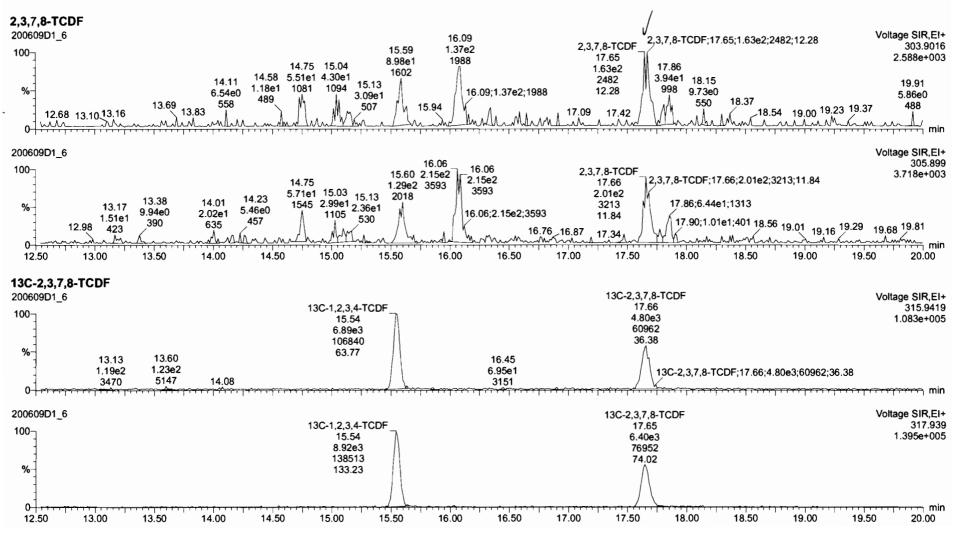
Page 1 of 1

#### Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

## Name: 200609D1_6, Date: 09-Jun-2020, Time: 16:05:37, ID: 2000945-02RE1 PDI-146SC-A-01-02-200426 12:02, Description: PDI-146SC-A-01-02-200426

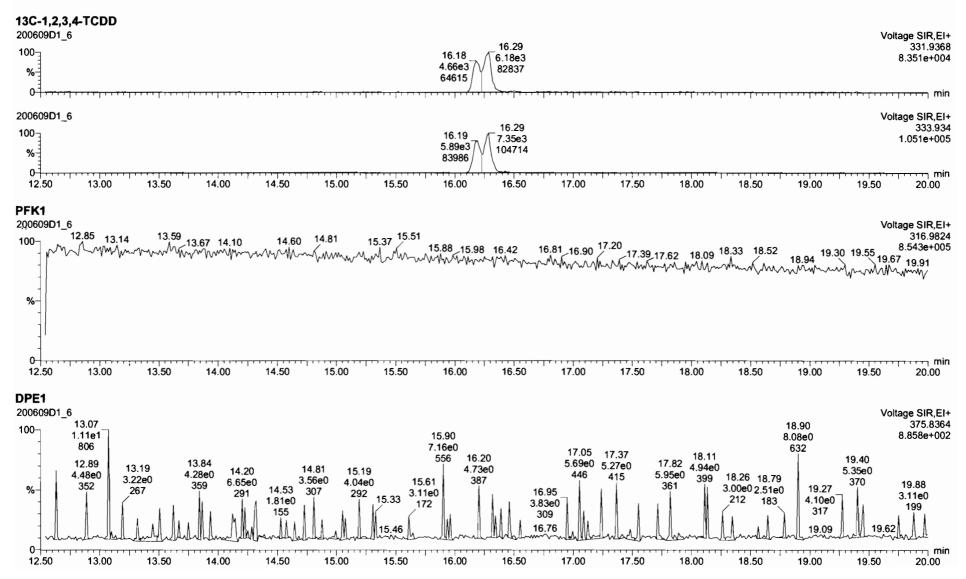
	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	- <b>RT</b>	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDF	3.64e2	0.81	NO	0.982	10.580 🦟	17.677	17.65	1.000	0.999	6.2526		1.92	6.25
2.	2 13C-2,3,7,8-TCDF	1.12e4	0.75	NO	1.08	10.580	17.701	17.66	1.133	1.136	123.74	65.5	5.80	
2	3 13C-1,2,3,4-TCDF	1.58e4	0.77	NO	1.00	10.580	15.660	15.54	1.000	1.000	189.03	100	6.28	

#### Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory VG-10

Dataset: U:\VG7.PRO\Results\200609D1\200609D1_6.qld

Last Altered:	Tuesday, June 09, 2020 17:03:12 Pacific Daylight Time
Printed:	Tuesday, June 09, 2020 17:04:43 Pacific Daylight Time


#### Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

#### Name: 200609D1_6, Date: 09-Jun-2020, Time: 16:05:37, ID: 2000945-02RE1 PDI-146SC-A-01-02-200426 12:02, Description: PDI-146SC-A-01-02-200426



Quantify Sample Report         MassLynx 4.1           Vista Analytical Laboratory VG-10			
Dataset:	U:\VG7.PRO\Results\200609D1\200609D1_6.qld		
Last Altered: Printed:	Tuesday, June 09, 2020 17:03:12 Pacific Daylight Time Tuesday, June 09, 2020 17:04:43 Pacific Daylight Time		

#### Name: 200609D1_6, Date: 09-Jun-2020, Time: 16:05:37, ID: 2000945-02RE1 PDI-146SC-A-01-02-200426 12:02, Description: PDI-146SC-A-01-02-200426



 Quantify Sample Summary Report
 MassLynx 4.1

 Vista Analytical Laboratory
 MassLynx 4.1

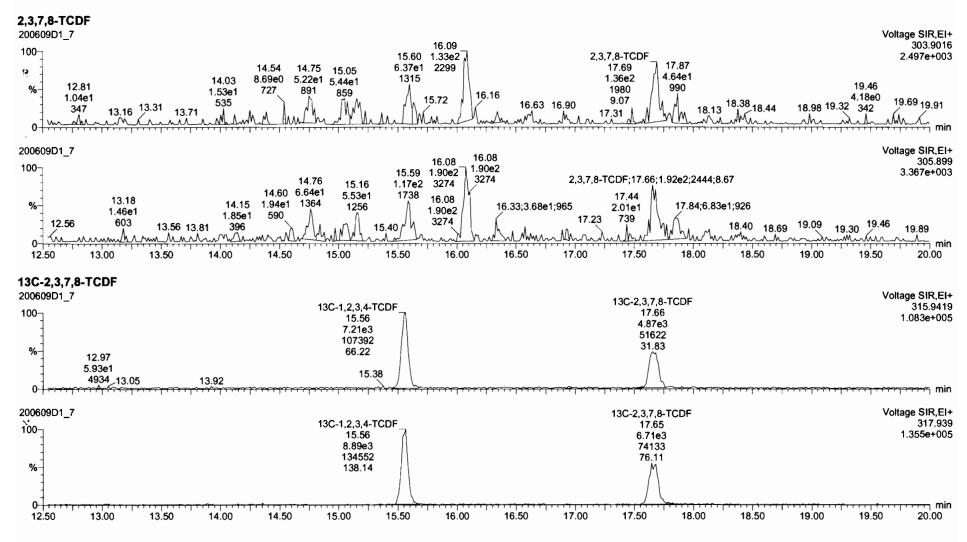
Dataset: U:\VG7.PRO\Results\200609D1\200609D1_7.qld

Last Altered:	Thursday, June 11, 2020 10:34:49 Pacific Daylight Time
Printed:	Thursday, June 11, 2020 10:35:38 Pacific Daylight Time

DB 6/11/20 Crob/11/2020

#### Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

#### Name: 200609D1_7, Date: 09-Jun-2020, Time: 16:37:19, ID: B0D0306-DUP1RE1 Duplicate, Description: Duplicate

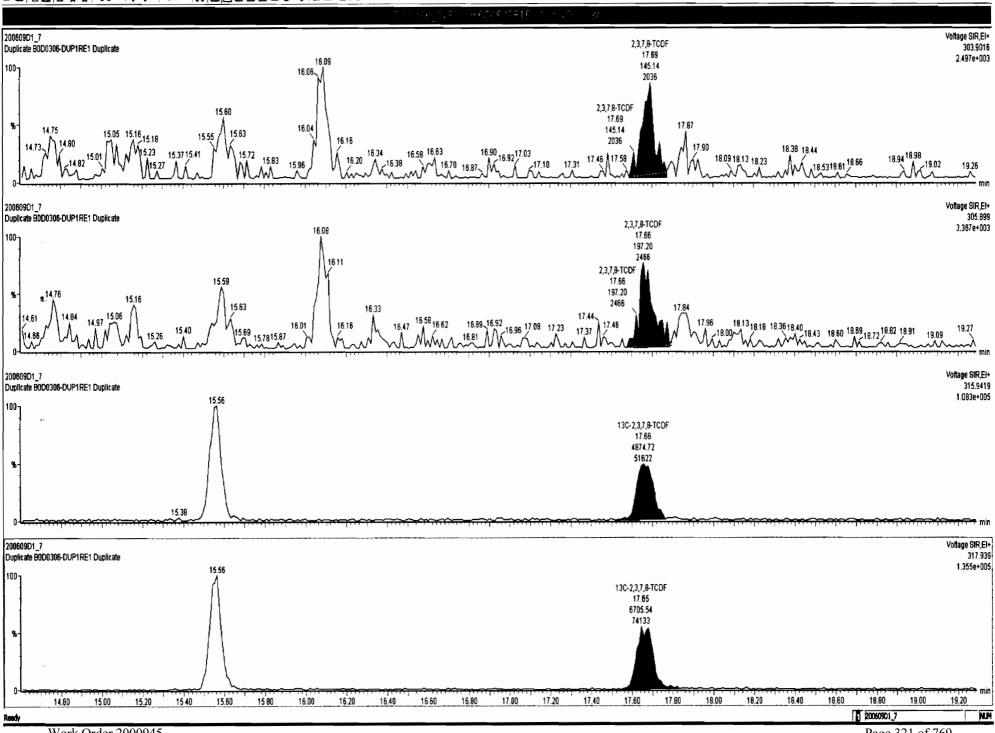

1 2,3,7,8-TCDF 2 13C-2,3,7,8-TCDF 3 13C-1,2,3,4-TCDF	Resp	RA	n/y	RRF	wt/vbl	Pred.RT	RT.	Pred RRT	RRT	Conc.	WROC		
1 2,3,7,8-TCDF	3.42e2	0.74	NO	0.982	10.026	- 17.678	17.69	1.000	1.002	6.0058		2.49	6.01
2 13C-2,3,7,8-TCDF	1.16e4	0.73	NO	1.08	10.026	17.724	17.66	1.133	1.135	132.57	66.5	5.98	
3 13C-1,2,3,4-TCDF	1.61e4	0.81	NO	1.00	10.026	15.660	15.56	1.000	1.000	199.48	100	6.48	

Page 1 of 1

Quantify San Vista Analytica	nple Report MassLynx 4.1 al Laboratory VG-10	Page 1 of 2
Dataset:	U:\VG7.PRO\Results\200609D1\200609D1_7.qld	
Last Altered: Printed:	Thursday, June 11, 2020 10:32:50 Pacific Daylight Time Thursday, June 11, 2020 10:34:08 Pacific Daylight Time	

#### Kethod: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

#### Name: 200609D1_7, Date: 09-Jun-2020, Time: 16:37:19, ID: B0D0306-DUP1RE1 Duplicate, Description: Duplicate



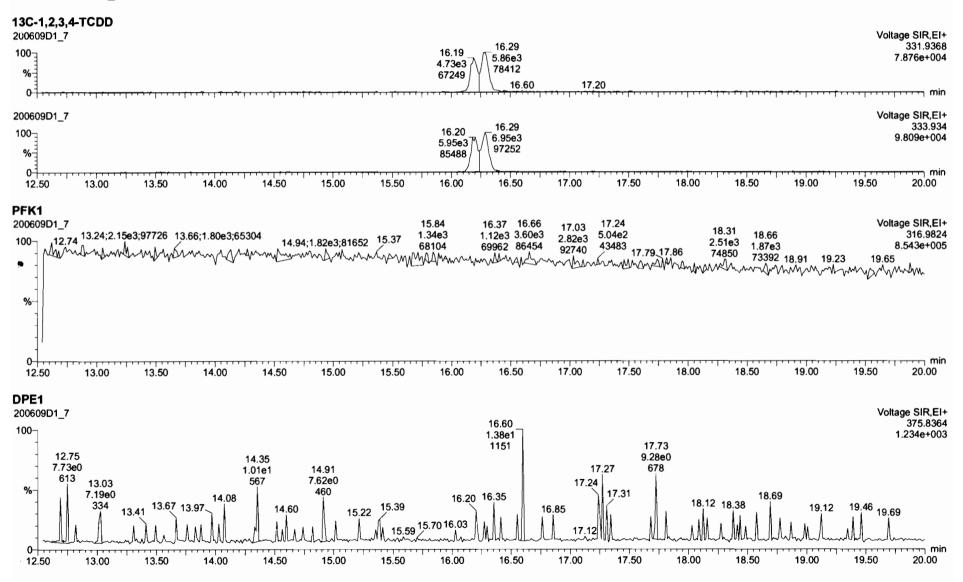

2



#### A File Edit: Wow Display Processing Window Help

# 




Work Order 2000945

. 8 X

Page 321 of 769

Quantify Sam Vista Analytica	aple Report MassLynx 4.1 al Laboratory VG-10	Page 2 of 2
Dataset:	U:\VG7.PRO\Results\200609D1\200609D1_7.qld	
Last Altered: Printed:	Thursday, June 11, 2020 10:32:50 Pacific Daylight Time Thursday, June 11, 2020 10:34:08 Pacific Daylight Time	

#### Name: 200609D1_7, Date: 09-Jun-2020, Time: 16:37:19, ID: B0D0306-DUP1RE1 Duplicate, Description: Duplicate



# CONTINUING CALIBRATION

# **HRMS CALIBRATION STANDARDS REVIEW CHECKLIST**

Beg. Calbration ID: ST2005(5P4)			Reviewed By: <u>C7</u> US/9/2020	_	
End Calibration ID: ST20051512-1					
	Beg.	End		Beg.	End
Ion abundance within QC limits?	$\checkmark$		Mass resolution <u>&gt;</u>	$\square$	_
Concentrations within criteria?			□ 5k □ 6-8K □ 8K ⋈ 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	$\square$	$\checkmark$	Intergrated peaks display correctly?	Ŀ	4
First and last eluters present?			GC Break <20%		
<b>Retention Times within criteria?</b>	$\Box$	~	8280 CS1 End Standard:		
Verification Std. named correctly?	$\square$	Ŋ	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		NA
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?			Comments:		
Correct ICAL referenced?	GRB	GRB			
Run Log:					
- Correct instrument listed?	7				
- Sampies within 12 hour clock?	$\langle \mathbf{y} \rangle$	Ν			
- Bottle position verfied?		GPB			

_

Quantify Sam Vista Analytica	al Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\20	0515R1\200515R1-1.qld	
Last Altered: Printed:	Friday, May 15, 2020 9:09 Friday, May 15, 2020 9:10	9:35 AM Pacific Daylight Time 0:23 AM Pacific Daylight Time	

GRB 05/15/2020 C7 05/19/2020

# Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

	Sherry St. S.													and the Tanking
	1 2,3,7,8-TCDD	1.29e5	1.51e6	0.77	NO	0.947	26.08	26.08	NO	1.001	1.001	9.0264	90.3	NO
4	2 1,2,3,7,8-PeCDD	5.02e5	1.17e6	0.62	NO	0.942	31.16	31.16	NO	1.001	1.000	45.405	90.8	NO
	3 1,2,3,4,7,8-HxCDD	4.30e5	8.38e5	1.24	NO	1.06	34.52	34.53	NO	1.000	1.001	48.269	96.5	NO
	4 1,2,3,6,7,8-HxCDD	4.50e5	1.00e6	1.22	NO	0.915	34.61	34.62	NO	1.000	1.000	49.106	98.2	NO
	5 1,2,3,7,8,9-HxCDD	4.26e5	9.70e5	1.24	NO	0.915	34.90	34.90	NO	1.000	1.000	48.048	96.1	NO
	6 1,2,3,4,6,7,8-HpCDD	3.46e5	7.68e5	1.02	NO	0.898	38.39	38.40	NO	1.000	1.001	50.180	100	NO
	7 OCDD	6.66e5	1.44e6	0.89	NO	0.933	41.35	41.36	NO	1.000	1.000	99.155	99.2	NO
8	8 2,3,7,8-TCDF	1.51e5	1.95e6	0.73	NO	0.787	25.15	25.15	NO	1.001	1.001	9.8602	98.6	NO
	9 1,2,3,7,8-PeCDF	7.26e5	1.65e6	1.57	NO	0.910	29.85	29.84	NO	1.001	1.001	48.474	96.9	NO
	10 2,3,4,7,8-PeCDF	7.24e5	1.60e6	1.55	NO	0.966	30.87	30.85	NO	1.001	1.000	46.912	93.8	NO
	11 1,2,3,4,7,8-HxCDF	5.14e5	1.10e6	1.23	NO	0.878	33.64	33.66	NO	1.000	1.001	52.993	106	NO
• • • • • • • • • • • • • • • • • • •	12 1,2,3,6,7,8-HxCDF	5.49e5	1.19e6	1.19	NO	0.874	33.78	33.78	NO	1.000	1.000	52.586	105	NO
	13 2,3,4,6,7,8-HxCDF	5.39e5	1.10e6	1.22	NO	0.922	34.37	34.36	NO	1.001	1.001	53.220	106	NO
	14 1,2,3,7,8,9-HxCDF	4.50e5	9.75e5	1.22	NO	0.864	35.23	35.25	NO	1.000	1.001	53.435	107	NO
	15 1,2,3,4,6,7,8-HpCDF	4.17e5	8.85e5	1.02	NO	0.871	37.00	36.98	NO	1.001	1.000	54.09 <del>6</del>	108	NO
	16 1,2,3,4,7,8,9-HpCDF	3.34e5	6.06e5	1.01	NO	1.01	38.97	38.98	NO	1.000	1.000	54.449	109	NO
	17 OCDF	6.83e5	1.60e6	0.87	NO	0.802	41.55	41.56	NO	1.000	1.000	106.09	106	NO
	18 13C-2,3,7,8-TCDD	1.51e6	1.25e6	0.78	NO	1.16	26.05	26.05	NO	1.026	1.027	104.63	105	NO
	19 13C-1,2,3,7,8-PeCDD	1.17e6	1.25e6	0.62	NO	0.847	31.14	31.14	NO	1.227	1.227	111.15	111	NO
	20 13C-1,2,3,4,7,8-HxCDD	8.38e5	1.04e6	1.28	NO	0.750	34.52	34.51	NO	1.014	1.014	106.99	107	NO
	21 13C-1,2,3,6,7,8-HxCDD	1.00e6	1.04e6	1.26	NO	0.963	34.63	34.61	NO	1.017	1.017	99.723	99.7	NO
	22 13C-1,2,3,7,8,9-HxCDD	9.70e5	1.04e6	1.26	NO	0.838	34.90	34.89	NO	1.025	1.025	110. <b>86</b>	111	NO
	23 13C-1,2,3,4,6,7,8-HpCDD	7.68e5	1.04e6	1.04	NO	0.641	38.39	38.38	NO	1.128	1.128	114.69	115	NO
	24 13C-OCDD	1.44e6	1.04e6	0.90	NO	0.586	41.39	41.35	NO	1.216	1.215	235.13	118	NO
	25 13C-2,3,7,8-TCDF	1.95e6	1.74e6	0.77	NO	1.03	25.10	25.12	NO	0.989	0.990	108.02	108	NO
	26 13C-1,2,3,7,8-PeCDF	1.65e6	1.74e6	1.60	NO	0.845	29.83	29.83	NO	1.176	1.175	111.59	112	NO
	27 13C-2,3,4,7,8-PeCDF	1.60e6	1.74e6	1.59	NO	0.814	30.82	30.83	NO	1.215	1.215	112.51	113	NO
	28 13C-1,2,3,4,7,8-HxCDF	1.10e6	1.04e6	0.51	NO	1.00	33.66	33.64	NO	0.989	0.988	105.25	105	NO
	29 13C-1,2,3,6,7,8-HxCDF	1.19e6	1.04e6	0.52	NO	1.14	33.78	33.77	NO	0.992	0.992	100.59	101	NO
	30 13C-2,3,4,6,7,8-HxCDF	1.10e6	1.0 <b>4e</b> 6	0.51	NO	1.02	34.35	34.33	NO	1.009	1.009	102.88	103	NO
	31 13C-1,2,3,7,8,9-HxCDF	9.75e5	1.04e6	0.52	NO	0.845	35.24	35.23	NO	1.035	1.035	110.54	111	NO

Quantify Sam Vista Analytica	a <b>ple Summary Report</b> al Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\200	515R1\200515R1-1.qld	

Last Altered:	Friday, May 15, 2020 9:09:35 AM Pacific Daylight Time
Printed:	Friday, May 15, 2020 9:10:23 AM Pacific Daylight Time

GRB 05/15/2020

2	And the second second		The support of the first of			elses filt.	A 19- 45 4	en et and		A State	an as a s	an buon kan	E. M. A. W.	a shree a
	, 32 13C-1,2,3,4,6,7,8-HpCDF	8.85e5	1.0 <b>4e</b> 6	0.45	NO	0.771	36.97	36.97	NO	1.086	1.086	109.87	110	NO
·	33 13C-1,2,3,4,7,8,9-HpCDF	6.06e5	1.0 <b>4e</b> 6	0.43	NO	0.482	38.98	38.97	NO	1.145	1.145	120.29	120	NO
	34 13C-OCDF	1.60e6	1.04 <del>e</del> 6	0.88	NO	0.669	41.56	41.55	NO	1.221	1.221	229.79	115	NO
	35 37CI-2,3,7,8-TCDD	1.38e5	1.25e6			1.10	26.08	26.08	NO	1.028	1.028	10.087	101	NO
•	36 13C-1,2,3,4-TCDD	1.25e6	1.25e6	0.80	NO	1.00	25.35	25.38	NO	1.000	1.000	100.00	100	NO
	37 13C-1,2,3,4-TCDF	1.74e6	1.74 <del>e</del> 6	0.80	NO	1.00	23.56	23.59	NO	1.000	1.000	100.00	100	NO
. 131. a⁺	38 13C-1,2,3,4,6,9-HxCDF	1.04e6	1.04 <b>e</b> 6	0.51	NO	1.00	34.00	34.04	NO	1.000	1.000	100.00	100	YES 🕊

## Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11

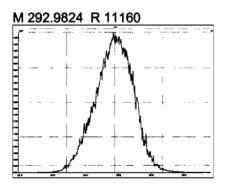
Dataset: Untitled

Last Altered: Friday, May 15, 2020 3:38:14 PM Pacific Daylight Time Friday, May 15, 2020 3:38:17 PM Pacific Daylight Time

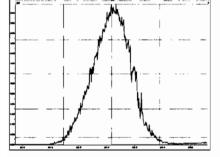
#### Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

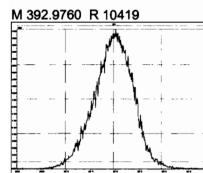
#### Compound name: 2,3,7,8-TCDD

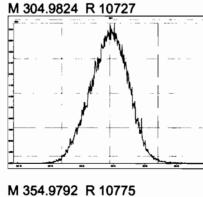
3.8 ⁰			
4	200515R1_1	ST200515R1_1 1613 CS3 19L2305	15-May-20 08:13:47
	200515R1_2	B0D0306-BS1 OPR 10	15-May-20 09:01:39
	200515R1_3	SOLVENT BLANK	15-May-20 09:47:50
-	200515R1_4	B0D0306-BLK1 Method Blank 10	15-May-20 10:34:04
· • • *	200515R1_5	2000932-20RE1@2X SD-0033 26.4	15-May-20 11:21:13
	200515R1_6	2000934-05@2X SD-0038 21.04	15-May-20 12:07:54
.!	200515R1_7	2000934-06@5X SD-0039 20.86	15-May-20 12:55:06
	200515R2_1	SOLVENT BLANK	15-May-20 13:54:36
	200515R2_2	ST200515R2_1 1613 CS3 19L2305	15-May-20 14:40:51


#### **Experiment Calibration Report**

#### MassLynx 4.1 SCN815

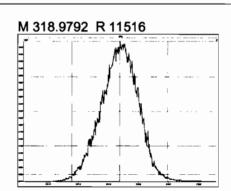

Page 1 of 1


File: Experiment: OCDD_DB5.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)


Printed: Friday, May 15, 2020 08:07:57 Pacific Daylight Time

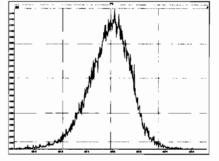


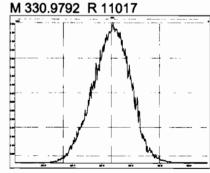
M 342.9792 R 10635



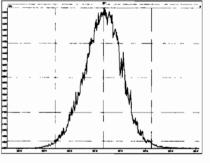




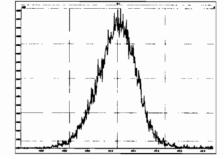




#### M 404.9760 R 10331

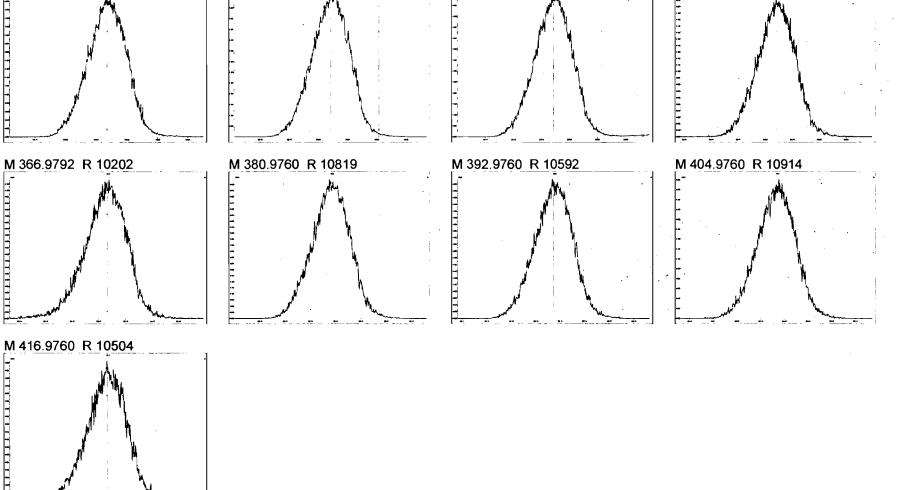




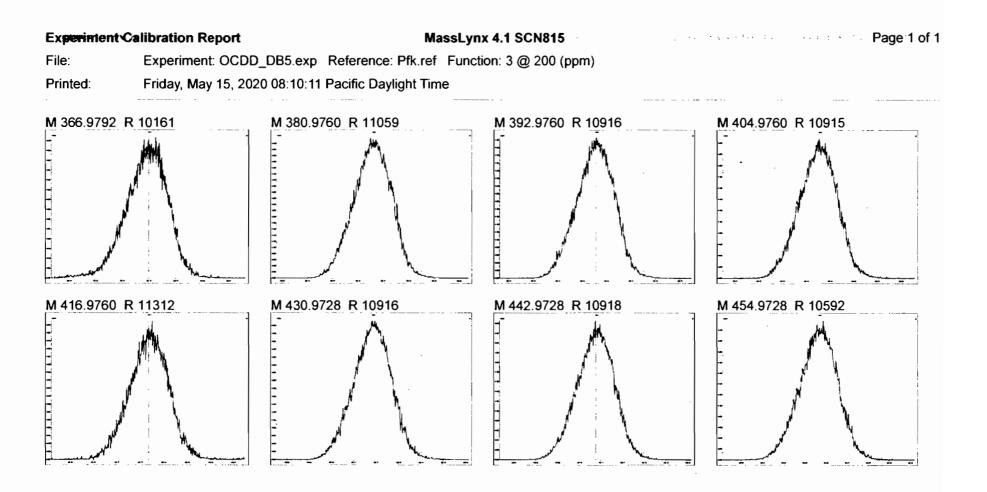


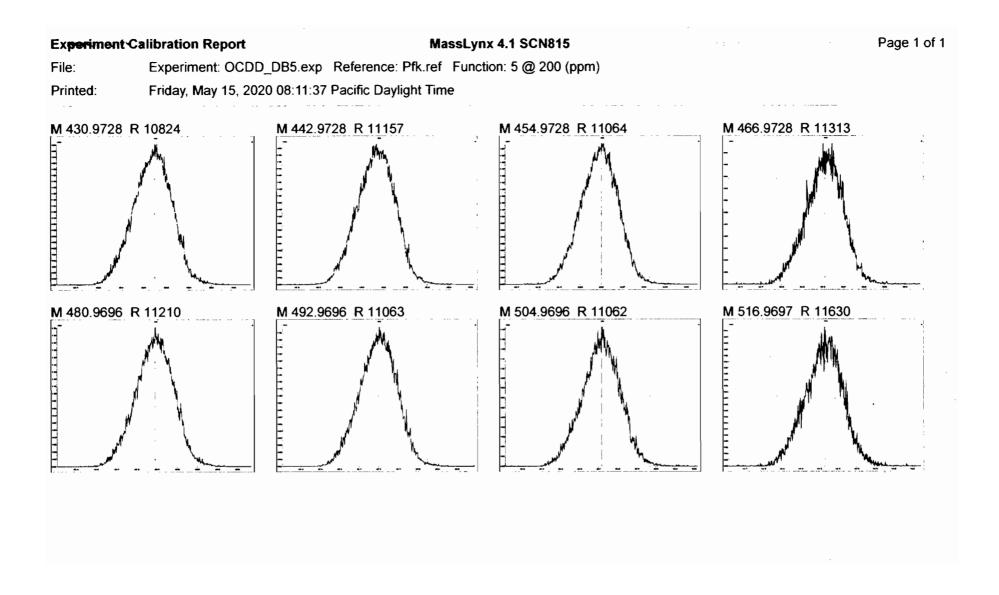




#### M 380.9760 R 10776




#### M 416.9760 R 10916




# Experiment Calibration Report MassLynx 4.1 SCN815 File: Experiment: OCDD_DB5.exp Reference: Pfk.ref Function: 2 @ 200 (ppm) Printed: Friday, May 15, 2020 08:09:08 Pacific Daylight Time M 318.9792 R 10506 M 330.9792 R 11368 M 342.9792 R 10636 M 354.9792 R 11364



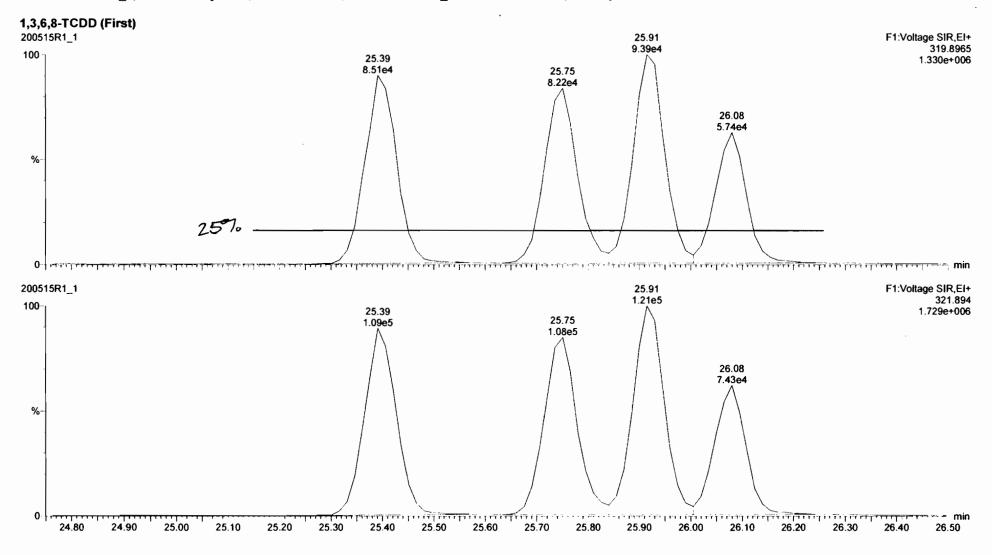
Page 1 of 1



### Page 1 of 1 **Experiment Calibration Report** MassLynx 4.1 SCN815 Experiment: OCDD_DB5.exp Reference: Pfk.ref Function: 4 @ 200 (ppm) File: Printed: Friday, May 15, 2020 08:10:59 Pacific Daylight Time M 404.9760 R 11060 M 416.9760 R 10918 M 430.9728 R 10964 M 442.9728 R 11259 M 466.9728 R 11681 M 480.9696 R 10777 M 454.9728 R 10730 1111111111 11111111111111 111111111111111

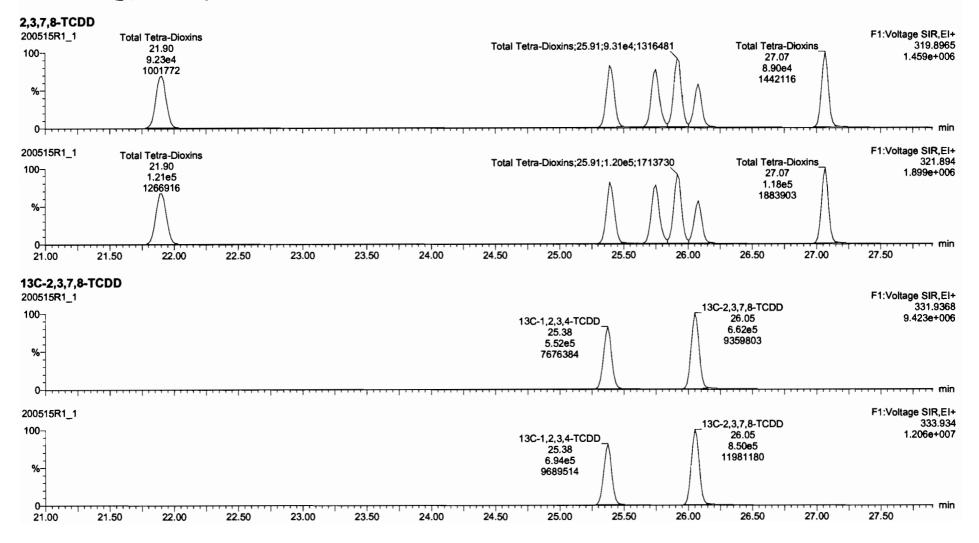


	nple Summary Report al Laboratory VG-11	MassLynx 4.1 SCN815		 -	Page 1 of 1
Dataset:	Untitled				
Last Altered: Printed:	Friday, May 15, 2020 09:01 Friday, May 15, 2020 09:01		 	 	 •


#### Method: U:\VG12.PRO\MethDB\CPSM.mdb 08 Apr 2020 10:53:44 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

	# Name	RT
1	1 1,3,6,8-TCDD (First)	21.90
2	2 1,2,8,9-TCDD (Last)	27.07
3	3 1,2,4,7,9-PeCDD (First)	28.90
4	4 1,2,3,8,9-PeCDD (Last)	31.54
5	5 1,2,4,6,7,9-HxCDD (First)	33.05
6	6 1,2,3,7,8,9-HxCDD (Last)	34.90
7	7 1,2,3,4,6,7,9-HpCDD (First)	37.36
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.40
9	9 1,3,6,8-TCDF (First)	19.82
10	10 1,2,8,9-TCDF (Last)	27.22
11	11 1,3,4,6,8-PeCDF (First)	27.17
12	12 1,2,3,8,9-PeCDF (Last)	31.78
13	13 1,2,3,4,6,8-HxCDF (First)	32.49
14	14 1,2,3,7,8,9-HxCDF (Last)	35.25
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.98
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.98

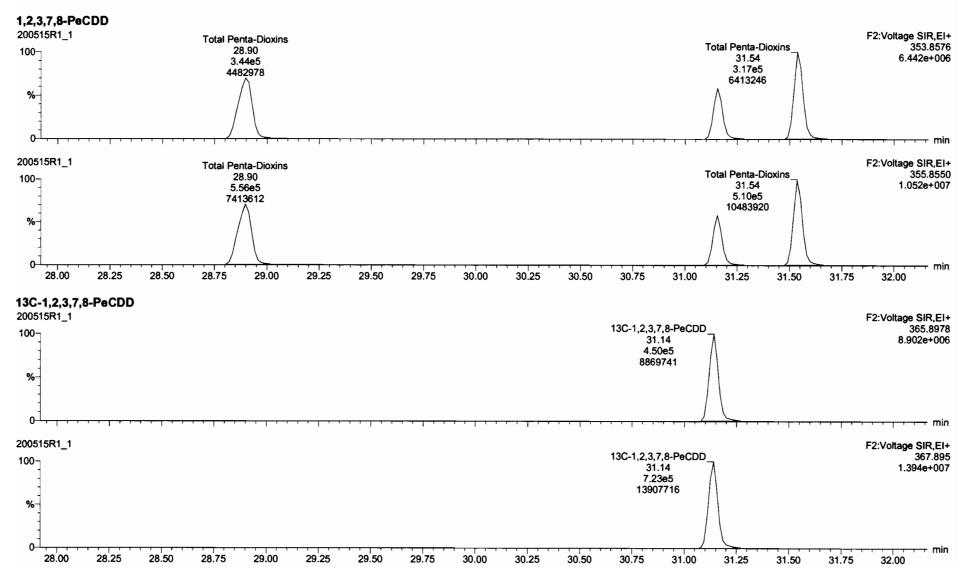
Quantify Sam Vista Analytica	ple Report MassLynx 4.1 SCN815 al Laboratory VG-11	Hurst CH F. A. Somewa	Page dupintury sample
Dataset:	Untitled		
Last Altered: Printed:	Friday, May 15, 2020 09:01:12 Pacific Daylight Time Friday, May 15, 2020 09:01:52 Pacific Daylight Time		 3RB 05/15/2020


#### Method: U:\VG12.PRO\MethDB\CPSM.mdb 08 Apr 2020 10:53:44 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

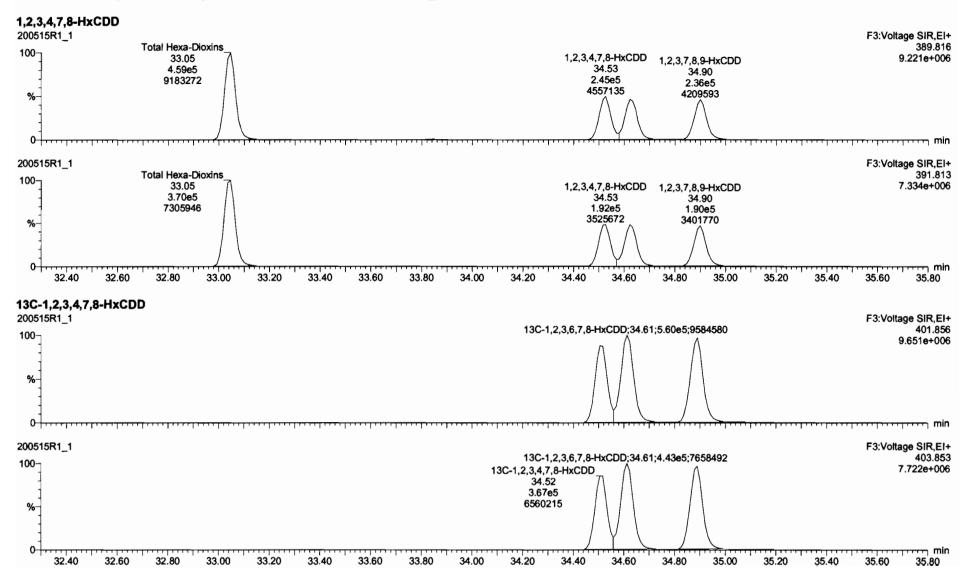
#### . ;0: St Normal: 200515R1.1.1, Date: 15-May/2920/ Time: 08:13:47, ID: ST200515R1_1 1613 CS3 19L2305, Description: 1613 CS3 19L2305



<b>Quantify Sam</b> Vista Analytica		Page 1 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	


#### Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23




Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	



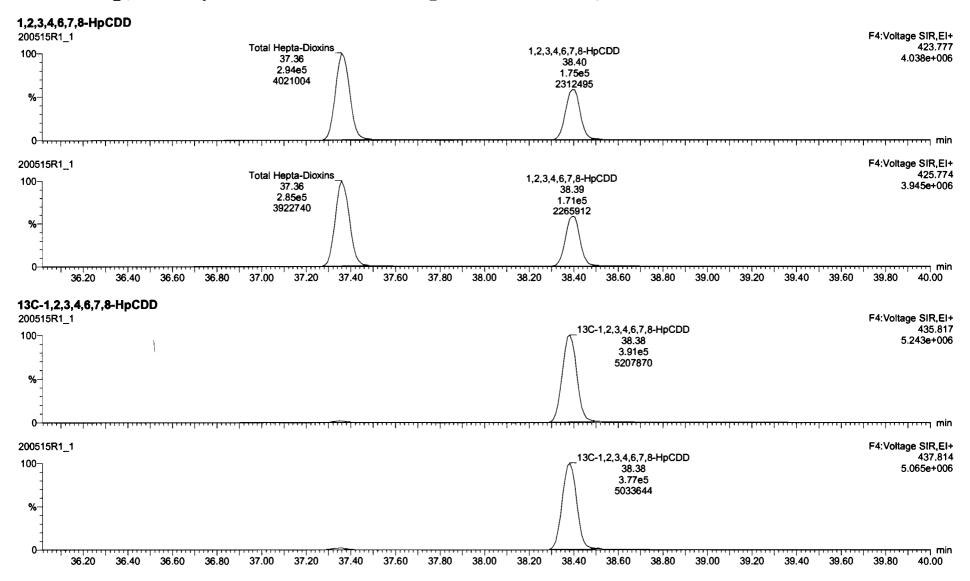
Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	



○ Fite Edit View Display Proceeding Window Help 命目 . 出國項項 +1 10 - → ◇ ◇ → · · X ⊡ (3 11 ) Σ (11 ● ● 目 11 母 11 )

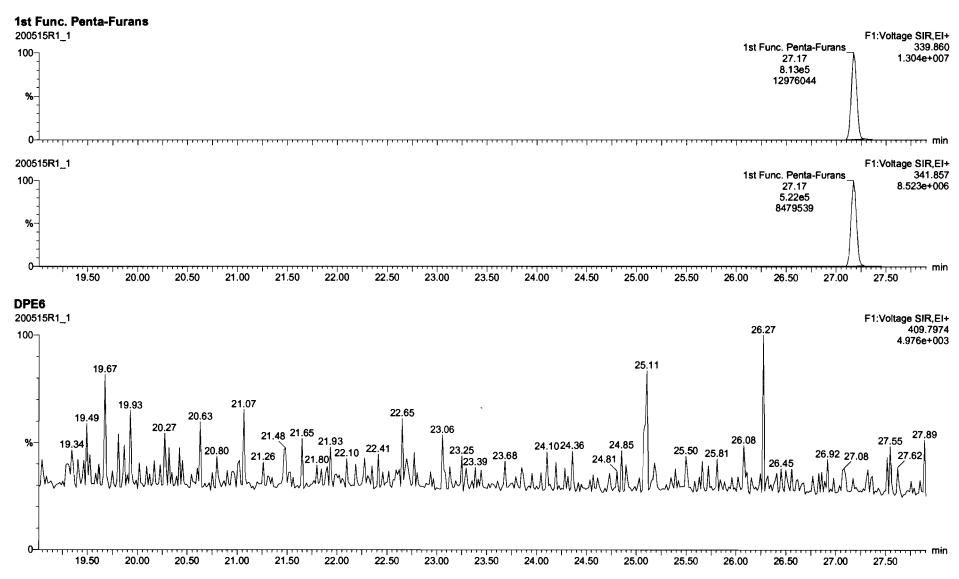

F stollage 3 Sa
F2 +oftsp 9 55
Få voltape 772
35

②File Edit View Display Processing Window Halp 译品 战国贸贝号和G++ + → ◆◆ + + × 22 □ ■ □ 図Ш● ● 日 ■ ■ 1

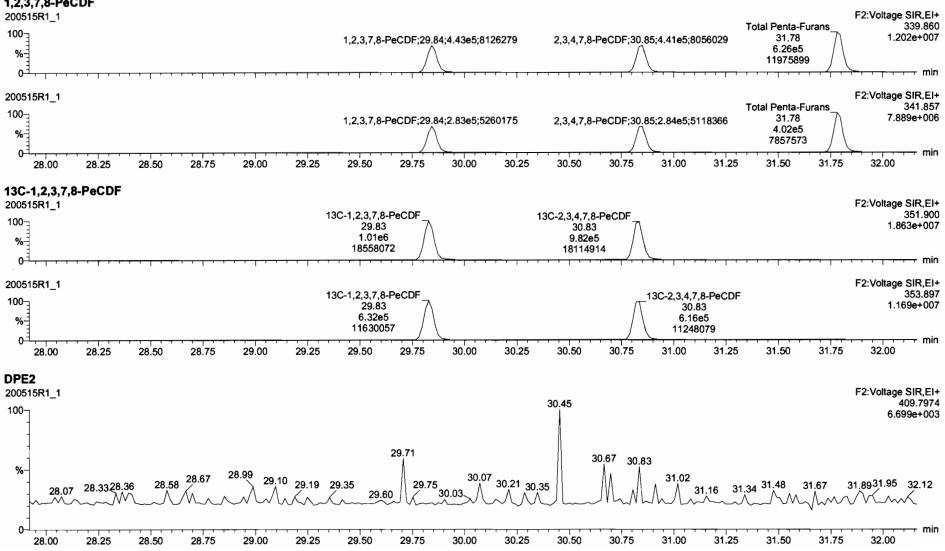
'**_ #** × 1999 (A. 1997) (A. 1997) and a second finance

Image:				· · ·	<u>~ </u>	20		μĿ		_		Ш ·	-						<ul> <li>A start of the sta</li></ul>	
1227 Fallow         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2         11/2																				
1323244000         108         11         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <th10< th="">         10         10</th10<>	t Henne	- Heap	Stanp	Pred SA	N	A	ely	RRF	Pre	d.RT	RT	RTF		RRT	RECT	Cent	Silvinci -	STD out		
12 32 34 Area (0)         10 40         11 40         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1         10 1 </td <td></td> <td>1 2965</td> <td></td>		1 2965																		
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>		5 02e5	1 17:06	0.6	3 04	A2	HO	0 9425	31	16	31 16	NO	1	001	1 000	45.4	8 06	N		
13       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12 <th12< th="">       12       12       <th1< td=""><td>3 1.2.3.4.7 8-HACOD</td><td>4 30e5</td><td>8.38+5</td><td>12</td><td>4 1.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>N</td><td></td><td></td></th1<></th12<>	3 1.2.3.4.7 8-HACOD	4 30e5	8.38+5	12	4 1.													N		
1:12:12:40-0000       2:860       7:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:80       1:8		· · · · · · · · · · · · · · · · · · ·	13. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	this				-	1			Set	54 6.35	. 1	14 A	1	9. A			
1         0000         1660         1460         1460         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150<			9 70e5									NO						N		
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1					_												<b>.</b>			
1       123.473-46.00       7264       1666       155       120       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160       160																				
10         22.37 Sector         7.246         1.666         1.55         1.05         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00													_							
11         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12<										_			_				<u> </u>			
13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13<		_								_		<u> </u>								
13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th="">         12         12         12<!--</td--><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td>_</td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th12<>					_		_		_	_		<u> </u>								
Image: 100 (100 (100 (100 (100 (100 (100 (100													+	+						
11       12       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       18       18       18       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180       180<																	<u> </u>			
18         23.445         64.04         164         167         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160												_								
Int         Cor         Excest         Teace         Excest         Teace         Excest         Teace         Cor												<u> </u>								
R1_1       (1) Velop 5         27 19/2 X05 51/00515R1_1 1613 C33 19/2 X05       12.36 / 3 + hcCOO 34.62 / 2 / 19 94 4227800       38         12.35       12.36 / 3 + hcCOO 34.62 / 2 / 19 94 4227800       19 / 4 / 2 / 2 / 2 / 2 / 3 / 3 / 4 / 2 / 2 / 2 / 2 / 3 / 3 / 4 / 2 / 2 / 2 / 2 / 4 / 3 / 3 / 4 / 2 / 2 / 2 / 4 / 3 / 3 / 4 / 2 / 2 / 2 / 4 / 3 / 4 / 2 / 2 / 2 / 4 / 3 / 4 / 2 / 2 / 2 / 4 / 3 / 4 / 2 / 2 / 2 / 4 / 4 / 2 / 2 / 2 / 4 / 4																				
27 19L2:005 51200515R1_1 1613 C53 19L2305       123.67 34 HCCO 34.62 247 719 94 4227 800       14         14.1       13 19L2:005 51200515R1_1 1613 C53 19L2305       123.67 78 HCCO 34 62 202989 78 35 183.48       13 19L2 2005 51200515R1_1 1613 C53 19L2305         R1_1       13 19L2:005 51200515R1_1 1613 C53 19L2305       123.67 78 HCCO 34 62 202989 78 35 183.48       13 19L2 2005 51200515R1_1 1613 C53 19L2305         R1_1       13 10 42:005 51200515R1_1 1613 C53 19L2305       123.67 78 HCCO 34 61 559828 64 9564580       34.69         R1_1       13 10 42:005 51200515R1_1 1613 C53 19L2305       13 16 1250 19 2305       13 16 1250 19 2305         R1_1       13 10 42:005 51200515R1_1 1613 C53 19L2305       13 16 12 53928 64 9564580       34.69         R1_1       10 51 10 230 51200515R1_1 1613 C53 19L2305       13 16 12 500 51200515R1_1 1613 C53 19L2305       14 63 C53 19L2305					+		-		+			+					·	•		
R1_1       F3 \vectors         B3 T9L2305 ST20051SR1, L1613 C53 19L2305       34 53         S3 T9L2305 ST20051SR1, L1613 C53 19L2305       34 53         S1 T9L2305 ST20051SR1, L1613 C53 19L2305       36 78 + teCDD34 61 559828 94 9564580         S1 T9L2305 ST20051SR1, L1613 C53 19L2305       36 78 + teCDD34 61 559828 94 9564580         S1 19L2305 ST20051SR1, L1613 C53 19L2305       36 78 + teCDD34 61 559828 94 9564580       34 89													/	)						
A1 13C-1,2,3,6,7,8+trCDD;34,61;559828,94,9594580 13C-1,2,3,6,7,8+trCDD;34,61;559828,94,9594580 34,89 9,551 48;1 14;1 15;1;0;1;2;3,6,7,8+trCDD;34,61;559828,94,9594580 34,89 9,551 14;1 15;1;0;1;2;3,6,7,8+trCDD;34,61;559828,94,9594580 34,89 9,551 14;1 15;1;0;1;2;3,6,7,8+trCDD;34,61;559828,94,9594580 34,89 9,551 14;1 15;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1		1613 053 1912	2305		1					-										F 3 Vollage S 35
S3 19L2305 5T200515R1_1 1613 (S3 19L2305		1613 CS3 19L2	2305							<u></u>		130	-1,2.3.6		COD:34	61:5598	28.94 95	64530	34.89	40
133 19L2305 51200515R1_1 1613 053 19L2305	••••••••••••••••••••••••••••••••••••••													\ \						
		16 13 CS3 19L2	2305									130	-1.2.3.6	7 8-Htd	CDD.34	61,4431	28 38 76	58492	34 89	-10

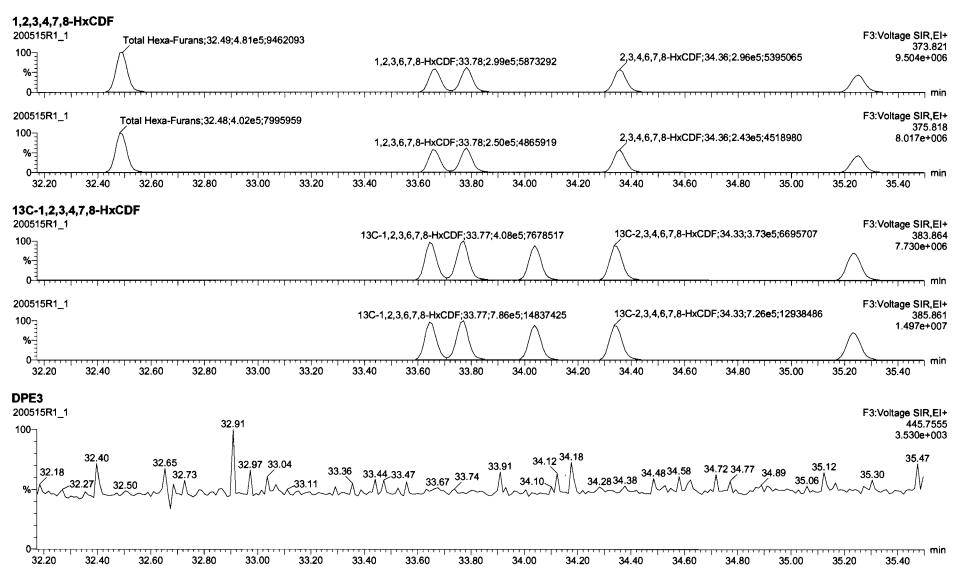
Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	



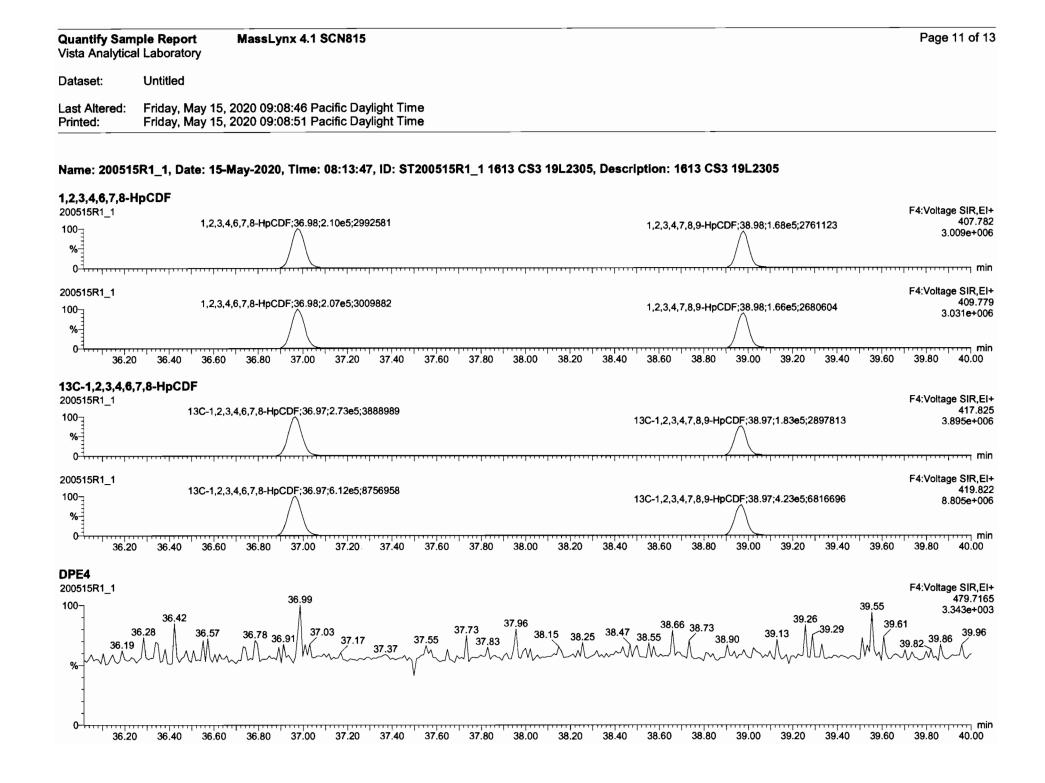

<b>Juantify Sam</b> ista Analytica	aple Report MassLynx 4.1 SCN815 al Laboratory	Page 6 of
ataset:	Untitled	
ast Altered: ninted:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	
ame: 20051	5R1_1, Date: 15-May-2020, Time: 08:13:47, ID: ST200515R1_1 1613 CS3 19L2305, Description: 16	13 CS3 19L2305
CDD 00515R1_1		F5:Voltage SIR,
100	OCDD 41.36 7\	457. 457. 487e+(
-	3.13e5 / 4455888 /	
%		
-		
0 ⁻¹		·····
00515R1_1	0000	F5:Voltage SIR, 459.7
00		439.1 5.153e+(
	3.53e5 / 5106315/	
<b>%</b> -		
-		
0- ¹	0 40.40 40.60 40.80 41.00 41.20 41.40 41.60 41.80 42.00 42.20 42.40 42.60	42.80 43.00 43.20 43.40 43.60 43.80 44.00
3C-OCDD 00515R1_1		F5:Voltage SIR,
	13C-OCDD 41.35 7	469.7 9.853e+(
	6.81e5 9785823	
%-		
0 ¹		
00515R1_1		F5:Voltage SIR,
100	13C-OCDD	
-	7.59e5 / 10933432 /	
<b>%</b> -]		
-		
o ¹	0 40.40 40.60 40.80 41.00 41.20 41.40 41.60 41.80 42.00 42.20 42.40 42.60	42.80 43.00 43.20 43.40 43.60 43.80 44.00


Quantify San Vista Analytica			Page 7 of 1
Dataset:	Untitled		
ast Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	<u></u>	
,3,7,8-TCDF	5R1_1, Date: 15-May-2020, Time: 08:13:47, ID: ST200515R1_1 1613 CS3 19L	2305, Description: 1613 CS3 19L2305	
00515R1_1	Total Tetra-Furans 19.82 1.22e5 1506634	2,3,7,8-TCDF;25.15;6.40e4;825447	F1:Voltage SIR,E Total Tetra-Furans303.901 27.22 1.671e+00 1.11e5 1657567 m
00515R1_1	Total Tetra-Furans 19.82 1.63e5 2045214	2,3,7,8-TCDF;25.15;8.74e4;1115990	F1:Voltage SIR,E Total Tetra-Furans 305.89 27.22 2.260e+00 1.52e5 2244715
0	50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50	24.00 24.50 25.00 25.50 26.0	0 26.50 27.00 27.50
<b>3C-2,3,7,8-T</b> 00515R1_1	CDF 13C-1,2,3,4-TCDF;23.59;7.74e5;8586852	13C-2,3,7,8-TCDF 25.12 8.49e5 10892728	F1:Voltage SIR,E 315.941 1.098e+00
0- ⁻ ····· 00515R1_1 00∃	13C-1,2,3,4-TCDF;23.59;9.71e5;10815747	13C-2,3,7,8-TCDF 25.12 1.10e6	F1:Voltage SIR,E 317.9 1.43 <del>9e</del> +0

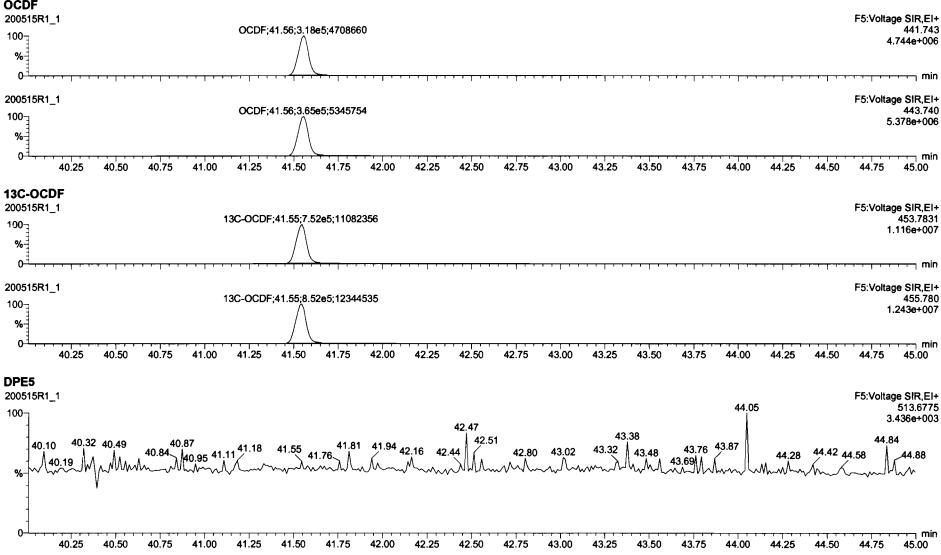
DPE1 F1:Voltage SIR,EI+ 375.8364 4.488e+003 200515R1_1 24.43 100_{\[} 24.01 23,42 22.02 22.28 22.47 20.12 24.13 26,14 23.94 22.98 23.22 19.30 20.21 20.57 21.16 27,17 27.46 27.61 26.24 26.54 21.33 19.43 25.59 25.75 19.66 24.63 25.02 25.15 23.55 27.73 0-***|****|****|**** ..... 20.50 22.00 ******* ..... ,,,,,,,, ..... TTTT 21.00 23.00 23.50 20.00 21.50 22.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 19.50


<b>Quantify San</b> Vista Analytica		Page 8 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	




Quantify San Vista Analytica		Page 9 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	
Nome: 20054	EP4 4 Date: 45 May 2020 Time: 09:12:47 ID: ST200515P4 4 1812 CS2 101 2205 Description: 1813 CS2 101 2205	
Name: 20051	5R1_1, Date: 15-May-2020, Time: 08:13:47, ID: ST200515R1_1 1613 CS3 19L2305, Description: 1613 CS3 19L2305	
1,2,3,7,8-PeC	DF	E2:Voltage SIR EI+

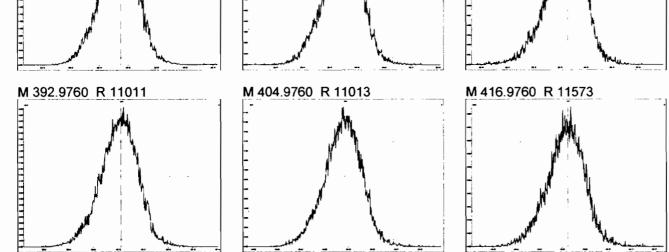


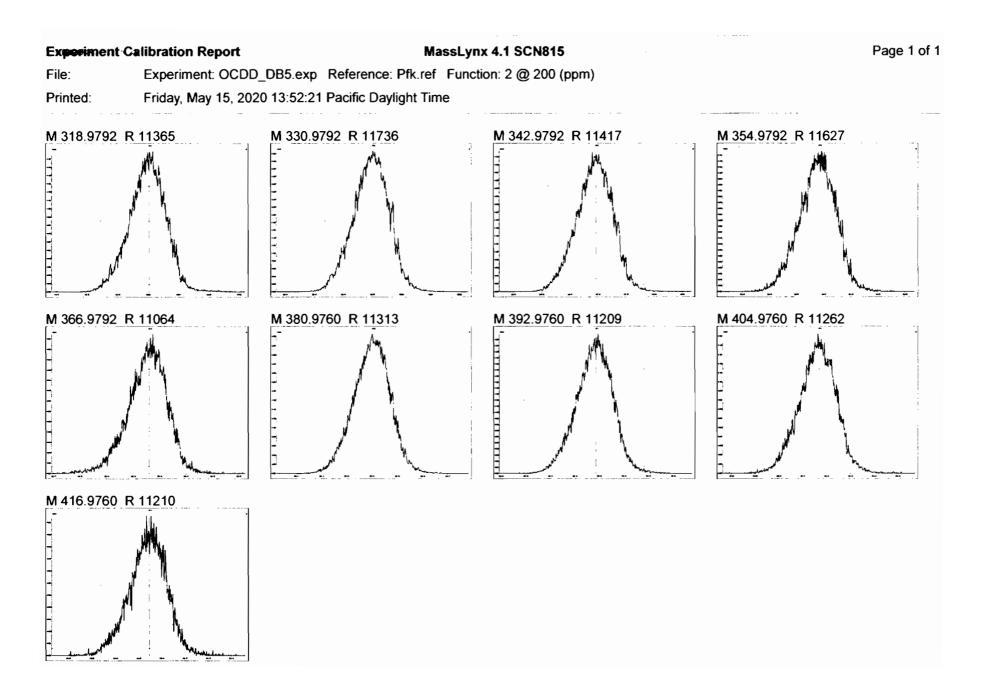

Quantify Sam Vista Analytica		Page 10 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	



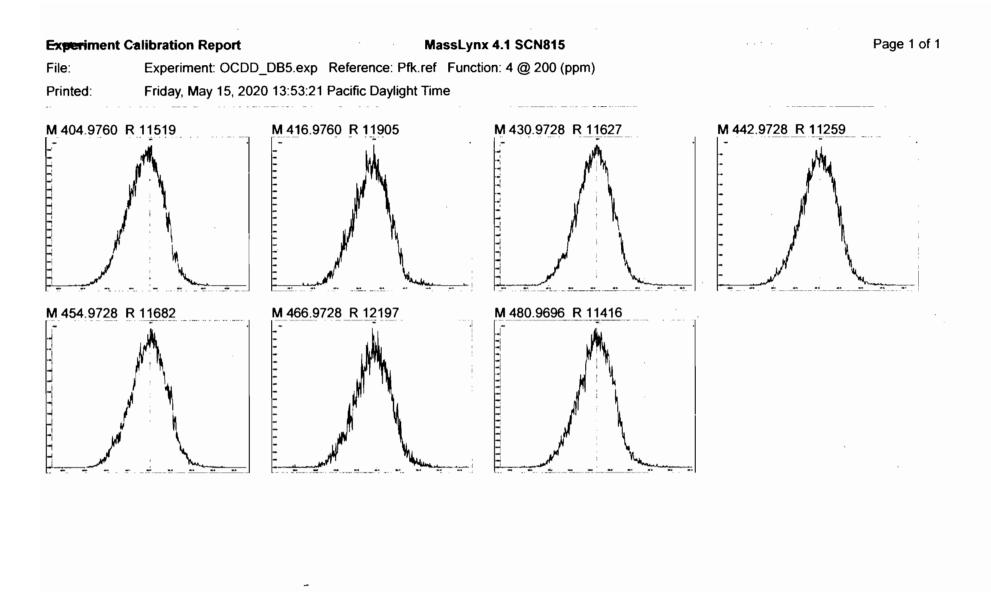
Work Order 2000945

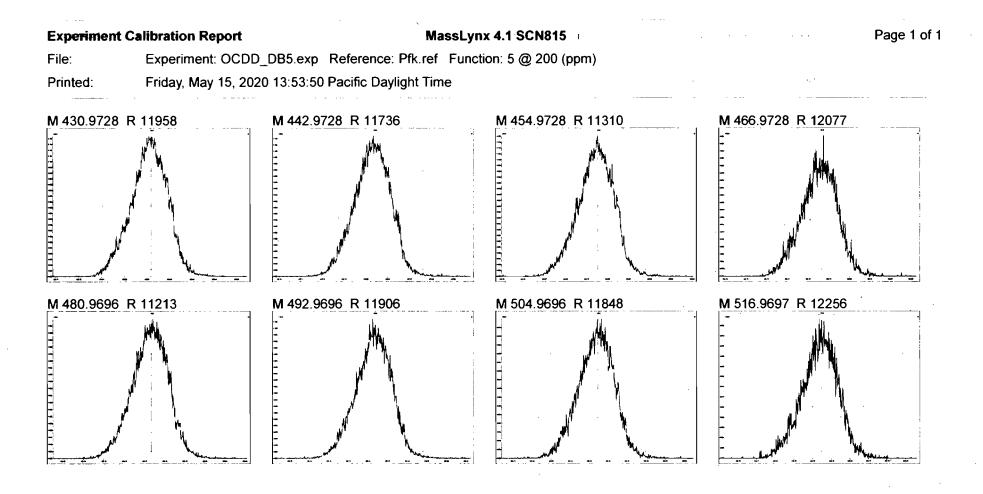



Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific Daylight Time Friday, May 15, 2020 09:08:51 Pacific Daylight Time	
	5R1_1, Date: 15-May-2020, Time: 08:13:47, ID: ST200515R1_1 1613 CS3 19L2305, Description: 1613 CS3 19	2305
Name, 2005 1	SKT_1, Date. 13-may-2020, 11116. 00. 13.47, 1D. 31200313K1_1 1013 C33 13L2303, Description. 1013 C33 18	922303
ACDE		




Quantify San Vista Analytica	• •	15	Page 13 of 13
Dataset:	Untitled		
Last Altered: Printed:	Friday, May 15, 2020 09:08:46 Pacific E Friday, May 15, 2020 09:08:51 Pacific E		
Name: 20051	5R1_1, Date: 15-May-2020, Time: 08:13	:47, ID: ST200515R1_1 1613 CS3 19L2305, Descri	ption: 1613 CS3 19L2305
<b>PFK1</b> 200515R1_1	14-1 93e5-2322515	22 76-5 2563-222535	26 44·2 73e4·313788 F1:Voltage SIR,EI+


27.50	27.00	26.50	26.00	25.50	25.00	24.50	24.00	) 23.50	) 23.0	) 22.50	0 22.00	21.5	0 21.00	).00 20.	9.50 20.	1
F2:Voltage SIF 366.	e6;392321	31.84;4.87	321	;4.87e6;392	31.84	7e6;392321	31.84;4.8	37e6;392321	31.84;4	1	.87e6;39232	31.84;4		3;392321	31.84;4.87e6;	<b>2</b> I5R1_1
5.045e		~														28.03
32.00	31.75	31.50	31.25	31.00	30.75	30.50	30.25	30.00	29.75	29.50	29.25	29.00	28.75	28.50	28.25	28.00
F3:Voltage SIF 380. 1.854e		871	.69e7;2803	35.13;1.			3871	3;1.69e7;2803	35	e7;2803871	35.13;1.69	~~~~~	e7;2803871	35.13;1.6		<b>3</b> 15R1_1
																32.17
35.80 36.	35.60	35.40	35.20	35.00	0 34.80	.40 34.6	4.20 34	34.00 3	33.80	33.60	33.40	33.20	33.00	2.60 32.8	32.40 32	
				7.004000	0 90.1 225	2e7:834929 3	39.80;1.22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	29	1.22e7;8349	<b>39.8</b> 0;	834929	39.80;1.22e7;		~	<b>4</b> I5R1_1
430.	834929	9.80;1.22e7;	3	(;834929	59.00,1.220						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					,
F4:Voltage SIF 430. 1.305ë			3	(;834929												
430.					8.60 38.		38.20	) 38.00	i0 37.8	40 37.6	37.20 37	7.00 3	36.80 3	) 36.60	20 36.40	36


## Page 1 of 1 **Experiment Calibration Report** MassLynx 4.1 SCN815 File: Experiment: OCDD_DB5.exp Reference: Pfk.ref Function: 1 @ 200 (ppm) Printed: Friday, May 15, 2020 13:51:37 Pacific Daylight Time M 292.9824 R 11311 M 304.9824 R 11360 M 318.9792 R 11521 M 330.9792 R 11960 M 342.9792 R 11262 M 354.9792 R 11210 M 366.9792 R 11157 M 380.9760 R 11111 11111111111





## Page 1 of 1 Experiment Calibration Report MassLynx 4.1 SCN815 File: Experiment: OCDD DB5.exp Reference: Pfk.ref Function: 3 @ 200 (ppm) Printed: Friday, May 15, 2020 13:52:55 Pacific Daylight Time M 366.9792 R 11259 M 380.9760 R 11738 M 392.9760 R 11627 M 404.9760 R 11365 TITT M 416.9760 R 12019 M 430.9728 R 11159 M 442.9728 R 11521 M 454.9728 R 11159





#### HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: 57200603 D1-1			Reviewed By: <u>CT 06/04/2020</u> Initiais & Date		
End Calibration ID:NA		Find		Bag	End
ion abundance within QC limits?	Beg.	End M	Mass resolution <u>&gt;</u>	Beg.	End
<b>Concentrations within criteria?</b>		Ф	□ 5k □ 6-8K □ 8K 🗹 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	7		intergrated peaks display correctly?		NA
First and last eluters present?	1	ф	GC Break <20%		
<b>Retention Times within criteria?</b>	/		8280 CS1 End Standard:		~
Verification Std. named correctly?		ф	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		NA
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?		Φ	Comments:	_	
Correct ICAL referenced?	DB				
Run Log:					
- Correct instrument listed?		Ŷ			
- Samples within 12 hour clock?	Q	Ν			
- Bottle position verfied?	D	B			

ID: LR - HCSRC

.

Quantify Sam Vista Analytica	nple Summary Report MassLynx 4.1 al Laboratory	
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_1.qld	
Last Altered: Printed:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time Wednesday, June 03, 2020 15:26:50 Pacific Daylight Time	

DB 6/3/20 CT xe/04/2020

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200603D1_1, Date: 03-Jun-2020, Time: 14:40:30, ID: ST200603D1-1 1613 CS3 19L2305, Description: 1613 CS3 19L2305

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Сопс.	%Rec DL	EMPC
1	1 2,3,7,8-TCDD	7.27e3	0.77	NO	0.987	1.000	26.097	26.10	1.001	1.001	9.3791	93.8 78-129 1.67	9.38
2	2 1,2,3,7,8-PeCDD	2.95e4	0.60	NO	0.982	1.000	30.650	30.65	1.001	1.001	42.932	85.978-130 55.4	42. <del>9</del>
3	3 1,2,3,4,7,8-HxCDD	2.56e4	1.22	NO	1.17	1.000	33.949	33.95	1.000	1.000	46.774	93.5 78 -128 0.399	46.8
4	4 1,2,3,6,7,8-HxCDD	2.69e4	1.25	NO	1.04	1.000	34.037	34.06	1.000	1.001	43.178	86.4 78-128 0.391	43.2
5	5 1,2,3,7,8,9-HxCDD	2.55e4	1.22	NO	1.00	1.000	34.379	34.34	1.001	1.000	46.677	93.4 82 -122 0.446	46.7
6	6 1,2,3,4,6,7,8-HpCDD	2.07e4	1.06	NO	0.992	1.000	37.824	37.82	1.000	1.000	47.296	94.6 86 - 11 0.365	47.3
7	7 OCDD	3.44e4	0.91	NO	1.04	1.000	41.060	41.07	1.000	1.000	92.421	92.4 79-126 0.399	92.4
8	8 2,3,7,8-TCDF	1.03e4	0.75	NO	0.882	1.000	25.296	25.30	1.001	1.001	9.4407	94.4 84 - 120 0.0956	9.44
9	9 1,2,3,7,8-PeCDF	4.75e4	1.64	NO	1.05	1.000	29.461	29.46	1.001	1.001	42.387	84.8 82 - 120 0.114	42.4
10	10 2,3,4,7,8-PeCDF	4.78e4	1.62	NO	1.06	1.000	30.377	30.35	1.001	1.000	43.972	87.982 - 120 0.111	44.0
11	11 1,2,3,4,7,8-HxCDF	4.02e4	1.25	NO	1.08	1.000	33.050	33.06	1.000	1.000	49.087	98.2 90 - 112 0.268	49.1
12	12 1,2,3,6,7,8-HxCDF	4.30e4	1.24	NO	1.04	1.000	33.181	33.19	1.000	1.001	47.921	95.8 98 - 114 0.268	47.9
13	13 2,3,4,6,7,8-HxCDF	4.17e4	1.25	NO	1.11	1.000	33.797	33.78	1.001	1.001	50.312	101 98 - 114 0.299	50.3
14	14 1,2,3,7,8,9-HxCDF	3.10e4	1.25	NO	1.06	1.000	34.707	34.73	1.000	1.001	47.350	94.7 90 - 112 0.398	47.3
15	15 1,2,3,4,6,7,8-HpCDF	3.13e4	1.03	NO	1.13	1.000	36.576	36.55	1.001	1.000	46.634	93.3 90 - 110 0.362	46.6
16	16 1,2,3,4,7,8,9-HpCDF	2.4 <del>9e</del> 4	1.05	NO	1.33	1.000	38.339	38.36	1.000	1.001	46.951	93.986 - 116 0.372	47.0
17	17 OCDF	4.19e4	0.89	NO	0.933	1.000	41.280	41.29	1.000	1.000	100.15	100 63 - 159 0.375	<b>`100</b>
18	18 13C-2,3,7,8-TCDD	7.86e4	0.79	NO	1.21	1.000	26.163	26.07	1.026	1.022	86.920	86.9 82-12 0.856	
19	19 13C-1,2,3,7,8-PeCDD	6.99e4	0.58	NO	0.996	1.000	30.651	30.63	1.202	1.201	93.665	93.762-160 0.301	
20	20 13C-1,2,3,4,7,8-HxCDD	4.67e4	1.29	NO	0.679	1.000	33.924	33.94	1.014	1.014	93.056	93.185-17 0.549	
21	21 13C-1,2,3,6,7,8-HxCDD	6.01e4	1.25	NO	0.850	1.000	34.035	34.04	1.017	1.017	95.752	95.885 - 118 0.438	
22	22 13C-1,2,3,7,8,9-HxCDD	5.44e4	1.30	NO	0.798	1.000	34.306	34.34	1.025	1.027	92.206	92.285-118 0.467	
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.41e4	1.09	NO	0.697	1.000	37.772	37.81	1.129	1.130	85.503	85.5 72 - 138 0.667	
24	24 13C-OCDD	7.20e4	0.87	NO	0.579	1.000	40.796	41.06	1.219	1.227	168.10	84.0 48 - 207 0.758	
25	25 13C-2,3,7,8-TCDF	1.24e5	0.81	NO	1.13	1.000	25.245	25.27	0.990	0.991	95.958	96.071-140 0.386	
26	26 13C-1,2,3,7,8-PeCDF	1.07e5	1.58	NO	0.996	1.000	29.470	29.44	1.156	1.155	93.746	93.7 76-130 0.307	
27	27 13C-2,3,4,7,8-PeCDF	1.03e5	1.62	NO	0.969	1.000	30.370	30.35	1.191	1.190	92.362	92.4 77 - 13º 0.315	
28	28 13C-1,2,3,4,7,8-HxCDF	7.57e4	0.49	NO	1.06	1.000	33.054	33.05	0.988	0.988	96.773	96.876 - 131 0.495	
29	29 13C-1,2,3,6,7,8-HxCDF	8.60e4	0.50	NO	1.18	1.000	33.188	33.17	0.992	0.991	98.970	99.0 <b>70 - 143</b> 0.446	
30	30 13C-2,3,4,6,7,8-HxCDF	7.47e4	0.50	NO	1.06	1.000	33.760	33.76	1.009	1.009	95.571	95.6 73-137 0.496	
31	31 13C-1,2,3,7,8,9-HxCDF	6.19e4	0.49	NO	0.879	1.000	34.660	34.71	1.036	1.037	95.272	95.3 74 - 135 0.596	

# Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

Page 2 of 2

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld

Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:26:50 Pacific Daylight Time

Name: 200603D1_1, Date: 03-Jun-2020, Time: 14:40:30, ID: ST200603D1-1 1613 CS3 19L2305, Description: 1613 CS3 19L2305

1000	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	5.95e4	0.43	NO	0.893	1.000	36.366	36.54	1.087	1.092	90.192	90.2 78-	-129 0.506	
33	33 13C-1,2,3,4,7,8,9-HpCDF	3.98e4	0.43	NO	0.613	1.000	38.374	38.34	1.147	1.146	87.843	87.8 77 -	-129 0.736	
34	34 13C-OCDF	8.96e4	0.86	NO	0.741	1.000	40.950	41.28	1.224	1.234	163.53		207 0.526	
35	35 37CI-2,3,7,8-TCDD	7.95e3			1.18	1.000	26.160	26.08	1.026	1.023	8.9973	90.079-	127 0.0920	
36	36 13C-1,2,3,4-TCDD	7.49e4	0.76	NO	1.00	1.000	25.480	25.50	1.000	1.000	100.00	100	1.03	
37	37 13C-1,2,3,4-TCDF	1.15e5	0.81	NO	1.00	1.000	24.020	24.03	1.000	1.000	100.00	100	0.435	
38	38 13C-1,2,3,4,6,9-HxCDF	7.39e4	0.50	NO	1.00	1.000	33.530	33.46	1.000	1.000	100.00	100	0.524	

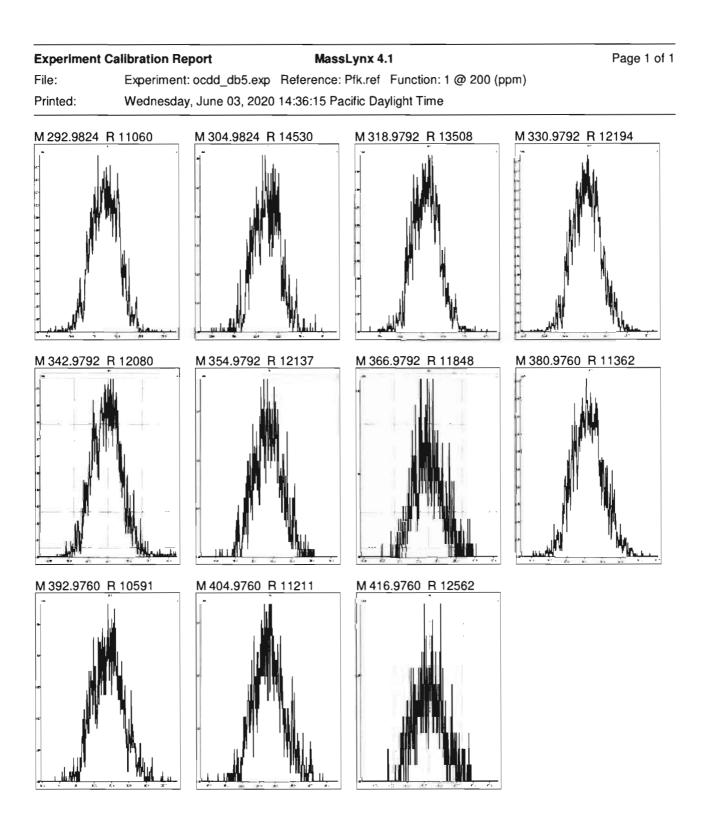
Quantify Sam Vista Analytica	al Laboratory MassLynx 4.1	Page 1 of 1
Dataset:	Untitled	
Last Altered: Printed:	Thursday, June 04, 2020 09:17:14 Pacific Daylight Time Thursday, June 04, 2020 09:17:41 Pacific Daylight Time	

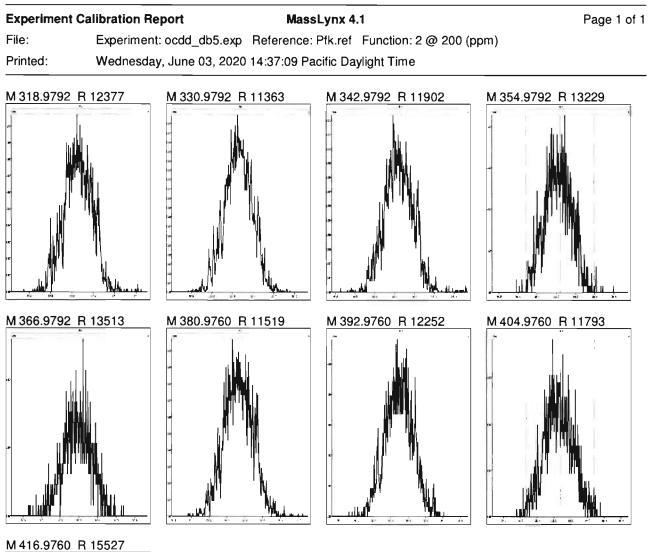
#### Method: C:\MassLynx\Default.pro\Methdb\CPSM.mdb 18 May 2020 14:57:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

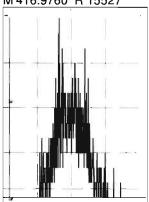
Name: 200603D1_1, Date: 03-Jun-2020, Time: 14:40:30, ID: ST200603D1-1 1613 CS3 19L2305, Description: 1613 CS3 19L2305

A COLOR	# Name	RT
1 Barbert	1 1,3,6,8-TCDD (First)	22.64
2	2 1,2,8,9-TCDD (Last)	26.97
3	3 1,2,4,7,9-PeCDD (First)	28.60
4	4 1,2,3,8,9-PeCDD (Last)	31.01
5	5 1,2,4,6,7,9-HxCDD (First)	32.42
6	6 1,2,3,7,8,9-HxCDD (Last)	34.34
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.96
8	8 1,2,3,4,6,7,8-HpCDD (Last)	37.82
9	9 1,3,6,8-TCDF (First)	20.49
10	10 1,2,8,9-TCDF (Last)	27.10
11	11 1,3,4,6,8-PeCDF (First)	27.06
12	12 1,2,3,8,9-PeCDF (Last)	31.23
13	13 1,2,3,4,6,8-HxCDF (First)	31.89
14	14 1,2,3,7,8,9-HxCDF (Last)	34.73
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.55
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.36

#### Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory VG-11


Untitled Dataset:

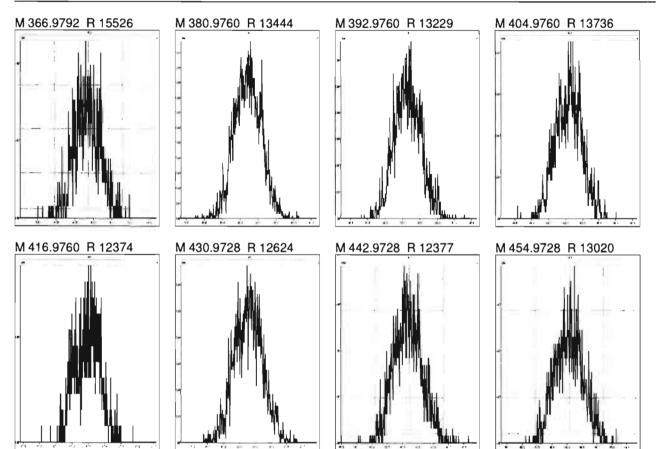

Thursday, June 04, 2020 09:16:37 Pacific Daylight Time Last Altered: Printed: Thursday, June 04, 2020 09:16:54 Pacific Daylight Time


#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

#### Compound name: 2,3,7,8-TCDD

Section 2011	Name	ID	Acq.Date	Acq.Time
1	200603D1_1	ST200603D1-1 1613 CS3 19L2305	03-Jun-20	14:40:30
2	200603D1_2	SOLVENT BLANK	03-Jun-20	15:25:37
3	200603D1_3	B0E0146-BS1 OPR 1	03-Jun-20	16:10:48
4	200603D1_4	SOLVENT BLANK	03-Jun-20	16:55:56
5	200603D1_5	B0E0146-BLK1 Method Blank 1	03-Jun-20	17:41:03
6	200603D1_6	2000945-01 PDI-146SC-A-00-01-200426 14.29	03-Jun-20	18:26:12
7	200603D1_7	2000945-02 PDI-146SC-A-01-02-200426 12.02	03-Jun-20	19:11:20
8	200603D1_8	B0D0306-DUP1 Duplicate 11.39	03-Jun-20	19:56:27
9	200603D1_9	2000945-03 PDI-146SC-A-02-03-200426 12.11	03-Jun-20	20:41:35
10	200603D1_10	2000945-04 PDI-146SC-A-03-04-200426 12.98	03-Jun-20	21:26:43
11	200603D1_11	2000945-05 PDI-146SC-A-04-05-200426 11.68	03-Jun-20	22:11:50
12	200603D1_12	2000945-06 PDI-146SC-A-05-06-200426 12.84	03-Jun-20	22:56:57
13	200603D1_13	2000945-07 PDI-146SC-A-06-07-200426 14.13	03-Jun-20	23:42:05
14	200603D1_14	2000945-08 PDI-146SC-A-07-08-200426 13.17	04-Jun-20	00:27:11
15	200603D1_15	2000996-03RE1 PDI-1054SC-A-09-10-200428	04-Jun-20	01:12:18



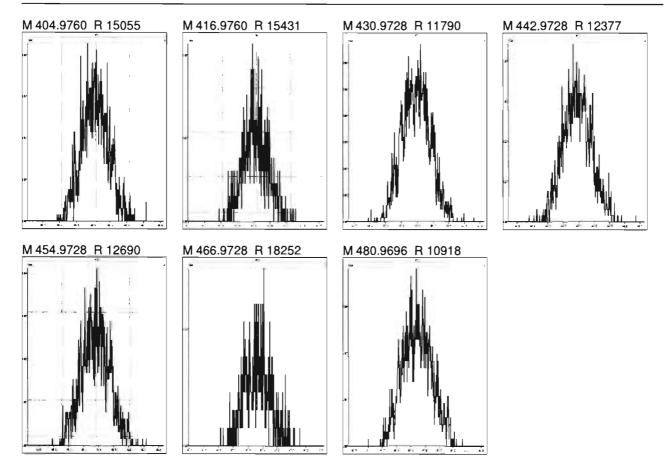





# MassLynx 4.1

File: Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed: Wednesday, June 03, 2020 14:38:18 Pacific Daylight Time

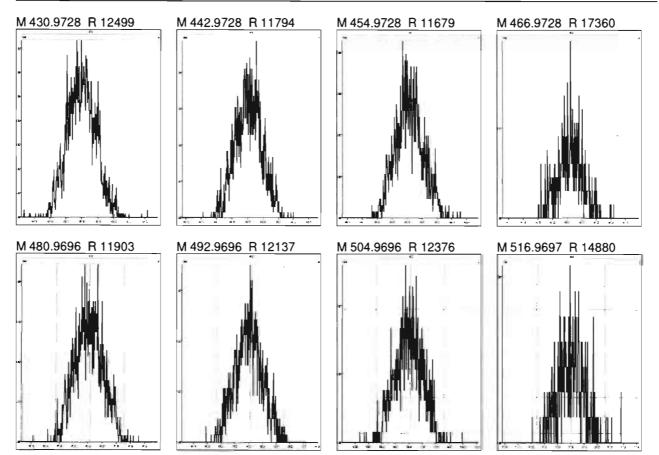


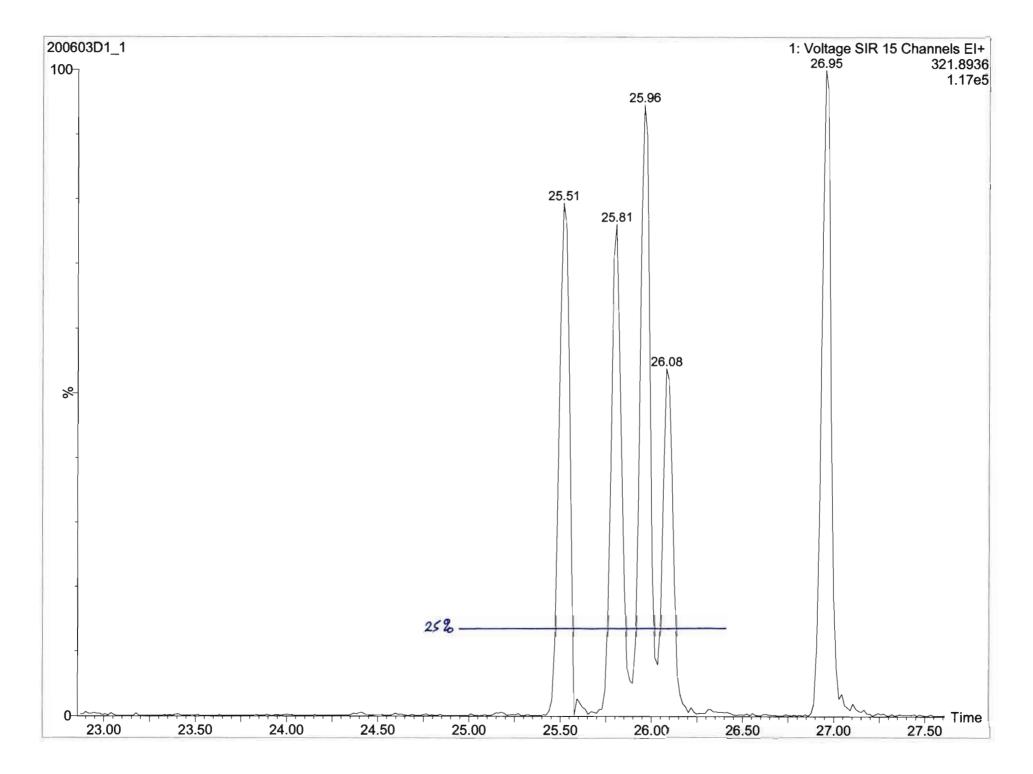

File:

# MassLynx 4.1

Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed: Wednesday, June 03, 2020 14:39:00 Pacific Daylight Time





# MassLynx 4.1

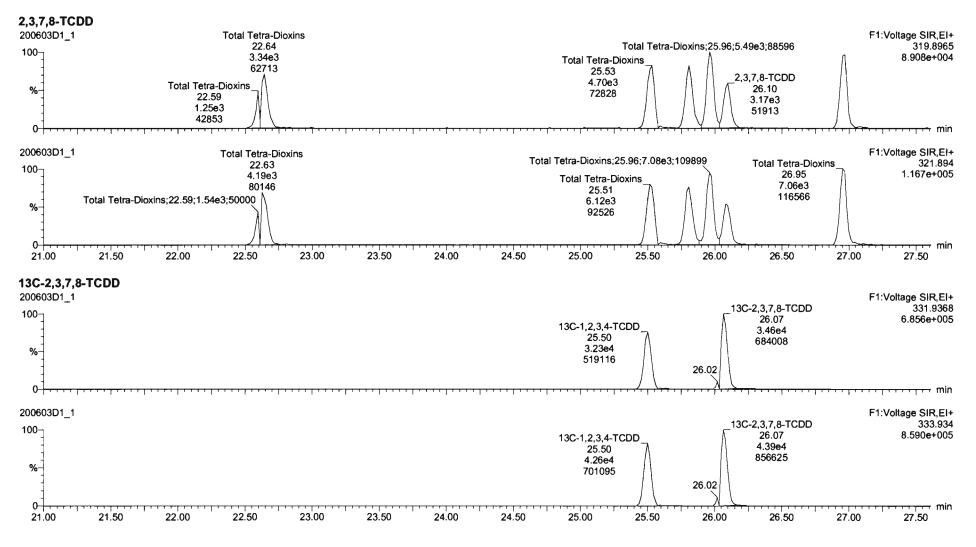
Page 1 of 1

File: Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 5 @ 200 (ppm) Printed:

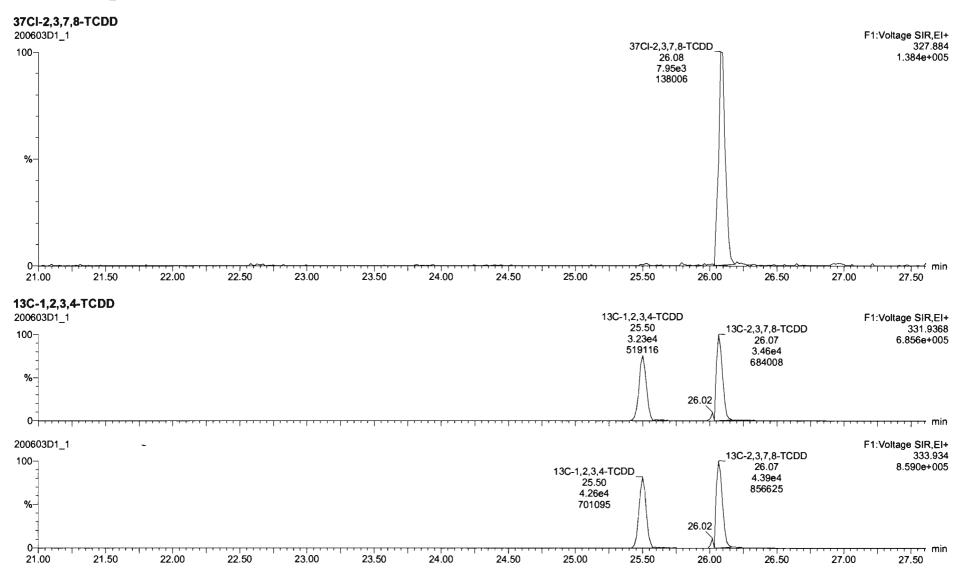
Wednesday, June 03, 2020 14:39:40 Pacific Daylight Time






#### **Quantify Sample Report** MassLynx 4.1

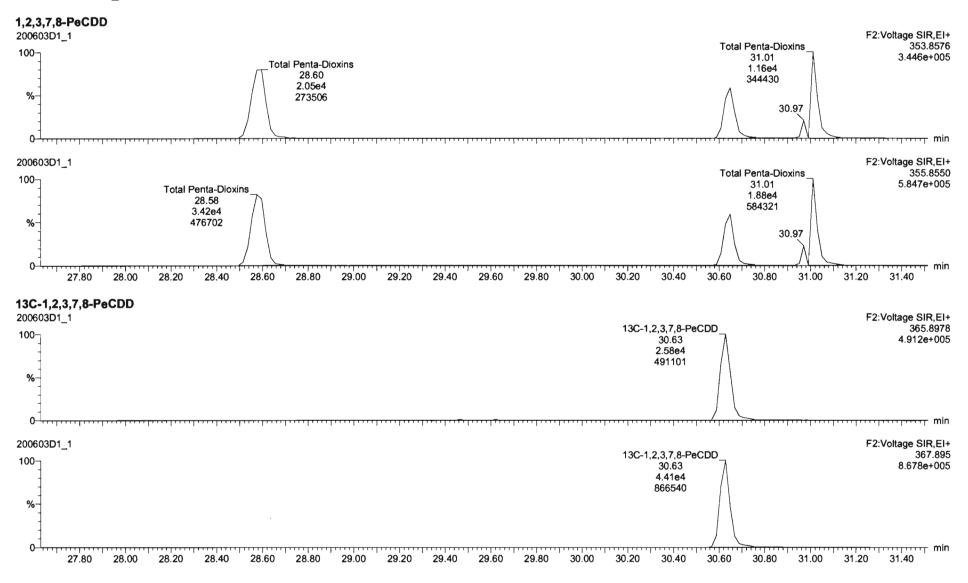
Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200603D1\200603D1 1.qld

Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

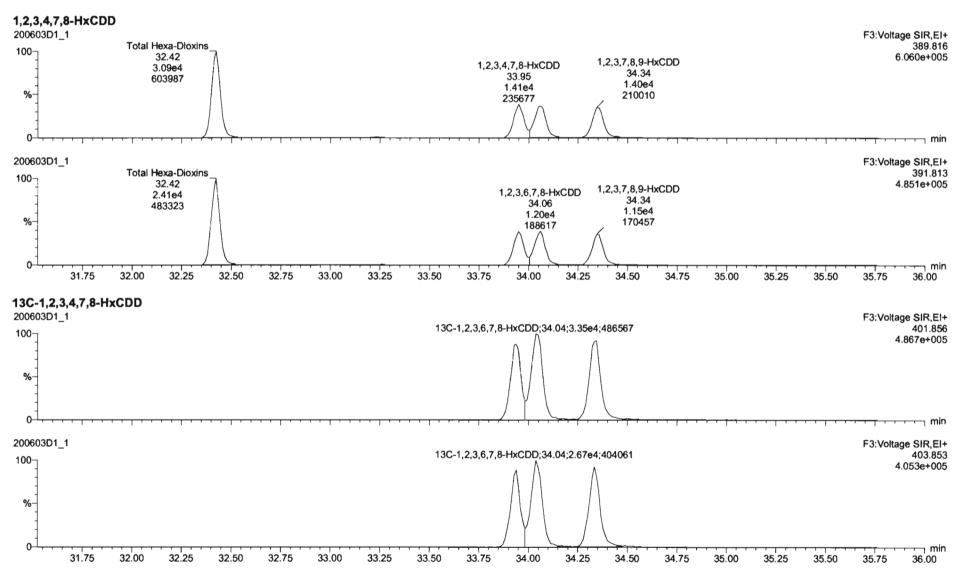



Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_1.qld	
Last Altered: Printed:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time	



# Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

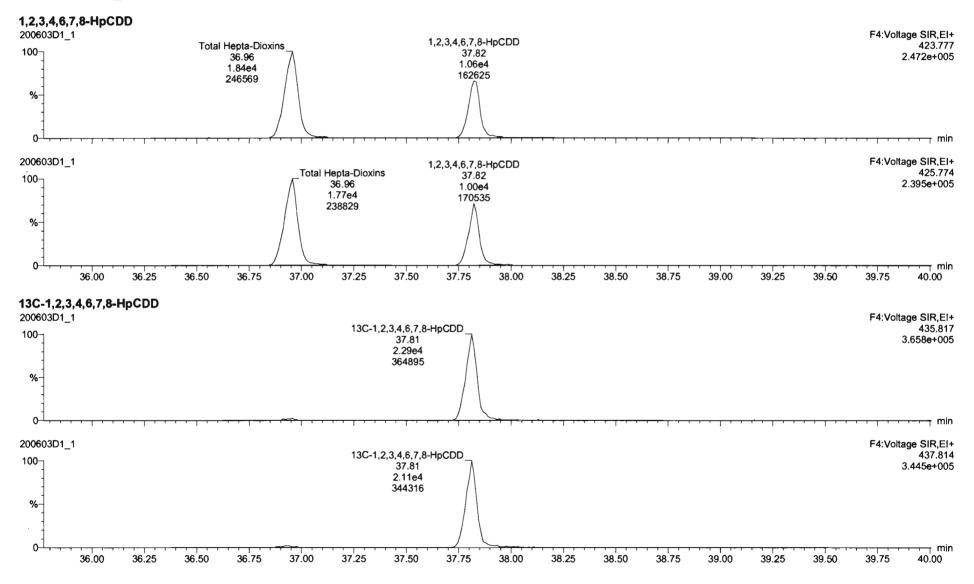
Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld


Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time

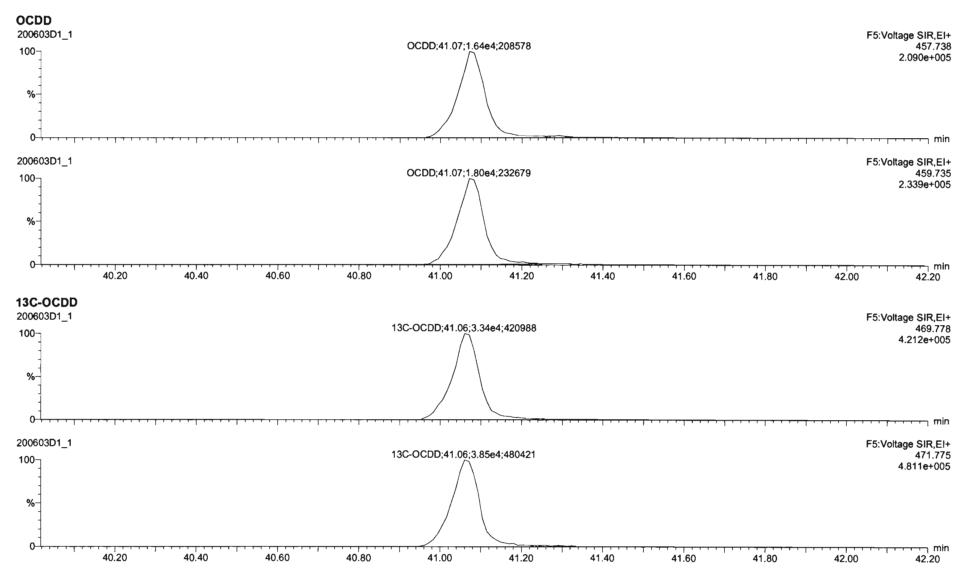


# Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld


Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time



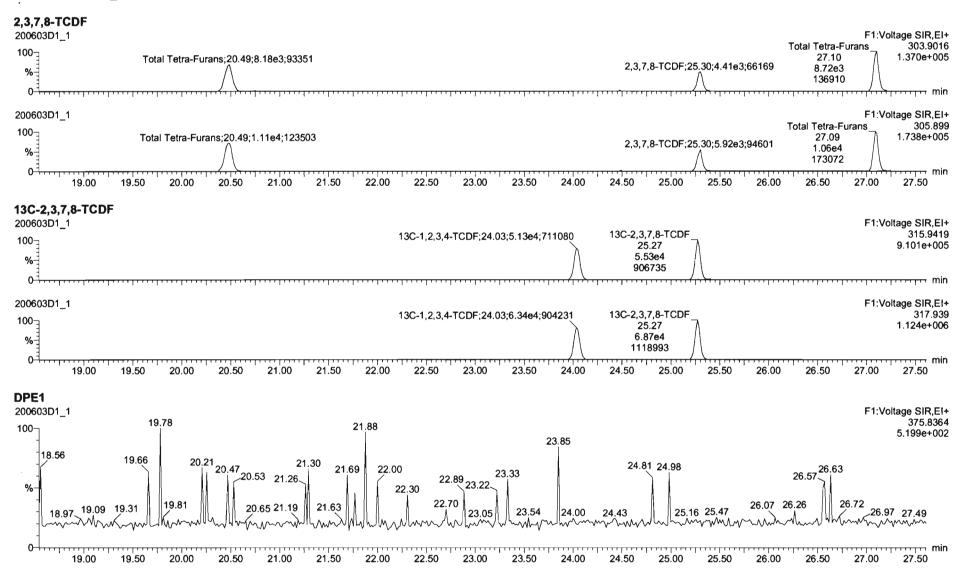

Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld

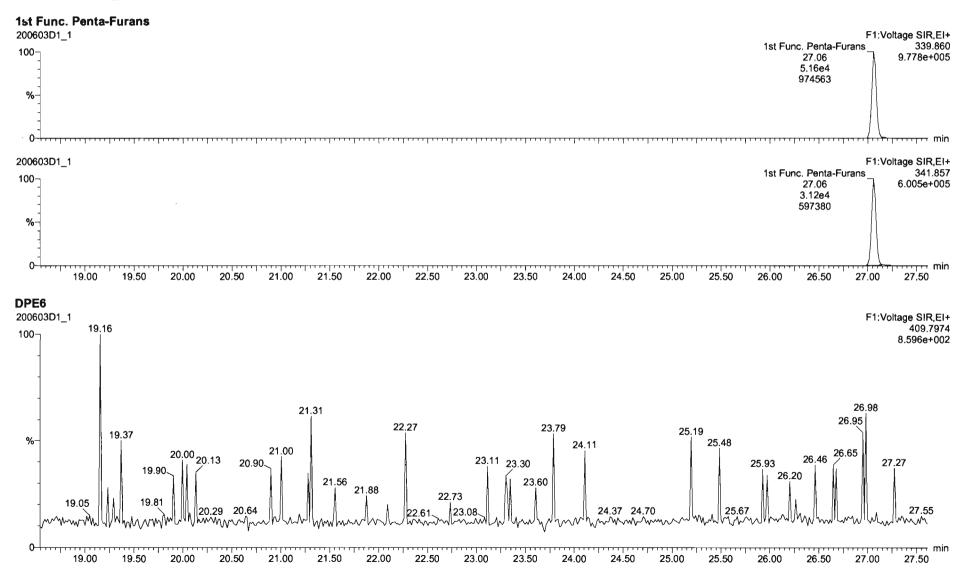
Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time



Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_1.qld	
Last Altered: Printed:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time	




#### Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory


Page 7 of 13

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld

Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time




<b>Quantify Sam</b> Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_1.qld	
Last Altered: Printed:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time	

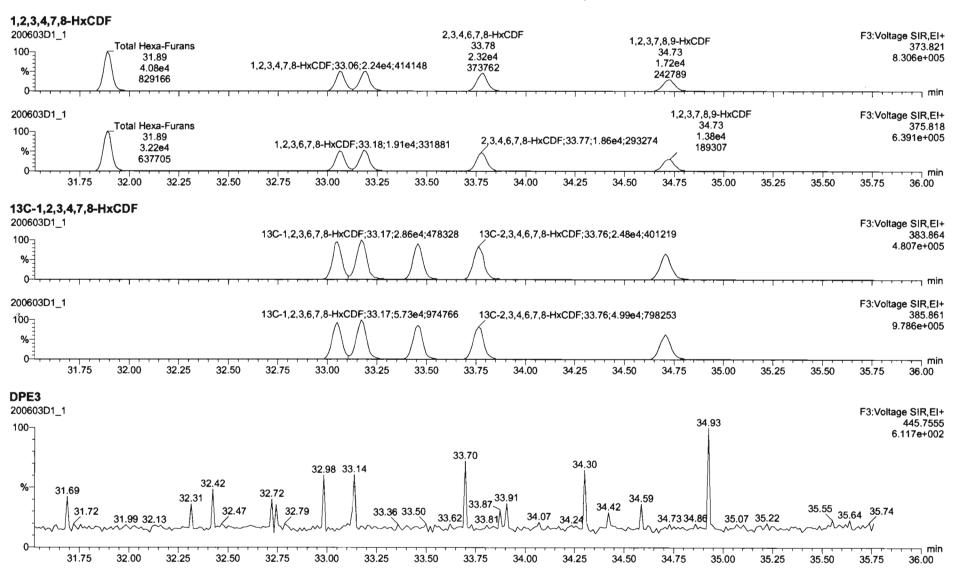


# Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld

Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time

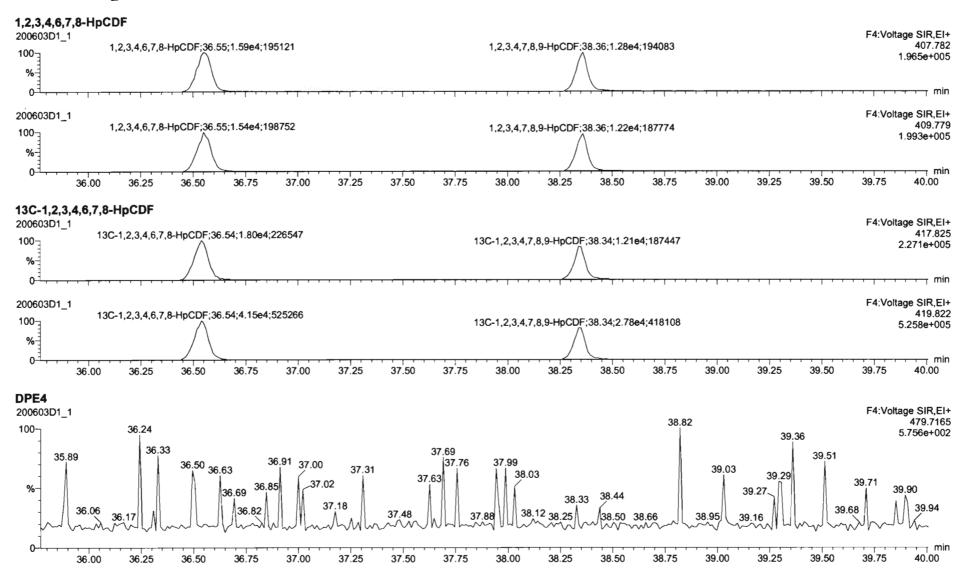



# Quantify Sample Report MassLynx 4.1

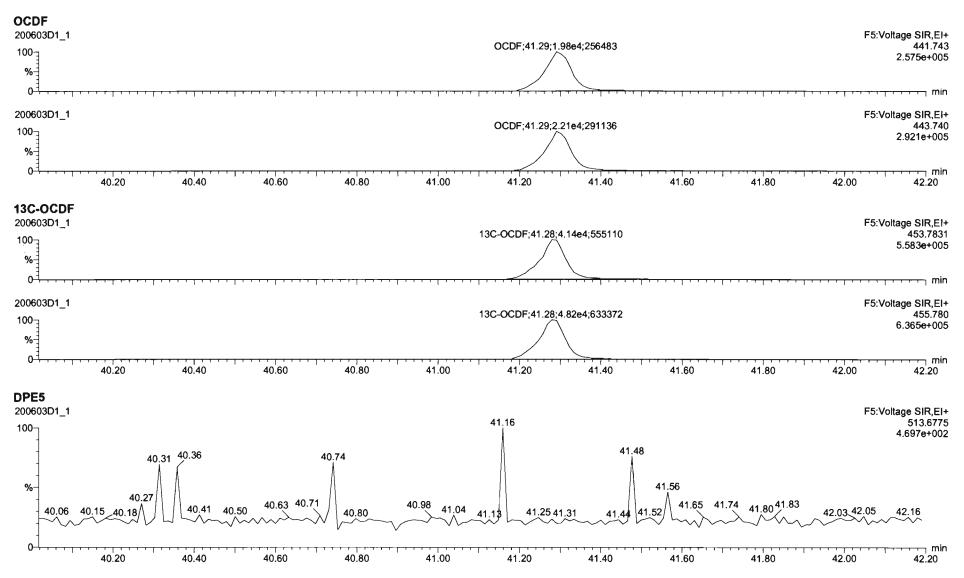
Vista Analytical Laboratory

.

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld


Last Altered: Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time




Quantify Sample Report	MassLynx 4.1	
Vista Analytical Laboratory		

Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld

Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time

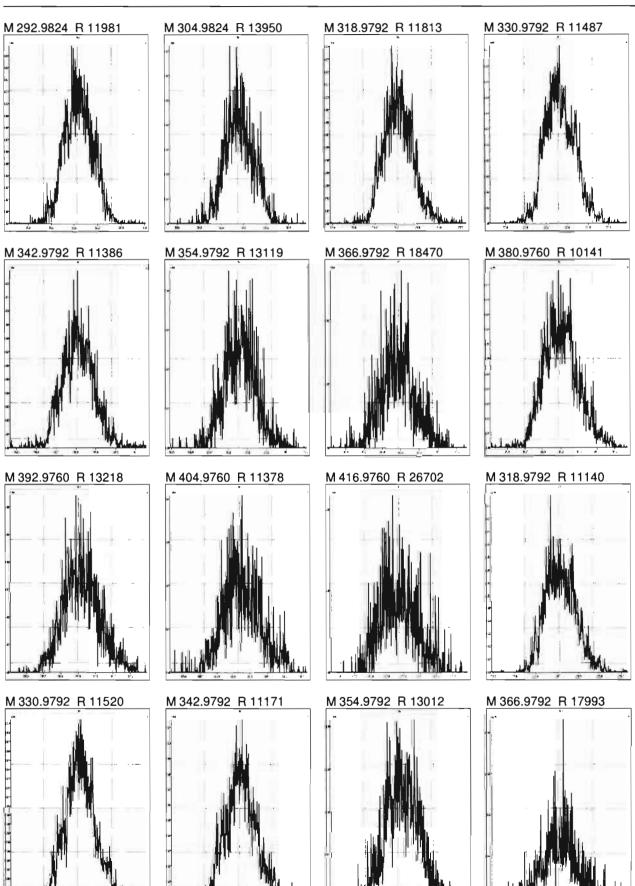


Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200603D1\200603D1_1.qld	
Last Altered: Printed:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time	



# Quantify Sample ReportMassLynx 4.1Vista Analytical Laboratory

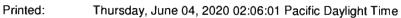
#### Dataset: U:\VG7.PRO\Results\200603D1\200603D1_1.qld

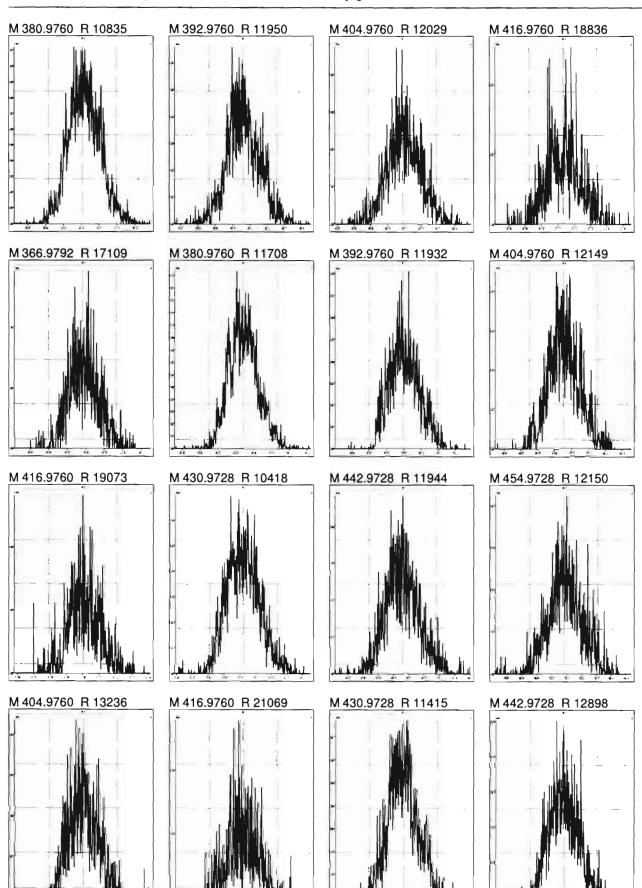

Last Altered:	Wednesday, June 03, 2020 15:25:09 Pacific Daylight Time
Printed:	Wednesday, June 03, 2020 15:27:19 Pacific Daylight Time

19:31 19:33:2:968:3:64:01       20:49       21:20       21:69:4:158:2:27089       22:12:22:41       23:85:5:7664:218:270       25:19:1:198:3:60:021       25:87:1:408:3:67219       26:54       27:01       316:9824         100       19:00       19:50       20:00       20:50       21:00       21:50       22:00       22:50       23:00       23:50       24:00       24:50       25:00       25:50       26:00       26:50       27:00       27:50       min         PFK2         20060301_1       19:00       28:00       28:40       28:60       28:20       29:32:5.41e3:63591       29:72:2.79e3:49689       29:92       30:23       30:47       30:57       30:83       30:97       31:5       31:29       366:9792         100       27:80       28:00       28:60       28:80       29:00       29:20       29:40       29:60       30:00       30:20       30:40       30:60       30:80       31:00       31:20       31:40         PFK3         20060301_1       31:75       32:00       32:55       32:97       33:02       33:37       33:82:4.79e3:144235       34:18       34:68       35:06       35:16       35:31       35:67       36:07E0         31:
$\begin{array}{c} \textbf{PFK2} \\ \textbf{200603D1_{1}} \\ \textbf{100_{27.69}} \\ \textbf{27.80} \\ \textbf{28.00} \\ \textbf{28.20} \\ \textbf{28.20} \\ \textbf{28.20} \\ \textbf{28.40} \\ \textbf{28.60} \\ \textbf{28.20} \\ \textbf{28.60} \\ \textbf{28.60} \\ \textbf{29.00} \\ \textbf{29.20} \\ \textbf{29.40} \\ \textbf{29.60} \\ \textbf{29.60} \\ \textbf{29.60} \\ \textbf{29.80} \\ \textbf{30.00} \\ \textbf{30.20} \\ \textbf{30.40} \\ \textbf{30.60} \\ 3$
$PFK3$ 200603D1_1 31.73 31.85 32.05 32.18 32.42 32.55 32.97 33.02 33.37 33.82;4.79e3;144235 34.18 34.68 35.06 35.16 35.31 35.67 380.9760 2.341e+006
200603D1_1 100
PFK4 200603D1_1 36.10;4.18e3;100637 36.61;1.32e3;119599 36.91 37.42 ^{37.70;2.59e3;151007} 38.19 37.42 ^{37.70;2.59e3;151007} 38.19 38.62;1.35e3;108540 38.70 38.83 39.17;2.58e3;126321 39.40 39.64 430.9728 1.4908+006 1.4908+006 36.00 36.25 36.50 36.75 37.00 37.25 37.50 37.75 38.00 38.25 38.50 38.75 39.00 39.25 39.50 39.75 40.00
$\begin{array}{c} \textbf{PFK5} \\ \textbf{200603D1_1} \\ \textbf{40.14} \\ \textbf{40.27} \\ \textbf{40.27} \\ \textbf{40.36} \\ \textbf{40.48} \\ \textbf{40.54} \\ \textbf{40.60} \\ \textbf{40.60} \\ \textbf{40.60} \\ \textbf{40.80} \\ \textbf{41.00} \\ \textbf{41.20} \\ \textbf{41.20} \\ \textbf{41.20} \\ \textbf{41.40} \\ \textbf{41.60} \\ \textbf{41.60} \\ \textbf{41.60} \\ \textbf{41.80} \\ \textbf{42.00} \\ \textbf{42.00} \\ \textbf{42.00} \\ \textbf{42.20} \\ \textbf{42.00} \\ \textbf{42.20} \\ $

#### **Resolution Check Report**

# MassLynx 4.1


Printed: Thursday, June 04, 2020 02:06:01 Pacific Daylight Time



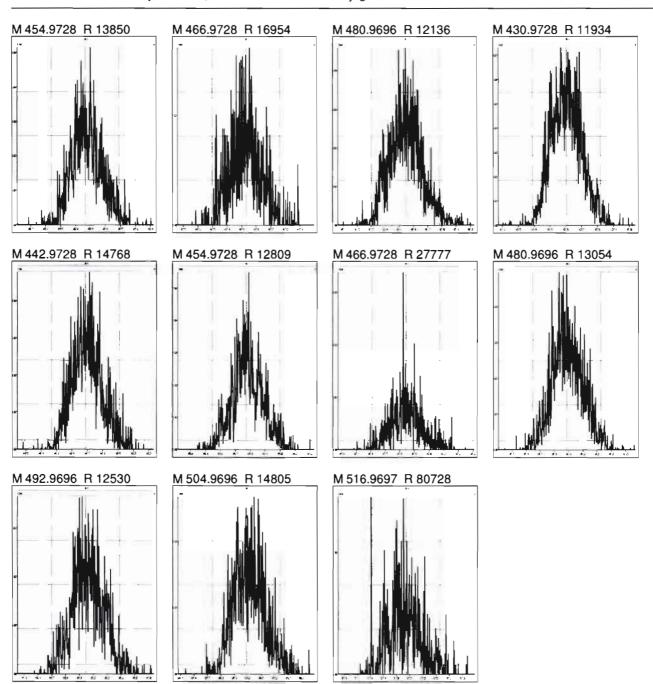

# **Resolution Check Report**

## MassLynx 4.1

Page 2 of 3






Work Order 2000945

#### **Resolution Check Report**

# MassLynx 4.1

Page 3 of 3

Printed: Thursday, June 04, 2020 02:06:01 Pacific Daylight Time



# HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: 5720060471-1	_	F	Reviewed By: <u>C7 06/05/2020</u>	_	
End Calibration ID:			Initiais & Date		
	Beg.	End		Beg.	End
Ion abundance within QC limits?	~	NA	Mass resolution >	~	2
<b>Concentrations within criteria?</b>		ф	□ 5k □ 6-8K □ 8K ☑ 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	/	Ф	Intergrated peaks display correctly?	4	NA
First and last eluters present?		Ц	GC Break <20% ₪A		
<b>Retention Times within criteria?</b>	7	Ц	8280 CS1 End Standard:		
Verification Std. named correctly?	7	Ц	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		XA
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?		$\Box$	Comments:		
Correct ICAL referenced?	_/ <u>B</u> _				
Run Log:		/			
- Correct instrument listed?	$\checkmark$	$\mathbf{V}$			
<ul> <li>Samples within 12 hour clock?</li> <li>Bottle position verfied?</li> </ul>	(V)	BN			

Quantify Sam Vista Analytica	aple Summary Report al Laboratory	MassLynx 4.1	 	
Dataset:	U:\VG7.PRO\Results\200	604D1\200604D1_1.qld		
Last Altered: Printed:		12:43:43 Pacific Daylight Time 12:46:58 Pacific Daylight Time		

DB 6/4/20 07 06/05/2020

## Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

No. of Concession, Name	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%R#0	DL	EMPC
1	1 2,3,7,8-TCDD	7.27e3	0.79	NO	0.987	1.000	26.097	26.08	1.001	1.001	8.0569		0.169	8.06
2	2 1,2,3,7,8-PeCDD	3.08e4	0.60	NO	0.982	1.000	30.650	30.65	1.001	1.001	42.721	85.4 78 -130		42.7
3	3 1,2,3,4,7,8-HxCDD	3.11e4	1.28	NO	1.17	1.000	33.949	33.95	1.000	1.000	47.384	94.878-128	0.285	47.4
4	4 1,2,3,6,7,8-HxCDD	2.98e4	1.23	NO	1.04	1.000	34.037	34.06	1.000	1.001	44.661		0.286	44.7
5	5 1,2,3,7,8,9-HxCDD	3.05e4	1.30	NO	1.00	1.000	34.368	34.34	1.001	1.000	46.229		0.291	46.2
6	6 1,2,3,4,6,7,8-HpCDD	2.75e4	1.03	NO	0.992	1.000	37.812	37.82	1.000	1.001	47.087	94.286-116	0.232	47.1
7	7 OCDD	4.96e4	0.89	NO	1.04	1.000	41.060	41.07	1.000	1.000	92.458	92.5 79 - 126	0.275	92.5
8	8 2,3,7,8-TCDF	9.79e3	0.75	NO	0.882	1.000	25.296	25.29	1.001	1.001	9.2693	92.7 84 - 120	0.721	9.27
9	9 1,2,3,7,8-PeCDF	4.75e4	1.61	NO	1.05	1.000	29.461	29.46	1.001	1.001	43.790	87.6 82 - 120	0.106	43.8
10	10 2,3,4,7,8-PeCDF	4.56e4	1.66	NO	1.06	1.000	30.377	30.35	1.001	1.000	44.738	89.5 82 - 120	0.112	44.7
11	11 1,2,3,4,7,8-HxCDF	4.07e4	1.23	NO	1.08	1.000	33.039	33.06	1.000	1.001	46.912		0.183	46.9
12	12 1,2,3,6,7,8-HxCDF	4.07e4	1.26	NO	1.04	1.000	33.180	33.18	1.000	1.000	48.233		0.188	48.2
13	13 2,3,4,6,7,8-HxCDF	4.25e4	1.25	NO	1.11	1.000	33.797	33.77	1.001	1.000	49.880		0.189	49.9
14	14 1,2,3,7,8,9-HxCDF	3.63e4	1.26	NO	1.06	1.000	34.707	34.72	1.000	1.000	47.702	95.4 90 - 112	0.244	47.7
15	15 1,2,3,4,6,7,8-HpCDF	3.58e4	1.01	NO	1.13	1.000	36.565	36.55	1.001	1.001	45.180		0.248	45.2
18	16 1,2,3,4,7,8,9-HpCDF	3.14e4	1.03	NO	1.33	1.000	38.339	38.35	1.000	1.000	46.842		0.230	46.8
17	17 OCDF	5.43e4	0.89	NO	0.933	1.000	41.279	41.29	1.000	1.000	96.962	97.0 63 - 159		97.0
18	18 13C-2,3,7,8-TCDD	9.14 <b>e</b> 4	0.78	NO	1.21	1.000	26.163	26.07	1.026	1.022	101.84	102 82-121		1
19	19 13C-1,2,3,7,8-PeCDD	7.33e4	0.64	NO	0.996	1.000	30.651	30.63	1.202	1.201	98.971	99.0 62 - 160		
20	20 13C-1,2,3,4,7,8-HxCDD	5.59e4	1.31	NO	0.679	1.000	33.924	33.94	1.014	1.014	114.77	115 85-117	0.444	
21	21 13C-1,2,3,6,7,8-HxCDD	6.4 <del>4e</del> 4	1.34	NO	0.850	1.000	34.035	34.04	1.017	1.017	105.74	106 85-118	0.355	
22	22 13C-1,2,3,7,8,9-HxCDD	6.59e4	1.31	NO	0.798	1.000	34.306	34.33	1.025	1.026	115.00	115 85-118	0.378	
23	23 13C-1,2,3,4,6,7,8-HpCDD	5.90e4	1.06	NO	0.697	1.000	37.772	37.80	1.129	1.130	117.95		0.524	
24	24 13C-OCDD	1.0 <b>4e</b> 5	0.86	NO	0.579	1.000	40.796	41.06	1.219	1.227	249.71	125 48 - 203	0.642	
25	25 13C-2,3,7,8-TCDF	1.20e5	0.77	NO	1.13	1.000	25.245	25.27	0.990	0.991	100.47	100 71-140		
26	26 13C-1,2,3,7,8-PeCDF	1.04e5	1.60	NO	0.996	1.000	29.470	29.44	1.156	1.155	98.630	98.6 76 - 130	0.486	
27	27 13C-2,3,4,7,8-PeCDF	9.61e4	1.61	NO	0.969	1.000	30.370	30.35	1.191	1.190	93.835	93.8 77 - 130	0.499	
28	28 13C-1,2,3,4,7,8-HxCDF	8.02e4	0.49	NO	1.06	1.000	33.054	33.04	0.988	0.988	105.64		0.395	
29	29 13C-1,2,3,6,7,8-HxCDF	8.10e4	0.49	NO	1.18	1.000	33.188	33.17	0.992	0.991	96.112	96.1 70-143		
30	30 13C-2,3,4,6,7,8-HxCDF	7.68e4	0.49	NO	1.06	1.000	33.760	33.76	1.009	1.009	101.26	101 73 - 137		
31	31 13C-1,2,3,7,8,9-HxCDF	7.21e4	0.49	NO	0.879	1.000	34.660	34.71	1.036	1.037	114.32	114 74 -135	0.475	

Quantify Sample Summary Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200604D1\200604D1_1.qld

Last Altered:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 12:46:58 Pacific Daylight Time

# Name: 200604D1_1, Date: 04-Jun-2020, Time: 12:00:23, ID: ST200604D1-1 1613 CS3 19L2305, Description: 1613 CS3 19L2305

1134	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	7.02e4	0.42	NO	0.893	1.000	36.366	36.53	1.087	1.092	109.67	110 78-129	
33	33 13C-1,2,3,4,7,8,9-HpCDF	5.03e4	0.43	NO	0.613	1.000	38.374	38.34	1.147	1.146	114.36	114 77-129	
34	34 13C-OCDF	1.20e5	0.86	NO	0.741	1.000	40.950	41.28	1.224	1.234	225.74	113 48 - 207	0.459
35	35 37CI-2,3,7,8-TCDD	8.27e3			1.18	1.000	26.160	26.08	1.026	1.023	9.4247	94.2 79-127	0.111
36	36 13C-1,2,3,4-TCDD	7.44 <del>e</del> 4	0.80	NO	1.00	1.000	25.480	25.50	1.000	1.000	100.00	100	0.479
37	37 13C-1,2,3,4-TCDF	1.06e5	0.78	NO	1.00	1.000	24.020	24.03	1.000	1.000	100.00	100	0.534
38	38 13C-1,2,3,4,6,9-HxCDF	7.17e4	0.48	NO	1.00	1.000	33.530	<u>33</u> .46	1.000	1.000	100.00	100	0.418

• •

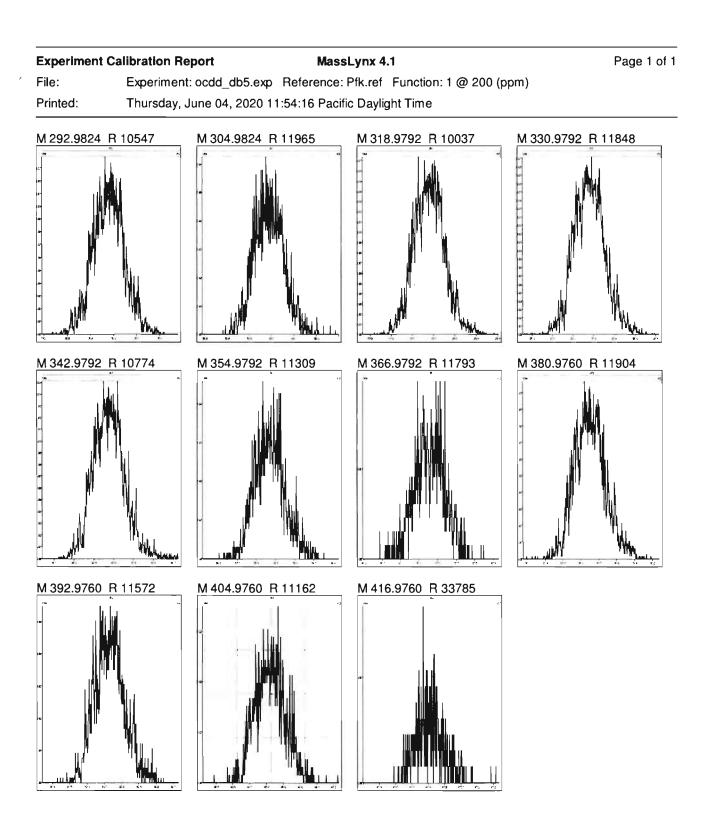
<b>Quantify San</b> Vista Analytica	aple Summary Report MassLynx 4.1 al Laboratory	Page 1 of 1
Dataset:	Untitled	
Last Altered: Printed:	Friday, June 05, 2020 09:26:30 Pacific Daylight Time Friday, June 05, 2020 09:26:55 Pacific Daylight Time	

# Method: C:\MassLynx\Default.pro\Methdb\CPSM.mdb 18 May 2020 14:57:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

ALC: T	# Name	RT
1	1 1,3,6,8-TCDD (First)	22.63
2	2 1,2,8,9-TCDD (Last)	26.95
3	3 1,2,4,7,9-PeCDD (First)	28.60
4	4 1,2,3,8,9-PeCDD (Last)	31.01
5	5 1,2,4,6,7,9-HxCDD (First)	32.42
6	6 1,2,3,7,8,9-HxCDD (Last)	34.34
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.95
8	8 1,2,3,4,6,7,8-HpCDD (Last)	37.82
9	9 1,3,6,8-TCDF (First)	20.47
10	10 1,2,8,9-TCDF (Last)	27.10
11	11 1,3,4,6,8-PeCDF (First)	27.06
12	12 1,2,3,8,9-PeCDF (Last)	31.23
13	13 1,2,3,4,6,8-HxCDF (First)	31.89
14	14 1,2,3,7,8,9-HxCDF (Last)	34.72
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.55
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.35

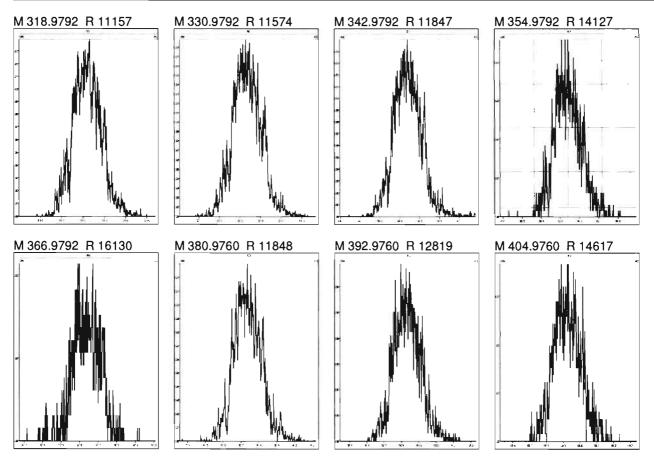
# Quantify Compound Summary ReportMassLynx 4.1Vista Analytical Laboratory VG-11

Dataset: Untitled

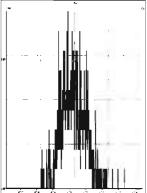

Last Altered:Friday, June 05, 2020 09:25:47 Pacific Daylight TimePrinted:Friday, June 05, 2020 09:26:04 Pacific Daylight Time

#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

#### Compound name: 2,3,7,8-TCDD

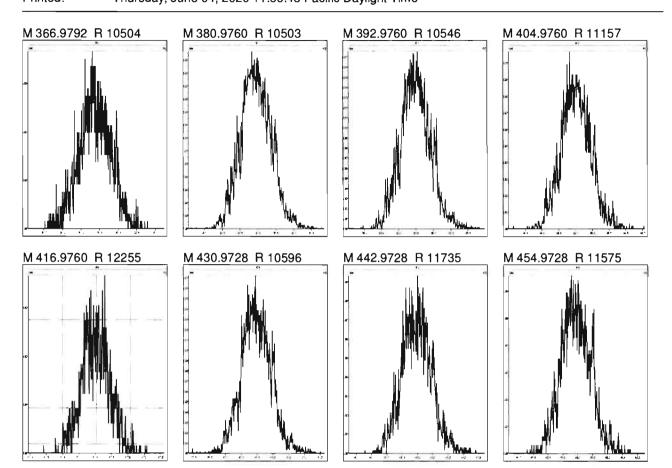

FS MUSIC	Name	ID	Acq.Date	Acq.Time
1	200604D1_1	ST200604D1-1 1613 CS3 19L2305	04-Jun-20	12:00:23
2	200604D1_2	B0E0100-BS1 OPR 10	04-Jun-20	12:45:31
3	200604D1_3	SOLVENT BLANK	04-Jun-20	13:30:40
4	200604D1_4	B0E0100-BLK1 Method Blank 10	04-Jun-20	14:15:51
5	200604D1_5	2000945-01 PDI-146SC-A-00-01-200426 14.29	04-Jun-20	15:00:59
6	200604D1_6	2000945-02 PDI-146SC-A-01-02-200426 12.02	04-Jun-20	15:46:07
7 4	200604D1_7	B0D0306-DUP1 Duplicate 11.39	04-Jun-20	16:31:15
8	200604D1_8	2000945-03 PDI-146SC-A-02-03-200426 12.11	04-Jun-20	17:16:22
9	200604D1_9	2000945-05 PDI-146SC-A-04-05-200426 11.68	04-Jun-20	18:01:30
10	200604D1_10	2000998-01 PDI-063SC-A-08-09-200429 14.35	04-Jun-20	18:46:38
11	200604D1_11	2000998-02 PDI-063SC-A-09-10.2-200429 15	04-Jun-20	19:31:44
12	200604D1_12	B0E0100-DUP1 Duplicate 15.21	04-Jun-20	20:16:51
13	200604D1_13	2000998-03 PDI-1063SC-A-08-09-200429 14.4	04-Jun-20	21:01:58
14	200604D1_14	2000998-04 PDI-063SC-B-00-02-200429 15.4	04-Jun-20	21:47:04
15	200604D1_15	B0E0100-DUP2 Duplicate 18.88	04-Jun-20	22:32:11

Page 1 of 1




# MassLynx 4.1

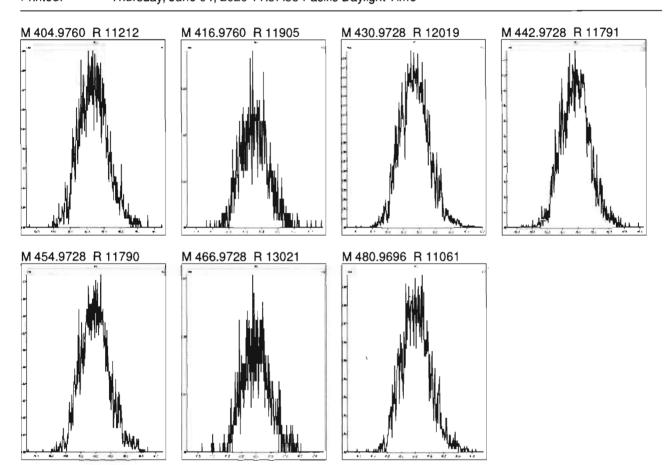
File:Experiment: ocdd_db5.expReference: Pfk.refFunction: 2 @ 200 (ppm)Printed:Thursday, June 04, 2020 11:55:43 Pacific Daylight Time

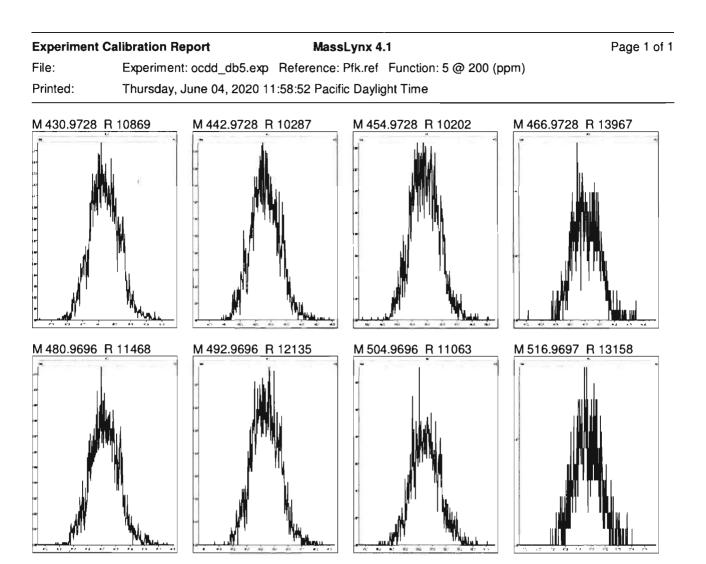


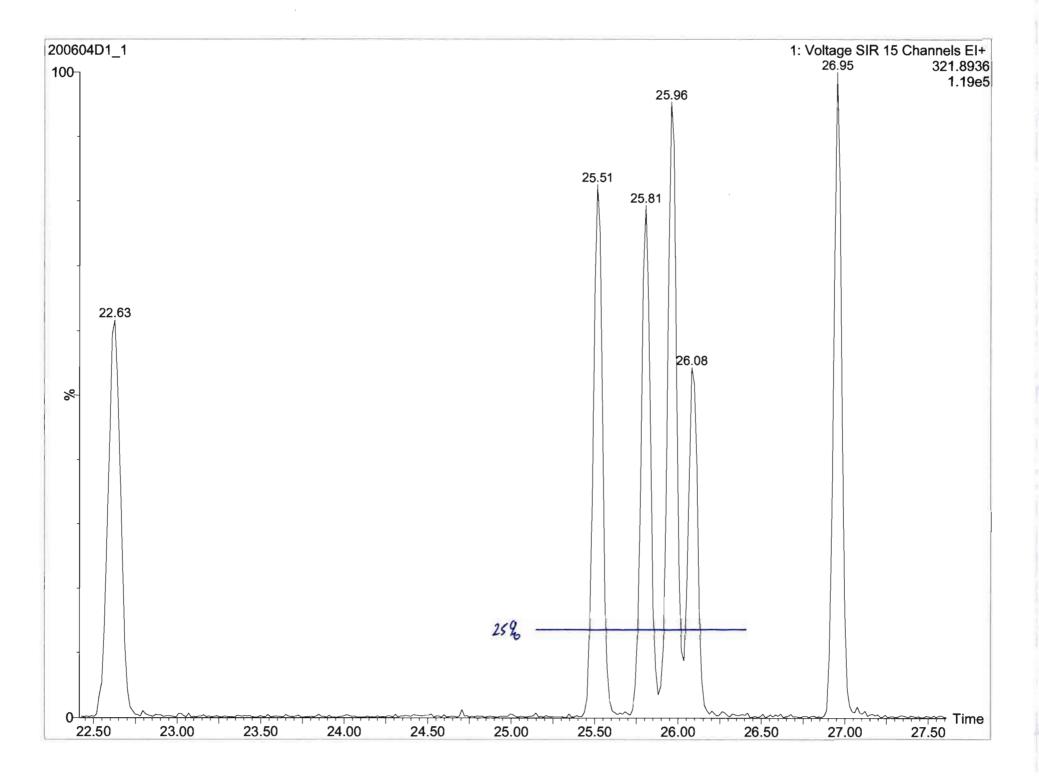

M 416.9760 R 16779



# MassLynx 4.1

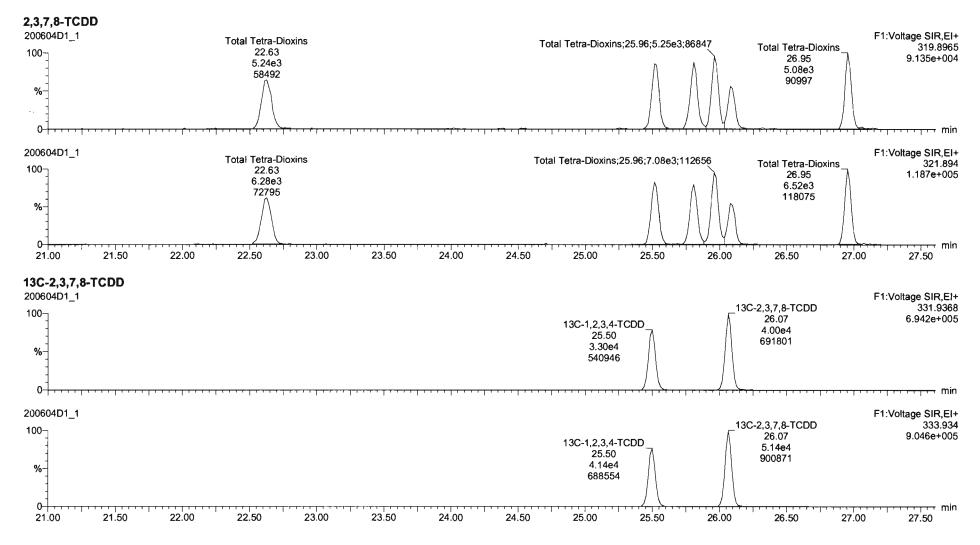

File:Experiment: ocdd_db5.expReference: Pfk.refFunction: 3 @ 200 (ppm)Printed:Thursday, June 04, 2020 11:56:43 Pacific Daylight Time



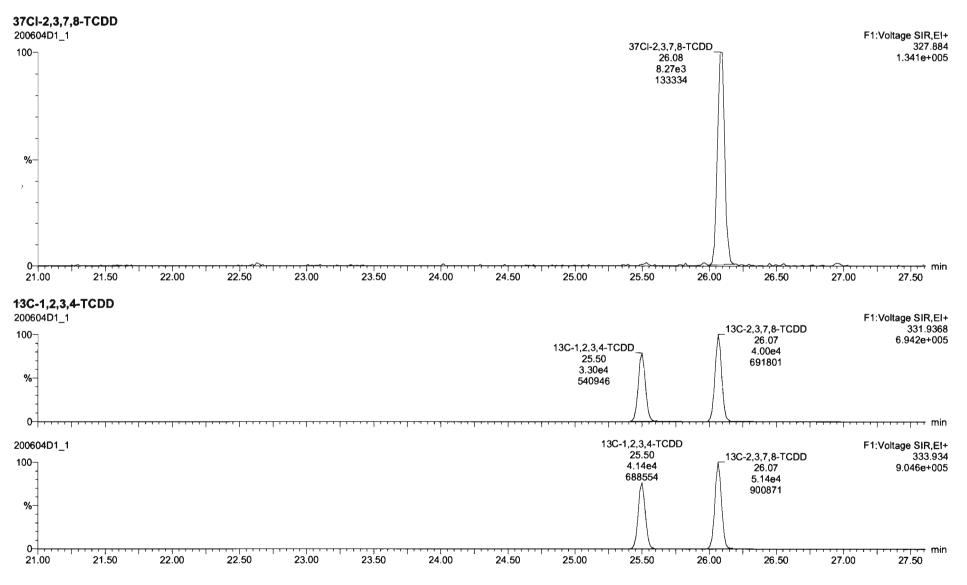


-

# MassLynx 4.1

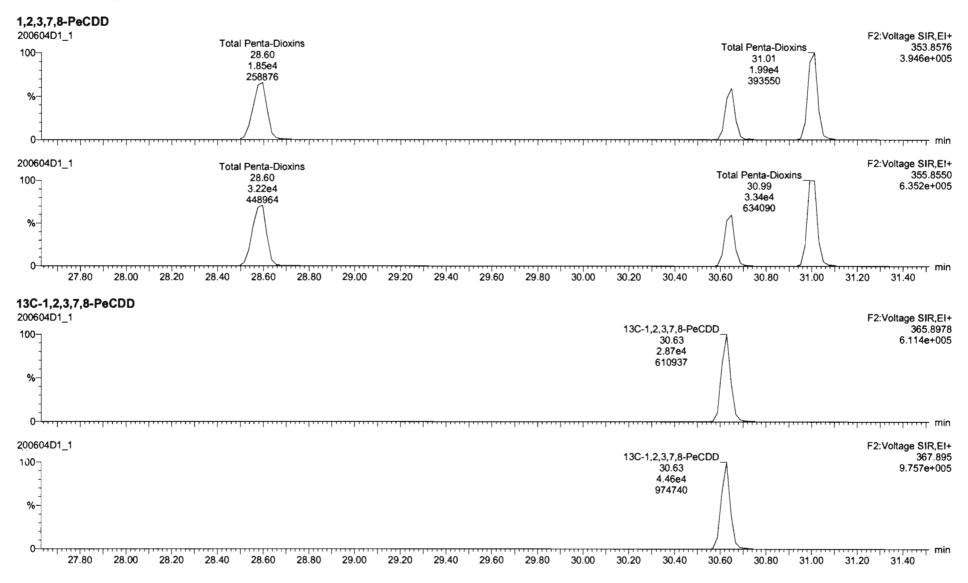
File:Experiment: ocdd_db5.expReference: Pfk.refFunction: 4 @ 200 (ppm)Printed:Thursday, June 04, 2020 11:57:55Pacific Daylight Time





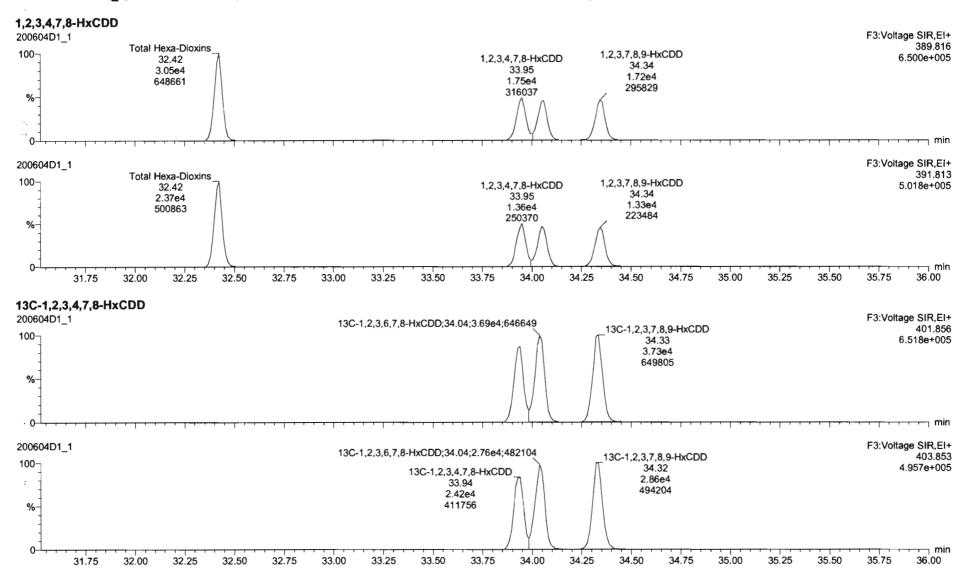

Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	


#### Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 27 Apr 2020 14:17:24 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28



Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	




Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	

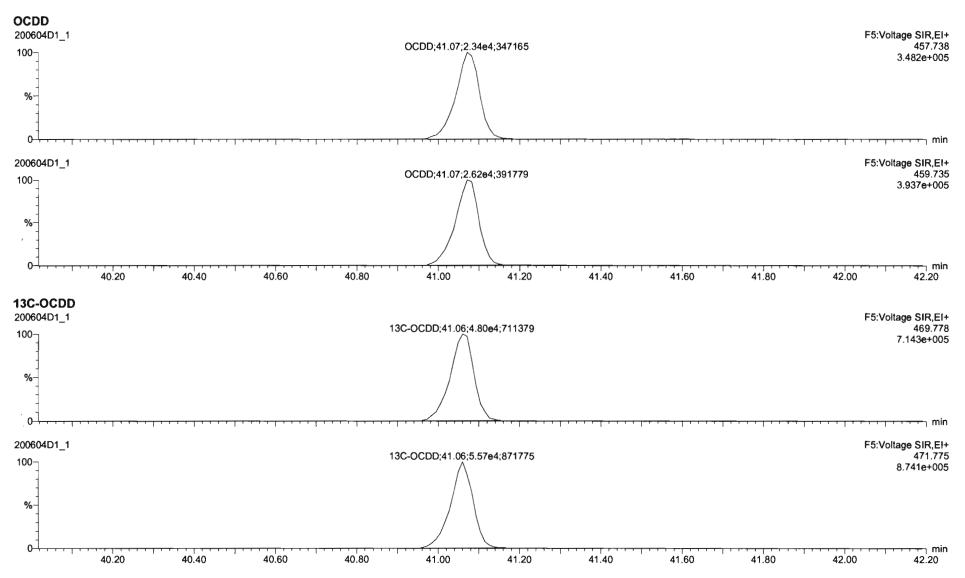


Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	

#### Dataset: U:\VG7.PRO\Results\200604D1\200604D1_1.qld

Last Altered:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time
Printed:	Thursday, June 04, 2020 12:47:22 Pacific Daylight Time




Quantify San Vista Analytica		
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Thursday, June 04, 2020 12:47:22 Pacific Daylight	



Work Order 2000945

Page 5 of 13

Quantify Sam Vista Analytica		Page 6 of 13						
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld							
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time							



Quantify Sample Report         MassLynx 4.1           Vista Analytical Laboratory         F							
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld						
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time						
lame: 20060	4D1_1, Date: 04-Jun-2020, Time: 12:00:23, ID: ST200604D1-1 1613 CS3 1	0L2305, Description: 1613 CS3 19L2305					
			E1 Voltage SIR EI+				
200604D1_1	Total Tetra-Furans;20.47;6.24e3;79892	2,3,7,8-TCDF;25.29;4.21e3;63243	F1:Voltage SIR,EI+ tal Tetra-Furans 303.9016 27.10 1.101e+005 6.45e3 109759 min				
200604D1_1 100	20.53	2,3,7,8-TCDF;25.29;4.21e3;63243	tal Tetra-Furans 303.9016 27.10 1.101e+005 6.45e3 109759				

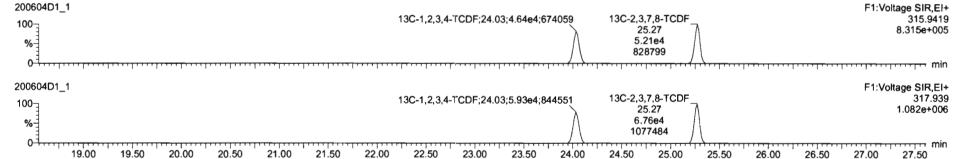


19.00

19.50

20.00

20.50


21.00

21.50

22.00

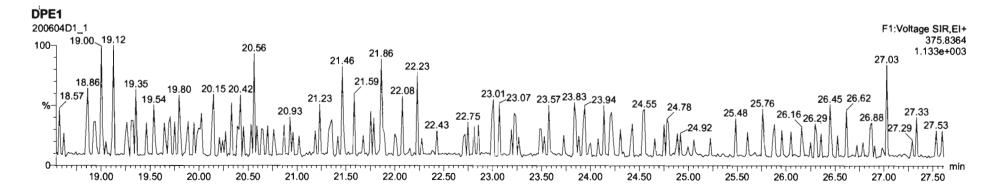
22.50

01....



23.00

23.50


24.00

24.50

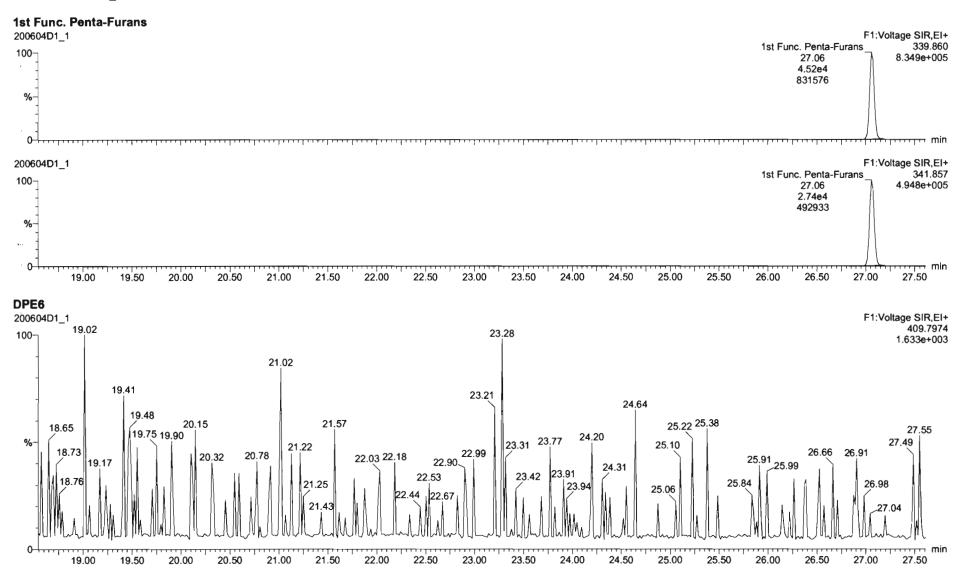
25.00

25.50

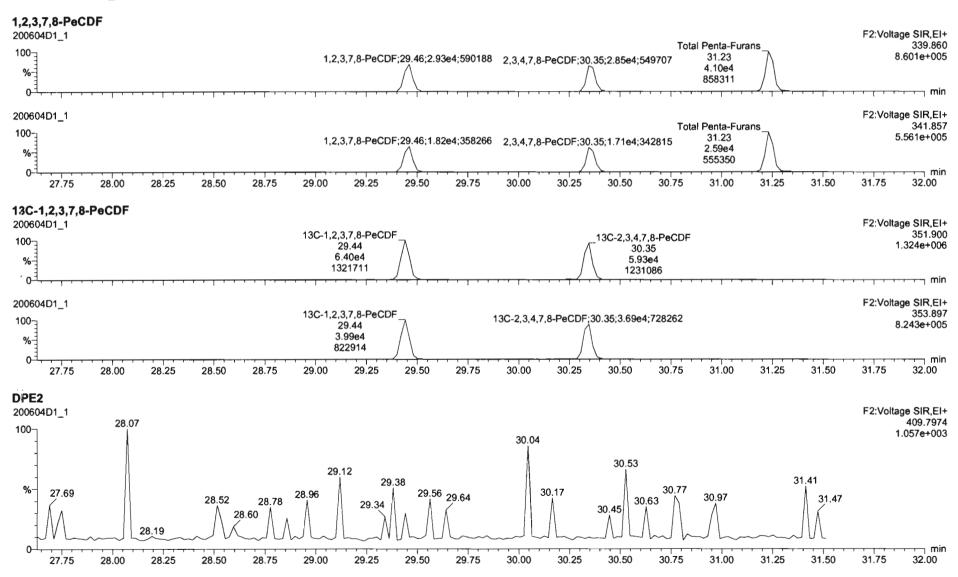
26.00



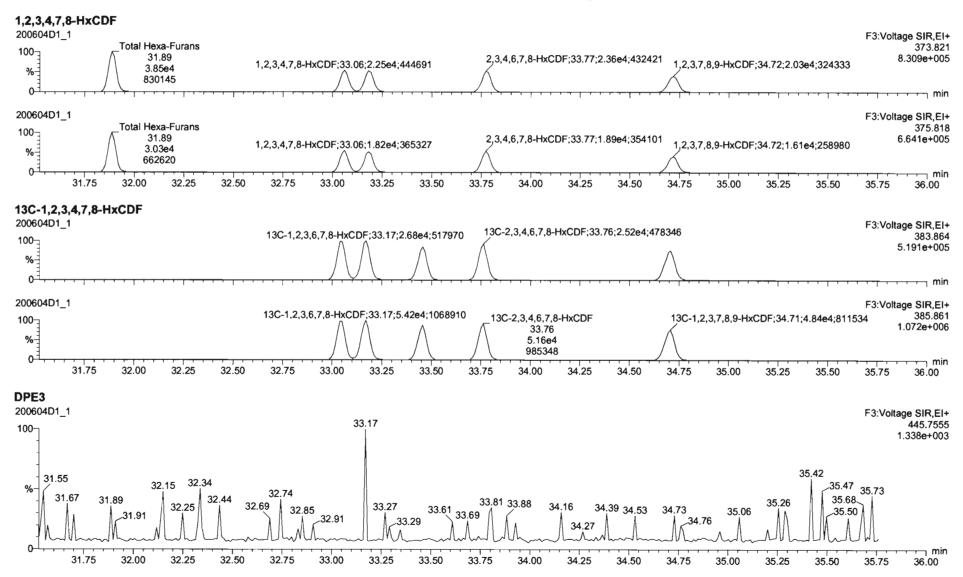
min report


27.50

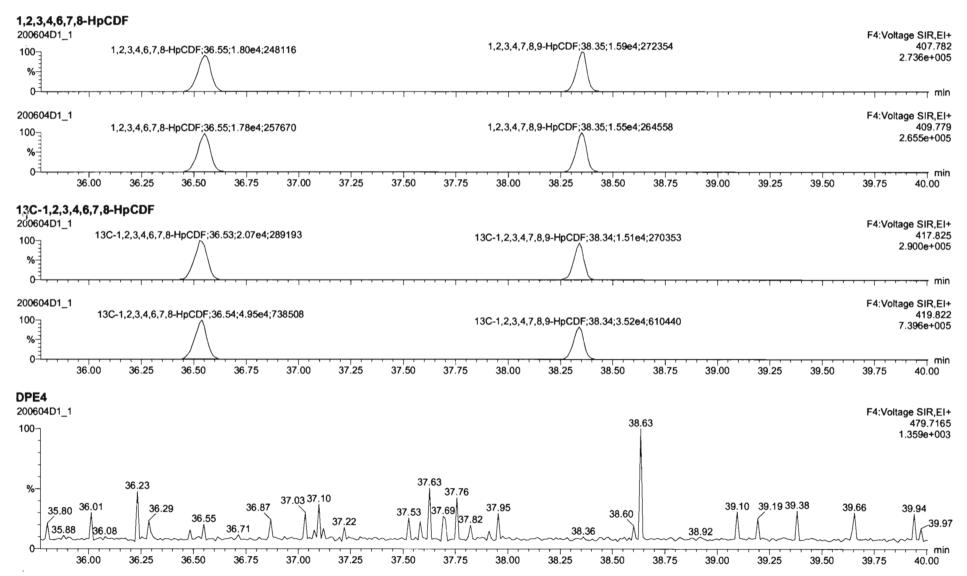
27.50


27.00

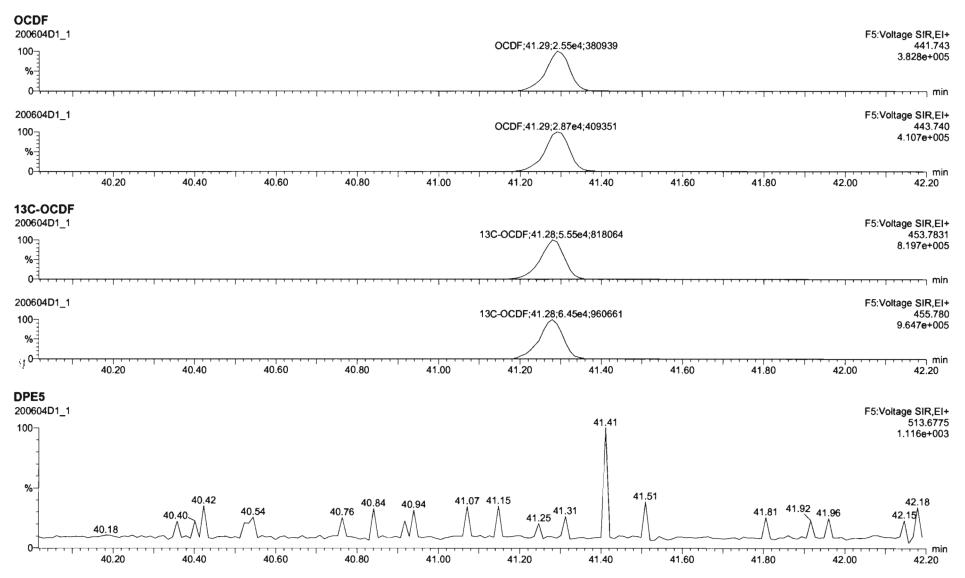
26.50


Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	

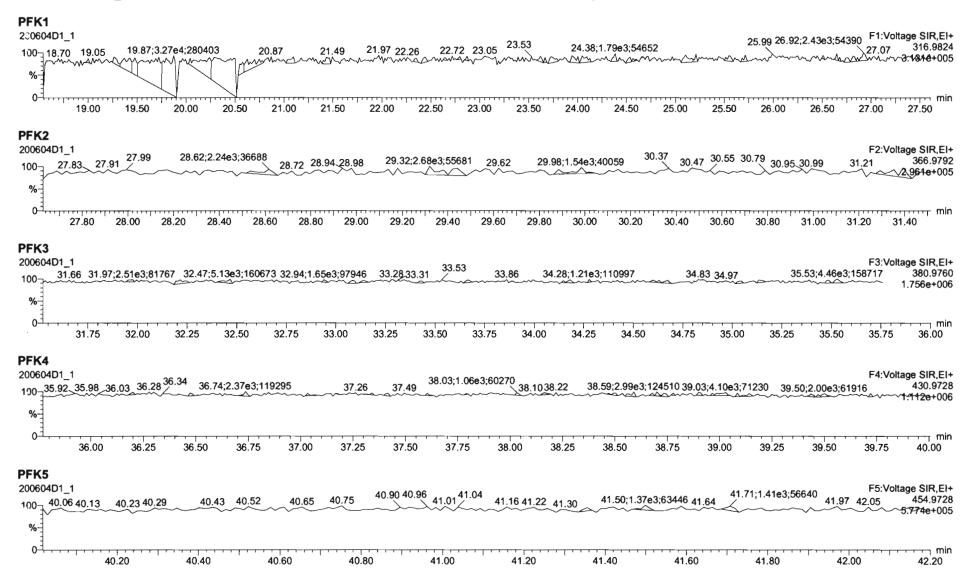



Quantify Sam Vista Analytica		Page 9 of 13				
Dataset: U:\VG7.PRO\Results\200604D1\200604D1_1.qld						
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time					




Quantify San Vista Analytica		Page 10 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	



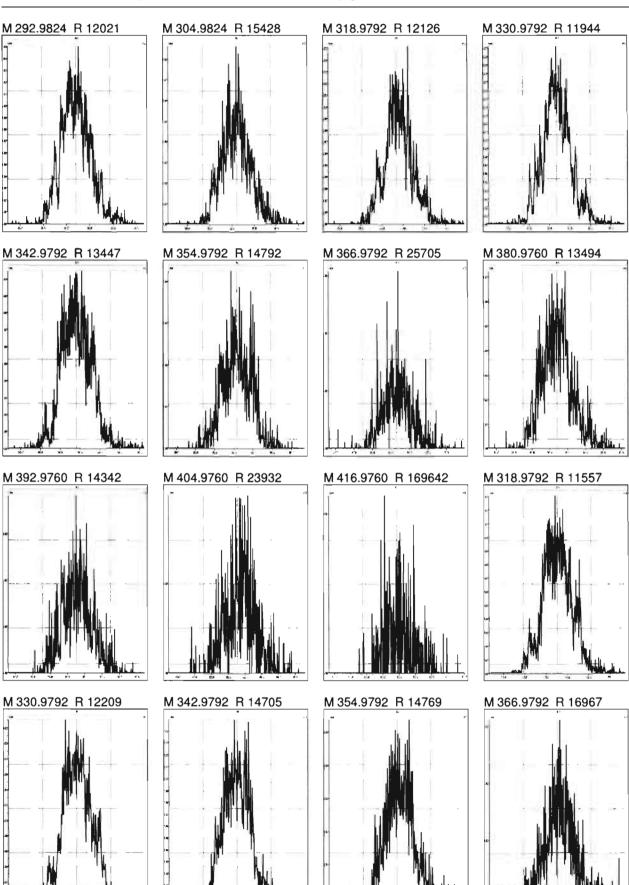

Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 13 of 13
Dataset:	U:\VG7.PRO\Results\200604D1\200604D1_1.qld	
Last Altered: Printed:	Thursday, June 04, 2020 12:43:43 Pacific Daylight Time Thursday, June 04, 2020 12:47:22 Pacific Daylight Time	

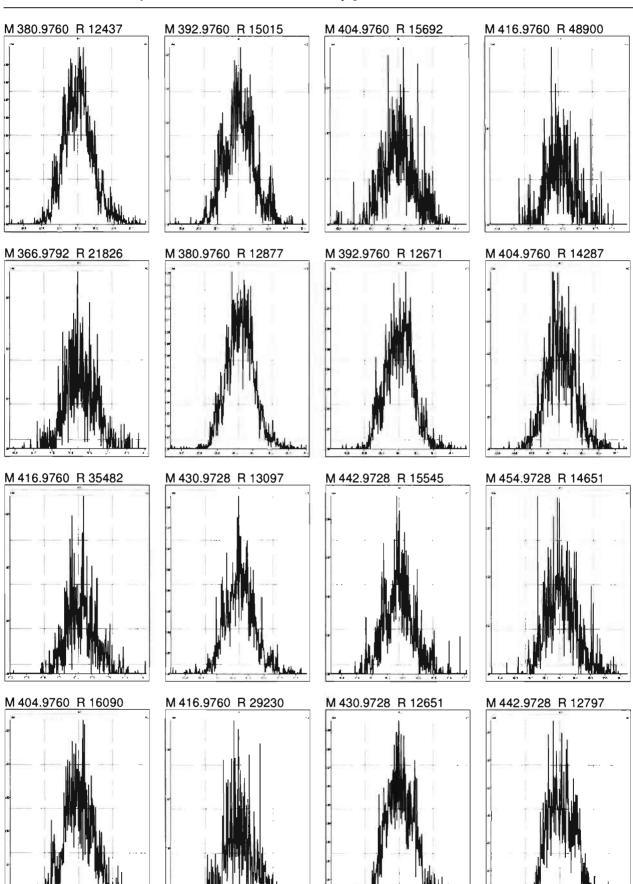



## **Resolution Check Report**

# MassLynx 4.1

Page 1 of 3

Printed: Thursday, June 04, 2020 23:26:00 Pacific Daylight Time



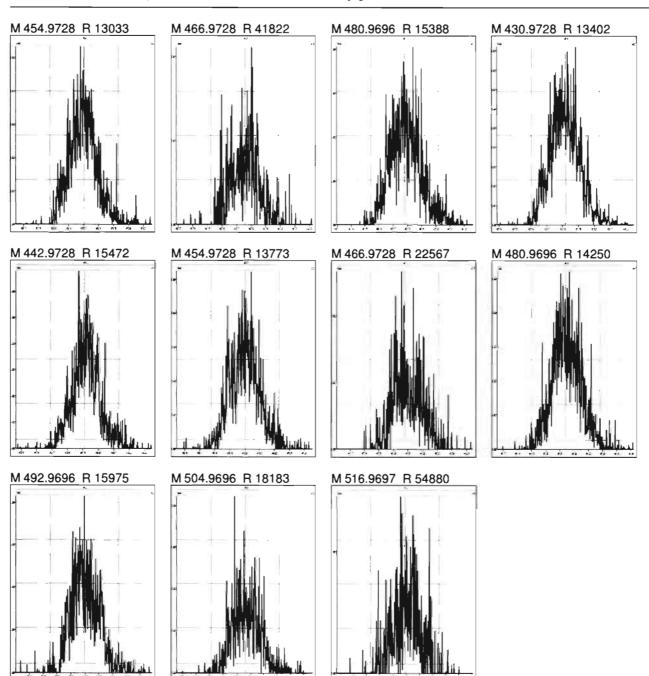

## **Resolution Check Report**

## MassLynx 4.1

Page 2 of 3

Printed: Thursday, June 04, 2020 23:26:00 Pacific Daylight Time




Work Order 2000945

## **Resolution Check Report**

# MassLynx 4.1

Page 3 of 3

Printed: Thursday, June 04, 2020 23:26:00 Pacific Daylight Time



HRMS CALIBRATIO	N STAND	ARDS RE	VIEW CHECKLIST		
Beg. Calbration ID: ST200609D1-1			Reviewed By: <u>(7 06/10/2020</u> Initials & Date	-	
End Calibration ID:NA			Initials & Date		
	Beg.	End		Beg.	End
Ion abundance within QC limits?		NA	Mass resolution >		/
<b>Concentrations within criteria?</b>	<		□ 5k □ 6-8K □ 8K 🗹 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%		Ф	Intergrated peaks display correctly?		NA
First and last eluters present?	1A	þ	GC Break <20%		
<b>Retention Times within criteria?</b>	$\square$	$\square$	8280 CS1 End Standard:		
Verification Std. named correctly?			- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		NĄ
(ST-Year-Month-Day-VG ID)				10	
Forms signed and dated?			Comments:		
Correct ICAL referenced?	7B				
Run Log:					
- Correct instrument listed?	$\square$	V			
- Samples within 12 hour clock? - Bottle position verfied?	0	N B			

Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200609D1\200609D1_2.qld

Last Altered:	Tuesday, June 09, 2020 14:23:22 Pacific Daylight Time
Printed:	Tuesday, June 09, 2020 14:24:46 Pacific Daylight Time

DB 6/9/20 (706/10/2020

### Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

## Name: 200609D1_2, Date: 09-Jun-2020, Time: 14:01:10, ID: ST200609D1-1 1613 CS3 19L2305, Description: 1613 CS3 19L2305

Victor and An	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RAT	Conc.	%Rec	PL	EMPC
1 98 -	1 2,3,7,8-TCDF	1.90e3	0.81	NO	0.982	1.000	17.631	17.65	1.000	1.002	8.4344	84.3 84-120	û.919	8.43
2	2 13C-2,3,7,8-TCDF	2.30e4	0.71	NO	1.08	1.000	17.677	17.61	1.133	1.135	93.671	93.771-140	2.78	
3	3 13C-1,2,3,4-TCDF	2.27e4	0.75	NO	1.00	1.000	15.660	15.52	1.000	1.000	100.00	100	3.01	

Page 1 of 1

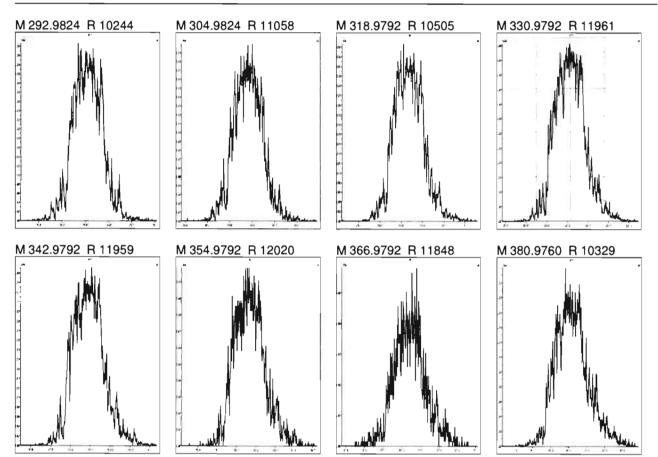
# Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory VG-11 Vista Analytical Laboratory VG-11

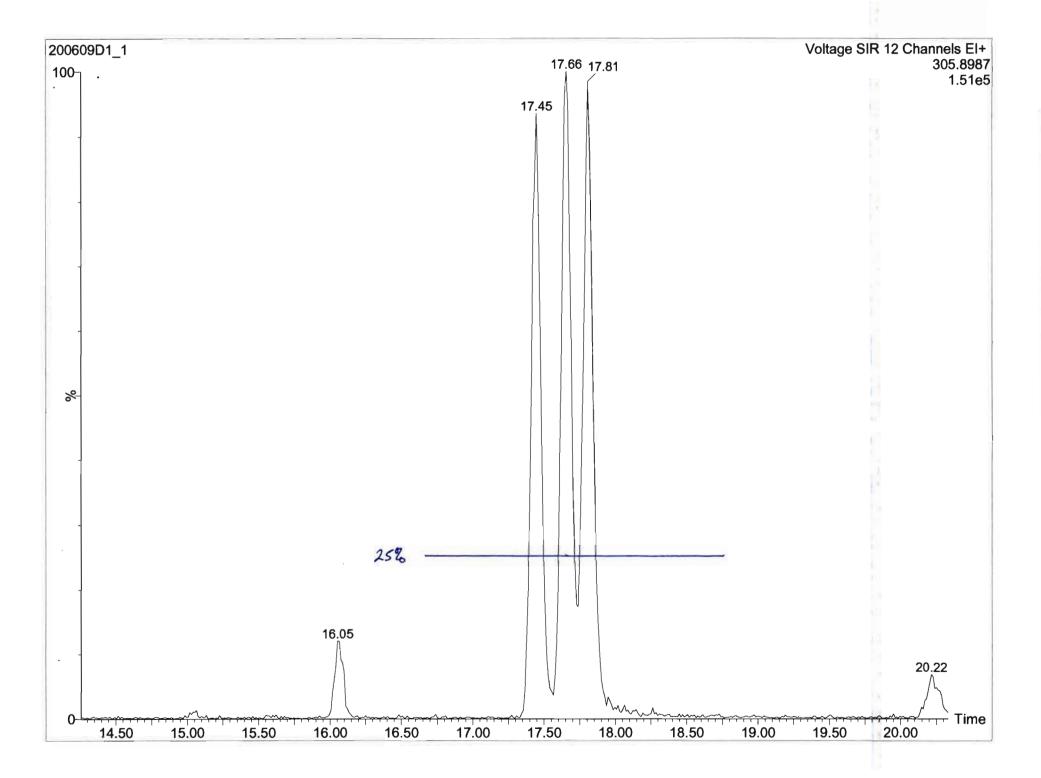
-

Dataset: Untitled

Last Altered:Wednesday, June 10, 2020 09:05:30 Pacific Daylight TimePrinted:Wednesday, June 10, 2020 09:05:45 Pacific Daylight Time

## Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 23 Mar 2020 11:10:19 Callbration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 11:17:56

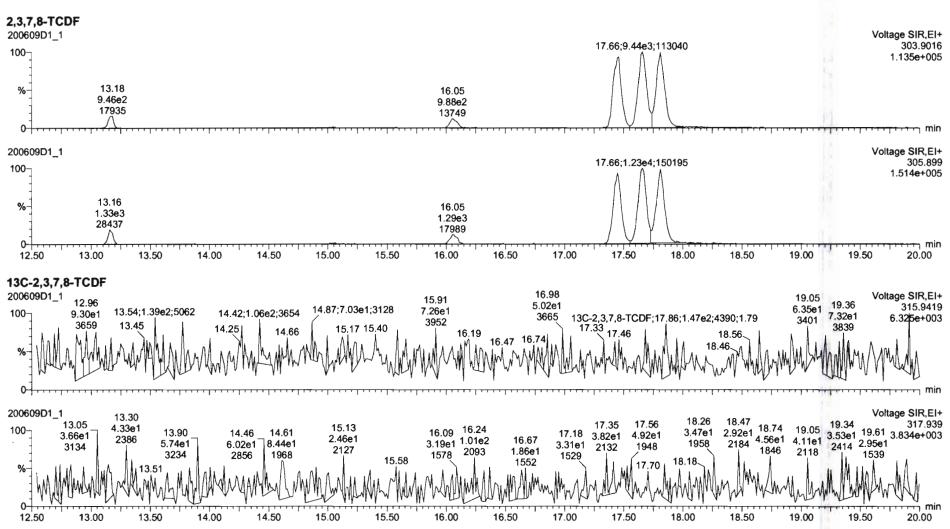

## Compound name: 2,3,7,8-TCDF


Sold States	Name	1D	Acq.Date	Acq.Time
1	200609D1_1	CP200609D1-1 DB-225 CPSM	09-Jun-20	13:15:34
2	200609D1_2	ST200609D1-1 1613 CS3 19L2305	09-Jun-20	14:01:10
3	200609D1_3	SOLVENT BLANK	09-Jun-20	14:31:00
4	200609D1_4	2000965-14RE1 PDI-163SC-A-04-05-200425	09-Jun-20	15:02:16
5	200609D1_5	2000945-01RE1 PDI-146SC-A-00-01-200426	09-Jun-20	15:33:55
6	200609D1_6	2000945-02RE1 PDI-146SC-A-01-02-200426	09-Jun-20	16:05:37
7	200609D1_7	B0D0306-DUP1RE1 Duplicate	09-Jun-20	16:37:19
8	200609D1_8	2000998-06RE1 PDI-063SC-B-05-07-200429	09-Jun-20	17:09:00
9	200609D1_9	2000998-04RE1 PDI-063SC-B-00-02-200429	09-Jun-20	17:40:42
10	200609D1_10	2000965-10RE1 PDI-163SC-A-00-01-200425	09-Jun-20	18:12:23
11	200609D1_11	2000965-12RE1 PDI-163SC-A-02-03-200425	09-Jun-20	18:44:04
12	200609D1_12	B0E0020-DUP1RE1 Duplicate	09-Jun-20	19:15:45
13	200609D1_13	2000998-05RE1 PDI-063SC-B-02-05-200429	09-Jun-20	19:47:27
14	200609D1_14	B0E0100-DUP2RE1 Duplicate	09-Jun-20	20:19:08
15	200609D1_15	2000965-09RE1 PDI-1163SC-A-01-02-200425	09-Jun-20	20:50:49
16	200609D1_16	2000965-11RE1 PDI-163SC-A-01-02-200425	09-Jun-20	21:22:33
17	200609D1_17	2000995-03RE1 PDI-068SC-B-00-02-200430	09-Jun-20	21:54:12
18	200609D1_18	2000995-04RE1 PDI-068SC-B-02-05-200430	09-Jun-20	22:25:54
19	200609D1_19	2000995-05RE1 PDI-068SC-B-05-07-200430	09-Jun-20	22:57:36
20	200609D1_20	2000995-08RE1 PDI-072SC-B-00-02-200430	09-Jun-20	23:29:18

## **Experiment Calibration Report**

# MassLynx 4.1

File:Experiment: tcdf_db225.expReference: Pfk.refFunction: 1 @ 200 (ppm)Printed:Tuesday, June 09, 2020 13:14:48 Pacific Daylight Time



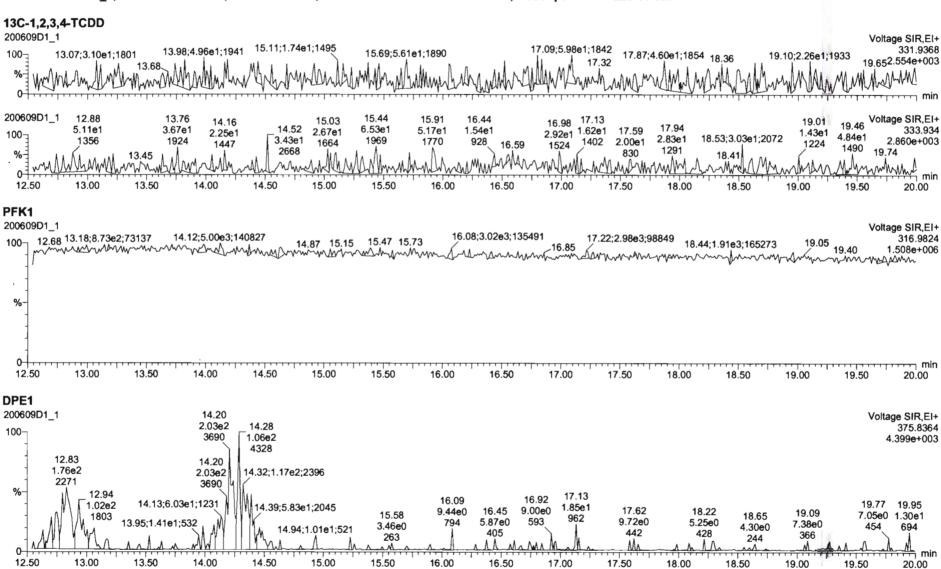



Quantify Sam Vista Analytica	nple Report MassLynx 4.1 al Laboratory VG-10	Page 1 of 2
Dataset:	U:\VG7.PRO\Results\200609D1\200609D1_1.qld	
Last Altered: Printed:	Tuesday, June 09, 2020 14:25:15 Pacific Daylight Time Tuesday, June 09, 2020 14:26:26 Pacific Daylight Time	

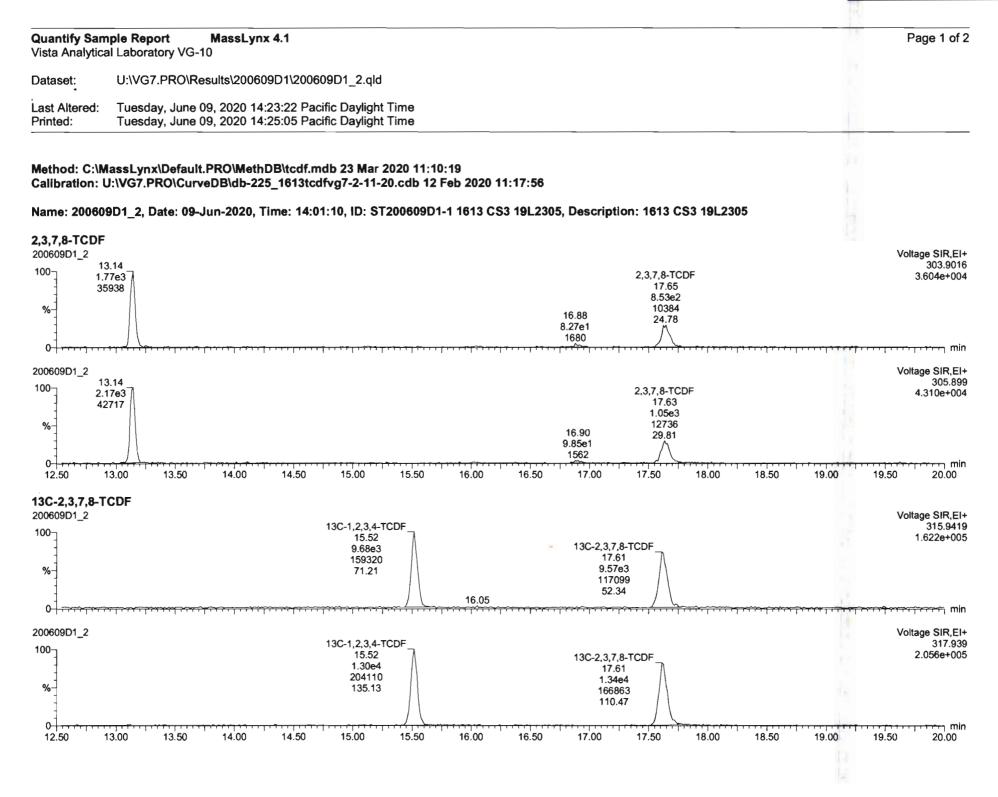


### Name: 200609D1_1, Date: 09-Jun-2020, Time: 13:15:34, ID: CP200609D1-1 DB-225 CPSM, Description: DB-225 CPSM




# Quantify Sample Report MassLynx 4.1

Vista Analytical Laboratory VG-10

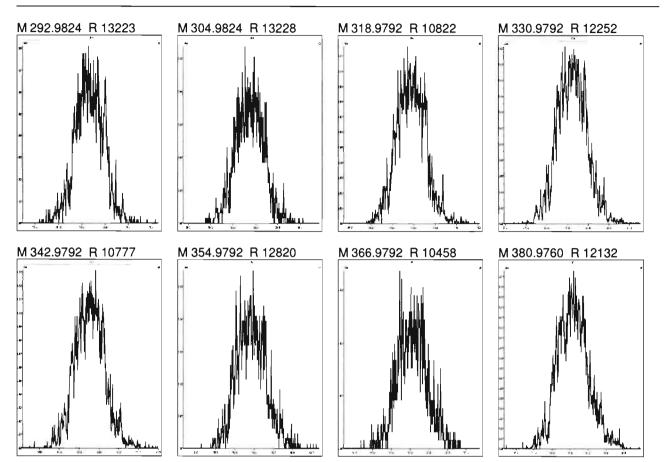

Dataset: U:\VG7.PRO\Results\200609D1\200609D1_1.qld

Last Altered:Tuesday, June 09, 2020 14:25:15 Pacific Daylight TimePrinted:Tuesday, June 09, 2020 14:26:26 Pacific Daylight Time

# Name: 200609D1_1, Date: 09-Jun-2020, Time: 13:15:34, ID: CP200609D1-1 DB-225 CPSM, Description: DB-225 CPSM



Page 2 of 2




<b>Suantify San</b> /ista Analytica	ple Report Mass Il Laboratory VG-10	sLynx 4.1											Page 2 of
Dataset;	U:\VG7.PRO\Results\2	:00609D1\2006	09D1_2.qld										
ast Altered: Printed:	Tuesday, June 09, 202 Tuesday, June 09, 202												
lame: 20060	9D1_2, Date: 09-Jun-20	20, Time: 14:0	1:10, ID: ST	<b>F200609D</b> ²	1-1 1613 C	S3 19L23	05. Descripti	on: 1613	CS3 19L23	05			
3C-1,2,3,4-T			,				,						
00609D1_2					16.16							V	oltage SIR,EI 331.936
100 %					6.84e3	16.25 7.52 <b>e</b> 3							1.182e+00
0	<u></u>	- * · · · · · · · · · · · · · · · · · ·				99372			<del>.</del>				
00609D1_2			,			1			[]	1	1		oltage SIR,E
00 ₋					16.16 9.60e3 7∖	16.25 ∕8.99e3						· ·	333.9 1.403e+00
%					139486	133648							1.4000.00
0		<del> </del>	· · · · · · · · · · · · · · · · · · ·		╶┯╼┯┯┯┥┥┥	$\frac{1}{1}$	47.00	17.50	18.00	18.50		19.50	
FK1 00609D1_2	13.00 13.50 14.0	14.13 14.77;3.3	15.00 6e3;144856	15.50 15.30;4.66e	16.00 93;117173	16.50 16.30;4.7	17.00 5e3;116035	17.56 3.71e3	17 77			19.44 V	oltage SIR,E 316.98
FK1 00609D1_2 00- 	77 ^{13.13} 13.75		6e3;144856			16.30;4.7		17.56 3.71e3	17.77	20	18.94 40	19.44 V 1.58e3	oltage SIR,E 316.98 1.451e+0
FK1 00609D1_2 00  % %	77 ^{13.13} 13.75	14.13 14.77;3.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6e3;144856			16.30;4.7	5e3;116035	17.56 3.71e3	17.77 18.3	20	18.94 40	19.44 V 1.58e3	oitage SIR,E 316.98/ 1.451e+0/
FK1 )0609D1_2 00 0 0 12.50 1 PE1	77 13.13 13.75 Markan Markan br>Markan Markan M	14.13 14.77;3.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6e3;144856	15.30;4.66e	₽3;117173 ₩~Y^^^_^	16.30;4.7!	5e3;116035 17. Jm AMAnn	17.56 3.71e3 25 103034	17.77 18.2	20 Derrymon	18.94 19 math	19.44 V 1.58e3 18 101207	oltage SIR,E 316.98 1.451e+0 ////////////////////////////////////
<b>FK1</b> 10609D1_2 12 0 0 12.50 1 <b>PE1</b> 0609D1_2 12.61 1.75e1 1504	77 13.13 13.75 Markan Markan br>Markan Markan M	14.13 14.77;3.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6e3;144856	15.30;4.66e	₽3;117173 ₩~Y^^^_^	16.30;4.7!	5e3;116035 17. Jm AMAnn	17.56 3.71e3 25 103034	17.77 18.2	20 Derrymon	18.94 19 math	19.44 V 1.58e3 18 101207	oitage SIR,E 316.98 1.451e+0 ////////////////////////////////////
<b>FK1</b> 10609D1_2 12 0 0 0 12.50 1 <b>PE1</b> 0 0 1.75e1 1.75e1 1.75e1 1.75e1 1.2.68 9.94e0 611	77 13.13 13.75 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14.13 14.77;3.3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6e3;144856	15.30;4.66e	₽3;117173 ₩~Y^^^_^	16.30;4.7 16.7 16.50	5e3;116035 17. Jm AMAnn	17.56 3.71e3 25 103034	17.77 18.2 18.00 17.92 17.92 18.00 17.92 18.00	20 20 20 18.50 18.50 18.58 7.35e0 .26 598	18.94 19 ∽v [£] M~∆∽∽ 19.00 18.93 6.17e0 19 466 4.6	19.44 V 1.58e3 18 101207	oltage SIR,I 316.98 1.451e+( ////////////////////////////////////

# Experiment Calibration Report

# MassLynx 4.1

File:Experiment: tcdf_db225.expReference: Pfk.refFunction: 1 @ 200 (ppm)Printed:Wednesday, June 10, 2020 00:03:15 Pacific Daylight Time



# **INITIAL CALIBRATION**

Dataset:	U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld
----------	-----------------------------------------------

Last Altered:	Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

#### Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

Compound name: 2,3,7,8-TCDD Response Factor: 0.947465 RRF SD: 0.050672, Relative SD: 5.34817 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: RF

T BAL	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	0.250	0.81	NO	26.07	1.002	3.67e3	1.71e6	0.227	-9.3	0.859	MM
2	200429R2_2	0.500	0.73	NO	26.05	1.001	6.88e3	1.49e6	0.486	-2.8	0.921	MM
3	200429R2_3	2.00	0.80	NO	26.05	1.001	2.77e4	1.43e6	2.04	2.1	0.968	мм
4	200429R2_4	10.0	0.76	NO	26.07	1.001	1.43e5	1.49e6	10.1	0.8	0.955	db
5	200429R2_5	40.0	0.79	NO	26.07	1.001	6.85e5	1.74e6	41.5	3.8	0.983	bb
6	200429R2_6	300	0.78	NO	26.05	1.001	6.08e6	2.03e6	316	5.4	0.998	bb

Compound name: 1,2,3,7,8-PeCDD Response Factor: 0.942465 RRF SD: 0.0519271, Relative SD: 5.50971 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: RF

ip	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	0.59	NO	31.13	1.000	1.26e4	1.18e6	1.13	-9.9	0.849	MM
2	200429R2_2	2.50	0.61	NO	31.14	1.000	2.41e4	1.02e6	2.49	-0.4	0.939	bb
3	200429R2_3	10.0	0.62	NO	31.13	1.000	9.99e4	9.92e5	10.7	6.8	1.01	bb
4	200429R2_4	50.0	0.62	NO	31.13	1.000	5.37e5	1.14e6	49.9	-0.2	0.941	bb
5	200429R2_5	200	0.63	NO	31.14	1.000	2.46e6	1.29e6	202	1.0	0.952	bb
6	200429R2_6	1500	0.63	NO	31.13	1.000	2.34e7	1.61e6	1540	2.6	0.967	bb

GRB 04/30/2020 C7 04/30/2020

Page 1 of 16

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

Compound name: 1,2,3,4,7,8-HxCDD Response Factor: 1.06409 RRF SD: 0.0704393, Relative SD: 6.61967 Response type: Internal Std ( Ref 20 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.23	NO	34.49	1.000	1.06e4	9.05e5	1.10	-12.2	0.934	bd
2	200429R2_2	2.50	1.24	NO	34.51	1.000	2.05e4	7.45e5	2.58	3.2	1.10	bd
3	200429R2_3	10.0	1.25	NO	34.49	1.000	8.24e4	7.52e5	10.3	3.1	1.10	bd
4	200429R2_4	50.0	1.22	NO	34.51	1.000	4.42e5	8.49e5	48.9	-2.2	1.04	MM
5	200429R2_5	200	1.23	NO	34.51	1.000	2.14e6	9.92e5	203	1.5	1.08	bd
6	200429R2_6	1500	1.23	NO	34.49	1.000	2.19e7	1.29e6	1600	6.6	1.13	bd

Compound name: 1,2,3,6,7,8-HxCDD Response Factor: 0.914514 RRF SD: 0.0597197, Relative SD: 6.53021 Response type: Internal Std ( Ref 21 ), Area * ( IS Conc. / IS Area ) Curve type: RF

10/2010	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.18	NO	34.60	1.000	1.19e4	1.16e6	1.12	-10.3	0.820	db
2	200429R2_2	2.50	1.19	NO	34.60	1.000	2.18e4	9.85e5	2.42	-3.1	0.886	db
3	200429R2_3	10.0	1.26	NO	34.60	1.000	9.42e4	9.49e5	10.8	8.4	0.992	db
4	200429R2_4	50.0	1.20	NO	34.60	1.000	4.89e5	1.08e6	49.6	-0.9	0.906	MM
5	200429R2_5	200	1.23	NO	34.61	1.000	2.38e6	1.24e6	210	5.0	0.960	db
6	200429R2_6	1500	1.24	NO	34.60	1.001	2.35e7	1.70e6	1510	0.9	0.922	db

Compound name: 1,2,3,7,8,9-HxCDD Response Factor: 0.914931 RRF SD: 0.0698725, Relative SD: 7.63691 Response type: Internal Std ( Ref 22 ), Area * ( IS Conc. / IS Area ) Curve type: RF

E-canny-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.17	NO	34.87	1.000	9.95e3	1.02e6	1.07	-14.6	0.782	MM
2	200429R2_2	2.50	1.21	NO	34.88	1.000	1.98e4	8.50e5	2.55	1.9	0.933	мм

# Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

#### Compound name: 1,2,3,7,8,9-HxCDD

108 L MILL	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	10.0	1.24	NO	34.88	1.001	8.11e4	8.34e5	10.6	6.3	0.973	bb
4	200429R2_4	50.0	1.24	NO	34.88	1.000	4.19e5	9.34e5	49.1	-1.8	0.898	bb
5	200429R2_5	200	1.24	NO	34.89	1.001	2.07e6	1.09e6	208	4.2	0.953	bb
6	200429R2_6	1500	1.23	NO	34.87	1.000	2.08e7	1.46e6	1560	4.0	0.951	bb

Compound name: 1,2,3,4,6,7,8-HpCDD Response Factor: 0.897908 RRF SD: 0.0622499, Relative SD: 6.93277 Response type: Internal Std ( Ref 23 ), Area * ( IS Conc. / IS Area ) Curve type: RF

- ST-101	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.08	NO	38.38	1.001	7.93e3	8.17e5	1.08	-13.5	0.777	bb
2	200429R2_2	2.50	1.01	NO	38.37	1.000	1.48e4	6.60e5	2.50	-0.2	0.896	MM
3	200429R2_3	10.0	1.08	NO	38.36	1.000	5.91e4	6.39e5	10.3	3.1	0.925	bd
4	200429R2_4	50.0	0.99	NO	38.38	1.000	3.08e5	6.79e5	50.5	1.0	0.907	bb
5	200429R2_5	200	1.02	NO	38.38	1.000	1.52e6	8.11e5	208	4.1	0.934	bb
6	200429R2_6	1500	1.02	NO	38.37	1.001	1.60e7	1.13e6	1580	5.6	0.948	bb

Compound name: OCDD Response Factor: 0.93349 RRF SD: 0.0706604, Relative SD: 7.56949 Response type: Internal Std ( Ref 24 ), Area * ( IS Conc. / IS Area ) Curve type: RF

H String	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	2.50	0.86	NO	41.35	1.000	1.41e4	1.42e6	2.13	-14.8	0.796	MM
2	200429R2_2	5.00	0.91	NO	41.35	1.000	2.79e4	1.21e6	4.96	-0.8	0.926	bd
3	200429R2_3	20.0	0.88	NO	41.34	1.000	1.08e5	1.10e6	21.2	5.8	0.988	MM
4	200429R2_4	100	0.88	NO	41.35	1.000	5.63e5	1.18e6	102	2.5	0.957	MM
5	200429R2_5	400	0.90	NO	41.35	1.000	2.87e6	1.50e6	411	2.7	0.959	MM
6	200429R2_6	3000	0.89	NO	41.34	1.000	3.39e7	2.31e6	3140	4.6	0.976	MM

Page 3 of 16

Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered:	Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

Compound name: 2,3,7,8-TCDF Response Factor: 0.787102 RRF SD: 0.0402419, Relative SD: 5.11266 Response type: Internal Std ( Ref 25 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	0.250	0.82	NO	25.09	1.001	4.51e3	2.52e6	0.228	-8.9	0.717	MM
2	200429R2_2	0.500	0.75	NO	25.11	1.001	8.73e3	2.22e6	0.501	0.1	0.788	MM
3	200429R2_3	2.00	0.74	NO	25.11	1.001	3.42e4	2.09e6	2.08	4.1	0.820	bb
4	200429R2_4	10.0	0.74	NO	25.11	1.001	1.65e5	2.15e6	9.76	-2.4	0.768	bb
5	200429R2_5	40.0	0.75	NO	25.12	1.001	8.12e5	2.52e6	41.0	2.4	0.806	bb
6	200429R2_6	300	0.75	NO	25.09	1.001	7.19e6	2.91e6	314	4.7	0.824	bb

Compound name: 1,2,3,7,8-PeCDF Response Factor: 0.910199 RRF SD: 0.0533229, Relative SD: 5.85838 Response type: Internal Std ( Ref 26 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.63	NO	29.81	1.000	1.97e4	1.94e6	1.12	-10.8	0.812	MM
2	200429R2_2	2.50	1.54	NO	29.83	1.000	3.85e4	1.69e6	2.50	0.1	0.911	MM
3	200429R2_3	10.0	1.57	NO	29.81	1.000	1.60e5	1.64e6	10.7	7.0	0.974	bb
4	200429R2_4	50.0	1.59	NO	29.81	1.000	8.46e5	1.86e6	50.0	0.0	0.910	bb
5	200429R2_5	200	1.55	NO	29.83	1.000	3.84e6	2.07e6	203	1.7	0.926	bb
6	200429R2_6	1500	1.56	NO	29.81	1.000	3.59e7	2.58e6	1530	1.9	0.928	bb

Compound name: 2,3,4,7,8-PeCDF Response Factor: 0.96636 RRF SD: 0.0480881, Relative SD: 4.97621 Response type: Internal Std ( Ref 27 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1 10	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.49	NO	30.80	1.000	2.03e4	1.84e6	1.14	-8.8	0.881	MM
2	200429R2_2	2.50	1.53	NO	30.82	1.000	3.90e4	1.62e6	2.50	-0.1	0.966	MM

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

#### Compound name: 2,3,4,7,8-PeCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	10.0	1.60	NO	30.80	1.000	1.61e5	1.57e6	10.6	6.4	1.03	bb
4	200429R2_4	50.0	1.56	NO	30.80	1.000	8.75e5	1.82e6	49.8	-0.4	0.962	bb
5	200429R2_5	200	1.55	NO	30.82	1.000	3.97e6	2.01e6	204	2.1	0.987	bb
6	200429R2_6	1500	1.54	NO	30.81	1.000	3.66e7	2.51e6	1510	0.7	0.973	bb

Compound name: 1,2,3,4,7,8-HxCDF Response Factor: 0.878238 RRF SD: 0.066642, Relative SD: 7.58815 Response type: Internal Std ( Ref 28 ), Area * ( IS Conc. / IS Area ) Curve type: RF

10	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.13	NO	33.64	1.001	1.14e4	1.22e6	1.06	-14.9	0.748	bd
2	200429R2_2	2.50	1.21	NO	33.64	1.000	2.26e4	1.02e6	2.52	0.9	0.886	bd
3	200429R2_3	10.0	1.22	NO	33.63	1.000	9.51e4	1.02e6	10.6	6.4	0.935	bd
4	200429R2_4	50.0	1.22	NO	33.64	1.000	5.03e5	1.13e6	50.6	1.1	0.888	bd
5	200429R2_5	200	1,19	NO	33.64	1.000	2.34e6	1.31e6	204	2.1	0.896	bd
6	200429R2_6	1500	1.19	NO	33.63	1.000	2.35e7	1.71e6	1570	4.4	0.917	bd

#### Compound name: 1,2,3,6,7,8-HxCDF Response Factor: 0.873971 RRF SD: 0.0632141, Relative SD: 7.23298 Response type: Internal Std ( Ref 29 ), Area * ( IS Conc. / IS Area ) Curve type: RF

Name Std. Conc RT RRT RA n/y Resp IS Resp Conc. %Dev RRF X = dropped 200429R2_1 1.25 1.23 NO 33.76 1.001 1.35e4 1.41e6 1.09 -12.6 0.763 MM 2 200429R2_2 2.50 NO 1.19 33.76 1.000 2.55e4 1.18e6 2.46 -1.4 0.861 db 3 200429R2_3 10.0 NO 1.20 33.76 1.001 9.5 1.09e5 1.14e6 11.0 0.957 dd 200429R2_4 1.17 50.0 NO 33.76 1.000 5.58e5 1.26e6 50.6 1.2 0.885 db 5 200429R2 5 200 1.19 NO 33.77 1.001 2.62e6 1.46e6 205 2.7 0.897 db 200429R2 6 1500 6 1.19 NO 33.75 1.000 2.52e7 1.91e6 1510 0.7 0.880 db

# Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

Compound name: 2,3,4,6,7,8-HxCDF Response Factor: 0.921711 RRF SD: 0.0708547, Relative SD: 7.6873 Response type: Internal Std ( Ref 30 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.14	NO	34.32	1.000	1.24e4	1.26e6	1.07	-14.7	0.786	bb
2	200429R2_2	2.50	1.16	NO	34.33	1.001	2.38e4	1.05e6	2.46	-1.5	0.908	MM
3	200429R2_3	10.0	1.22	NO	34.32	1.000	1.02e5	1.03e6	10.7	7.1	0.987	bb
4	200429R2_4	50.0	1.17	NO	34.33	1.000	5.42e5	1.14e6	51.6	3.2	0.951	bb
5	200429R2_5	200	1.19	NO	34.33	1.000	2.49e6	1.31e6	206	3.0	0.950	bb
6	200429R2_6	1500	1.19	NO	34.33	1.000	2.48e7	1.74e6	1540	2.9	0.948	bb

Compound name: 1,2,3,7,8,9-HxCDF Response Factor: 0.864187 RRF SD: 0.0516808, Relative SD: 5.98028 Response type: Internal Std ( Ref 31 ), Area * ( IS Conc. / IS Area ) Curve type: RF

n'n k	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	1.22	NO	35.21	1.000	9.52e3	9.91e5	1.11	-11.0	0.769	MM
2	200429R2_2	2.50	1.21	NO	35.21	1.000	1.86e4	8.77 <b>e</b> 5	2.45	-1.8	0.848	MM
3	200429R2_3	10.0	1.22	NO	35.21	1.000	7.78e4	8.59e5	10.5	4.9	0.906	bb
4	200429R2_4	50.0	1.17	NO	35.22	1.000	4.02e5	9.29e5	50.1	0.2	0.866	bb
5	200429R2_5	200	1.19	NO	35.22	1.000	1.99e6	1.11e6	207	3.7	0.896	bb
6	200429R2_6	1500	1.20	NO	35.21	1.000	1.98e7	1.47e6	1560	4.0	0.899	bb

Compound name: 1,2,3,4,6,7,8-HpCDF Response Factor: 0.871204 RRF SD: 0.0656544, Relative SD: 7.53606 Response type: Internal Std ( Ref 32 ), Area * ( IS Conc. / IS Area ) Curve type: RF

A STATE	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	0.99	NO	36.94	1.000	8.60e3	9.24e5	1.07	-14.5	0.745	MM
2	200429R2_2	2.50	1.00	NO	36.97	1.001	1.73e4	7.84e5	2.54	1.5	0.884	MM

Page 6 of 16

# Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

## Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered:	Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

## Compound name: 1,2,3,4,6,7,8-HpCDF

lite al -	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	10.0	0.95	NO	36.96	1.000	6.95e4	7.69e5	10.4	3.7	0.903	MM
4	200429R2_4	50.0	0.96	NO	36.97	1.000	3.72e5	8.65e5	49.4	-1.2	0.861	bb
5	200429R2_5	200	0.99	NO	36.97	1.000	1.79e6	9.81e5	210	5.0	0.914	bb
6	200429R2_6	1500	0.99	NO	36.96	1.001	1.89e7	1.37e6	1580	5.5	0.919	bb

Compound name: 1,2,3,4,7,8,9-HpCDF Response Factor: 1.01156 RRF SD: 0.0670054, Relative SD: 6.62397 Response type: Internal Std ( Ref 33 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	1.25	0.97	NO	38.95	1.000	6.68e3	5.96e5	1.11	-11.4	0.897	MM
2	200429R2_2	2.50	0.96	NO	38.95	1.000	1.20e4	4.92e5	2.41	-3.7	0.974	MM
3	200429R2_3	10.0	1.01	NO	38.95	1.000	4.94e4	4.72e5	10.4	3.5	1.05	MM
4	200429R2_4	50.0	1.00	NO	38.96	1.000	2.60e5	5.12e5	50.2	0.3	1.01	bb
5	200429R2_5	200	0.99	NO	38.96	1.000	1.29e6	6.09e5	209	4.7	1.06	bb
6	200429R2_6	1500	0.99	NO	38.94	1.000	1.43e7	8.85e5	1600	6.5	1.08	bb

#### Compound name: OCDF Response Factor: 0.802147 RRF SD: 0.0574516, Relative SD: 7.16223 Response type: Internal Std ( Ref 34 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	2.50	0.84	NO	41.52	1.000	1.41e4	1.62e6	2.17	-13.4	0.695	MM
2	200429R2_2	5.00	0.85	NO	41.52	1.000	2.74e4	1.40e6	4.88	-2.4	0.783	MM
3	200429R2_3	20.0	0.88	NO	<b>41</b> .52	1.000	1.07e5	1.27e6	21.0	5.0	0.842	bb
4	200429R2_4	100	0.86	NO	41.53	1.000	5.36e5	1.32e6	101	1.3	0.813	bb
5	200429R2_5	400	0.87	NO	41.53	1.000	2.84e6	1.69e6	420	5.0	0.842	bb
6	200429R2_6	3000	0.87	NO	41.52	1.000	3.30e7	2.63e6	3130	4.4	0.838	bb

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.gld

Last Altered:	Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

Compound name: 13C-2,3,7,8-TCDD Response Factor: 1.15948 RRF SD: 0.103741, Relative SD: 8.94721 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.79	NO	26.02	1.027	1.71e6	1.32e6	112	11.9	1.30	bb
2	200429R2_2	100	0.79	NO	26.03	1.027	1.49e6	1.44e6	89.7	-10.3	1.04	bb
3	200429R2_3	100	0.80	NO	26.02	1.026	1.43e6	1.38e6	89.4	-10.6	1.04	bb
4	200429R2_4	100	0.80	NO	26.03	1.027	1.49e6	1.28e6	100	0.3	1.16	bb
5	200429R2_5	100	0.79	NO	26.03	1.027	1.74e6	1.45e6	103	3.3	1.20	MM
6	200429R2_6	100	0.79	NO	26.02	1.027	2.03e6	1.66e6	105	5.4	1.22	bb

Compound name: 13C-1,2,3,7,8-PeCDD Response Factor: 0.847234 RRF SD: 0.105802, Relative SD: 12.488 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.64	NO	31.11	1.227	1.18e6	1.32e6	106	6.2	0.900	bb
2	200429R2_2	100	0.65	NO	31.13	1.227	1.02e6	1.44e6	84.2	-15.8	0.713	bb
3	200429R2_3	100	0.64	NO	31.11	1.227	9.92e5	1.38e6	84.9	-15.1	0.719	bb
4	200429R2_4	100	0.65	NO	31.11	1.227	1.14e6	1.28e6	105	5.0	0.889	bb
5	200429R2_5	100	0.63	NO	31.13	1.227	1.29e6	1.45e6	105	5.1	0.890	bb
6	200429R2_6	100	0.64	NO	31.11	1.227	1.61e6	1.66e6	115	14.6	0.971	bb

Compound name: 13C-1,2,3,4,7,8-HxCDD Response Factor: 0.749916 RRF SD: 0.0958664, Relative SD: 12.7836 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

10225	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	1.27	NO	34.48	1.014	9.05e5	1.10e6	109	9.5	0.821	bd
2	200429R2_2	100	1.30	NO	34.49	1.014	7.45e5	1.19e6	83.5	-16.5	0.626	bd

### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

## Compound name: 13C-1,2,3,4,7,8-HxCDD

100	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	100	1.29	NO	34.48	1.014	7.52e5	1.15e6	87.1	-12.9	0.653	bd
4	200429R2_4	100	1.29	NO	34.49	1.014	8.49e5	1.15e6	98.6	-1.4	0.739	bd
5	200429R2_5	100	1.28	NO	34.49	1.014	9.92e5	1.26e6	105	5.3	0.790	bd
6	200429R2_6	100	1.27	NO	34.48	1.014	1.29e6	1.48e6	116	16.0	0.870	bd

Compound name: 13C-1,2,3,6,7,8-HxCDD Response Factor: 0.963047 RRF SD: 0.127006, Relative SD: 13.1879 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

THIN ST	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	1.28	NO	34.59	1.017	1.16e6	1.10e6	109	9.3	1.05	db
2	200429R2_2	100	1.29	NO	34.59	1.017	9.85e5	1.19e6	85.9	-14.1	0.827	db
3	200429R2_3	100	1.29	NO	34.59	1.017	9.49e5	1.15e6	85.7	-14.3	0.825	db
4	200429R2_4	100	1.26	NO	34.59	1.017	1.08e6	1.15e6	97.7	-2.3	0.941	db
5	200429R2_5	100	1.27	NO	34.60	1.017	1.24e6	1.26e6	102	2.2	0.985	db
6	200429R2_6	100	1.26	NO	34.58	1.017	1.70e6	1.48 <b>e</b> 6	119	19.2	1.15	db

Compound name: 13C-1,2,3,7,8,9-HxCDD Response Factor: 0.83755 RRF SD: 0.108482, Relative SD: 12,9523 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

o att	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	1.31	NO	34.86	1.025	1.02e6	1.10e6	110	10.2	0.923	bď
2	200429R2_2	100	1.28	NO	34.87	1.025	8.50e5	1.19e6	85.2	-14.8	0.713	bb
3	200429R2_3	100	1.25	NO	34.86	1.025	8.34e5	1.15e6	86.5	-13.5	0.724	bb
4	200429R2_4	100	1.25	NO	34.87	1.025	9.34e5	1.15e6	97.2	-2.8	0.814	bb
5	200429R2_5	100	1.25	NO	34.87	1.025	1.09e6	1.26e6	103	3.2	0.864	bb
6	200429R2_6	100	1.25	NO	34.86	1.025	1.46e6	1.48e6	118	17.7	0.986	bb

Page 9 of 16

# Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.gld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

#### Compound name: 13C-1,2,3,4,6,7,8-HpCDD Response Factor: 0.641477

RRF SD: 0.0915679, Relative SD: 14.2745 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

20.54	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	1.06	NO	38.35	1.128	8.17e5	1.10e6	116	15.5	0.741	bd
2	200429R2_2	100	1.06	NO	38.36	1.128	6.60e5	1.19e6	86.4	-13.6	0.554	MM
3	200429R2_3	100	1.02	NO	38.36	1.128	6.39e5	1.15e6	86.5	-13.5	0.555	bb
4	200429R2_4	100	1.09	NO	38.37	1.128	6.79e5	1.15e6	92.2	-7.8	0.592	MM
5	200429R2_5	100	1.02	NO	38.37	1 128	8.11e5	1.26e6	101	0.6	0.646	bb
6	200429R2_6	100	1.05	NO	38.35	1.128	1.13e6	1.48e6	119	18.7	0.761	bb

#### Compound name: 13C-OCDD Response Factor: 0.586321 RRF SD: 0.114579, Relative SD: 19.5421 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	200	0.89	NO	41.34	1.216	1.42e6	1.10e6	220	9.8	0.644	MM
2	200429R2_2	200	0.90	NO	41.34	1.215	1.21e6	1.19e6	173	-13.7	0.506	MM
3	200429R2_3	200	0.93	NO	41.33	1.215	1.10e6	1.15e6	162	-18.8	0.476	MM
4	200429R2_4	200	0.93	NO	41.34	1.215	1.18e6	1.15e6	175	-12.5	0.513	MM
5	200429R2_5	200	0.90	NO	41.34	1.215	1.50e6	1.26e6	203	1.7	0.597	MM
6	200429R2_6	200	0.90	NO	41.33	1.215	2.31e6	1.48e6	267	33.4	0.782	MM

Compound name: 13C-2,3,7,8-TCDF Response Factor: 1.03447 RRF SD: 0.0994265, Relative SD: 9.61138 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

Sul and	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.78	NO	25.08	0.989	2.52e6	2.12e6	115	14.8	1.19	bb
2	200429R2_2	100	0.78	NO	25.09	0.989	2.22e6	2.37e6	90.3	-9.7	0.934	bb

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

## Compound name: 13C-2,3,7,8-TCDF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	100	0.78	NO	25.08	0.989	2.09e6	2.27e6	89.0	-11.0	0.920	bb
4	200429R2_4	100	0.77	NO	25.09	0.989	2.15e6	2.10e6	<b>9</b> 9. <b>1</b>	-0.9	1.03	bb
5	200429R2_5	100	0.79	NO	25.09	0.989	2.52e6	2.38e6	102	2.1	1.06	bb
6	200429R2_6	100	0.77	NO	25.08	0.989	2.91e6	2.69e6	105	4.7	1.08	bb

Compound name: 13C-1,2,3,7,8-PeCDF Response Factor: 0.84507 RRF SD: 0.102566, Relative SD: 12.137 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	1.60	NO	29.80	1.176	1.94e6	2.12e6	108	8.3	0.915	bb
2	200429R2_2	100	1.62	NO	29.81	1.176	1.69e6	2.37e6	84.4	-15.6	0.713	bb
3	200429R2_3	100	1.61	NO	29.80	1.175	1.64e6	2.27e6	85.7	-14.3	0.724	bb
4	200429R2_4	100	1.63	NO	29.80	1.175	1.86e6	2.10e6	105	4.9	0.886	bb
5	200429R2_5	100	1.58	NO	29.81	1.176	2.07e6	2.38e6	103	3.0	0.871	bb
6	200429R2_6	100	1.59	NO	29.80	1.176	2.58e6	2.69e6	114	13.7	0.960	bb

#### Compound name: 13C-2,3,4,7,8-PeCDF

Response Factor: 0.814071 RRF SD: 0.103739, Relative SD: 12.7432 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

f is the	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	1.58	NO	30.79	1.215	1.84e6	2.12e6	107	6.7	0.869	bb
2	200429R2_2	100	1.59	NO	30.80	1.215	1.62e6	2.37e6	83.6	-16.4	0.681	db
3	200429R2_3	100	1.58	NO	30.79	1.214	1.57e6	2.27e6	84.8	-15.2	0.691	db
4	200429R2_4	100	1.60	NO	30.79	1.214	1.82e6	2.10e6	107	6.5	0.867	db
5	200429R2_5	100	1.60	NO	30.80	1.215	2.01e6	2.38e6	104	3.7	0.844	db
6	200429R2_6	100	1.58	NO	30.79	1.215	2.51e6	2.69e6	115	14.6	0.933	db

Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered:	Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8-HxCDF Response Factor: 1.00488 RRF SD: 0.118528, Relative SD: 11.7952 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

COLUMN T	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.50	NO	33.62	0.989	1.22e6	1.10e6	110	10.1	1.11	bd
2	200429R2_2	100	0.51	NO	33.63	0.989	1.02e6	1.19e6	85.4	-14.6	0.858	bd
3	200429R2_3	100	0.51	NO	33.62	0.988	1.02e6	1.15e6	88.0	-12.0	0.884	bd
4	200429R2_4	100	0.51	NO	33.63	0.989	1.13e6	1.15e6	98.3	-1.7	0.987	bd
5	200429R2_5	100	0.51	NO	33.63	0.988	1.31e6	1.26e6	103	3.5	1.04	bd
6	200429R2_6	100	0.51	NO	33.62	0.989	1.71e6	1.48e6	115	14.9	1.15	bd

Compound name: 13C-1,2,3,6,7,8-HxCDF Response Factor: 1.13681 RRF SD: 0.13421, Relative SD: 11.8059 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

A ST TIME	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.51	NO	33.74	0.992	1.41e6	1.10e6	113	12.9	1.28	db
2	200429R2_2	100	0.52	NO	33.75	0.992	1.18e6	1.19e6	87.4	-12.6	0.994	db
3	200429R2_3	100	0.51	NO	33.74	0.992	1.14e6	1.15e6	87.0	-13.0	0.990	db
4	200429R2_4	100	0.51	NO	33.75	0.992	1.26e6	1.15e6	96.7	-3.3	1.10	db
5	200429R2_5	100	0.51	NO	33.75	0.992	1.46e6	1.26e6	102	2.3	1.16	db
6	200429R2_6	100	0.51	NO	33.74	0.992	1.91e6	1.48e6	114	13.7	1.29	db

Compound name: 13C-2,3,4,6,7,8-HxCDF Response Factor: 1.02233 RRF SD: 0.123256, Relative SD: 12.0564 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

ni) inpont	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.52	NO	34.31	1.009	1.26e6	1.10e6	112	11.8	1.14	MM
2	200429R2_2	100	0.51	NO	34.31	1.009	1.05e6	1.19e6	86.2	-13.8	0.881	bb

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

### Compound name: 13C-2,3,4,6,7,8-HxCDF

1.040	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	100	0.52	NO	34.31	1.009	1.03e6	1.15e6	87.6	-12.4	0.895	bb
4	200429R2_4	100	0.51	NO	34.33	1.009	1.14e6	1.15e6	97.2	-2.8	0.993	bb
5	200429R2_5	100	0.51	NO	34.33	1.009	1.31e6	1.26e6	102	2.1	1.04	bb
6	200429R2_6	100	0.51	NO	34.31	1.009	1.74e6	1.48e6	115	15.2	1.18	bb

# Compound name: 13C-1,2,3,7,8,9-HxCDF

Response Factor: 0.844773 RRF SD: 0.0991685, Relative SD: 11.7391 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

. n = 11	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.51	NO	35.20	1.035	9.91e5	1.10e6	106	6.4	0.899	bb
2	200429R2_2	100	0.51	NO	35.20	1.035	8.77e5	1.19e6	87.2	-12.8	0.737	bb
3	200429R2_3	100	0.50	NO	35.20	1.035	8.59e5	1.15e6	88.3	-11.7	0.746	bb
4	200429R2_4	100	0.51	NO	35.21	1.035	9.29e5	1.15e6	95.9	-4.1	0.810	MM
5	200429R2_5	100	0.51	NO	35.21	1.035	1.11e6	1.26e6	105	4.6	0.883	bb
6	200429R2_6	100	0.52	NO	35.20	1.035	1.47e6	1.48e6	118	17.6	0.994	bb

#### Compound name: 13C-1,2,3,4,6,7,8-HpCDF

Response Factor: 0.771212 RRF SD: 0.102676, Relative SD: 13.3136 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

22	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.43	NO	36.93	1.086	9.24e5	1.10e6	109	8.6	0.838	bb
2	200429R2_2	100	0.43	NO	36.94	1.086	7.84e5	1.19e6	85.4	-14.6	0.659	bb
3	200429R2_3	100	0.44	NO	36.94	1.086	7.69e5	1.15e6	86.7	-13.3	0.668	bd
4	200429R2_4	100	0.43	NO	36.96	1.086	8.65e5	1.15e6	97.7	-2.3	0.754	bd
5	200429R2_5	100	0.42	NO	36.96	1.086	9.81e5	1.26 <b>e</b> 6	101	1.2	0.781	bb
6	200429R2_6	100	0.44	NO	36.93	1.086	1.37 <b>e</b> 6	1.48e6	120	20.3	0.928	bb

### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered:	Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8,9-HpCDF Response Factor: 0.482289 RRF SD: 0.0750769, Relative SD: 15.5668 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.41	NO	38.94	1.145	5.96e5	1.10e6	112	12.1	0.541	bb
2	200429R2_2	100	0.44	NO	38.94	1.145	4.92e5	1.19e6	85.7	-14.3	0.413	MM
3	200429R2_3	100	0.45	NO	38.94	1.145	4.72e5	1.15e6	85.0	-15.0	0.410	MM
4	200429R2_4	100	0.44	NO	38.95	1 145	5.12e5	1.15e6	92.5	-7.5	0.446	MM
5	200429R2_5	100	0.43	NO	38.95	1.145	6.09e5	1.26e6	101	0.6	0.485	bb
6	200429R2_6	100	0.43	NO	38.93	1.145	8.85e5	1.48e6	124	24.1	0.598	bb

Compound name: 13C-OCDF Response Factor: 0.668505 RRF SD: 0.127842, Relative SD: 19.1235 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

Proceeding of the	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	200	0.88	NO	41.51	1.221	1.62e6	1.10e6	220	9.9	0.735	bb
2	200429R2_2	200	0.86	NO	4 <b>1</b> .51	1.220	1.40e6	1.19e6	176	-12.0	0.588	MM
3	200429R2_3	200	0.89	NO	41.51	1.220	1.27e6	1.15e6	165	-17.4	0.552	bd
4	200429R2_4	200	0.88	NO	41.52	1.221	1.32e6	1.15e6	172	-14.0	0.575	bb
5	200429R2_5	200	0.87	NO	41.52	1.220	1.69e6	1.26e6	201	0.5	0.672	bb
6	200429R2_6	200	0.88	NO	41.51	1.221	2.63e6	1.48e6	266	33.0	0.889	bb

Compound name: 37CI-2,3,7,8-TCDD Response Factor: 1.09842 RRF SD: 0.0959308, Relative SD: 8.73354 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF 2	X = dropped
1	200429R2_1	0.250			26.05	1.028	3.33e3	1.32e6	0.230	-7.9	1.01	bb
2	200429R2_2	0.500			26.07	1.028	7.64e3	1.44e6	0.484	-3.2	1.06	bb

## Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.qld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

#### Compound name: 37CI-2,3,7,8-TCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200429R2_3	2.00			26.05	1.027	2.74e4	1.38e6	1.81	-9.5	0.994	bď
4	200429R2_4	10.0			26.05	1.027	1.41e5	1.28e6	10.0	0.4	1.10	bb
5	200429R2_5	40.0			26.07	1.028	6.87e5	1.45e6	43.0	7.5	1.18	bb
6	200429R2_6	200			26.05	1.028	4.11e6	1.66e6	225	12.7	1.24	bb

Compound name: 13C-1,2,3,4-TCDD Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.80	NO	25.35	1.000	1.32e6	1.32e6	100	0.0	1.00	bb
2	200429R2_2	100	0.80	NO	25.36	1.000	1.44e6	1.44e6	100	0.0	1.00	bb
3	200429R2_3	100	0.81	NO	25.36	1.000	1.38e6	1.38e6	100	0.0	1.00	bb
4	200429R2_4	100	0.80	NO	25.36	1.000	1.28e6	1.28e6	100	0.0	1.00	bb
5	200429R2_5	100	0.81	NO	25.36	1.000	1.45e6	1.45e6	100	0.0	1.00	bb
6	200429R2_6	100	0.80	NO	25.35	1.000	1.66e6	1.66e6	100	0.0	1.00	bb

#### Compound name: 13C-1,2,3,4-TCDF

Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

Non St	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.79	NO	23.57	1.000	2.12e6	2.12e6	100	0.0	1.00	bb
2	200429R2_2	100	0.79	NO	23.58	1.000	2.37e6	2.37e6	100	0.0	1.00	bb
3	200429R2_3	100	0.79	NO	23.58	1.000	2.27e6	2.27e6	100	0.0	1.00	bb
4	200429R2_4	100	0.79	NO	23.59	1.000	2.10e6	2.10e6	100	0.0	1.00	bb
5	200429R2_5	100	0.79	NO	23.59	1.000	2.38e6	2.38e6	100	0.0	1.00	bb
6	200429R2_6	100	0.79	NO	23.57	1.000	2.69e6	2.69e6	100	0.0	1.00	bb

# Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

#### Dataset: U:\VG12.PRO\Results\200429R2\200429R2-CRV.gld

Last Altered: Thursday, April 30, 2020 7:35:23 AM Pacific Daylight Time Printed: Thursday, April 30, 2020 7:56:51 AM Pacific Daylight Time

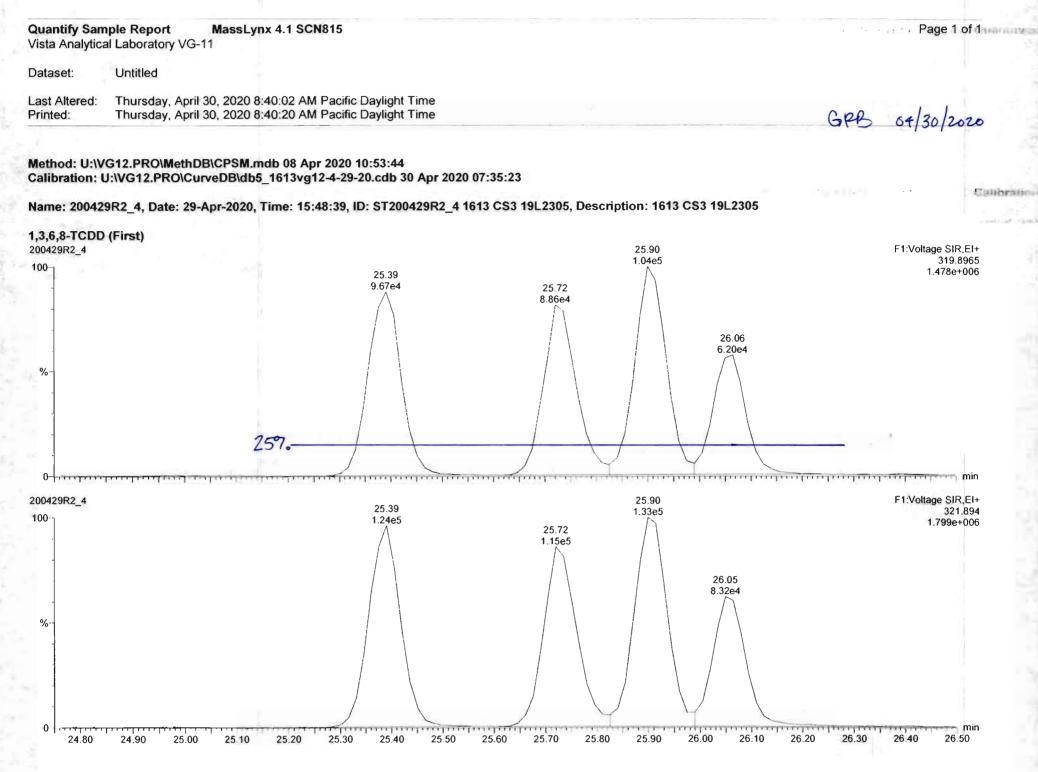
Compound name: 13C-1,2,3,4,6,9-HxCDF Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200429R2_1	100	0.51	NO	34.01	1.000	1.10e6	1.10e6	100	0.0	1.00	bb
2	200429R2_2	100	0.50	NO	34.01	1.000	1.19e6	1.19e6	100	0.0	1.00	bb
3	200429R2_3	100	0.51	NO	34.01	1.000	1.15e6	1.15e6	100	0.0	1.00	bb
4	200429R2_4	100	0.50	NO	34.01	1.000	1.15e6	1.15e6	100	0.0	1.00	bb
5	200429R2_5	100	0.51	NO	34.03	1.000	1.26e6	1.26e6	100	0.0	1.00	bb
6	200429R2_6	100	0.51	NO	34.01	1.000	1.48e6	1.48e6	100	0.0	1.00	bb

Page 16 of 16

Quantify Sample Summary Report	MassLynx 4.1 SCN815	
Vista Analytical Laboratory VG-11		

Dataset: Untitled


Last Altered: Thursday, April 30, 2020 8:40:02 AM Pacific Daylight Time Thursday, April 30, 2020 8:40:20 AM Pacific Daylight Time

# Method: U:\VG12.PRO\MethDB\CPSM.mdb 08 Apr 2020 10:53:44 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

Name: 200429R2_4, Date: 29-Apr-2020, Time: 15:48:39, ID: ST200429R2_4 1613 CS3 19L2305, Description: 1613 CS3 19L2305

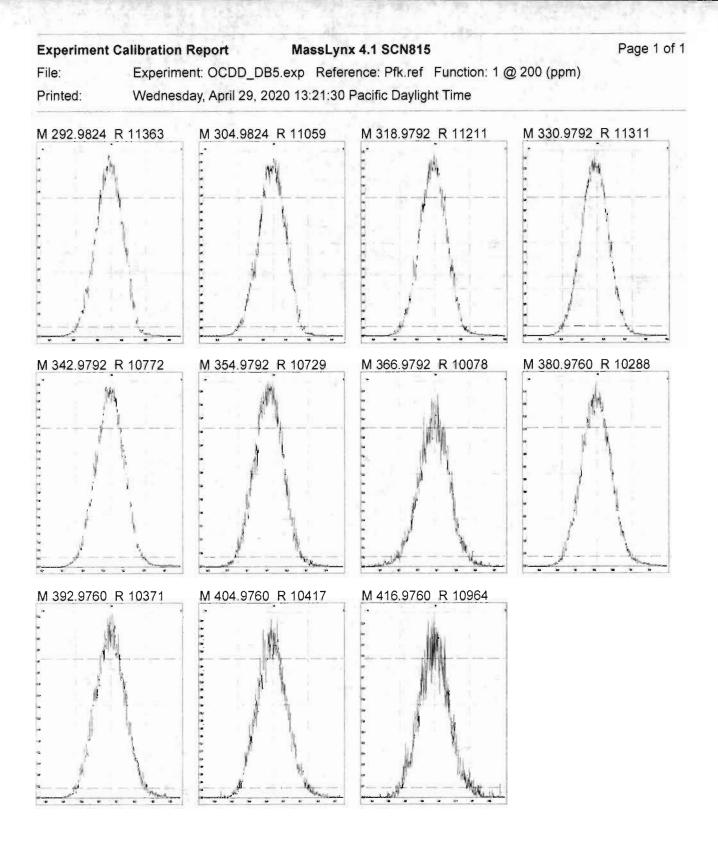
	# Name	RT
1	1 1,3,6,8-TCDD (First)	21.90
2	2 1,2,8,9-TCDD (Last)	27.05
3	3 1,2,4,7,9-PeCDD (First)	28.88
4	4 1,2,3,8,9-PeCDD (Last)	31.52
5	5 1,2,4,6,7,9-HxCDD (First)	33.04
6	6 1,2,3,7,8,9-HxCDD (Last)	34.88
7	7 1.2.3,4,6,7,9-HpCDD (First)	37.35
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.38
9	9 1,3,6,8-TCDF (First)	19.85
10	10 1,2,8,9-TCDF (Last)	27.19
11	11 1.3,4,6,8-PeCDF (First)	27.17
12	12 1,2,3,8,9-PeCDF (Last)	31.75
13	13 1,2,3,4,6,8-HxCDF (First)	32.47
14	14 1,2,3,7,8,9-HxCDF (Last)	35.22
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.97
16	16 1.2.3,4,7,8,9-HpCDF (Last)	38.96

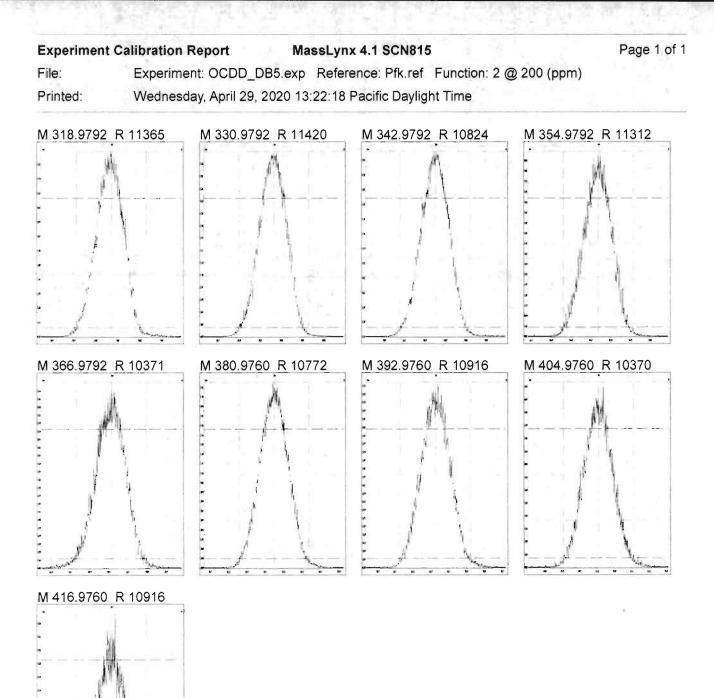
Page 1 of 1

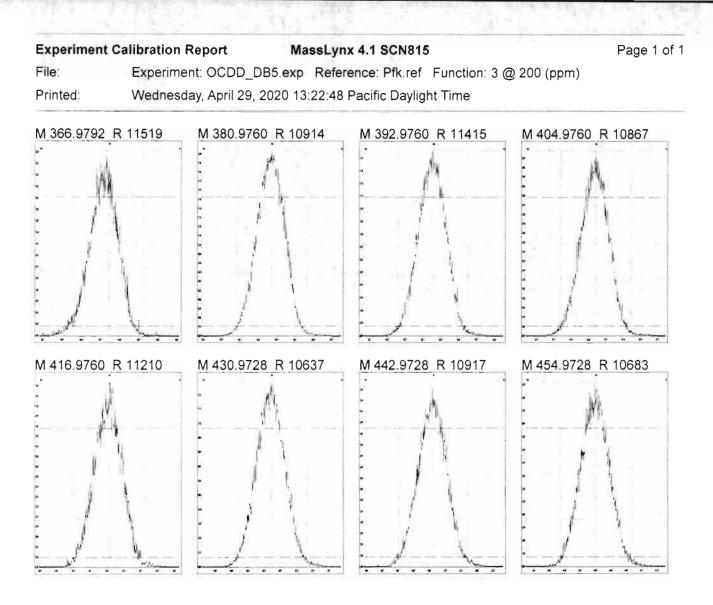


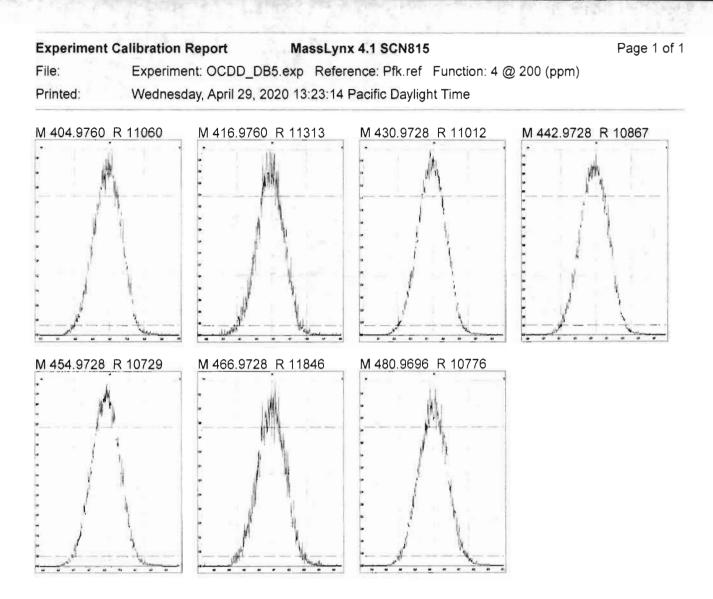
Work Order 2000945

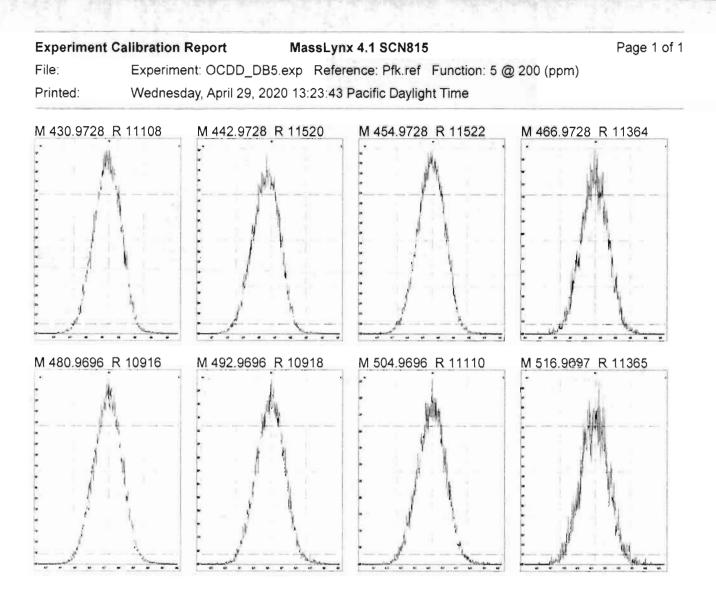
# Quantify Compound Summary ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11


Dataset:UntitledLast Altered:Thursday, April 30, 2020 8:40:43 AM Pacific Daylight TimePrinted:Thursday, April 30, 2020 8:41:41 AM Pacific Daylight Time


# Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23


# Compound name: 2,3,7,8-TCDD

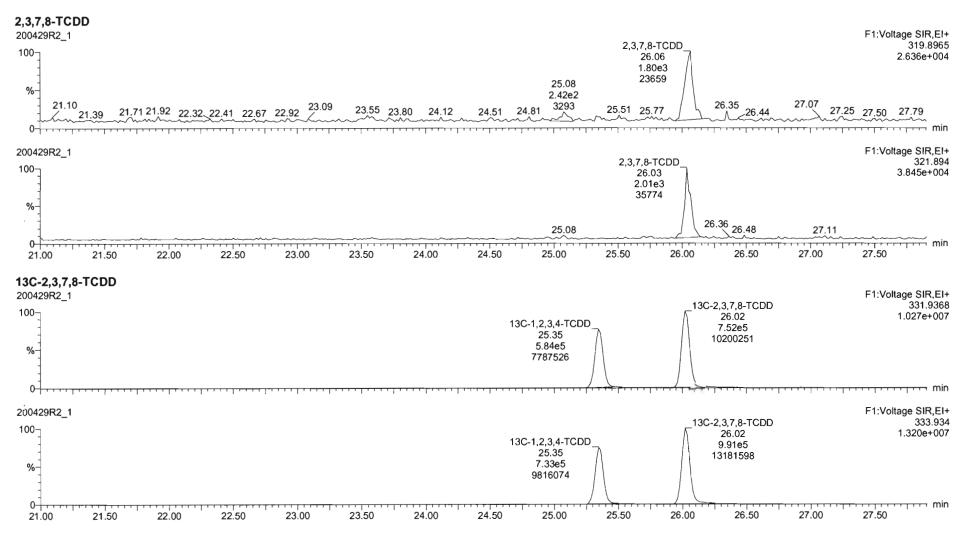

	Name	ID	Acq.Date	Acq.Time
1	200429R2_1	ST200429R2_1 1613 CS0 19L2302	29-Apr-20	13:27:25
2	200429R2_2	ST200429R2_2 1613 CS1 19L2303	29-Apr-20	14:15:04
3	200429R2_3	ST200429R2_3 1613 CS2 19L2304	29-Apr-20	15:02:24
4	200429R2_4	ST200429R2_4 1613 CS3 19L2305	29-Apr-20	15:48:39
5	200429R2_5	ST200429R2_5 1613 CS4 19L2306	29-Apr-20	16:35:58
6	200429R2_6	ST200429R2_6 1613 CS5 19L2307	29-Apr-20	17:23:21
7	200429R2_7	SOLVENT BLANK	29-Apr-20	18:10:44
8	200429R2_8	SS200429R2_1 1613 SSS 19L2308	29-Apr-20	18:58:05
9	200429R2_9	B0C0304-BS4 OPR 10	29-Apr-20	19:54:24
10	200429R2_10	B0C0304-BS3 OPR 10	29-Apr-20	20:40:38
11	200429R2_11	B0C0304-BS2 OPR 10	29-Apr-20	21:28:00
12	200429R2_12	B0C0304-BS1 OPR 10	29-Apr-20	22;15:28
13	200429R2_13	B0D0053-BS4 OPR 10	29-Apr-20	23:02:49
14	200429R2_14	B0D0053-BS3 OPR 10	29-Apr-20	23:50:11
15	200429R2_15	B0D0053-BS2 OPR 10	30-Apr-20	00:37:32
16	200429R2_16	B0D0053-BS1 OPR 10	30-Apr-20	01:24:55
17	200429R2_17	SOLVENT BLANK	30-Apr-20	02:12:17
18	200429R2_18	B0D0053-BLK1 Method Blank 10	30-Apr-20	02:59:37
19	200429R2_19	SOLVENT BLANK	30-Apr-20	03:55:52


Page 1 of 1

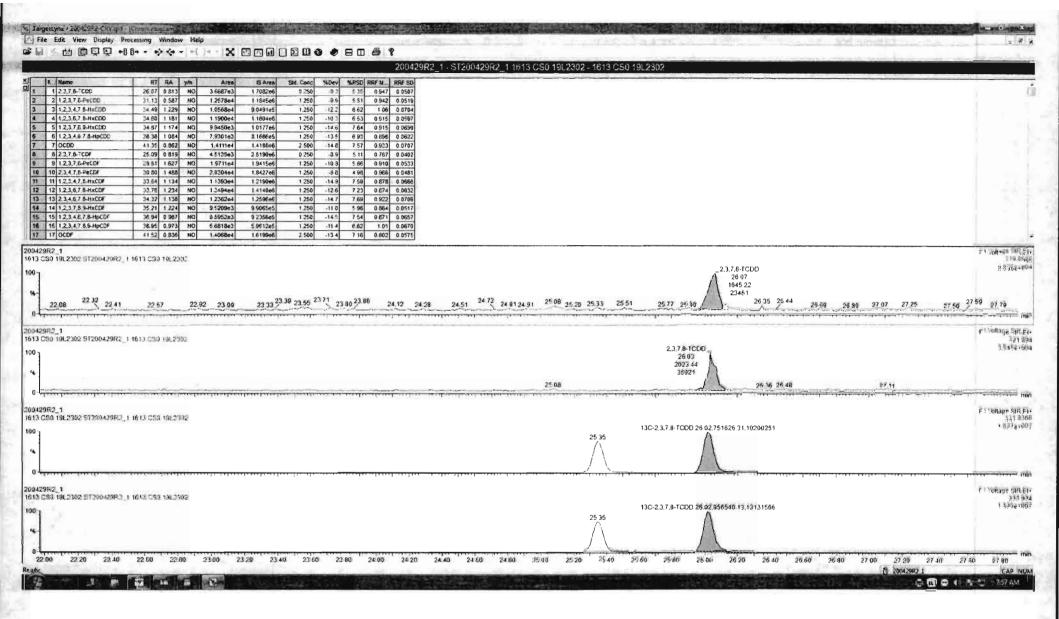




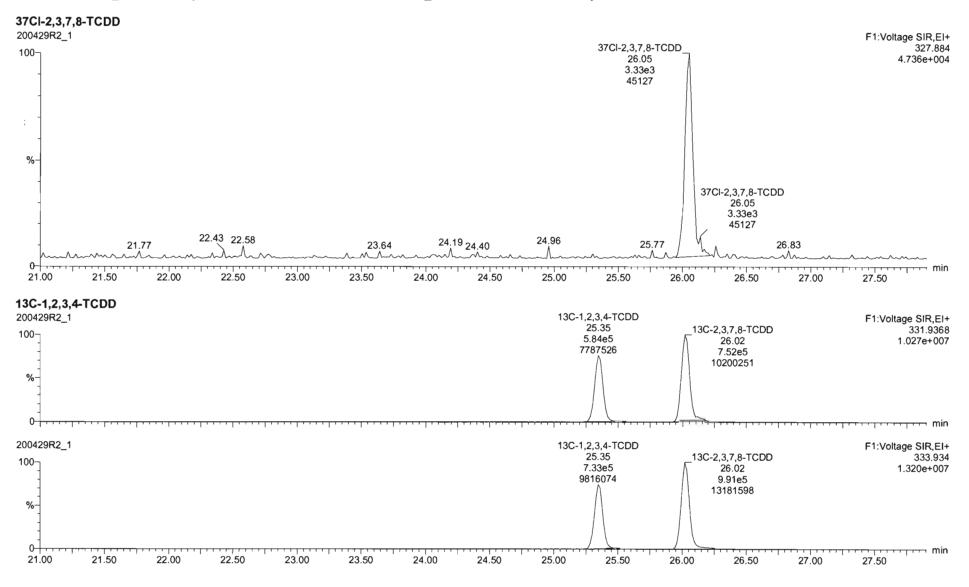






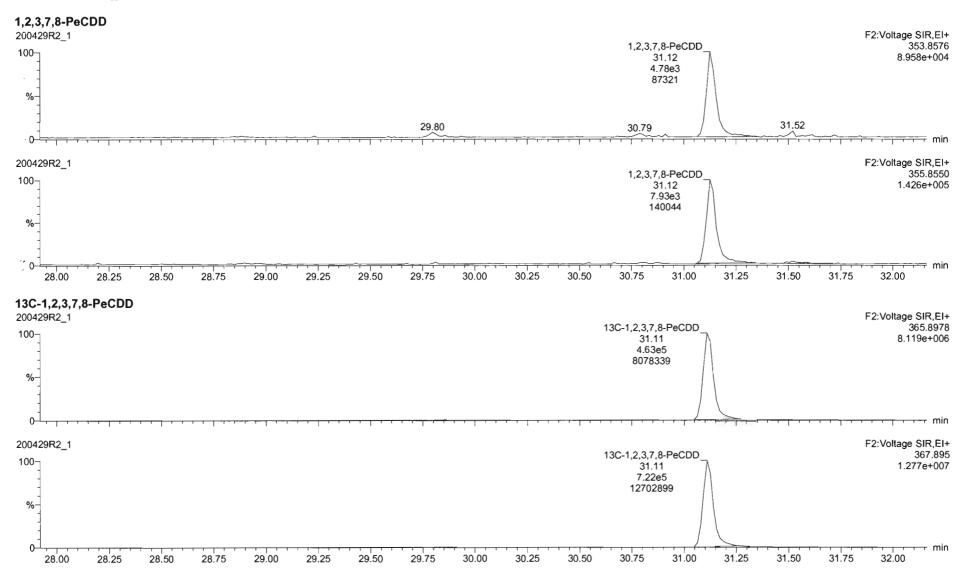


Quantify Sam Vista Analytica	• •	Page 1 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

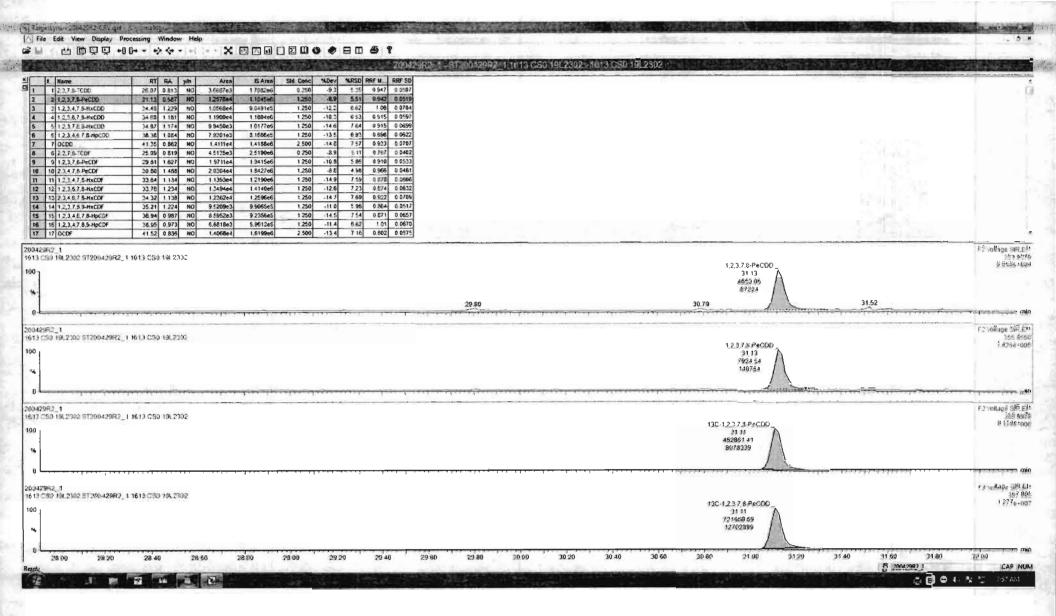
# Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23


# Name: 200429R2_1, Date: 29-Apr-2020, Time: 13:27:25, ID: ST200429R2_1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

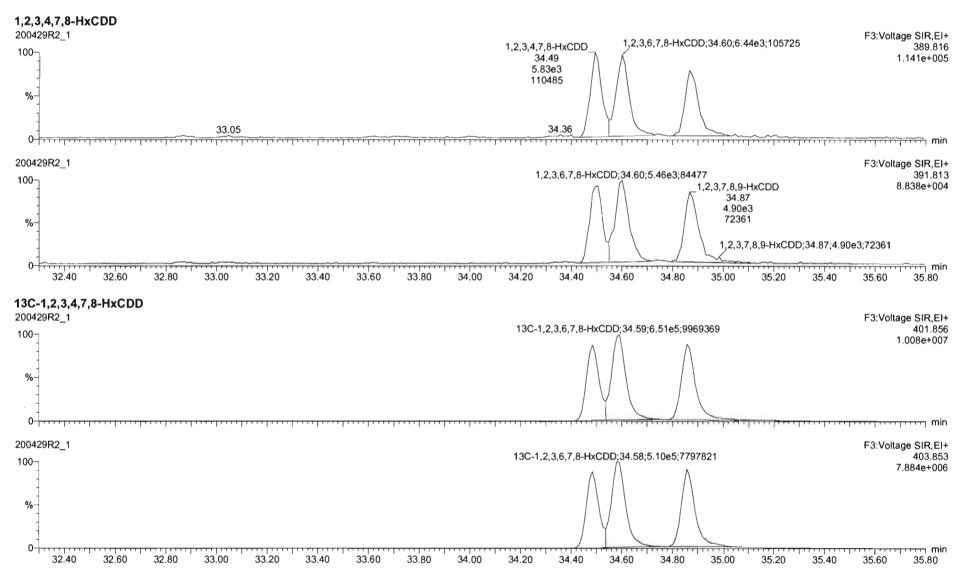


4



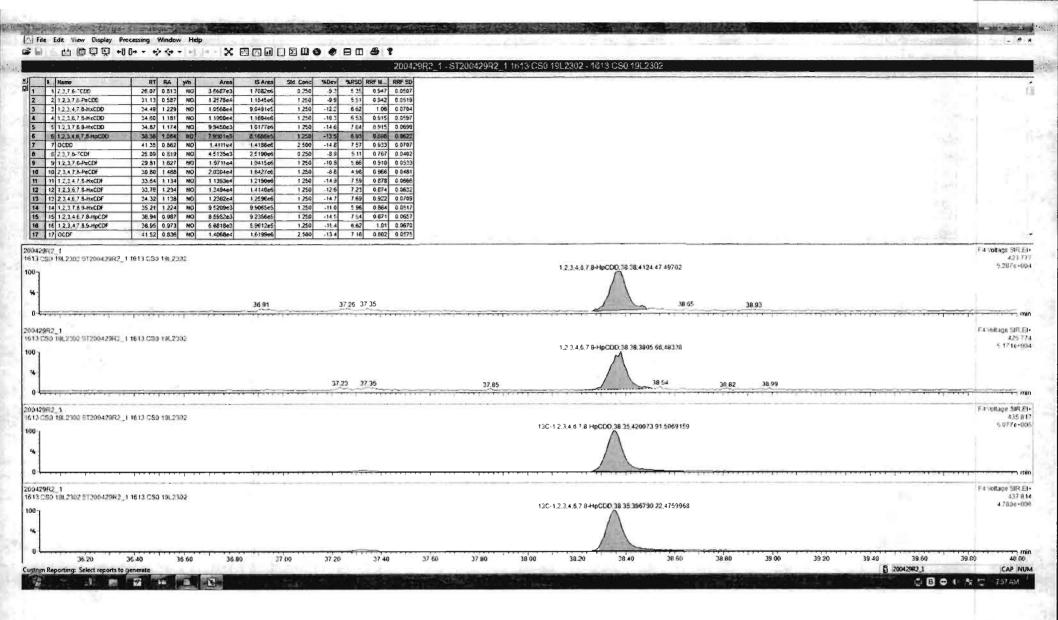


Quantify Sam Vista Analytica		Page 2 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



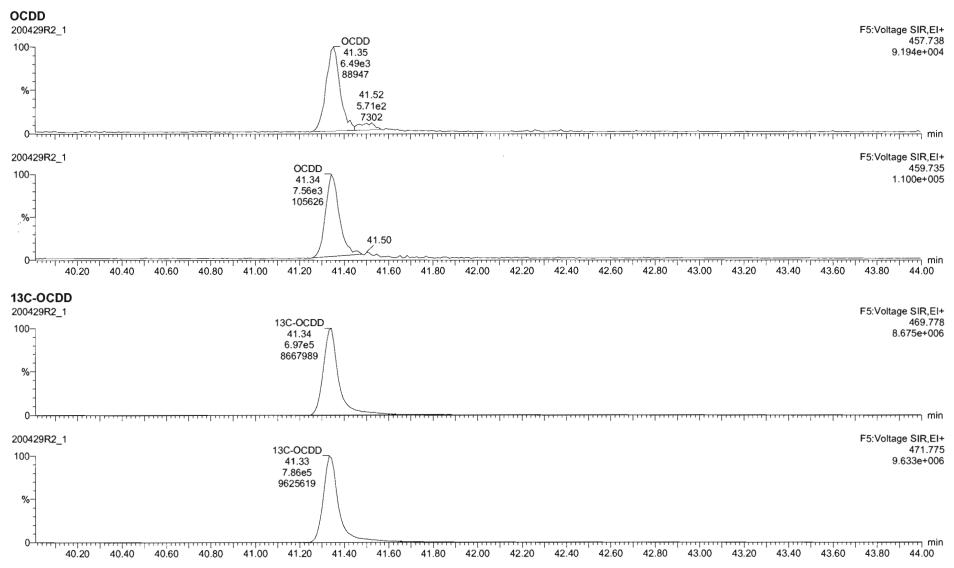

#### 1

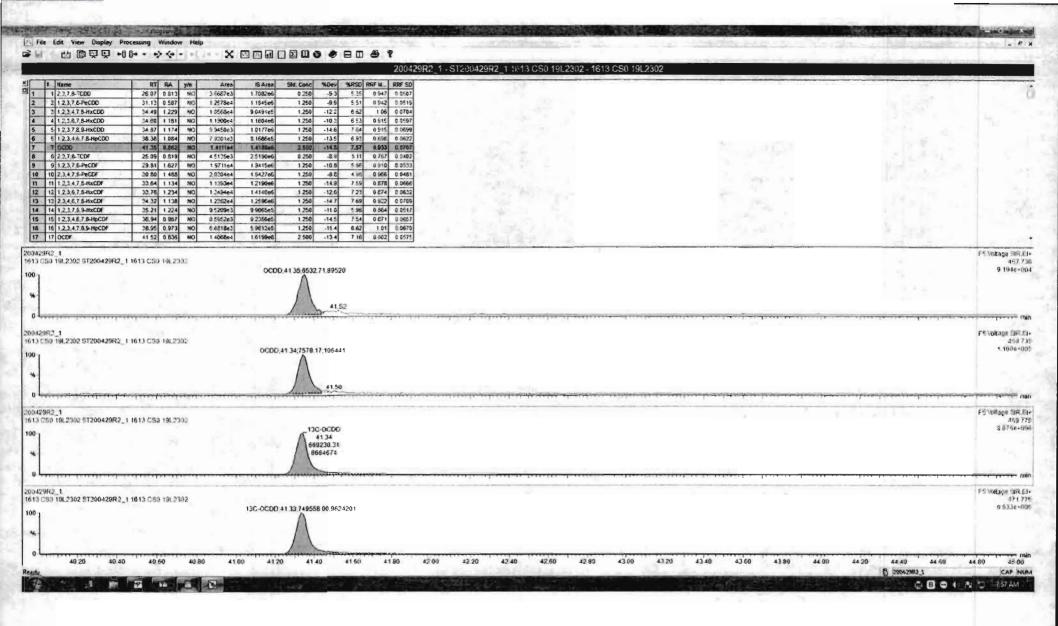
Quantify Sam Vista Analytica		Page 3 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



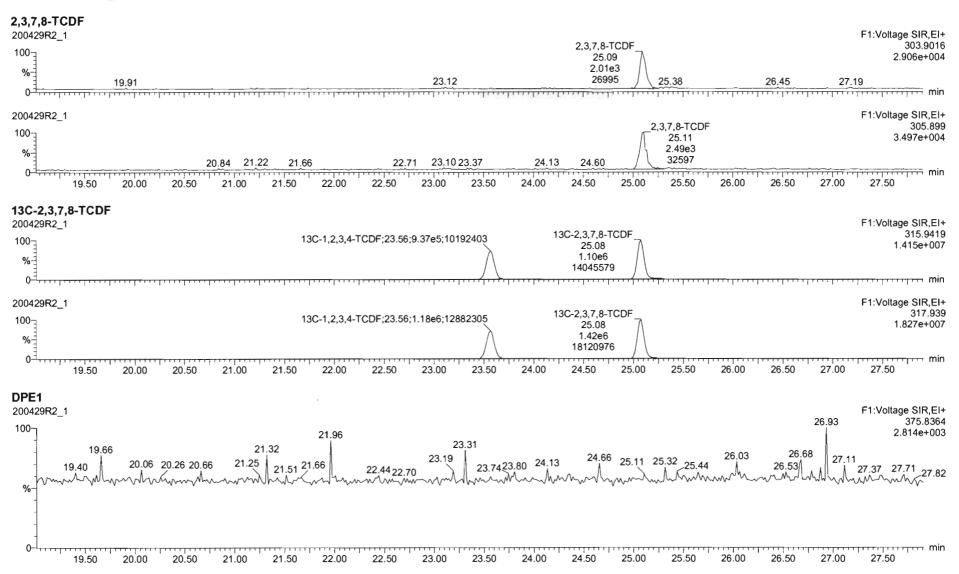


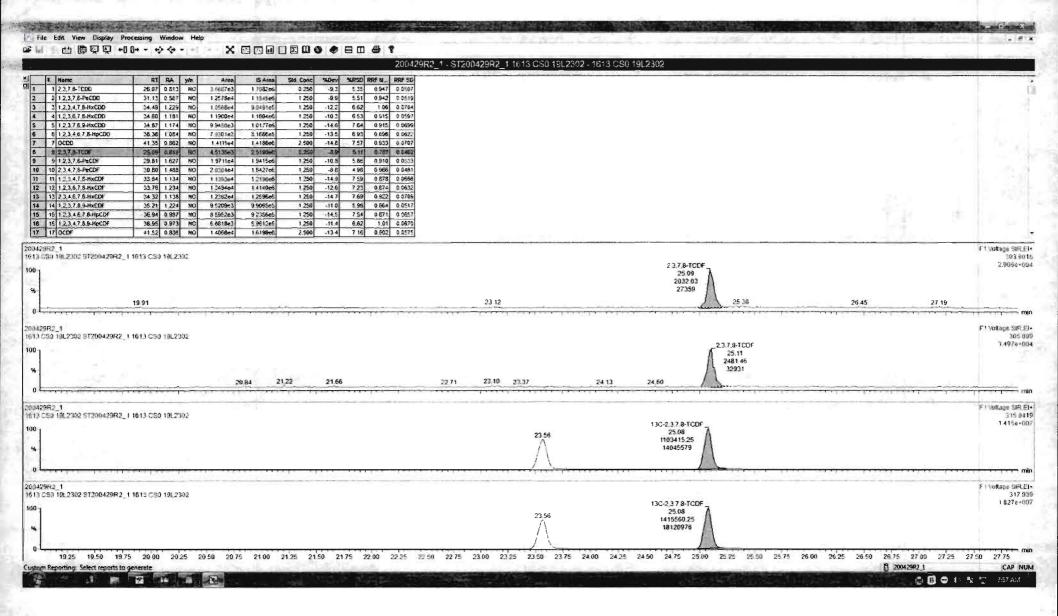

<b>Quantify Sam</b> Vista Analytica		Page 4 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

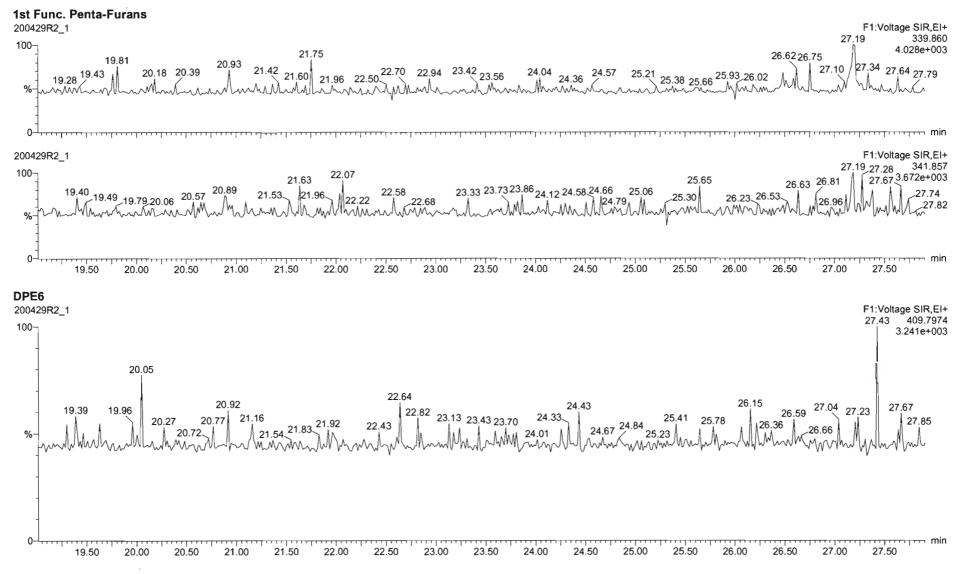




Name         RT         RA         yh         Ame         IS Area         Sid Conc           1         2.3.7.6-TCDD         26.07         0.813         NO         3.668763         1.708266         0.250           2         1.2.3.7.6-PeCDD         31.13         9.587         NO         1.278e4         1.184566         1.250           3         1.2.3.4.7.6-HxCDD         24.49         1.229         NO         1.0568e4         9.0491c5         1.250           4         1.2.3.6.7.8-HxCDD         24.49         1.229         NO         1.0568e4         9.0491c5         1.250           4         1.2.3.6.7.8-HxCDD         24.69         1.181         NO         1.1604e6         1.250.7	200429R2_1 ST200429R2_1 1013 CS0 19L2302 - 1613 CS0 19L2302 *X0ev MRSD RRF M RRF SD -9.3 5.35 0.947 0.0507 -9.5 5.1 0.942 0.0515 -122 6.62 1.06 0.0704 -133 6.53 0.515 0.0597	
5         1.2.3.7 (§.9-bbC00)         34.82         1.174         HD         9.9450e3         1.0177e6         1.250           6         1.2.3.4.6.7 8-hpCD0         38.81         1.084         HO         7.9201e2         8.1666e5         1.250           7         DCDD         41.35         0.862         NO         1.4111e4         1.4188e6         2.690           8         2.2.7.6.*CDF         24.35         0.919         NO         44155e3         2.5190e6         0.250	-14.8 7.54 0.915 0.5530 -13.5 6.93 0.656 0.0522 -14.2 7.57 0.9533 0.0707 -3.5 5.1 0.757 0.5442	
9 12.3.7 6-PeCDF 23.8.1 1627 NO 1.9711e4 19415e5 1.250 10 2.3.4.7.8-PeCDF 20.00 1488 NO 2.0304e4 1.8427e6 1.250 11 1.2.3.4.7.8-thcCDF 33.8.4 1.3.4 NO 1.1350e4 1.2150e6 1.250	-10.3 5 66 0 910 0 0532 -88 4 96 0 966 0 0481 -14 3 7 59 0 878 0 0666	
12         12.3,87.8-HxCDP         32.7E         1.234         NO         1.2444e4         1.414065         1.250           13         2.3,4.6,7,8-HxCDP         34.32         1.13         NO         1.2602e4         1.2596e5         1.250           14         1.2,3.7,8-HxCDP         35.74         1.224         NO         9.2605e5         1.250           15         1.2,3.4.6,7.8-HxCDP         35.74         1.224         NO         9.5209e3         9.5055e5         1.250           15         1.2,3.4.6,7.8-HxCDP         35.74         1.224         NO         9.5209e3         9.5055e5         1.250           15         1.2,3.4.6,7.8-HxCDP         35.94         0.957         NO         8.5952a0         9.255665         1.250           16         1.2,3.4.7,8-HxCDP         36.94         0.973         NO         6.6818e5         5.9612e5         1.250           17         OCDF         4.152         0.836         NO         1.4058e4         1.6199e6         2.500	-126 7.23 0.674 0.0632 -147 7.69 0.9522 0.0705 -110 5.96 0.864 0.0517 -145 7.56 0.871 0.0657 -114 6.62 1.01 0.0670	
IR2_1 50 19L2302 5T200429IR2_1 1613 CS9 19L2302	1,2,3,7,8,944xCOD 34,97 34,99 34,60 5369,97 85543	1 121ء 199 1 121ء
R2_1 89 19L2302 ST200429R2_1 1613 CS3 19L2392	1,2,3,7,8,9 HaCDD 34,87 34,51 34,60 4575 18 71655 1,2,3,7,8,3 HaCDD 24,87 4575 18 71659 71859	
R2_1 Bi 19L2302 ST206429R2_3 1613 CS3 19L2392	13C-1,2,3,7,8,9,446CDD 34,86 34,48 34,59 8828959	FiveRageSt tg/ 1600ae
22_1 10 18/2302 ST200428R2_1 16 12 150 10/2302		Fylonape SW
	34.48 34.58 13C-1.2.3.7.6.844xCDD, 34.86,441212.25,7035162	7.834e-
32.70 37.80 22.90 34.00 34.10 34.20 3 Reporting: Select reports to generate	30 24 40 34 50 34 60 34 70 54 80 34 90 35 00 35 10	36.29 85.50 35.40 35.50 35.50 35.70 25.80 35.90 36.0 [5] 20042382.3 [5] 20042382.3 [5] 20042382.3

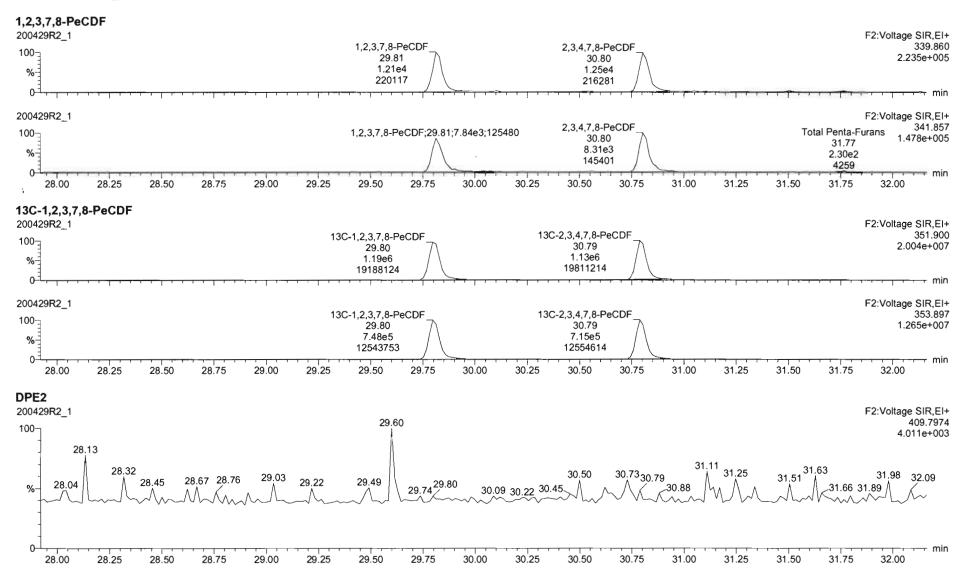
Quantify Sam Vista Analytica	al Laboratory	MassLynx 4.1	SCN815				Page 5 of
Dataset:	Untitled						
ast Altered: Printed:	Thursday, April : Thursday, April :	30, 2020 7:55:03 30, 2020 7:55:15	AM Pacific Daylight T AM Pacific Daylight T	me			
lame: 20042	9R2_1, Date: 29-/	Apr-2020, Time:	13:27:25, ID: ST2004	29R2_1 1613 CS0 19L2	302, Description: 16	613 CS0 19L2302	
<b>,2,3,4,6,7,8-ŀ</b> 00429R2_1	HpCDD						F4:Voltage SIR,
00 - - %-					1,2,3,4,6,7,8-H 38.38 4,12e3 49702	pCDD	423.1 5.287e+(
		36.91	37.26 37.35		38.65		
0-4							F4:Voltage SIR,
				1,2,3,4,6,7,8-H 38.38 3.82e3 48353	pCDD 1,2,3,4,6,7,8-H 38.38 3.82e3 48353	pCDD	425. 5.171e+(
%			37.35 2.15e2 3271 37.23	37.85	38.54	38,82 38,99	
0- <del></del>	0 36.40 36.60	36.80 37.00	37.20 37.40 37.	60 37.80 38.00 38	20 38.40 38.60	38.80 39.00 3	39.20 39.40 39.60 39.80 40.0
<b>3C-1,2,3,4,6</b> , 00429R2_1	,7,8-HpCDD						F4:Voltage SIR,
00- 1				13C-1,2,3,4,6,7,8-H 38,35 4,20e5 5069159			435. 5.077e+
~~~							
0-1	· · · · · · · · · · · · · · · · · · ·					,	
00429R2_1				13C-1,2,3,4,6,7,8-H 38.35 3,97e5 475000			F4:Voltage SIR, 437. 4.780e+
%_				4759968			
0 ¹	0 36.40 36.60	36.80 37.00	37.20 37.40 37.	60 37.80 38.00 38	.20 38.40 38.60	38.80 39.00 3	39.20 39.40 39.60 39.80 40.0

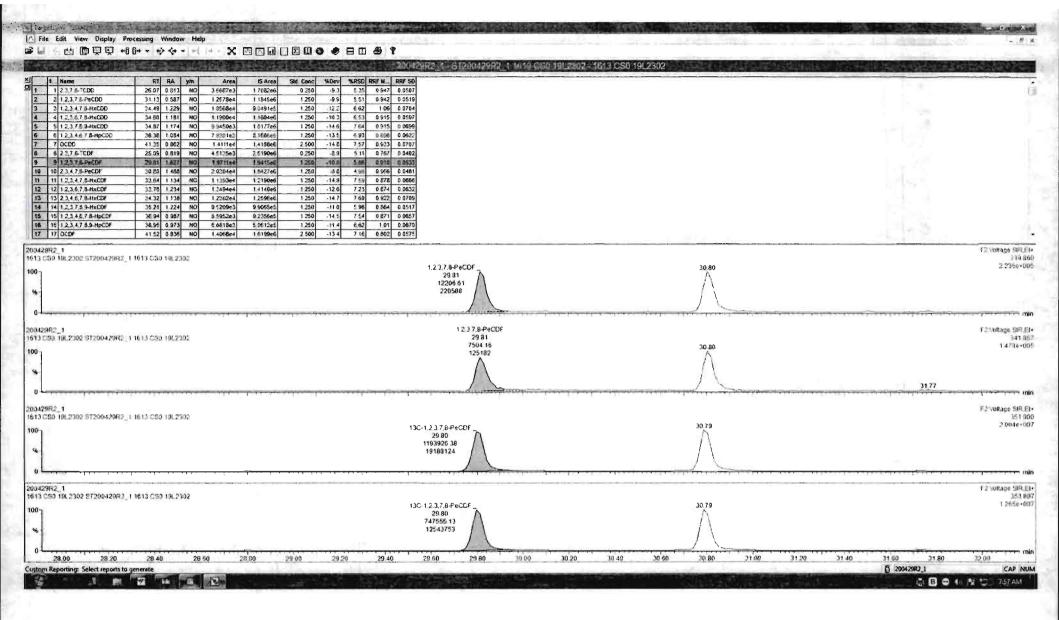


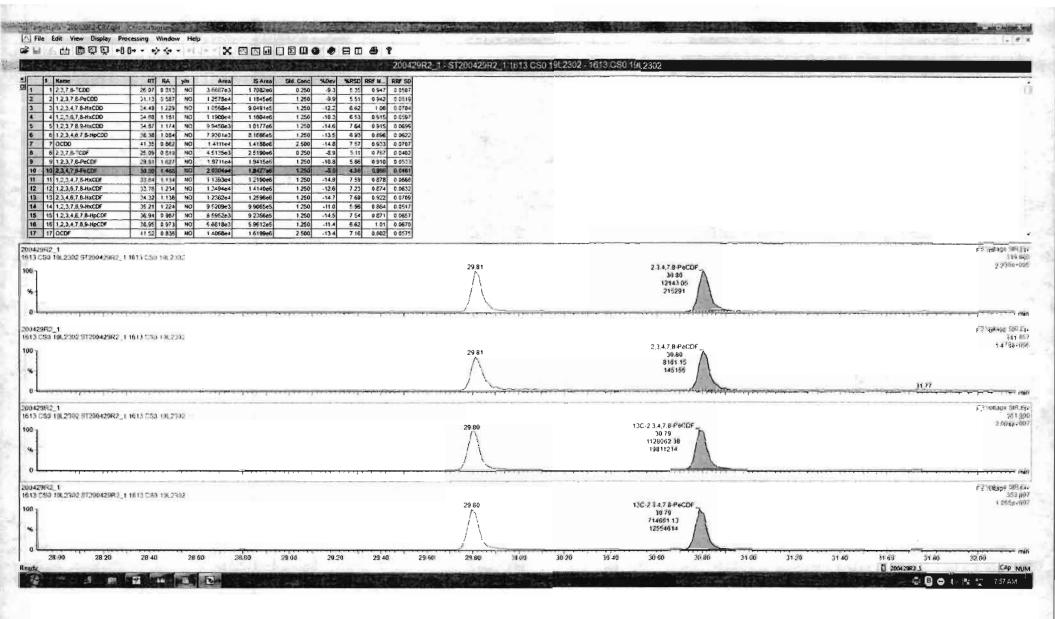

Quantify Sam Vista Analytica		Page 6 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	
Name: 20042	9R2_1, Date: 29-Apr-2020, Time: 13:27:25, ID: ST200429R2_1 1613 CS0 19L2302, Description: 1613 CS0 19L230	12

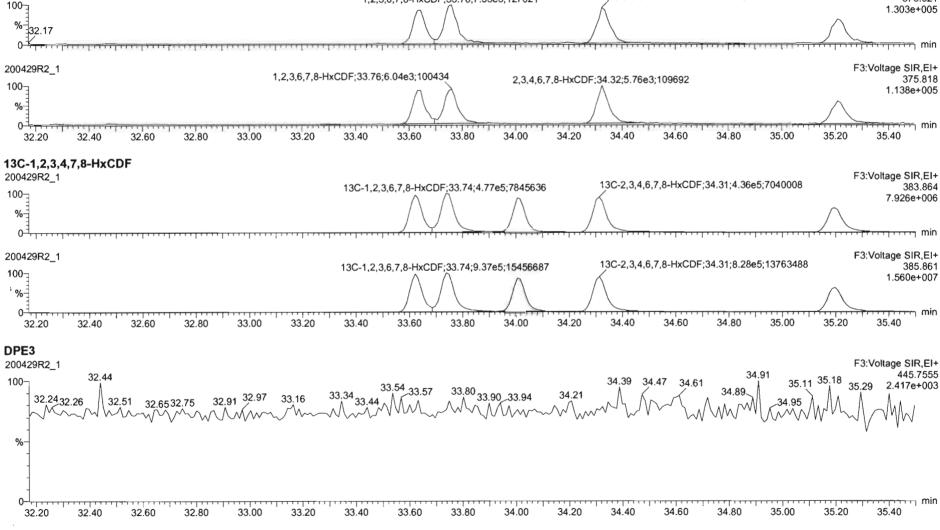


Quantify Sam Vista Analytica		Page 7 of 78
Cataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

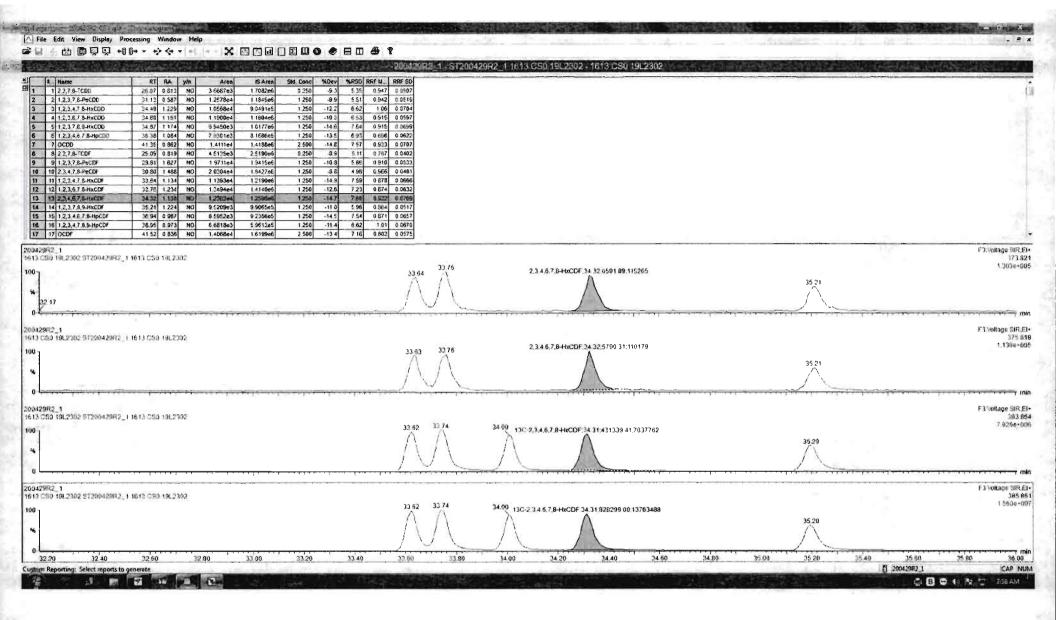


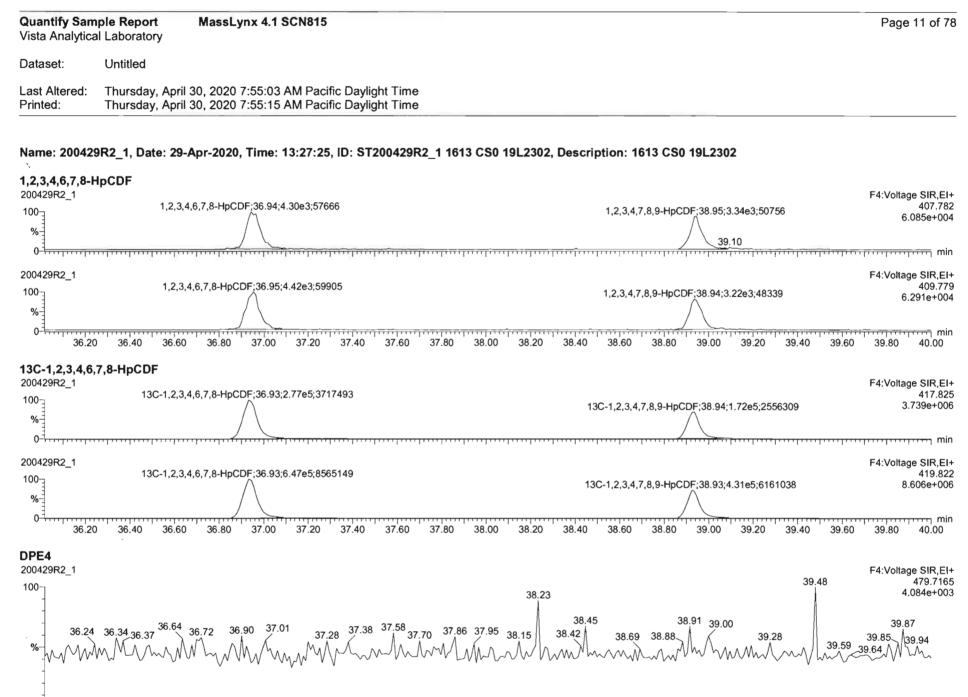


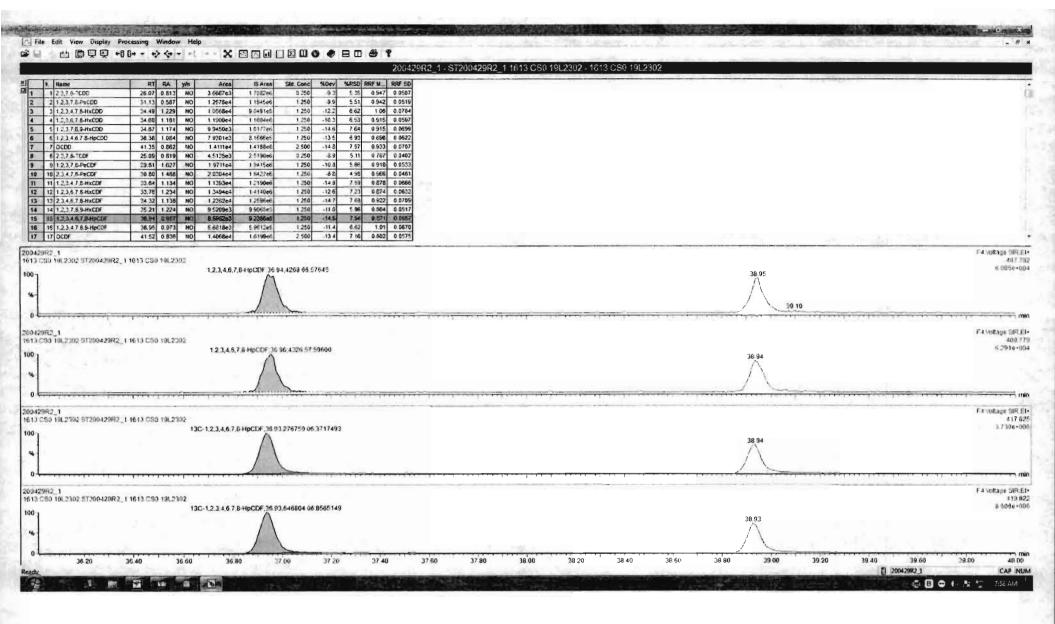

Quantify San Vista Analytica		Page 8 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	
Name: 20042	9R2_1, Date: 29-Apr-2020, Time: 13:27:25, ID: ST200429R2_1 1613 CS0 19L2302, Description: 1613 CS	60 19L2302

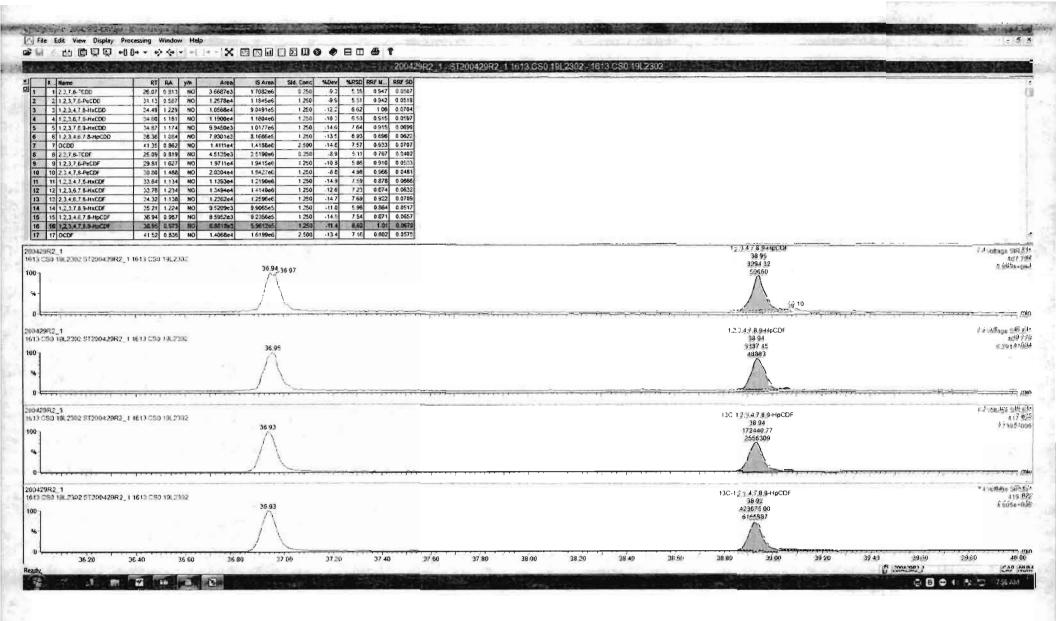

Quantify Sam Vista Analytica		Page 9 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

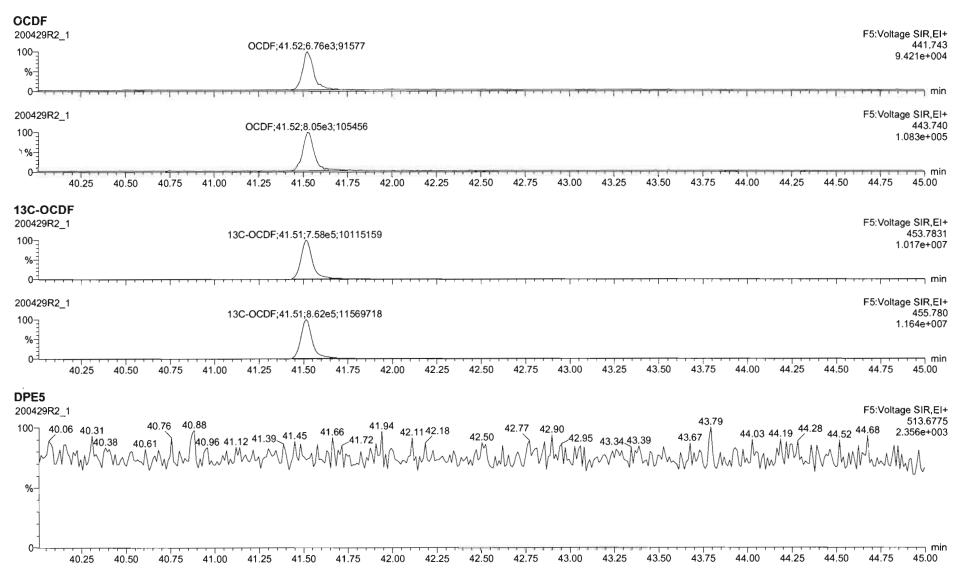


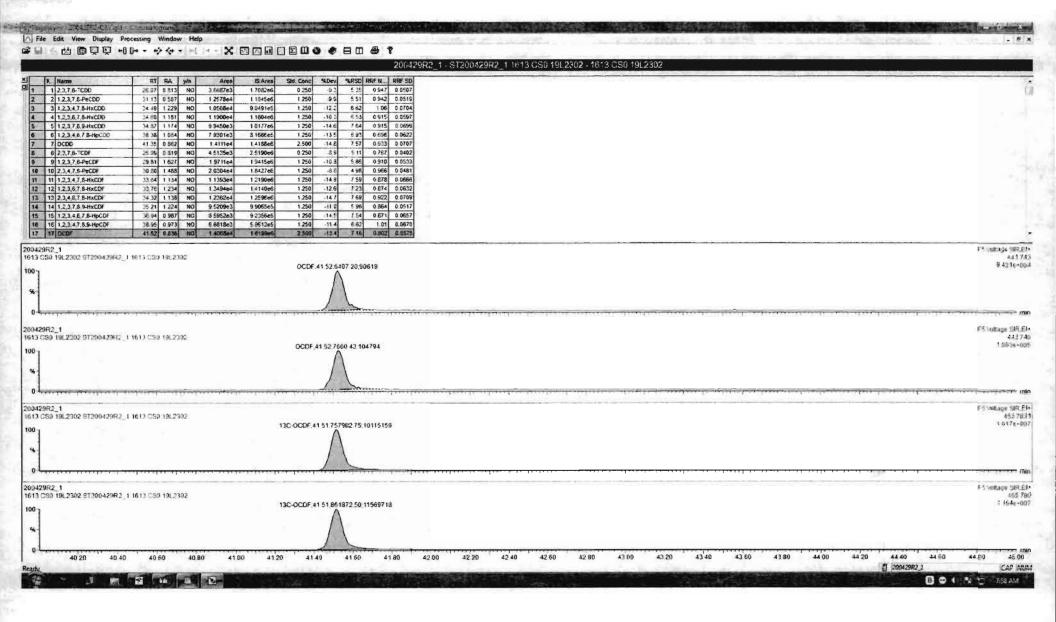


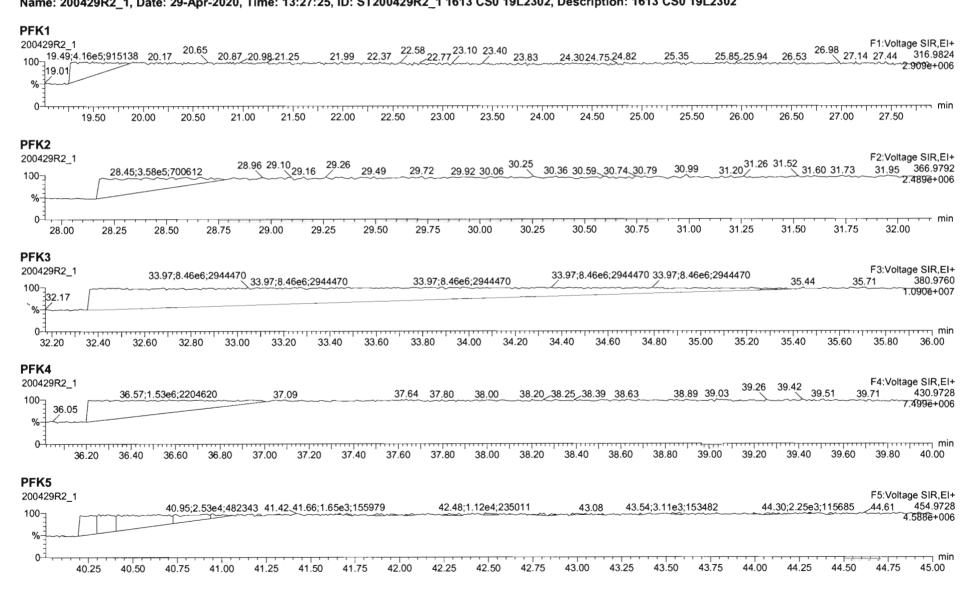

Guantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory					
Dataset:	Untitled				
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Thursday, April 30, 2020 7:55:15 AM Pacific				
Name: 200429	R2_1, Date: 29-Apr-2020, Time: 13:27:25, II	D: ST200429R2_1 1613 CS0 19L2302, Desc	cription: 1613 CS0 19L2302		
1,2,3,4,7,8-Hx 200429R2_1 100-3	CDF	1,2,3,6,7,8-HxCDF;33.76;7.53e3;127021	2,3,4,6,7,8-HxCDF;34.32;6.59e3;115265	F3:Voltage SIR,EI 373.82 1.303e+00	
0/		\wedge \wedge	\wedge	∧	



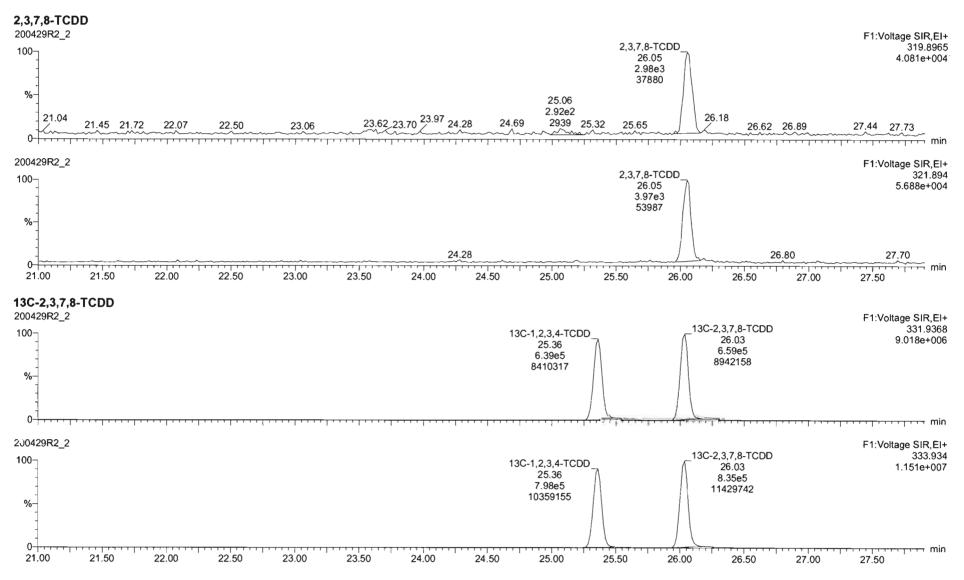


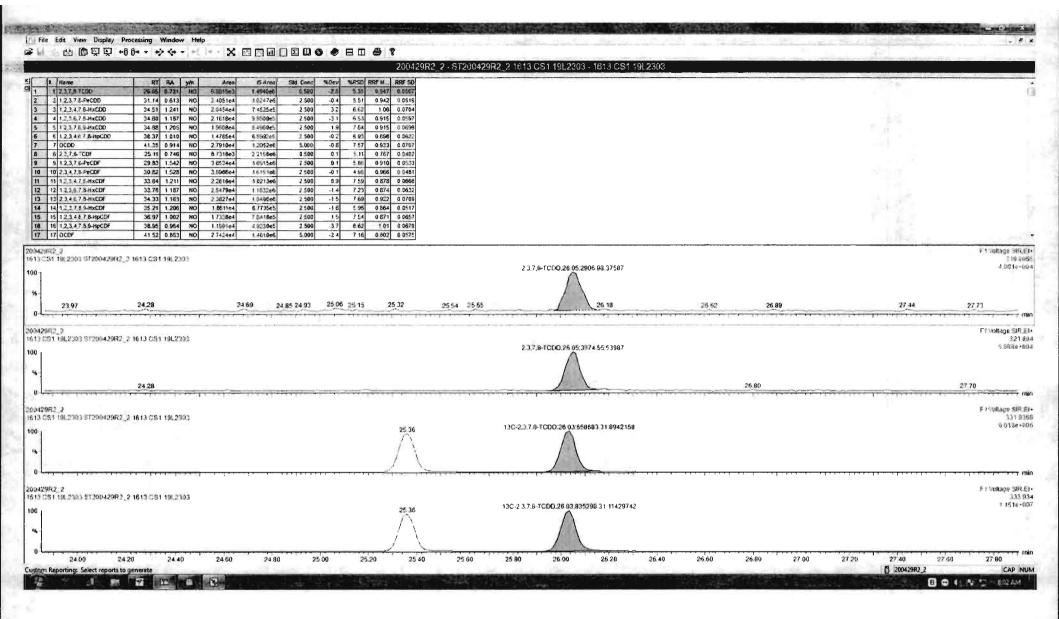

a de parte a companya de la company		13 CS0 19L2302 - 1613 CS0 19L2302		
P. Name RA ym Area IS Area SH area	50 -9:3 5.28 0.547 0.0567 50 -9:5 5.51 0.942 0.0516 50 -12.2 6.52 10:6 0.0704 50 -10.3 6.53 0.515 0.0597 50 -10.3 6.53 0.515 0.0597 50 -14.6 7.64 0.915 0.0596 50 -13.5 6.92 0.626 0.0622			
P (OCD) 4135 0 862 NO 1.41144 1.4186e6 2.5 6 2.3,7.6.PeCDF 25.05 0.819 NO 4.512643 2.5196-0.2 5 12.3,7.6.PeCDF 29.01 1687 NO 2.9176-7 1.91164 1.941566 1.21 1 10 2.3,7.6.PeCDF 2.9.01 1.485 NO 2.030464 1.941566 1.2 1 10 2.3,7.5.PeCDF 3.9.01 1.485 NO 2.030464 1.942766 1.2 1 12 12.3,6.7.6.HxCDF 33.64 1.34 HO 1.35044 1.219966 1.2 1 12 12.3,6.7.6.HxCDF 33.64 1.24 HO 1.205044 1.519666 1.2 1 12 2.3,6.7.7.8.HxCDF 34.32 1.13 HO 1.205044 1.519666 1.2 1 12 2.3,6.7.7.8.HxCDF 36.24 1.26 HO 2.205043 9.055655 1.2 1 1.24.7.8.4.HxCDF	50 -3.9 5.11 0.767 0.9402 50 -10.8 5.86 0.910 0.6533 50 -5.8 4.96 0.966 0.441 50 -14.9 7.59 0.872 0.8686 50 -12.6 7.23 0.674 0.8682 50 -14.7 7.69 0.922 0.075 50 -14.7 5.96 0.824 0.075			
Control Control <t< th=""><th>50 -11.4 6.62 1.01 0.0670</th><th></th><th></th><th></th></t<>	50 -11.4 6.62 1.01 0.0670			
42982_1 3 GS9 19L2302 ST200429R2_1 1613 GS9 19L2302 22.17	33.64 33.76	34.32	1.2.3.7.8.9 HKGDF 35.21 5239.81 78339	70 Minga GK 973 4 303e
				and the second se
12962_1 1 CG9 T9L2302 ST20042962_1 1613 CS0 T9L2302	3343 3376	34.32	1.2.3.7.8 9 HACDF 95.21 4281.07 64857	F3 56490 50 374 1730
12962_1 1 CEV 196.2202 ST200429R2_1 1613 CEO 196.2300 CEV 92_1 8 CEO 196.2302 ST200429R2_1 1613 CEO 196.2902	3343 3376 1362 3074 3400	34.32	1.2.3.7.8 9 HACDF 95.21 4281.07 64857	F 3 158 490 52 37 . 1786 F 3 158[(age 52 7 0256 7 0256



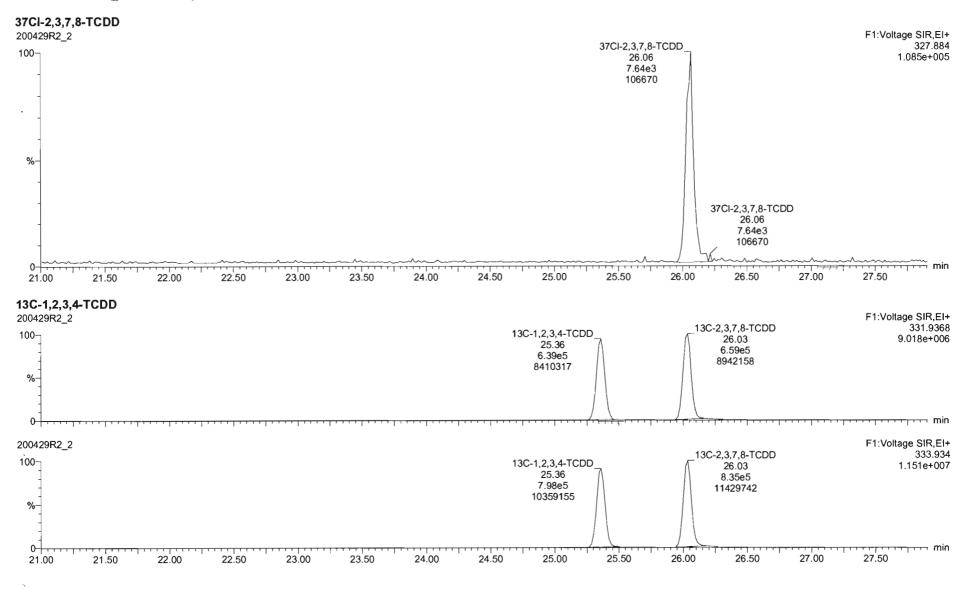


Quantify Sam Vista Analytica		Page 12 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

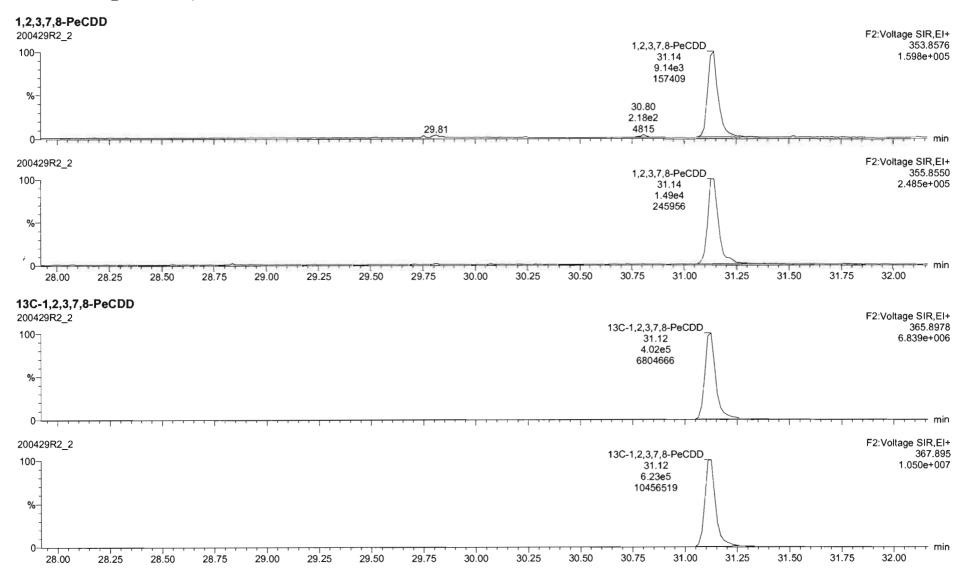




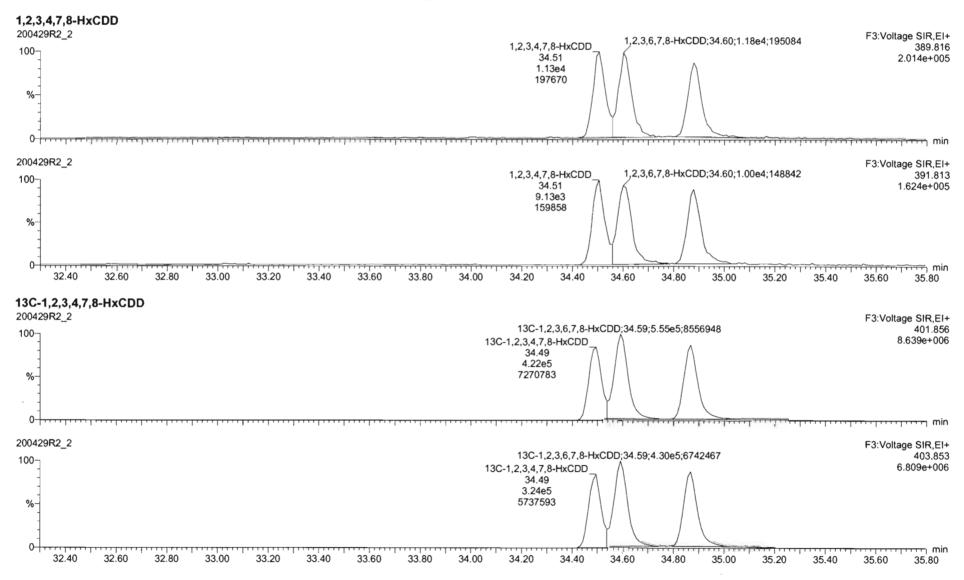
Report MassLynx 4.1 SCN815 poratory	Page 13 of 78
litled	
ursday, April 30, 2020 7:55:03 AM Pacific Daylight Time ursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	
li J	tled rsday, April 30, 2020 7:55:03 AM Pacific Daylight Time



Quantify Sam Vista Analytica		Page 14 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

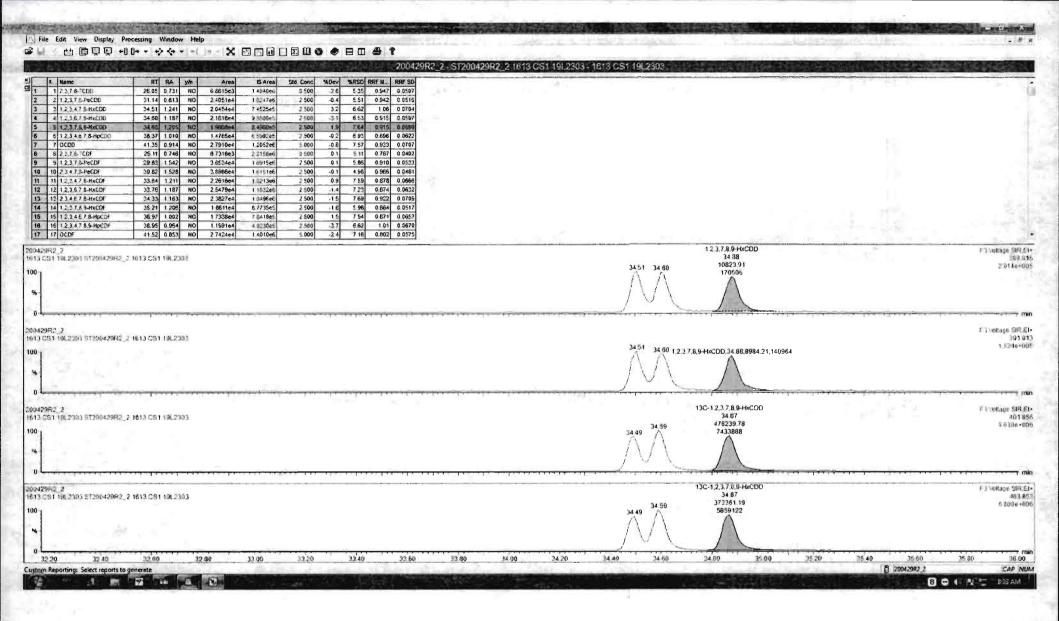


Quantify Sam Vista Analytica		Page 15 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

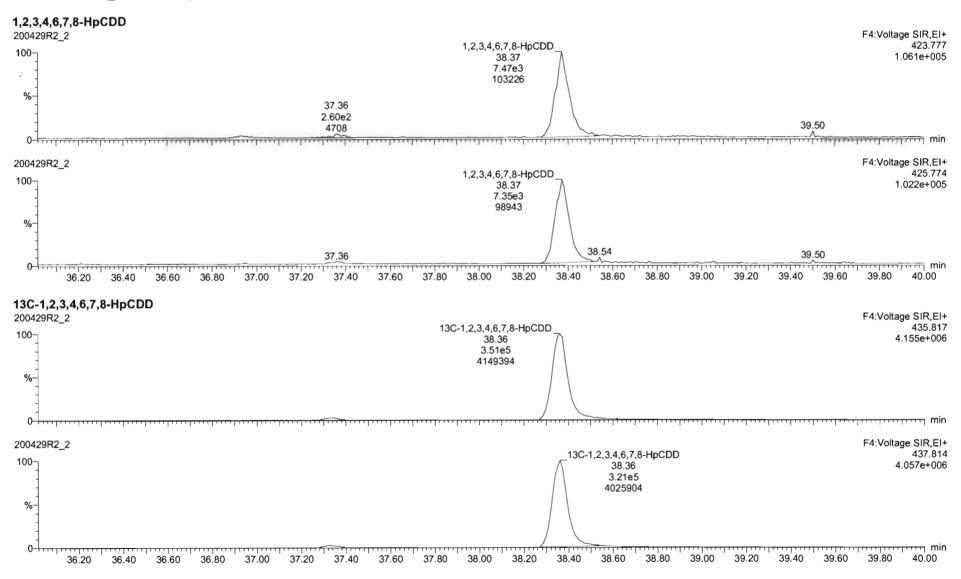


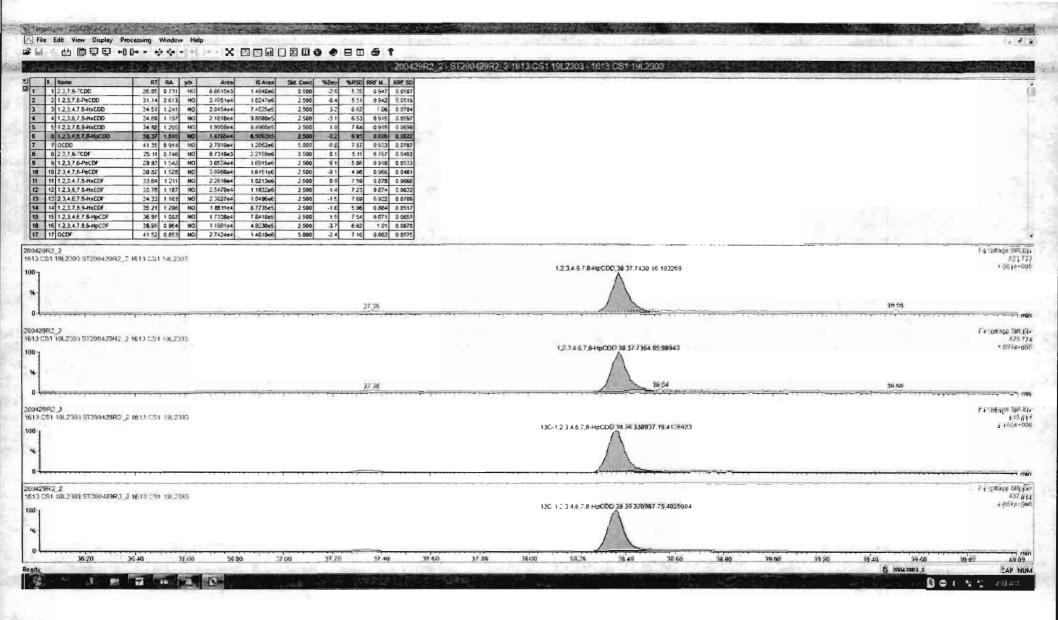
Work Order 2000945

Quantify Sam Vista Analytica		Page 16 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

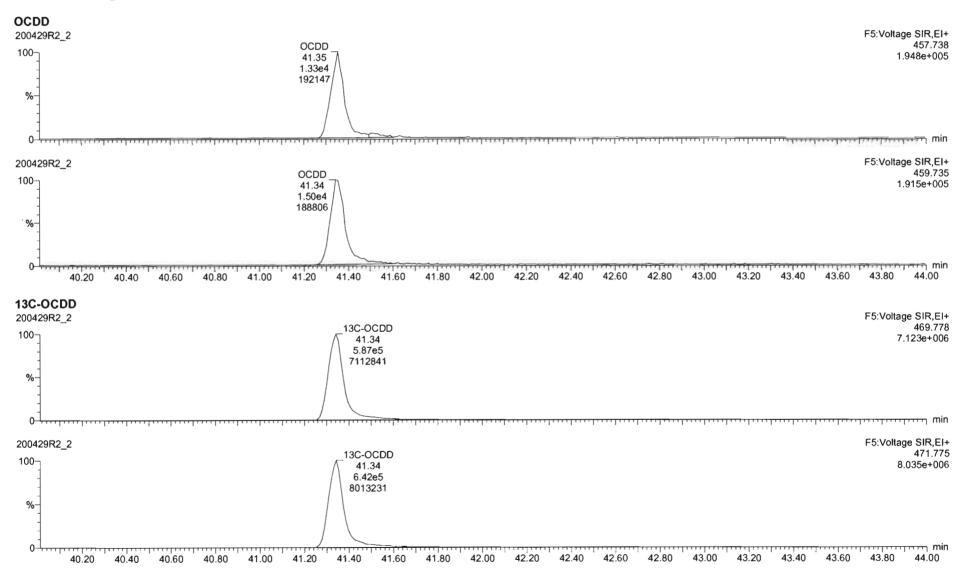


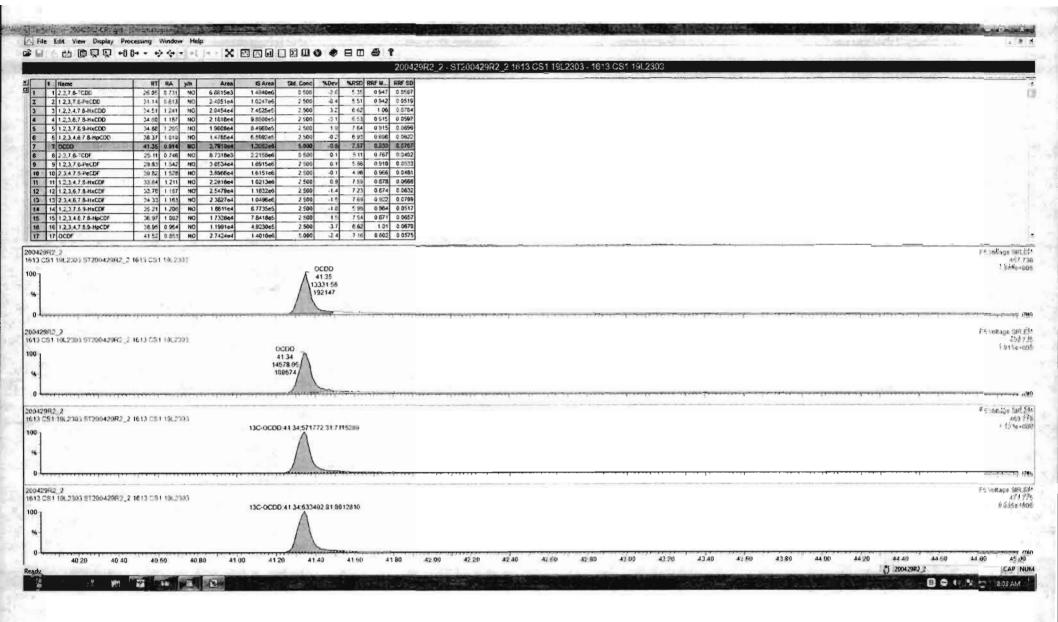
Quantify Sam Vista Analytica	· · · · · · · · · · · · · · · · · · ·	Page 17 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

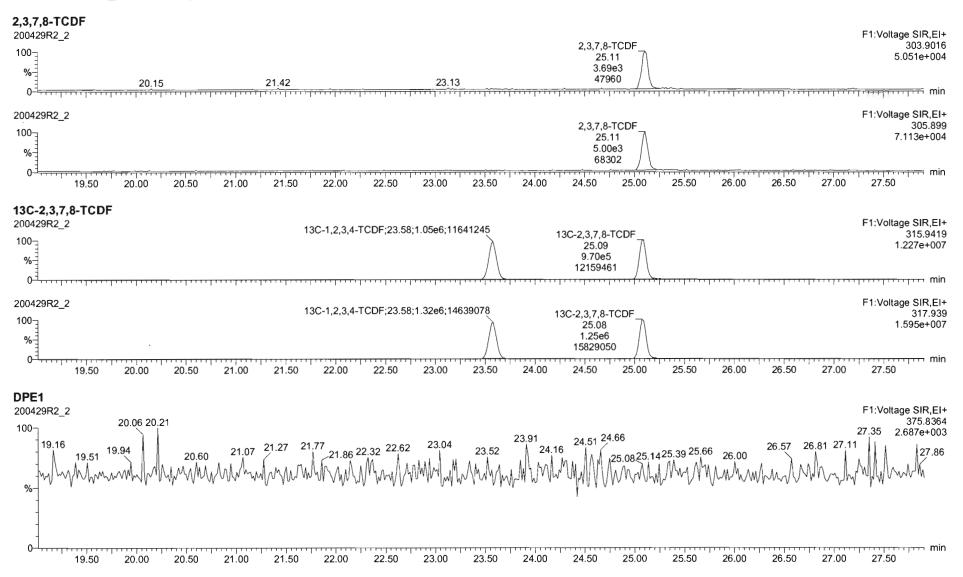



	正ななないとなると言語である		200429R2_2+ST2004	29R2_2 1613 CS1 19L3	2303 - 1613 CS1 19L2303				
	T RA y/n Area IS Are								TRACE A COMPANY
	5 0 731 NO 6 8615e3 1 4940e 4 0.613 NO 2 4051e4 1 0247e		947 0 0507 942 0 0519						
	4 0.613 NO 2.4051e4 1.0247e 1 1.241 NO 2.0454e4 7.4525e		106 0.0704						
	0 1.167 HD 2.1618e4 9.3500e		915 0.0597						
5 1 2,3 7 8,9-HxCDD 34.8	8 1.205 NO 1.9808e4 8.4960e	e5 2 500 1.9 7 64 0	915 0 0699						
	7 1 010 NO 1 478564 6.55926		896 0 0622						
	5 0.914 NO 2.7910e4 1.2052e 11 0.746 NO 6.7318e3 2.2156e		933 0 0707 767 0 0402						
	1 0.746 HC 5731653 221565 13 1.542 HO 3.653464 1.69156		910 0 0533						
	2 1528 NO 3.8986e4 16151e		966 0 0481						
11 1.2,3.4 7.8-HxCDF 33.6	A 1.211 NO 2.2616e4 1.0213e		878 0.0666						
	E 1 187 NO 2 5479e4 1 1832e		674 0.0632						
	3 1 163 NO 2 3827e4 1 0496e		922 0 0705 864 0.0517						
	1 1 206 NO 1 8611e4 8 7735e 77 1 002 NO 1 7338e4 7 8418e		864 0.0517						
	5 0.964 NO 1 1591e4 4 9230e		1.01 0.0670						
	2 0.853 NO 27424e4 14010e		802 0 0575						
982_2							enclosed and a subserved distribution of a second of		F3.voltage S
anz_z CS1 19L2303 ST200429R2_2 1613 C	S1 19L2303								38
					34.51 1.2.3	6 7.8-HxCDD,34 60 11343.83,19508	4		2.614
					$\wedge \wedge$	1			
					$(\land \land \land$	/ χ			
					$/ \sqrt{1}$				
								A	
									Pater burge for
9R2_2 351 10L2303 ST200429R2_2 1613 C	81 10 2503								F3 Voltage Sil
THE PART OF THE PARTY OF THE P	 1444.444 				34 51 1,2,3	5.7 8-HxCOD.34 60.9974 13:149263			1.674e
					Á Á	1			
					$i \setminus I \setminus$	/ \			
					$/ \sqrt{\lambda}$				
فميها بالمستقربة أستعار والقطاب والمستعاد والمتعا		مرديا والمراجعة والمعمود والمراجع	وسيغ ويواد والمناطقة	مي م <mark>يند به در م</mark> اريخ مي در	The second second second		++++++++++++++++++++++++++++++++++++++		
9R2 2	and a start of the								F3weltags S
251 19L2303 ST200429R2_2 1613 C	S1 19L2303								40 3 6 3 9
					13C-123678-HrCDD 34595	34 87			4.4.95
					$\wedge \wedge$	\wedge			
						:/ \			
Constant and the second	Hereiteriteriteriteriteriteriteriteriteri		······································				, in Triffert (
982_2									F3 settage S
391 19L2303 ST300429R2_2 1613 C	61 19L2303					196 199 0D 27 19 16 7			4 6 809
					13C-1.2.3.6 7.8-HrCOD.34 69.4	30433 00 6742467			8 845
					\wedge \square	\wedge			
					$/ \setminus / \setminus$	/ \			

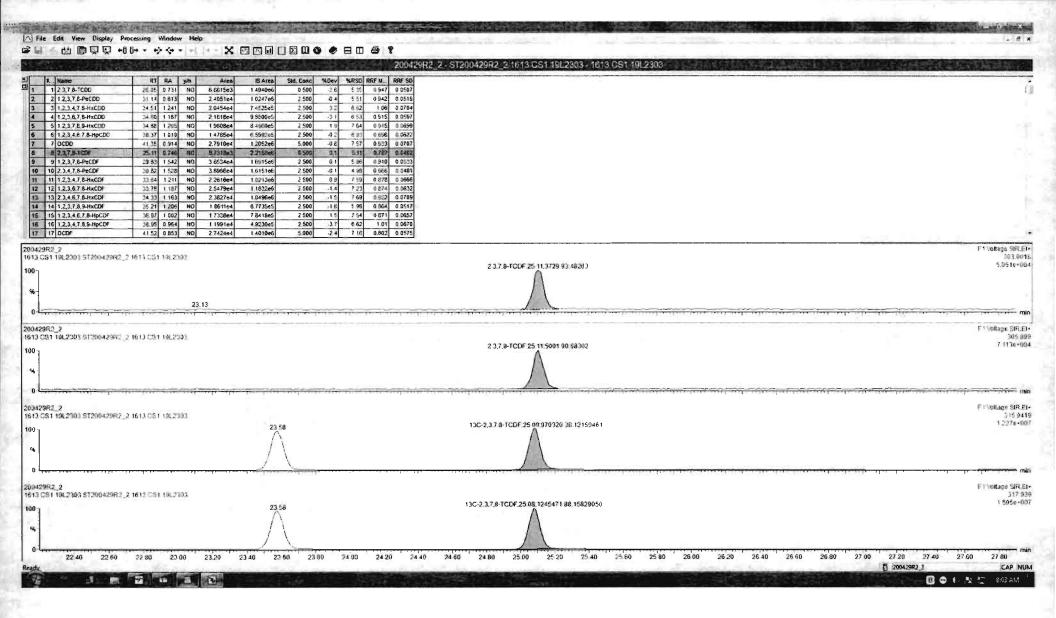
-

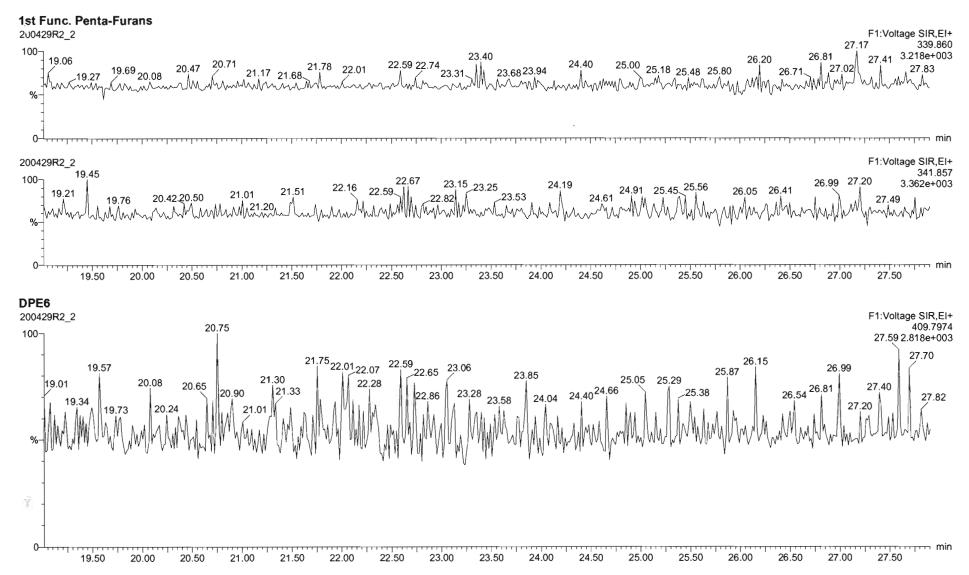


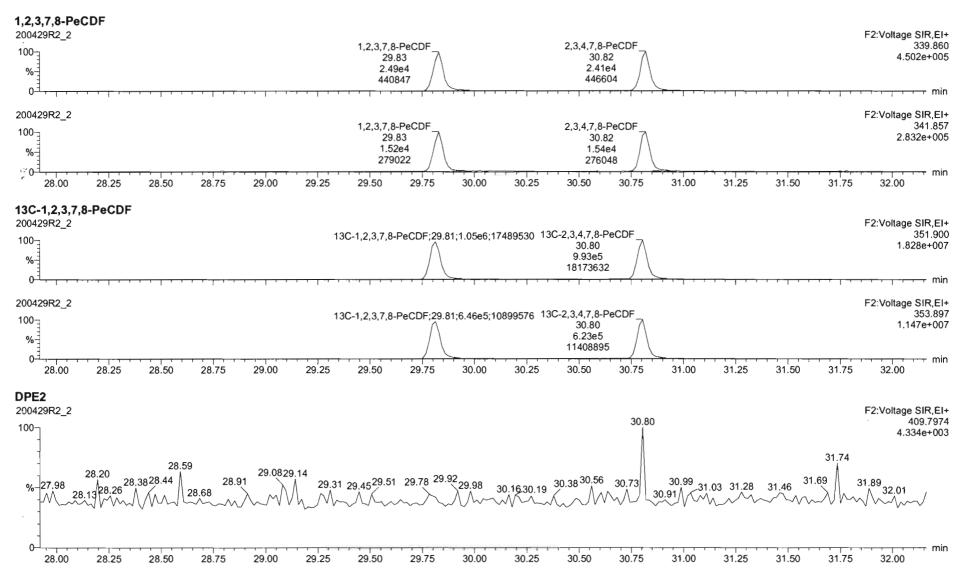

Quantify Sam Vista Analytica		Page 18 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

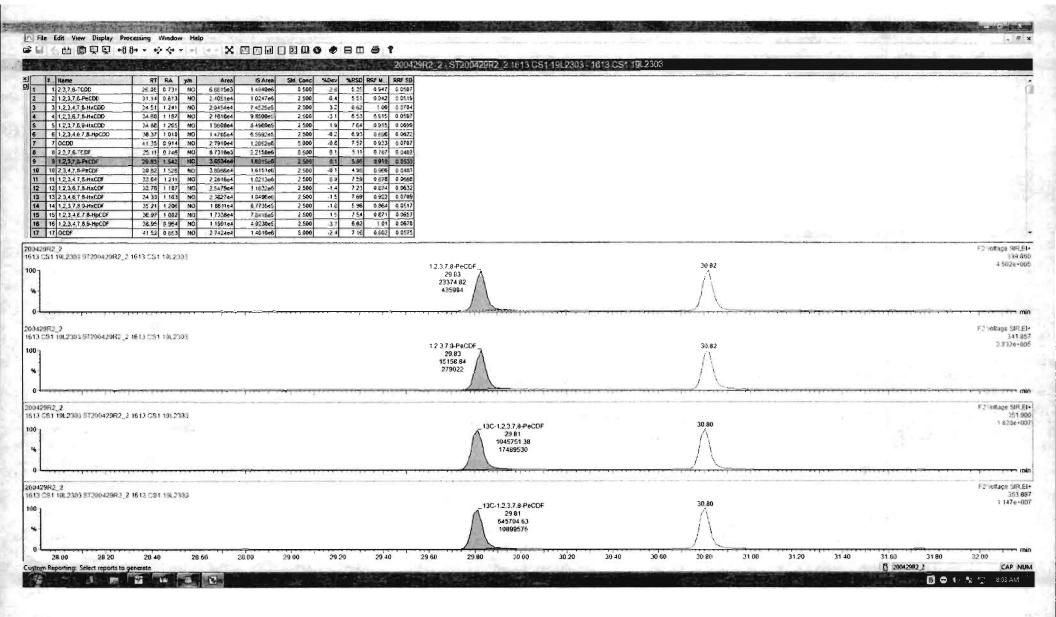


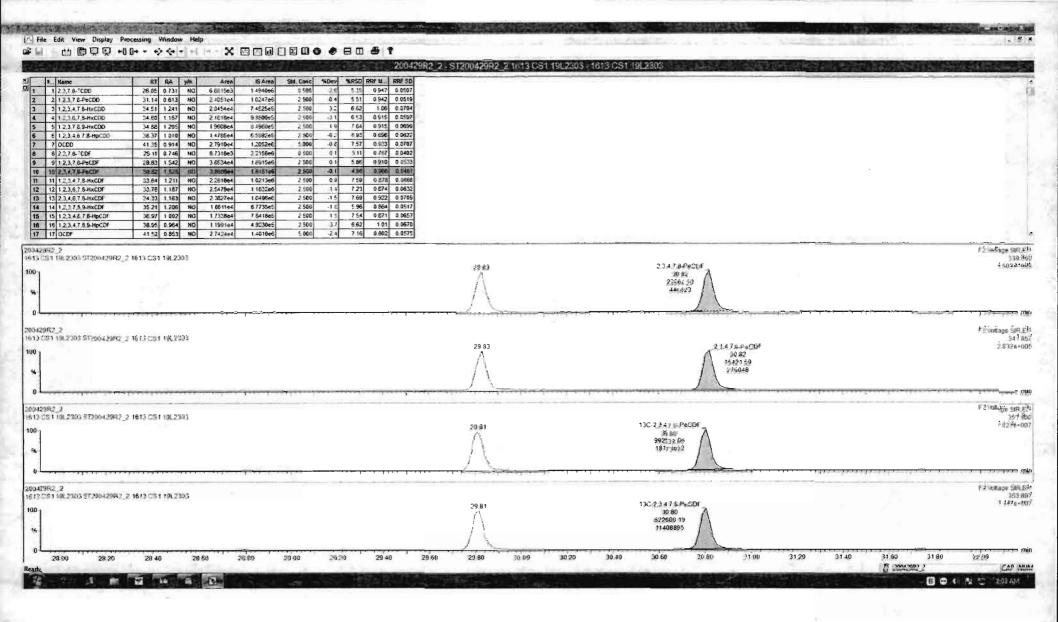
Quantify San Vista Analytica		Page 19 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

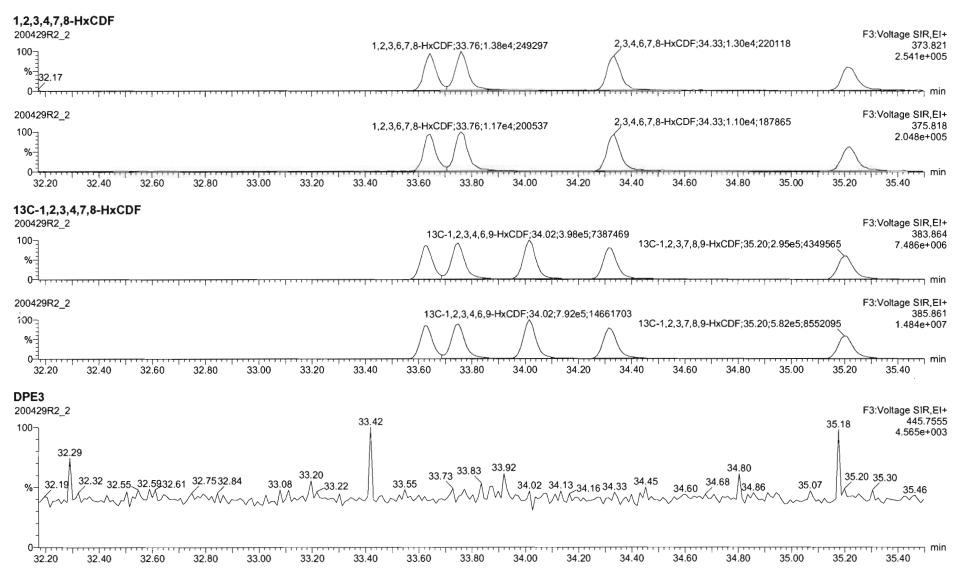


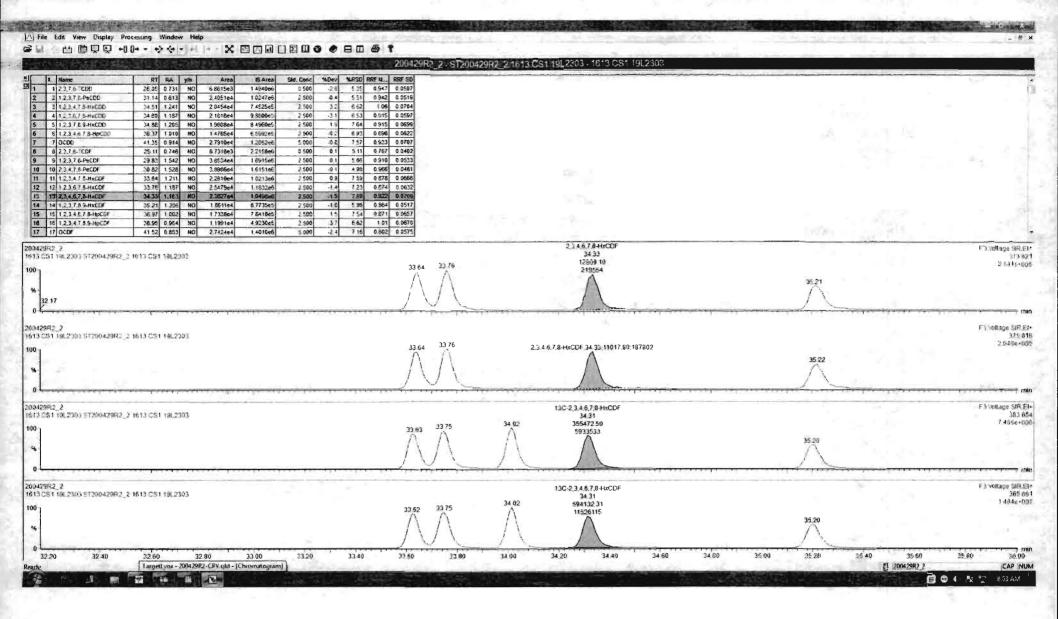

Vista Analytical L	aboratory	·
Dataset: L	ntitled	
	hursday, April 30, 2020 7:55:03 AM Pacific Daylight Time hursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

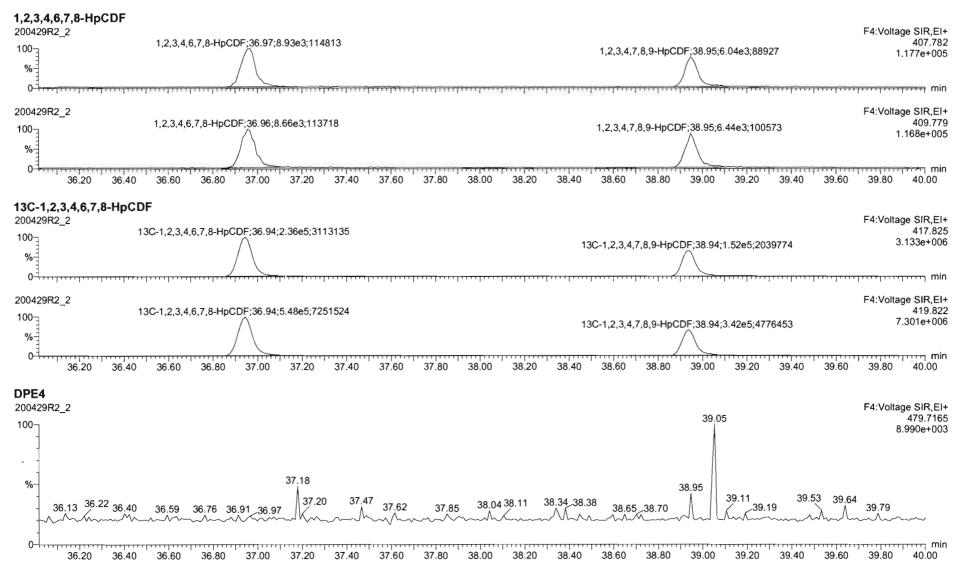

Work Order 2000945

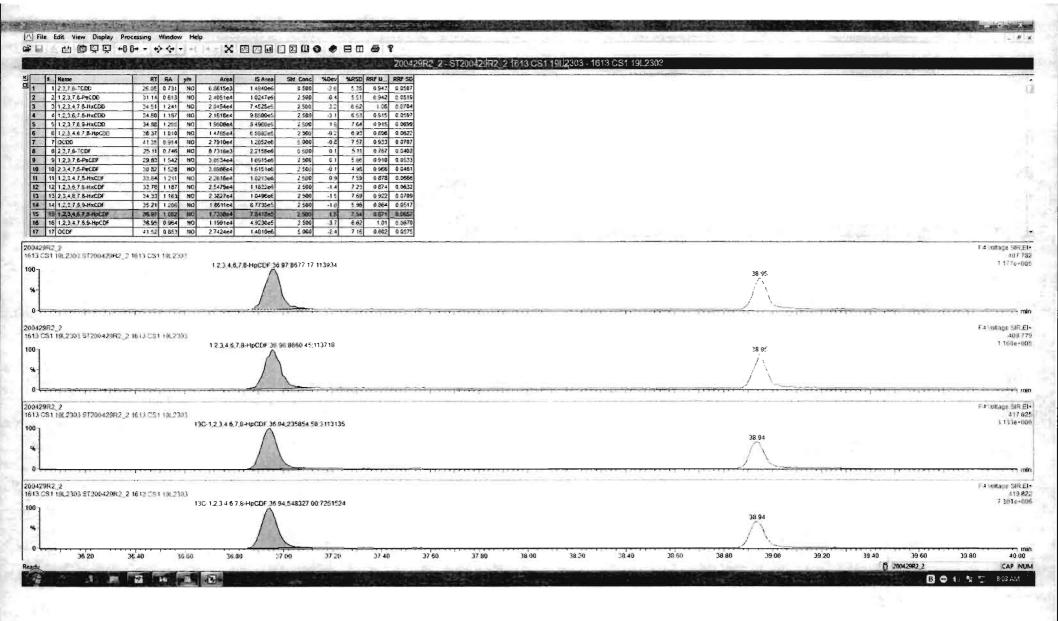



Quantify San Vista Analytica	mple Report MassLynx 4.1 SCN815 cal Laboratory	Page 21 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 22 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

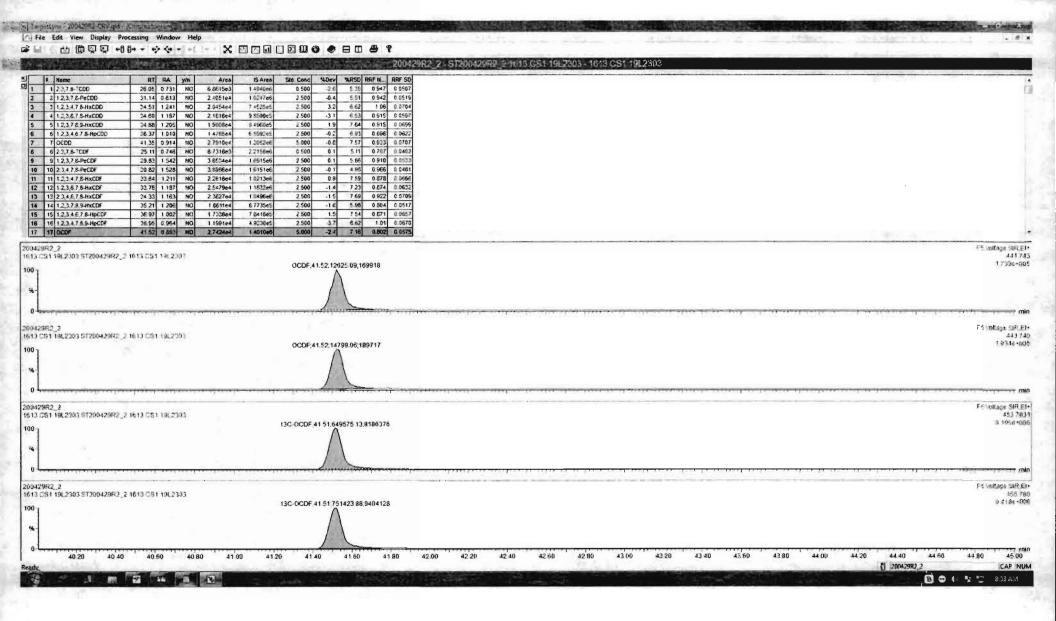


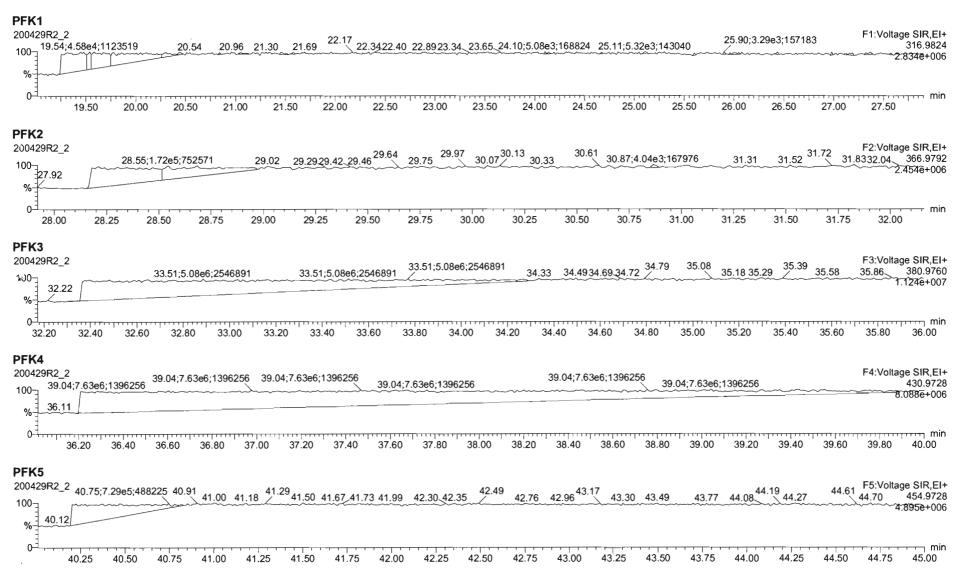

Quantify Sam Vista Analytical	· · ·	Page 23 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



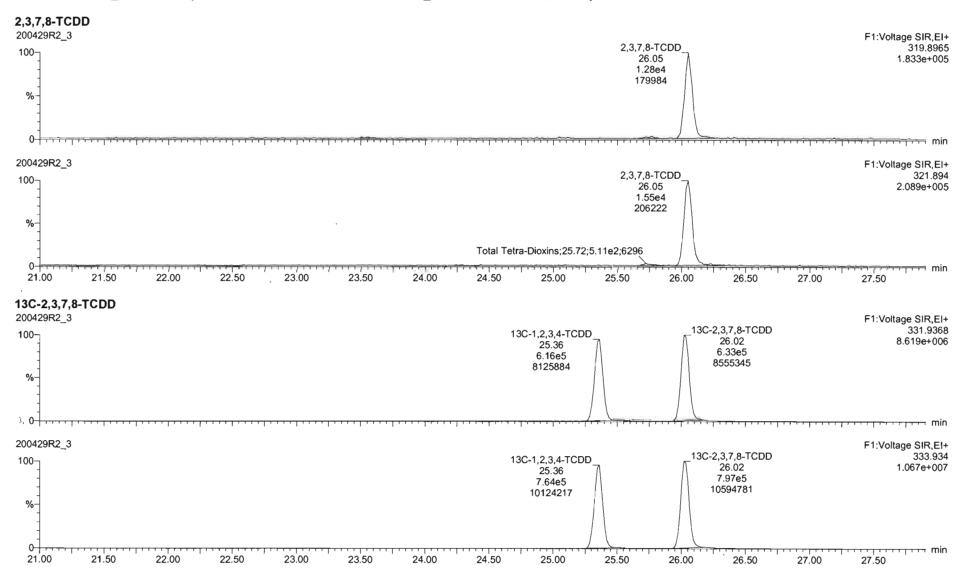
	MASD RRF M RRF SO	42982_2 1813 C	S1 19L2303 - 1613 CS1 19L23	03	
2.27.7.8-TCDD 26.05 0.731 400 6.0015e3 1.450e6 0.500 -2.6 1 2.3.7.8-FeCDD 31.14 0.613 MO 2.4051e4 1.0247e6 2.500 3.2 1 1.2.3.7.8-FeCDD 34.51 MO 2.4051e4 1.0247e6 2.500 3.2 1 1.2.3.47.8-FeCDD 34.61 HO 2.0445e4 7.422e5 2.500 3.2 4 1.2.3.6.7.8-HxCDD 34.80 1.187 HO 2.1618e4 9.8500r5 2.500 -3.1 5 1 2.3.7.8.3-Fx6CDD 34.80 1.187 HO 2.1618e4 9.8500r5 2.500 -3.1 5 1 2.3.46.7.8-HxCDD 34.80 1.197 HO 2.1618e4 9.8500r5 2.500 -3.1 5 1 2.3.46.7.8-HxCDD 36.81 1.010 HO 1.4765e4 5.6902r6 2.500 -0.2 7 OCDD 41.35 9.14 HO 2.7910e4 1.2052e6 5.000 -0.2 8 12.3.7.8-TCDF 23.81 0.744 HO 6.7116e3 2	5.5 0.947 0.0467 5.51 0.942 0.0516 6.62 1.06 0.3704 6.53 0.915 0.0856 9.2 0.9515 0.0856 9.2 0.956 0.9707 5.11 0.752 0.9462 5.51 0.9460 0.9333				
10 2.3.4.7,8-PeCDF 20 82 1 528 110 3.8668-4 1.615166 2.500 -0.1 11 12.3.4.7,8-HxCDF 33.84 1.21 NO 2.261664 1.021366 2.500 6.87 12 12.3.6.7,8-HxCDF 33.78 1187 400 2.261664 1.021366 2.500 6.18 12 12.3.6.7,8-HxCDF 33.78 1187 400 2.5479e4 1.03266 2.500 6.14 12.3.4.7,8-HxCDF 33.28 1.63 MO 2.3427e4 1.0496e6 2.500 -1.5 14.12.3.7,8-HxCDF 38.21 1206 MO 3.8611e6 8.72555 2.500 -1.6 15 12.3.4.7, 8-HxCDF 38.21 1206 MO 1.67166 2.5206 -1.5 15 12.3.4.5, 7.8-HxCDF 38.21 1206 MO 1.67166 2.500 1.5 15 12.3.4.5, 7.8-HxCDF 38.26 0.964 11.19164 4.9230e5 2.500 3.7	• 00 0.956 0.0481 7.55 0.674 0.0666 7.23 0.674 0.0667 7.69 0.872 0.0567 5.96 0.676 0.0557 5.96 0.676 0.0567 6.62 1.01 0.5670 7.16 0.602 0.0575				
R2_2 \$1 19L2303 \$T200429R2_2 1613 C31 19L2308 \$17	33.64 33.76		56.95	1.2.3.7.8.94H-CDF 36.21 10175.59 146546	К1/онада 9 17 2.541
R2_2 81 T9L2303 ST260429R2_2 1613 C61 19L2308	33.64 33.76		34 33	123.78.946CDF 3522 843507 123844	Filvekage S 39 2.0454
R2_2 81 10L2303 8T200420R2_2 1613 CS1 10L2303	33 63 33 75	34.02	34.31	13C-1,2,3,7 8,44HCOF 36,20 296442,53 4349565	стористроности у совани с 3 (совани с 3) > 439
R2_2 81 108.2363 \$T266420973_2 1013 CS1 108.2303	33.42 33.75	34.02	34.31 /\	13C-1.2.3.7.8.94%CDF 26.20 581907.00 8552095	F3 Vottage (3 1 484

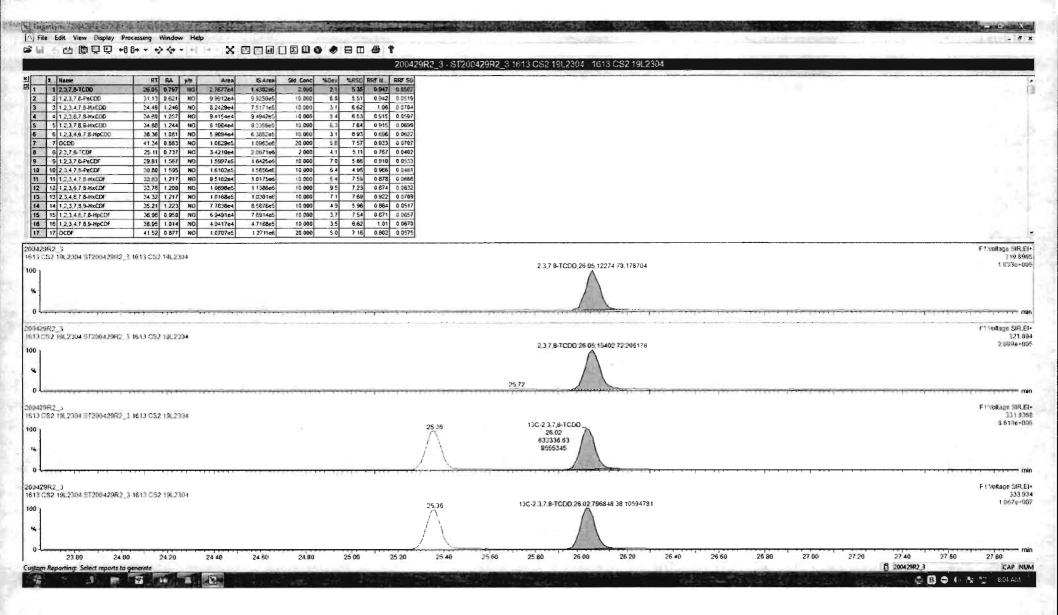
titled	
ursday, April 30, 2020 7:55:03 AM Pacific Daylight Time ursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	
0 Date: 20 Apr 2020 Time: 14:15:04 ID: ST200420D0 2 4642 CS4 401 2202 Departmention: 4642 CS4 401 220	2
u	rsday, April 30, 2020 7:55:03 AM Pacific Daylight Time



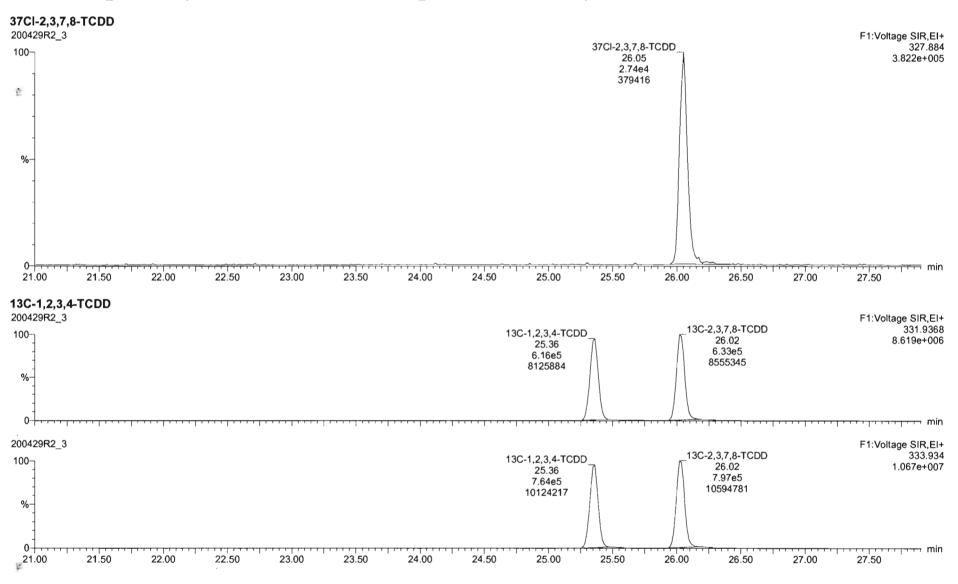


Quantify Sam Vista Analytica		Page 25 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

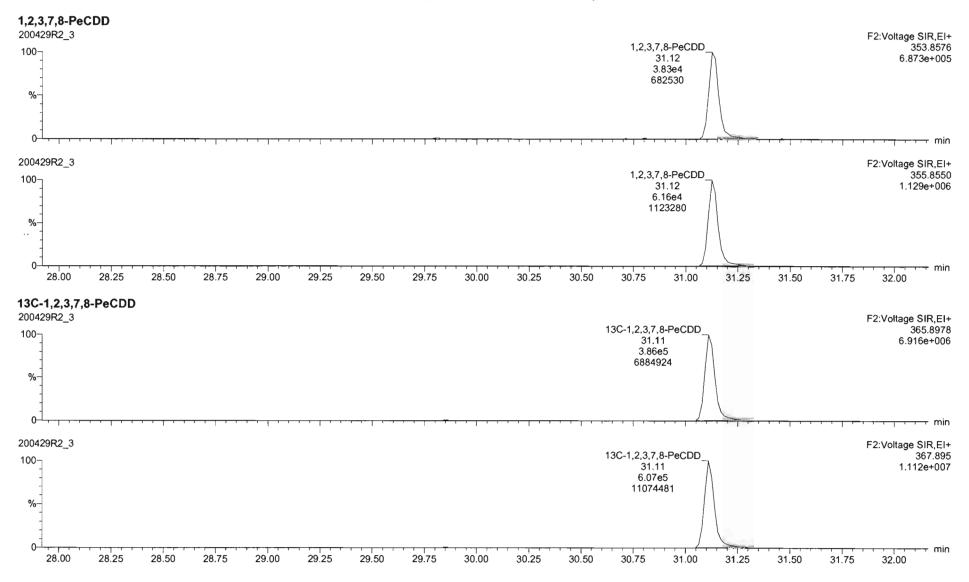


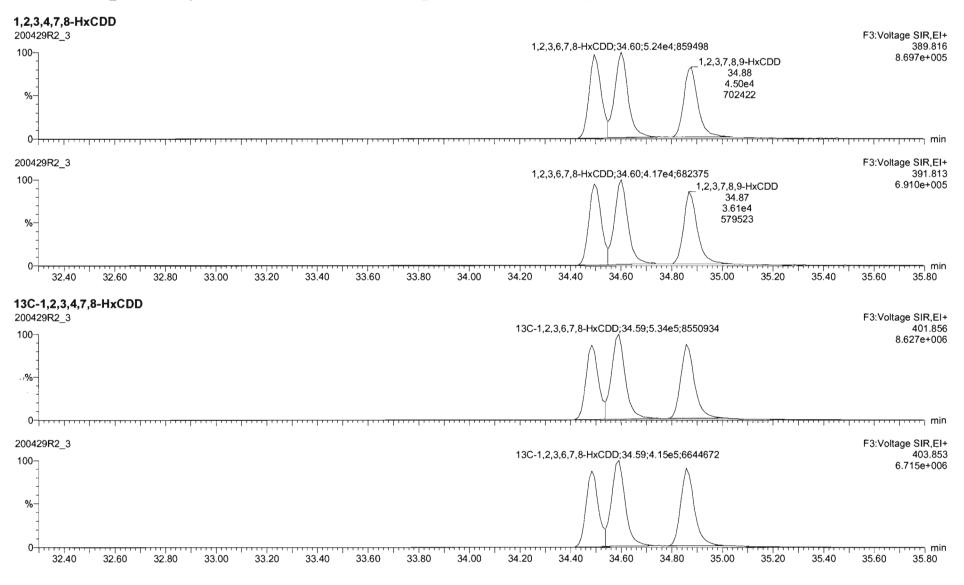


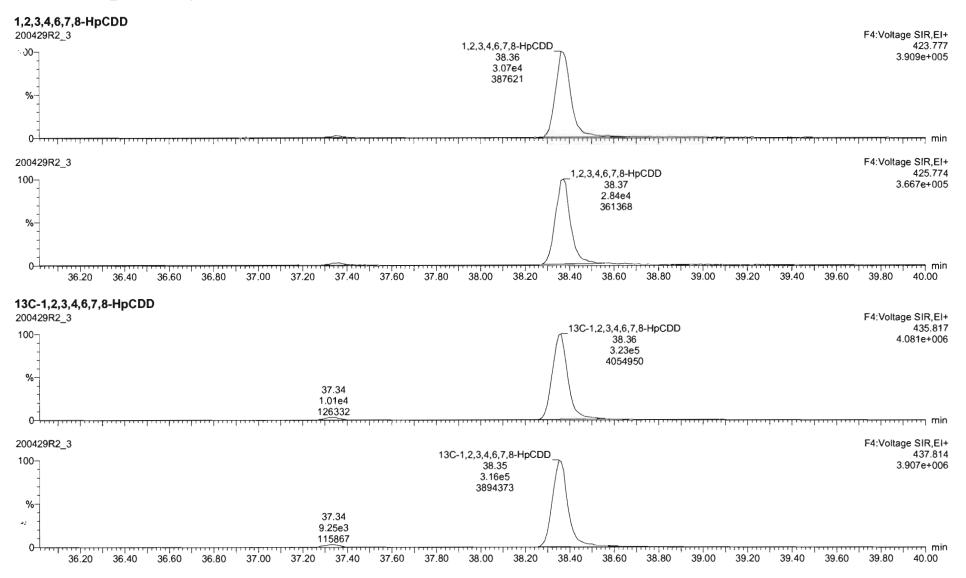
Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 26 of 78
Dataset:	Untitled		
Last Altered: Printed:		I 30, 2020 7:55:03 AM Pacific Daylight Time I 30, 2020 7:55:15 AM Pacific Daylight Time	



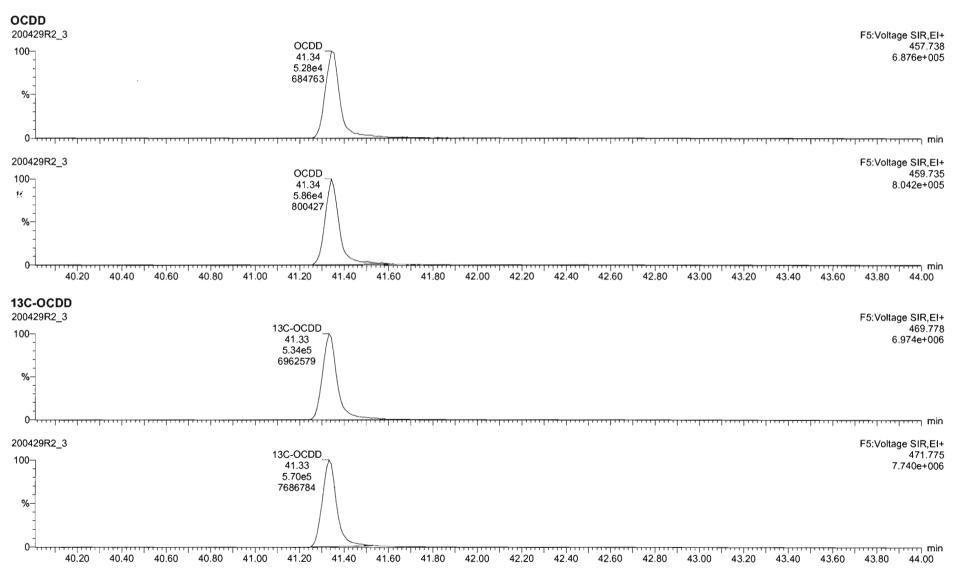
Quantify Sam Vista Analytica		Page 27 of 78
Dataset:	Untitled	
Last Altered:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

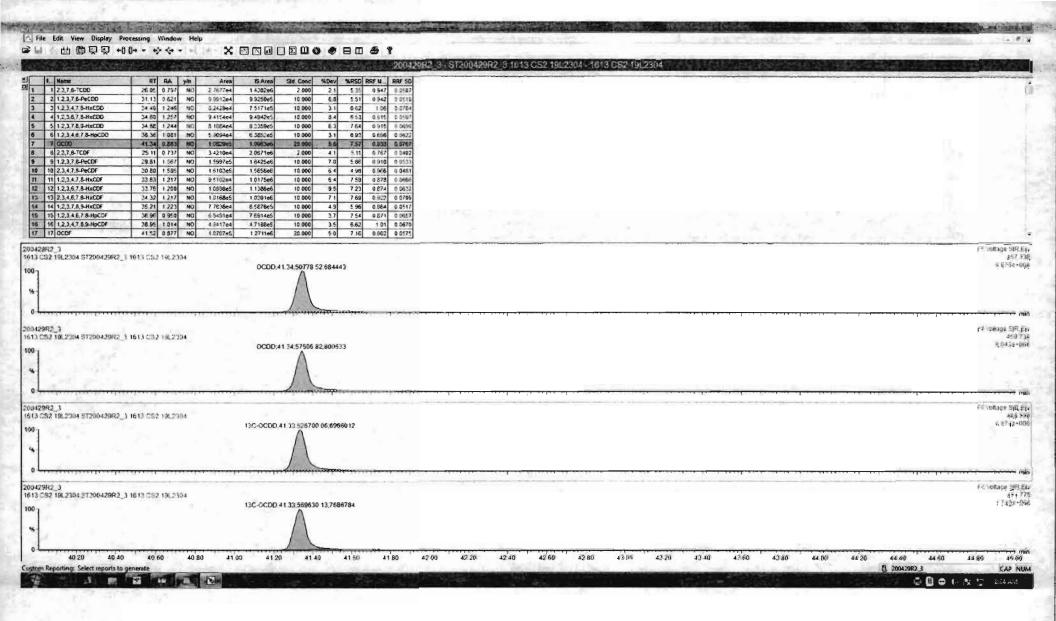


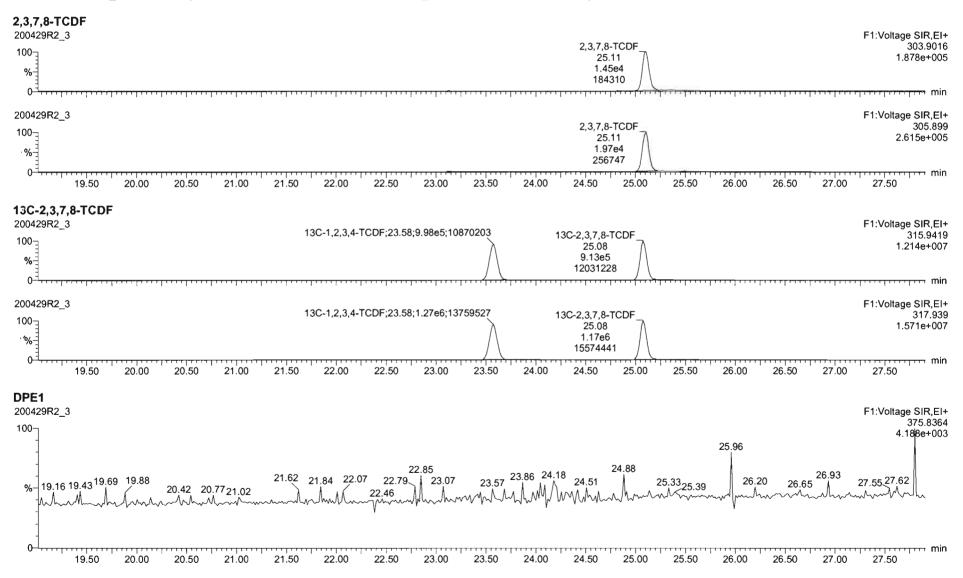

Quantify San Vista Analytica		Page 28 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 29 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

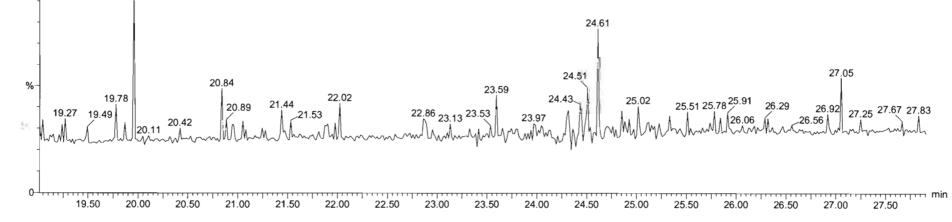
Quantify Sam Vista Analytica		Page 30 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

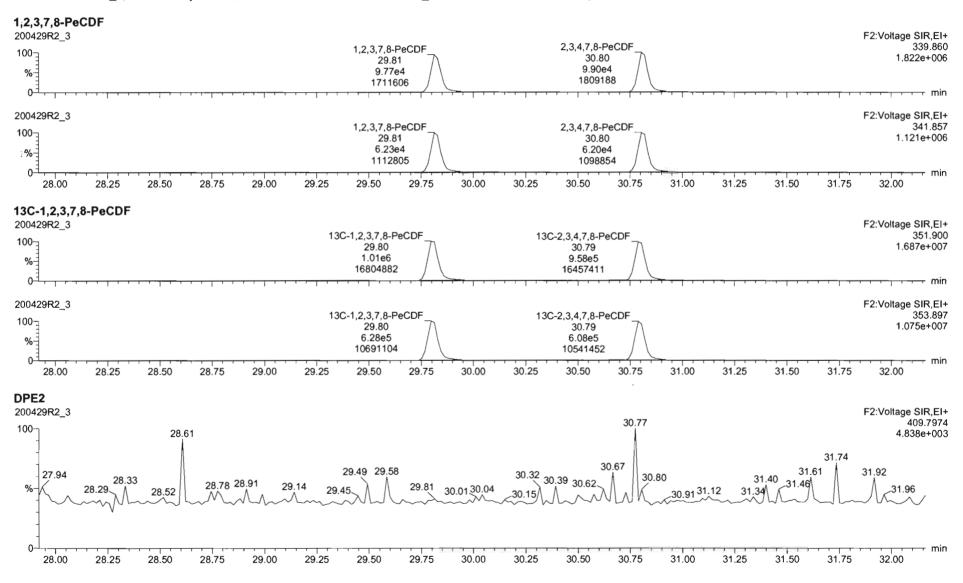


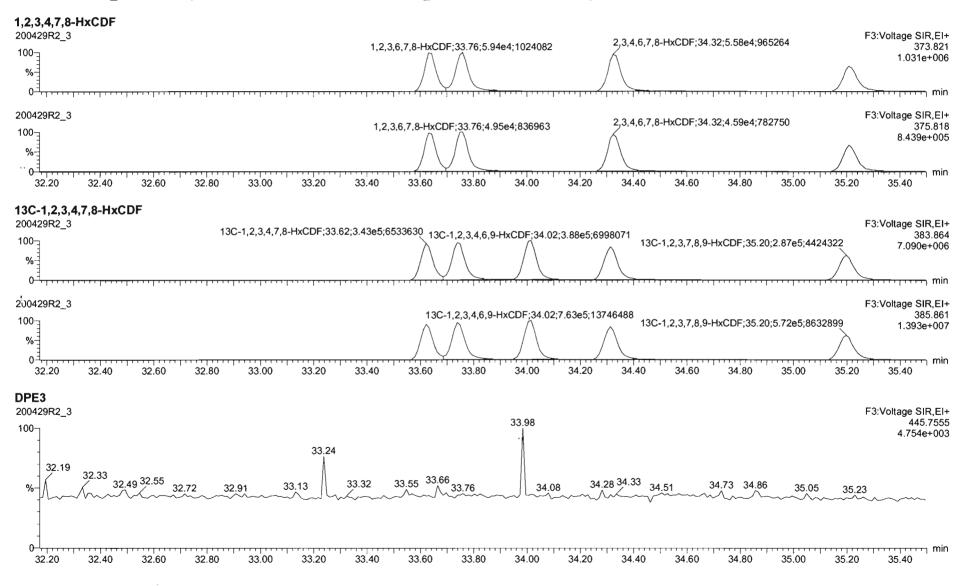

Quantify Sam Vista Analytica		Page 31 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

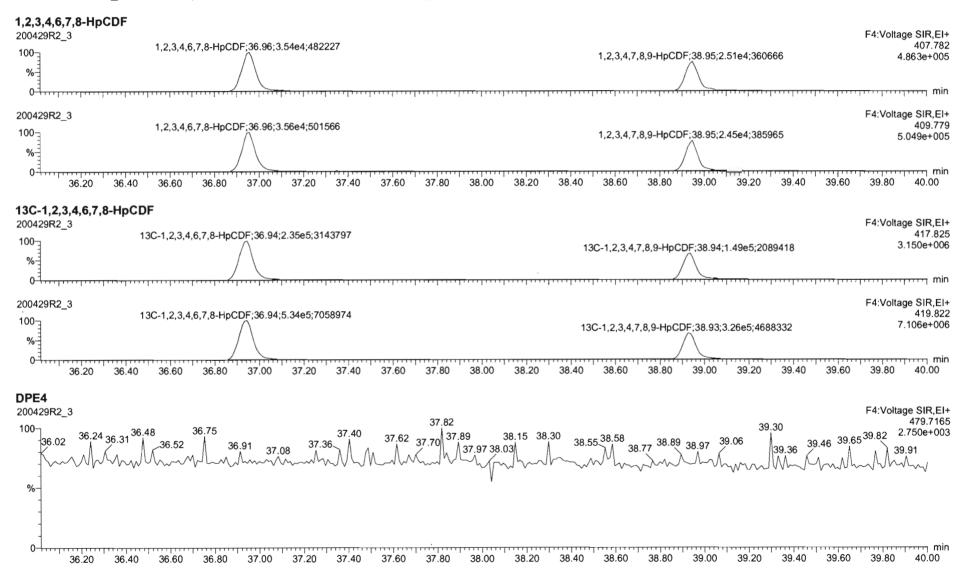

Work Order 2000945

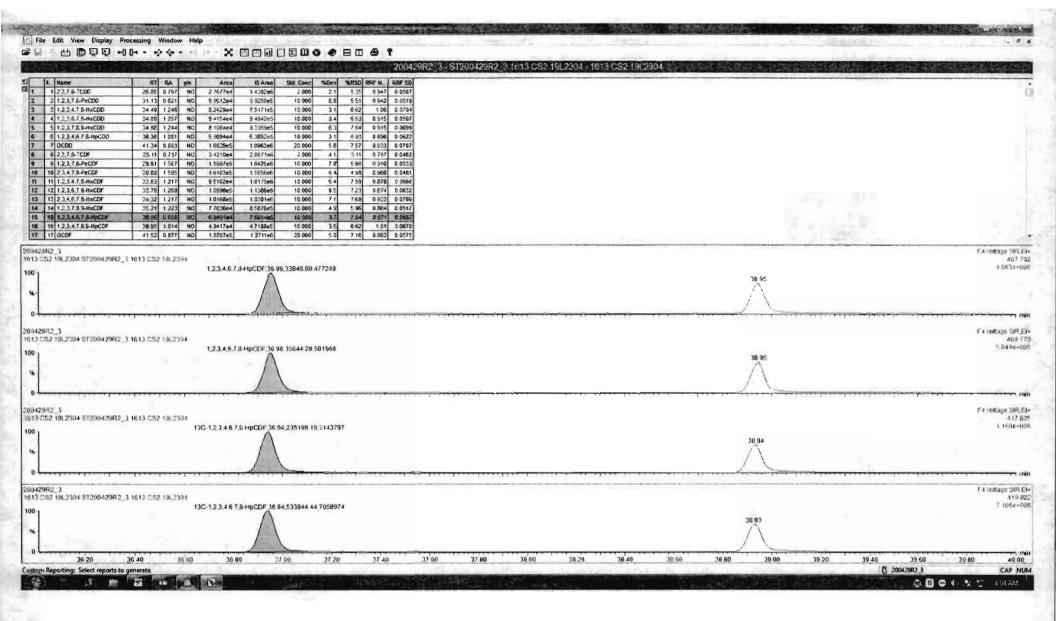
Quantify Sam Vista Analytica		Page 32 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

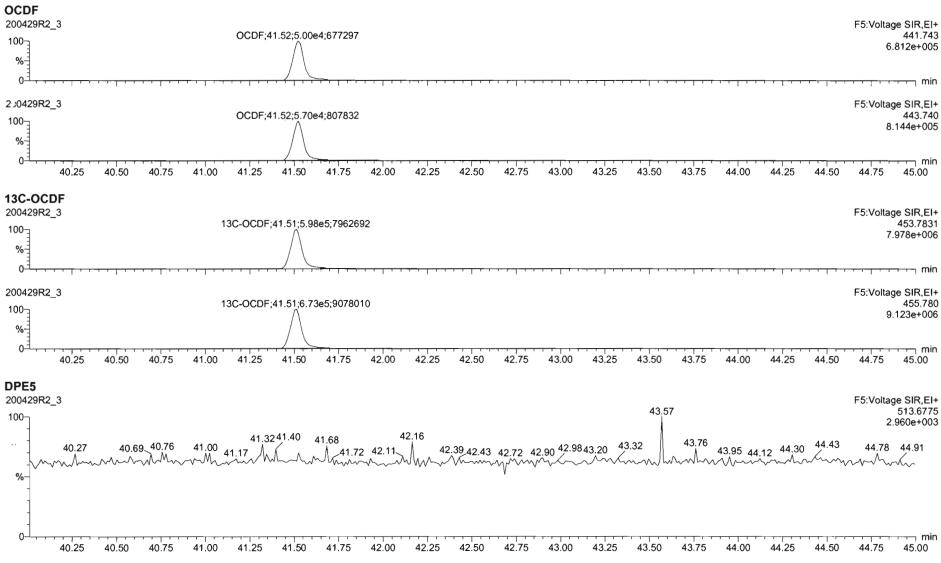



Cu antify San Vista Analytica		Page 33 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

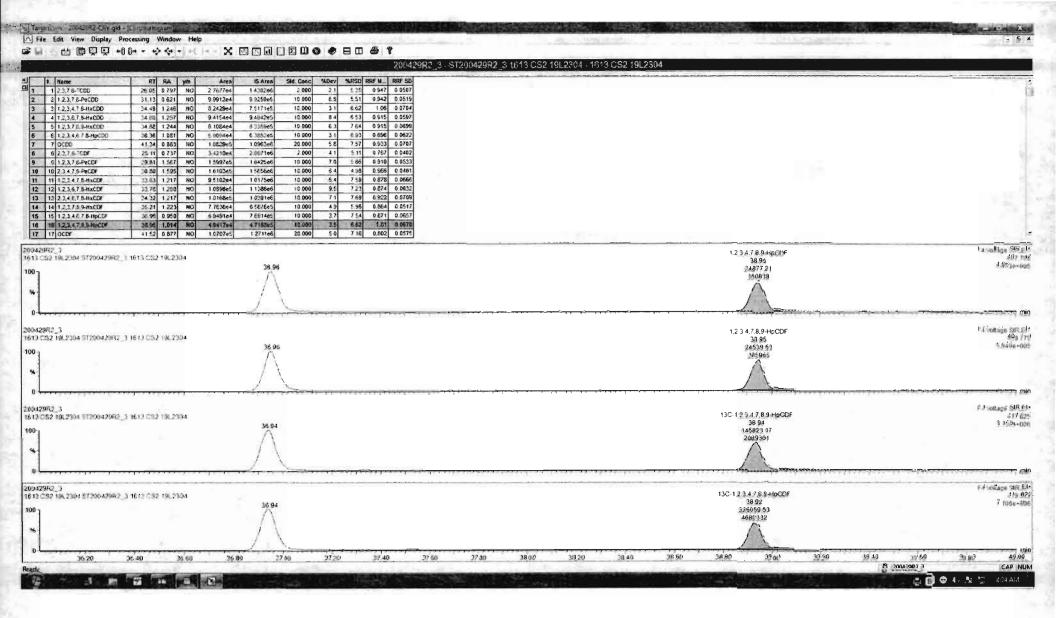

luantify San /ista Analytica	a ple Report Al Laboratory	MassLynx 4.1	I SCN815							P	age 34 of 7
Dataset:	Untitled										
ast Altered: rinted:			3 AM Pacific Dayli 5 AM Pacific Dayli								
ame: 20042	9R2_3, Date: 29	-Apr-2020, Time	: 15:02:24, ID: ST	200429R2_3 161	3 CS2 19L2304,	Descriptio	n: 1613 CS2	2 19L2304			
st Func. Per	nta-Furans									F1:\	/oltage SIR,EI·
-			22.05			24.6	9				339.860 3.589e+00
19.1819.4	3	20 50 20 00 04 0	27 21.47 21.68 22.	28 22.86	24 23.37 23.80	1.30 24.63	25.03 25.3	6 25.72 _{25.97}	26.51 26.66	27.11	27.65
- 1	19.69 19.99 20.5	320.59 20.90 21.2	21.68	1 22.9	- 1 J . M .	· A - BD	. A M		A	V Mar	
%-fwlwWb	Munun	mmmm	widow when	man mm	~mmmmmm	Mmmar	manne			~~~·	N/ W(mm
www.w-w	Mumm	nMummuh		man Mitter	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M M M M I	M. C. Maria			www	W W CMM
0	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							mi
	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	·····		······	·····				mi
0-1	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	····	·····			·····	·/····			43 341.85
0429R2_3	•••••							25.78		F1:V 27.2	4.816e+003
0	•••••							25.78		F1:V 27.2	43 341.85 4.816e+00
0429R2_3	•••••		11 21.56 22.13 22.3					25.78		F1:V 27.2	43 341.85 4.816e+00
0429R2_3	•••••			5 22.58 22.83 2	3.27 23.55 24.1 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM			25.78		F1:V 27.2 27.14 27.22	43 341.85 4.816e+00 27.59 27.65
0	19.88 ^{19.94} 20.27			5 22.58 22.83 2		9 24.36 22		25.78	.17 26.59 ²	F1:V 27.2 27.14.27.22	43 341.85 4.816e+00
0	19.88 ^{19.94} 20.27	20.7220.78 20.71.4 20.7220.78	11 21.56 22.13 22.3 22.13	5 22.58	3.27 23.55 24.1 MMMMMMMM	9 24.36 22		25.78 5.48 26.03 26	.17 26.59 ²	F1:V 27.2 27.14.27.22	43 341.85 4.816e+00 27.59 27.65 27.65
0	19.88 ^{19.94} 20.27	20.7220.78 20.71.4 20.7220.78	11 21.56 22.13 22.3 22.13	5 22.58	3.27 23.55 24.1 MMMMMMMM	9 24.36 22		25.78 5.48 26.03 26	.17 26.59 ²	F1:V 27.2 27.14.27.22 27.00 27	43 341.85 4.816e+00 27.59 27.65 27.65

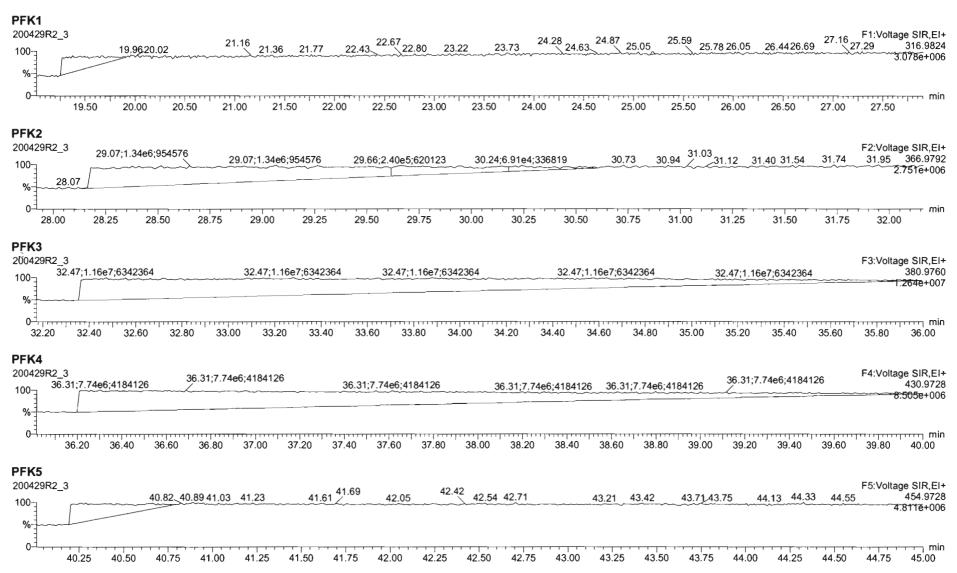

Quantify Sam Vista Analytica		Page 35 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



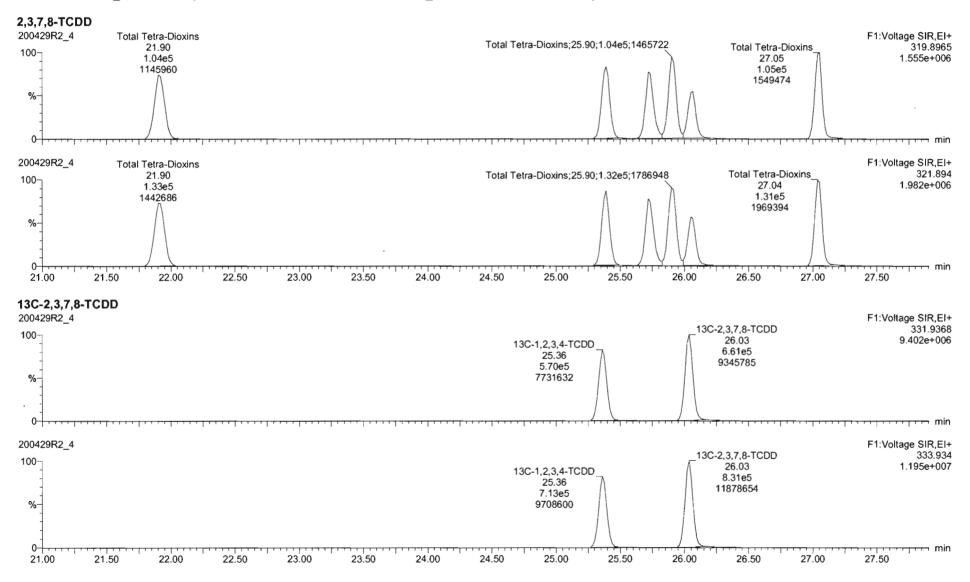

oratory	
itled	
; 	itled ursday, April 30, 2020 7:55:03 AM Pacific Daylight Time ursday, April 30, 2020 7:55:15 AM Pacific Daylight Time

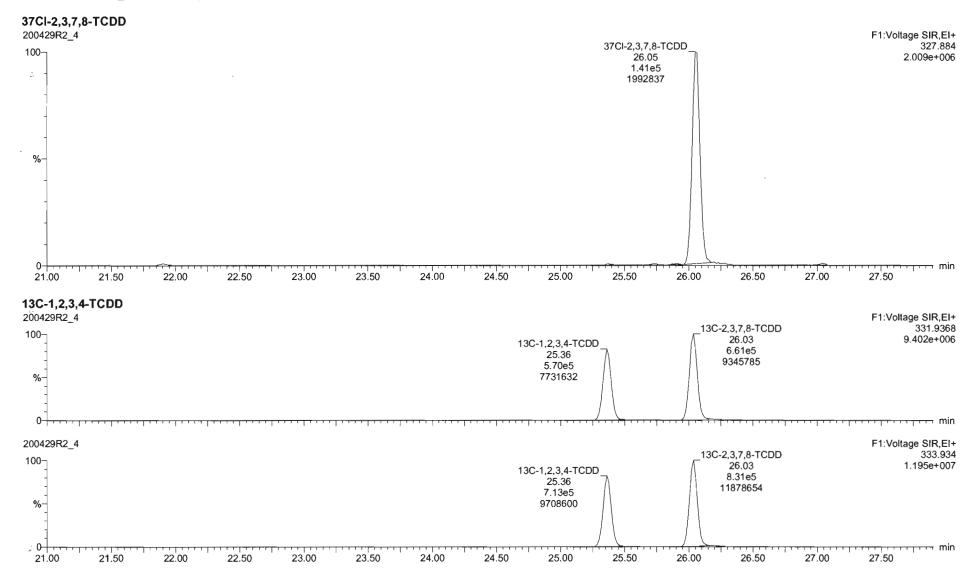
Quantify Sam Vista Analytica		Page 37 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

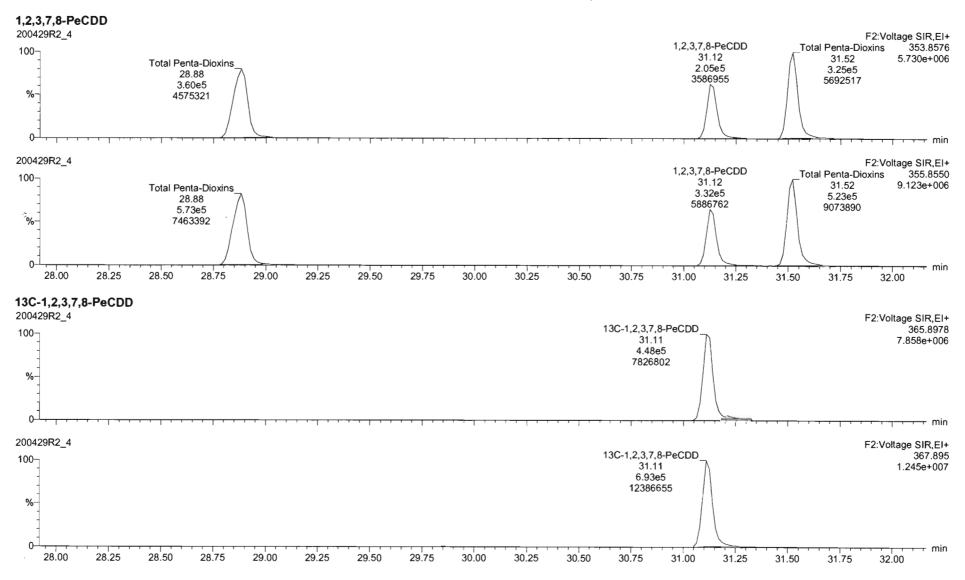


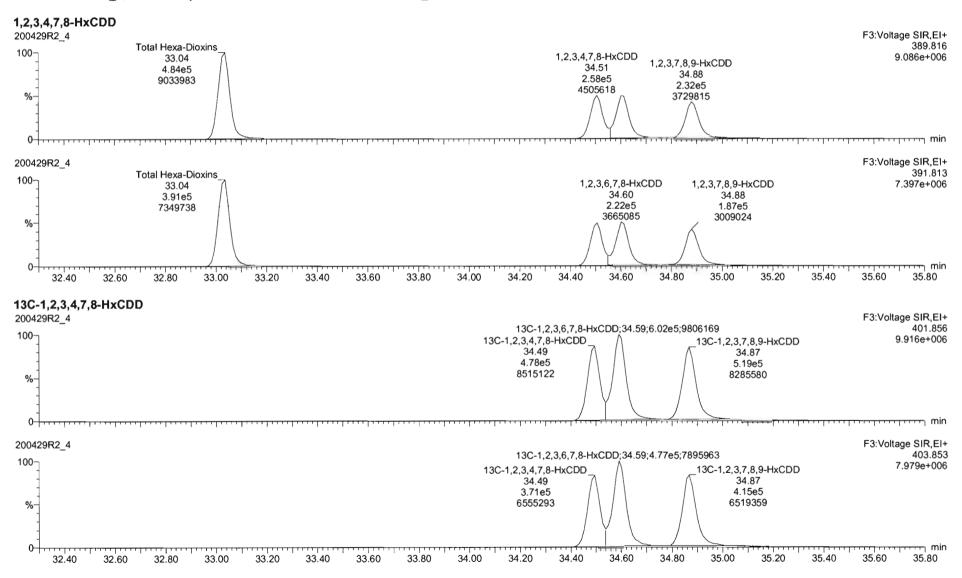


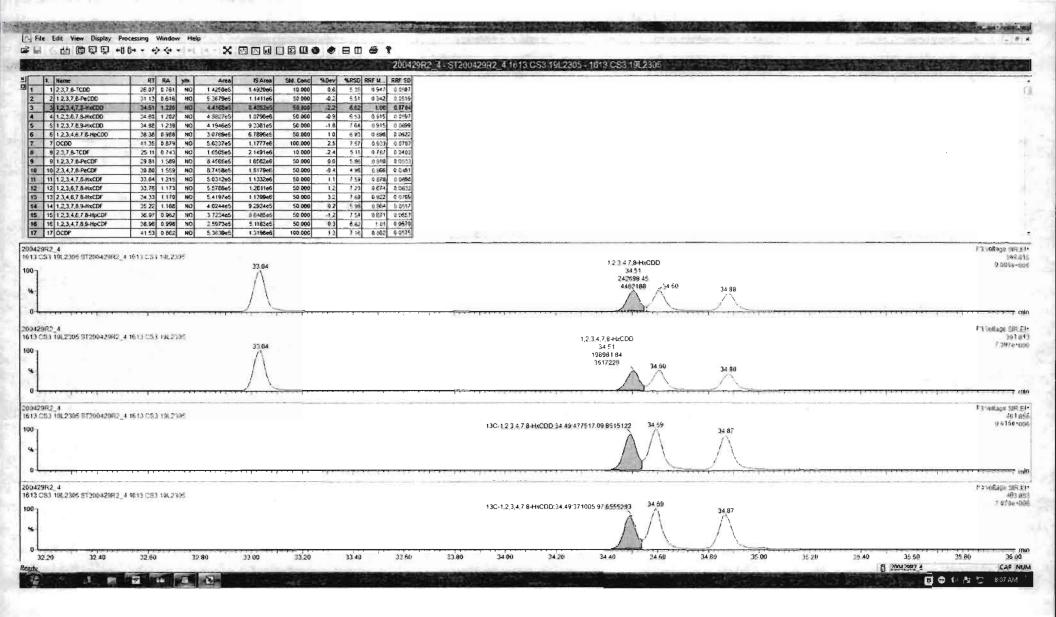
Work Order 2000945

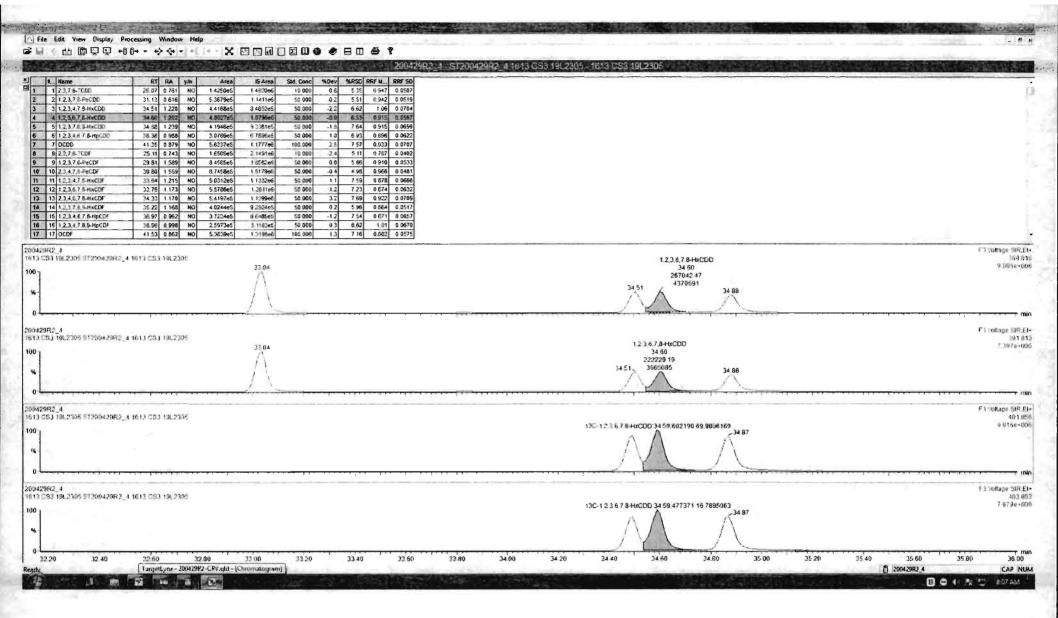

٠,

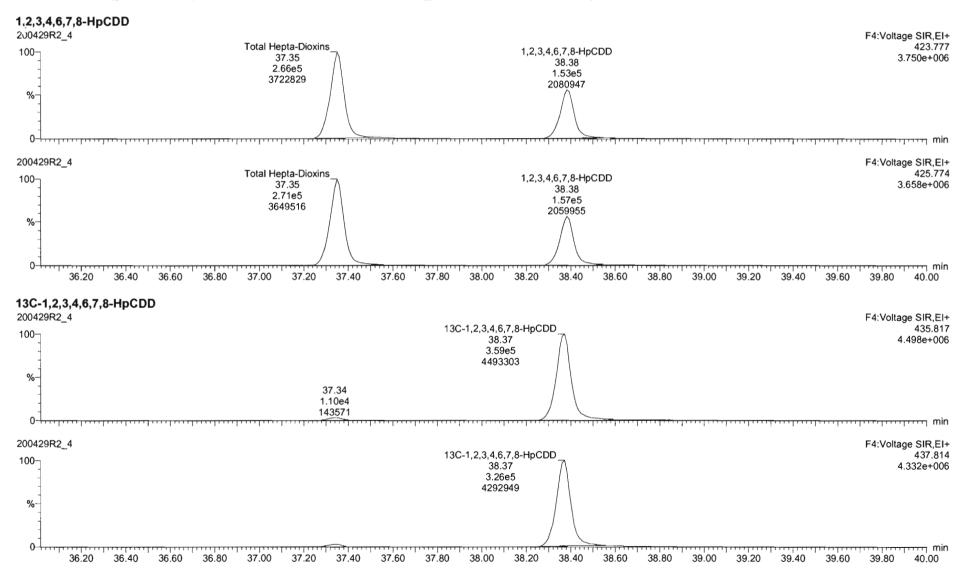

Quantify Sam Vista Analytica		Page 39 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

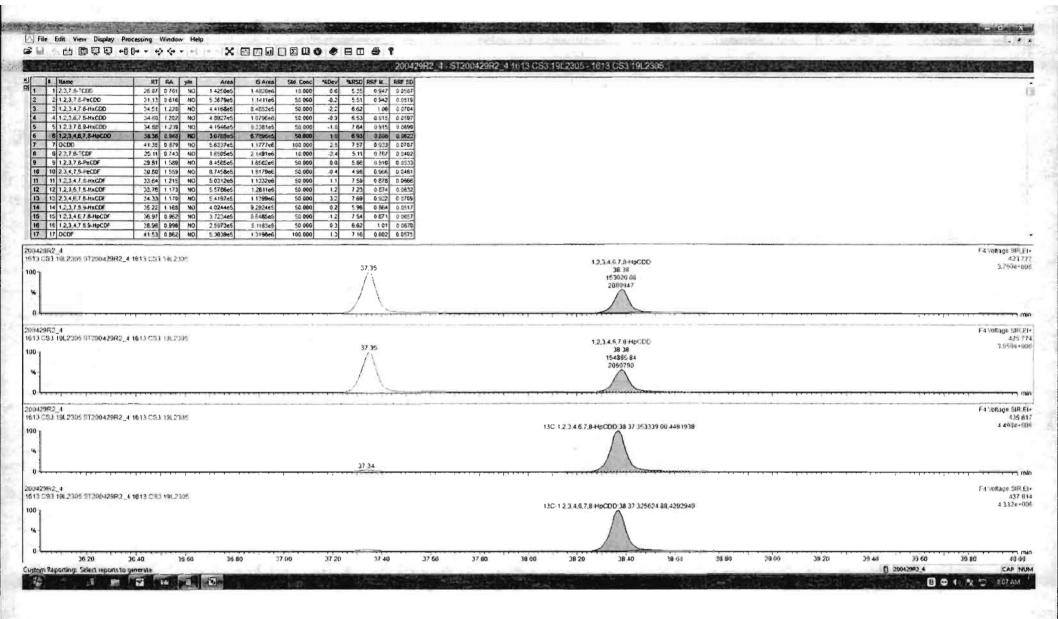

Quantify Sam Vista Analytica		Page 40 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

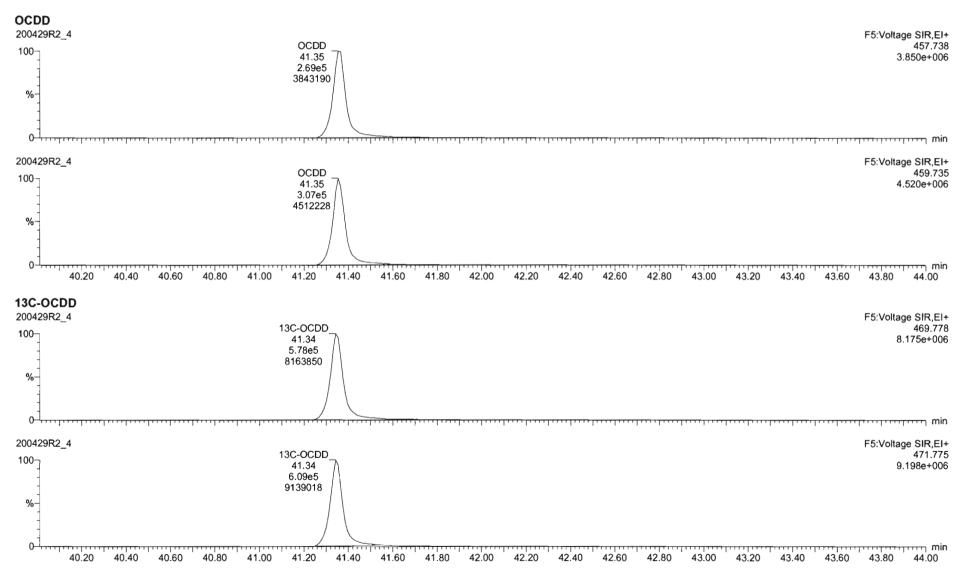

Quantify Sam Vista Analytica		Page 41 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

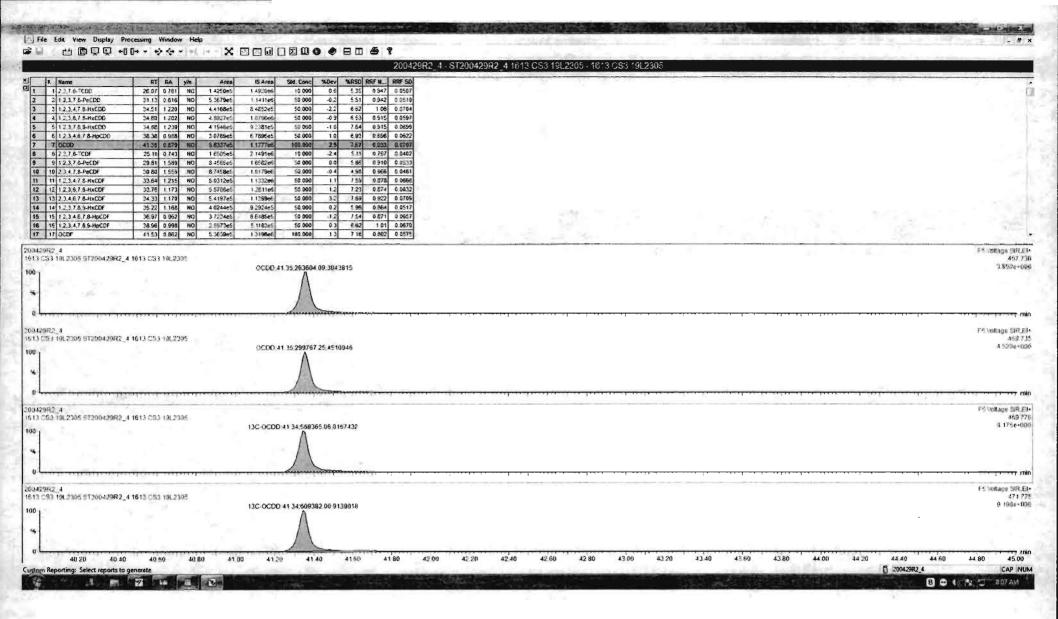


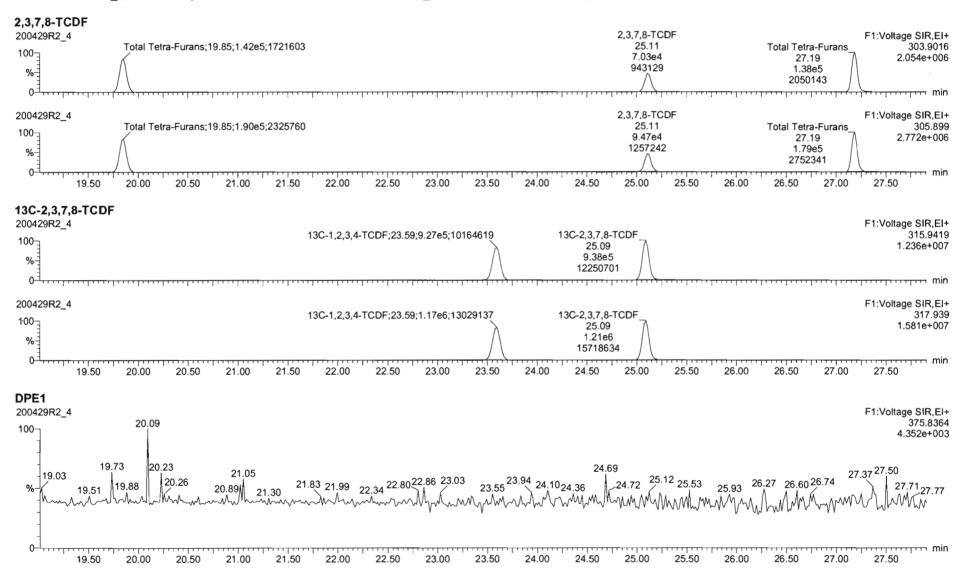

Quantify Sam Vista Analytica		Page 42 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify San Vista Analytic		Page 43 of 78
Dataset:	Untitled	-
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

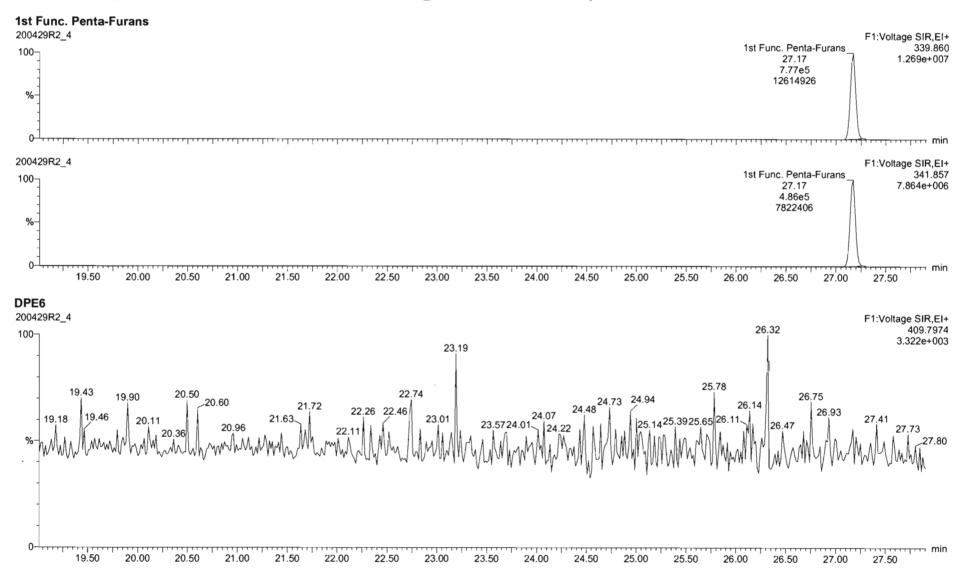


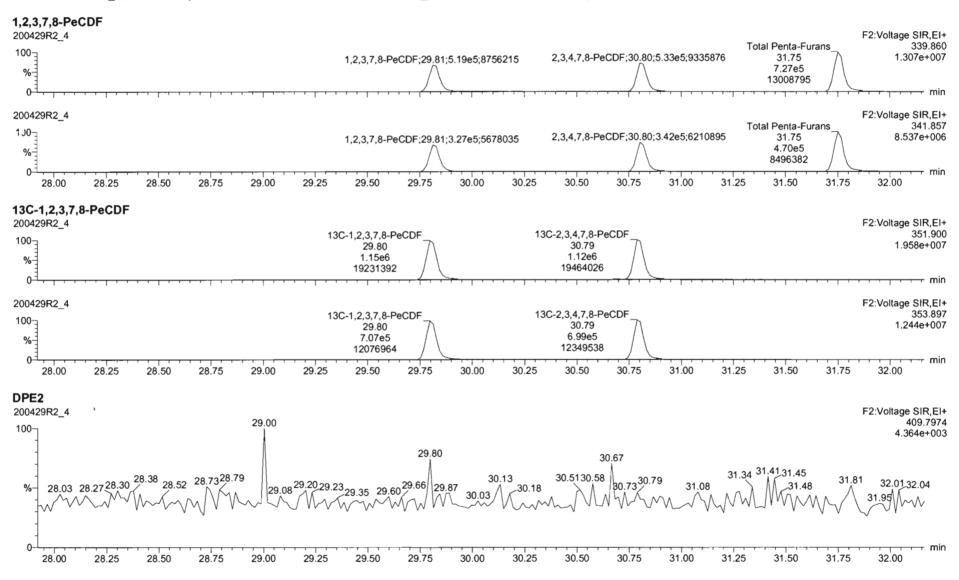


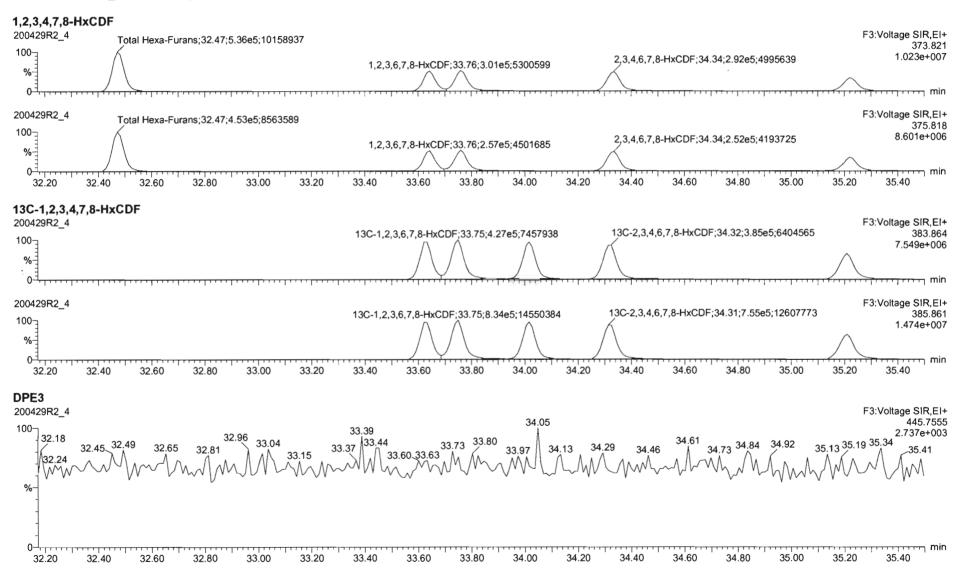

Quantify Sam Vista Analytica		Page 44 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



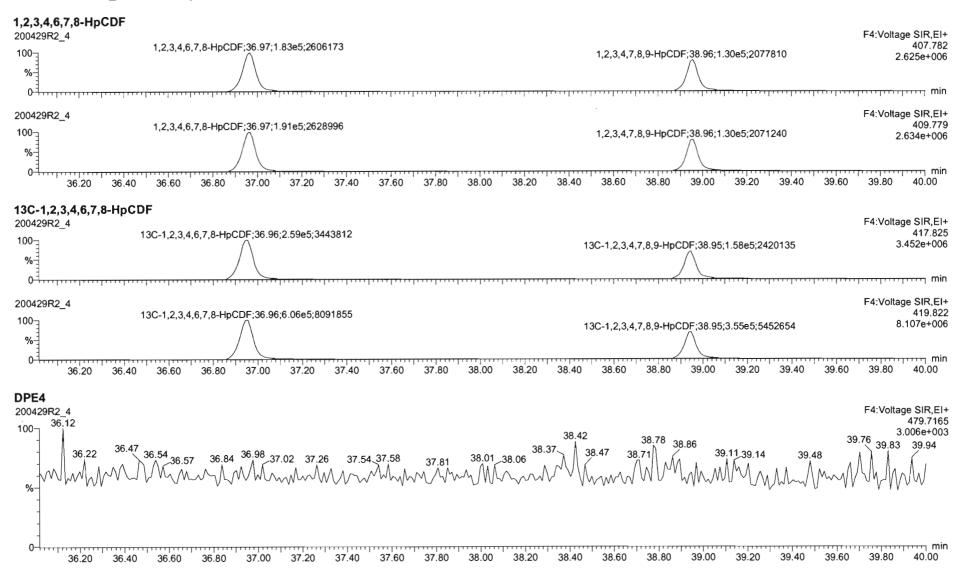
Quantify Sam Vista Analytica		Page 45 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

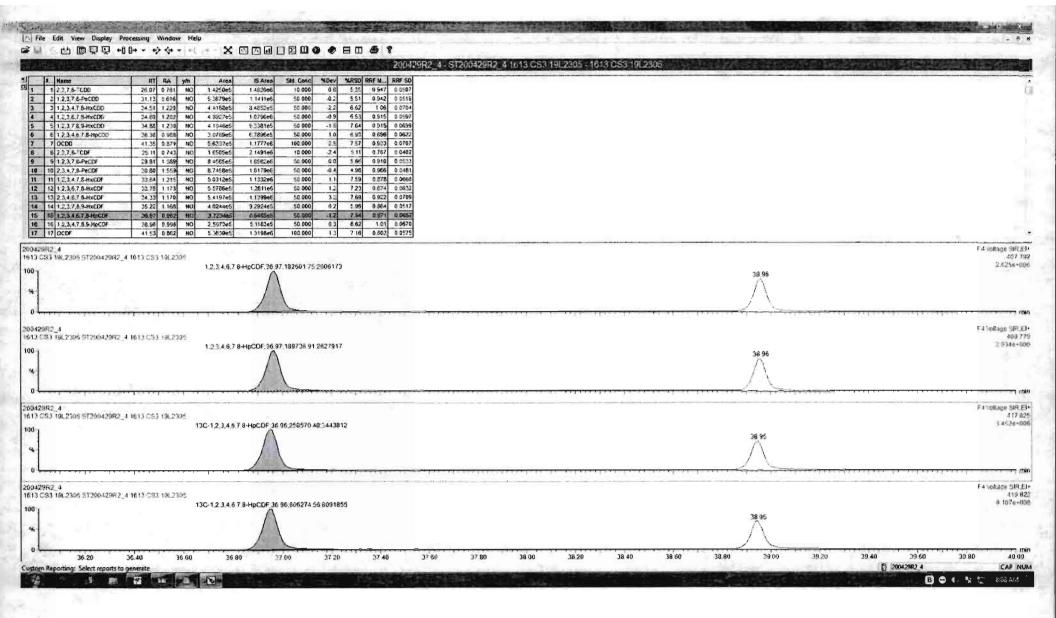


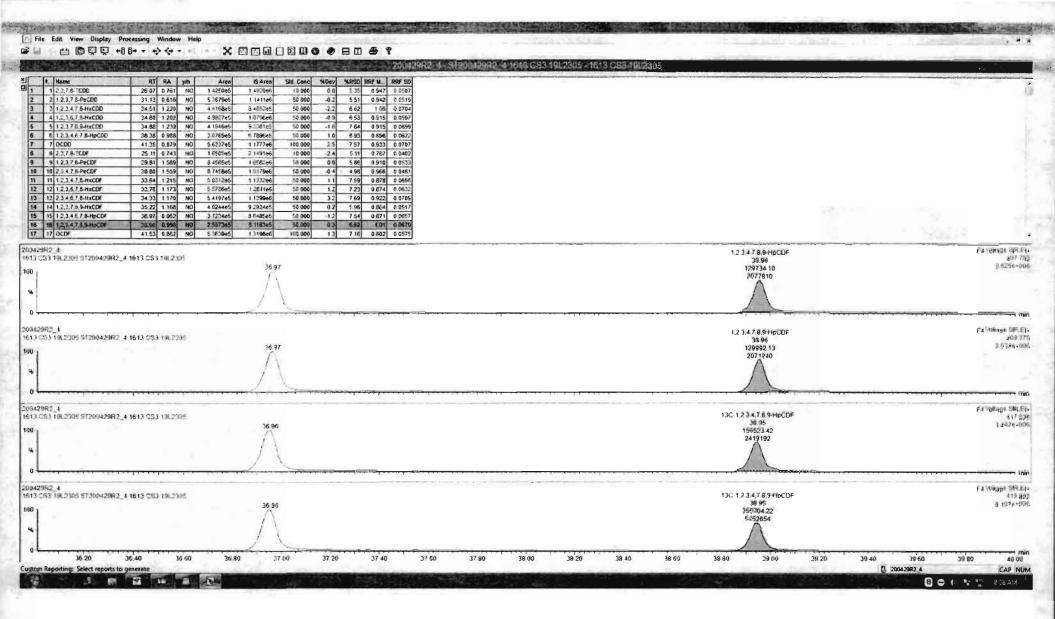

Quantify Sam Vista Analytica		Page 46 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify Sam Vista Analytica		
	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

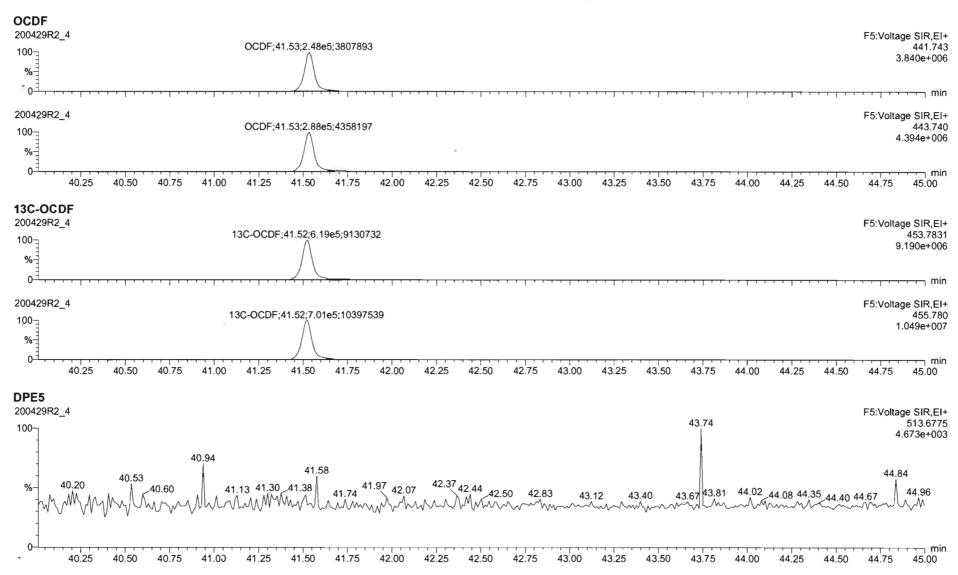
Quantify Sam Vista Analytica		Page 48 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

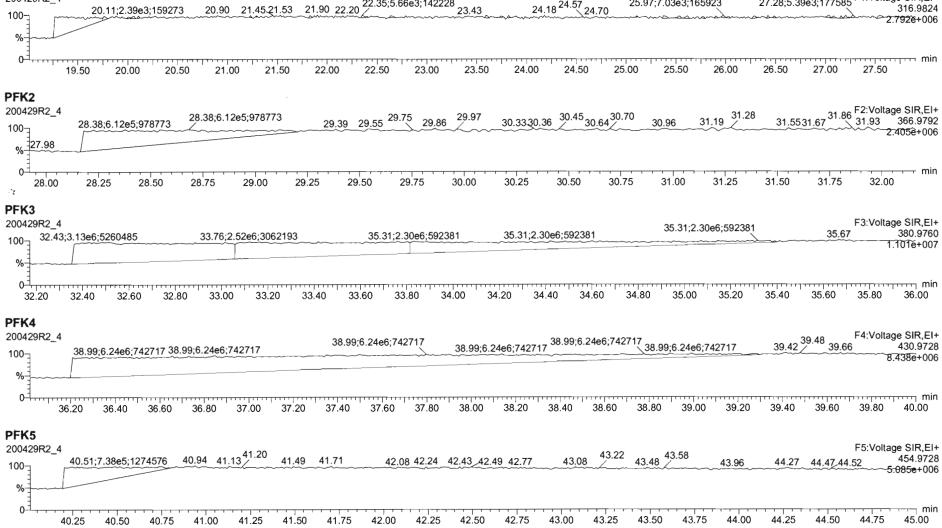

Quantify Sam Vista Analytica		Page 49 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

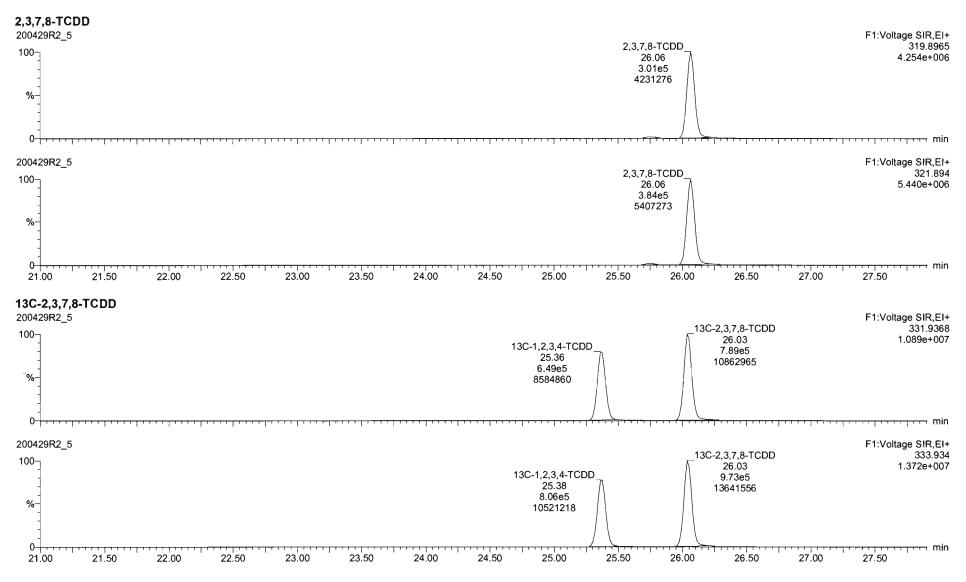


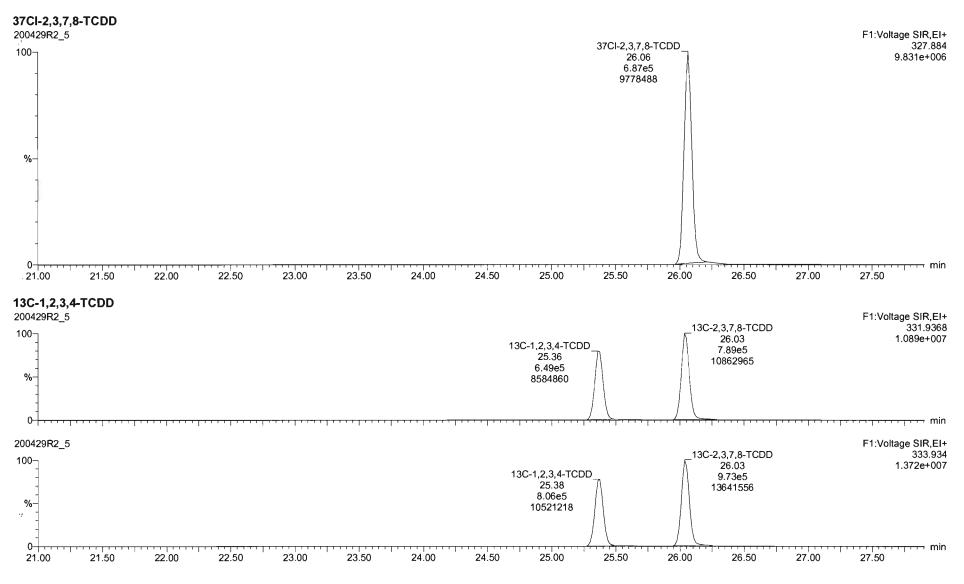

a na	2004982-1-477004	2932_4 1013 GS3	191.2605 10/12/053 191.230	國國際的政策及其中國國際		
Name RT RA ym Area IS Area Std. Conc %Dev 1 2.3,7.6 CDD 26.07 0.761 NO 1.4250e5 1.4970e6 1.0000 0.6	5 35 0 947 0 9507					
212.3,7.8-%CD0 21.12 0.616 H0 5.367965 1141165 50.000 0.2 312.3,4.7.8-%CDD 24.51 1220 N0 4.416865 8.480065 50.000 2.2 41.2,8.7.8-%CDD 24.601 202 N0 4.416865 8.480065 50.000 2.2	6 62 1 06 0 0704					
5 12.17.8 5 HxCDD 34.88 1239 NO 4 19465 9 33816 5 50 000 16 6 12.3.4.6 7 8-HxCDD 38.8 0 988 NO 3.078565 6 78965 50 000 10	7 64 0 915 0 0699					
7 0CDD 4135 0 879 HO 5.6337e5 11777e6 100.000 2.5 6 2.2,7,6 TCDF 25 11 0.743 NO 1.6505e5 2.1491e6 10.000 2.4	7 57 0.933 0.0707					· · · · · · ·
9 12,3,7 8-PeCDF 29 81 1589 HO 5 4585e5 1 8582e5 50 000 0 0 10 2,3,4,7,8-PeCDF 20 80 1 559 MO 8.7458e5 1 9179e6 50 000 -0 4	5 66 0 910 0 0533					
11 1.2.3.4.7.8-HxCDF 33.84 1.215 H0 5.0312e5 1.1332e6 50.000 1.1 12 1.2.3.5.7.8-HxCDF 33.76 1.173 H0 5.5786e5 1.2611e5 50.000 1.2	7 59 0 878 0 0666					
13 2,8,4,6,7,8,4420N 34,33 1,175 100 5,4107e5 1,139846 56,000 12 14 1,2,3,7,8,9,41xCDF 35,22 1,68 NO 4,024465 9,292465 54,000 0,7						
15 1.2.3 4 6 7 8-HpCDF 36 97 0 952 HO 3 727465 6 548565 50 000 1.2 16 1.2.3 4 7 8.5 HpCDF 38.56 0 995 NO 2 597365 5 118365 50 000 0.3	8.62 1.01 0.0670					
17[DCDF 4153 0 862 NO 5 3839e5 1 3198e6 100 000] 1 3 352 4	7 16 0.802 0.0575	±				F3.Voltage Si
33 19L2305 ST200429R2_4 1613 CS3 18L2305 32.47			2 3,4 6 7,8-HxCDF			1.023
$\overline{\Lambda}$	33 64 33 76		34 33 292206 25 4995639			
$/ \langle$	ΛŇ				35.22	
		11.) - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				endered and the statement
R2_4 53 19C2005 ST200429R2_4 1613 C53 19C2095			23467,8HxCDF			F3.VoRage 5 3 3.501
32.47			34 32 249766 00			0.201
	33 64 33 76		4194708		35.22	
		**********	· · · · · · · · · · · · · · · · · · ·			
982_4 53 19L2305 ST20042982_4 1613 C53 19L2305			13C-2.2.4.6.7,8-HxCDF 34-33			F k voltage S
	33 63 33 75	34 82	385350.22 6404565			7 549
	$\langle X \rangle \langle X \rangle$	$/\Lambda$	A		35.21	
					<u> </u>	
R2 4			13C-2,3 4 6.7.8-HxCDF 34 31			F3 Voltage 3
S319L2305 ST200429R2_4 1613 CS3 19L2305	33 62 33 75	34 02	754582 44 12607773			-30 1.474
	11 11	\cap	Δ		35.21	
	$/ \chi / \chi$	1.1			\wedge	

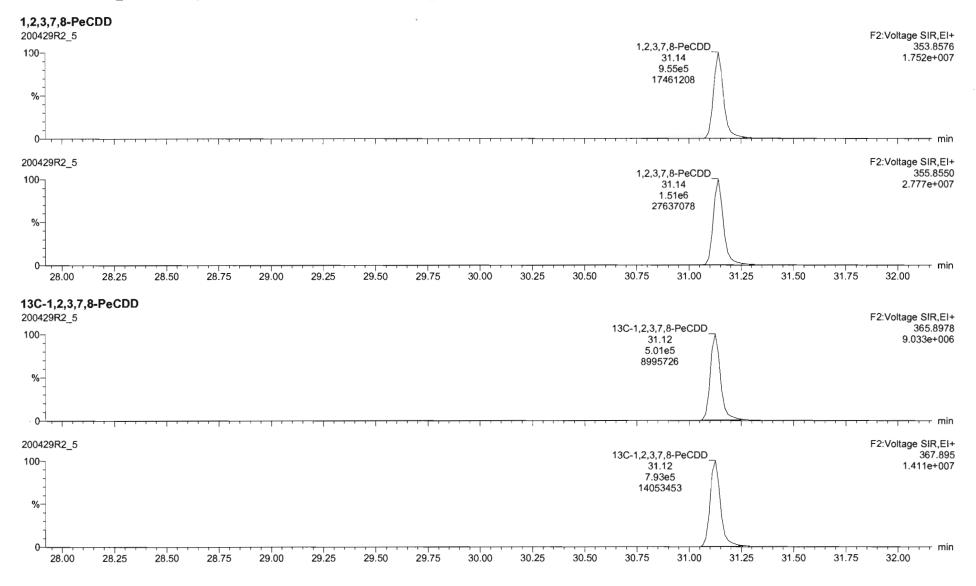
1 1 2.7,8-TCDD 26 07 0 761 NO 1 4259e5 1 4529e6 10 000 2 1.2,7,7-8-TCDD 26 07 0 761 NO 1 4259e5 1 4320e6 10 000 2 1.2,7,7-8-TCDD 34 11 0 616 90 5 2676e5 1 141e6 50 000 3 1.2,3,7,8-14xCDD 34 51 1 220 NO 4 4362e5 8 4552e5 55 000 4 4 1.2,3,7,8-14xCDD 34 80 1 222 NO 4 352e5 50 000 5 1 2,7,8-14xCDD 34 80 1 229 NO 4 352e5 53 000 5 1 2,7,8-14xCDD 34 80 1 239 NO 4 3548e5 53818e5 6000 6 1 2,4,6 78 2 4758e5 55 000 7 7 OCD0 4 32 987 NO 64337e5 1 1777e6 60,900 8 2,2,7,6-TCDF 25 81 71 0 743 RD 1 6558e5 2 149166 1 8000 9 3 42,87,8-5 1 8000 </th <th></th> <th>9R2_4 1813 CS3 19L2305 - 1613 CS3 19L2305</th> <th></th> <th></th>		9R2_4 1813 CS3 19L2305 - 1613 CS3 19L2305		
11 11 12.3.4.7.8-HxCOF 33.64 1.215 NO 6.9.12e5 1.1332e6 50.000 12 12.1.2.3.6.7.8-HxCOF 33.64 1.215 NO 6.9.12e5 1.1332e6 50.000 13 13.2.4.6.7.8-HxCOF 33.76 1.173 90 6.4764e5 1.2814e5 50.000 13 13.2.4.6.7.8-HxCOF 24.33 1.70 90 6.4764e5 1.2384e5 50.000 14 14.1.2.3.7.8.3-HxCOF 35.27 1.96 100 4.0.244e5 10.2024e5 50.000 15 15.2.3.4.7.8.HxCOF 35.27 1.96 100 3.724e5 8.64856 82.000 16 16 1.2.3.4.7.8.HxCOF 36.97 9.82 10.3.724e5 8.64856 82.000	11 7.50 0.578 0.0668 12 7.23 0.574 0.0632 32 7.69 0.522 0.0795 02 5.84 0.5547 12 7.54 0.671 0.0657 13 7.68 0.062 0.0517 12 7.68 0.062 0.0517			F3\otaga SRE
313 C33 19L2305 S1290429R2_4 1613 C33 19L2305 32 47	33 64 33 76	34 34	1.2.3.7.6.9 Hix DF 35.22 216825.00 3390080	373.82 1.023e-00
0428F2_4 13 CS3 19L2305 ST200429R2_4 16 13 CS3 19L2305 0 4 0	33.76	34 34	1 2 3 7 8 9 HxCDF 35 22 165811 8 3 2325490	F 1 \nRage 5/76 3 /5 ar 3 /5 ar 3 /5 ar
429R2_4 \$53 10L2305 9T200420R2_4 1613 CS3 13L2335	33.63 33.75	34.02 34.32	13C-12.3.789+trCDF 3521 31340959 4901516	F i veitage SiR E 363 9 7 549e-0
429R2_4 3 CS3 10L2305 ST200420R2_4 1613 CS3 19L2305	33 62 33 75	34 02 34 31	13C-12.3,7.8,9-+5CDF 35.21 815740.81 9226600	63 Voltage 346 385 8 1 474e-0
0 32.20 32.40 32.60 32.80 22.00 33.20	33.40 33.60 33.80	34.00 34.20 34.40 34.50	34.80 35.00 35.20 25.40 25.60 [] [20042982	

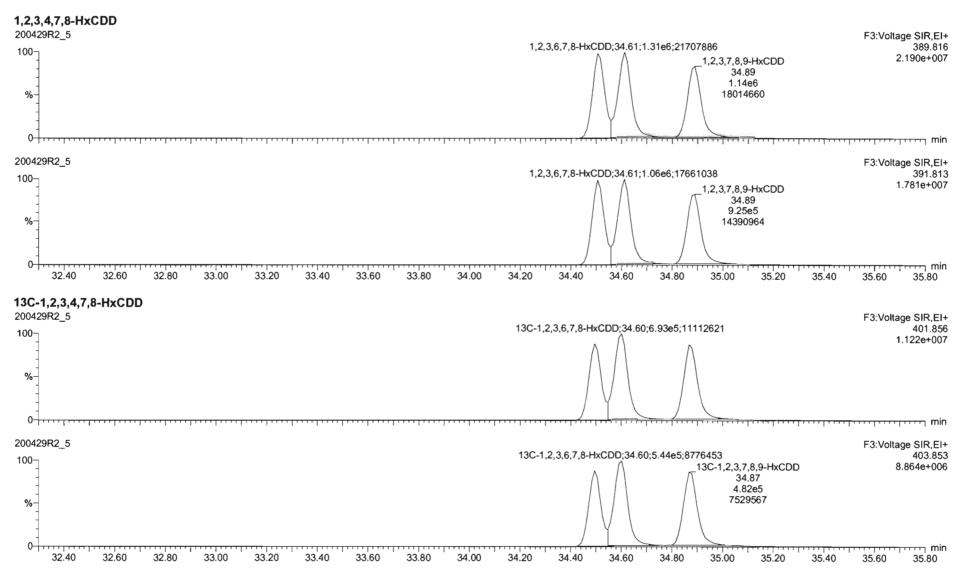

Quantify Samp Vista Analytical		Page 50 of 78
Dataset:	Untitled	
	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

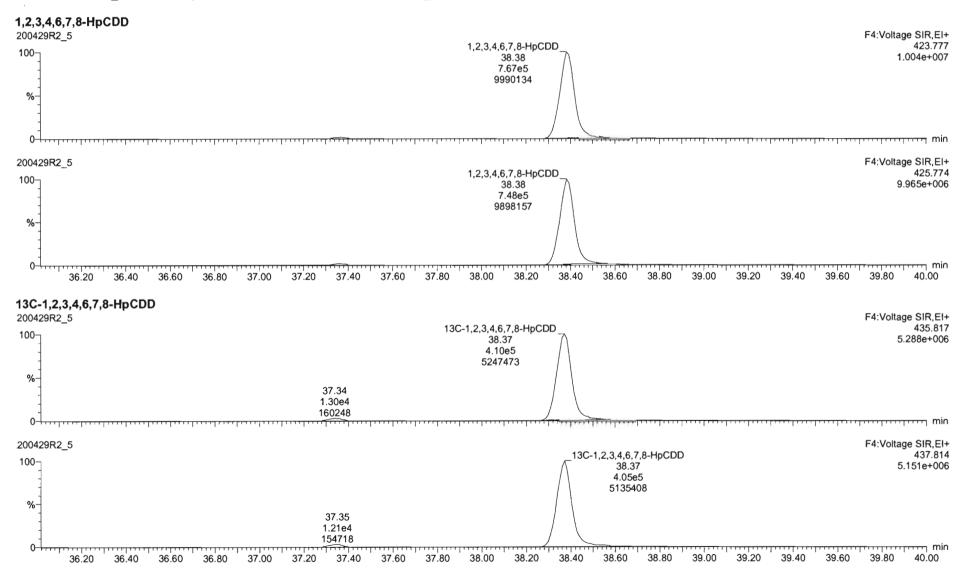


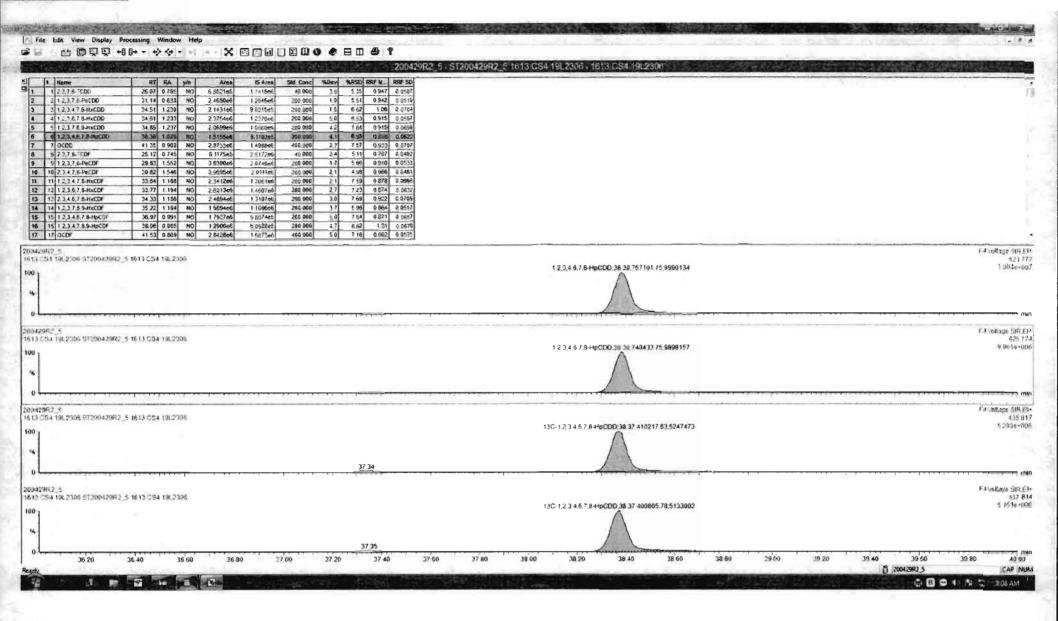

Quantify Sam Vista Analytica		Page 51 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify San Vista Analytica				Page 52 of 78
Dataset:	Untitled			
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Dayl Thursday, April 30, 2020 7:55:15 AM Pacific Dayl			
Name: 20042	9R2_4, Date: 29-Apr-2020, Time: 15:48:39, ID: S	200429R2_4 1613 CS3 19L2305, Description	a: 1613 CS3 19L2305	
PFK1 200429R2_4	20.11:2.39e3:159273 20.90 21.45.21.53 21.90 22.2	22.35;5.66e3;142228 23.43 24.18 24.57 24.70	25.97;7.03e3;165923	27.28;5.39e3;177585 F1:Voltage SIR,EI+ 316.9824

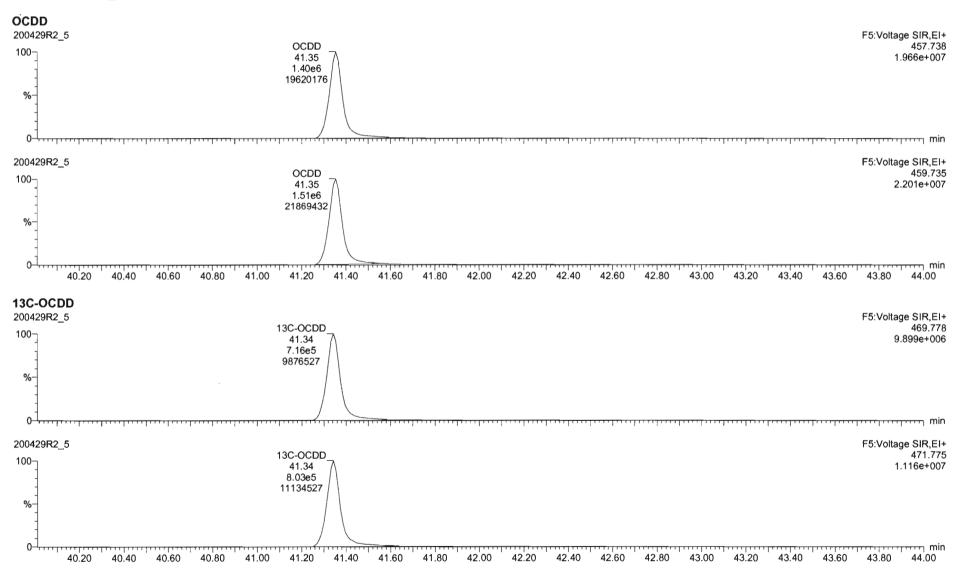

Quantify Sam Vista Analytica		Page 53 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

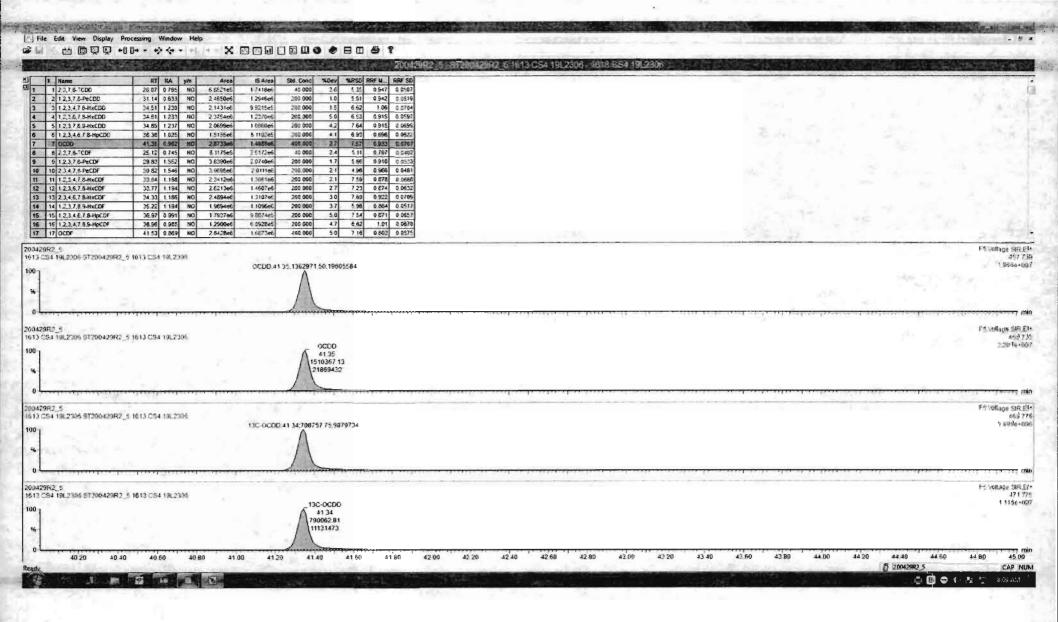

Quantify Sam Vista Analytica		Page 54 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

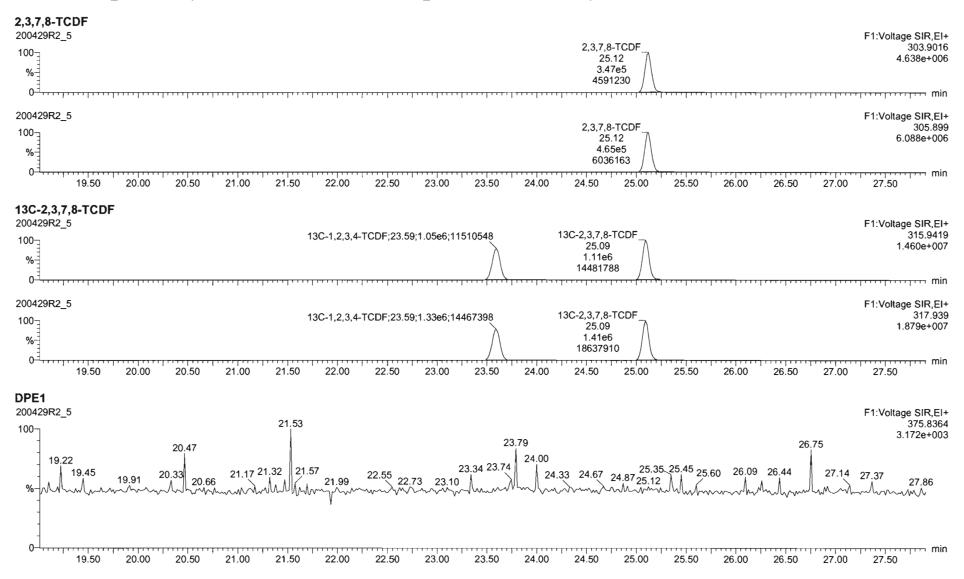

Quantify Sam Vista Analytica		Page 55 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



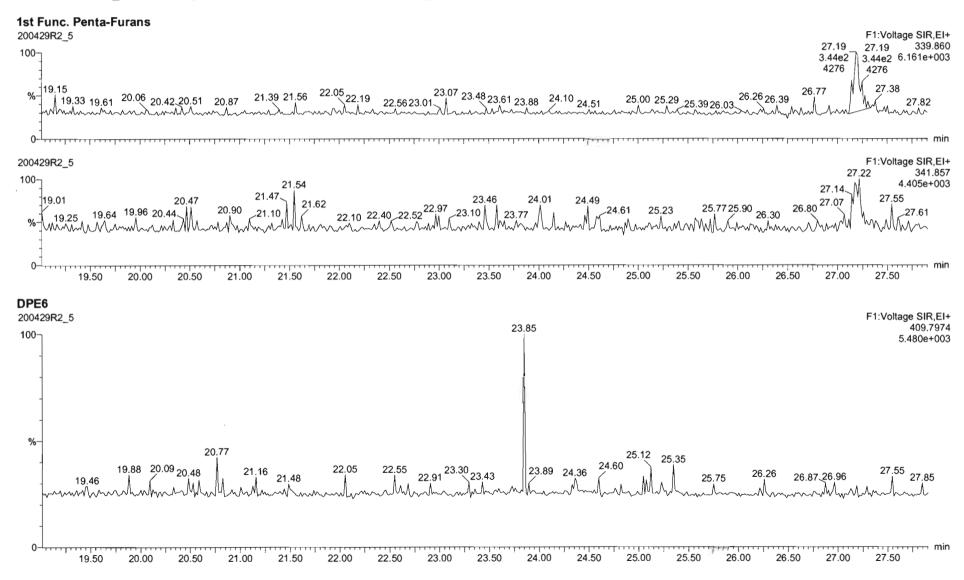
le Report MassLynx 4.1 SCN815 Laboratory	Page 56 of 78
Untitled	
Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	
l	Laboratory Untitled Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time

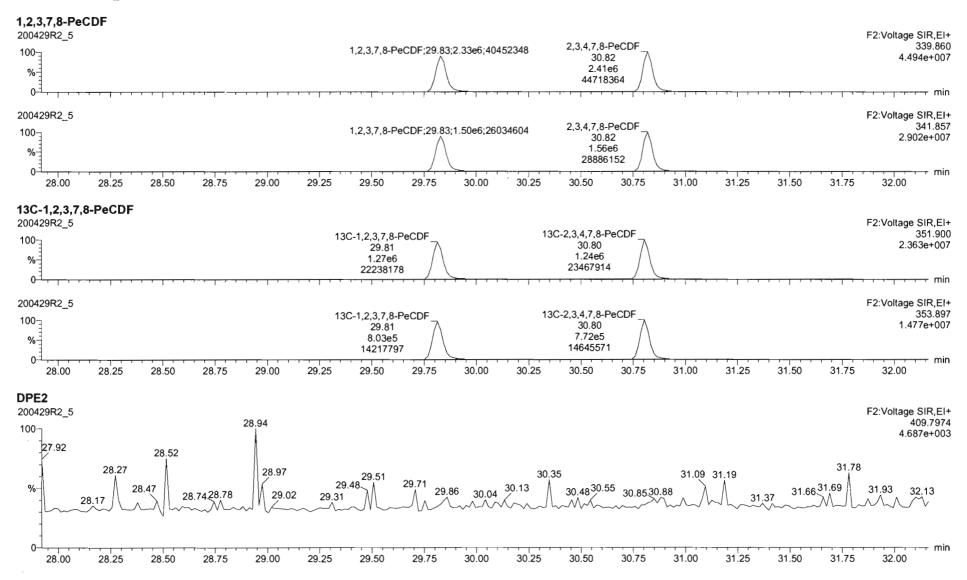


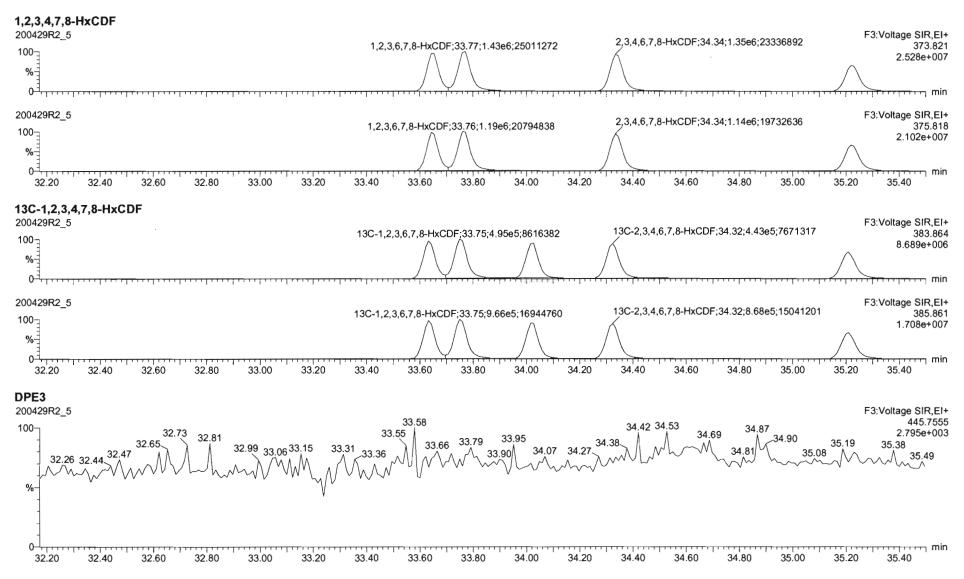

Quantify Sam Vista Analytica	• • •	3CN815	Page 57 of 78
Dataset:	Untitled		
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 A Thursday, April 30, 2020 7:55:15 A		



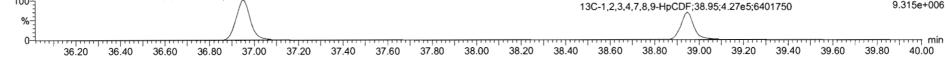
Quantify Sam Vista Analytica		Page 58 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

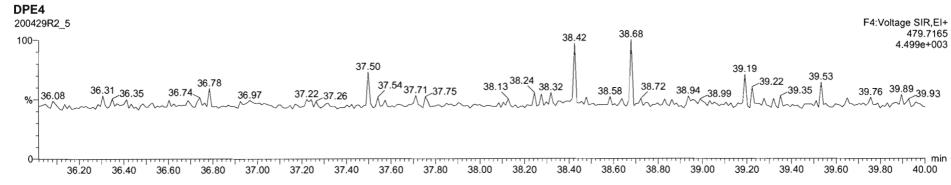


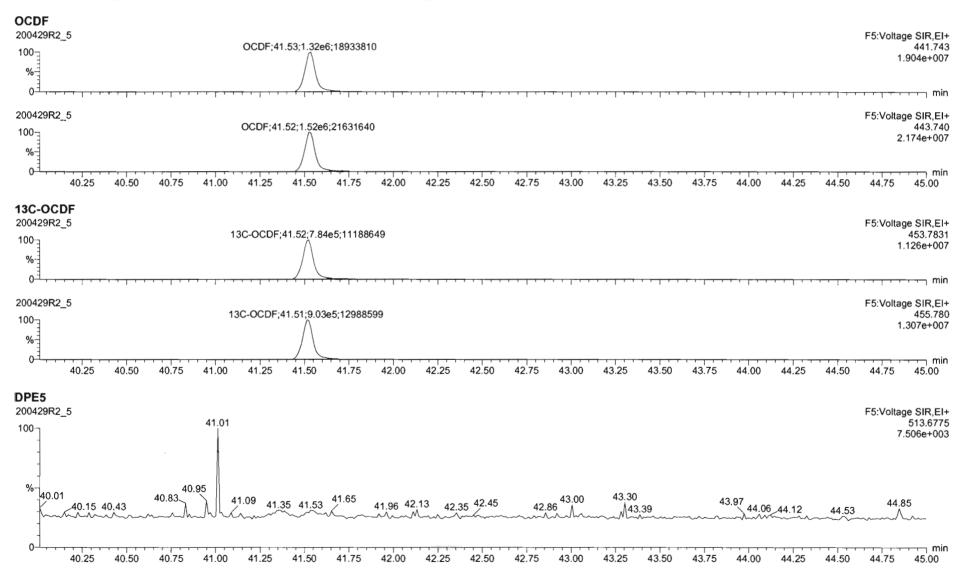

Quantify Sam Vista Analytica		Page 59 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 60 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

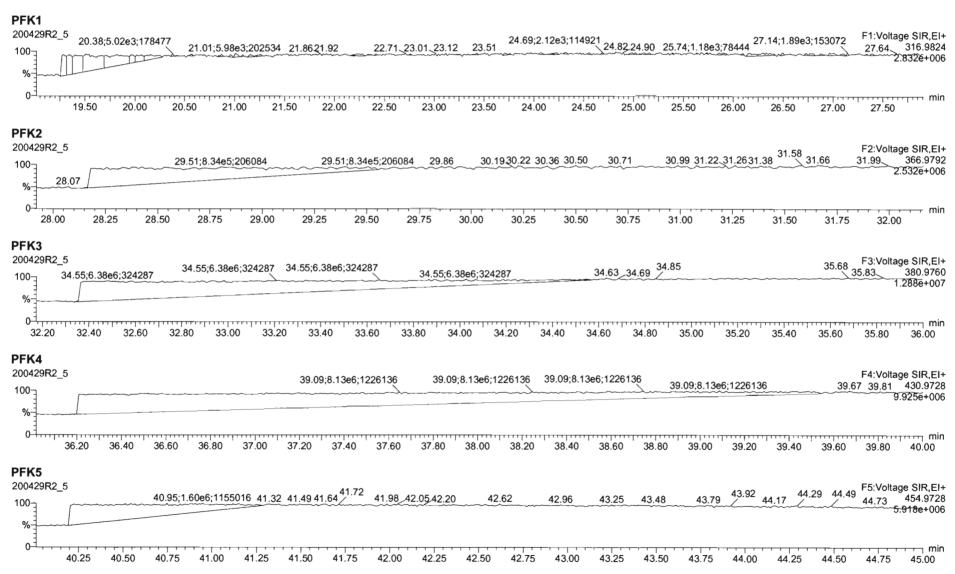
Quantify San Vista Analytica	• •	MassLynx 4.1 SCN815	Page 61 of 78
Dataset:	Untitled		
Last Altered: Printed:		30, 2020 7:55:03 AM Pacific Daylight Time 30, 2020 7:55:15 AM Pacific Daylight Time	

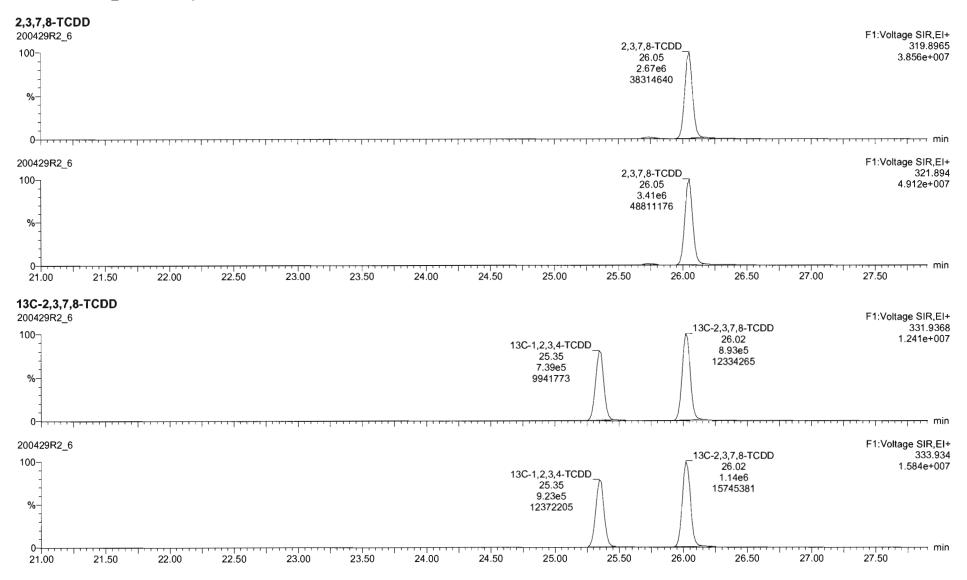


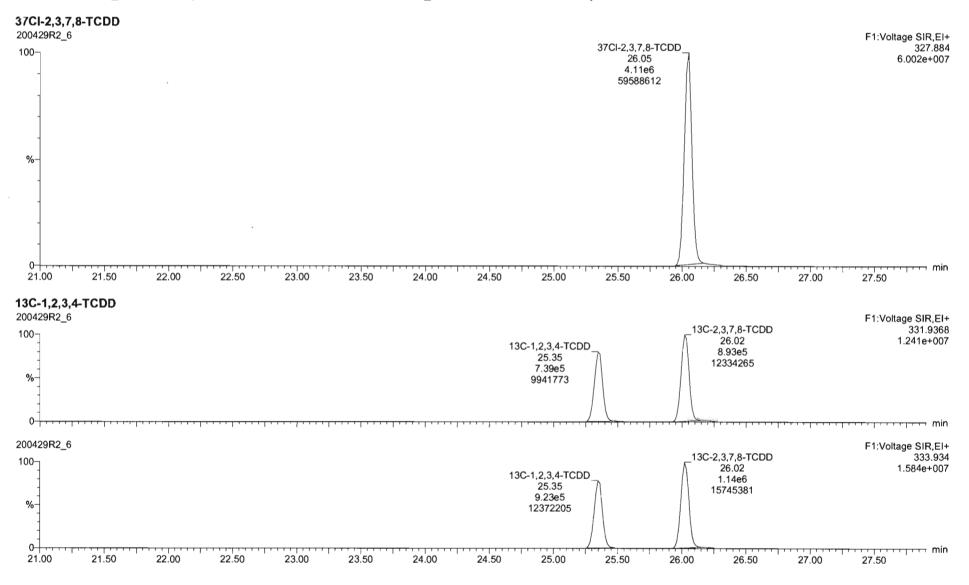

Quantify Sam Vista Analytica		Page 62 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

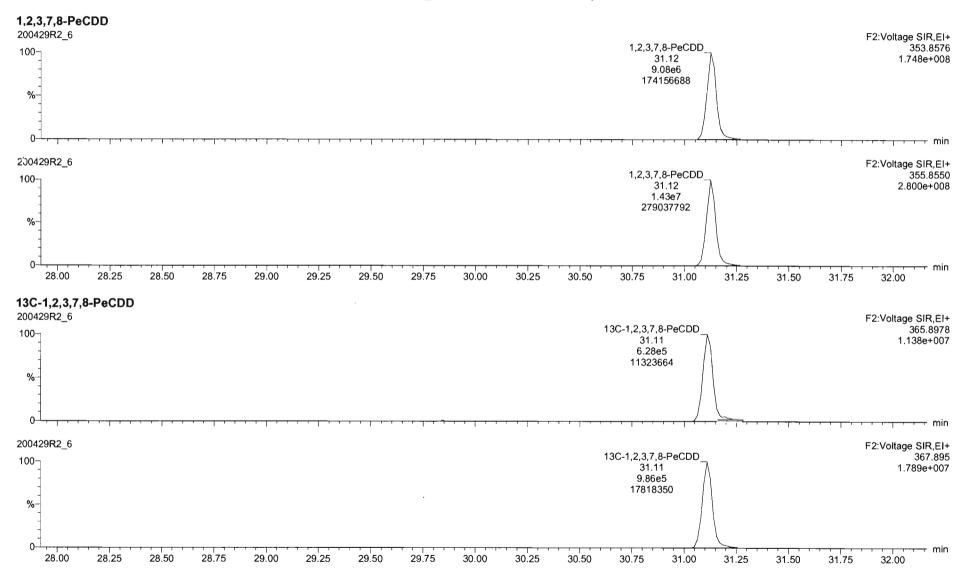

8 Name RT RA y/m Area IS Area Ski Conc %Dev %ARS	200429112 0 - 51200429 SD RRF M RRF SD	H2_2 1013 L34 19L2	306 - 1613 CS4 19L2306		
1 237.6 TCDD 26.07 0.765 NO 6.652145 1.741646 40.000 2.6 5. 2 12.3,7.6.%CDD 31.14 0.633 NO 2.465066 1.2946465 200.000 1.0 5.1	51 0 942 0 0515				
21123.47.64HxCDD 24.51 1.230 MO 2.1431.65 9.9275-55 200.000 1.5 6.6 412.3.67.64HxCDD 24.61 1.233 NO 2.375466 1.227065 200.000 1.5 0.6 511.3.7.6 9.44XCDD 24.61 1.233 NO 2.375466 1.227065 200.000 5.0 6.0 511.3.7.6 9.44XCDD 34.89 1.237 NO 2.0569965 1.0562065 200.000 4.2 7.4	53 0 515 0 0597				
E 12.3.4 € 7 8-HpCDD 28.38 1.025 NO 1.515566 5.1102e5 209.009 4.1 6.0 7 DCDD 41.35 0.902 ND 2.87336€ 1.498646 410.000 2.7 7.9	0 696 0 0622				
6 2 3.7.6-TCDF 25 12 0 745 NO 8 1175e5 2 5172e6 40 000 2.4 5 9 1 2.3.7.6-TeCDF 29 82 1 552 NO 3 8390e6 2 0740e6 200 000 1.7 51	6 0 910 0 0533				
10 2.2.4.7.5.PeCDF 30.82 1.5.65 M0 3.565645 2.011165 200.000 2.1 4.4 11 12.3.4.7.5.PeCDF 33.64 1.185 NO 2.2.4.1266 1.3061166 200.000 2.1 7.1 12 12.3.6.7.5.PextCDF 33.77 1.154 NO 2.2.4.1266 1.3061166 200.000 2.7 7.1	9 0 878 0 0666				
12 234675HxCDF 2433 1165 NO 24894et 1310746 205000 3.0 77 14 123783-HxCDF 3522 1194 MD 1.9694et 1.1096e6 286.000 3.7 53	59 0 922 0 0769				
15 12.3.4.6.7.8-HpcDF 28.97 0.951 NO 1.750766 9.607465 280.000 5.8 7 1 15 12.3.4.7.8.5-HpcDF 28.96 0.955 NO 1.250066 6.652665 286.000 5.8 7 1 17 0CDF 24.350 0.956 NO 2.242866 0.867366 0.467366 0.400 0.00 5.0 7	1 01 0.0670				
R2_5 84 19L2.006 51200429R2_5 1013 CS4 19L2306	al and short			1.2.3.7.8.9-HxCDF	¥3 Voltage SKEL 1738
a preside in considerally to construct the	33 64 33 77		34 34	35 22 1082890 00	2.5286+0
	$(\setminus (\setminus$		-/\	16429582	
······································			the second secon		
R0_5 54 19L2306 51250429R2_5 1613 C54 19L2306				1.2.3.7.8.9-HxCDF	F%\oldage SIR # 375.8
	33 64 33 76		34 34	35.22 90662113 13832661	2.1026-0
	$f \setminus f \setminus$		$/\lambda$	\wedge	
		*****			······································
R2_5 54 19L2306 9T290429R2_5 1613 CS4 19L2396	J3 63 33 75			13C-12.3.7.8.9+1xCDF 35 21	F 3Nottage StR (1831 3 689e-0
	V V 13.03	34.03	34 32	375762 75 5929687	
	JVV	A	$\mathcal{N}_{\mathbf{n}}$	\wedge	
R2_5				13C-1,2,3,7,8,9-HxCDF	F i koltage slikt
S4 19L2506 ST300429R2_5 1613 CS4 19L2506	33 63 33 75	34 02	34,32	35.21 733886.69	385.8 1703e+0
	$(\Lambda, f\Lambda)$	\wedge	\square	11223726	
		34 02	24 32		

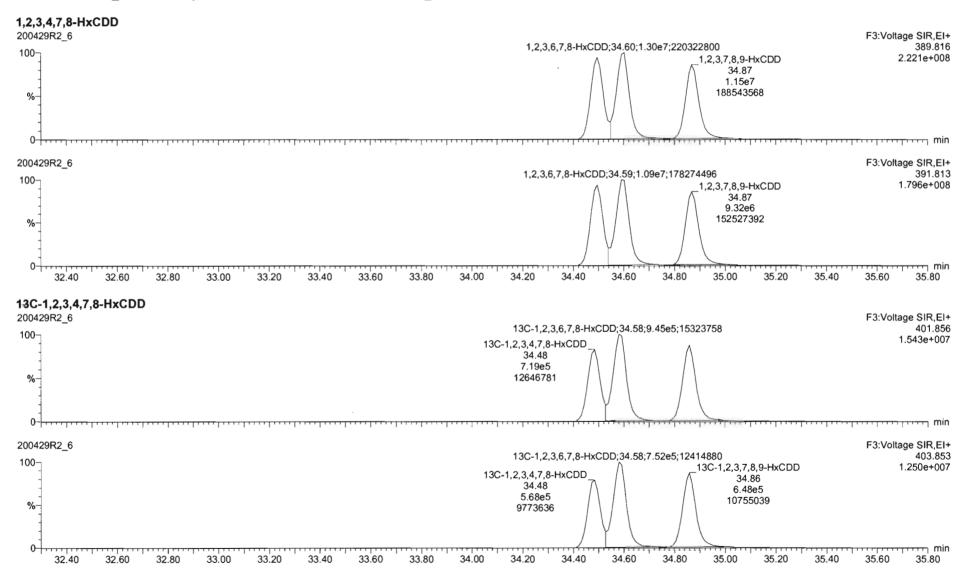
Quantify Sam Vista Analytica			Page 63 of 7
Dataset:	Untitled		
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time		
Name: 20042	9R2_5, Date: 29-Apr-2020, Time: 16:35:58, ID: ST200429R2_5 1613 (CS4 19L2306, Description: 1613 CS4 19L2306	
1,2,3,4,6,7,8-H 200429R2_5 100	HpCDF 1,2,3,4,6,7,8-HpCDF;36.97;8.93e5;12410312	1,2,3,4,7,8,9-HpCDF;38.96;6.40e5;9641157	F4:Voltage SIR,E 407.78 1.249e+00
0 ¹ ////////////////////////////////////	л.;, 1,2,3,4,6,7,8-HpCDF;36.97;9.01e5;12478789	1,2,3,4,7,8,9-HpCDF;38.96;6.50e5;9898965	F4:Voltage SIR,El 409.77 1.256e+00
%- 0	0 36.40 36.60 36.80 37.00 37.20 37.40 37.60 37.80 3	8.00 38.20 38.40 38.60 38.80 39.00 39.20 39.40 39.60	
13C-1,2,3,4,6 , 200429R2_5 100⊐	7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF;36.96;2.92e5;4052589		F4:Voltage SIR,EI 417.82
·%- 0		13C-1,2,3,4,7,8,9-HpCDF;38.95;1.83e5;2795126	4.085e+00 ۰۰٫۰۰۰٫۰۰۰٫۰۰۰٫۰۰۰٫۰۰۰ mi
200429R2_5 100- ₃	13C-1,2,3,4,6,7,8-HpCDF;36.96;6.89e5;9263722	13C-1,2,3,4,7,8,9-HpCDF;38.95;4.27e5;6401750	F4:Voltage SIR,E 419.82 9.315e+00

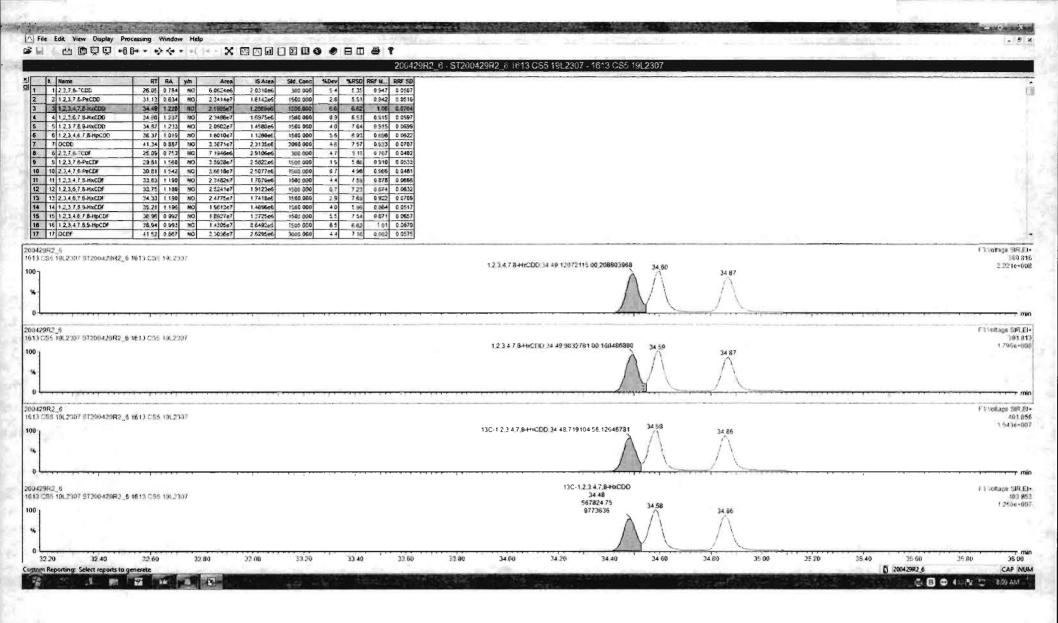


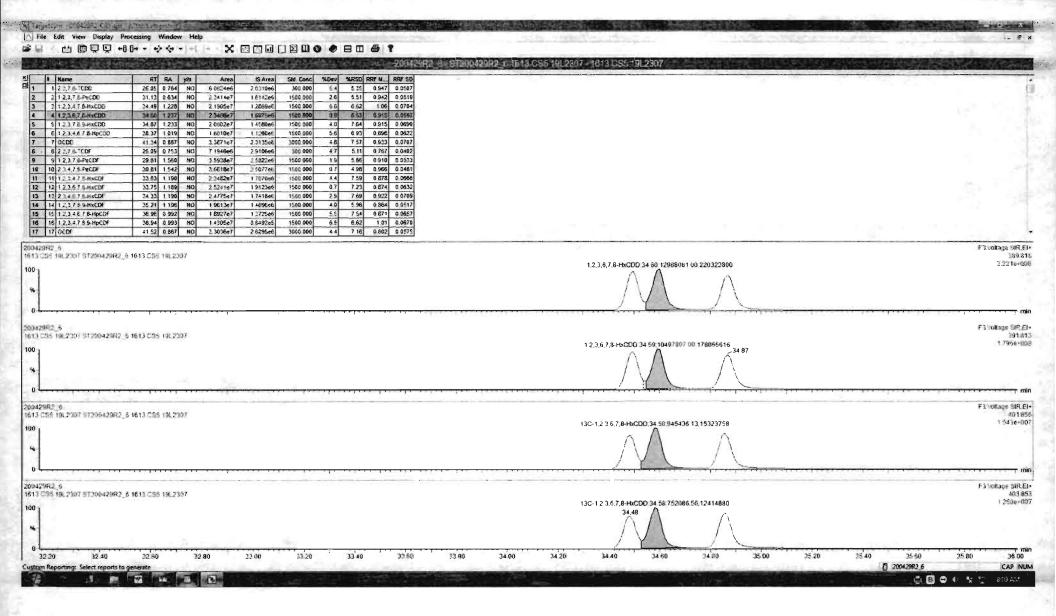

Quantify Sam Vista Analytica		Page 64 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 65 of 7
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

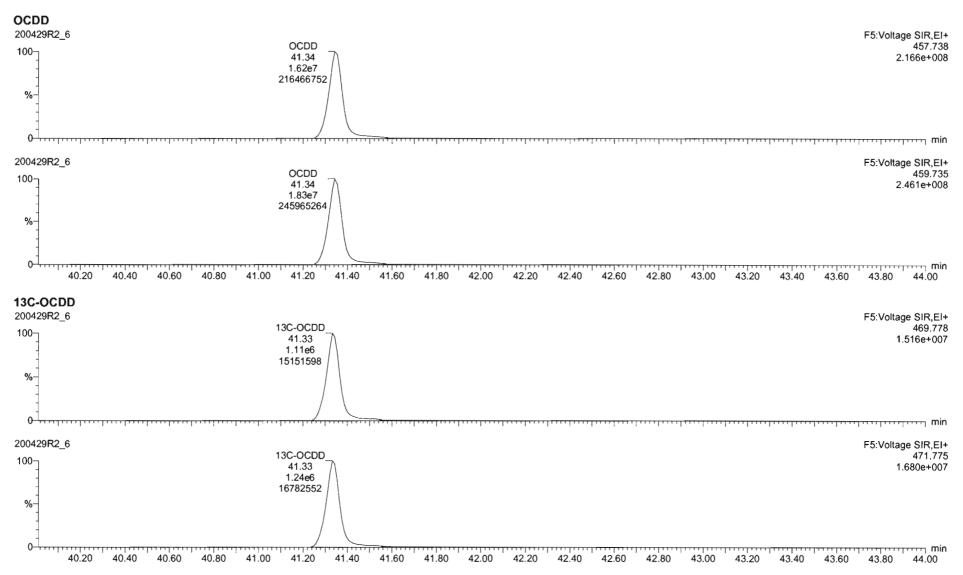

Quantify Sam Vista Analytica		Page 66 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

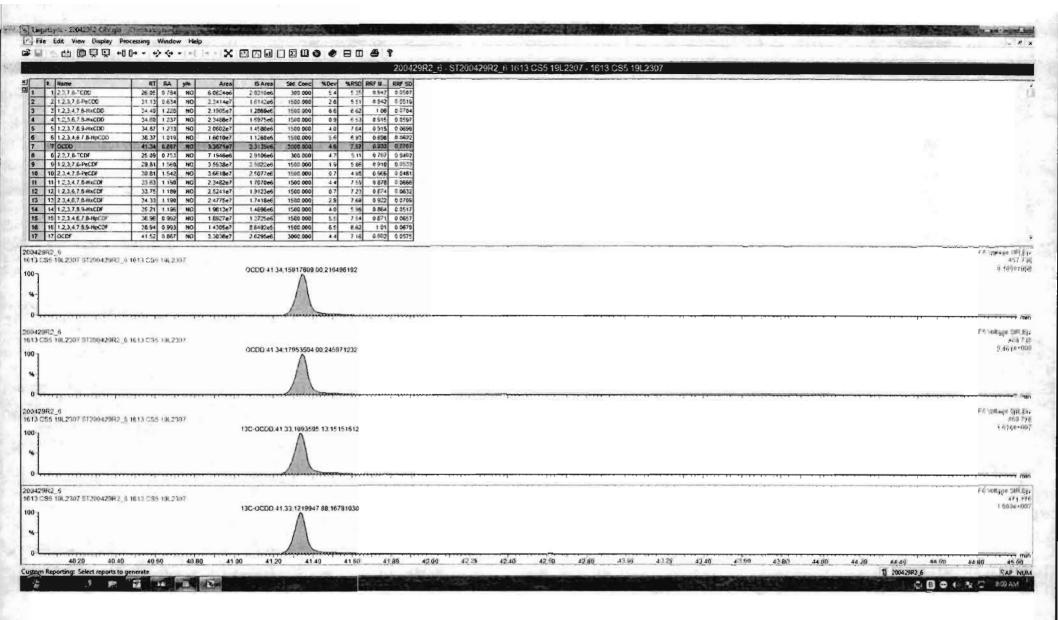

Quantify Sam Vista Analytica		Page 67 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

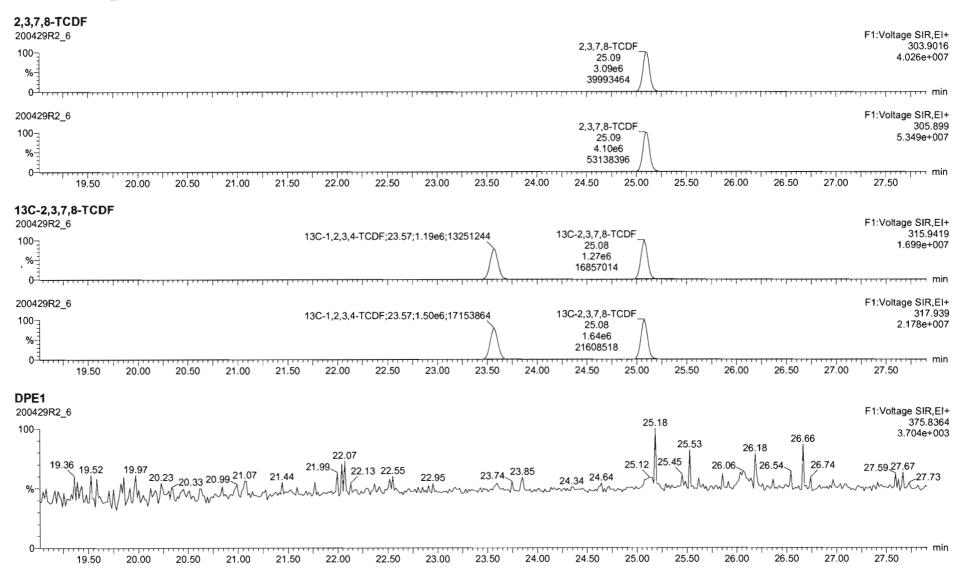



Quantify Sam Vista Analytica		Page 68 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

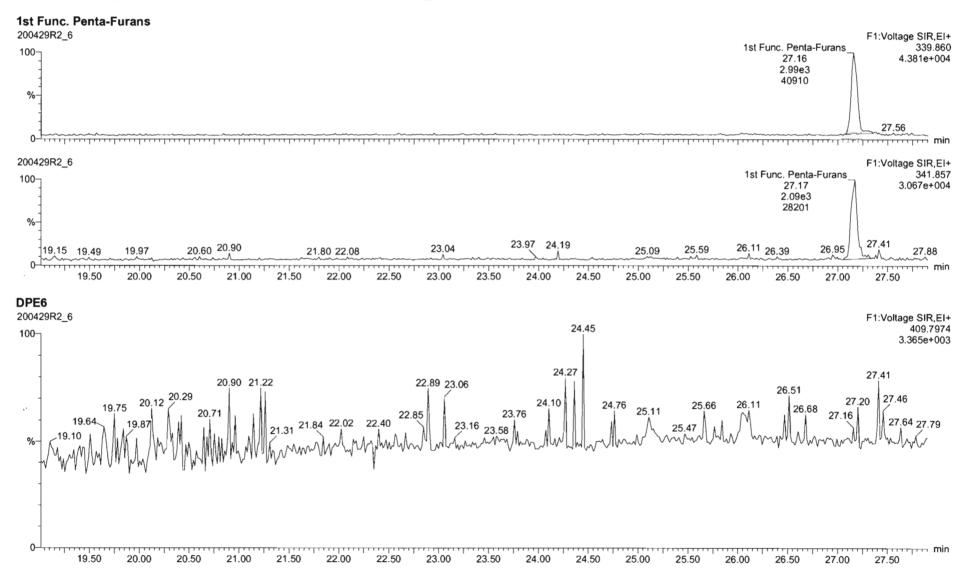
Quantify Sample Report Vista Analytical Laboratory		MassLynx 4.1 SCN815	Page 69 of 78
Dataset:	Untitled		
Last Altered: Printed:		il 30, 2020 7:55:03 AM Pacific Daylight Time il 30, 2020 7:55:15 AM Pacific Daylight Time	

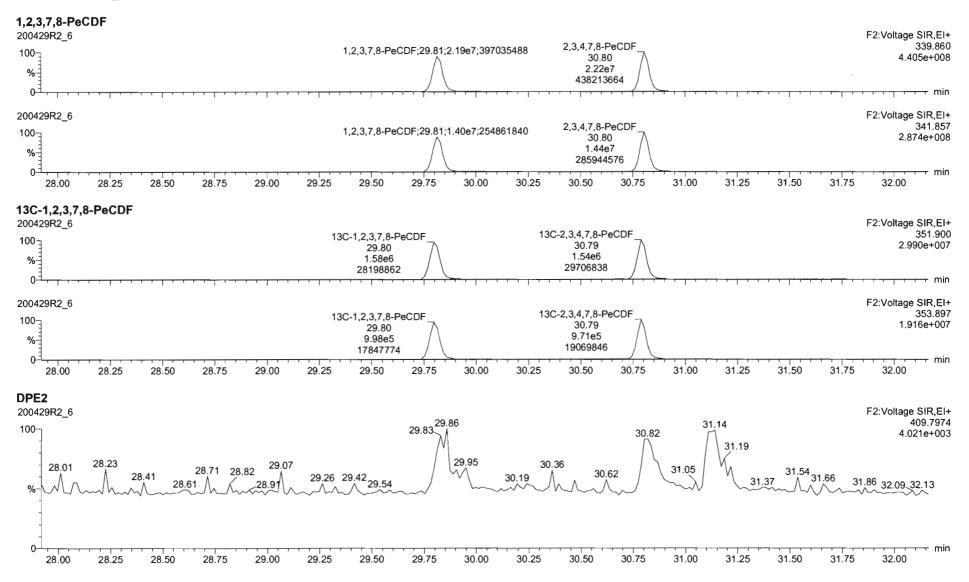


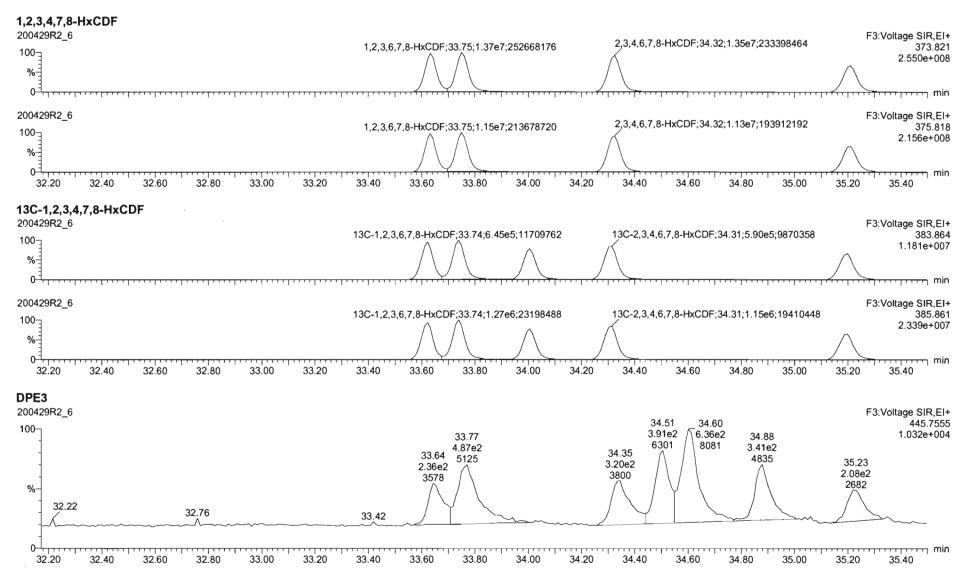


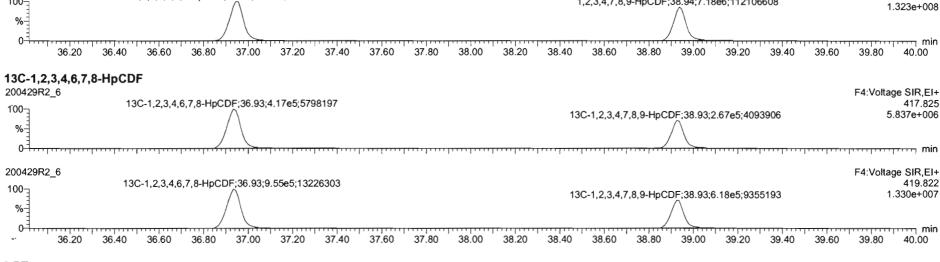

ista Analytica	ple Report MassLynx Il Laboratory	4.1 SCN815					Page 70 of
ataset:	Untitled						
ast Altered: rinted:	Thursday, April 30, 2020 7:5 Thursday, April 30, 2020 7:5						
ame: 20042	9R2_6, Date: 29-Apr-2020, T	ime: 17:23:21. ID: ST2004	29R2 6 1613 CS5	19L2307. Descriptio	on: 1613 CS5 19L2	307	
2,3,4,6,7,8-H 0429R2_6			_				F4:Voltage SIR,
00 					,7,8-HpCDD 18.37 08e6 050856		423.7 1.047e+(
 0-+							
0429R2_6							F4:Voltage SIR,I
00			7	5,7,8-HpCDD 38.36 .93266 2200032			425. 1.027e+(
0		7.00 37.20 37.40 37	60 37.80 38.00	38.20 38.40 3	8.60 38.80 39.0	0 39.20 39.40	39.60 39.80 40.0
C-1,2,3,4,6, 0429R2_6	7,8-нрсоо						F4:Voltage SIR,
00 			13C-1,2,3,4,6 38, 5.77 7647	35 7e5			435.6 7.688e+(
0-+							r F4:Voltage SIR,E
00 			13C-1,2,3,4,6 38. 5.50 7075	35 le5			417.6 417.6 7.126e+0

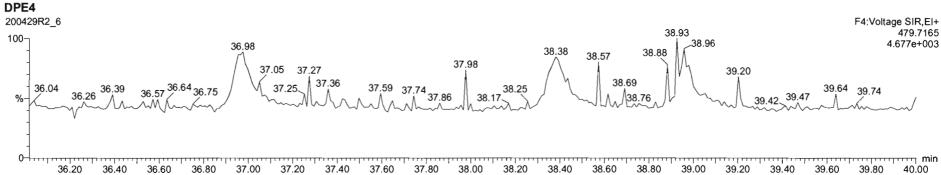
Quantify Sam Vista Analytica		Page 71 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	



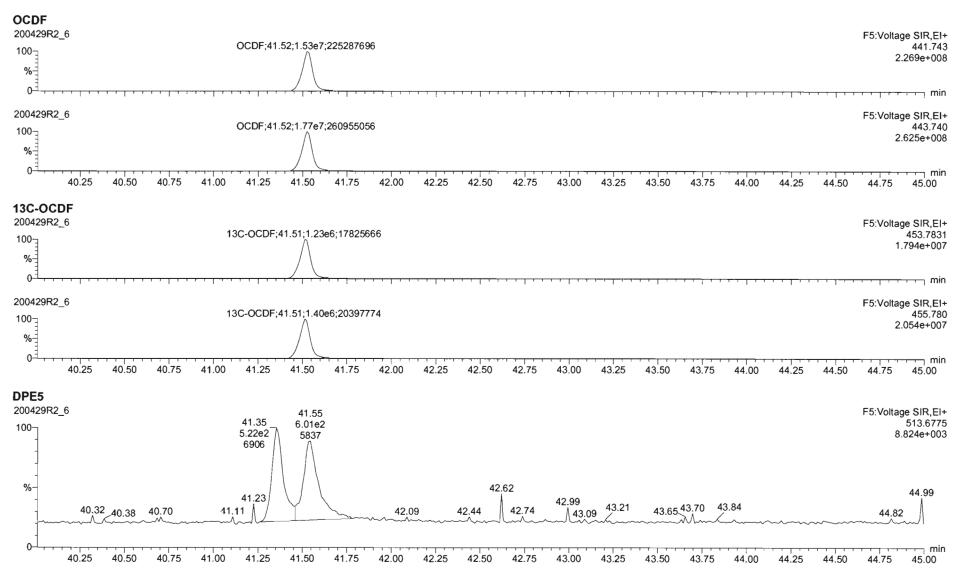

Quantify Sam Vista Analytica		Page 72 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

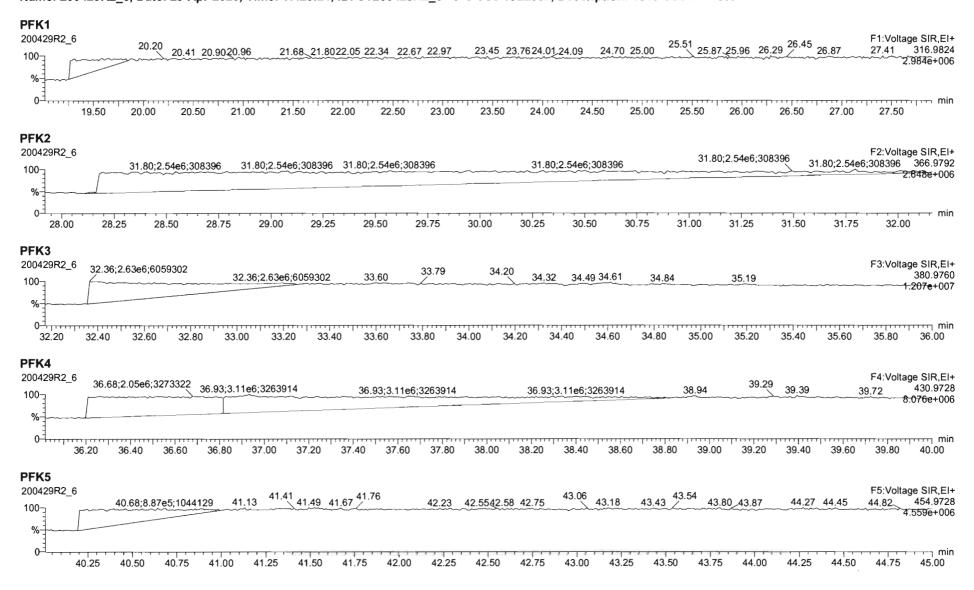

Quantify Sam Vista Analytica	· · · ·	Page 73 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	


Quantify Sample Report Vista Analytical Laboratory		MassLynx 4.1 SCN815	Page 74 of 78
Dataset:	Untitled		
Last Altered: Printed:	Thursday, Apri Thursday, Apri	30, 2020 7:55:03 AM Pacific Daylight Time 30, 2020 7:55:15 AM Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 75 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	




Quantify Sam Vista Analytica			Page 76 of 7
Dataset:	Untitled		
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time		
	9R2_6, Date: 29-Apr-2020, Time: 17:23:21, ID: ST200429R2_6 1	613 CS5 19L2307, Description: 1613 CS5 19L2307	
Name: 200429 1,2,3,4,6,7,8-H 200429R2_6	HpCDF	613 CS5 19L2307, Description: 1613 CS5 19L2307	
1,2,3,4,6,7,8-H 200429R2_6 100		613 CS5 19L2307, Description: 1613 CS5 19L2307 1,2,3,4,7,8,9-HpCDF;38.94;7.13e6;110010216	F4:Voltage SIR,EI- 407.782 1.309e+008
1,2,3,4,6,7,8-F 200429R2_6	HpCDF		407.78

Quantify Sam Vista Analytica		Page 77 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 7:55:03 AM Pacific Daylight Time Thursday, April 30, 2020 7:55:15 AM Pacific Daylight Time	

Quantify Sample Summary Report Vista Analytical Laboratory MassLynx 4.1 SCN815

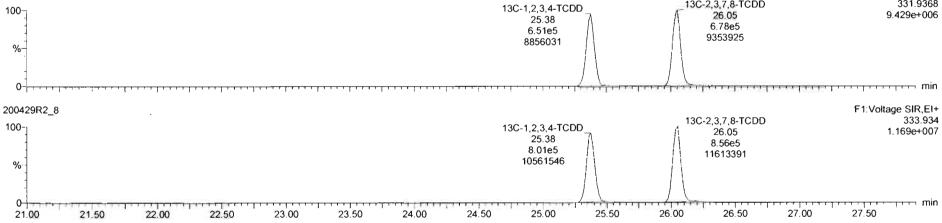
U:\VG12.PRO\Results\200429R2\200429R2-8.qld Dataset:

Last Altered:	Thursday, April 30, 2020 8:35:25 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 8:36:35 AM Pacific Daylight Time

GRB 04/30/2020

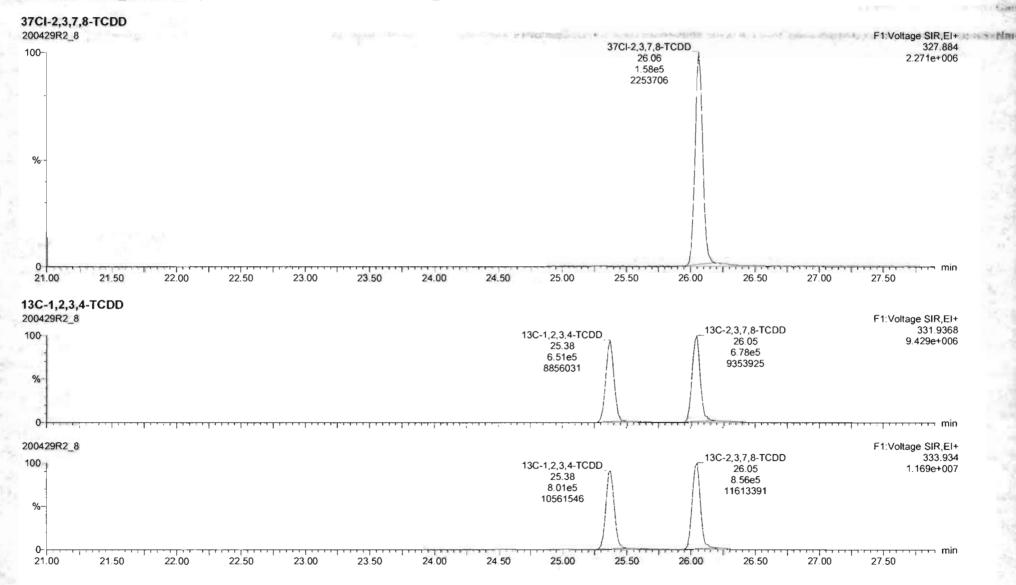
Method: U:\VG12.PRO\MethDB\1613rrt-04-29-20.mdb 29 Apr 2020 14:28:02 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-4-29-20.cdb 30 Apr 2020 07:35:23

	and the second se					and the second							and the second se	
1117	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.63e5	0.76	NO	0.947	1.000	26.081	26.07	1.001	1.001	11.205	112	0.0427	11.2
2	2 1,2,3,7,8-PeCDD	5.70e5	0.63	NO	0.942	1.000	31.147	31.14	1.001	1.000	56.141	112	0.0577	56.1
3	3 1,2,3,4,7,8-HxCDD	4.91e5	1.24	NO	1.06	1.000	34.505	34.51	1.000	1.000	58.046	116	0.102	58.0
4	4 1,2,3,6,7,8-HxCDD	5.43e5	1.25	NO	0.915	1.000	34.591	34.61	1.000	1.001	57.430	115	0.105	57.4
5	5 1,2,3,7,8,9-HxCDD	4.78e5	1.25	NO	0.915	1.000	34.878	34.88	1.000	1.000	58.193	116	0.120	58.2
6	6 1,2,3,4,6,7,8-HpCDD	3.49e5	1.04	NO	0.898	1.000	38.373	38.38	1.000	1.001	56.727	113	0.145	56.7
7	7 OCDD	6.53e5	0.88	NO	0.933	1.000	41.343	41.35	1.000	1.000	116.94	117	0.107	117
8	8 2.3,7,8-TCDF	1.99e5	0.73	NO	0.787	1.000	25.117	25.12	1.001	1.001	11.247	112	0.0306	11.2
9	9 1,2,3,7.8-PeCDF	9.00e5	1.54	NO	0.910	1.000	29.834	29.83	1.001	1.001	55.836	112	0.0810	55.8
10	10 2,3,4,7,8-PeCDF	1.00e6	1.53	NO	0.966	1.000	30.836	30.82	1.001	1.000	60.816	122	0.0765	60.8
11	11 1,2,3,4,7,8-HxCDF	5.51e5	1.21	NO	0.878	1.000	33.632	33.64	1.000	1.000	55.918	112	0.109	55.9
12	12 1,2,3,6,7,8-HxCDF	6.22e5	1.22	NO	0.874	1.000	33.760	33.76	1.000	1.000	56.451	113	0.107	56.5
13	13 2,3,4,6,7,8-HxCDF	5.78e5	1.19	NO	0.922	1.000	34.359	34.33	1.001	1.000	56.186	112	0.118	56.2
14	14 1,2,3,7,8,9-HxCDF	4.76e5	1.19	NO	0.864	1.000	35.209	35.22	1.000	1.000	55.290	111	0.162	55.3
15	15 1,2,3,4,6,7,8-HpCDF	4.11e5	0.98	NO	0.871	1.000	36.982	36.97	1.001	1.001	54.863	110	0.153	54.9
16	16 1,2,3,4,7,8,9-HpCDF	2.99e5	0.98	NO	1.01	1.000	38.947	38.95	1.000	1.000	57.162	114	0.204	57.2
17	17 OCDF	6.13e5	0.86	NO	0.802	1.000	41.525	41.53	1.000	1.000	115.17	115	0.126	115
18	18 13C-2,3,7,8-TCDD	1.53e6	0.79	NO	1.16	1.000	26.046	26.05	1.026	1.027	91.114	91.1	0.0954	
19	19 13C-1,2,3,7,8-PeCDD	1.08e6	0.64	NO	0.847	1.000	31.141	31.13	1.227	1.227	87.564	87.6	0.0958	
20	20 13C-1,2,3,4,7,8-HxCDD	7.95e5	1.29	NO	0.750	1.000	34.496	34.49	1.014	1.014	88.379	88.4	0.183	
21	21 13C-1,2,3,6,7,8-HxCDD	1.03e6	1.29	NO	0.963	1.000	34.608	34.59	1.017	1.017	89.585	89.6	0.142	
22	22 13C-1,2,3,7,8,9-HxCDD	8.98e5	1.26	NO	0.838	1.000	34.877	34.87	1.025	1.025	89.402	89.4	0.164	
23	23 13C-1,2,3,4,6,7,8-HpCDD	6.86e5	1.10	NO	0.641	1.000	38.367	38.36	1.128	1.128	89.184	89.2	0.183	
24	24 13C-OCDD	1.20e6	0.86	NO	0.586	1.000	41.360	41.34	1.216	1.215	170.31	85.2	0.144	
25	25 13C-2,3,7,8-TCDF	2.25 e 6	0.78	NO	1.03	1.000	25.104	25.09	0.989	0.989	92.189	92.2	0.134	
26	26 13C-1,2,3,7,8-PeCDF	1.77e6	1.60	NO	0.845	1.000	29.829	29.81	1.176	1.175	88.893	88.9	0.195	- 10
27	27 13C-2,3,4,7,8-PeCDF	1.71e6	1.60	NO	0.814	1.000	30.822	30.81	1.215	1.214	88.919	88.9	0.203	
28	28 13C-1,2,3,4,7,8-HxCDF	1.12e6	0.51	NO	1.00	1.000	33.635	33.63	0.989	0.989	93.115	93.1	0.212	
29	29 13C-1,2,3,6,7,8-HxCDF	1.26e6	0.51	NO	1.14	1.000	33.757	33.75	0.992	0.992	92.434	92.4	0.187	
30	30 13C-2,3,4,6,7,8-HxCDF	1.12e6	0.51	NO	1.02	1.000	34.326	34.33	1.009	1.009	91.031	91.0	0.208	
31	31 13C-1,2,3,7,8,9-HxCDF	9.97e5	0.51	NO	0.845	1.000	35.217	35.21	1.035	1.035	98.412	98.4	0.252	

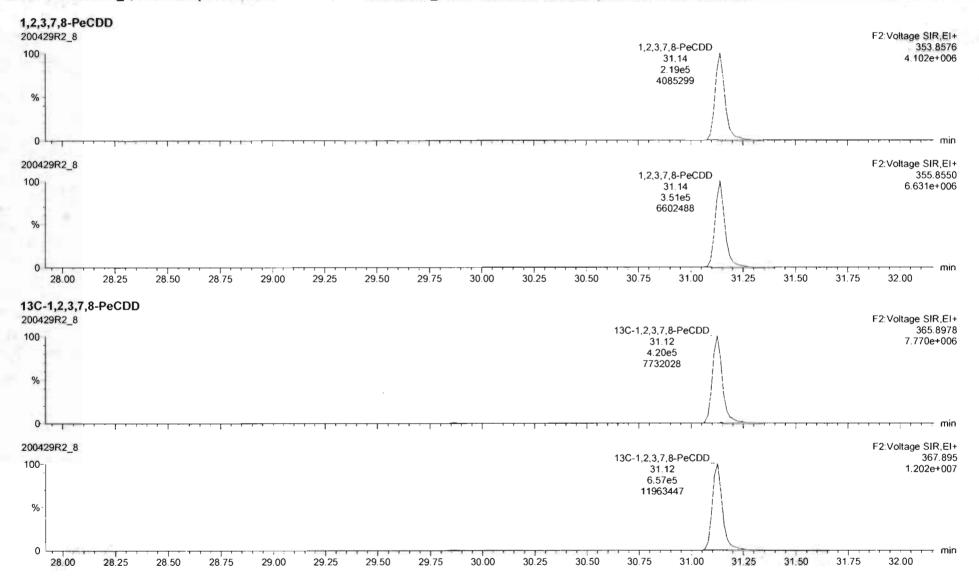

Dataset: U:\VG12.PRO\Results\200429R2\200429R2-8.qld

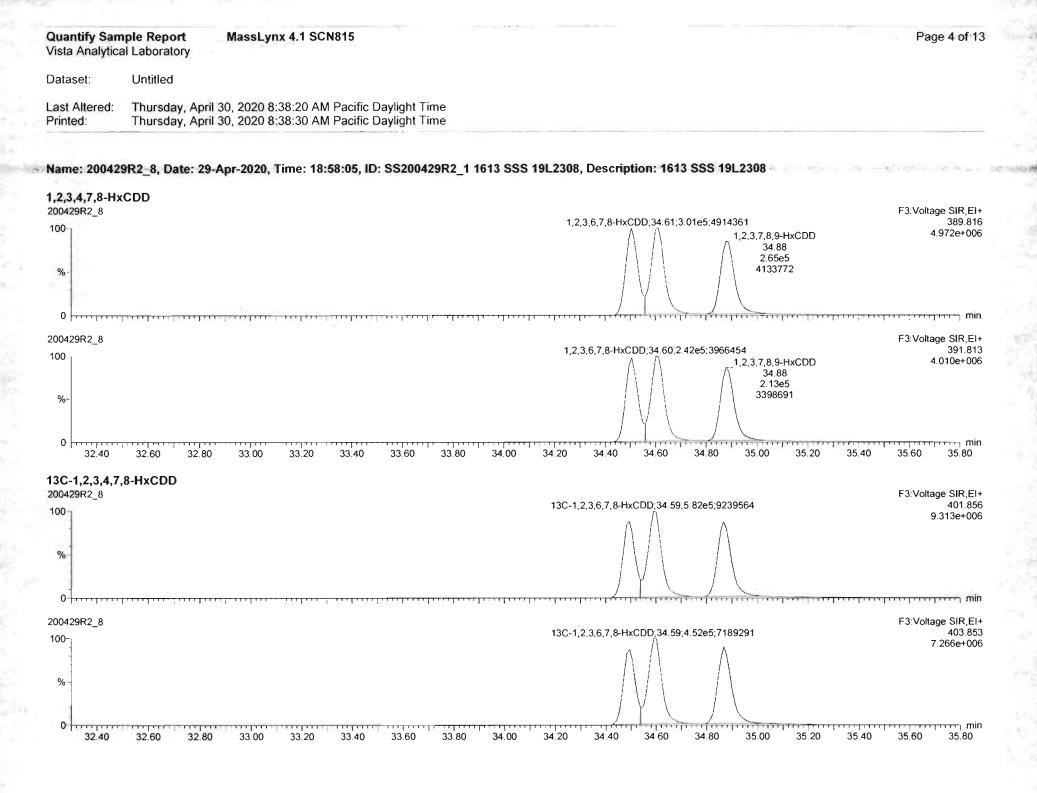
Last Altered:	Thursday, April 30, 2020 8:35:25 AM Pacific Daylight Time
Printed:	Thursday, April 30, 2020 8:36:35 AM Pacific Daylight Time

5. 10: SS2Name: 200429R2_8, Date: 29-Apr-2020, Time: 18:58:05, ID: SS200429R2_1 1613 SSS 19L2308, Description: 1613 SSS 19L2308

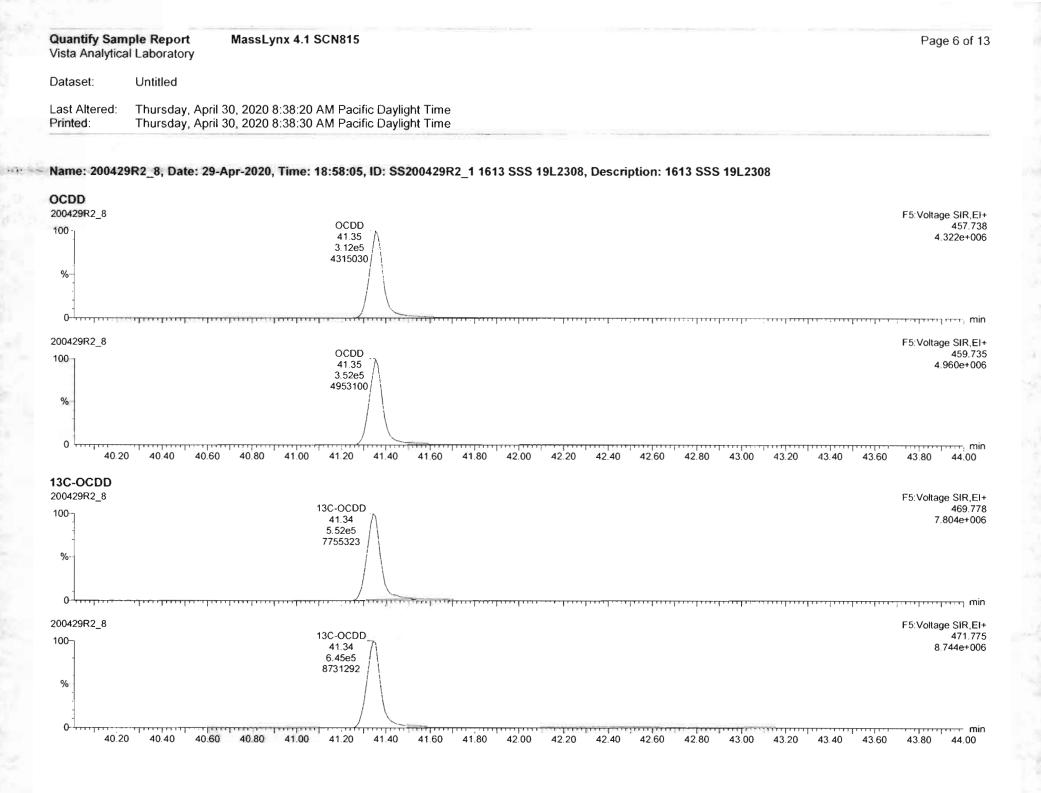

													1 C + 1 - 1	A REPORT
hilling and	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7.8-HpCDF	8.59e5	0.43	NO	0.771	1.000	36.948	36.94	1.086	1.086	92.960	93.0	0.284	
33	33 13C-1,2,3,4,7,8,9-HpCDF	5.17e5	0.43	NO	0.482	1.000	38.959	38.95	1.145	1.145	89.503	89.5	0.455	
34	34 13C-OCDF	1.33e6	0.88	NO	0.669	1.000	41.530	41.53	1.221	1.221	165.58	82.8	0.146	
35	35 37CI-2,3,7,8-TCDD	1.58e5			1.10	1.000	26.076	26,07	1.028	1.027	9.8763	98.8	0.0151	
36	36 13C-1,2,3,4-TCDD	1.45e6	0.81	NO	1.00	1.000	25.350	25.38	1.000	1.000	100.00	100	0.111	
37	37 13C-1,2,3,4-TCDF	2.36e6	0.79	NO	1.00	1.000	23.560	23.59	1.000	1.000	100.00	100	0.139	
38	38 13C-1.2.3,4,6,9-HxCDF	1.20e6	0.51	NO	1.00	1.000	34.000	34.02	1.000	1.000	100.00	100	0.213	
		_					_							

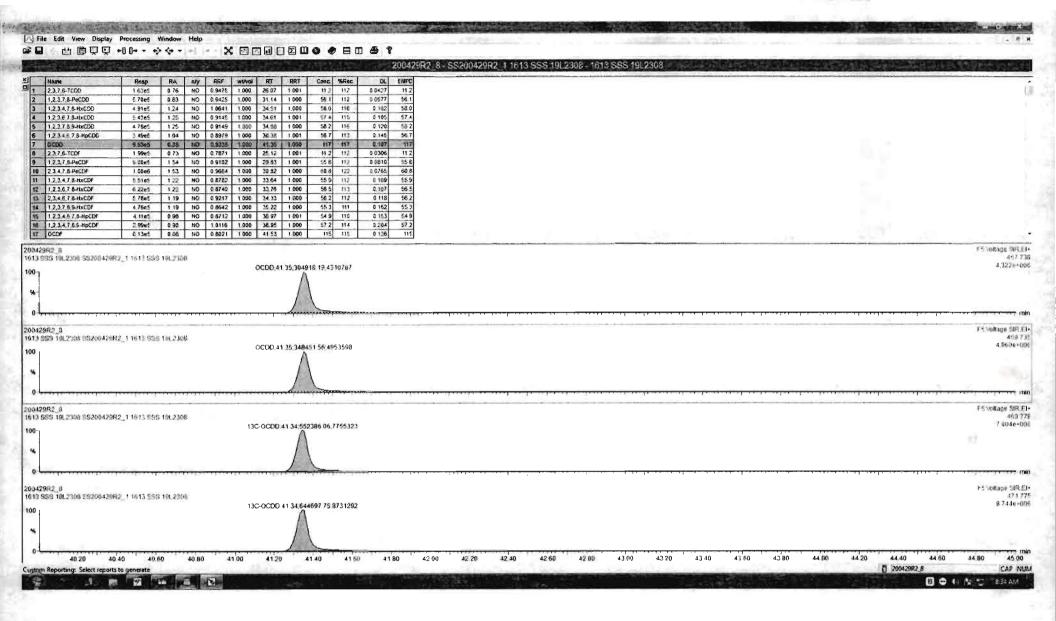
Quantify Sam /ista Analytica	aple Report MassLynx 4.1 SCN815 al Laboratory		Page 1 of 1
Dataset:	Untitled		
ast Altered: Printed:	Thursday, April 30, 2020 8:38:20 AM Pacific Daylight Time Thursday, April 30, 2020 8:38:30 AM Pacific Daylight Time		
	G12.PRO\MethDB\1613rrt-04-29-20.mdb 29	/:35:23	
ame: 20042	9R2_8, Date: 29-Apr-2020, Time: 18:58:05, ID: SS200429R2_1 1613	3 SSS 19L2308, Description: 1613 SSS 19L2308	
,3,7,8-TCDD 00429R2_8		2,3,7,8-TCDD	F1:Voltage SIR,E 319.896
-00		26.06 7.01e4	1.010e+00
%		1000253	
0-+			<u></u>
00429R2_8		2,3,7,8-TCDD 26.06 →	F1:Voltage SIR,E 321.89 1.279e+00
100		9.27e4 1275032	
% 		12/3032	
%	21.50 22.00 22.50 23.00 23.50 24.00	24.50 25.00 25.50 26.00 26.50 27.0	00 27.50 m
0		·····	




S. 10:

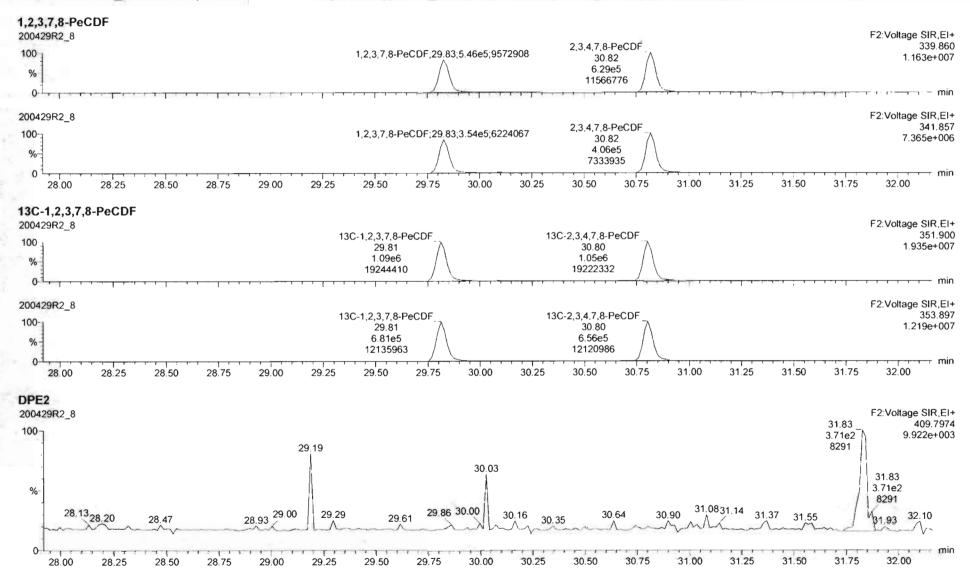
Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 8:38:20 AM Pacific Daylight Time Thursday, April 30, 2020 8:38:30 AM Pacific Daylight Time	

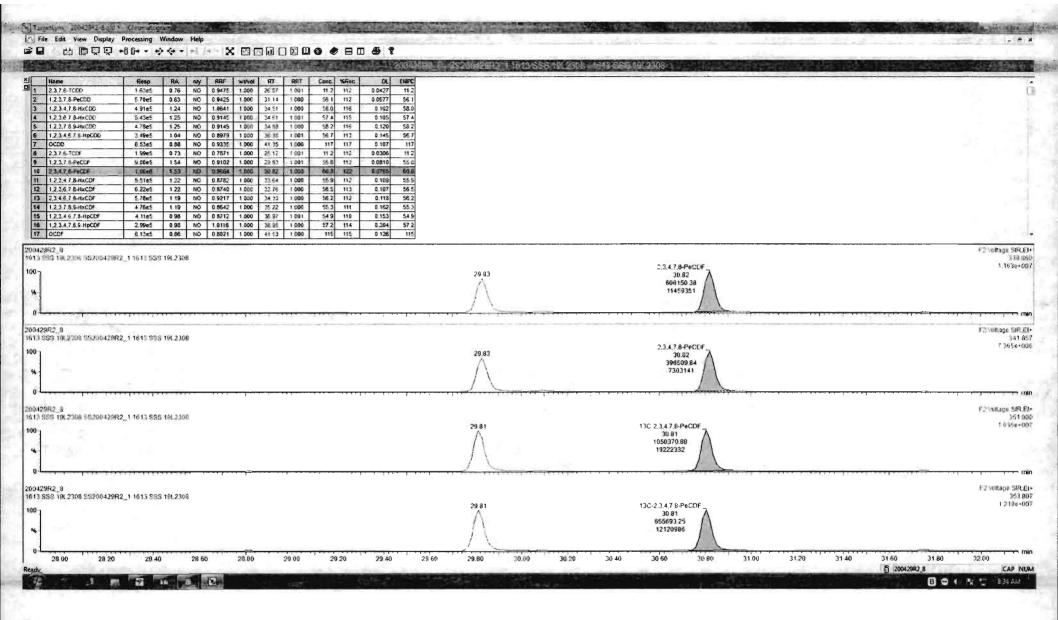

Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 30, 2020 8:38:20 AM Pacific Daylight Time Thursday, April 30, 2020 8:38:30 AM Pacific Daylight Time	



sta Analytical Laboratory	mx 4.1 SCN815		Page 5 of 13
taset: Untitled			
nted: Thursday, April 30, 2020	3:38:20 AM Pacific Daylight Time 3:38:30 AM Pacific Daylight Time		
me: 200429R2 8, Date: 29-Apr-2020.	Time: 18:58:05, ID: SS200429R2_1 1613 SSS 19L	2308, Description: 1613 SSS 19L2308	
2,3,4,6,7,8-HpCDD	over a set of the set		
)0429R2_8			F4:Voltage SIR,EI+
00		1,2,3,4,6,7,8-HpCDD 38,38 1.78e5 2326941	423.777 2.342e+006
0-++++++++++++++++++++++++++++++++++++			min . F4:Voltage SIR,EI+
0	1,2,3,4,6,7,8- 38,37 1.71e: 222031	5	425.774 2.240e+006
%- 		8.20 38.40 38.60 38.80 39.00 39	20 39.40 39.60 39.80 40.00
C-1,2,3,4,6,7,8-HpCDD			
0429R2_8	13C-1,2,3,4,6,7,8- 38.36 3,59e5 4557237	HpCDD	F4:Voltage SIR,EI+ 435.817 4.565e+006
%- - 0	37.34 1.15e4 148892		min min
0429R2_8		1	F4:Voltage SIR,EI+
	13C-1,2,3,4,6,7,8- 38.36 3.27e5 4222891	HpCDD	437.814 4.262e+006
%-	37.34	/ \	

152

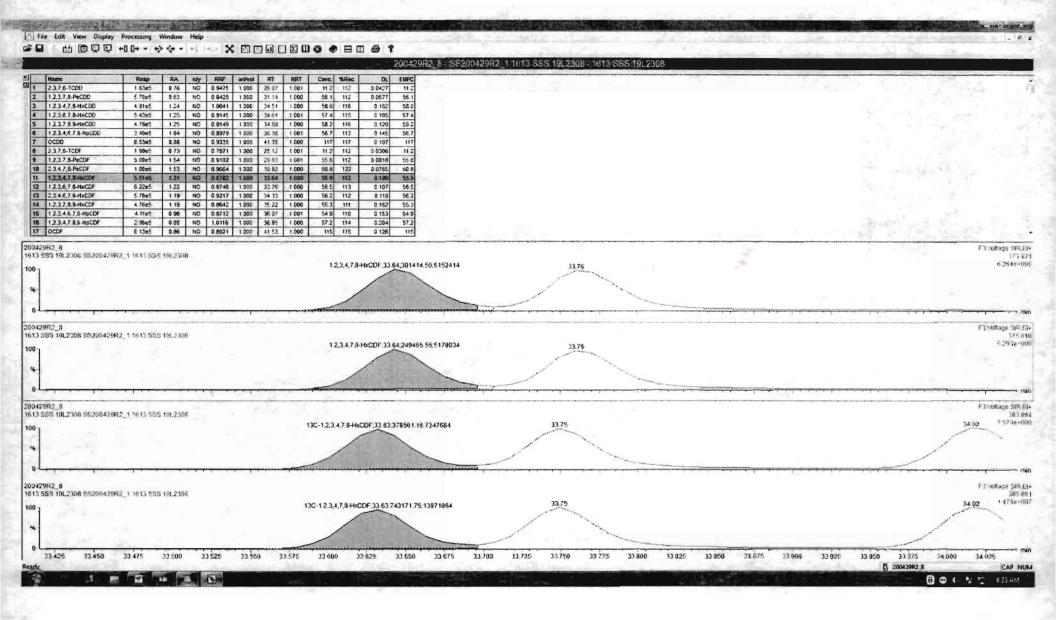


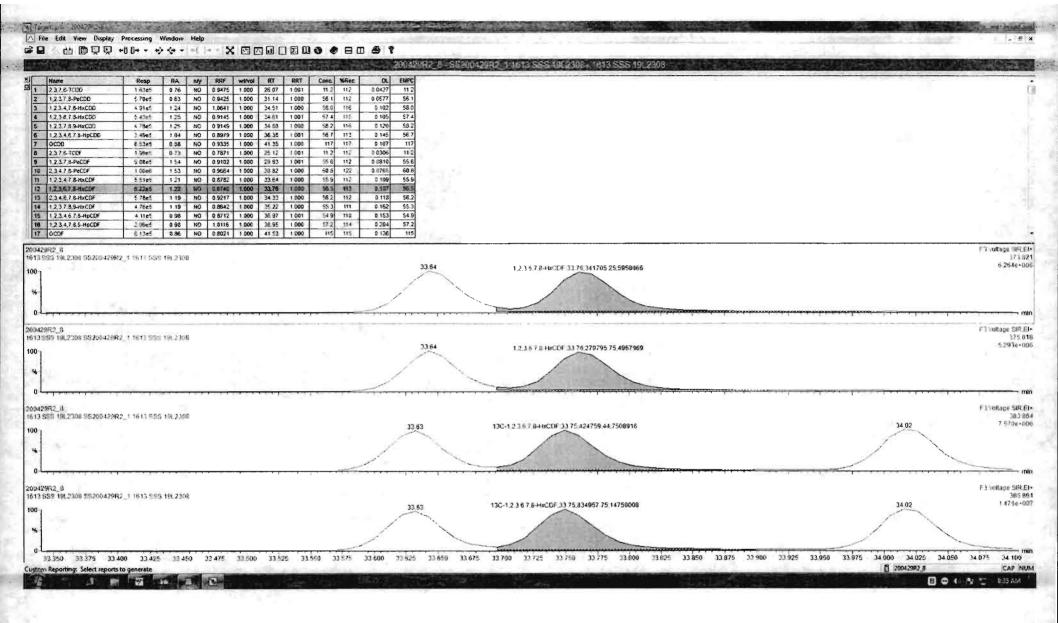

Quantify Sample Report I Vista Analytical Laboratory	MassLynx 4.1 SCN815	Page 7 of 13
Dataset: Untitled		
Last Altered: Thursday, April 30 Printed: Thursday, April 30	0, 2020 8:38:20 AM Pacific Daylight Time 0, 2020 8:38:30 AM Pacific Daylight Time	
Name: 200429R2_8, Date: 29-Ap	pr-2020, Time: 18:58:05, ID: SS200429R2_1 1613 SSS 19L2308, Description: 1613 SSS 19L23	08
2,3,7,8-TCDF		
200429R2_8 100 %	2,3,7,8-TCDF 25.12 8.41e4 1099412	F1:Voltage SIR,EI+ 303.9016 1.112e+006
0		
200429R2_8	2,3,7,8-TCDF	F1:Voltage SIR,EI+ 305.899
100 %	2,3,7,6-10D 25.12 1.15e5 1497720	1.513e+006
0 ⁻¹	50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50	26.00 26.50 27.00 27.50 min
13C-2,3,7,8-TCDF		
200429R2_8	13C-1,2,3,4-TCDF;23.59;1.04e6;11662856 13C-2,3,7,8-TCDF	F1:Voltage SIR,EI+ 315.9419
100 % 0	25.09 9.82e5 12567090	1.266e+007
200429R2_8	na de la companie de la construction de la const	F1:Voltage SIR,EI+
100-	13C-1,2,3,4-TCDF;23.59;1.32e6;14735838 13C-2,3,7,8-TCDF	317.939 1.664e+007
%	1.27e6 16525477	
	50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50	26.00 26.50 27.00 27.50
0-1		
19.50 20.00 20.5 DPE1		
19.50 20.00 20.5	25.59 2	F1:Voltage SIR,EI+ 26.92 375.8364 25.91 3.755e+003
19.50 20.00 20.5 DPE1 200429R2_8	$\begin{array}{c} 21.01 \\ 20.81 \\ 1.19 \\ 21.92 \\ 22.37 \\ 23.00 \\ 23.73 \\ 23.73 \\ 23.00 \\ 23.31 \\ 24.18 \\ 24.45 \\ 24.70 \\ 24.76 \\ 25.62 \\ 24.70 \\ 24.76 \\ 25.62 \\ 25.62 \\ 25.62 \\ 25.62 \\ 24.70 \\ 24.76 \\ 25.62 \\ 24.70 \\ 24.76 \\ 25.62 \\ 24.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 24.76 \\ 24.76 \\ 24.76 \\ 24.76 \\ 25.70 \\ 24.76 \\ 24.76 \\ 24.76 \\ 24.76 \\ 24.76 \\ 24.76 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ 25.70 \\ 24.76 \\ $	26.92 375.8364 25.91 3.755e+003 2 26.50 26.21 A A A 27.19 27.47
19.50 20.00 20.5 DPE1 200429R2_8 100 19.03 19.45 20.05 20.23	21.01 23.73	26.92 375.8364 25.91 3.755e+003 2 26.50

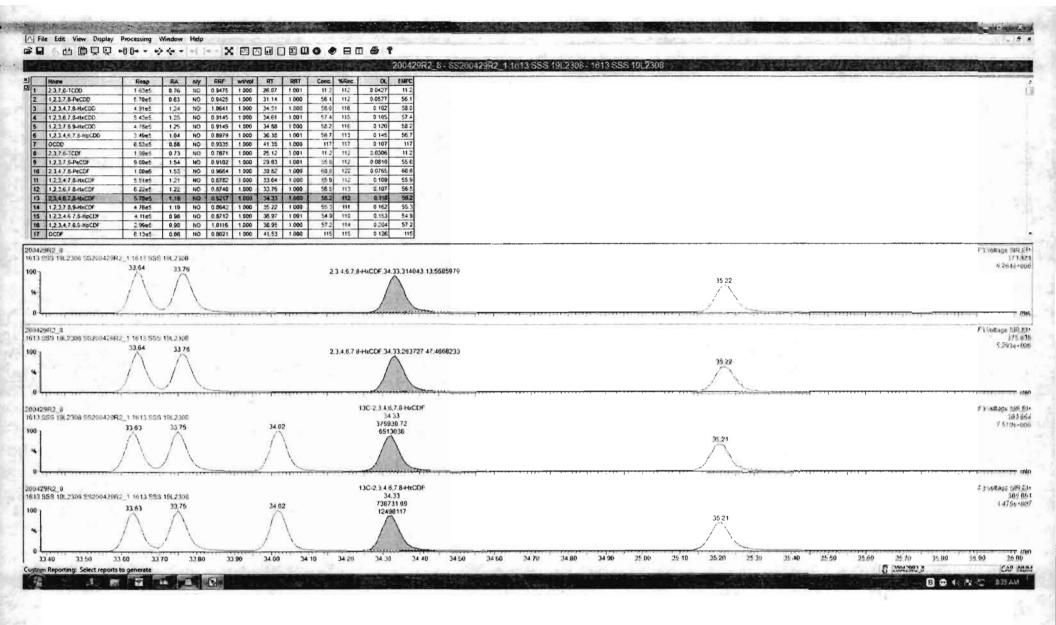
ta Analytic	al Laboratory MassLynx 4.1 SCN815		Page 8 of 1
taset:	Untitled		
st Altered: nted:	Thursday, April 30, 2020 8:38:20 AM Pacific Daylight Time Thursday, April 30, 2020 8:38:30 AM Pacific Daylight Time		
me: 20042	9R2_8, Date: 29-Apr-2020, Time: 18:58:05, ID: SS200429R2_	1 1613 SSS 19L2308, Description: 1613 SSS 19L2308	guan subgroome
	nta-Furans		
0429R2_8 19.27 6 Mr. Vl. Mm	$\begin{array}{c} 22.52 \\ 19.73 \ 20.03 \ 20.30 \ 20.51 \ 21.14 \ 21.50 \ 21.99 \ 22.49 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89 \ 22.68 \ 300 \ 20.89$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1:Voltage SIR,EI 339.86 4.624e+00 27.17 27.52 27.70 26.4427.08
,,	مندستات فاعتمانية بالمعانية والمناقين المراسياتين	وينابب الحمار براء والمنطب المنطب المنطب التنارية المعار	wi
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.76 23.86 24.01 24.31 24.54 25.18 25.91 26.26 25.68 25.91 26.26 25.68 25.91 26.26 25.68 25.91 26.26	F1:Voltage SIR,EI 341.85 26.69 27.07 27.19 4.093e+00 27.76 27.8 W-MMMM White White
19.07 MMMMMM	ومرابعه المعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية وال	ى بىرلى بىرلىت بىر بىرى ، بىرك ، بىر بىر بىر بىرى بىرى بىرى بىر بىرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى بى بىرى بىرى	F1:Voltage SIR,EI 341.85 26.69 27.07 27.19 4.093e+00 27.76 27.8 W-MMMMMMMMMMMMMMMMM 5.50 27.00 27.50
19.07 MMMMMM 19. E6 429R2_8	50 20.00 20.50 21.00 21.50 22.00 22.50 2	ى بىر لەر بىر بىر بىر بىر بىر بىر بىر بىر بىر بى	341.85 26.69 27.07 27.19 4.093e+00 27.76 27.8 27.76 27.8 27.50 27.00 27.50 F1:Voltage SIR,EI
19.07 MMMMMM 19. E6 429R2_8	ومرابعه المعدانية والمعالية والمحصلة ومراجعة المحصلية ومراجعة	ى بىر لەر بىر بىر بىر بىر بىر بىر بىر بىر بىر بى	341.85 26.69 27.07 27.19 4.093e+00 27.76 27.8 27.76 27.8 27.76 27.8 27.76 27.8
19.07 MMMMMM 6 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	50 20.00 20.50 21.00 21.50 22.00 22.50 2	3.00 23.50 24.00 24.50 25.00 25.50 26.00 26	341.85 26.69 27.07 27.19 4.093e+00 27.76 27.8 27.76 27.8 27.76 27.8 5.50 27.00 27.50 F1:Voltage SIR,EI 409.797
19.07 MMMMMM 19. E6 429R2_8 19.30	50 20.00 20.50 21.00 21.50 22.00 22.50 2 20.41 20.33 19.67 19.78 21.07 21.45 22.58 ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341.85 26.69 27.07 27 19 27.76 27.8 34.093e+00 27.76 27.8 35.50 27.00 27.50 F1:Voltage SIR,El 409.797 3.775e+00 27.55 27.08 27.64 27.64
19.07 MMMMMM 19.07 1	50 20.00 20.50 21.00 21.50 22.00 22.50 2 20.41 20.33 19.67 19.78 21.07 21.45 22.58 ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341.85 26.69 27.07 27.19 27.76 27.8 34.093e+00 27.76 27.8 35.50 27.00 27.50 F1:Voltage SIR,EI 409.797 3.775e+00 27.55 27.08 27.64 27.64
19.30	50 20.00 20.50 21.00 21.50 22.00 22.50 2 20.41 20.33 19.67 19.78 21.07 21.45 22.58 ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341.85 26.69 27.07 27.19 27.76 27.8 34.093e+00 27.76 27.8 35.50 27.00 27.50 F1:Voltage SIR,EI 409.797 3.775e+00 27.55 27.08 27.64 27.64

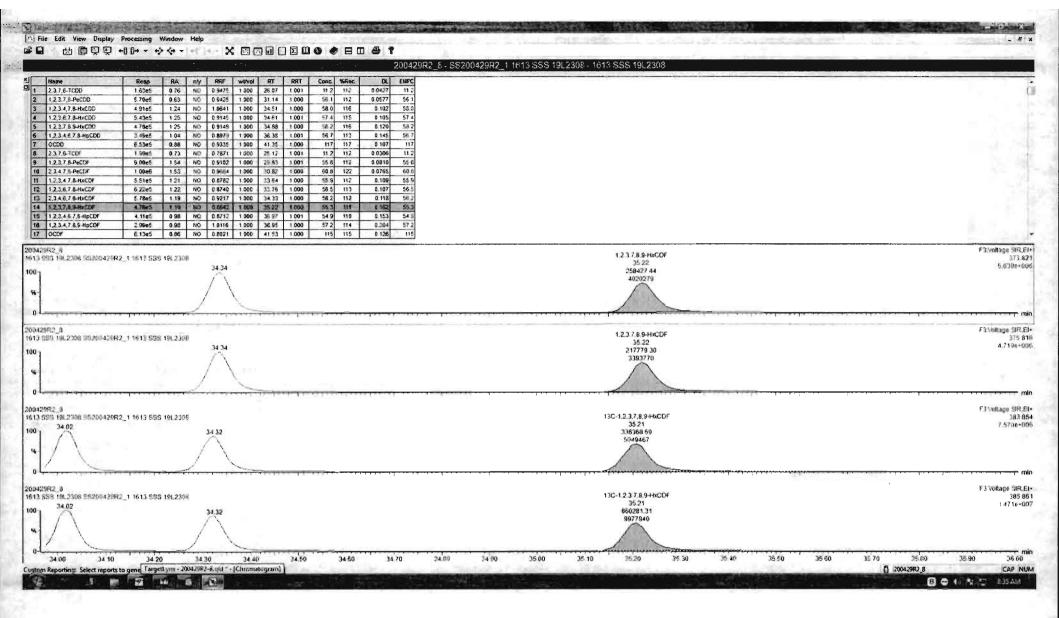
Quantify Sam Vista Analytica		MassLynx 4.1 SCN815			a fill and	Page 9 of 13
Dataset:	Untitled					
Last Altered: Printed:		il 30, 2020 8:38:20 AM Pacific Dayl il 30, 2020 8:38:30 AM Pacific Dayl				

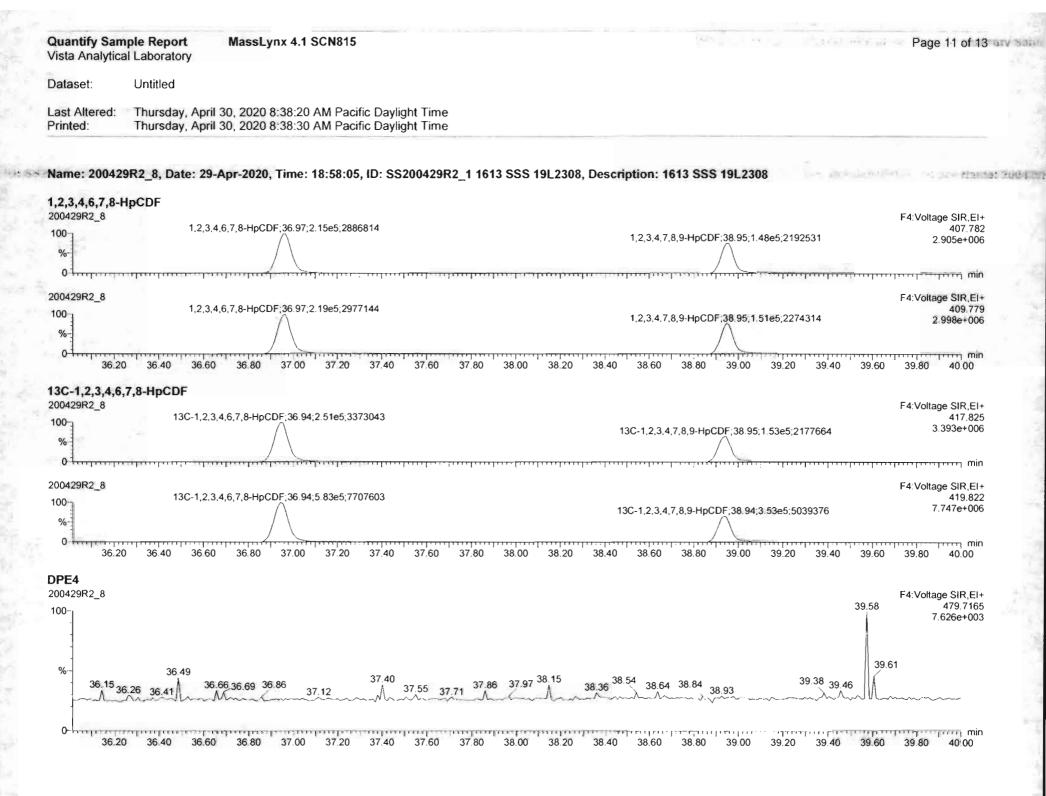
Name: 200429R2_8, Date: 29-Apr-2020, Time: 18:58:05, ID: SS200429R2_1 1613 SSS 19L2308, Description: 1613 SSS 19L2308

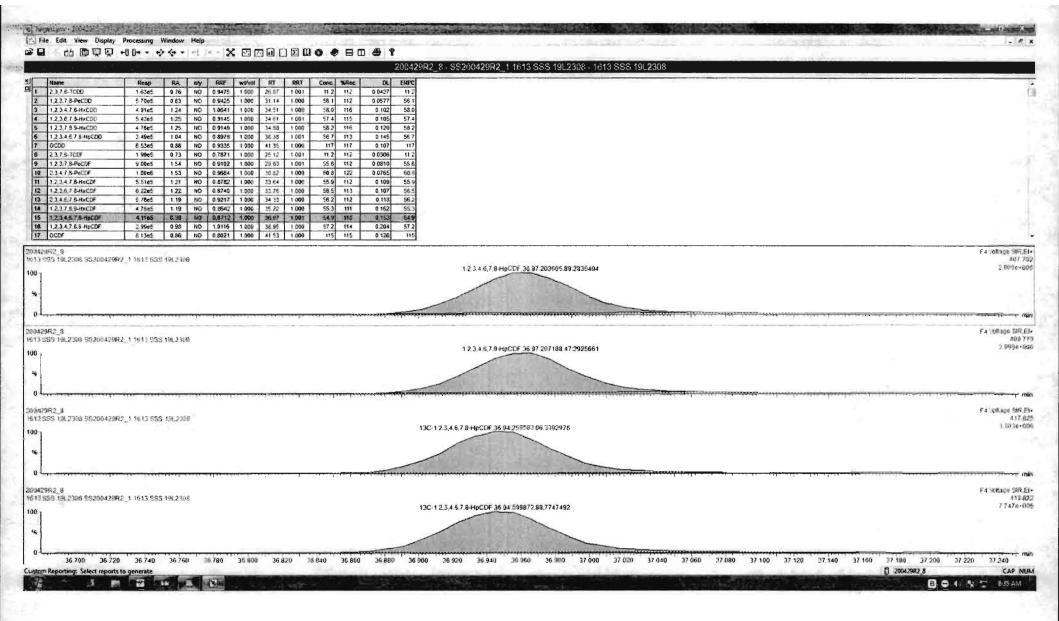


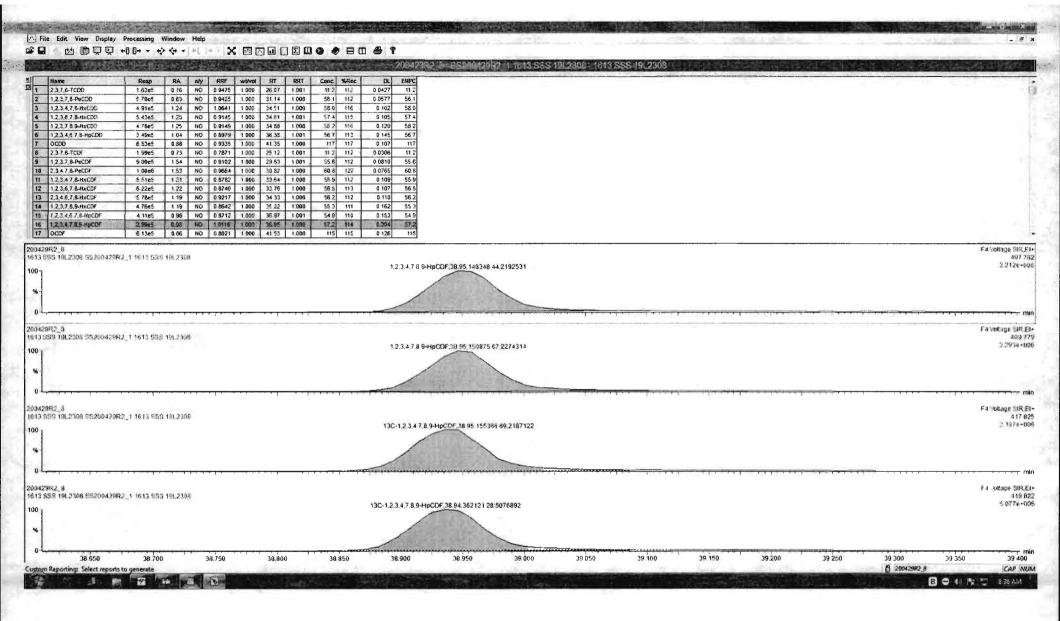


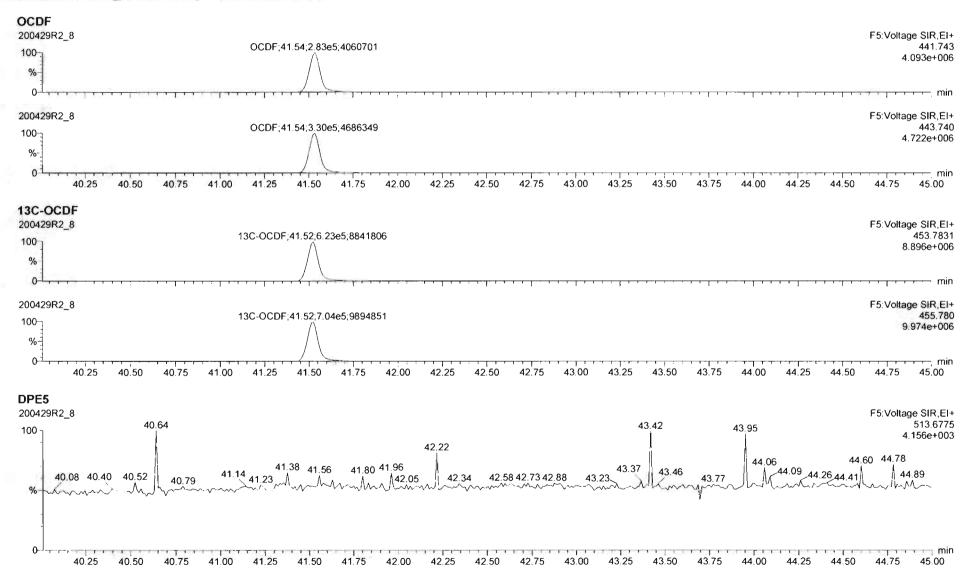

	nple Report MassLynx 4.1 SCN815 al Laboratory Image: Comparison of the second			Page 10 of 13
aset:	Untitled			
at Altered: nted:	Thursday, April 30, 2020 8:38:20 AM Pacit Thursday, April 30, 2020 8:38:30 AM Pacit			
	000 0 Date 20 Are 2020 Times 40.59.05	ID: 00200420022 4 4042 000 401 2208 Dec		
,3,4,7,8-Hx		, ID: SS200429R2_1 1613 SSS 19L2308, Des	cnption: 1613 555 19L2308	
429R2_8		1,2,3,4,7,8-HxCDF;33.64;3.17e5;6234268	2,3,4,6,7,8-HxCDF;34.34;3.15e5;5590327	F3:Voltage SIR,EI+ 373.821 6.264e+006
, , , , , , , , , , , , , , , , , , ,				min
429R2_8		1,2,3,4,7,8-HxCDF;33.64;2.63e5;5255799	2,3,4,6,7,8-HxCDF;34.34;2.68e5;4685443	F3:Voltage SIR,EI+ 375.818 5.293e+006
	32.40 32.60 32.80 33.00 33.20	33.40 33.60 33.80 34.00 34	20 34.40 34.60 34.80 35.00	35.20 35.40
:-1,2,3,4,7, 429R2_8	,8-HxCDF	13C-1,2,3,4,6,9-HxCDF;34.02;4.09	e5;7480848 13C-1,2,3,7,8,9-HxCDF;35.21;3.33e5;5	F3:Voltage SIR,EI+ 383.864 7.570e+006
L				••••••••••••••••••••••••••••••••••••••
429R2_8		13C-1,2,3,6,7,8-HxCDF;33.75;8.01e5;14620176	13C-2,3,4,6,7,8-HxCDF;34.32;7.24e5;124368	F3:Voltage SIR,EI+ 49 385.861 1.476e+007
	32.40 32.60 32.80 33.00 33.20	33.40 33.60 33.80 34.00 34	.20 34.40 34.60 34.80 35.00	35.20 35.40
E 3 429R2_8		33.56	34,63	F3:Voltage SIR,E/+ 35.33 445.7555 J 2.809e+003


%


S. 1135

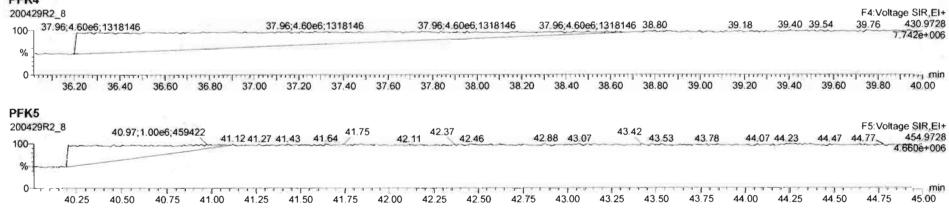


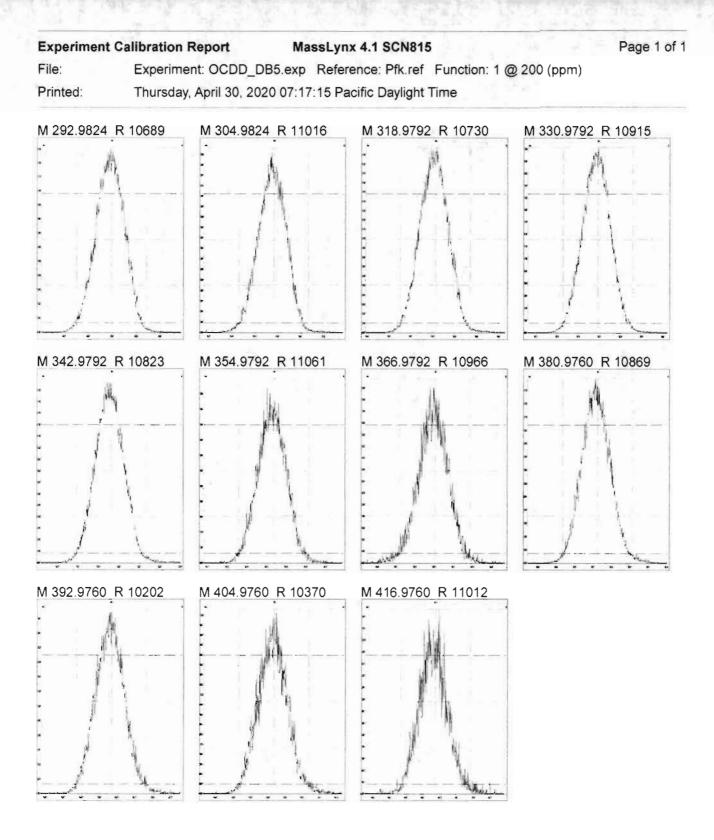


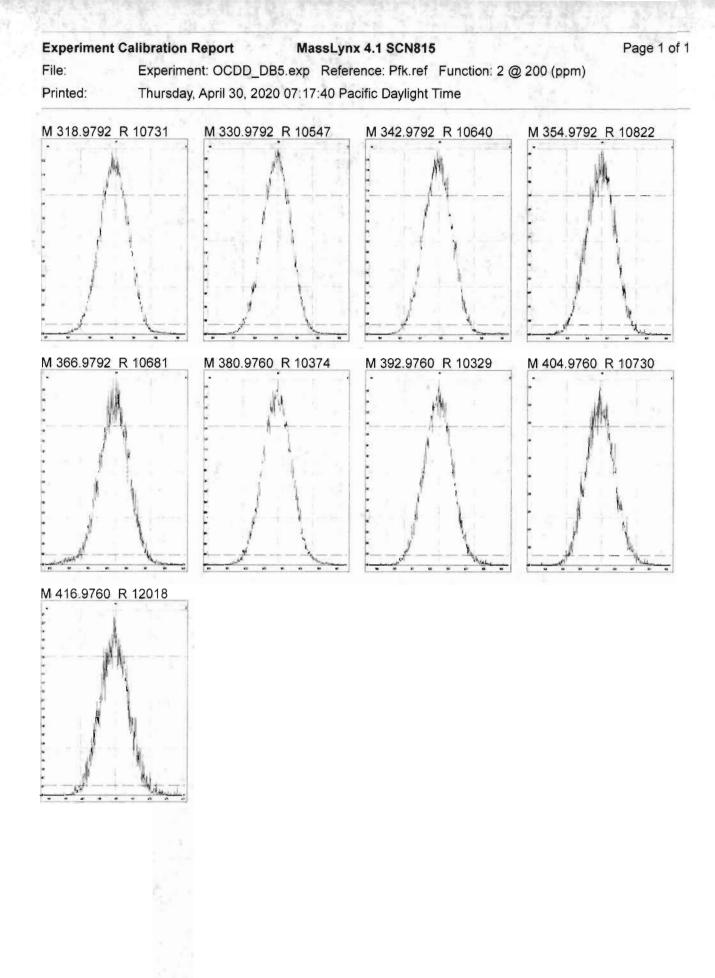


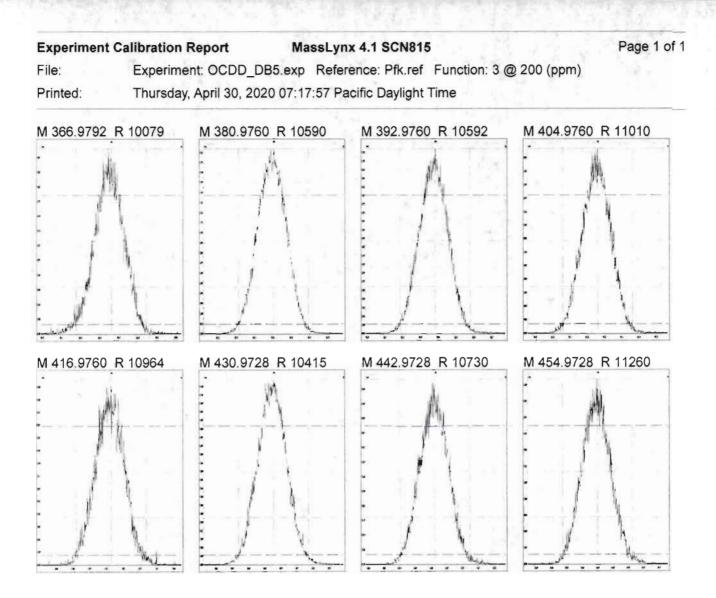
Quantify San Vista Analytic		MassLynx 4.1 SCN815		Page 12 of 13
Dataset:	Untitled			
Last Altered: Printed:		il 30, 2020 8:38:20 AM Pacific Daylight T il 30, 2020 8:38:30 AM Pacific Daylight T		

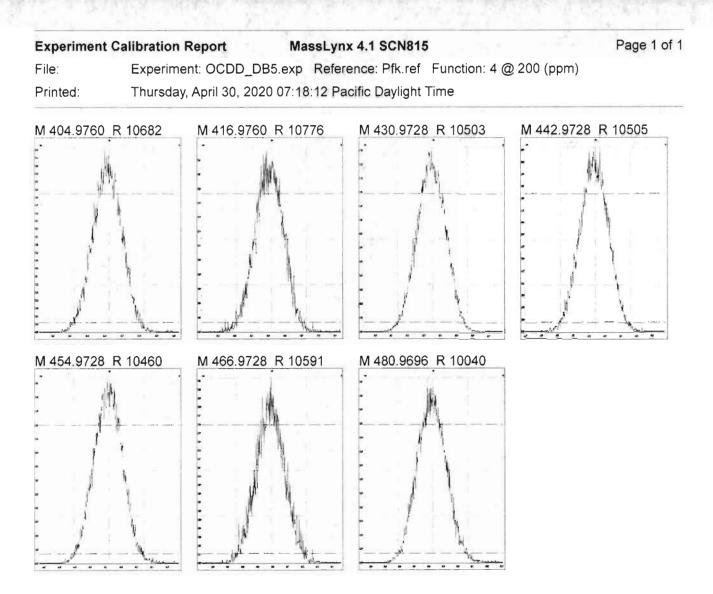
. ID: SSAName: 200429R2_8, Date: 29-Apr-2020, Time: 18:58:05, ID: SS200429R2_1 1613 SSS 19L2308, Description: 1613 SSS 19L2308

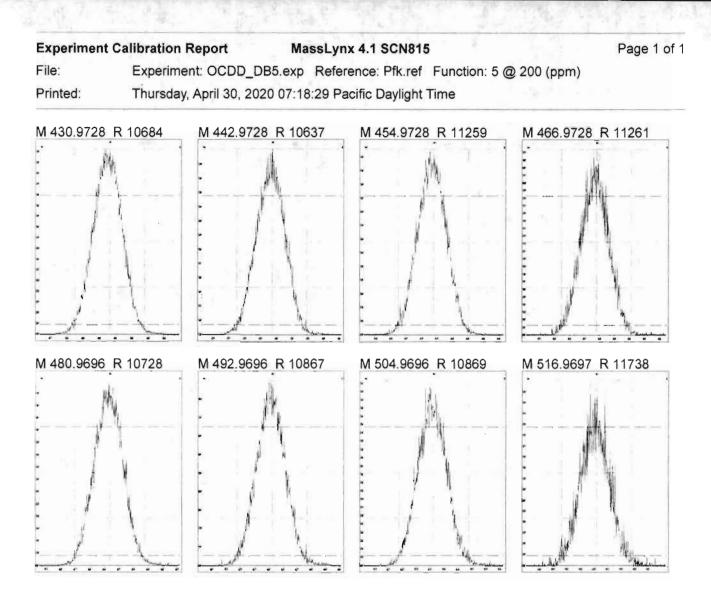



Work Order 2000945


	al Laboratory MassLyn	x 4.1 SCN815						Page 13 of
ataset:	Untitled							
ast Altered: rinted:	Thursday, April 30, 2020 8: Thursday, April 30, 2020 8:							
ime: 200429	9R2_8, Date: 29-Apr-2020, 1	lime: 18:58:05, ID: S	S200429R2_1 16	513 SSS 19L2308, D	escription: 1613	SSS 19L2308		
K1								543/cHeese (10)
0429R2_8	20.02;1.57e5;644298 21.02;8.01e	3:211746 21.63;6.20e3;	189289 22.59;3.08e3	3;111007 23.74 24	.63;3.81e3;130378	25.20;6.51e3;14609	5 26.56	F1:Voltage SIR, 316.98
man 10	20.02, 1.5765,044256 21.02,0.010	a mander man	managen	An marshan and an and an and an and and and and	and the shart that			
	20.02,1.0760,044256 21.02,0.010	to wander wood	-a- hunaaca	Arr. r. al. a				2:9420-0
6		···/····/····/···/···/···/···/···/···/	22 50 23 00	23 50 24 00	24.50 25.00	25.50 26.00	0 26 50	
0		···/····/····/···/···/···/···/···/···/	22,50 23.00	23.50 24.00	24.50 25.00	25.50 26.0	0 26.50	
й 0 19.9 К2	50 20.00 20.50 21.0	0 21.50 22.00	22.50 23.00	23.50 24.00	24.50 25.00	25.50 26.00	26.50	27.00 27.50 31.83 F2:Voltage SIR,
FK2 00429R2_8		0 21.50 22.00	22.50 23.00 28.68;1.43e6;99493	23.50 24.00	24.50 25.00	25.50 26.00	0 26.50	27.00 27.50
K2 0 28.03	50 20.00 20.50 21.0	0 21.50 22.00	22.50 23.00	23.50 24.00	24.50 25.00	25.50 26.00	26.50	27.00 27.50 F2:Voltage SIR,I 31.83 31.92 366.97
K2 0429R2_8	50 20.00 20.50 21.0	0 21.50 22.00	22.50 23.00	23.50 24.00	24.50 25.00	25.50 26.00	0 26.50	27.00 27.50 F2:Voltage SIR,I 31.83 31.92 366.97
K2 0429R2_8 0 28.03 0 28.00	28.68;1.43e6;994933	0 21.50 22.00	22.50 23.00 28.68;1.43e6;99493	23.50 24.00 28.68;1.43e6;99493	24.50 25.00 3 30.65 30.70 30.8	25.50 26.00	0 26.50	27.00 27.50 F2: Voltage SIR, 1 31.83 31.92 366.97 2.350è+0
K2 0429R2_8 0 28.03 0 28.03 0 28.03 0 28.03 0 28.03 0 28.03 0 28.03 0 28.03	28.68;1.43e6;994933	0 21.50 22.00	22.50 23.00 28.68;1.43e6;99493	23.50 24.00 33 28.68;1.43e6;99493 30.00 30.25	24.50 25.00 ³ 30.65 30.70 30.8 30.50 30.75	25.50 26.00	0 26.50 1.31 31.45 ^{31.52} 5 31.50	27.00 27.50 F2: Voltage SIR, 1 31.83 31.92 366.97 2.350è+0


PFK4


Dig 2



Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

3/9/20 (703/10/2020 DB

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 09 Mar 2020 11:30:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Compound name: 2,3,7,8-TCDD Response Factor: 0.986791 RRF SD: 0.0674267, Relative SD: 6.83293 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	0.250	0.85	NO	25.88	1.001	1.59e2	6.81e4	0.237	-5.3	0.934	MM
2	200309D1_2	0.500	0.88	NO	25.85	1.000	3.14e2	6.95e4	0.457	-8.6	0.902	ММ
3	200309D1_3	2.00	0.84	NO	25.88	1.001	1.33e3	6.75e4	1.99	-0.3	0.984	bb
4	200309D1_4	40.0	0.78	NO	25.90	1.001	2.62e4	6.74e4	39.3	-1.7	0.970	bb
5	200309D1_5	300	0.77	NO	25.90	1.001	2.32e5	7.20e4	327	9.1	1.08	db
6	200309D1_6	10.0	0.84	NO	25.90	1.001	5.95e3	5.65e4	10.7	6.7	1.05	db

Compound name: 1,2,3,7,8-PeCDD

Response Factor: 0.982426 RRF SD: 0.0451347, Relative SD: 4.59421 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	0.66	NO	30.47	1.000	6.61e2	5.66e4	1.19	-5.0	0.933	bb
2	200309D1_2	2.50	0.63	NO	30.47	1.000	1.30 e 3	5.32e4	2.49	-0.5	0.977	bb
3	200309D1_3	10.0	0.68	NO	30.47	1.000	5.19e3	5.49e4	9.61	-3.9	0.944	bb
4	200309D1_4	200	0.62	NO	30.49	1.001	1.12e5	5.55e4	205	2.7	1.01	bb
5	200309D1_5	1500	0.63	NO	30.49	1.001	9.76e5	6.16e4	1610	7.5	1.06	bb
6	200309D1_6	50.0	0.63	NO	30.49	1.001	2.35e4	4.81e4	49.6	-0.7	0.975	bb

Page 1 of 16

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 1,2,3,4,7,8-HxCDD

Response Factor: 1.17437 RRF SD: 0.0577382, Relative SD: 4.91652 Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.18	NO	33.75	1.000	6.45e2	4.51e4	1.22	-2.7	1.14	bđ
2	200309D1_2	2.50	1.21	NO	33.76	1.000	1.19e3	4.27e4	2.37	-5.1	1.11	bd
3	200309D1_3	10.0	1.21	NO	33.76	1.001	5.25e3	4.33e4	10.3	3.2	1.21	bd
4	200309D1_4	200	1.27	NO	33.77	1.000	1.15 e 5	4.94e4	199	-0.5	1.17	bd
5	200309D1_5	1500	1.25	NO	33.76	1.000	1.01e6	5.28e4	1620	8.2	1.27	bd
6	200309D1_6	50.0	1.30	NO	33.77	1.000	2.32e4	4.08e4	48.4	-3.2	1.14	bd

Compound name: 1,2,3,6,7,8-HxCDD

Response Factor: 1.0362 RRF SD: 0.0515873, Relative SD: 4.9785 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: RF

10 P 10 1 10	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.28	NO	33.86	1.000	7.20e2	5.91e4	1.17	-6.0	0.974	db
2	200309D1_2	2.50	1.34	NO	33.86	1.000	1.47e3	5.50e4	2.58	3.0	1.07	db
3	200309D1_3	10.0	1.28	NO	33.86	1.000	5.81e3	5.52e4	10.2	1.5	1.05	db
4	200309D1_4	200	1.25	NO	33.88	1.000	1.24e5	5.99 e 4	199	-0.3	1.03	db
5	200309D1_5	1500	1.26	NO	33.87	1.000	1.05e6	6.33e4	1600	7.0	1.11	db
6	200309D1_6	50.0	1.22	NO	33.87	1.000	2.48e4	5.06e4	47.4	-5.2	0.982	db

Compound name: 1,2,3,7,8,9-HxCDD

Response Factor: 1.00287 RRF SD: 0.0694501, Relative SD: 6.92514 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.14	NO	34.15	1.000	6.16e2	5.38e4	1.14	-8.7	0.915	bb
2	200309D1_2	2.50	1.18	NO	34.16	1.000	1.32e3	5.16e4	2.55	1.8	1.02	bb

Dataset:	U:\VG7.PRO\Results\200309D1\200309D1	CRV.qlc	ł
----------	--------------------------------------	---------	---

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 1,2,3,7,8,9-HxCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	10.0	1.23	NO	34.16	1.000	5.12e3	5.22e4	9.77	-2.3	0.980	bb
4	200309D1_4	200	1.27	NO	34.17	1.000	1.18e5	5.76e4	204	1.9	1.02	bd
5	200309D1_5	1500	1.24	NO	34.16	1.000	1.01e6	6.01e4	1670	11.5	1.12	bb
6	200309D1_6	50.0	1.22	NO	34.17	1.001	2.27e4	4.73e4	47.9	-4.3	0.960	bb

Compound name: 1,2,3,4,6,7,8-HpCDD Response Factor: 0.991554 RRF SD: 0.0575038, Relative SD: 5.79936 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.12	NO	37.64	1.001	5.97e2	4.76e4	1.26	1.1	1.00	bb
2	200309D1_2	2.50	1.03	NO	37.65	1.001	1.03e3	4.11e4	2.54	1.5	1.01	bb
3	200309D1_3	10.0	1.06	NO	37.64	1.000	4.11e3	4.54e4	9.13	-8.7	0.905	bb
4	200309D1_4	200	1.07	NO	37.65	1.000	1.01e5	4.89e4	208	4.0	1.03	bd
5	200309D1_5	1500	1.03	NO	37.64	1.000	9.00e5	5.66e4	1600	7.0	1.06	bb
6	200309D1_6	50.0	1.03	NO	37.65	1.001	1.97e4	4.19e4	47.6	-4.9	0.943	bb

Compound name: OCDD

Response Factor: 1.03532 RRF SD: 0.0416085, Relative SD: 4.01889 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: RF

V.	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	2.50	0.91	NO	40.83	1.000	9.32e2	7.50e4	2.40	-3.9	0.994	MM
2	200309D1_2	5.00	0.78	NO	40.85	1.000	1.85e3	6.85e4	5.23	4.6	1.08	bd
3	200309D1_3	20.0	0.98	NO	40.85	1.000	7.01e3	7.19e4	18.8	-5.8	0.975	bd
4	200309D1_4	400	0.93	NO	40.85	1.000	1.78e5	8.39e4	410	2.5	1.06	bd
5	200309D1_5	3000	0.89	NO	40.86	1.000	1.63e6	1.03e5	3040	1.4	1.05	bb
6	200309D1_6	100	0.91	NO	40.86	1.000	3.46e4	6.60e4	101	1.4	1.05	bd

Quantify Compound Summary Report MassLynx 4.1

Vista Analytical Laboratory

Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_	CRV.qld
----------	---------------------------------------	---------

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 2,3,7,8-TCDF Response Factor: 0.881772 RRF SD: 0.0293286, Relative SD: 3.3261 Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: RF

11	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	0.250	0.66	NO	25.06	1.000	2.28e2	1.00e5	0.258	3.0	0.909	MM
2	200309D1_2	0.500	0.76	NO	25.06	1.001	4.83e2	1.06e5	0.514	2.8	0.907	MM
3	200309D1_3	2.00	0.88	NO	25.07	1.000	1.84e3	1.05e5	1.99	-0.6	0.876	MM
4	200309D1_4	40.0	0.74	NO	25.09	1.001	3.49e4	1.05e5	37.6	-6.0	0.829	bb
5	200309D1_5	300	0.76	NO	25.09	1.001	3.02e5	1.13e5	303	1.0	0.891	bb
6	200309D1_6	10.0	0.74	NO	25.07	1.001	7.83e3	8.90e4	9.97	-0.3	0.879	bb

Compound name: 1,2,3,7,8-PeCDF Response Factor: 1.04525 RRF SD: 0.0516323, Relative SD: 4.93972 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF

1 -	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.46	NO	29.28	1.001	1.15e3	9.51e4	1.16	-7.6	0.966	bb
2	200309D1_2	2.50	1.57	NO	29.28	1.001	2.47e3	8.89e4	2.66	6.5	1.11	bb
3	200309D1_3	10.0	1.52	NO	29.28	1.001	9.45e3	9.31e4	9.71	-2.9	1.01	bb
4	200309D1_4	200	1.61	NO	29.30	1.001	1.99e5	9.40e4	203	1.3	1.06	bd
5	200309D1_5	1500	1.56	NO	29.30	1.001	1.61e6	9.94e4	1550	3.4	1.08	bb
6	200309D1_6	50.0	1.62	NO	29.28	1.000	3.93e4	7.57e4	49.7	-0.7	1.04	bd

Compound name: 2,3,4,7,8-PeCDF

Response Factor: 1.06003 RRF SD: 0.0406821, Relative SD: 3.83782 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.66	NO	30.19	1.001	1.25e3	9.11e4	1.30	3.6	1.10	bb
2	200309D1_2	2.50	1.72	NO	30.19	1.000	2.10e3	8.35e4	2.38	-5.0	1.01	bb

Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_	CRV.qld
----------	---------------------------------------	---------

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 2,3,4,7,8-PeCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	10.0	1.59	NO	30.19	1.001	9.41e3	8.81e4	10.1	0.8	1.07	bb
4	200309D1_4	200	1.60	NO	30.21	1.001	1.95e5	9.25e4	199	-0.4	1.06	bb
5	200309D1_5	1500	1.56	NO	30.19	1.000	1.64e6	9.85e4	1570	4.6	1.11	bb
6	200309D1_6	50.0	1.59	NO	30.19	1.000	3.92e4	7.68 e 4	48.2	-3.7	1.02	bb

Compound name: 1,2,3,4,7,8-HxCDF Response Factor: 1.08299 RRF SD: 0.038965, Relative SD: 3.59793 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.27	NO	32.87	1.000	9.32e2	7.17e4	1.20	-3.9	1.04	bd
2	200309D1_2	2.50	1.18	NO	32.89	1.000	1.90e3	6.72e4	2.61	4.3	1.13	bd
3	200309D1_3	10.0	1.24	NO	32.89	1.001	7.56 e 3	6.92e4	10.1	0.8	1.09	bd
4	200309D1_4	200	1.25	NO	32.90	1.000	1.60e5	7.40e4	200	-0.1	1.08	dd
5	200309D1_5	1500	1.24	NO	32.89	1.000	1.35 e 6	8.03e4	1550	3.3	1.12	dd
6	200309D1_6	50.0	1.27	NO	32.90	1.001	3.35e4	6.48e4	47.8	-4.4	1.04	bd

Compound name: 1,2,3,6,7,8-HxCDF Response Factor: 1.04248 RRF SD: 0.0426252, Relative SD: 4.08882 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.22	NO	33.01	1.001	9.80e2	8.01e4	1.17	-6.1	0.979	db
2	200309D1_2	2.50	1.28	NO	33.02	1.001	1.97e3	7.44e4	2.54	1.6	1.06	db
3	200309D1_3	10.0	1.24	NO	33.01	1.000	8.06e3	7.79e4	9.92	-0.8	1.03	db
4	200309D1_4	200	1.25	NO	33.02	1.000	1.76e5	8.37e4	201	0.7	1.05	db
5	200309D1_5	1500	1.25	NO	33.02	1.001	1.46e6	8.80e4	1590	6.3	1.11	db
6	200309D1_6	50.0	1.26	NO	33.02	1.001	3.62e4	7.06e4	49.2	-1.7	1.02	db

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 2,3,4,6,7,8-HxCDF

Response Factor: 1.11095 RRF SD: 0.0463148, Relative SD: 4.16894 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.18	NO	33.59	1.000	9.35e2	7.20e4	1.17	-6.5	1.04	bb
2	200309D1_2	2.50	1.26	NO	33.60	1.000	1.86e3	6.61e4	2.53	1.3	1.13	bb
3	200309D1_3	10.0	1.25	NO	33.59	1.000	7.62e3	7.02e4	9.77	-2.3	1.09	bb
4	200309D1_4	200	1.26	NO	33.61	1.000	1.69e5	7.56e4	202	0.8	1.12	bb
5	200309D1_5	1500	1.24	NO	33.60	1.001	1.42e6	8.06e4	1590	6.0	1.18	bb
6	200309D1_6	50.0	1.27	NO	33.60	1.000	3.50e4	6.26e4	50.3	0.7	1.12	bb

Compound name: 1,2,3,7,8,9-HxCDF

Response Factor: 1.05671 RRF SD: 0.0544012, Relative SD: 5.14816 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	1.16	NO	34.53	1.001	7.41e2	5.94e4	1.18	-5.5	0.999	MM
2	200309D1_2	2.50	1.24	NO	34.53	1.001	1.40e3	5.56e4	2.37	-5.0	1.00	bb
3	200309D1_3	10.0	1.24	NO	34.53	1.001	6.08e3	5.62e4	10.2	2.4	1.08	bb
4	200309D1_4	200	1.24	NO	34.53	1.000	1.35e5	6.28e4	204	1.8	1.08	bb
5	200309D1_5	1500	1.24	NO	34.53	1.001	1.16e6	6.79e4	1620	8.1	1.14	bb
6	200309D1_6	50.0	1.29	NO	34.53	1.000	2.76e4	5.32e4	49.1	-1.8	1.04	bb

Compound name: 1,2,3,4,6,7,8-HpCDF

Response Factor: 1.12811 RRF SD: 0.0801215, Relative SD: 7.10229 Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: RF

10-00	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF >	K = dropped
1	200309D1_1	1.25	0.99	NO	36.32	1.001	7.86e2	6.36e4	1.10	-12.3	0.989	bb
2	200309D1_2	2.50	0.99	NO	36.34	1.001	1.64e3	5.53 e 4	2.63	5.1	1.19	bb

U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld Dataset:

Monday, March 09, 2020 17:20:28 Pacific Daylight Time Last Altered: Monday, March 09, 2020 17:23:44 Pacific Daylight Time Printed:

Compound name: 1,2,3,4,6,7,8-HpCDF

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	10.0	0.98	NO	36.34	1.001	6.50e3	5.84e4	9.87	-1.3	1.11	bb
4	200309D1_4	200	1.01	NO	36.34	1.000	1.41e5	6.29e4	199	-0.3	1.12	bb
5	200309D1_5	1500	1.04	NO	36.34	1.001	1.26e6	6.88e4	1630	8.5	1.22	bb
6	200309D1_6	50.0	1.03	NO	36.34	1.000	2.92e4	5.16e4	50.2	0.3	1.13	bb

Compound name: 1,2,3,4,7,8,9-HpCDF Response Factor: 1.33317 RRF SD: 0.0694325, Relative SD: 5.20809 Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	1.25	0.90	NO	38.15	1.000	6.45e2	4.04e4	1.20	-4.2	1.28	MM
2	200309D1_2	2.50	0.91	NO	38.15	1.000	1.25e3	3.60e4	2.60	4.1	1.39	bb
3	200309D1_3	10.0	1.13	NO	38.16	1.000	5.08e3	3.98e4	9.58	-4.2	1.28	bb
4	200309D1_4	200	1.03	NO	38.16	1.000	1.18e5	4.51e4	196	-1.9	1.31	bb
5	200309D1_5	1500	1.03	NO	38.16	1.000	1.08e6	4.99e4	1630	8.6	1.45	bb
6	200309D1_6	50.0	1.01	NO	38.16	1.000	2.39e4	3.67e4	48.8	-2.3	1.30	bb

Compound name: OCDF Response Factor: 0.932771 RRF SD: 0.056358, Relative SD: 6.04199 Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	2.50	1.01	NO	41.05	1.000	1.07e3	1.01e5	2.26	-9.6	0.843	MM
2	200309D1_2	5.00	0.92	NO	41.06	1.000	1.94e3	8.54e4	4.86	-2.7	0.907	bb
3	200309D1_3	20.0	0.93	NO	41.07	1.000	8.47e3	9.16e4	19.8	-0.9	0.924	bb
4	200309D1_4	400	0.89	NO	41.07	1.000	2.16e5	1.10e5	419	4.7	0.977	bb
5	200309D1_5	3000	0.90	NO	41.08	1.000	1.90e6	1.26e5	3230	7.6	1.00	bb
6	200309D1_6	100	0.90	NO	41.07	1.000	3.98e4	8.45e4	101	0.9	0.941	bb

Dataset: U:\VG7.PRO\Results\200309D1\200309D1 CRV.gld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 13C-2,3,7,8-TCDD

Response Factor: 1.20655 RRF SD: 0.128513, Relative SD: 10.6512 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.74	NO	25.85	1.022	6.81e4	4.86e4	116	16.1	1.40	bb
2	200309D1_2	100	0.75	NO	25.85	1.023	6.95e4	6.31e4	91.3	-8.7	1.10	bb
3	200309D1_3	100	0.76	NO	25.87	1.023	6.75e4	6.45e4	86.8	-13.2	1.05	bb
4	200309D1_4	100	0.80	NO	25.87	1.023	6.74e4	5.33e4	105	4.7	1.26	bb
5	200309D1_5	100	0.74	NO	25.88	1.023	7.20e4	5.70e4	105	4.7	1.26	bb
6	200309D1_6	100	0.75	NO	25.87	1.023	5.65e4	4.86e4	96.3	-3.7	1.16	bb

Compound name: 13C-1,2,3,7,8-PeCDD

Response Factor: 0.995685 RRF SD: 0.128012, Relative SD: 12.8567 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.63	NO	30.47	1.205	5.66e4	4.86e4	117	17.0	1.17	bb
2	200309D1_2	100	0.64	NO	30.47	1.206	5.32 e 4	6.31 e 4	84.7	-15.3	0.844	bd
3	200309D1_3	100	0.63	NO	30.47	1.205	5.49e4	6.45e4	85.6	-14.4	0.852	bb
4.	200309D1_4	100	0.62	NO	30.47	1.205	5.55 e 4	5.33e4	105	4.6	1.04	bb
5	200309D1_5	100	0.62	NO	30.47	1.204	6.16e4	5.70e4	109	8.6	1.08	bb
6	200309D1_6	100	0.64	NO	30.47	1.205	4.81e4	4.86e4	99.4	-0.6	0.990	bb

Compound name: 13C-1,2,3,4,7,8-HxCDD

Response Factor: 0.678621 RRF SD: 0.0705651, Relative SD: 10.3983 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF >	K = dropped
1	200309D1_1	100	1.29	NO	33.74	1.014	4.51e4	6.21e4	107	7.1	0.727	bd
2	200309D1_2	100	1.28	NO	33.75	1.015	4.27e4	7.06e4	89.1	-10.9	0.605	bd

Dataset:	U:\VG7.PRO\Results\200309D1\200309D1	CRV.gld
----------	--------------------------------------	---------

Monday, March 09, 2020 17:20:28 Pacific Daylight Time Last Altered: Monday, March 09, 2020 17:23:44 Pacific Daylight Time Printed:

Compound name: 13C-1,2,3,4,7,8-HxCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	100	1.31	NO	33.74	1.014	4.33e4	7.46e4	85.6	-14.4	0.581	bd
4	200309D1_4	100	1.30	NO	33.76	1.014	4.94 e 4	6.86e4	106	6.1	0.720	bd
5	200309D1_5	100	1.31	NO	33.75	1.014	5.28e4	7.00e4	111	11.2	0.755	bd
6	200309D1_6	100	1.30	NO	33.76	1.015	4.08e4	5.96e4	101	0.9	0.685	bd

Compound name: 13C-1,2,3,6,7,8-HxCDD Response Factor: 0.849636 RRF SD: 0.0787027, Relative SD: 9.26311 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	1.40	NO	33.85	1.017	5.91e4	6.21e4	112	12.1	0.952	dd
2	200309D1_2	100	1.28	NO	33.86	1.018	5.50e4	7.06e4	91.7	-8.3	0.779	dd
3	200309D1_3	100	1.34	NO	33.85	1.017	5.52e4	7.46e4	87.1	-12.9	0.740	dd
4	200309D1_4	100	1.39	NO	33.87	1.017	5.99e4	6.86e4	103	2.8	0.873	dd
5	200309D1_5	100	1.27	NO	33.86	1.017	6.33e4	7.00e4	106	6.4	0.904	db
6	200309D1_6	100	1.28	NO	33.86	1.017	5.06e4	5.96e4	99.9	-0.1	0.849	dd

Compound name: 13C-1,2,3,7,8,9-HxCDD Response Factor: 0.798357 RRF SD: 0.0695869, Relative SD: 8,71626 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	1.39	NO	34.14	1.026	5.38e4	6.21e4	109	8.6	0.867	dd
2	200309D1_2	100	1.30	NO	34.15	1.026	5.16e4	7.06e4	91.6	-8.4	0.731	dd
3	200309D1_3	100	1.32	NO	34.15	1.026	5.22e4	7.46e4	87.7	-12.3	0.700	dd
4	200309D1_4	100	1.37	NO	34.16	1.026	5.76e4	6.86e4	105	5.2	0.840	dd
5	200309D1_5	100	1.32	NO	34.15	1.026	6.01e4	7.00e4	108	7.6	0.859	bd
6	200309D1_6	100	1.29	NO	34.15	1.026	4.73e4	5.96e4	99.4	-0.6	0.793	dd

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 13C-1,2,3,4,6,7,8-HpCDD

Response Factor: 0.696902 RRF SD: 0.0877249, Relative SD: 12.5878 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	1.07	NO	37.61	1.131	4.76e4	6.21e4	110	10.1	0.767	bd
2	200309D1_2	100	1.10	NO	37.63	1.131	4.11e4	7.06e4	83.6	-16.4	0.582	bd
3	200309D1_3	100	1.09	NO	37.63	1.131	4.54e4	7.46e4	87.4	-12.6	0.609	bd
4	200309D1_4	100	1.06	NO	37.64	1.131	4.89e4	6.86e4	102	2.2	0.712	bd
5	200309D1_5	100	1.07	NO	37.63	1.131	5.66e4	7.00e4	116	16.0	0.808	bd
6	200309D1_6	100	1.09	NO	37.63	1.131	4.19e4	5.96e4	101	0.8	0.703	bd

Compound name: 13C-OCDD Response Factor: 0.579001 RRF SD: 0.095468, Relative SD: 16.4884 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

11	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	200	0.94	NO	40.82	1.227	7.50e4	6.21e4	209	4.3	0.604	bd
2	200309D1_2	200	0.88	NO	40.84	1.228	6.85e4	7.06e4	168	-16.2	0.485	bd
3	200309D1_3	200	0.87	NO	40.84	1.228	7.19e4	7.46e4	167	-16.7	0.482	bd
4	200309D1_4	200	0.89	NO	40.84	1.227	8.39e4	6.86e4	211	5.5	0.611	bb
5	200309D1_5	200	0.90	NO	40.85	1.228	1.03e5	7.00e4	255	27.4	0.738	bd
6	200309D1_6	200	0.90	NO	40.85	1.228	6.60e4	5.96e4	191	-4.4	0.554	bb

Compound name: 13C-2,3,7,8-TCDF

Response Factor: 1.12702 RRF SD: 0.101934, Relative SD: 9.04461 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.77	NO	25.06	0.991	1.00e5	8.02e4	111	11.1	1.25	bb
2	200309D1_2	100	0.79	NO	25.04	0.991	1.06e5	1.00e5	94.3	-5.7	1.06	bd

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 13C-2,3,7,8-TCDF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	100	0.79	NO	25.07	0.992	1.05e5	1.08e5	86.3	-13.7	0.972	bd
4	200309D1_4	100	0.77	NO	25.07	0.992	1.05e5	8.88e4	105	5.1	1.18	bđ
5	200309D1_5	100	0.75	NO	25.07	0.991	1.13e5	9.48e4	106	5.7	1.19	bď
6	200309D1_6	100	0.77	NO	25.06	0.991	8.90e4	8.10e4	97.4	-2.6	1.10	bb

Compound name: 13C-1,2,3,7,8-PeCDF Response Factor: 0.996069 RRF SD: 0.123213, Relative SD: 12.3699 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

1.000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	1.63	NO	29.26	1.157	9.51e4	8.02e4	119	19.0	1.18	bđ
2	200309D1_2	100	1.66	NO	29.26	1.158	8.89e4	1.00e5	89.1	-10.9	0.888	bđ
3	200309D1_3	100	1.71	NO	29.26	1.157	9.31e4	1.08e5	86.6	-13.4	0.862	bđ
4	200309D1_4	100	1.56	NO	29.28	1.158	9.40e4	8.88e4	106	6.3	1.06	bb
5	200309D1_5	100	1.62	NO	29.28	1.157	9.94e4	9.48e4	105	5.3	1.05	bb
6	200309D1_6	100	1.58	NO	29.28	1.158	7.57e4	8.10e4	93.8	-6.2	0.934	bb

Compound name: 13C-2,3,4,7,8-PeCDF

Response Factor: 0.969008 RRF SD: 0.126598, Relative SD: 13.0647 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	1.61	NO	30.17	1.193	9.11e4	8.02e4	117	17.1	1.14	bb
2	200309D1_2	100	1.68	NO	30.19	1.194	8.35e4	1.00e5	86.1	-13.9	0.834	bb
3	200309D1_3	100	1.64	NO	30.17	1.193	8.81e4	1.08e5	84.1	-15.9	0.815	bb
4	200309D1_4	100	1.61	NO	30.19	1.194	9.25e4	8.88e4	108	7.6	1.04	bb
5	200309D1_5	100	1.65	NO	30.19	1.193	9.85e4	9.48e4	107	7.2	1.04	bb
6	200309D1_6	100	1.61	NO	30.19	1.194	7.68e4	8.10e4	97.9	-2.1	0.948	bb

Dataset: U:\VG7.PRO\Results\200309D1\200309D1 CRV.gld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8-HxCDF

Response Factor: 1.05776 RRF SD: 0.0965106, Relative SD: 9.12401 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.49	NO	32.86	0.988	7.17e4	6.21e4	109	9.1	1.15	bd
2	200309D1_2	100	0.50	NO	32.87	0.988	6.72e4	7.06e4	90.0	-10.0	0.952	bd
3	200309D1_3	100	0.52	NO	32.86	0.988	6.92e4	7.46e4	87.8	-12.2	0.928	bd
4	200309D1_4	100	0.50	NO	32.89	0.988	7.40e4	6.86e4	102	2.0	1.08	bd
5	200309D1_5	100	0.49	NO	32.87	0.988	8.03e4	7.00e4	108	8.5	1.15	bd
6	200309D1_6	100	0.50	NO	32.87	0.988	6.48e4	5.96 e 4	103	2.8	1.09	bd

Compound name: 13C-1,2,3,6,7,8-HxCDF

Response Factor: 1.17529 RRF SD: 0.103469, Relative SD: 8.80369 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

11	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.49	NO	32.98	0.991	8.01e4	6.21e4	110	9.8	1.29	db
2	200309D1_2	100	0.51	NO	32.99	0.992	7.44e4	7.06e4	89.7	-10.3	1.05	db
3	200309D1_3	100	0.50	NO	32.99	0.992	7.79e4	7.46e4	88.9	-11.1	1.04	db
4	200309D1_4	100	0.51	NO	33.01	0.991	8.37e4	6.86e4	104	3.7	1.22	dd
5	200309D1_5	100	0.51	NO	32.99	0.991	8.80e4	7.00e4	107	7.0	1.26	db
6	200309D1_6	100	0.50	NO	33.00	0.991	7.06e4	5.96e4	101	0.9	1.19	db

Compound name: 13C-2,3,4,6,7,8-HxCDF Response Factor: 1.05681

RRF SD: 0.0990019, Relative SD: 9.36796 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.50	NO	33.58	1.009	7.20e4	6.21e4	110	9.8	1.16	bb
2	200309D1_2	100	0.50	NO	33.59	1.010	6.61e4	7.06e4	88.7	-11.3	0.937	bb

Quantify Compound Summary Report MassLynx 4.1

Vista Analytical Laboratory

U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld Dataset:

Monday, March 09, 2020 17:20:28 Pacific Daylight Time Last Altered: Monday, March 09, 2020 17:23:44 Pacific Daylight Time Printed:

Compound name: 13C-2,3,4,6,7,8-HxCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	100	0.49	NO	33.58	1.009	7.02e4	7.46e4	89.1	-10.9	0.942	bd
4	200309D1_4	100	0.51	NO	33.60	1.009	7.56e4	6.86e4	104	4.2	1.10	bd
5	200309D1_5	100	0.51	NO	33.58	1.009	8.06 e 4	7.00e4	109	8.9	1.15	bb
6	200309D1_6	100	0.51	NO	33.59	1.009	6.26 e 4	5.96e4	99.4	-0.6	1.05	bb

Compound name: 13C-1,2,3,7,8,9-HxCDF Response Factor: 0.879281 RRF SD: 0.0892233, Relative SD: 10.1473 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

10	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.49	NO	34.51	1.037	5.94e4	6.21e4	109	8.8	0.956	bb
2	200309D1_2	100	0.51	NO	34.51	1.037	5.56e4	7.06e4	89.6	-10.4	0.788	bd
3	200309D1_3	100	0.50	NO	34.51	1.037	5.62e4	7.46e4	85.7	-14.3	0.753	bb
4	200309D1_4	100	0.51	NO	34.53	1.037	6.28e4	6.86e4	104	4.1	0.916	bb
5	200309D1_5	100	0.50	NO	34.51	1.037	6.79e4	7.00e4	110	10.3	0.969	bd
6	200309D1_6	100	0.55	NO	34.52	1.037	5.32e4	5.96e4	102	1.6	0.893	bd

Compound name: 13C-1,2,3,4,6,7,8-HpCDF

Response Factor: 0.892598 RRF SD: 0.100339, Relative SD: 11.2413 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

2.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.43	NO	36.30	1.091	6.36e4	6.21e4	115	14.7	1.02	bb
2	200309D1_2	100	0.45	NO	36.32	1.092	5.53e4	7.06e4	87.8	-12.2	0.784	bd
3	200309D1_3	100	0.44	NO	36.32	1.092	5.84e4	7.46e4	87.7	-12.3	0.783	bb
4	200309D1_4	100	0.43	NO	36.33	1.091	6.29e4	6.86 e 4	103	2.6	0.916	bb
5	200309D1_5	100	0.44	NO	36.32	1.091	6.88e4	7.00e4	110	10.0	0.982	bb
6	200309D1_6	100	0.44	NO	36.33	1.092	5.16e4	5.96e4	97.1	-2.9	0.867	bb

U:\VG7.PRO\Results\200309D1\200309D1 CRV.gld Dataset:

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Monday, March 09, 2020 17:23:44 Pacific Daylight Time Printed:

Compound name: 13C-1,2,3,4,7,8,9-HpCDF

Response Factor: 0.613443 RRF SD: 0.0778172. Relative SD: 12.6853 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.41	NO	38.14	1.146	4.04e4	6.21e4	106	6.1	0.651	bd
2	200309D1_2	100	0.42	NO	38.15	1.147	3.60e4	7.06e4	83.2	-16.8	0.510	bb
3	200309D1_3	100	0.45	NO	38.15	1.147	3.98e4	7.46e4	87.0	-13.0	0.534	bb
4	200309D1_4	100	0.40	NO	38.15	1.146	4.51e4	6.86e4	107	7.2	0.658	bb
5	200309D1_5	100	0.43	NO	38.15	1.146	4.99e4	7.00e4	116	16.3	0.713	bđ
6	200309D1_6	100	0.42	NO	38.15	1.146	3.67 e 4	5.96e4	100	0.3	0.615	bb

Compound name: 13C-OCDF Response Factor: 0.741294 RRF SD: 0.118564, Relative SD: 15.9941 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

1100	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	200	0.84	NO	41.04	1.234	1.01e5	6.21e4	220	9.8	0.814	bd
2	200309D1_2	200	0.85	NO	41.06	1.234	8.54e4	7.06e4	163	-18.3	0.605	bđ
3	200309D1_3	200	0.89	NO	41.06	1.234	9.16e4	7.46e4	166	-17.1	0.614	bb
4	200309D1_4	200	0.87	NO	41.06	1.233	1.10e5	6.86e4	217	8.4	0.804	bd
5	200309D1_5	200	0.87	NO	41.07	1.234	1.26e5	7.00e4	243	21.5	0.901	bb
6	200309D1_6	200	0.90	NO	41.06	1.234	8.45e4	5.96e4	191	-4.3	0.709	bd

Compound name: 37CI-2,3,7,8-TCDD

Response Factor: 1.17955 RRF SD: 0.101212, Relative SD: 8.58061 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

A	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	0.250			25.87	1.023	1.52e2	4.86e4	0.266	6.3	1.25	bb
2	200309D1_2	0.500			25.90	1.025	3.46e2	6.31e4	0.465	-6.9	1.10	bb

Dataset: U:\VG7.PRO\Results\200309D1\200309D1 CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:23:44 Pacific Daylight Time

Compound name: 37CI-2,3,7,8-TCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200309D1_3	2.00			25.88	1.024	1.36e3	6.45e4	1.78	-10.9	1.05	bb
4	200309D1_4	40.0			25.90	1.024	2.63e4	5.33e4	41.9	4.6	1.23	bd
5	200309D1_5	200			25.90	1.024	1.49e5	5.70e4	222	11.1	1.31	bb
6	200309D1_6	10.0			25.88	1.024	5.49e3	4.86e4	9.58	-4.2	1.13	bd

Compound name: 13C-1,2,3,4-TCDD Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.78	NO	25.29	1.000	4.86e4	4.86e4	100	0.0	1.00	bb
2	200309D1_2	100	0.76	NO	25.27	1.000	6.31e4	6.31e4	100	0.0	1.00	bb
3	200309D1_3	100	0.81	NO	25.29	1.000	6.45e4	6.45e4	100	0.0	1.00	bb
4	200309D1_4	100	0.79	NO	25.29	1.000	5.33e4	5.33e4	100	0.0	1.00	bd
5	200309D1_5	100	0.80	NO	25.30	1.000	5.70e4	5.70e4	100	0.0	1.00	bb
6	200309D1_6	100	0.80	NO	25.29	1.000	4.86e4	4.86e4	100	0.0	1.00	bd

Compound name: 13C-1,2,3,4-TCDF

Response Factor: 1 RRF SD: 9.93014e-017, Relative SD: 9.93014e-015 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.79	NO	23.79	1.000	8.02e4	8.02e4	100	0.0	1.00	bb
2	200309D1_2	100	0.74	NO	23.77	1.000	1.00e5	1.00e5	100	0.0	1.00	bb
3	200309D1_3	100	0.74	NO	23.80	1.000	1.08e5	1.08e5	100	0.0	1.00	bd
4	200309D1 4	100	0.77	NO	23.79	1.000	8.88e4	8.88e4	100	0.0	1.00	bb
5	200309D1_5	100	0.77	NO	23.80	1.000	9.48e4	9.48e4	100	0.0	1.00	bb
6	200309D1_6	100	0.80	NO	23.80	1.000	8.10e4	8.10e4	100	0.0	1.00	bd

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Monday, March 09, 2020 17:20:28 Pacific Daylight Time Monday, March 09, 2020 17:23:44 Pacific Daylight Time Last Altered: Printed:

Compound name: 13C-1,2,3,4,6,9-HxCDF Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200309D1_1	100	0.49	NO	33.27	1.000	6.21e4	6.21 e 4	100	0.0	1.00	bb
2	200309D1_2	100	0.51	NO	33.27	1.000	7.06 e 4	7.06e4	100	0.0	1.00	bb
3	200309D1_3	100	0.51	NO	33.27	1.000	7.46e4	7.46e4	100	0.0	1.00	bb
4	200309D1_4	100	0.52	NO	33.29	1.000	6.86e4	6.86 e 4	100	0.0	1.00	db
5	200309D1_5	100	0.51	NO	33.28	1.000	7.00 e 4	7.00e4	100	0.0	1.00	bb
6	200309D1_6	100	0.48	NO	33.28	1.000	5.96e4	5.96 e 4	100	0.0	1.00	bb

Quantify Sam Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\20	0309D1\200309D1_CRV.qld	
Last Altered: Printed:		0 17:20:28 Pacific Daylight Time 0 17:25:37 Pacific Daylight Time	

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 09 Mar 2020 11:30:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Name: 200309D1_1, Date: 09-Mar-2020, Time: 12:30:36, ID: ST200309D1-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.59e2	0.85	NO	0.987	1.000	25.882	25.88	1.001	1.001	0.23670	94.7	0.180	0.237
2	2 1,2,3,7,8-PeCDD	6.61e2	0.66	NO	0.982	1.000	30.488	30.47	1.001	1.000	1.1872	95.0	0.148	1.19
3	3 1,2,3,4,7,8-HxCDD	6.45e2	1.18	NO	1.17	1.000	33.751	33.75	1.000	1.000	1.2168	97.3	0.234	1.22
4	4 1,2,3,6,7,8-HxCDD	7.20e2	1.28	NO	1.04	1.000	33.851	33.86	1.000	1.000	1.1745	94.0	0.231	1.17
5	5 1,2,3,7,8,9-HxCDD	6.16e2	1.14	NO	1.00	1.000	34.170	34.15	1.001	1.000	1.1409	91.3	0.254	1.14
6	6 1,2,3,4,6,7,8-HpCDD	5.97e2	1.12	NO	0.992	1.000	37.626	37.64	1.000	1.001	1.2638	101	0.133	1.26
7	7 OCDD	9.32e2	0.91	NO	1.04	1.000	40.819	40.83	1.000	1.000	2.4013	96.1	0.241	2.40
8	8 2,3,7,8-TCDF	2.28e2	0.66	NO	0.882	1.000	25.081	25.06	1.001	1.000	0.25760	103	0.116	0.258
9	9 1,2,3,7,8-PeCDF	1.15e3	1.46	NO	1.05	1.000	29.280	29.28	1.001	1.001	1.1551	92.4	0.0925	1.16
10	10 2,3,4,7,8-PeCDF	1.25e3	1.66	NO	1.06	1.000	30.195	30.19	1.001	1.001	1.2951	104	0.0825	1.30
11	11 1,2,3,4,7,8-HxCDF	9.32e2	1.27	NO	1.08	1.000	32.863	32.87	1.000	1.000	1.2013	96.1	0.101	1.20
12	12 1,2,3,6,7,8-HxCDF	9.80e2	1.22	NO	1.04	1.000	32.994	33.01	1.000	1.001	1.1737	93.9	0.0997	1.17
13	13 2,3,4,6,7,8-HxCDF	9.35e2	1.18	NO	1.11	1.000	33.610	33.59	1.001	1.000	1.1686	93.5	0.0998	1.17
14	14 1,2,3,7,8,9-HxCDF	7.41e2	1.16	NO	1.06	1.000	34.509	34.53	1.000	1.001	1.1817	94.5	0.153	1.18
15	15 1,2,3,4,6,7,8-HpCDF	7.86e2	0.99	NO	1.13	1.000	36.334	36.32	1.001	1.001	1.0959	87.7	0.190	1.10
16	16 1,2,3,4,7,8,9-HpCDF	6.45e2	0.90	NO	1.33	1.000	38.142	38.15	1.000	1.000	1.1971	95.8	0.191	1.20
17	17 OCDF	1.07e3	1.01	NO	0.933	1.000	41.039	41.05	1.000	1.000	2.2593	90.4	0.184	2.26
18	18 13C-2,3,7,8-TCDD	6.81e4	0.74	NO	1.21	1.000	25.943	25.85	1.026	1.022	116.14	116	1.31	1
19	19 13C-1,2,3,7,8-PeCDD	5.66e4	0.63	NO	0.996	1.000	30.393	30.47	1.202	1.205	117.05	117	0.796	
20	20 13C-1,2,3,4,7,8-HxCDD	4.51e4	1.29	NO	0.679	1.000	33.735	33.74	1.014	1.014	107.10	107	0.951	
21	21 13C-1,2,3,6,7,8-HxCDD	5.91e4	1.40	NO	0.850	1.000	33.845	33.85	1.017	1.017	112.07	112	0.760	1
22	22 13C-1,2,3,7,8,9-HxCDD	5.38e4	1.39	NO	0.798	1.000	34.114	34.14	1.025	1.026	108.57	109	0.808	
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.76e4	1.07	NO	0.697	1.000	37.561	37.61	1.129	1.131	110.10	110	0.806	
24	24 13C-OCDD	7.50e4	0.94	NO	0.579	1.000	40.569	40.82	1.219	1.227	208.67	104	1.85	
25	25 13C-2,3,7,8-TCDF	1.00e5	0.77	NO	1.13	1.000	25.033	25.06	0.990	0.991	111.10	111	1.01	
26	26 13C-1,2,3,7,8-PeCDF	9.51e4	1.63	NO	0.996	1.000	29.223	29.26	1.156	1.157	118.96	119	1.13	
27	27 13C-2,3,4,7,8-PeCDF	9.11e4	1.61	NO	0.969	1.000	30.115	30.17	1.191	1.193	117.15	117	1.16	
28	28 13C-1,2,3,4,7,8-HxCDF	7.17e4	0.49	NO	1.06	1.000	32.870	32.86	0.988	0.988	109.10	109	0.930	[
29	29 13C-1,2,3,6,7,8-HxCDF	8.01e4	0.49	NO	1.18	1.000	33.003	32.98	0.992	0.991	109.77	110	0.837	
30	30 13C-2,3,4,6,7,8-HxCDF	7.20e4	0.50	NO	1.06	1.000	33.572	33.58	1.009	1.009	109.77	110	0.931	
31	31 13C-1,2,3,7,8,9-HxCDF	5.94e4	0.49	NO	0.879	1.000	34.467	34.51	1.036	1.037	108.76	109	1.12	

Quantify Sample Summary Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time

Name: 200309D1_1, Date: 09-Mar-2020, Time: 12:30:36, ID: ST200309D1-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.36e4	0.43	NO	0.893	1.000	36.164	36.30	1.087	1.091	114.72	115	0.962	
33	33 13C-1,2,3,4,7,8,9-HpCDF	4.04e4	0.41	NO	0.613	1.000	38.160	38.14	1.147	1.146	106.06	106	1.40	1
34	34 13C-OCDF	1.01e5	0.84	NO	0.741	1.000	40.722	41.04	1.224	1.234	219.65	110	1.02	
35	35 37CI-2,3,7,8-TCDD	1.52e2			1.18	1.000	25.941	25.87	1.026	1.023	0.26571	106	0.0945	
36	36 13C-1,2,3,4-TCDD	4.86e4	0.78	NO	1.00	1.000	25.440	25.29	1.000	1.000	100.00	100	1.58	
37	37 13C-1,2,3,4-TCDF	8.02e4	0.79	NO	1.00	1.000	23.970	23.79	1.000	1.000	100.00	100	1.14	
38	38 13C-1,2,3,4,6,9-HxCDF	6.21e4	0.49	NO	1.00	1.000	33.260	33.27	1.000	1.000	100.00	100	0.984	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	3.14e2	0.88	NO	0.987	1.000	25.882	25.85	1.001	1.000	0.45712	91.4	0.151	0.457
2	2 1,2,3,7,8-PeCDD	1.30e3	0.63	NO	0.982	1.000	30.488	30.47	1.001	1.000	2.4865	99.5	0.173	2.49
3	3 1,2,3,4,7,8-HxCDD	1.19e3	1.21	NO	1.17	1.000	33.762	33.76	1.000	1.000	2.3736	94.9	0.211	2.37
4	4 1,2,3,6,7,8-HxCDD	1.47e3	1.34	NO	1.04	1.000	33.862	33.86	1.000	1.000	2.5750	103	0.217	2.58
5	5 1,2,3,7,8,9-HxCDD	1.32e3	1.18	NO	1.00	1.000	34.181	34.16	1.001	1.000	2.5461	102	0.230	2.55
6	6 1,2,3,4,6,7,8-HpCDD	1.03e3	1.03	NO	0.992	1.000	37.637	37.65	1.000	1.001	2.5372	101	0.150	2.54
7	7 OCDD	1.85e3	0.78	NO	1.04	1.000	40.841	40.85	1.000	1.000	5.2302	105	0.302	5.23
8	8 2,3,7,8-TCDF	4.83e2	0.76	NO	0.882	1.000	25.066	25.06	1.001	1.001	0.51421	103	0.101	0.514
9	9 1,2,3,7,8-PeCDF	2.47e3	1.57	NO	1.05	1.000	29.280	29.28	1.001	1.001	2.6630	107	0.0882	2.66
10	10 2,3,4,7,8-PeCDF	2.10e3	1.72	NO	1.06	1.000	30.216	30.19	1.001	1.000	2.3750	95.0	0.0901	2.38
1+	11 1,2,3,4,7,8-HxCDF	1.90e3	1.18	NO	1.08	1.000	32.874	32.89	1.000	1.000	2.6075	104	0.0890	2.61
12	12 1,2,3,6,7,8-HxCDF	1.97e3	1.28	NO	1.04	1.000	33.005	33.02	1.000	1.001	2.5390	102	0.0914	2.54
13	13 2,3,4,6,7,8-HxCDF	1.86e3	1.26	NO	1.11	1.000	33.621	33.60	1.001	1.000	2.5318	101	0.102	2.53
14	14 1,2,3,7,8,9-HxCDF	1.40e3	1.24	NO	1.06	1.000	34.509	34.53	1.000	1.001	2.3747	95.0	0.146	2.37
15	15 1,2,3,4,6,7,8-HpCDF	1.64e3	0.99	NO	1.13	1.000	36.356	36.34	1.001	1.001	2.6271	105	0.121	2.63
16	16 1,2,3,4,7,8,9-HpCDF	1.25e3	0.91	NO	1.33	1.000	38.152	38.15	1.000	1.000	2.6032	104	0.135	2.60
17	17 OCDF	1.94e3	0.92	NO	0.933	1.000	41.060	41.06	1.000	1.000	4.8641	97.3	0.263	4.86
18	18 13C-2,3,7,8-TCDD	6.95e4	0.75	NO	1.21	1.000	25.927	25.85	1.026	1.023	91.317	91.3	0.806	
19	19 13C-1,2,3,7,8-PeCDD	5.32e4	0.64	NO	0.996	1.000	30.375	30.47	1.202	1.206	84.744	84.7	0.624	
20	20 13C-1,2,3,4,7,8-HxCDD	4.27e4	1.28	NO	0.679	1.000	33.735	33.75	1.014	1.015	89.104	89.1	0.804	
21	21 13C-1,2,3,6,7,8-HxCDD	5.50e4	1.28	NO	0.850	1.000	33.845	33.86	1.017	1.018	91.724	91.7	0.642	
22	22 13C-1,2,3,7,8,9-HxCDD	5.16e4	1.30	NO	0.798	1.000	34.114	34.15	1.025	1.026	91.609	91.6	0.684	
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.11e4	1.10	NO	0.697	1.000	37.561	37.63	1.129	1.131	83.563	83.6	0.824	
24	24 13C-OCDD	6.85e4	0.88	NO	0.579	1.000	40.568	40.84	1.219	1.228	167.58	83.8	1.10	1
25	25 13C-2,3,7,8-TCDF	1.06e5	0.79	NO	1.13	1.000	25.018	25.04	0.990	0.991	94.333	94.3	0.693	
26	26 13C-1,2,3,7,8-PeCDF	8.89e4	1.66	NO	0.996	1.000	29.205	29.26	1.156	1.158	89.102	89.1	0.594	
27	27 13C-2,3,4,7,8-PeCDF	8.35e4	1.68	NO	0.969	1.000	30.097	30.19	1.191	1.194	86.064	86.1	0.610	
28	28 13C-1,2,3,4,7,8-HxCDF	6.72e4	0.50	NO	1.06	1.000	32.870	32.87	0.988	0.988	89.967	90.0	0.773	
29	29 13C-1,2,3,6,7,8-HxCDF	7.44e4	0.51	NO	1.18	1.000	33.003	32.99	0.992	0.992	89.740	89.7	0.696	
30	30 13C-2,3,4,6,7,8-HxCDF	6.61e4	0.50	NO	1.06	1.000	33.572	33.59	1.009	1.010	88.678	88.7	0.774	
31	31 13C-1,2,3,7,8,9-HxCDF	5.56e4	0.51	NO	0.879	1.000	34.467	34.51	1.036	1.037	89.599	89.6	0.930	
32	32 13C-1,2,3,4,6,7,8-HpCDF	5.53e4	0.45	NO	0.893	1.000	36.164	36.32	1.087	1.092	87.812	87.8	0.737	[
33	33 13C-1,2,3,4,7,8,9-HpCDF	3.60e4	0.42	NO	0.613	1.000	38.160	38.15	1.147	1.147	83.156	83.2	1.07	
34	34 13C-OCDF	8.54e4	0.85	NO	0.741	1.000	40.721	41.06	1.224	1.234	163.34	81.7	0.958	

Quantify Sample Summary Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:25:37 Pacific Daylight Time

Name: 200309D1_2, Date: 09-Mar-2020, Time: 13:13:59, ID: ST200309D1-2 1613 CS1 19L2303, Description: 1613 CS1 19L2303

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	3.46e2			1.18	1.000	25.925	25.90	1.026	1.025	0.46531	93.1	0.0580	
36	36 13C-1,2,3,4-TCDD	6.31e4	0.76	NO	1.00	1.000	25.440	25.27	1.000	1.000	100.00	100	0.973	
37	37 13C-1,2,3,4-TCDF	1.00e5	0.74	NO	1.00	1.000	23.970	23.77	1.000	1.000	100.00	100	0.781	
38	38 13C-1,2,3,4,6,9-HxCDF	7.06e4	0.51	NO	1.00	1.000	33.260	33.27	1.000	1.000	100.00	100	0.818	

2

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time

2	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.33e3	0.84	NO	0.987	1.000	25.898	25.88	1.001	1.001	1.9943	99.7	0.132	1.99
2	2 1,2,3,7,8-PeCDD	5.19e3	0.68	NO	0.982	1.000	30.488	30.47	1.001	1.000	9.6066	96.1	0.122	9.61
3	3 1,2,3,4,7,8-HxCDD	5.25e3	1.21	NO	1.17	1.000	33.751	33.76	1.000	1.001	10.317	103	0.203	10.3
4	4 1,2,3,6,7,8-HxCDD	5.81e3	1.28	NO	1.04	1.000	33.851	33.86	1.000	1.000	10.153	102	0.202	10.2
5	5 1,2,3,7,8,9-HxCDD	5.12e3	1.23	NO	1.00	1.000	34.181	34.16	1.001	1.000	9.7729	97.7	0.222	9.77
6	6 1,2,3,4,6,7,8-HpCDD	4.11e3	1.06	NO	0.992	1.000	37.637	37.64	1.000	1.000	9.1270	91.3	0.292	9.13
7	7 OCDD	7.01e3	0.98	NO	1.04	1.000	40.841	40.85	1.000	1.000	18.831	94.2	0.499	18.8
8	8 2,3,7,8-TCDF	1.84e3	0.88	NO	0.882	1.000	25.097	25.07	1.001	1.000	1.9875	99.4	0.0873	1.99
9	9 1,2,3,7,8-PeCDF	9.45e3	1.52	NO	1.05	1.000	29.280	29.28	1.001	1.001	9.7097	97.1	0.108	9.71
10	10 2,3,4,7,8-PeCDF	9.41e3	1.59	NO	1.06	1.000	30.195	30.19	1.001	1.001	10.078	101	0.108	10.1
11	11 1,2,3,4,7,8-HxCDF	7.56e3	1.24	NO	1.08	1.000	32.863	32.89	1.000	1.001	10.081	101	0.187	10.1
12	12 1,2,3,6,7,8-HxCDF	8.06e3	1.24	NO	1.04	1.000	33.005	33.01	1.000	1.000	9.9232	99.2	0.180	9.92
13	13 2,3,4,6,7,8-HxCDF	7.62e3	1.25	NO	1.11	1.000	33.610	33.59	1.001	1.000	9.7731	97.7	0.204	9.77
14	14 1,2,3,7,8,9-HxCDF	6.08e3	1.24	NO	1.06	1.000	34.509	34.53	1.000	1.001	10.241	102	0.284	10.2
15	15 1,2,3,4,6,7,8-HpCDF	6.50e3	0.98	NO	1.13	1.000	36.356	36.34	1.001	1.001	9.8699	98.7	0.207	9.87
16	16 1,2,3,4,7,8,9-HpCDF	5.08e3	1.13	NO	1.33	1.000	38.152	38.16	1.000	1.000	9.5761	95.8	0.214	9.58
17	17 OCDF	8.47e3	0.93	NO	0.933	1.000	41.060	41.07	1.000	1.000	19.817	99.1	0.376	19.8
18	18 13C-2,3,7,8-TCDD	6.75e4	0.76	NO	1.21	1.000	25.943	25.87	1.026	1.023	86.833	86.8	0.686	
19	19 13C-1,2,3,7,8-PeCDD	5.49e4	0.63	NO	0.996	1.000	30.393	30.47	1.202	1.205	85.593	85.6	0.482	
20	20 13C-1,2,3,4,7,8-HxCDD	4.33e4	1.31	NO	0.679	1.000	33.735	33.74	1.014	1.014	85.583	85.6	0.680	
21	21 13C-1,2,3,6,7,8-HxCDD	5.52e4	1.34	NO	0.850	1.000	33.845	33.85	1.017	1.017	87.110	87.1	0.543	
22	22 13C-1,2,3,7,8,9-HxCDD	5.22e4	1.32	NO	0.798	1.000	34.114	34.15	1.025	1.026	87.691	87.7	0.578	
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.54e4	1.09	NO	0.697	1.000	37.561	37.63	1.129	1.131	87.366	87.4	0.858	
24	24 13C-OCDD	7.19e4	0.87	NO	0.579	1.000	40.569	40.84	1.219	1.228	166.63	83.3	1.24	
25	25 13C-2,3,7,8-TCDF	1.05e5	0.79	NO	1.13	1.000	25.033	25.07	0.990	0.992	86.283	86.3	0.579	
26	26 13C-1,2,3,7,8-PeCDF	9.31e4	1.71	NO	0. 9 96	1.000	29.223	29.26	1.156	1.157	86.564	86.6	0.597	
27	27 13C-2,3,4,7,8-PeCDF	8.81e4	1.64	NO	0.969	1.000	30.115	30.17	1.191	1.193	84.144	84.1	0.613	
28	28 13C-1,2,3,4,7,8-HxCDF	6.92e4	0.52	NO	1.06	1.000	32.870	32.86	0.988	0.988	87.755	87.8	0.692	
29	29 13C-1,2,3,6,7,8-HxCDF	7.79e4	0.50	NO	1.18	1.000	33.003	32.99	0.992	0.992	88.899	88.9	0.623	
3.)	30 13C-2,3,4,6,7,8-HxCDF	7.02e4	0.49	NO	1.06	1.000	33.572	33.58	1.009	1.009	89.104	89.1	0.693	
31	31 13C-1,2,3,7,8,9-HxCDF	5.62e4	0.50	NO	0.879	1.000	34.467	34.51	1.036	1.037	85.675	85.7	0.833	
32	32 13C-1,2,3,4,6,7,8-HpCDF	5.84e4	0.44	NO	0.893	1.000	36.164	36.32	1.087	1.092	87.725	87.7	0.660	
33	33 13C-1,2,3,4,7,8,9-HpCDF	3.98e4	0.45	NO	0.613	1.000	38.160	38.15	1.147	1.147	87.041	87.0	0.961	
34	34 13C-OCDF	9.16e4	0.89	NO	0.741	1.000	40.722	41.06	1.224	1.234	165.73	82.9	0.674	

Quantify Sam Vista Analytica	ple Summary Report I Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\2003	309D1\200309D1_CRV.qld	
Last Altered: Printed:		17:20:28 Pacific Daylight Time 17:25:37 Pacific Daylight Time	

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	1.36e3			1.18	1.000	25.941	25.88	1.026	1.024	1.7827	89.1	0.0590	
36	36 13C-1,2,3,4-TCDD	6.45e4	0.81	NO	1.00	1.000	25.440	25.29	1.000	1.000	100.00	100	0.827	
37	37 13C-1,2,3,4-TCDF	1.08e5	0.74	NO	1.00	1.000	23.970	23.80	1.000	1.000	100.00	100	0.652	
38	38 13C-1,2,3,4,6,9-HxCDF	7.46e4	0.51	NO	1.00	1.000	33.260	33.27	1.000	1.000	100.00	100	0.732	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.62e4	0.78	NO	0.987	1.000	25.898	25.90	1.001	1.001	39.325	98.3	0.180	39.3
2	2 1,2,3,7,8-PeCDD	1.12e5	0.62	NO	0.982	1.000	30.488	30.49	1.001	1.001	205.44	103	0.238	205
3	3 1,2,3,4,7,8-HxCDD	1.15e5	1.27	NO	1.17	1.000	33.773	33.77	1.000	1.000	199.05	99.5	0.343	199
4	4 1,2,3,6,7,8-HxCDD	1.24e5	1.25	NO	1.04	1.000	33.873	33.88	1.000	1.000	199.49	99.7	0.369	199
5	5 1,2,3,7,8,9-HxCDD	1.18e5	1.27	NO	1.00	1.000	34.192	34.17	1.001	1.000	203.80	102	0.410	204
6	6 1,2,3,4,6,7,8-HpCDD	1.01e5	1.07	NO	0.992	1.000	37.648	37.65	1.000	1.000	208.09	104	0.559	208
7	7 OCDD	1.78e5	0.93	NO	1.04	1.000	40.841	40.85	1.000	1.000	409.83	102	0.994	410
8	8 2,3,7,8-TCDF	3.49e4	0.74	NO	0.882	1.000	25.097	25.09	1.001	1.001	37.585	94.0	0.111	37.6
9	9 1,2,3,7,8-PeCDF	1.99e5	1.61	NO	1.05	1.000	29.300	29.30	1.001	1.001	202.61	101	0.285	203
10	10 2,3,4,7,8-PeCDF	1.95e5	1.60	NO	1.06	1.000	30.216	30.21	1.001	1.001	199.26	99.6	0.284	199
11	11 1,2,3,4,7,8-HxCDF	1.60e5	1.25	NO	1.08	1.000	32.885	32.90	1.000	1.000	199.76	99.9	0.474	200
12	12 1,2,3,6,7,8-HxCDF	1.76e5	1.25	NO	1.04	1.000	33.016	33.02	1.000	1.000	201.37	101	0.492	201
13	13 2,3,4,6,7,8-HxCDF	1.69e5	1.26	NO	1.11	1.000	33.632	33.61	1.001	1.000	201.62	101	0.518	202
14	14 1,2,3,7,8,9-HxCDF	1.35e5	1.24	NO	1.06	1.000	34.531	34.53	1.000	1.000	203.64	102	0.758	204
15	15 1,2,3,4,6,7,8-HpCDF	1.41e5	1.01	NO	1.13	1.000	36.367	36.34	1.001	1.000	199.39	99.7	0.583	199
16	16 1,2,3,4,7,8,9-HpCDF	1.18e5	1.03	NO	1.33	1.000	38.153	38.16	1.000	1.000	196.14	98.1	0.588	196
17	17 OCDF	2.16e5	0.89	NO	0.933	1.000	41.061	41.07	1.000	1.000	418.95	105	0.740	419
18	18 13C-2,3,7,8-TCDD	6.74e4	0.80	NO	1.21	1.000	25.943	25.87	1.026	1.023	104.74	105	0.781	
19	19 13C-1,2,3,7,8-PeCDD	5.55e4	0.62	NO	0.996	1.000	30.393	30.47	1.202	1.205	104.59	105	0.335	
20	20 13C-1,2,3,4,7,8-HxCDD	4.94 e 4	1.30	NO	0.679	1.000	33.757	33.76	1.014	1.014	106.08	106	0.701	
21	21 13C-1,2,3,6,7,8-HxCDD	5.99e4	1.39	NO	0.850	1.000	33.867	33.87	1.017	1.017	102.78	103	0.560	
22	22 13C-1,2,3,7,8,9-HxCDD	5.76e4	1.37	NO	0.798	1.000	34.137	34.16	1.025	1.026	105.18	105	0.596	ļ
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.89e4	1.06	NO	0.697	1.000	37.586	37.64	1.129	1.131	102.16	102	0.741	
24	24 13C-OCDD	8.39e4	0.89	NO	0.579	1.000	40.595	40.84	1.219	1.227	211.07	106	1.44	
25	25 13C-2,3,7,8-TCDF	1.05e5	0.77	NO	1.13	1.000	25.033	25.07	0.990	0.992	105.13	105	0.636	
26	26 13C-1,2,3,7,8-PeCDF	9.40e4	1.56	NO	0.996	1.000	29.223	29.28	1.156	1.158	106.33	106	0.706	
27	27 13C-2,3,4,7,8-PeCDF	9.25e4	1.61	NO	0.969	1.000	30.115	30.19	1.191	1.194	107.56	108	0.726	
28	28 13C-1,2,3,4,7,8-HxCDF	7.40e4	0.50	NO	1.06	1.000	32.892	32.89	0.988	0.988	101.98	102	0.732	
29	29 13C-1,2,3,6,7,8-HxCDF	8.37e4	0.51	NO	1.18	1.000	33.025	33.01	0.992	0.991	103.74	104	0.658	
30	30 13C-2,3,4,6,7,8-HxCDF	7.56e4	0.51	NO	1.06	1.000	33.594	33.60	1.009	1.009	104.20	104	0.732	
31	31 13C-1,2,3,7,8,9-HxCDF	6.28e4	0.51	NO	0.879	1.000	34.490	34.53	1.036	1.037	104.13	104	0.880	
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.29e4	0.43	NO	0.893	1.000	36.188	36.33	1.087	1.091	102.64	103	0.760	
33	33 13C-1,2,3,4,7,8,9-HpCDF	4.51e4	0.40	NO	0.613	1.000	38.185	38.15	1.147	1.146	107.20	107	1.11	
34	34_13C-OCDF	1.10e5	0.87	NO	0.741	1.000	40.749	41.06	1.224	1.233	216.88	108	0.988	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:25:37 Pacific Daylight Time

Name: 200309D1_4, Date: 09-Mar-2020, Time: 14:43:39, ID: ST200309D1-4 1613 CS4 19L2306, Description: 1613 CS4 19L2306

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	2.63e4			1.18	1.000	25.941	25.90	1.026	1.024	41.856	105	0.130	
36	36 13C-1,2,3,4-TCDD	5.33e4	0.79	NO	1.00	1.000	25.440	25.29	1.000	1.000	100.00	100	0.942	
37	37 13C-1,2,3,4-TCDF	8.88e4	0.77	NO	1.00	1.000	23.970	23.79	1.000	1.000	100.00	100	0.717	
38	38 13C-1,2,3,4,6,9-HxCDF	6.86e4	0.52	NO	1.00	1.000	33.260	33.29	1.000	1.000	100.00	100	0.774	

۰.

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Page 9 of 12

Last Altered: Menday March 00, 2020 17:20:28 Desific Desification

Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time
Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time

35-3	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	2.32e5	0.77	NO	0.987	1.000	25.913	25.90	1.001	1.001	327.37	109	0.234	327
2	2 1,2,3,7,8-PeCDD	9.76e5	0.63	NO	0.982	1.000	30.488	30.49	1.001	1.001	1612.8	108	0.392	1610
3	3 1,2,3,4,7,8-HxCDD	1.01e6	1.25	NO	1.17	1.000	33.762	33.76	1.000	1.000	1623.4	108	0.881	1620
4	4 1,2,3,6,7,8-HxCDD	1.05e6	1.26	NO	1.04	1.000	33.862	33.87	1.000	1.000	1604.8	107	0.891	1600
5	5 1,2,3,7,8,9-HxCDD	1.01e6	1.24	NO	1.00	1.000	34.181	34.16	1.001	1.000	1673.1	112	0.950	1670
6	6 1,2,3,4,6,7,8-HpCDD	9.00e5	1.03	NO	0.992	1.000	37.637	37.64	1.000	1.000	1604.4	107	1.42	1600
7	7 OCDD	1.63e6	0.89	NO	1.04	1.000	40.852	40.86	1.000	1.000	3041.1	101	1.86	3040
8	8 2,3,7,8-TCDF	3.02e5	0.76	NO	0.882	1.000	25.097	25.09	1.001	1.001	303.14	101	0.185	303
9	9 1,2,3,7,8-PeCDF	1.61e6	1.56	NO	1.05	1.000	29.300	29.30	1.001	1.001	1550.4	103	0.447	1550
10	10 2,3,4,7,8-PeCDF	1.64e6	1.56	NO	1.06	1.000	30.216	30.19	1.001	1.000	1569.6	105	0.436	1570
11	11 1,2,3,4,7,8-HxCDF	1.35e6	1.24	NO	1.08	1.000	32.874	32.89	1.000	1.000	1549.7	103	0.869	1550
12	12 1,2,3,6,7,8-HxCDF	1.46e6	1.25	NO	1.04	1.000	33.005	33.02	1.000	1.001	1594.8	106	0.890	1590
13	13 2,3,4,6,7,8-HxCDF	1.42e6	1.24	NO	1.11	1.000	33.610	33.60	1.001	1.001	1590.7	106	0.922	1590
14	14 1,2,3,7,8,9-HxCDF	1.16e6	1.24	NO	1.06	1.000	34.509	34.53	1.000	1.001	1621.1	108	1.27	1620
15	15 1,2,3,4,6,7,8-HpCDF	1.26e6	1.04	NO	1.13	1.000	36.356	36.34	1.001	1.001	1627.7	109	1.18	1630
16	16 1,2,3,4,7,8,9-HpCDF	1.08e6	1.03	NO	1.33	1.000	38.152	38.16	1.000	1.000	1 6 28.7	109	1.18	1630
17	17 OCDF	1.90e6	0.90	NO	0.933	1.000	41.071	41.08	1.000	1.000	3229.2	108	0.975	3230
18	18 13C-2,3,7,8-TCDD	7.20e4	0.74	NO	1.21	1.000	25.959	25.88	1.026	1.023	104.67	105	0.662	
19	19 13C-1,2,3,7,8-PeCDD	6.16e4	0.62	NO	0.996	1.000	30.412	30.47	1.202	1.204	108.60	109	0.305	
20	20 13C-1,2,3,4,7,8-HxCDD	5.28e4	1.31	NO	0.679	1.000	33.746	33.75	1.014	1.014	111.22	111	0.548	
21	21 13C-1,2,3,6,7,8-HxCDD	6.33e4	1.27	NO	0.850	1.000	33.856	33.86	1.017	1.017	106.39	106	0.438	
22	22 13C-1,2,3,7,8,9-HxCDD	6.01e4	1.32	NO	0.798	1.000	34.125	34.15	1.025	1.026	107.57	108	0.466	
23	23 13C-1,2,3,4,6,7,8-HpCDD	5.66e4	1.07	NO	0.697	1.000	37.573	37.63	1.129	1.131	115.97	116	0.730	
24	24 13C-OCDD	1.03e5	0.90	NO	0.579	1.000	40.582	40.85	1.219	1.228	254.77	127	1.05	
25	25 13C-2,3,7,8-TCDF	1.13e5	0.75	NO	1.13	1.000	25.048	25.07	0.990	0.991	105.72	106	0.463	
26	26 13C-1,2,3,7,8-PeCDF	9.94e4	1.62	NO	0.996	1.000	29.240	29.28	1.156	1.157	105.26	105	0.710	
27	27 13C-2,3,4,7,8-PeCDF	9.85e4	1.65	NO	0.969	1.000	30.133	30.19	1.191	1.193	107.22	107	0.730	
28	28 13C-1,2,3,4,7,8-HxCDF	8.03e4	0.49	NO	1.06	1.000	32.881	32.87	0.988	0.988	108.45	108	0.611	
29	29 13C-1,2,3,6,7,8-HxCDF	8.80e4	0.51	NO	1.18	1.000	33.014	32.99	0.992	0.991	106.99	107	0.550	
30	30 13C-2,3,4,6,7,8-HxCDF	8.06e4	0.51	NO	1.06	1.000	33.583	33.58	1.009	1.009	108.86	109	0.612	
31	31 13C-1,2,3,7,8,9-HxCDF	6.79e4	0.50	NO	0.879	1.000	34.478	34.51	1.036	1.037	110.26	110	0.735	
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.88e4	0.44	NO	0.893	1.000	36.176	36.32	1.087	1.091	110.02	110	0.625	
33	33 13C-1,2,3,4,7,8,9-HpCDF	4.99e4	0.43	NO	0.613	1.000	38.172	38.15	1.147	1.146	116.2 6	116	0.910	
34	34 13C-OCDF	1.26e5	0.87	NO	0.741	1.000	40.735	41.07	1.224	1.234	243.03	122	0.651	

Quantify Sam Vista Analytica	al Laboratory	MassLynx 4.1
Dataset:	U:\VG7.PRO\Results\200)309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	1.49e5			1.18	1.000	25.956	25.90	1.026	1.024	222.19	111	0.107	
36	36 13C-1,2,3,4-TCDD	5.70e4	0.80	NO	1.00	1.000	25.440	25.30	1.000	1.000	100.00	100	0.799	
37	37 13C-1,2,3,4-TCDF	9.48e4	0.77	NO	1.00	1.000	23.970	23.80	1.000	1.000	100.00	100	0.522	
38	38 13C-1,2,3,4,6,9-HxCDF	7.00e4	0.51	NO	1.00	1.000	33.260	33.28	1.000	1.000	100.00	100	0.646	

Quantify Sample Summary ReportMassLynx 4.1Vista Analytical Laboratory

Page 11 of 12

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 17:20:28 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:25:37 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	5.95e3	0.84	NO	0.987	1.000	25.898	25.90	1.001	1.001	10.674	107	0.194	10.7
2	2 1,2,3,7,8-PeCDD	2.35e4	0.63	NO	0.982	1.000	30.488	30.49	1.001	1.001	49.627	99.3	0.344	49.6
3	3 1,2,3,4,7,8-HxCDD	2.32e4	1.30	NO	1.17	1.000	33.773	33.77	1.000	1.000	48.395	96.8	0.509	48.4
4	4 1,2,3,6,7,8-HxCDD	2.48e4	1.22	NO	1.04	1.000	33.862	33.87	1.000	1.000	47.392	94.8	0.461	47.4
5	5 1,2,3,7,8,9-HxCDD	2.27e4	1.22	NO	1.00	1.000	34.181	34.17	1.001	1.001	47.860	95.7	0.560	47.9
6	6 1,2,3,4,6,7,8-HpCDD	1.97e4	1.03	NO	0.992	1.000	37.637	37.65	1.000	1.001	47.566	95.1	0.441	47.6
7	7 OCDD	3.46e4	0.91	NO	1.04	1.000	40.852	40.86	1.000	1.000	101.37	101	0.624	101
8	8 2,3,7,8-TCDF	7.83e3	0.74	NO	0.882	1.000	25.082	25.07	1.001	1.001	9.9734	99.7	0.156	9.97
9	9 1,2,3,7,8-PeCDF	3.93e4	1.62	NO	1.05	1.000	29.300	29.28	1.001	1.000	49.656	99.3	0.270	49.7
10	10 2,3,4,7,8-PeCDF	3.92e4	1.59	NO	1.06	1.000	30.216	30.19	1.001	1.000	48.173	96.3	0.249	48.2
11	11 1,2,3,4,7,8-HxCDF	3.35e4	1.27	NO	1.08	1.000	32.874	32.90	1.000	1.001	47.795	95.6	0.276	47.8
12	12 1,2,3,6,7,8-HxCDF	3.62e4	1.26	NO	1.04	1.000	33.005	33.02	1.000	1.001	49.151	98.3	0.297	49.2
13	13 2,3,4,6,7,8-HxCDF	3.50e4	1.27	NO	1.11	1.000	33.621	33.60	1.001	1.000	50.326	101	0.319	50.3
14	14 1,2,3,7,8,9-HxCDF	2.76e4	1.29	NO	1.06	1.000	34.520	34.53	1.000	1.000	49.086	98.2	0.440	49.1
15	15 1,2,3,4,6,7,8-HpCDF	2.92e4	1.03	NO	1.13	1.000	36.367	36.34	1.001	1.000	50.171	100	0.440	50.2
16	16 1,2,3,4,7,8,9-HpCDF	2.39e4	1.01	NO	1.33	1.000	38.153	38.16	1.000	1.000	48.848	97.7	0.441	48.8
17	17 OCDF	3.98e4	0.90	NO	0.933	1.000	41.061	41.07	1.000	1.000	100.89	101	0.581	101
18	18 13C-2,3,7,8-TCDD	5.65e4	0.75	NO	1.21	1.000	25.943	25.87	1.026	1.023	96.302	96.3	0.696	
19	19 13C-1,2,3,7,8-PeCDD	4.81e4	0.64	NO	0.996	1.000	30.393	30.47	1.202	1.205	99.417	99.4	0.255	
20	20 13C-1,2,3,4,7,8-HxCDD	4.08e4	1.30	NO	0.679	1.000	33.746	33.76	1.014	1.015	100.91	101	0.783	
21	21 13C-1,2,3,6,7,8-HxCDD	5.06e4	1.28	NO	0.850	1.000	33.856	33.86	1.017	1.017	99.923	99.9	0.625	
22	22 13C-1,2,3,7,8,9-HxCDD	4.73e4	1.29	NO	0.798	1.000	34.126	34.15	1.025	1.026	99.381	99.4	0.666	
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.19e4	1.09	NO	0.697	1.000	37.574	37.63	1.129	1.131	100.84	101	0.763	
24	24 13C-OCDD	6.60e4	0.90	NO	0.579	1.000	40.582	40.85	1.219	1.228	191.28	95.6	0.964	
25	25 13C-2,3,7,8-TCDF	8.90e4	0.77	NO	1.13	1.000	25.033	25.06	0.990	0.991	97.439	97.4	0.514	
26	26 13C-1,2,3,7,8-PeCDF	7.57e4	1.58	NO	0.996	1.000	29.223	29.28	1.156	1.158	93.786	93.8	0.878	
27	27 13C-2,3,4,7,8-PeCDF	7.68e4	1.61	NO	0.969	1.000	30.115	30.19	1.191	1.194	97.866	97.9	0.902	
28	28 13C-1,2,3,4,7,8-HxCDF	6.48e4	0.50	NO	1.06	1.000	32.881	32.87	0.988	0.988	102.75	103	0.667	
29	29 13C-1,2,3,6,7,8-HxCDF	7.06e4	0.50	NO	1.18	1.000	33.014	33.00	0.992	0.991	100.87	101	0.601	
30	30 13C-2,3,4,6,7,8-HxCDF	6.26e4	0.51	NO	1.06	1.000	33.583	33.59	1.009	1.009	99.391	99.4	0.668	
31	31 13C-1,2,3,7,8,9-HxCDF	5.32e4	0.55	NO	0.879	1.000	34.479	34.52	1.036	1.037	101.58	102	0.803	
32	32 13C-1,2,3,4,6,7,8-HpCDF	5.16e4	0.44	NO	0.893	1.000	36.176	36.33	1.087	1.092	97.081	97.1	0.587	
33	33 13C-1,2,3,4,7,8,9-HpCDF	3.67e4	0.42	NO	0.613	1.000	38.173	38.15	1.147	1.146	100.29	100	0.855	
34	34 13C-OCDF	8.45e4	0.90	NO	0.741	1.000	40.735	41.06	1.224	1.234	191.36	95.7	0.540	

Quantify Sample Summary Report	t MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered: Monday, March 09, 2020 17:20:28 Pacific Daylight Time Printed: Monday, March 09, 2020 17:25:37 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
35	35 37CI-2,3,7,8-TCDD	5.49e3			1.18	1.000	25.941	25.88	1.026	1.024	9.5783	95.8	0.129	
36	36 13C-1,2,3,4-TCDD	4.86e4	0.80	NO	1.00	1.000	25.440	25.29	1.000	1.000	100.00	100	0.839	
37	37 13C-1,2,3,4-TCDF	8.10e4	0.80	NO	1.00	1.000	23.970	23.80	1.000	1.000	100.00	100	0.580	
38	38 13C-1,2,3,4,6,9-HxCDF	5.96e4	0.48	NO	1.00	1.000	33.260	33.28	1.000	1.000	100.00	100	0.706	

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: Untitled

Last Altered: Monday, March 09, 2020 17:27:14 Pacific Daylight Time Printed: Monday, March 09, 2020 17:27:43 Pacific Daylight Time

Method: C:\MassLynx\Default.pro\Methdb\CPSM.mdb 05 Mar 2020 16:02:56 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-2-27-20.cdb 28 Feb 2020 10:40:27

Name: 200309D1_6, Date: 09-Mar-2020, Time: 16:13:17, ID: ST200309D1-6 1613 CS3 19L2305, Description: 1613 CS3 19L2305

	# Name	RT
1	1 1,3,6,8-TCDD (First)	22.35
2	2 1,2,8,9-TCDD (Last)	26.77
3	3 1,2,4,7,9-PeCDD (First)	28.41
4	4 1,2,3,8,9-PeCDD (Last)	30.85
5	5 1,2,4,6,7,9-HxCDD (First)	32.26
6	6 1,2,3,7,8,9-HxCDD (Last)	34.17
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.74
8	8 1,2,3,4,6,7,8-HpCDD (Last)	37.65
9	9 1,3,6,8-TCDF (First)	20.19
10	10 1,2,8,9-TCDF (Last)	26.91
11	11 1,3,4,6,8-PeCDF (First)	26.88
12	12 1,2,3,8,9-PeCDF (Last)	31.07
13	13 1,2,3,4,6,8-HxCDF (First)	31.73
14	14 1,2,3,7,8,9-HxCDF (Last)	34.53
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.34
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.16

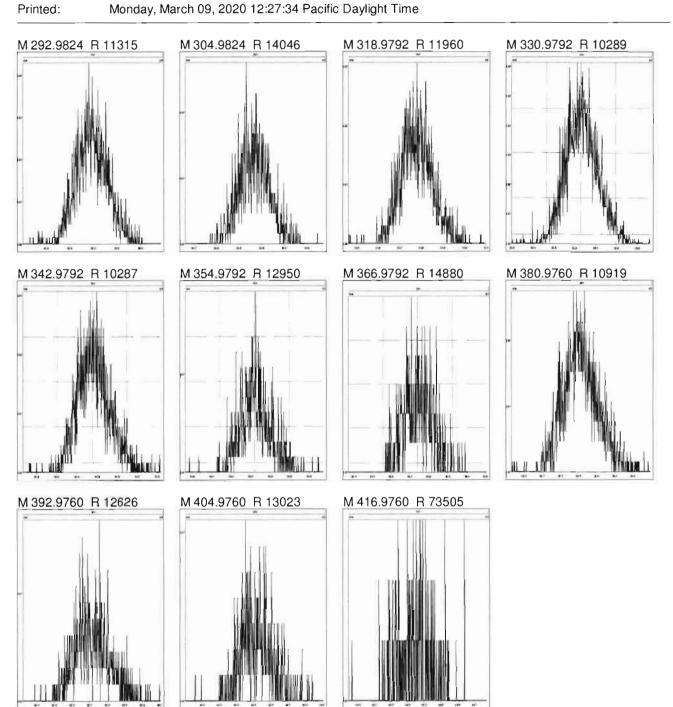
Page 1 of 1

Quantify Compound Summary ReportMassLynx 4.1Vista Analytical Laboratory VG-11

Dataset: Untitled

Last Altered:	Tuesday, March 10, 2020 09:21:15 Pacific Daylight Time
Printed:	Tuesday, March 10, 2020 09:21:30 Pacific Daylight Time

Method: C:\MassLynx\Default.pro\Methdb\1613_rrt.mdb 09 Mar 2020 11:30:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-2-27-20.cdb 28 Feb 2020 10:40:27

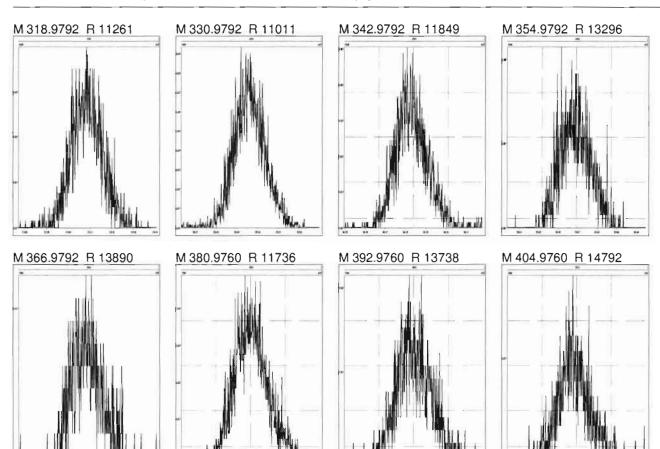

Compound name: 2,3,7,8-TCDD

-	Name	ID	Acq.Date	Acq.Time
1	200309D1_1	ST200309D1-1 1613 CS0 19L2302	09-Mar-20	12:30:36
2	200309D1_2	ST200309D1-2 1613 CS1 19L2303	09-Mar-20	13:13:59
3	200309D1_3	ST200309D1-3 1613 CS2 19L2304	09-Mar-20	13:58:44
4	200309D1_4	ST200309D1-4 1613 CS4 19L2306	09-Mar-20	14:43:39
5	200309D1_5	ST200309D1-5 1613 CS5 19L2307	09-Mar-20	15:28:28
6	200309D1_6	ST200309D1-6 1613 CS3 19L2305	09-Mar-20	16:13:17
7	200309D1_7	SOLVENT BLANK	09-Mar-20	16:58:12
8	200309D1_8	SS200309D1-1 1613 SSS 19L2308	09-Mar-20	17:43:01
9	200309D1_9	B0A0186-BS1 OPR 1	09-Mar-20	18:27:57
10	200309D1_10	SOLVENT BLANK	09-Mar-20	19:12:46
11	200309D1_11	B0B0297-BLK1 Method Blank 1	09-Mar-20	19:57:35
12	200309D1_12	B0A0143-BLK1 Method Blank 10	09-Mar-20	20:42:24
13	200309D1_13	B0A0186-BLK1 Method Blank 1	09-Mar-20	21:27:13
14	200309D1_14	2000418-01 GAIN-D-001-C-022620 1	09-Mar-20	22:12:00
15	200309D1_15	2000141-01 RO Brine 1.02453	09-Mar-20	22:56:48
16	200309D1_16	1902883-12RE1 RBC-LMB-1-5-L 25.01	09-Mar-20	23:40:51

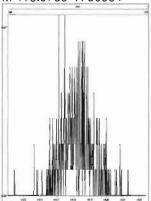
MassLynx 4.1

File:

Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)d: Monday, March 09, 2020 12:27:34 Pacific Daylight Time



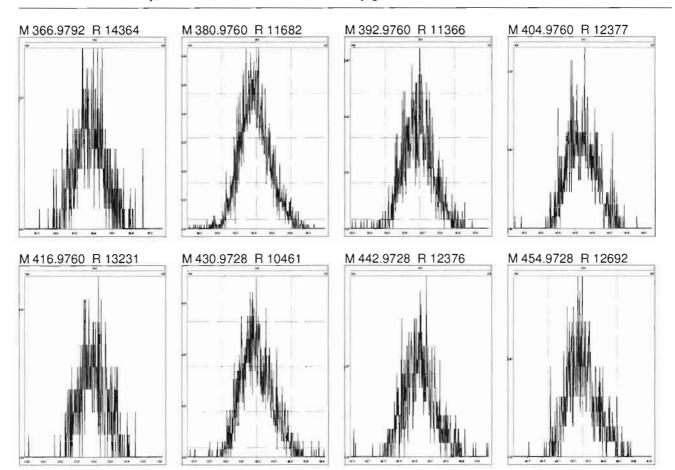
MassLynx 4.1


File:

Printed:

Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 2 @ 200 (ppm) Monday, March 09, 2020 12:27:59 Pacific Daylight Time

M 416.9760 R 60984

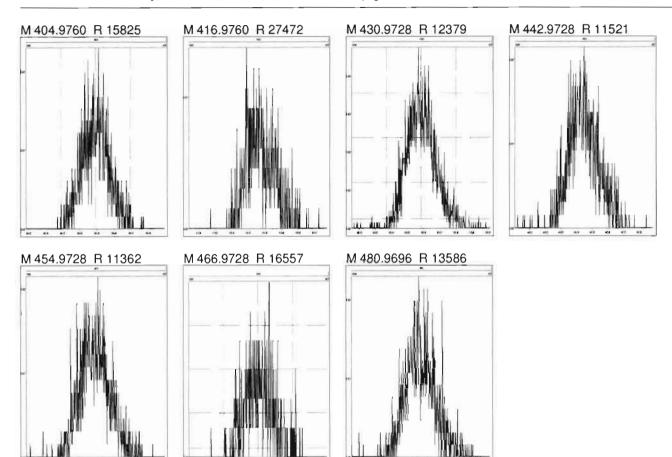


MassLynx 4.1

File:

Printed:

Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 3 @ 200 (ppm) Monday, March 09, 2020 12:28:21 Pacific Daylight Time

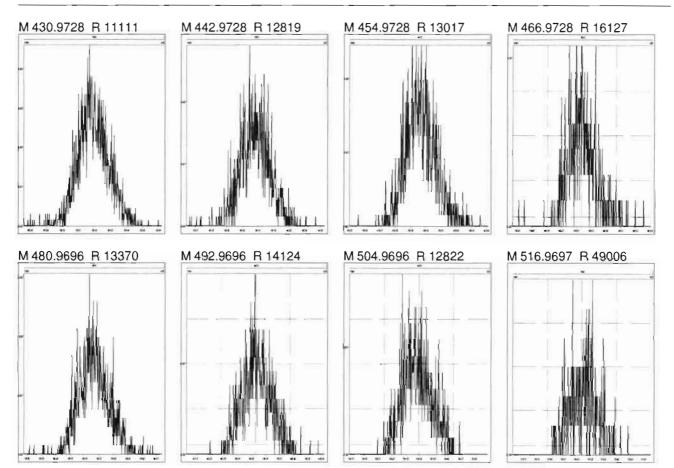


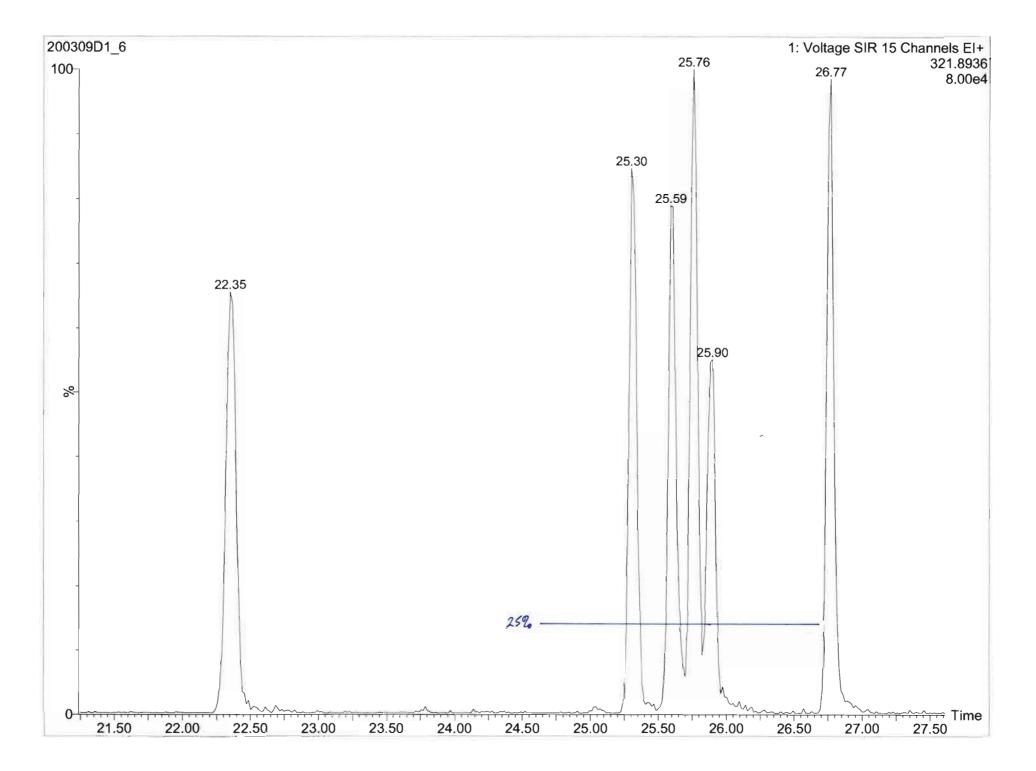
MassLynx 4.1

File:

Printed:

Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 4 @ 200 (ppm) Monday, March 09, 2020 12:28:48 Pacific Daylight Time

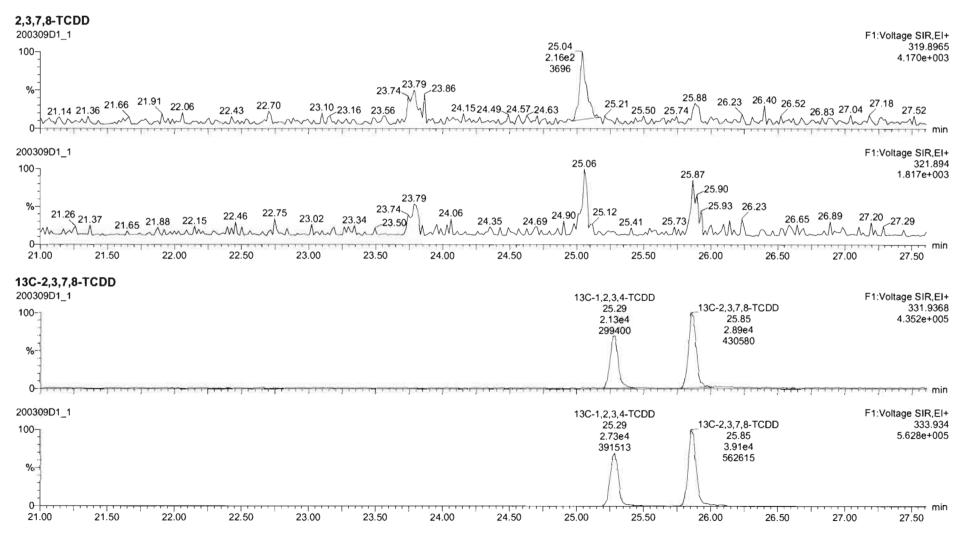


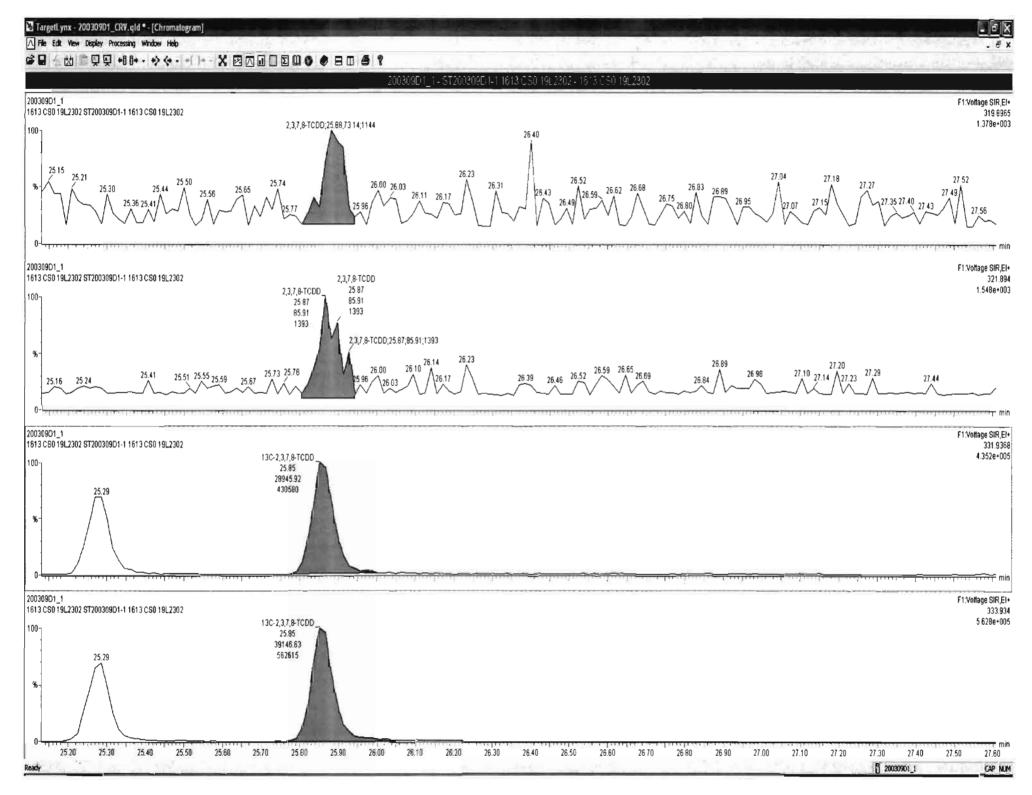

MassLynx 4.1

File:

Printed:

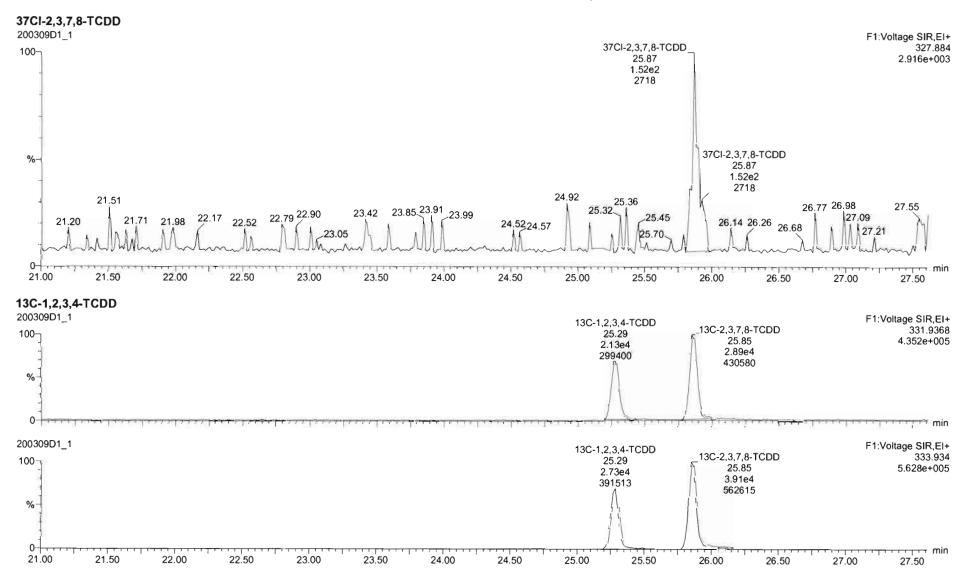
Experiment: ocdd_db5.exp Reference: Pfk.ref Function: 5 @ 200 (ppm) Monday, March 09, 2020 12:29:46 Pacific Daylight Time


Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory

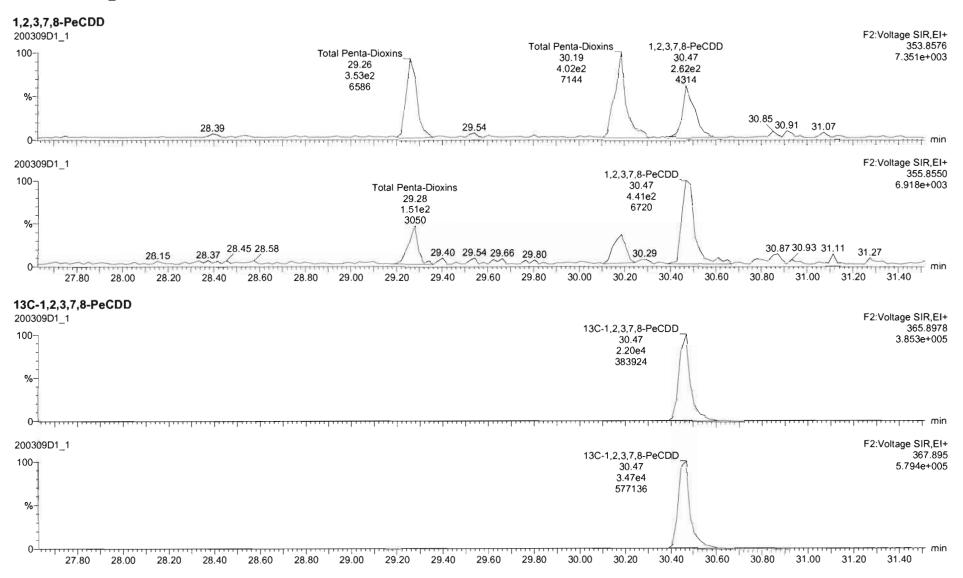
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:Monday, March 09, 2020 16:58:54 Pacific Daylight TimePrinted:Monday, March 09, 2020 17:00:26 Pacific Daylight Time

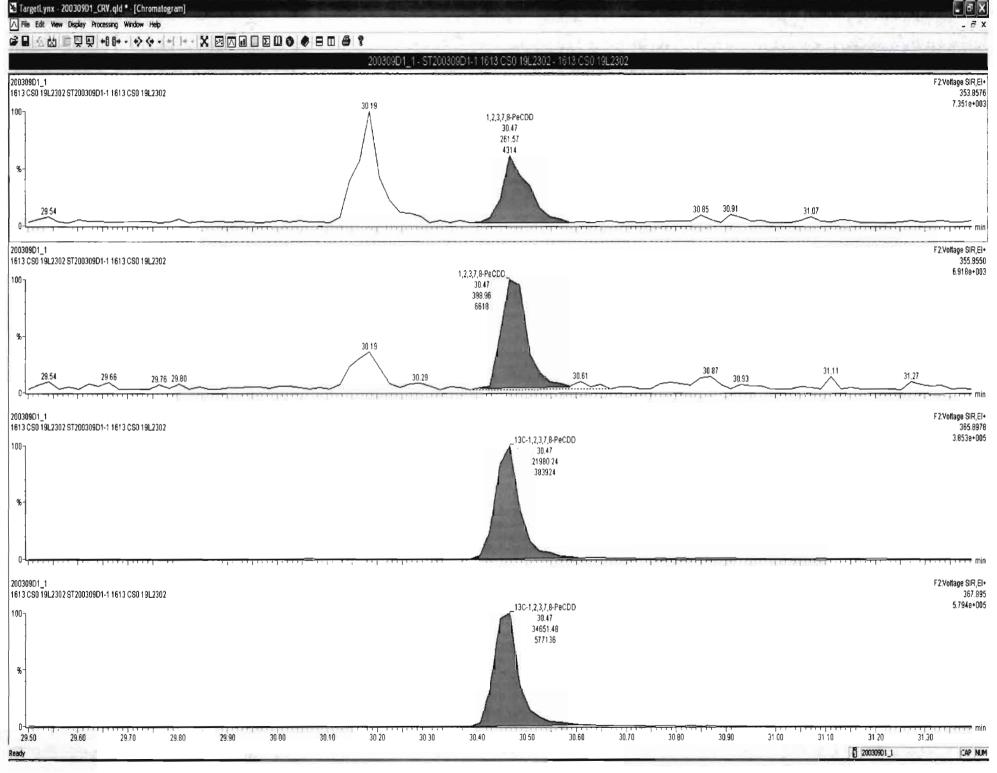

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 09 Mar 2020 11:30:34 Calibration: 09 Mar 2020 16:58:54

Work Order 2000945

Quantify Sam Vista Analytica		Page 2 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

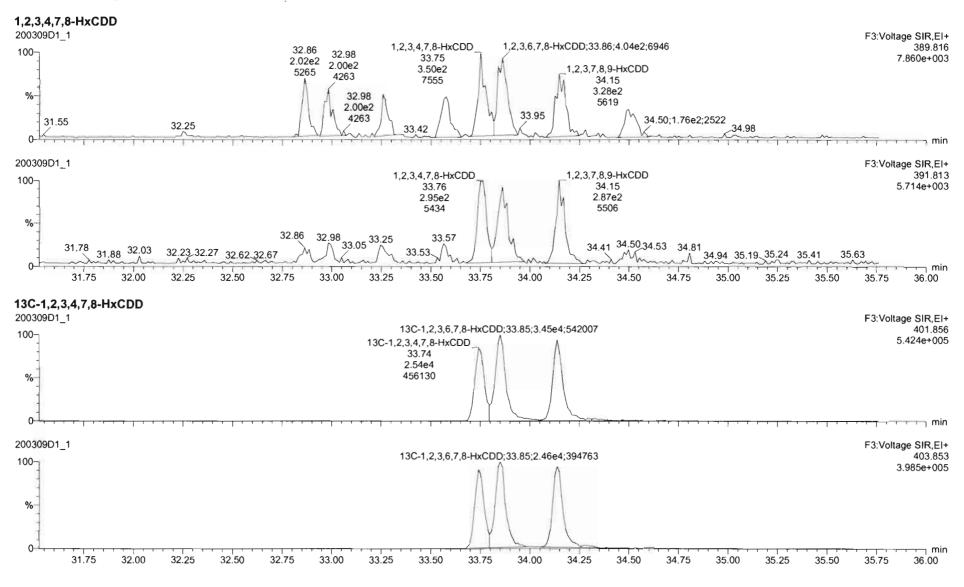

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

Name: 200309D1_1, Date: 09-Mar-2020, Time: 12:30:36, ID: ST200309D1-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

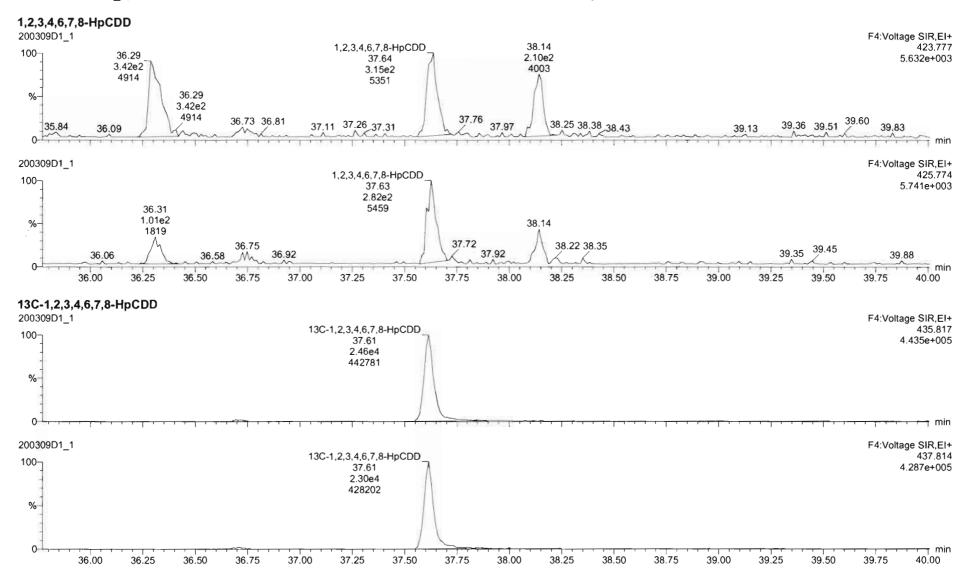
Work Order 2000945

Work Order 2000945

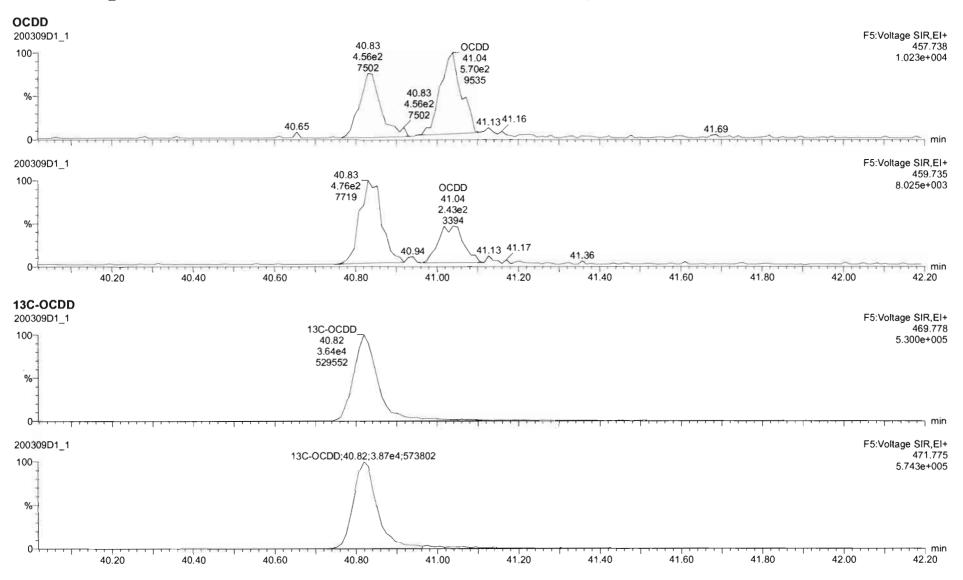

Quantify Sample Report MassLynx 4.1

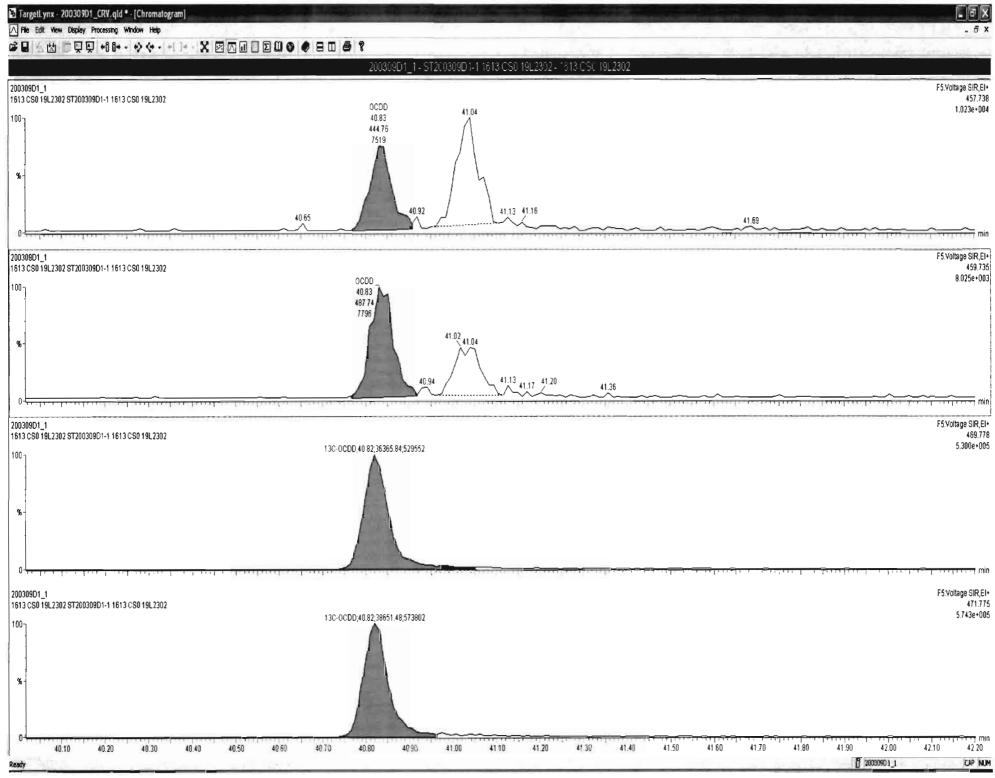
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld


Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

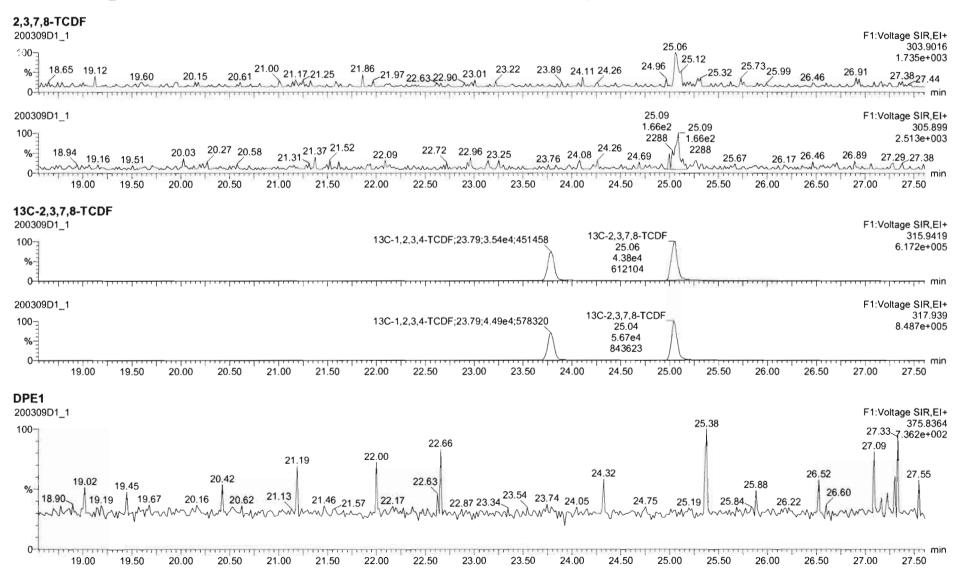
Name: 200309D1_1, Date: 09-Mar-2020, Time: 12:30:36, ID: ST200309D1-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

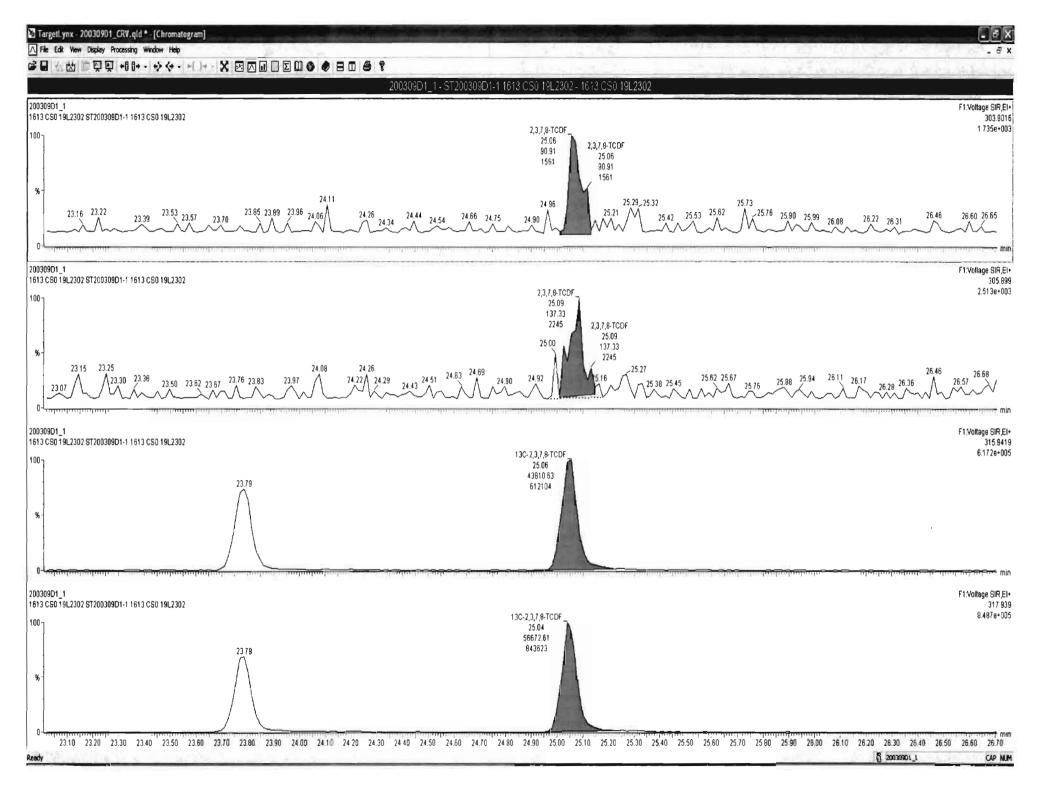



Page 636 of 769

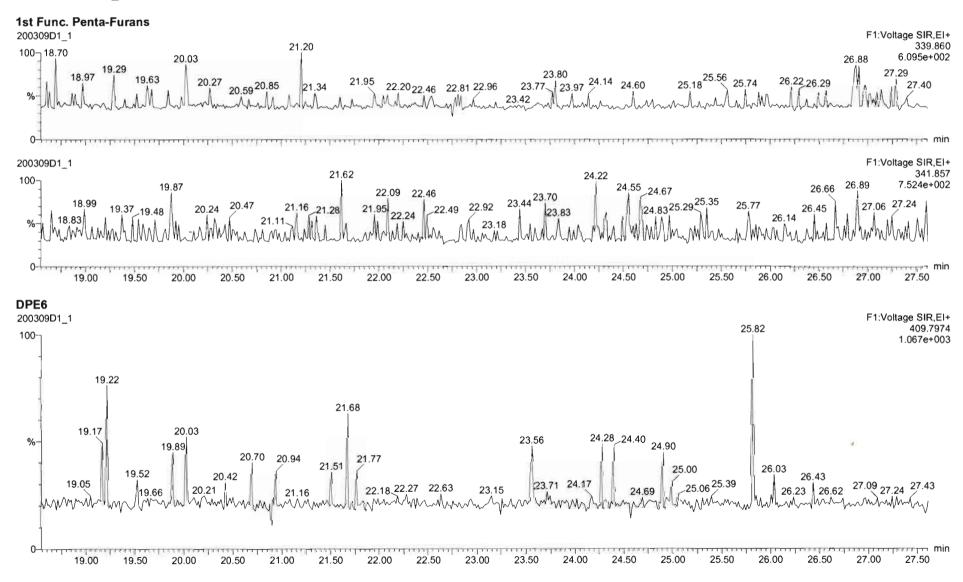
Quantify Sam Vista Analytica		Page 5 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 6 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

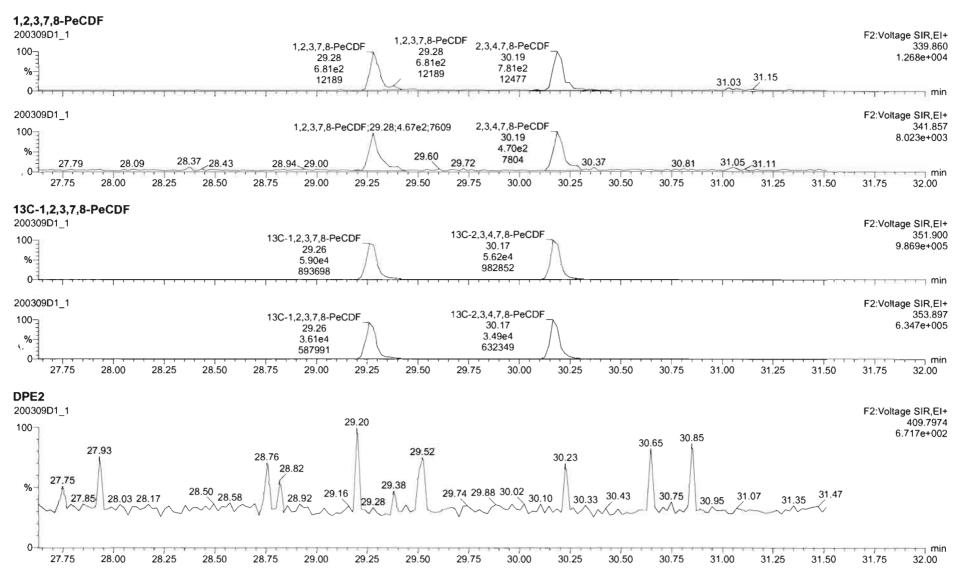


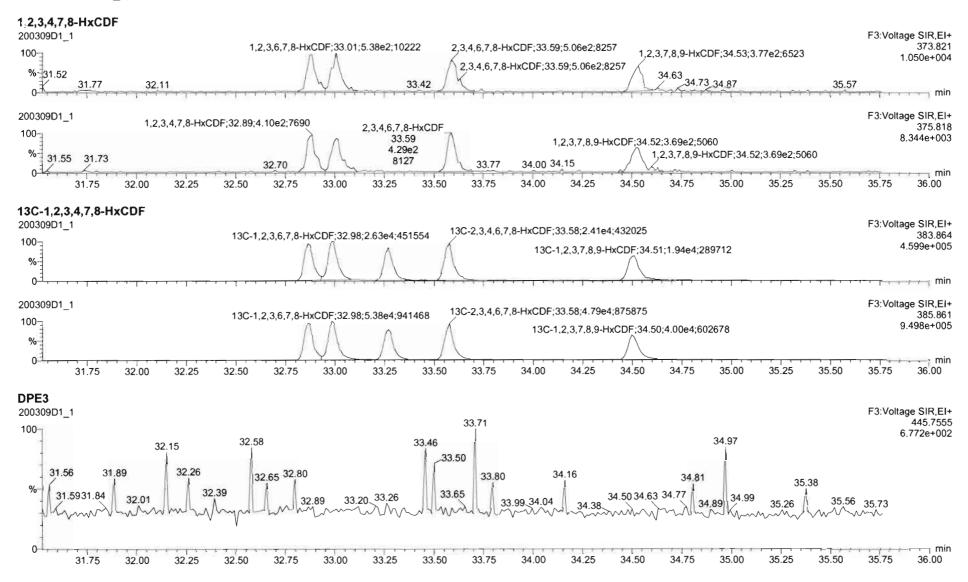

Quantify Sample Report MassLynx 4.1

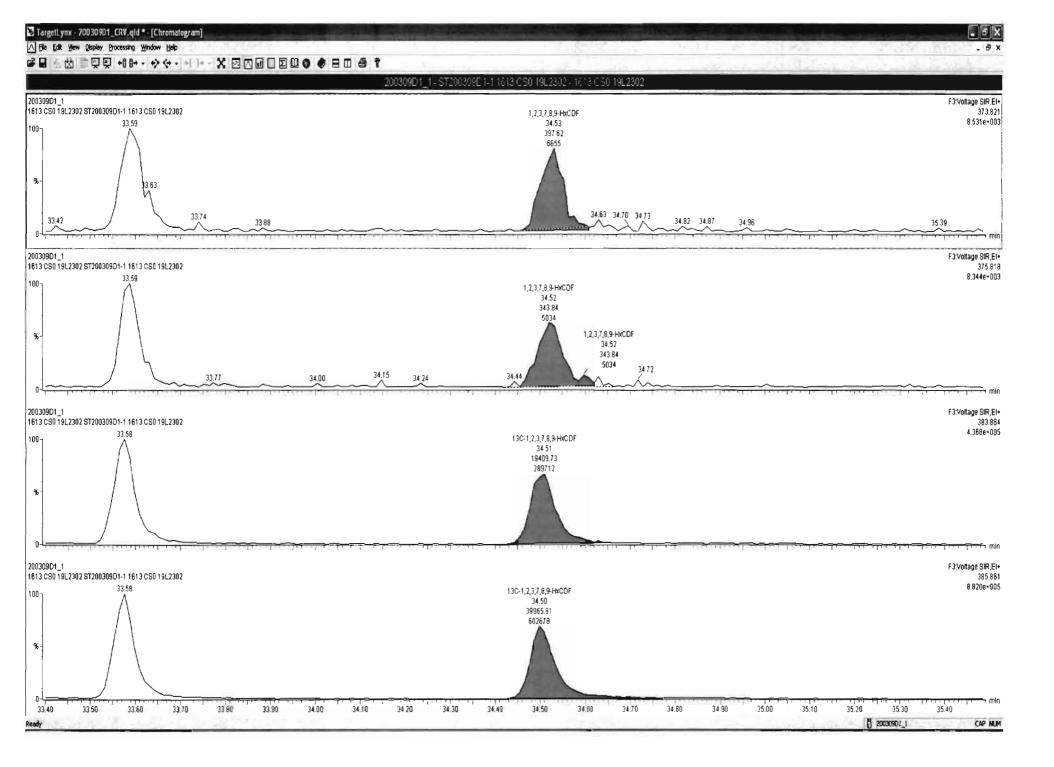
Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

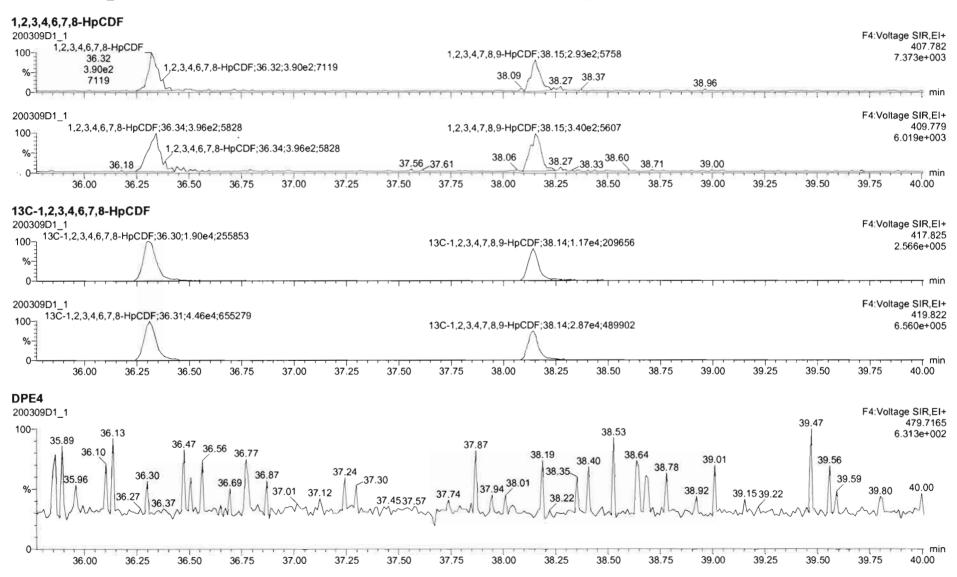
Last Altered:Monday, March 09, 2020 16:58:54 Pacific Daylight TimePrinted:Monday, March 09, 2020 17:00:26 Pacific Daylight Time

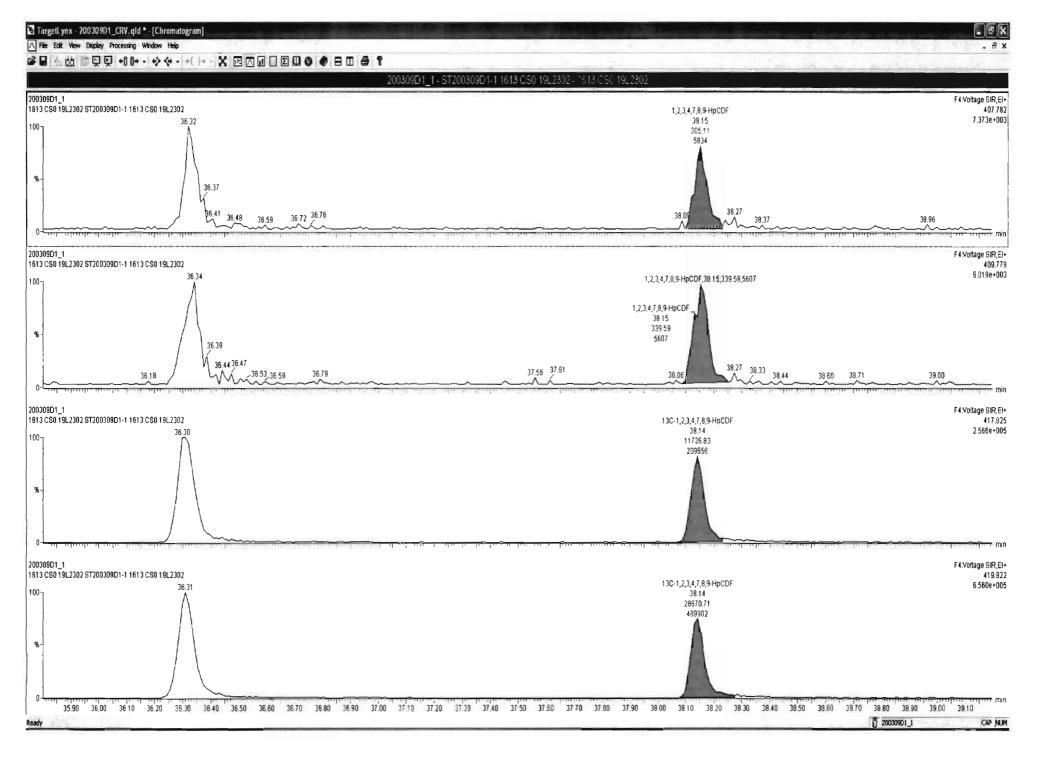

Quantify San Vista Analytica	· · · ·	Page 8 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

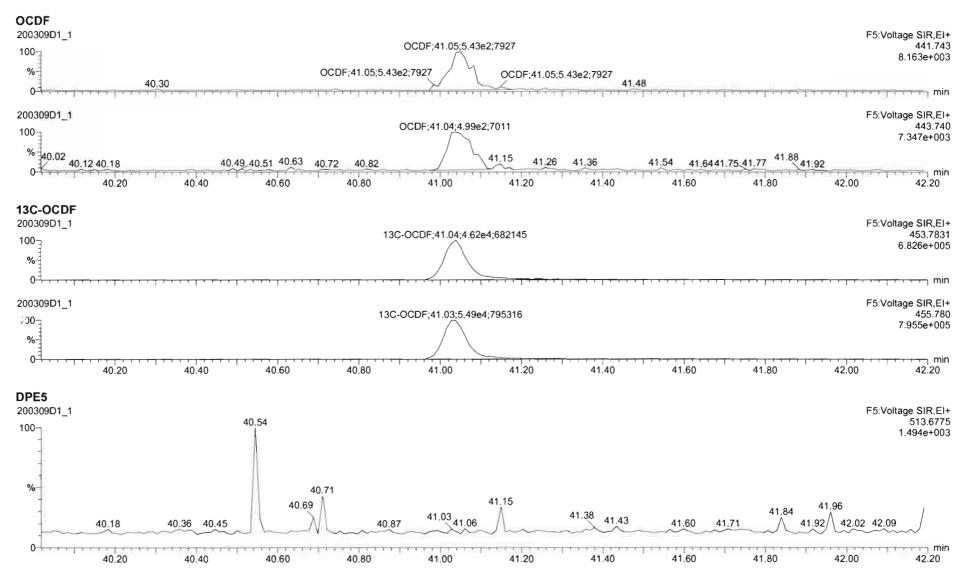

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

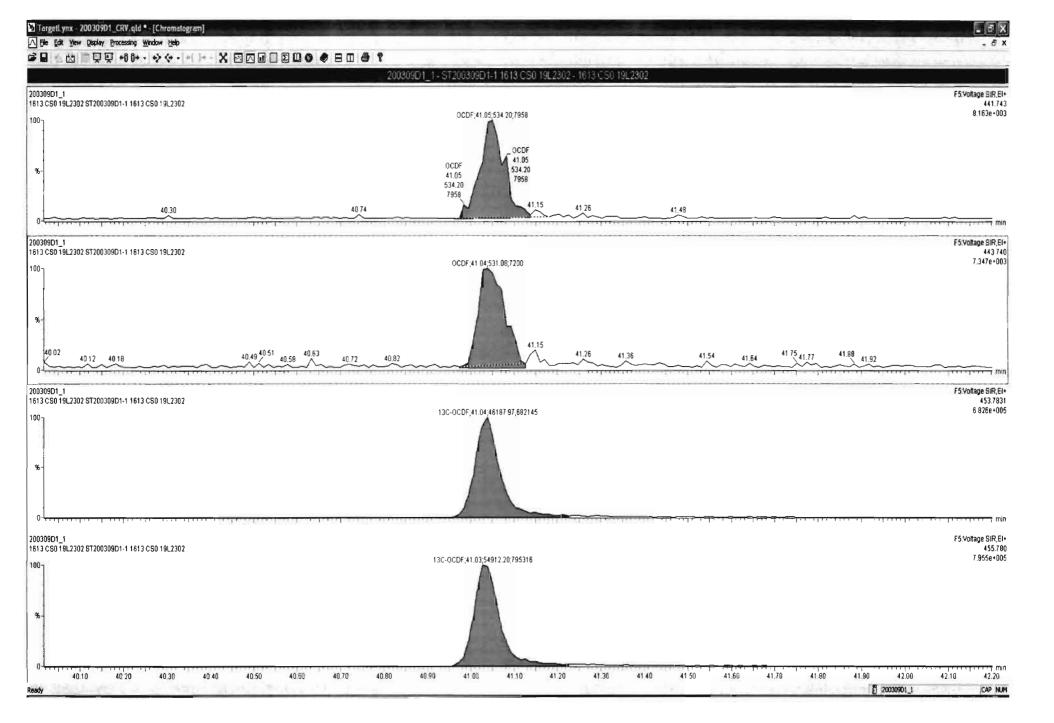
Last Altered: Monday, March 09, 2020 16:58:54 Pacific Daylight Time Printed: Monday, March 09, 2020 17:00:26 Pacific Daylight Time




Quantify San Vista Analytica		Page 10 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

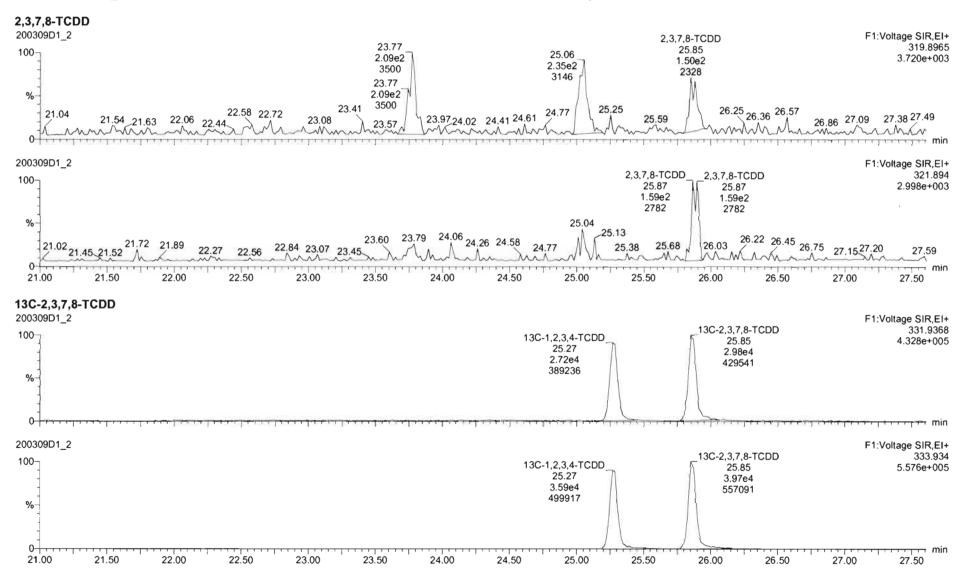


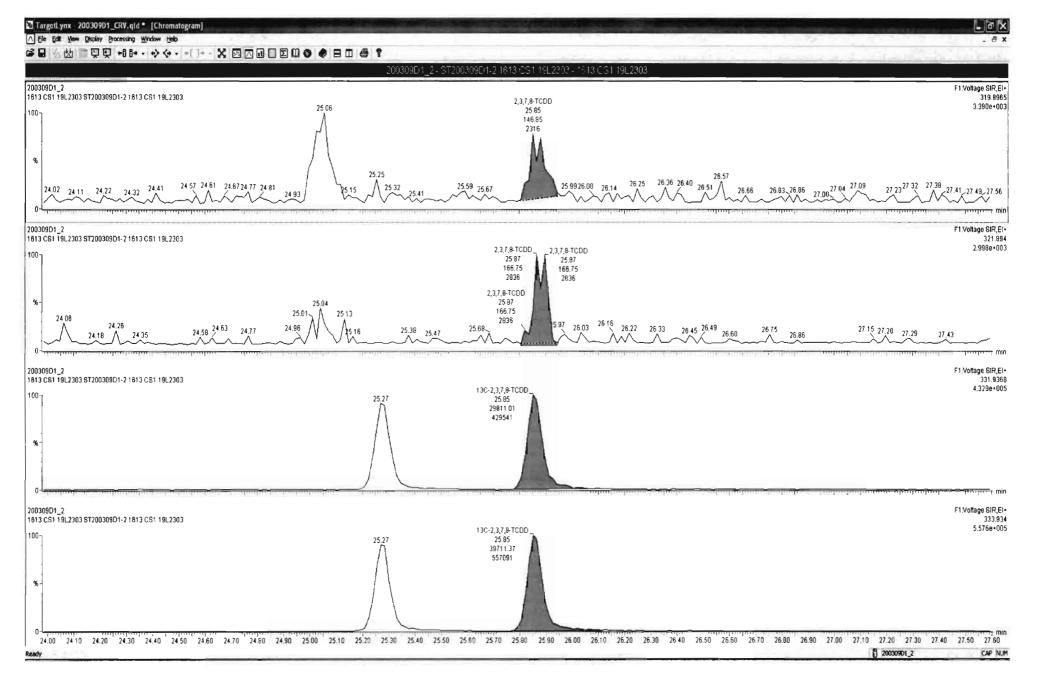
Quantify Sam Vista Analytica		Page 11 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	



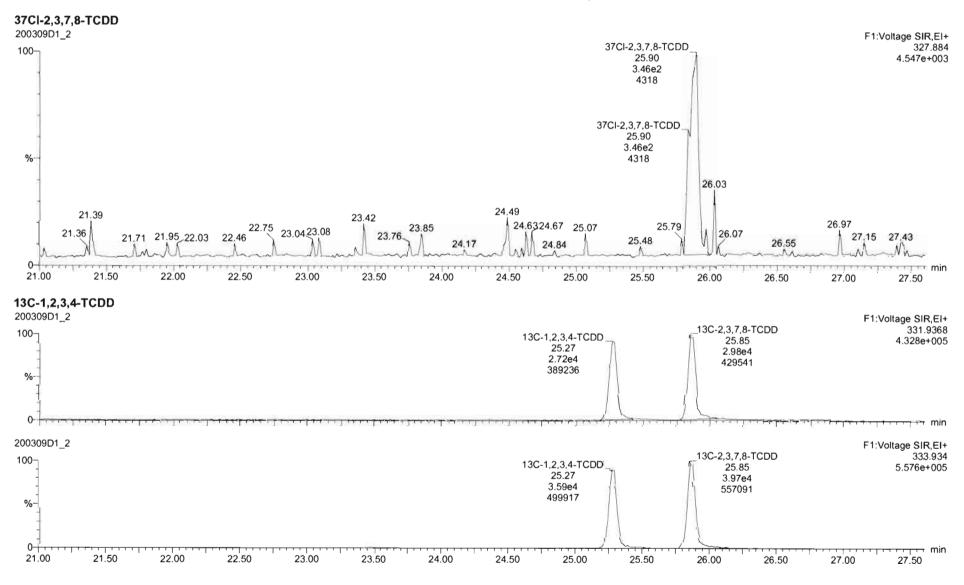
Quantify Sam Vista Analytica		Page 12 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

54

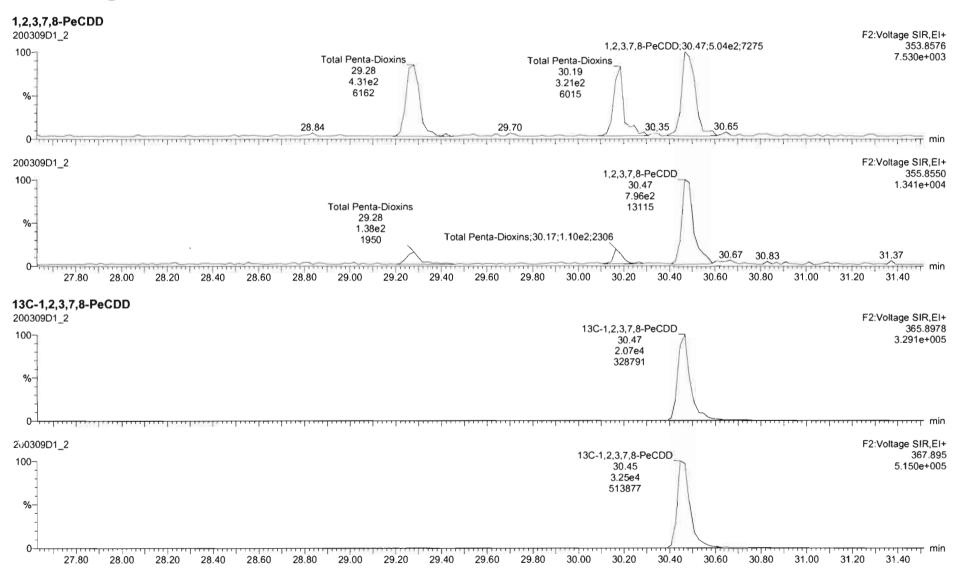

Quantify Sam Vista Analytica		Page 13 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

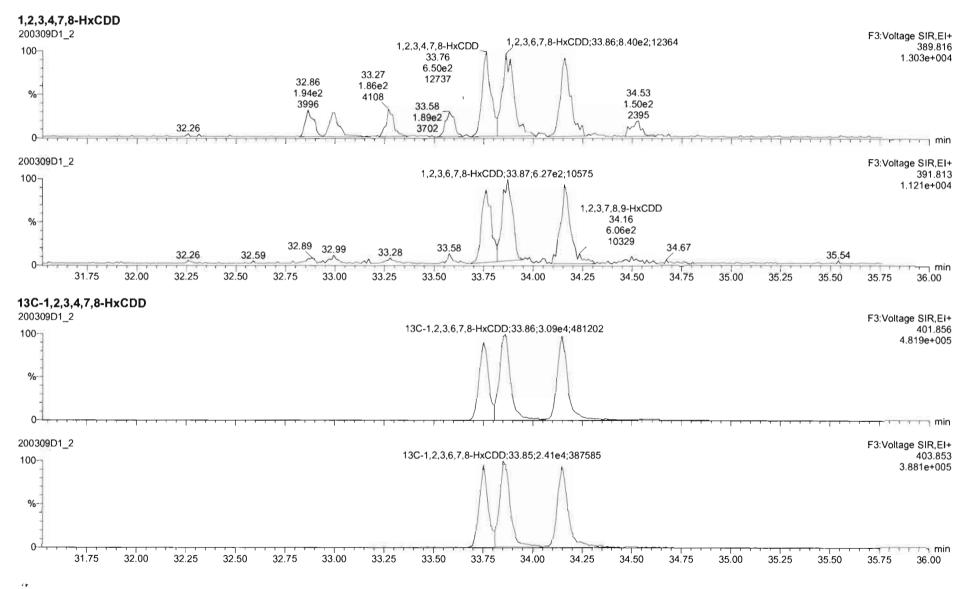

PFK1 200309D1_1 10018.93_19.29 20.01_20.12_20.5020.76 21.2321.49_22.24;2.48e3;127101_22.72_23.36.23.44_24.02_24.38_24.86 25.09 25.26 25.77 26.45 26.86_26.95 316.982	
100 100 100 100 100 100 100 100	6
PFK2 200309D1_1 F2:Voltage SIR,EI con 27 75 28 09:4 97e3:73719 28 43 28 98:2 48e3:81521 29:50:6.31e3:93245 29 92:5 18e3:78595 30.39.30 43 30.65.30.69 30 91 31 07 366.979	
100 27.75 28.09;4.97e3;73719 28.43 28.98;2.48e3;81521 29.50;6.31e3;93245 29.92;5.18e3;78595 30.39_30.43_30.65_30.69_30.91_31.07 366.979 %	
0 ⁻¹	n
PFK3 200309D1_1 400 31.78 32.28;1.08e4;261028 32.76 33.14;3.81e3;147974,33.35 33.58 33.85 34.08;3.36e3;224175 34.67;4.37e3;241660 34.95 35.62;2.01e3;183072 F3:Voltage SIR,EI 380.976	
100 4.472e+00	96
0 ⁻¹ , 31.75 32.00 32.25 32.50 32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 34.75 35.00 35.25 35.50 35.75 36.00	n
PFK4 200309D1_1 35.97;2.04e3;161268 36.62 36.72 36.89 36.93 37.2437.36 37.6337.75 37.89 38.00 38.22 38.36 38.40 38.46 38.72 38.94 39.02 39.22 39.35 39.54 39.67 430.972 100 35.88 35.88 35.88 35.97;2.04e3;161268 36.62 36.72 36.89 36.93 37.2437.36 37.6337.75 37.89 38.00 38.22 38.36 38.40 38.46 38.72 38.94 39.02 39.22 39.35 39.54 39.67 430.972 2.8936+00	28
%	
0 ⁻¹	л
PirK5 200309D1_1 40.14;3.49e3;152603 40.33 40.41 40.54;9.45e3;143542 40.67 40.91;4.62e3;136110 41.21 41.22 41.47 41.60 41.86;1.51e3;109592 42.02 454.972 100 40.14;3.49e3;152603 40.54;9.45e3;143542 40.67 40.91;4.62e3;136110 41.10 41.21 41.42 41.60 41.86;1.51e3;109592 42.02 454.972 1.951e+00 1.951e+00 1.951e+00 1.951e+00 1.951e+00 1.951e+00	28
0 ⁻¹	n

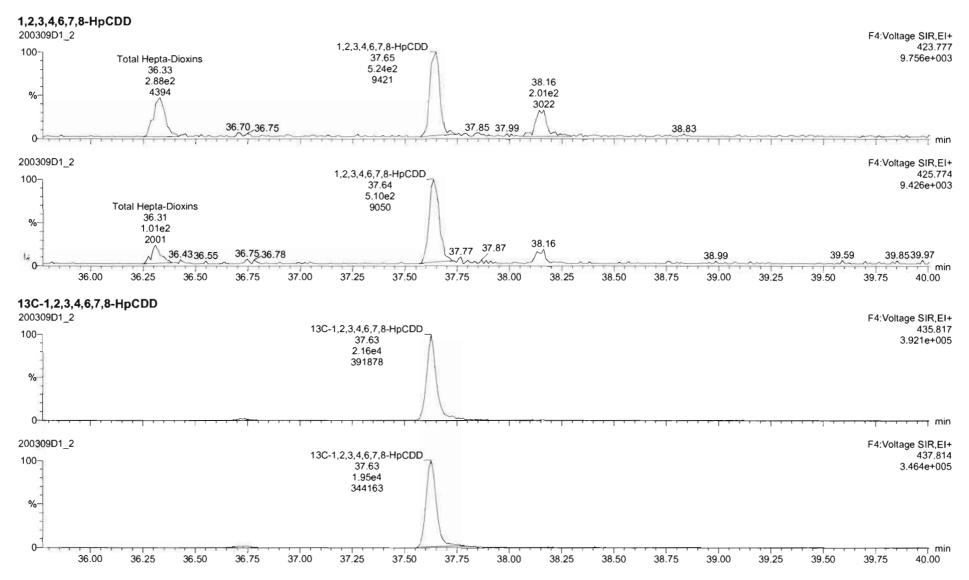
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

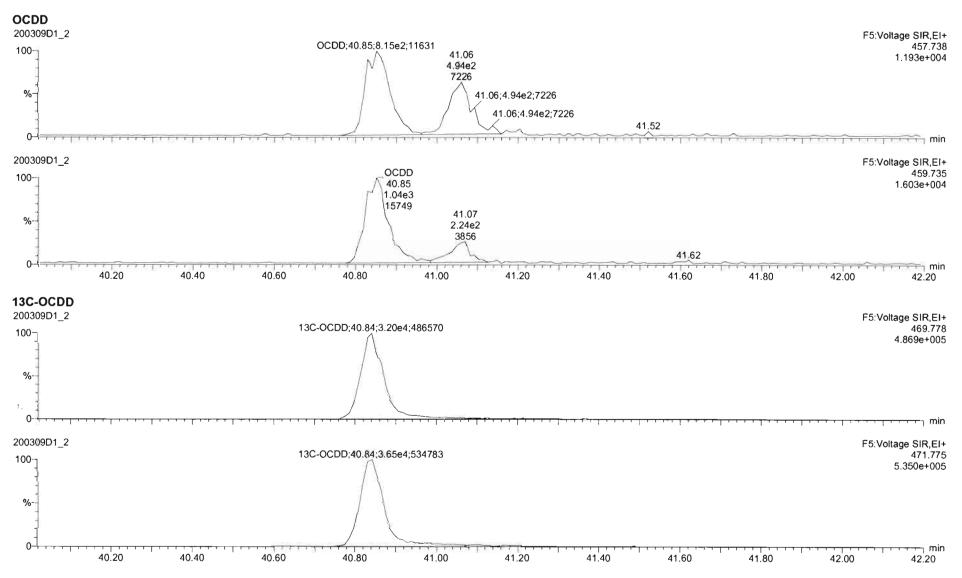

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

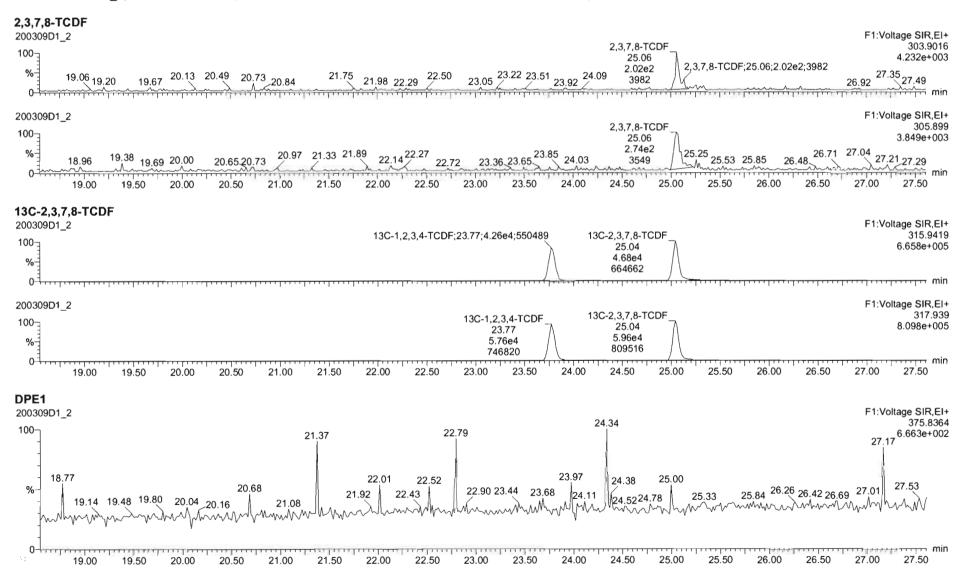


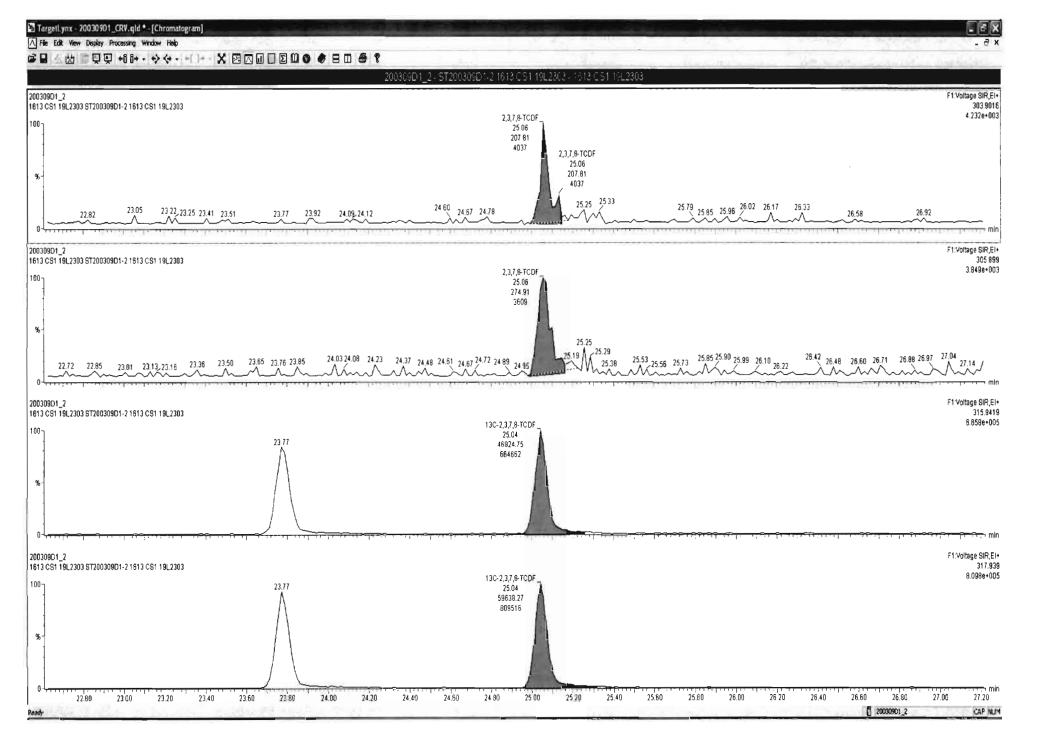

Quantify Sam Vista Analytica		Page 15 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify San Vista Analytica		Page 16 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	
ł		


Quantify San Vista Analytica		Page 17 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

Quantify San Vista Analytica		Page 18 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

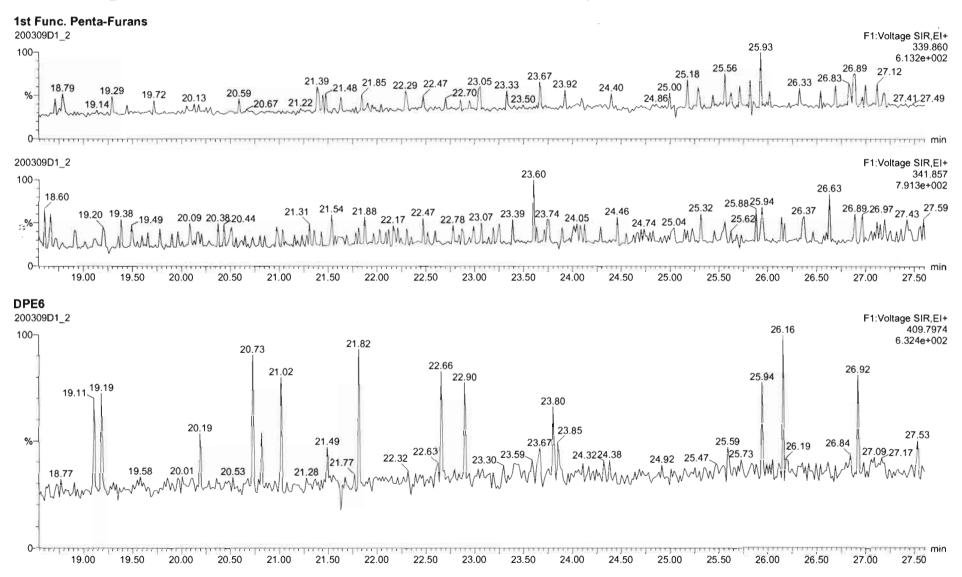

Quantify Sam Vista Analytica		Page 19 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Lost Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	



Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

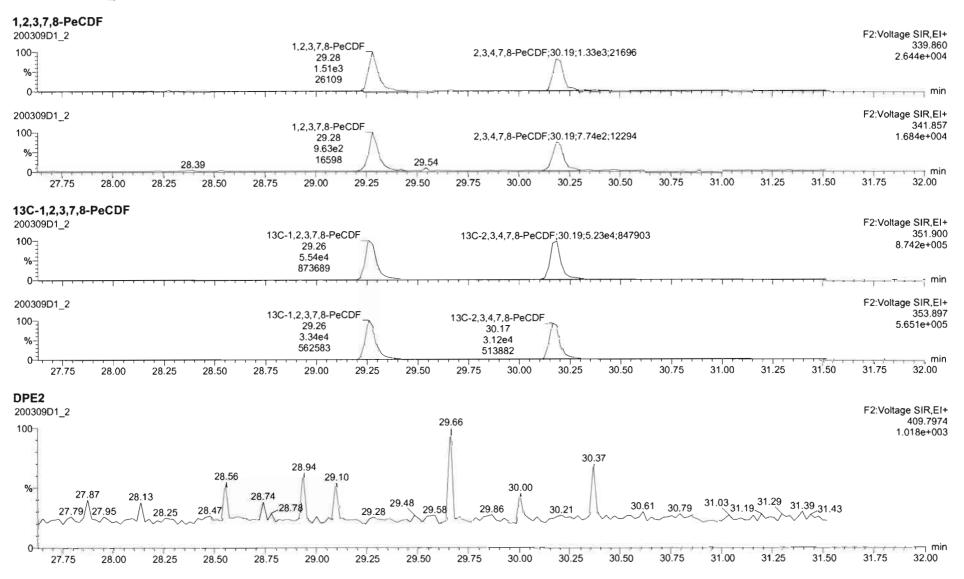
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time



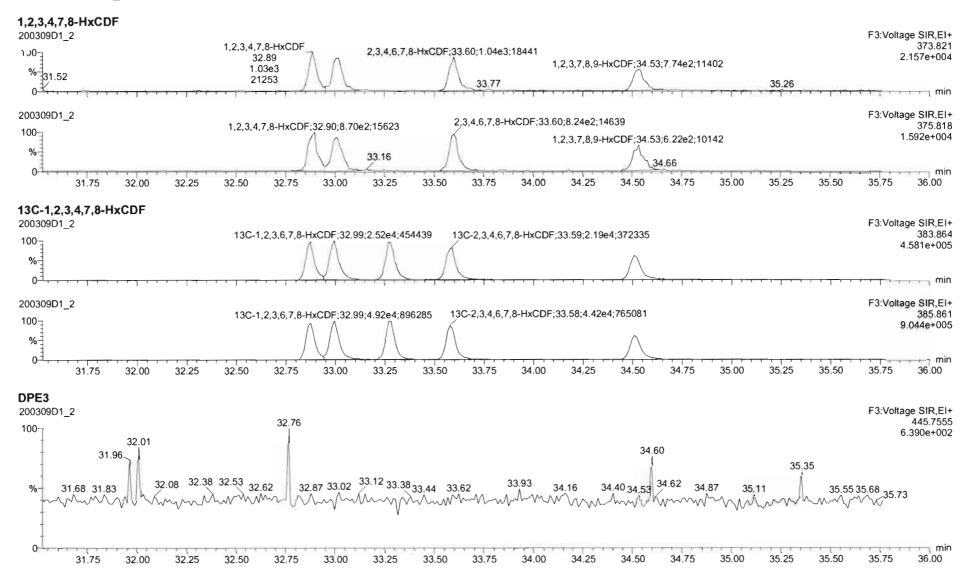
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld


Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

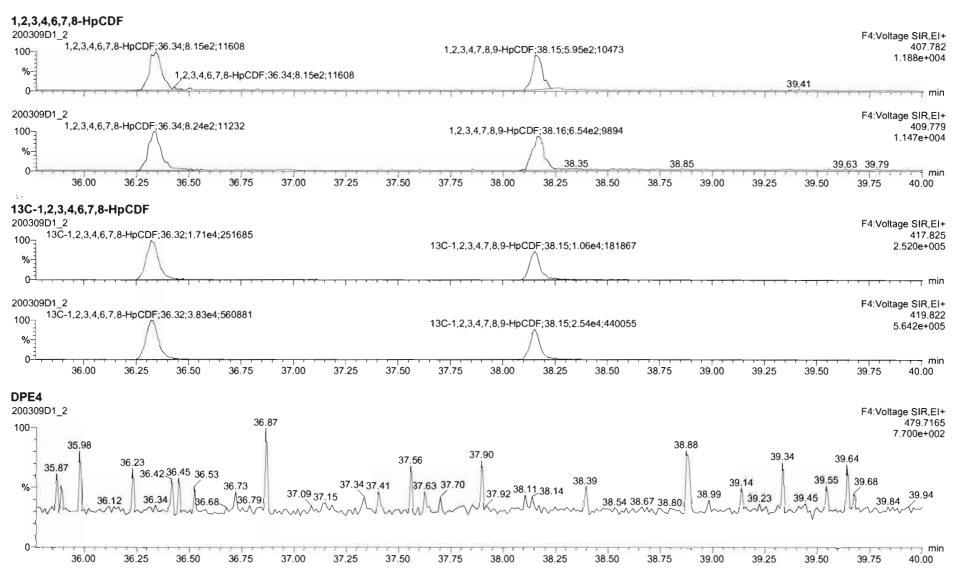
Lataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld


Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

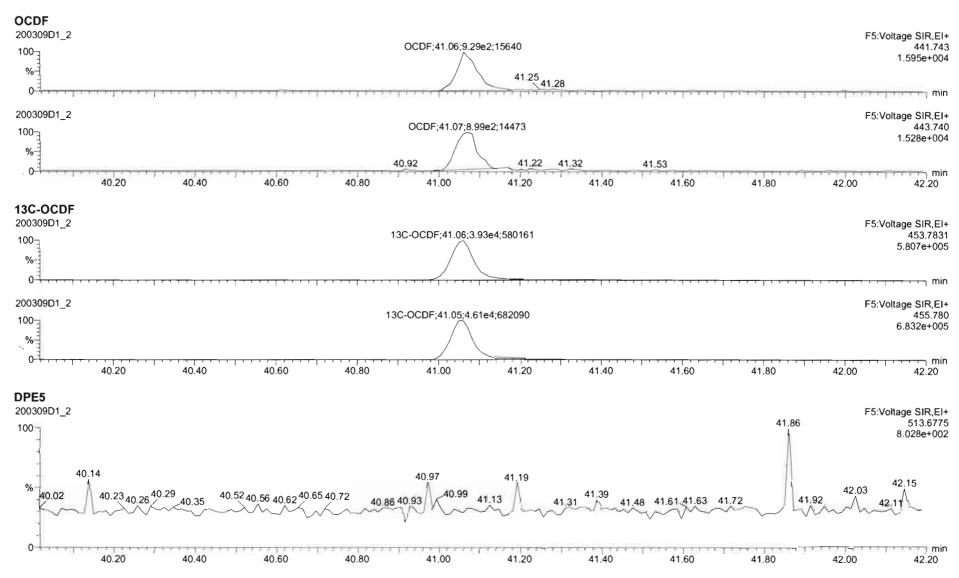
Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

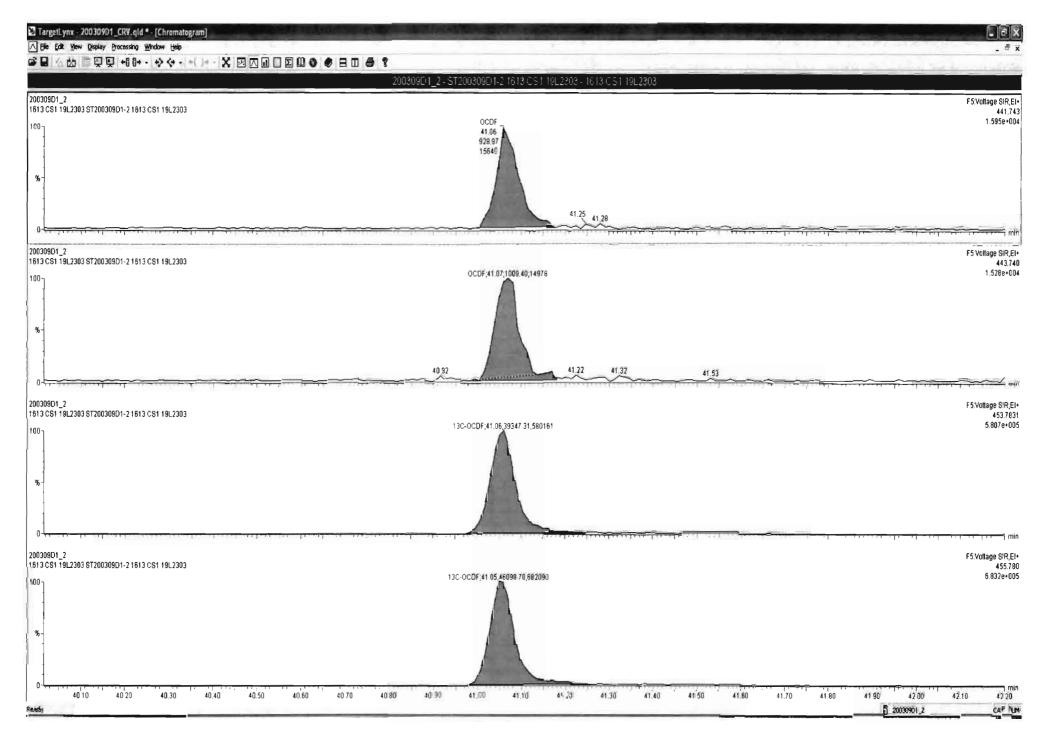
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:Monday, March 09, 2020 16:58:54 Pacific Daylight TimePrinted:Monday, March 09, 2020 17:00:26 Pacific Daylight Time



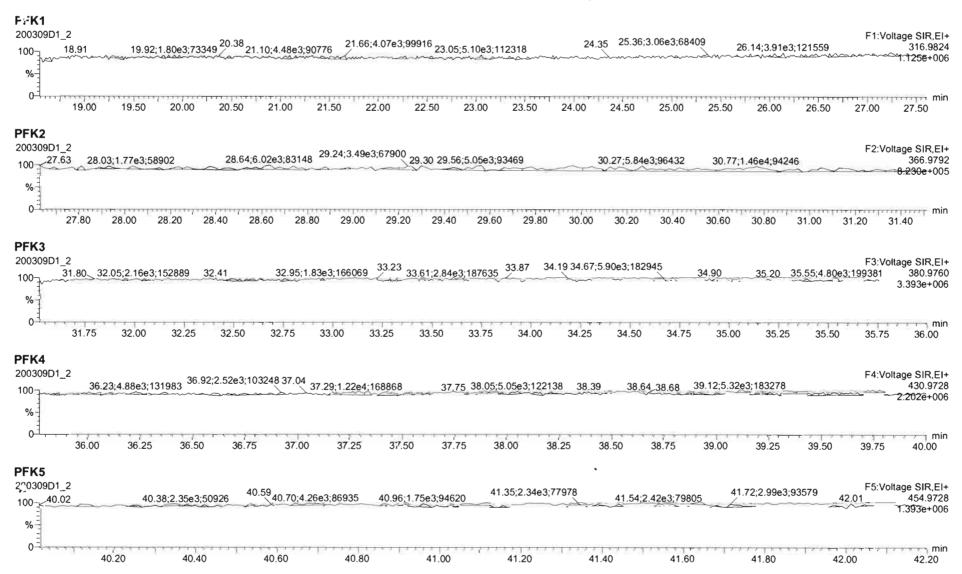
Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

Quantify San Vista Analytica		Page 25 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

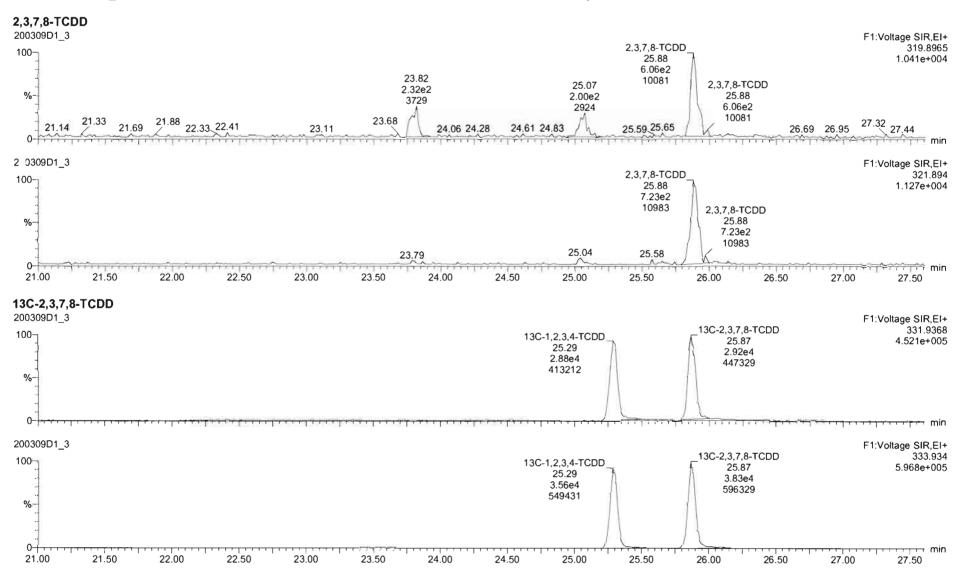


Quantify Sample Report MassLynx 4.1

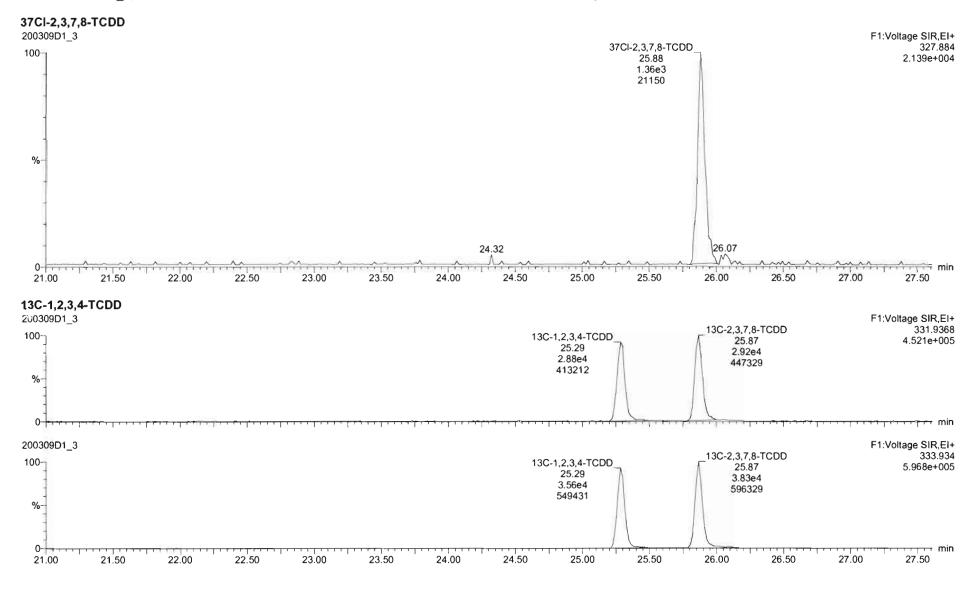
Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

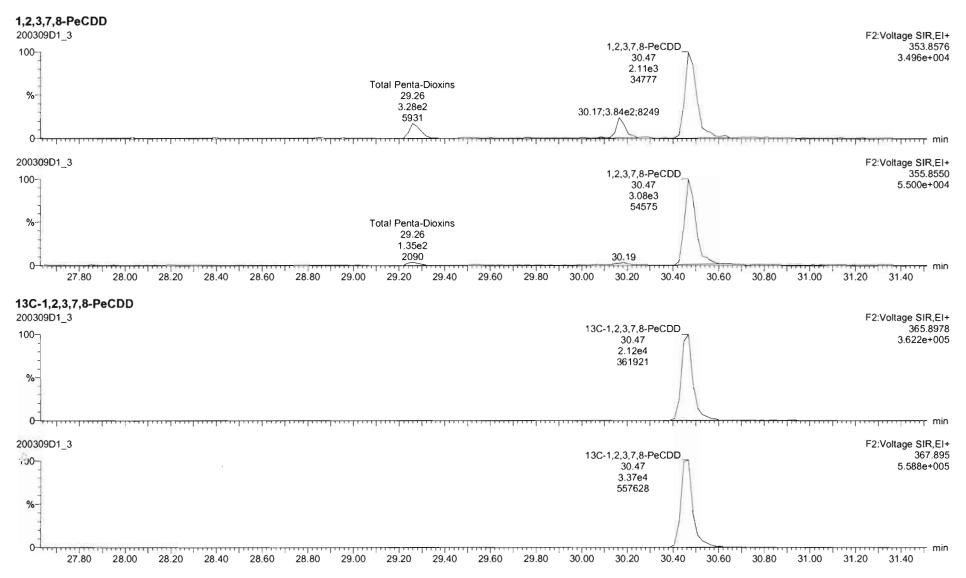


Quantify Sample Report MassLynx 4.1

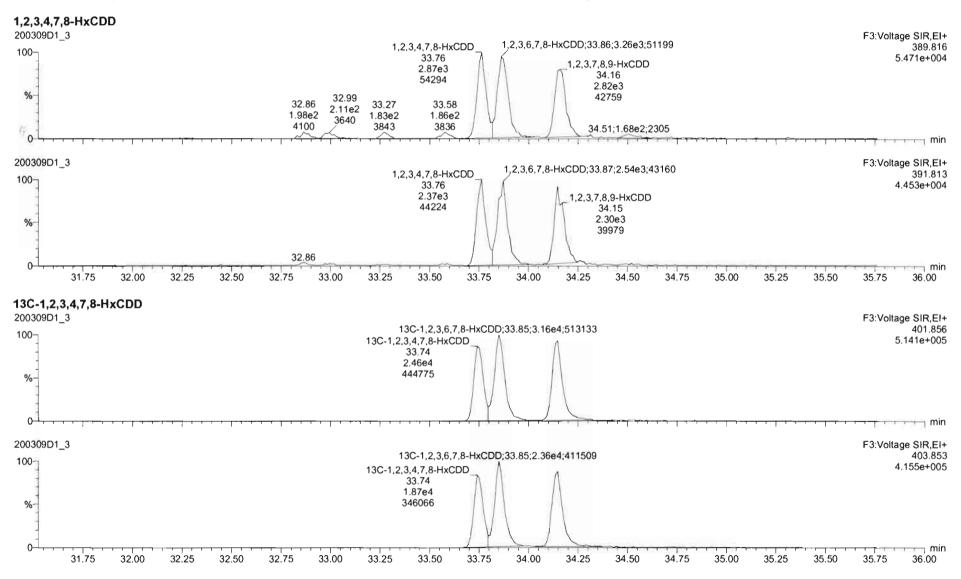

Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

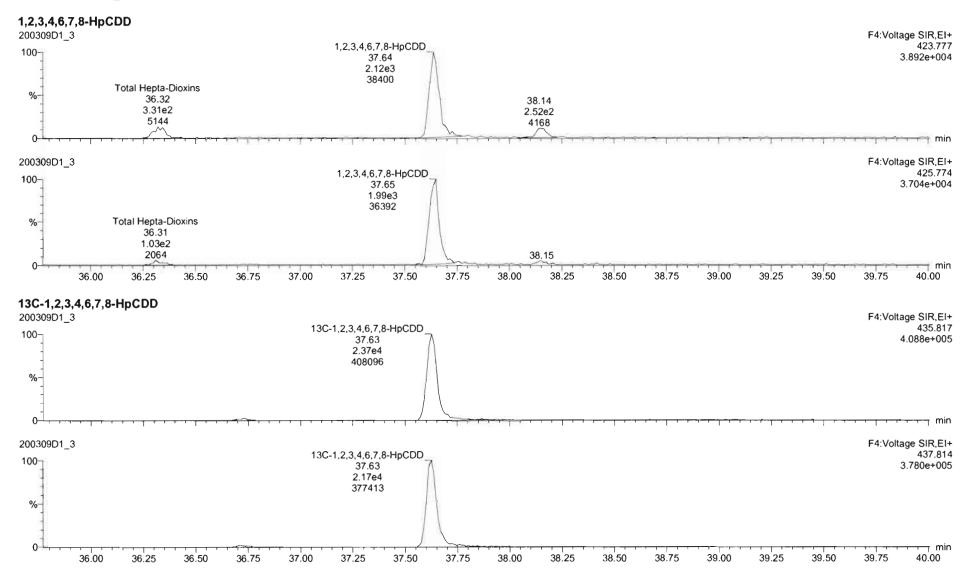


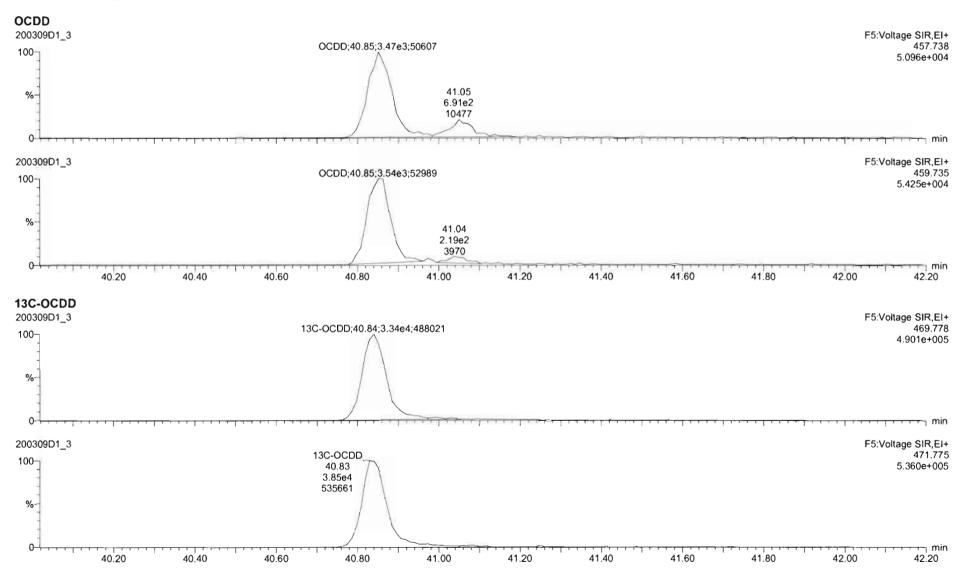
Quantify Sam Vista Analytica	· · ·	Page 28 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	



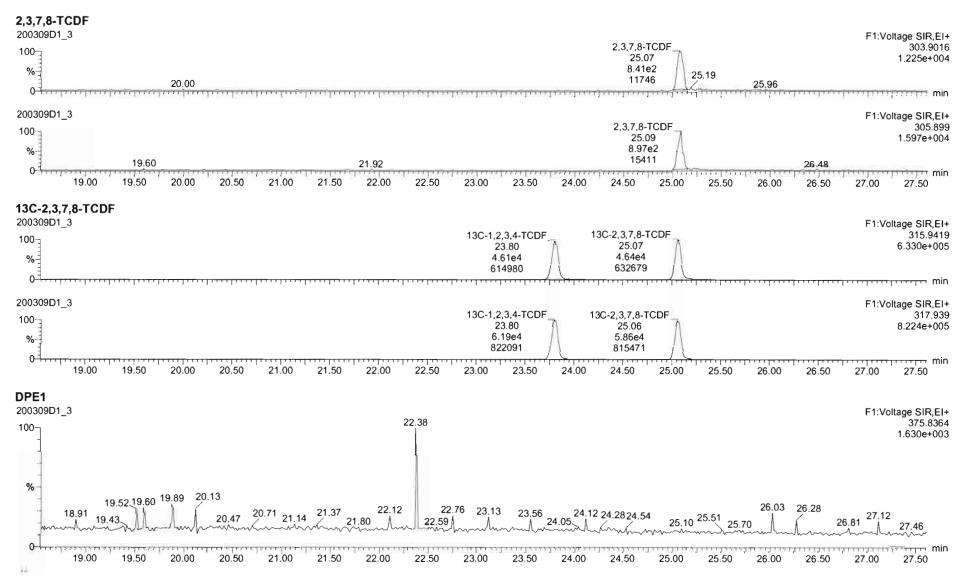
4

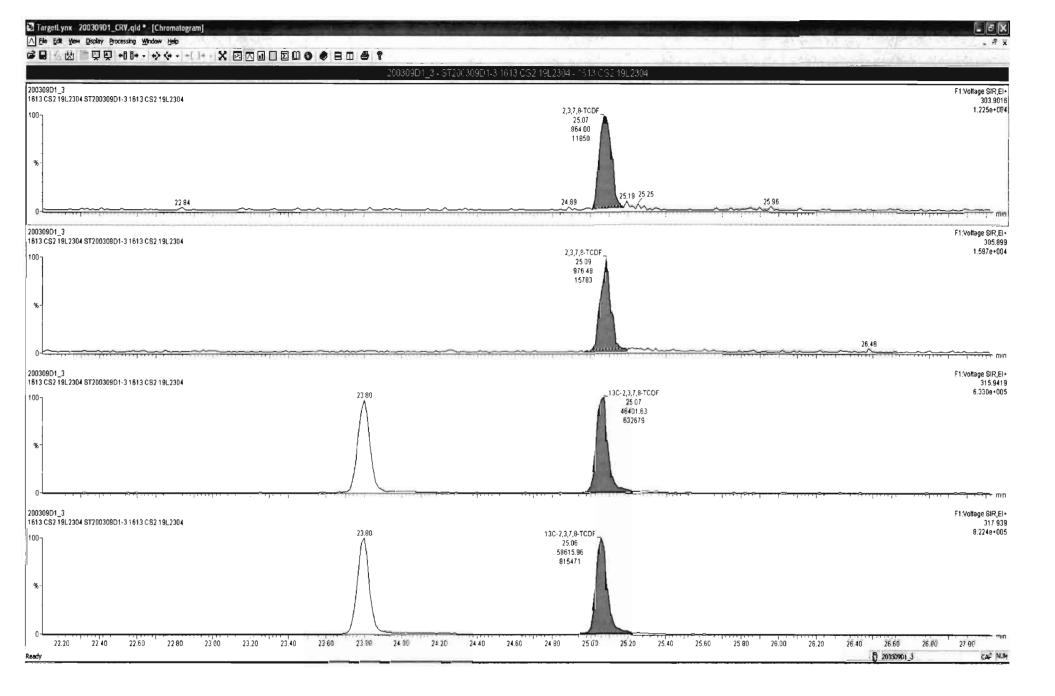
Quantify Sam Vista Analytica		Page 29 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 30 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


1

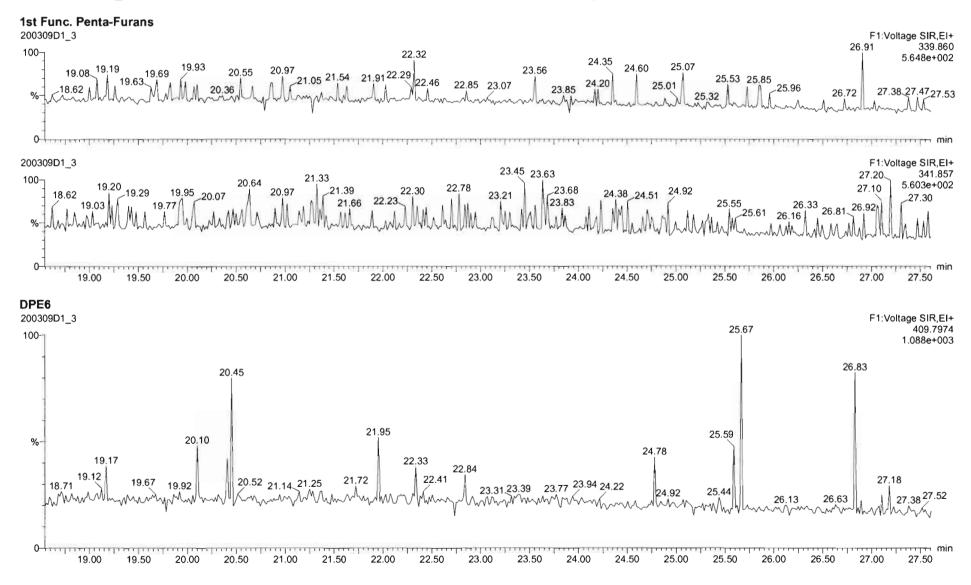
Work Order 2000945

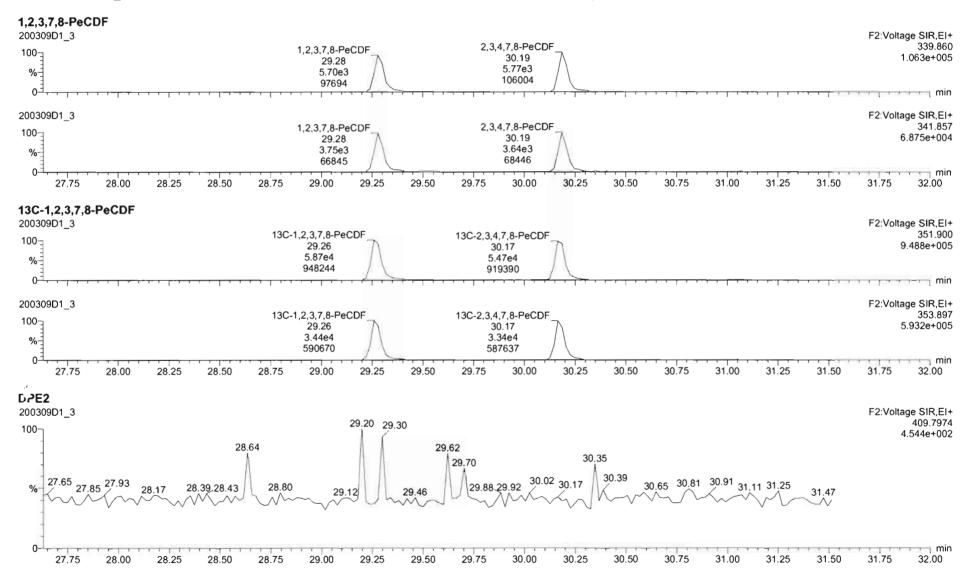

Quantify Sam Vista Analytica		Page 31 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	



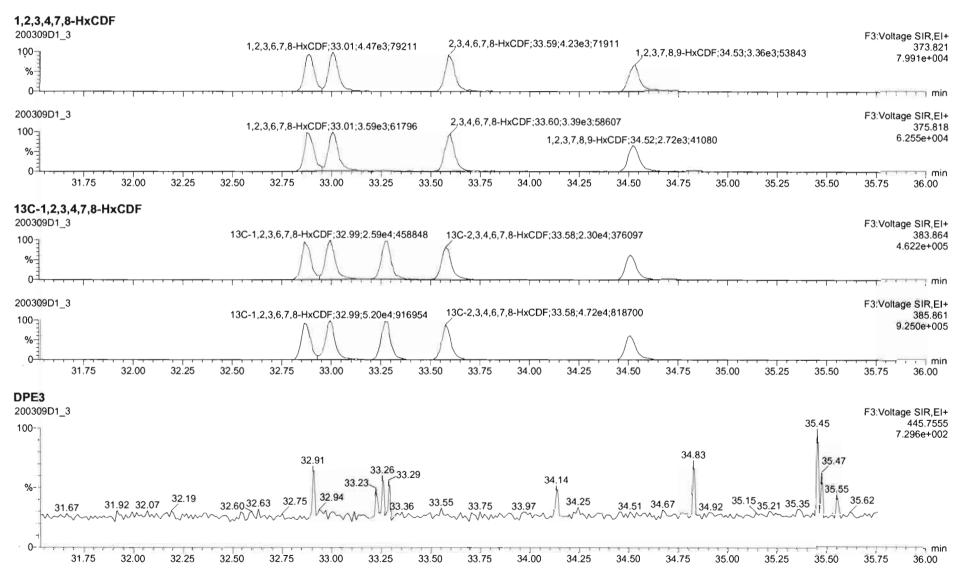
Quantify Sam Vista Analytica		Page 32 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

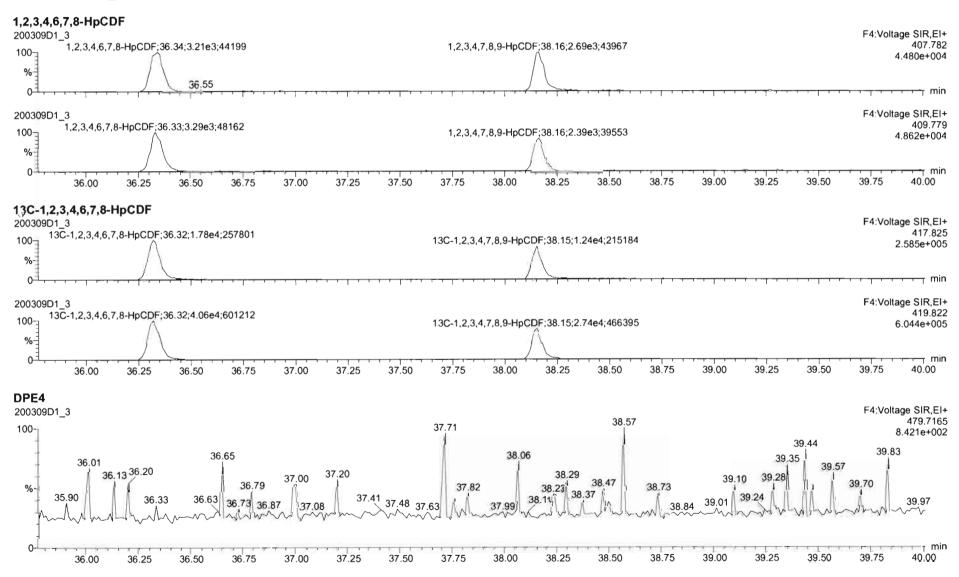
Quantify Sam Vista Analytica		Page 33 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

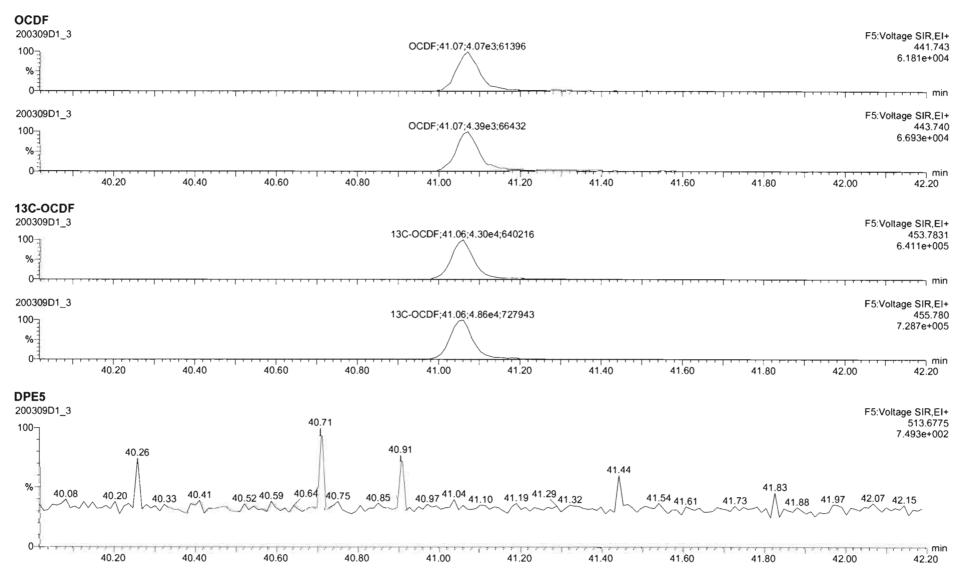



Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld


Last Altered:Monday, March 09, 2020 16:58:54 Pacific Daylight TimePrinted:Monday, March 09, 2020 17:00:26 Pacific Daylight Time

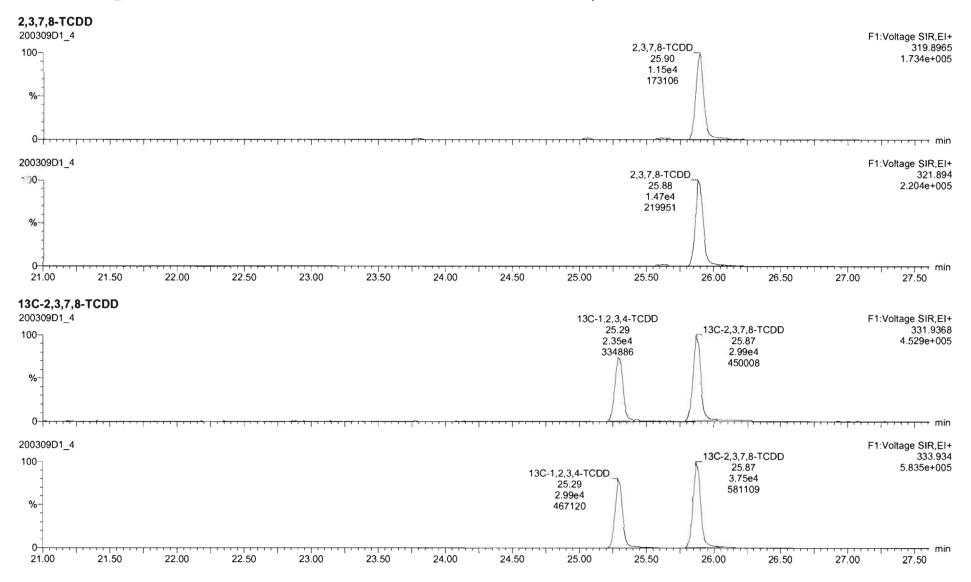

Quantify Sam Vista Analytica		Page 35 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify San Vista Analytica		Page 36 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

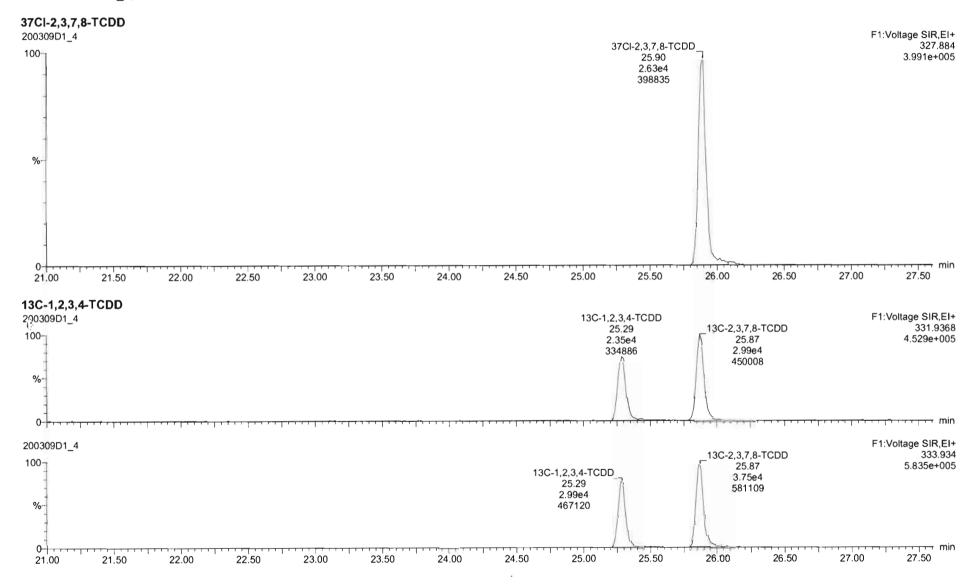
Quantify San Vista Analytica		Page 37 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

Quantify San Vista Analytica		Page 38 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

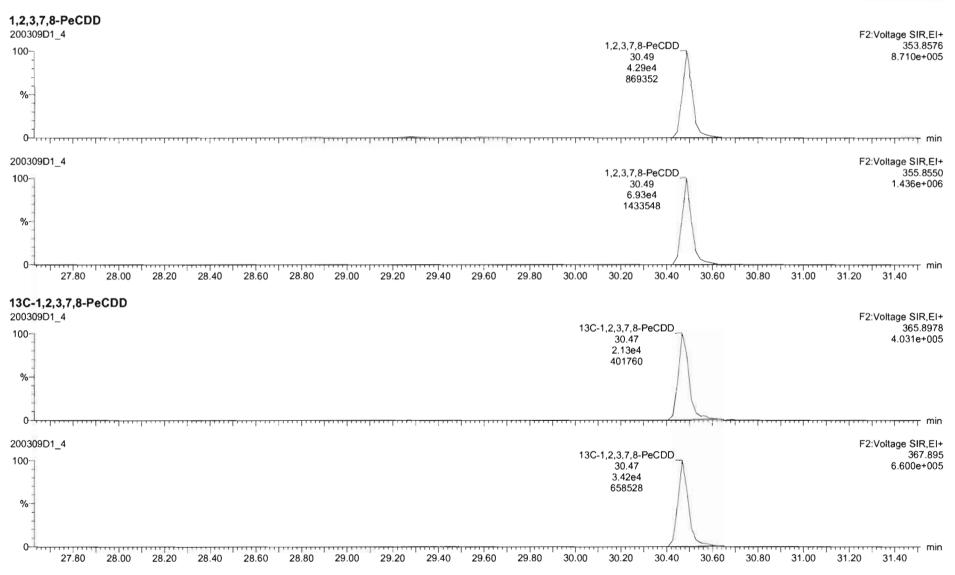
Quantify Sample Report MassLynx 4.1

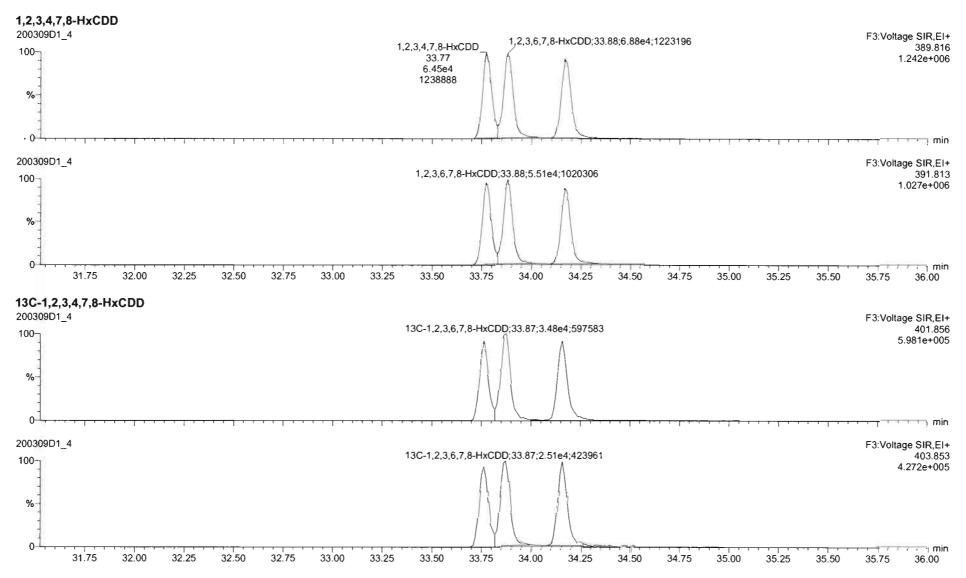

Vista Analytical Laboratory

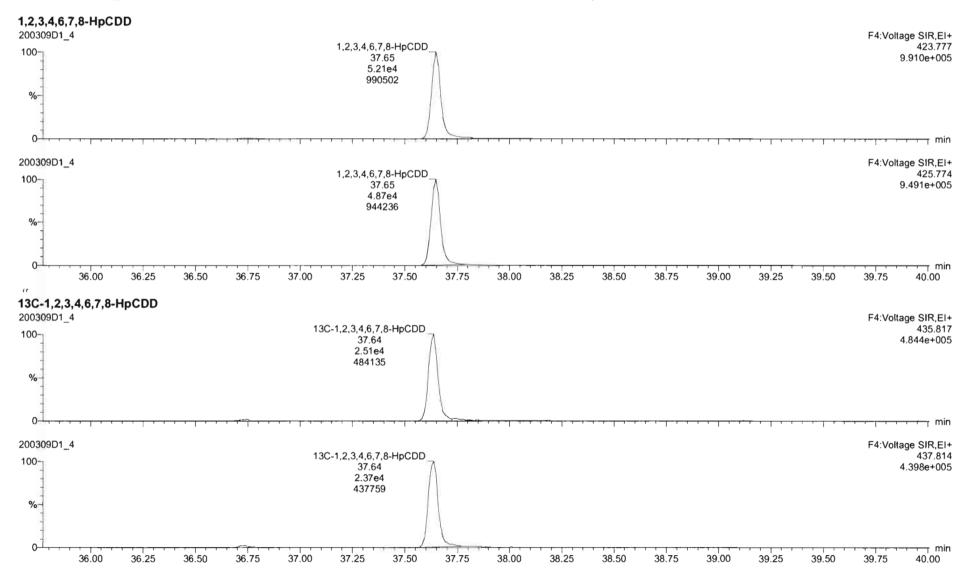
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

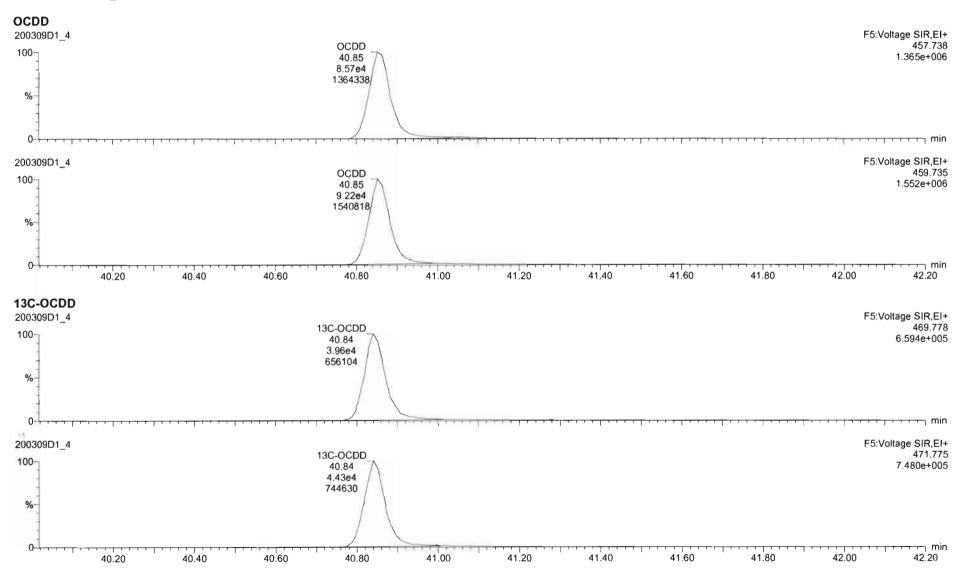

Last Altered:Monday, March 09, 2020 16:58:54 Pacific Daylight TimePrinted:Monday, March 09, 2020 17:00:26 Pacific Daylight Time

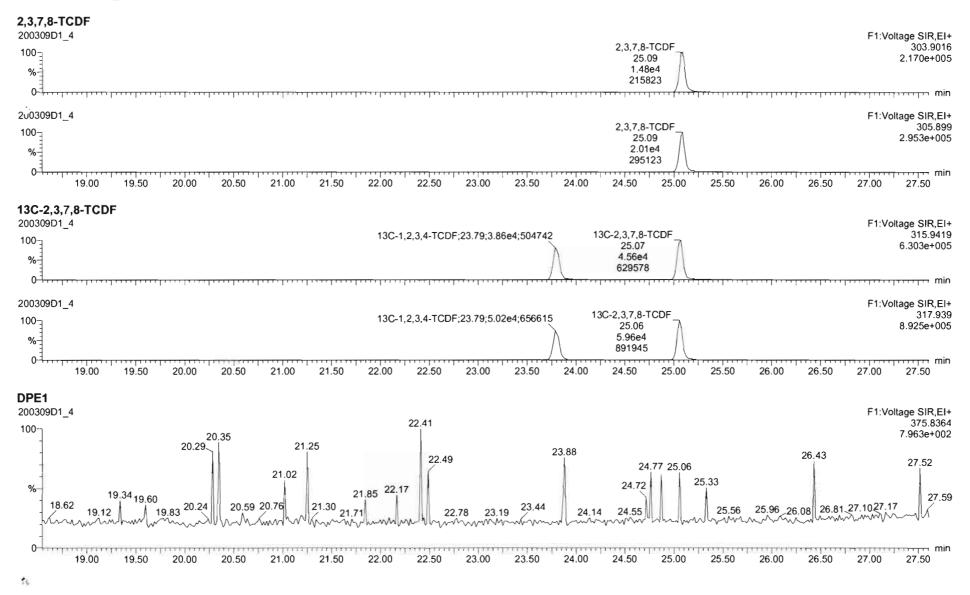
PFK1 200309D1_3 10018.91_19.34;2.56e3;85850_20.03_20.85;2.64e3;1035552	2.09;1.62e3;87019 22.58;4.53e3;66839	23.92 24.	37;3.40e3;74050	26.22;3.10e3;89293 26.	F1:Voltage SIR,EI+ 72 27.33 316.9824
0 	22.00 22.50 23.00 23.50	24.00 24.	50 25.00 25.50		27.00 27.50
PFK2 200309D1_3 10027.65 27.99 28.25;2.55e3;49377 28.74;3.72e3;47993	29.18;3.65e3;61958 29.38;2.53e3;47838	29.90 29.96	30.25 30.45 30.49	30.77 30.99 31.03	F2:Voltage SIR,EI+ 366.9792 5.991e+005
PFK3 200309D1_3	9.00 29.20 29.40 29.60 29.8 9.42⊵3;168870 33.62 34.04;3.39e		.20 30.40 30.60 14 34.75;2.07e3;136608	30.80 31.00 31 35.22 35.52;3.69e3;19	F3:Voltage SIR,EI+ 7566 380.9760 2.651e+006
0 31.75 32.00 32.25 32.50 32.75 33.00	33.25 33.50 33.75 34.00	34.25 3	4.50 34.75 35.00) 35.25 35.50	35.75 36.00
PFK4 200309D1_3 36.46;1.27e3;115087 36.81 37.51;3.6	32e3;115740 37.76;2.28e3;112437 38.24;	1.40e3;99935 38.4	48 39.04;5.14e2;46765	39.37;2.78e3;98168	F4:Voltage SIR,EI+ 39.81 430.9728 1.778e+006
o ¹ , , , , , , , , , , , , , , , , , , ,	.25 37.50 37.75 38.00	38.25 38.50	38.75 39.00	39.25 39.50	39.75 40.00
PFK5 200309D1_3 40.11 40.18 40.25 40.38 40.42 40.61;1.55e3;57902 40.7	3 40.87 ^{41.14;2.98e3;72233} 41.27;3.7	73e3;84917	41.48 41.55 41.75;2.6	66e3;78861 41.87 41.98	1.104e+006
40.20 40.40 40.60	40.80 41.00 41.20	41.40	41.60	41.80 42.0	0 42.20

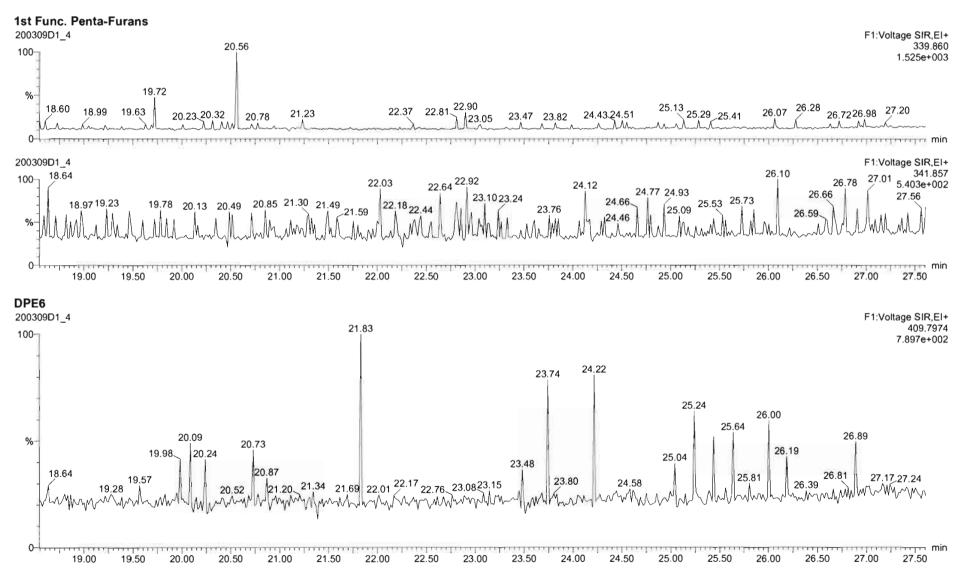

Quantify Sam Vista Analytica		Page 40 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 41 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

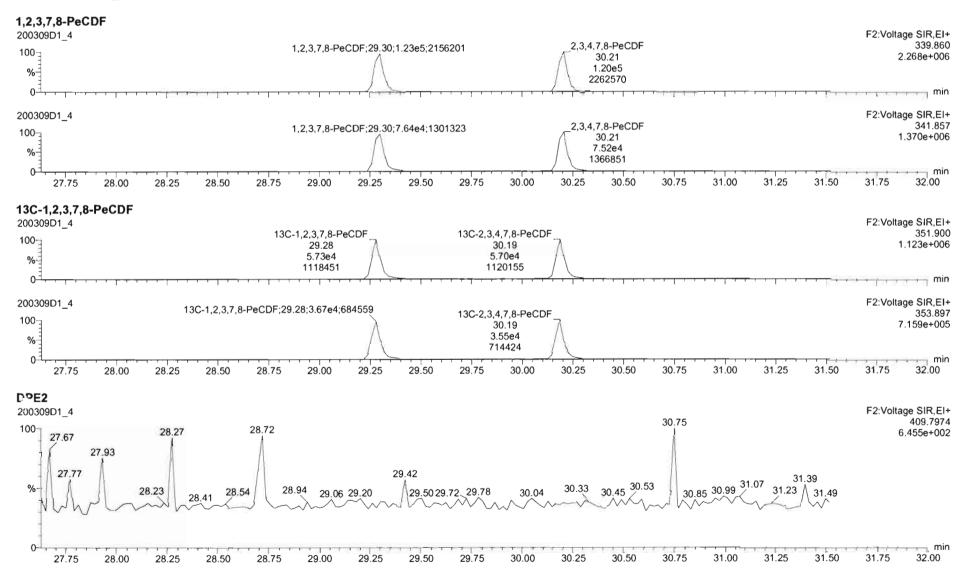

Quantify Sam Vista Analytica		Page 42 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

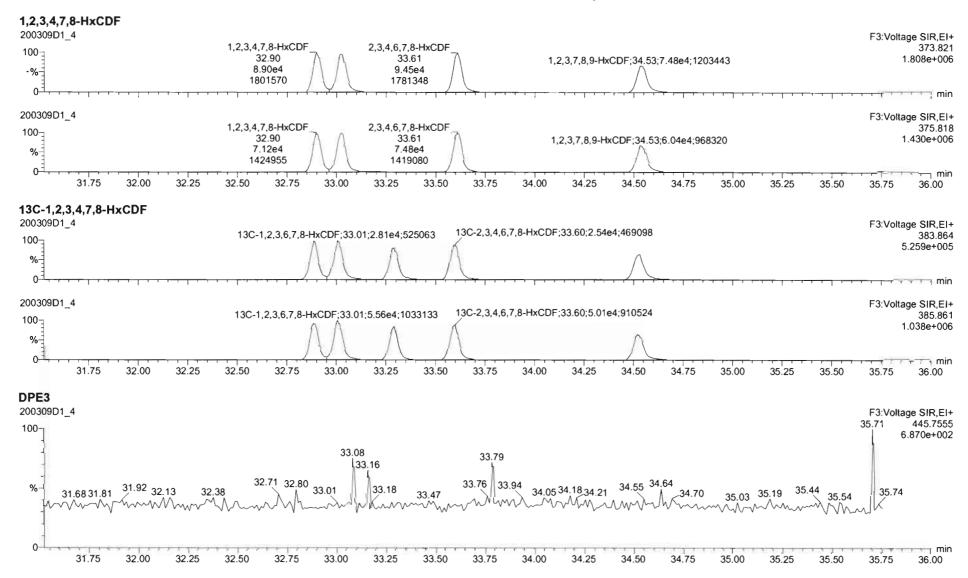

Quantify Sam Vista Analytica		Page 43 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 44 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

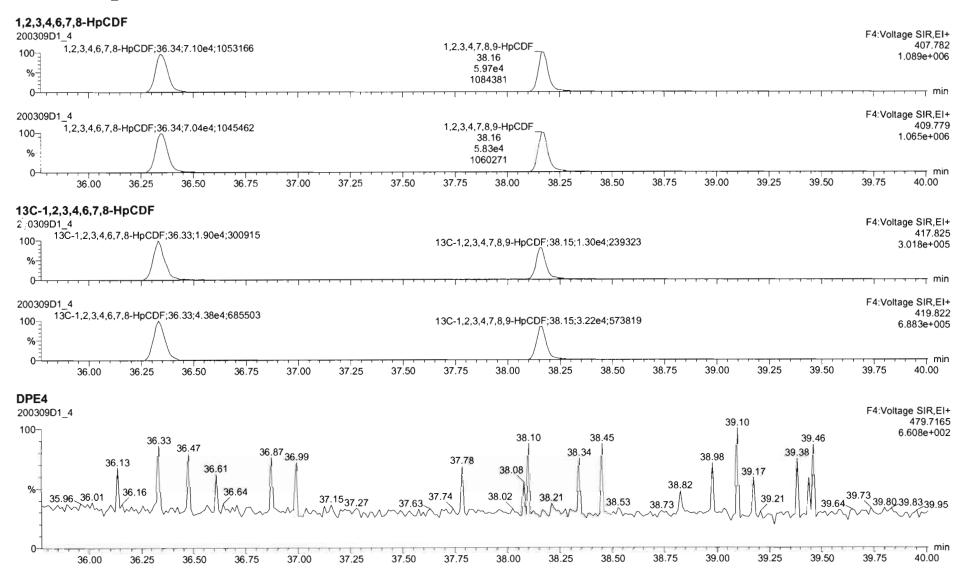

Quantify Sam Vista Analytica		Page 45 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

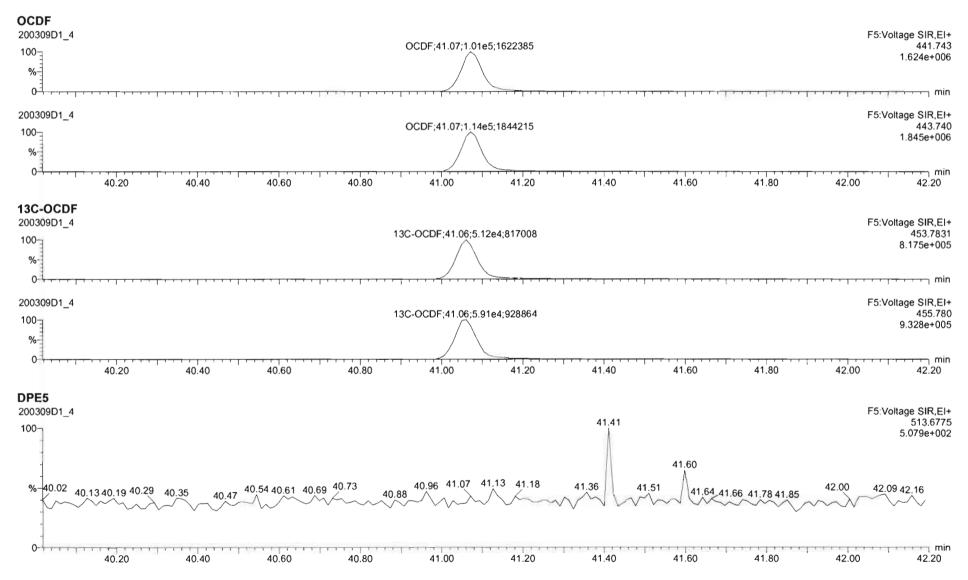
Quantify San Vista Analytic	nple Report MassLynx 4.1 al Laboratory	Page 46 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 47 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

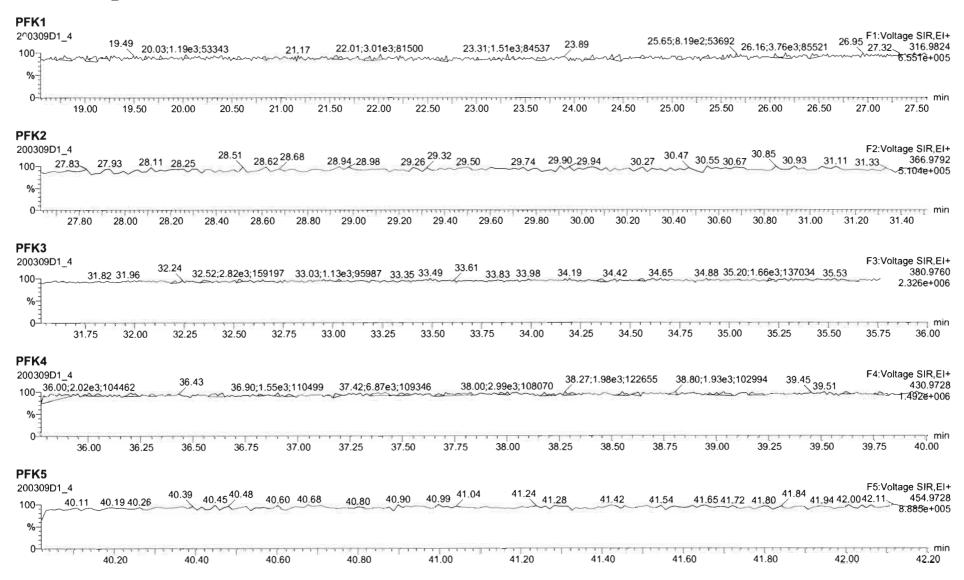

Quantify	Sample Report	MassLynx 4.1

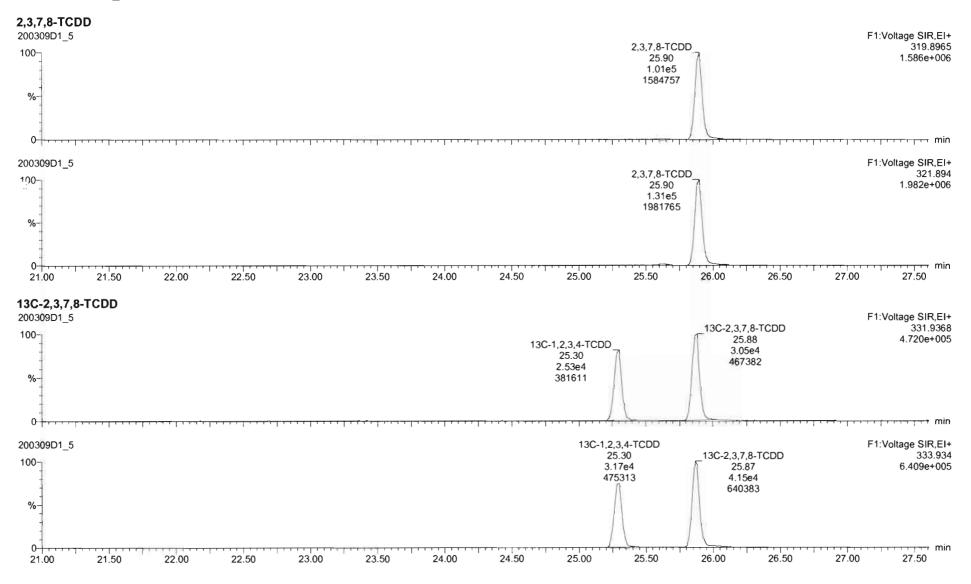
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld


Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

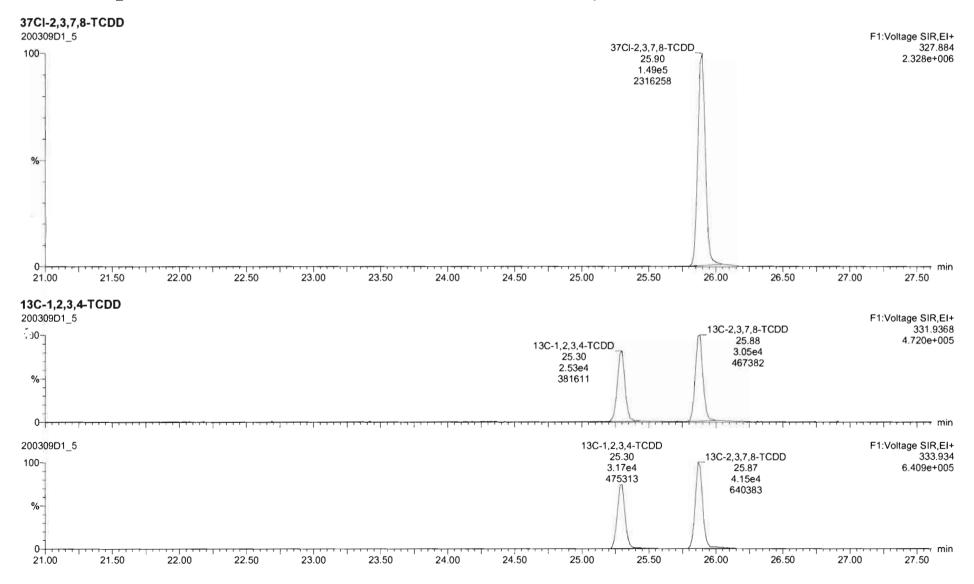

Quantify Sam Vista Analytica		Page 49 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

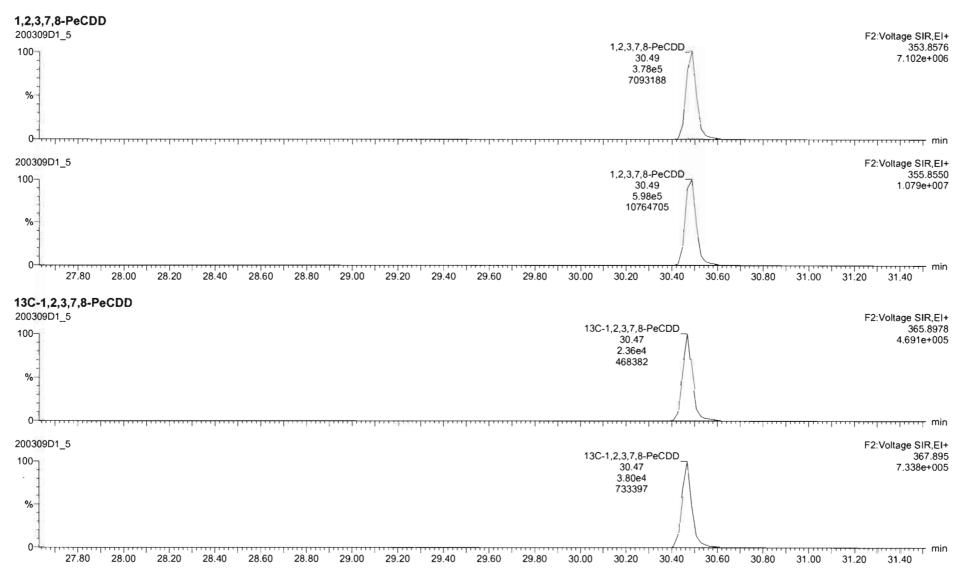
Quantify San Vista Analytic		Page 50 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

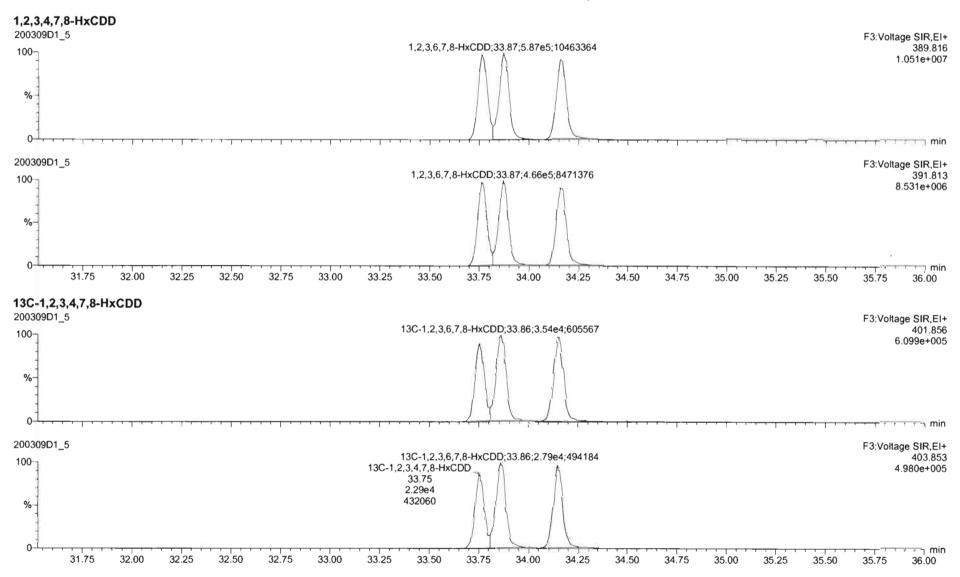

Quantify Sam Vista Analytica		Page 51 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory Vista Analytical Laboratory

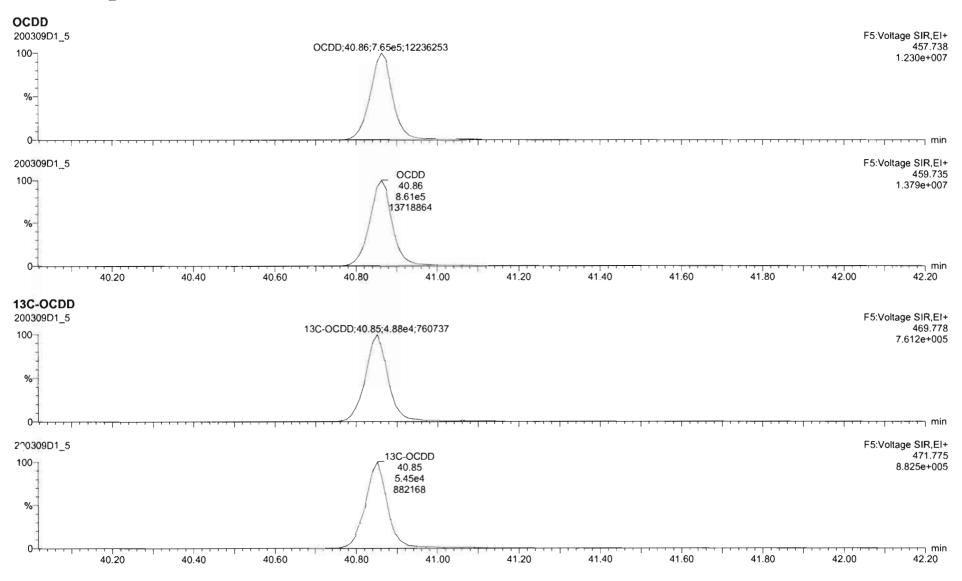
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld


Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

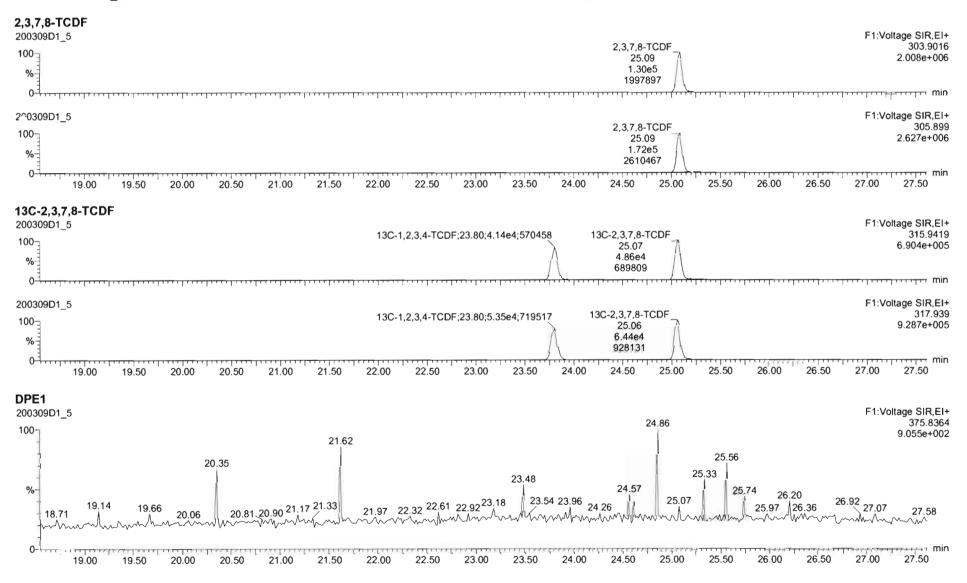

Quantify San Vista Analytica		Page 53 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 54 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

Quantify San Vista Analytica		Page 55 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

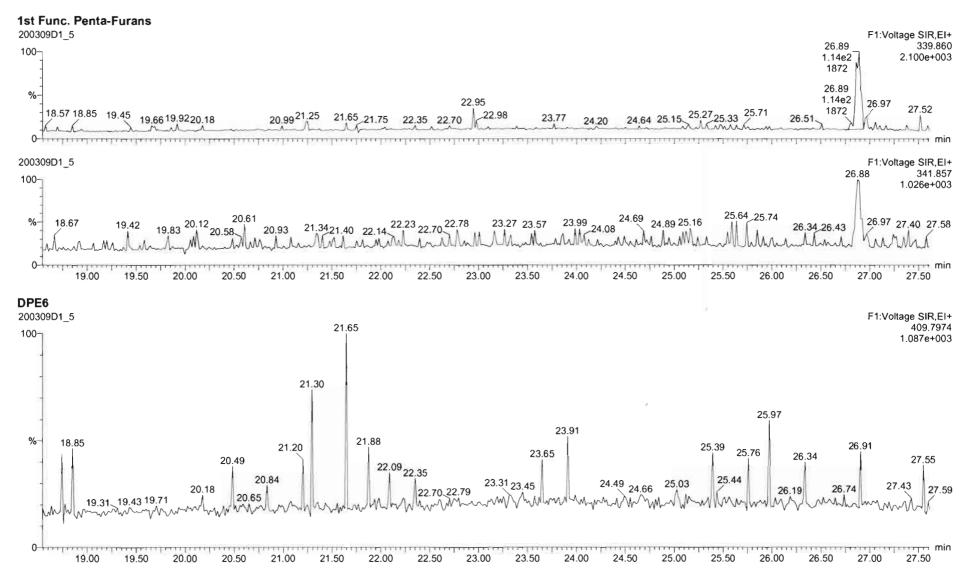


Quantify Sam Vista Analytica		Page 56 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

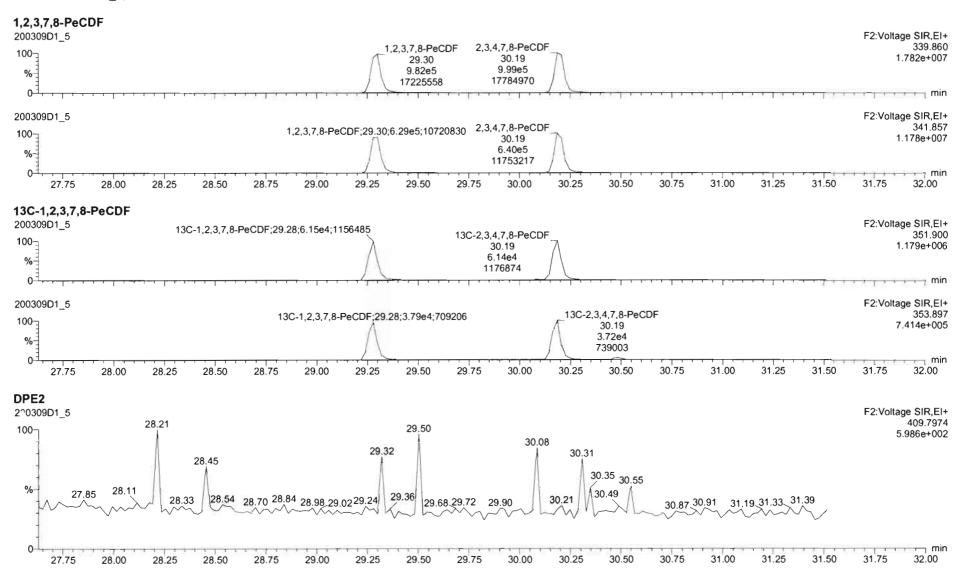


Quantify Sam Vista Analytica		Page 57 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

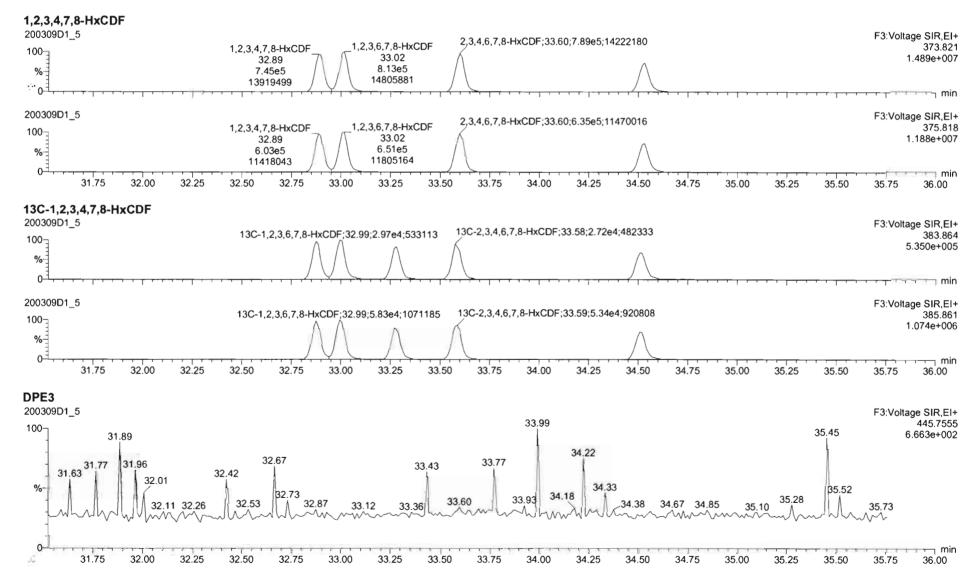
Quantify San Vista Analytic		Page 59 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

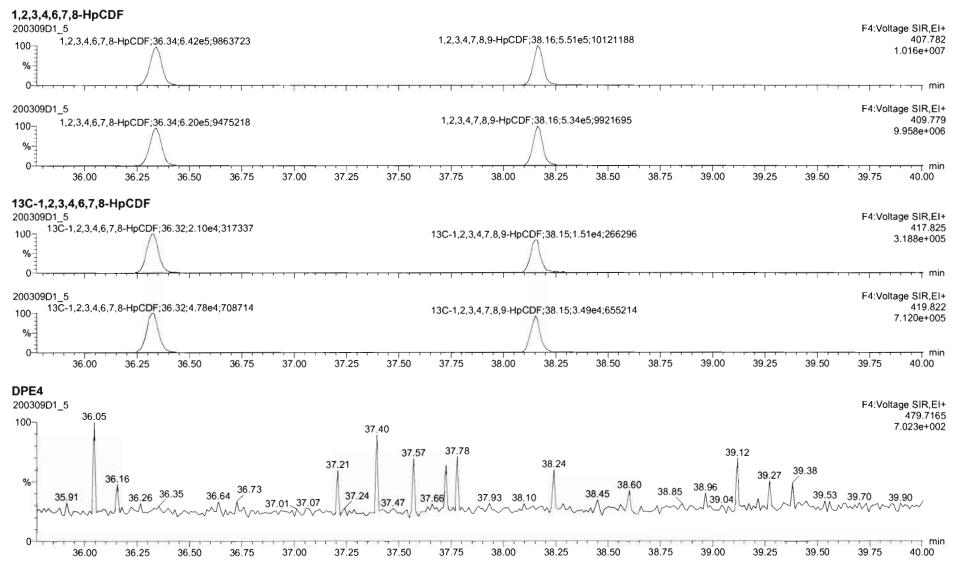


1.71

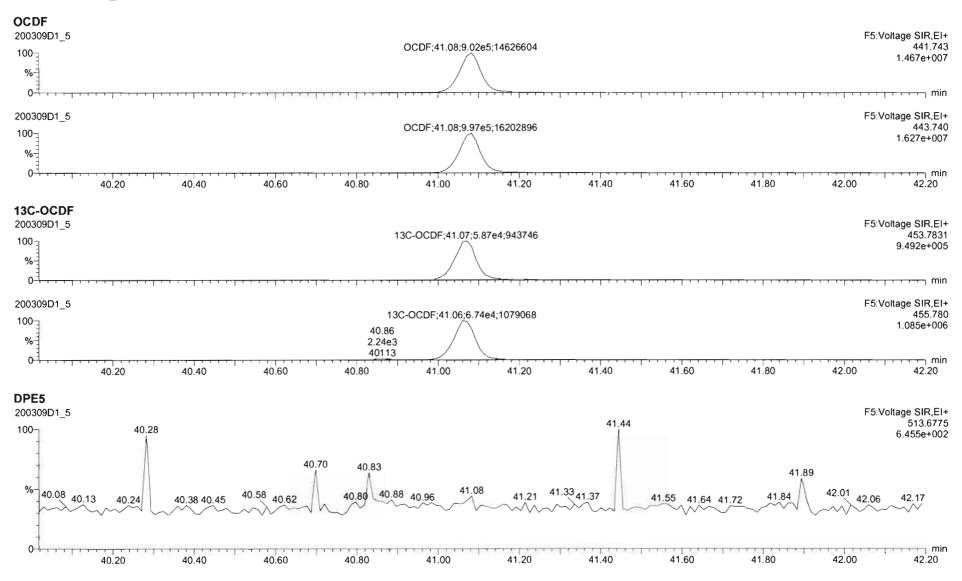

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

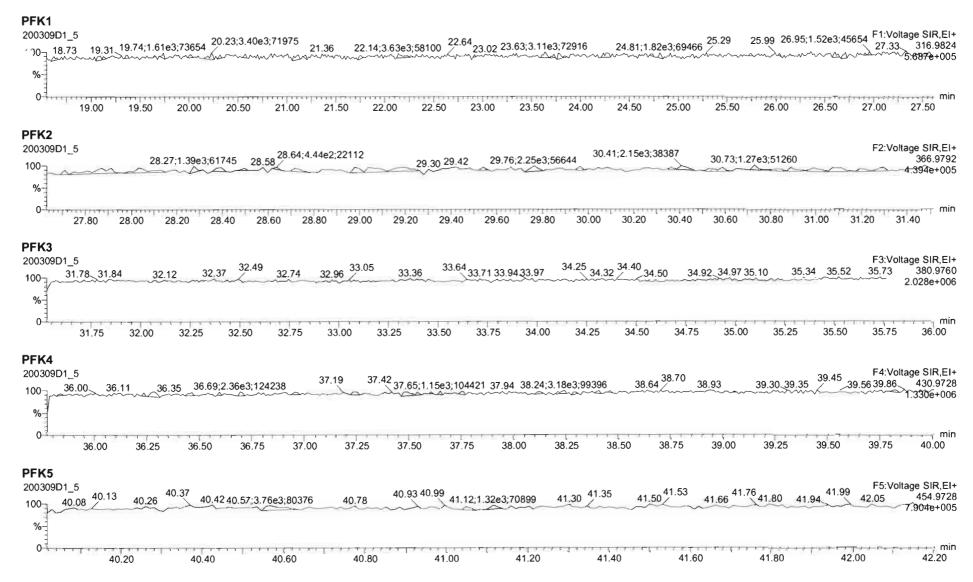

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time


Quantify Sam Vista Analytica		Page 61 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

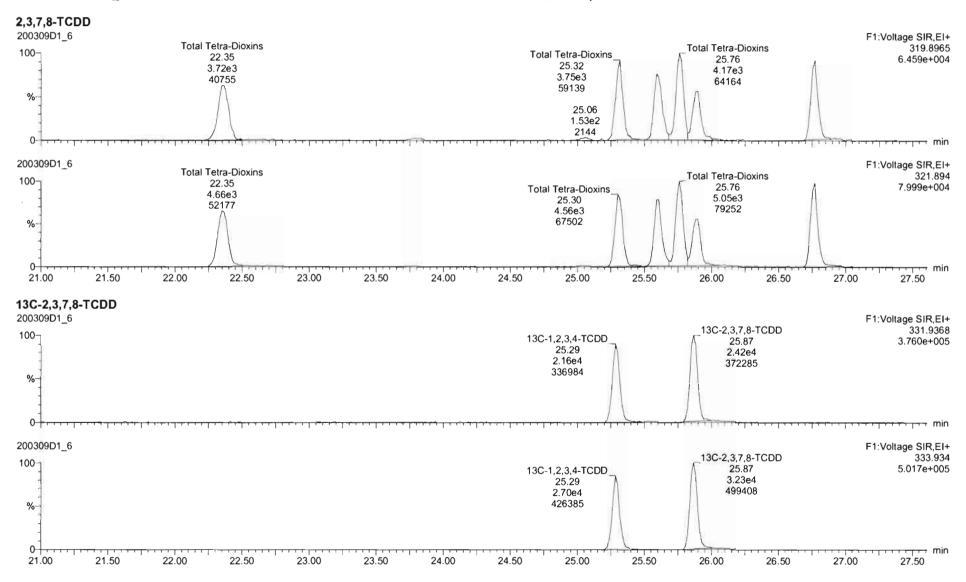
Quantify Sam Vista Analytica		Page 62 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

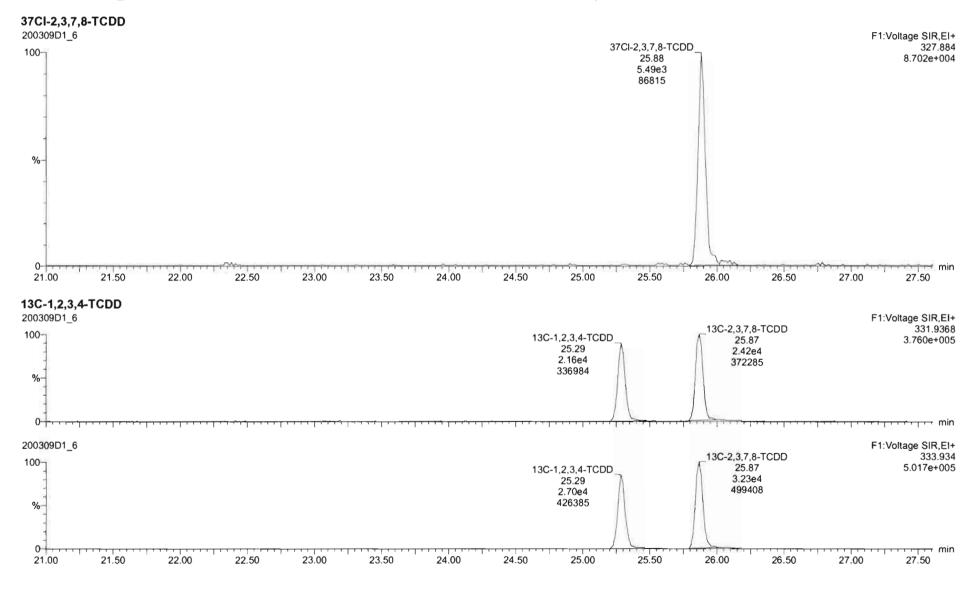


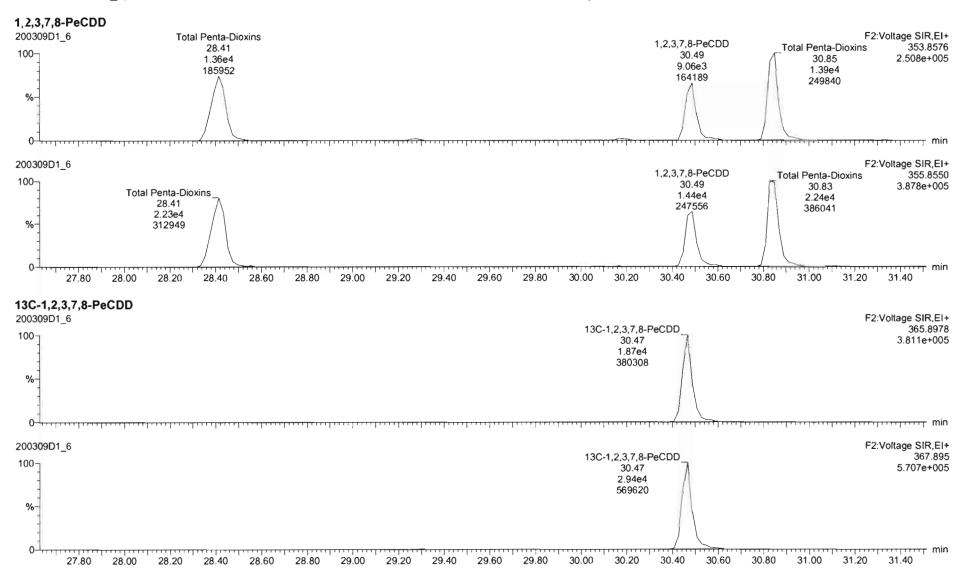
Quantify Sam Vista Analytica		Page 63 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time	
Name: 200309	9D1_5, Date: 09-Mar-2020, Time: 15:28:28, ID: ST200309D1-5 1	613 CS5 19L2307, Description: 1613 CS5 19L2307



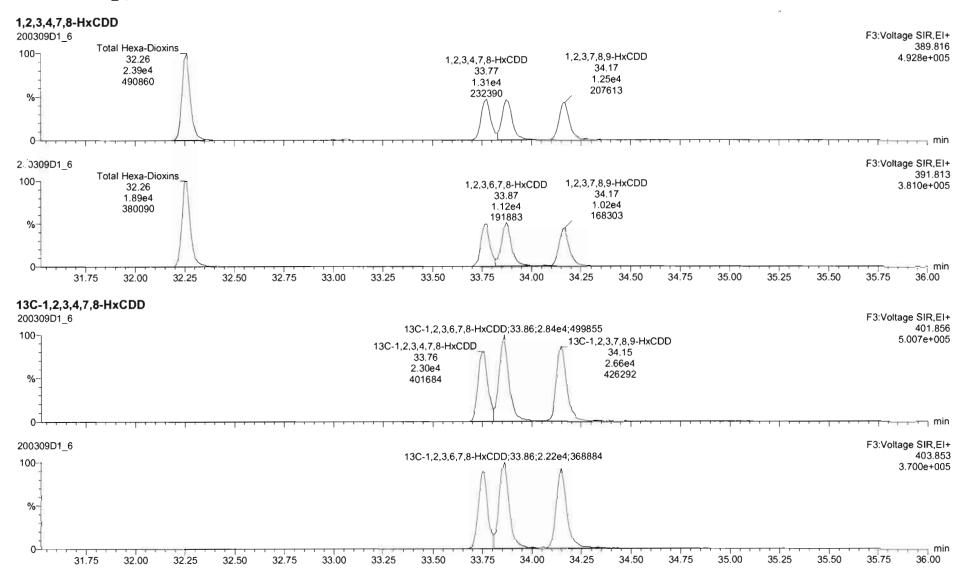
Work Order 2000945

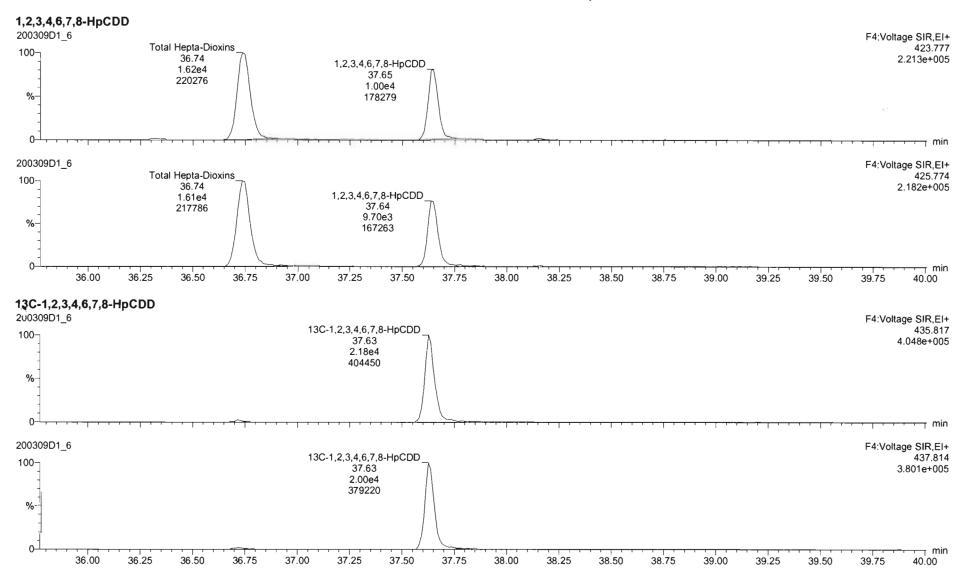

Quantify Sam Vista Analytica		Page 64 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify San Vista Analytica		Page 65 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify San Vista Analytic		Page 66 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

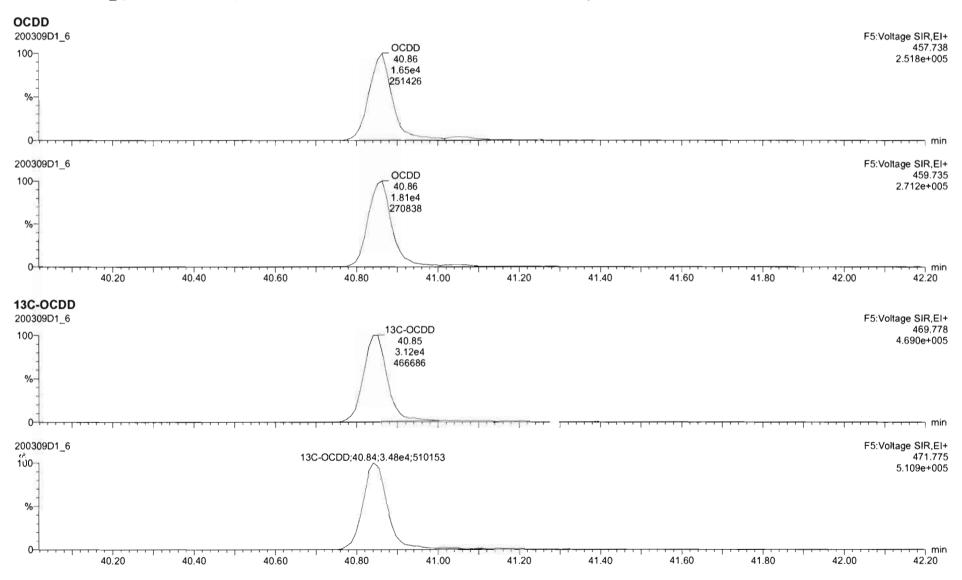
Quantify Sam Vista Analytica		Page 67 of 78
Dataset:	U:\VG7.PR0\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	


Quantify San Vista Analytica		Page 68 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

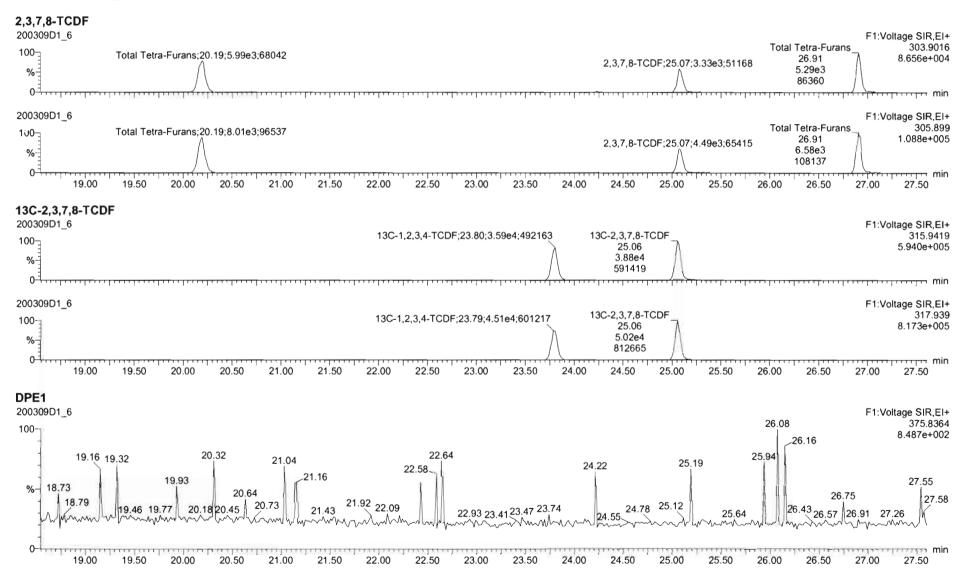

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

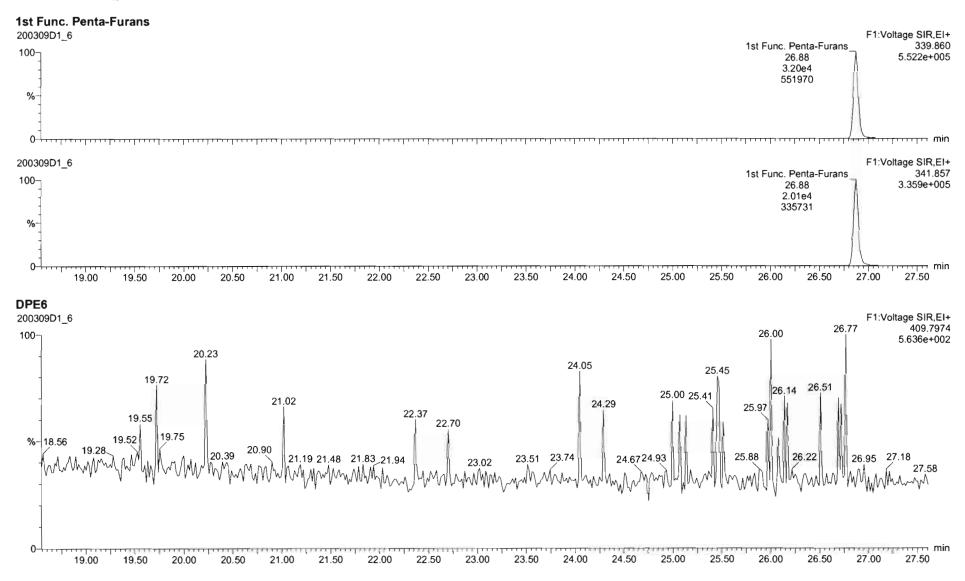


Quantify Sam Vista Analytica		Page 70 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

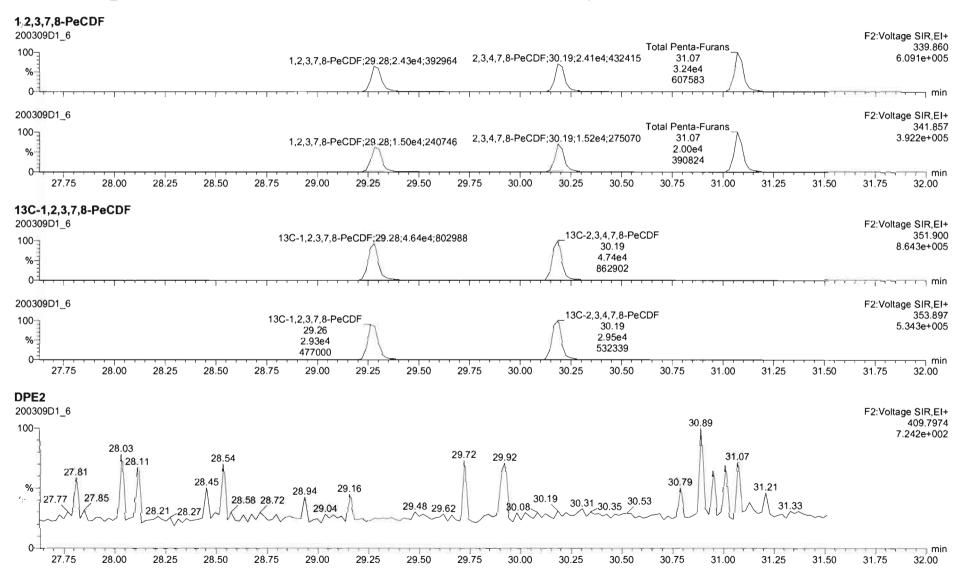


e Report MassLynx 4.1 aboratory	Page 71 of 78
J:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
	Laboratory J:\VG7.PRO\Results\200309D1\200309D1_CRV.qld Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time

. .



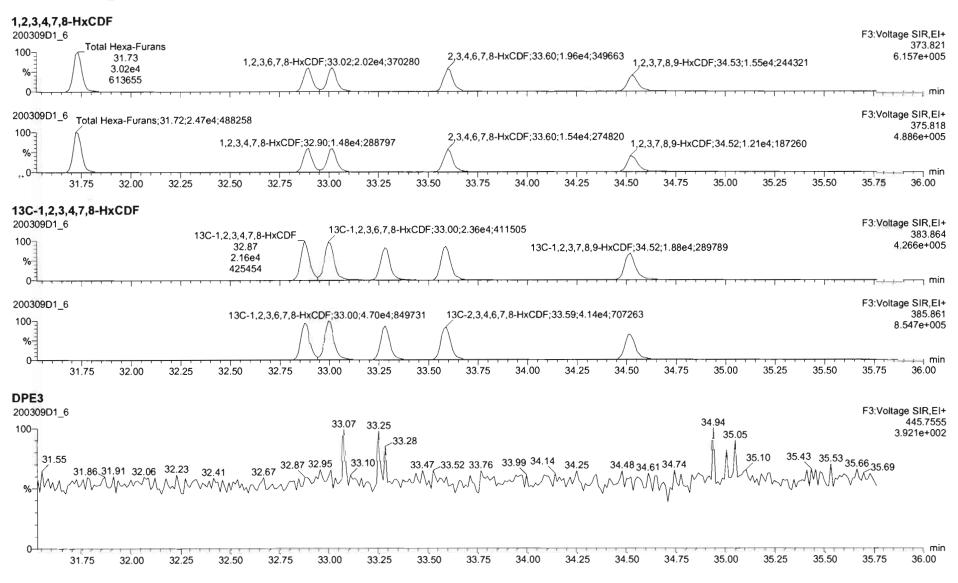
Quantify San Vista Analytica		Page 72 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	



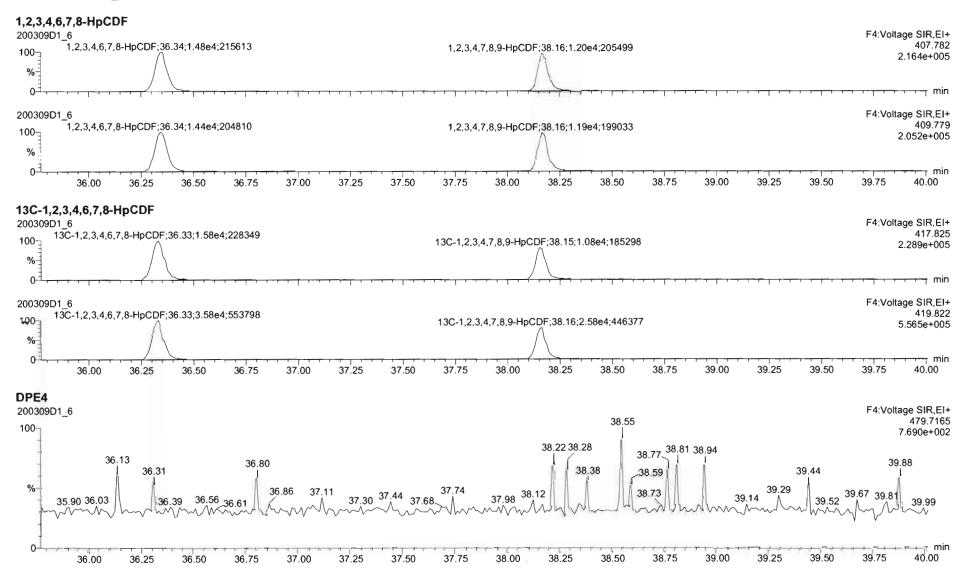
(-1)

Quantify Sam Vista Analytica		Page 73 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

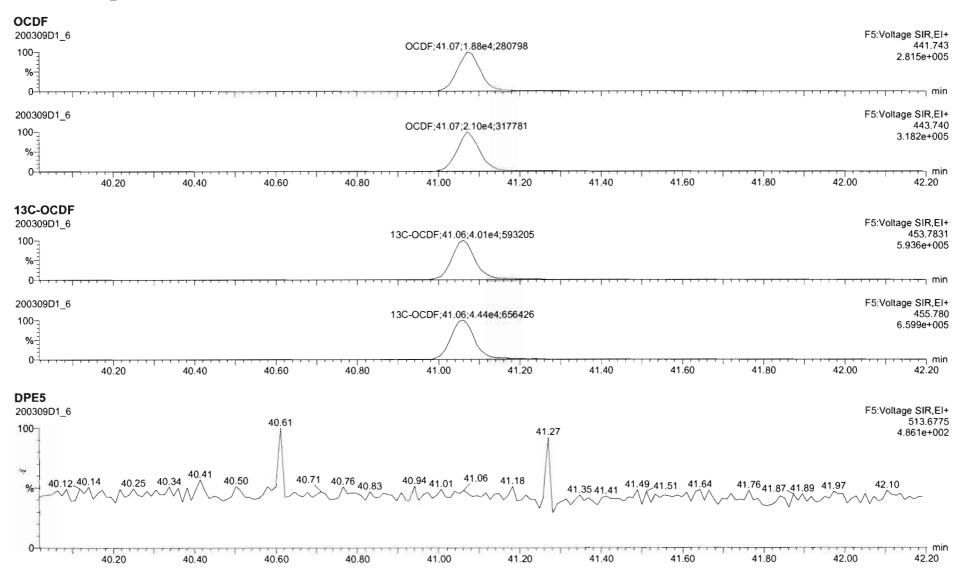
Quantify San Vista Analytica		Page 74 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

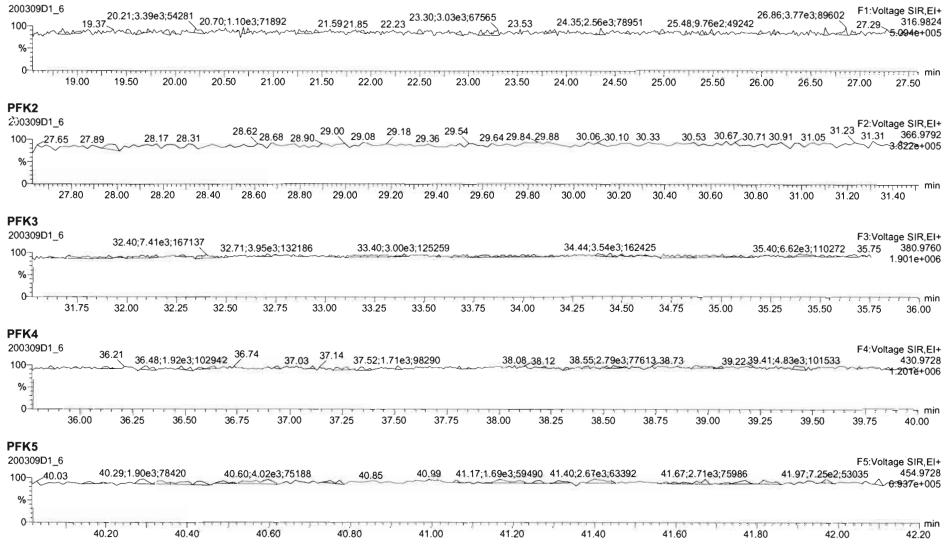


Quantify Sample Report MassLynx 4.1


Vista Analytical Laboratory

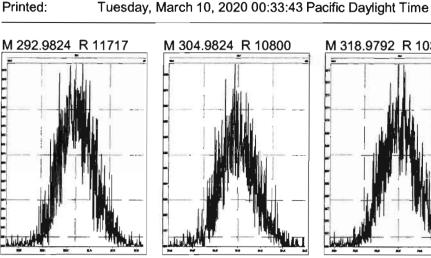
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld

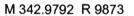

Last Altered:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time
Printed:	Monday, March 09, 2020 17:00:26 Pacific Daylight Time

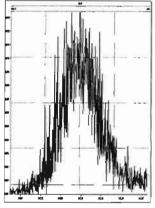

Quantify Sam Vista Analytica	• •	Page 76 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

Quantify San Vista Analytica		Page 77 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
Last Altered: Printed:	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

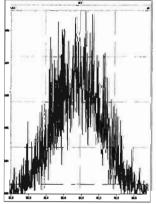
Quantify Samp Vista Analytical		Page 78 of 78
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_CRV.qld	
	Monday, March 09, 2020 16:58:54 Pacific Daylight Time Monday, March 09, 2020 17:00:26 Pacific Daylight Time	

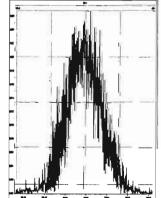


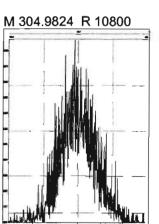

Resolution Check Report

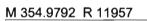

MassLynx 4.1

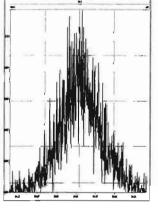
Page 1 of 3



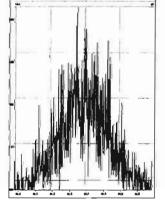


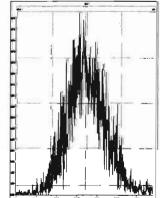


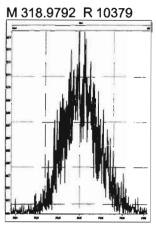

M 392.9760 R 8547

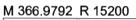


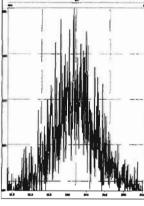
M 330.9792 R 11382



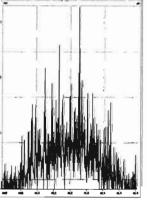


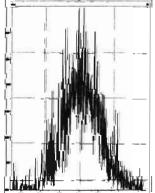



M 404.9760 R 11279

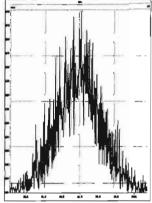


M 342.9792 R 11925





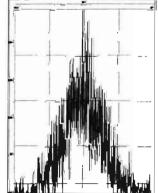
M 416.9760 R 21416



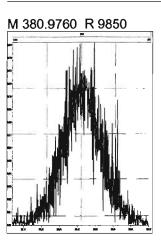
M 354.9792 R 11375

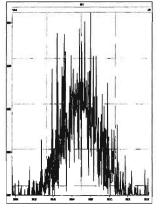


M 380.9760 R 8076

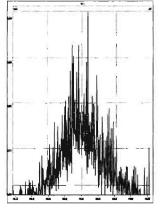

M 330.9792 R 9206

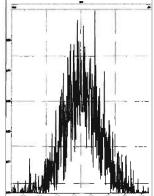
M 318.9792 R 11805

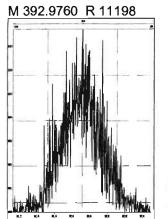

M 366.9792 R 14527


Resolution Check Report

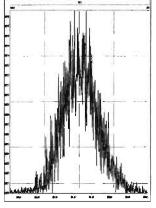
MassLynx 4.1

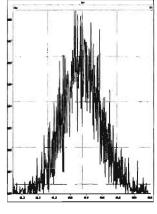



M 366.9792 R 15863

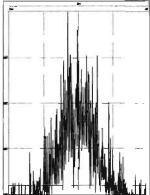


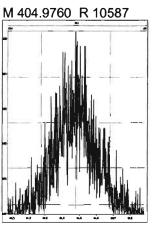
M 416.9760 R 13134

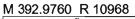

M 404.9760 R 13097

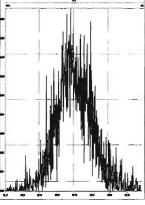


Tuesday, March 10, 2020 00:33:43 Pacific Daylight Time

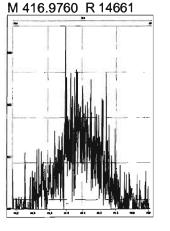

M 380.9760 R 10823

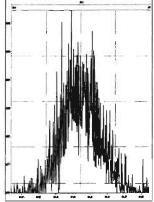



M 430.9728 R 10011

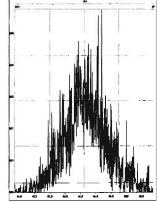


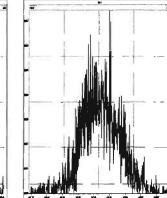
M 416.9760 R 31962




M 442.9728 R 11537

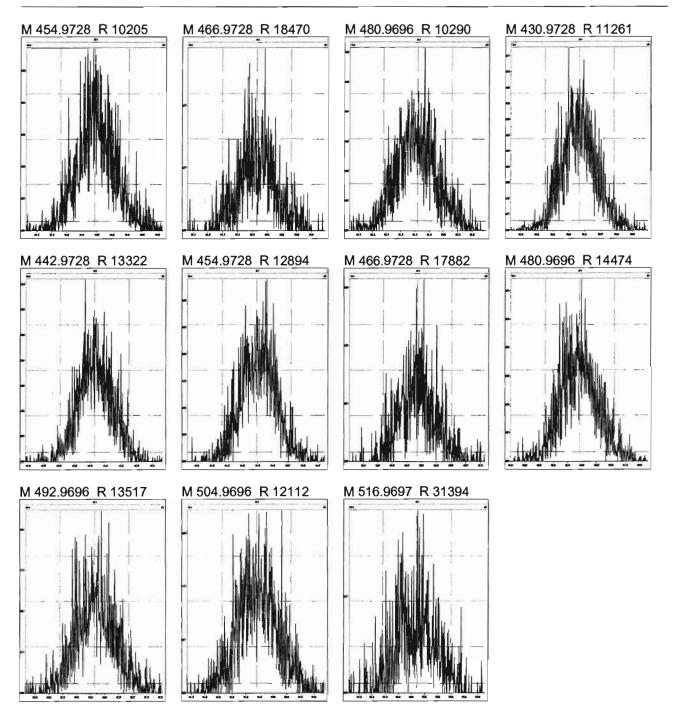
M 430.9728 R 10842


July U


M 404.9760 R 12136

M 454.9728 R 11078

M 442.9728 R 12286


Resolution Check Report

MassLynx 4.1

Page 3 of 3

Tuesday, March 10, 2020 00:33:43 Pacific Daylight Time

Quantify Sam Vista Analytica	a ple Summary Report al Laboratory	MassLynx 4.1	
Dataset:	U:\VG7.PRO\Results\200	309D1\200309D1_8.qld	
Last Altered:	Tuesday, March 10, 2020	10:04:50 Pacific Daylight Time	

DB 3/10/20 07 03/10/2020

Page 1 of 2

Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 09 Mar 2020 11:30:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

Tuesday, March 10, 2020 10:07:35 Pacific Daylight Time

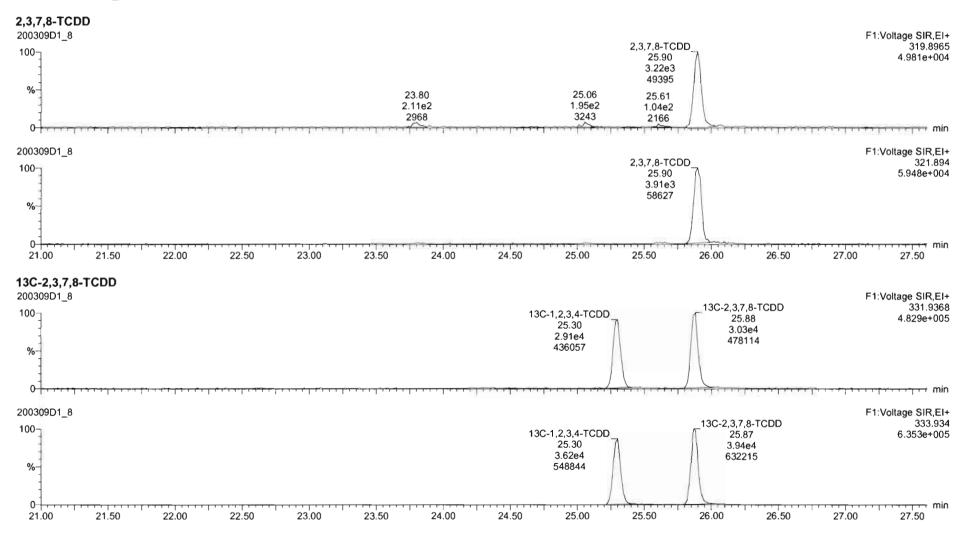
Name: 200309D1_8, Date: 09-Mar-2020, Time: 17:43:01, ID: SS200309D1-1 1613 SSS 19L2308, Description: 1613 SSS 19L2308

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	7.12e3	0.82	NO	0.987	1.000	25.913	25.90	1.001	1.001	10.343	10382-123	0.180	10.3
2	2 1,2,3,7,8-PeCDD	3.03e4	0.61	NO	0.982	1.000	30.488	30.49	1.001	1.001	52.086	104 78 - 130	0.172	52.1
3	3 1,2,3,4,7,8-HxCDD	3.14e4	1.26	NO	1.17	1.000	33.762	33.77	1.000	1.001	53.633	107 78-128	0.277	53.6
4	4 1,2,3,6,7,8-HxCDD	3.40e4	1.25	NO	1.04	1.000	33.862	33.88	1.000	1.001	55.125	110 78-128	0.254	55.1
5	5 1,2,3,7,8,9-HxCDD	3.12e4	1.27	NO	1.00	1.000	34.192	34.17	1.001	1.000	55.125	110 87-122	0.269	55.1
6	6 1,2,3,4,6,7,8-HpCDD	2.60e4	1.06	NO	0.992	1.000	37.648	37.66	1.000	1.001	53.690	107 86-116	0.367	53.7
7	7 OCDD	4.37e4	0.89	NO	1.04	1.000	40.852	40.86	1.000	1.000	108.89	109 79 - 126	0.547	109
8	8 2,3,7,8-TCDF	1.03e4	0.76	NO	0.882	1.000	25.097	25.09	1.001	1.001	10.684	107 86 - 116	0.118	10.7
9	9 1,2,3,7,8-PeCDF	5.27e4	1.60	NO	1.05	1.000	29.300	29.30	1.001	1.001	51.536	103 82 -120	0.197	51.5
10	10 2,3,4,7,8-PeCDF	5.98e4	1.60	NO	1.06	1.000	30.215	30.21	1.001	1.001	59.682	119 82 -120	0.200	59.7
11	11 1,2,3,4,7,8-HxCDF	4.52e4	1.25	NO	1.08	1.000	32.885	32.90	1.000	1.000	53.095	106 90 -112	0.250	53.1
12	12 1,2,3,6,7,8-HxCDF	4.79e4	1.28	NO	1.04	1.000	33.016	33.02	1.000	1.000	55.556	111 88-114	0.272	55.6
13	13 2,3,4,6,7,8-HxCDF	4.39e4	1.23	NO	1.11	1.000	33.622	33.61	1.001	1.001	51.071	102 88 - 114	0.265	51.1
14	14 1,2,3,7,8,9-HxCDF	3.57e4	1.26	NO	1.06	1.000	34.531	34.54	1.000	1.000	53.112	106 90-112	0.388	53.1
15	15 1,2,3,4,6,7,8-HpCDF	3.92e4	1.06	NO	1.13	1.000	36.378	36.35	1.001	1.000	54.829	110 90 - 110	0.369	54.8
16	16 1,2,3,4,7,8,9-HpCDF	3.06e4	1.04	NO	1.33	1.000	38.164	38.17	1.000	1.000	53.195	106 86 - 116	0.361	53.2
17	17 OCDF	4.98e4	0.88	NO	0.933	1.000	41.061	41.08	1.000	1.001	106.20	106 63759	0.530	106
18	18 13C-2,3,7,8-TCDD	6.98e4	0.77	NO	1.21	1.000	25.959	25.88	⁻ 1.026	1.023	88.582	88.6 82-121	0.809	
19	19 13C-1,2,3,7,8-PeCDD	5.93e4	0.64	NO	0.996	1.000	30.412	30.47	1.202	1.204	91.239	91.2 62 - 160	0.394	
20	20 13C-1,2,3,4,7,8-HxCDD	4.99e4	1.29	NO	0.679	1.000	33.746	33.75	1.014	1.014	92.345	92.3 85 - 117	0.538	
21	21 13C-1,2,3,6,7,8-HxCDD	5.95e4	1.31	NO	0.850	1.000	33.856	33.86	1.017	1.017	87.951	88.0 85-118	0.430	
22	22 13C-1,2,3,7,8,9-HxCDD	5.65e4	1.24	NO	0.798	1.000	34.125	34.16	1.025	1.026	88.796	88.8 85-118	0.457	
23	23 13C-1,2,3,4,6,7,8-HpCDD	4.89e4	1.05	NO	0.697	1.000	37.573	37.64	1.129	1.131	88.088	88.172-138	0.645	
24	24 13C-OCDD	7.76e4	0.90	NO	0.579	1.000	40.582	40.85	1.219	1.228	168.23	84.1 48- 207	1.07	
25	25 13C-2,3,7,8-TCDF	1.09e5	0.77	NO	1.13	1.000	25.048	25.07	0.990	0.991	91.711	91.7 71-140	0.730	
26	26 13C-1,2,3,7,8-PeCDF	9.78e4	1.64	NO	0.996	1.000	29.240	29.28	1.156	1.157	93.246	93.2 76-130	0.529	
27	27 13C-2,3,4,7,8-PeCDF	9.45e4	1.60	NO	0.969	1.000	30.133	30.18	1.191	1.193	92.595	92.6 77 - 130	0.544	
28	28 13C-1,2,3,4,7,8-HxCDF	7.87e4	0.50	NO	1.06	1.000	32.881	32.88	0.988	0.988	93.385	93.4 76-131	0.584	
29	29 13C-1,2,3,6,7,8-HxCDF	8.27e4	0.50	NO	1.18	1.000	33.014	33.01	0.992	0.992	88.358	88.4 70-143	0.526	
30	30 13C-2,3,4,6,7,8-HxCDF	7.74e4	0.51	NO	1.06	1.000	33.583	33.59	1.009	1.009	91.900	91.9 73-137	0.585	
31	31 13C-1,2,3,7,8,9-HxCDF	6.36 e 4	0.49	NO	0.879	1.000	34.478	34.53	1.036	1.038	90.868	90.9 74-135		

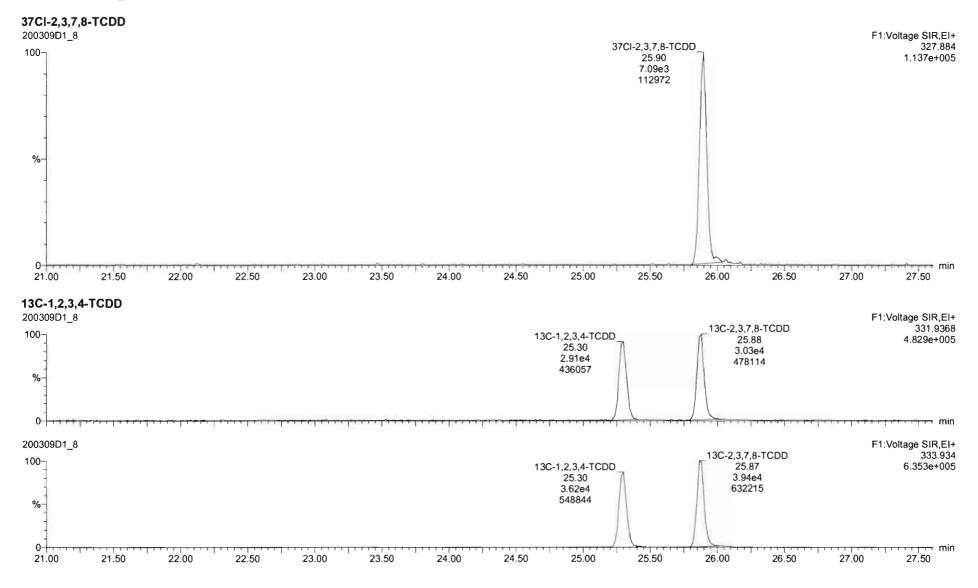
Printed:

Quantify Sample Summary Report MassLynx 4.1 Vista Analytical Laboratory MassLynx 4.1

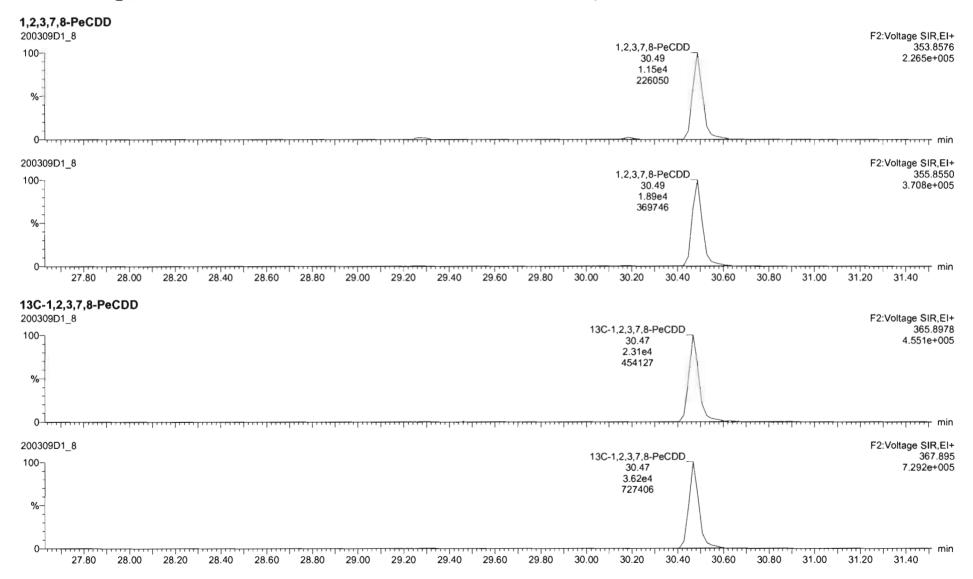
Page 2 of 2

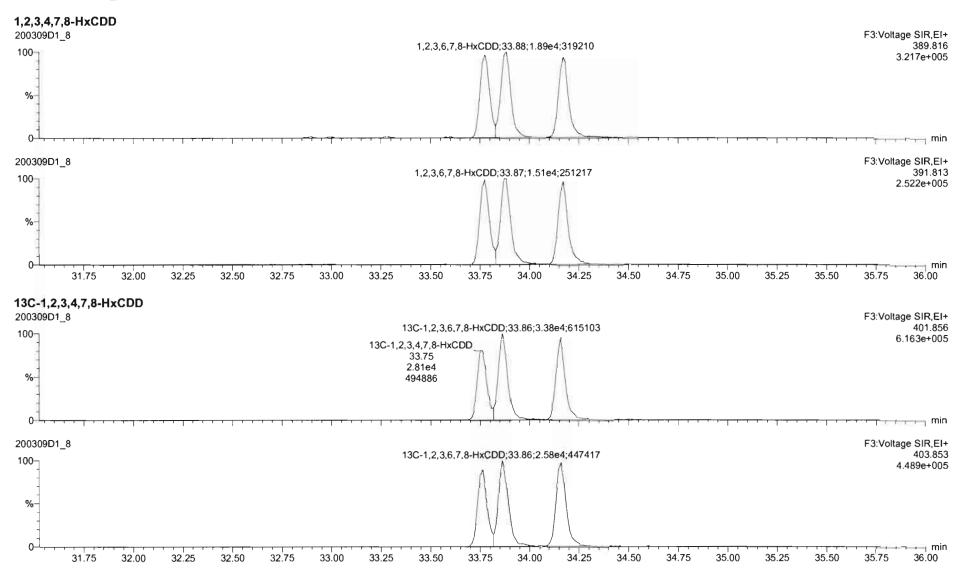

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_8.qld

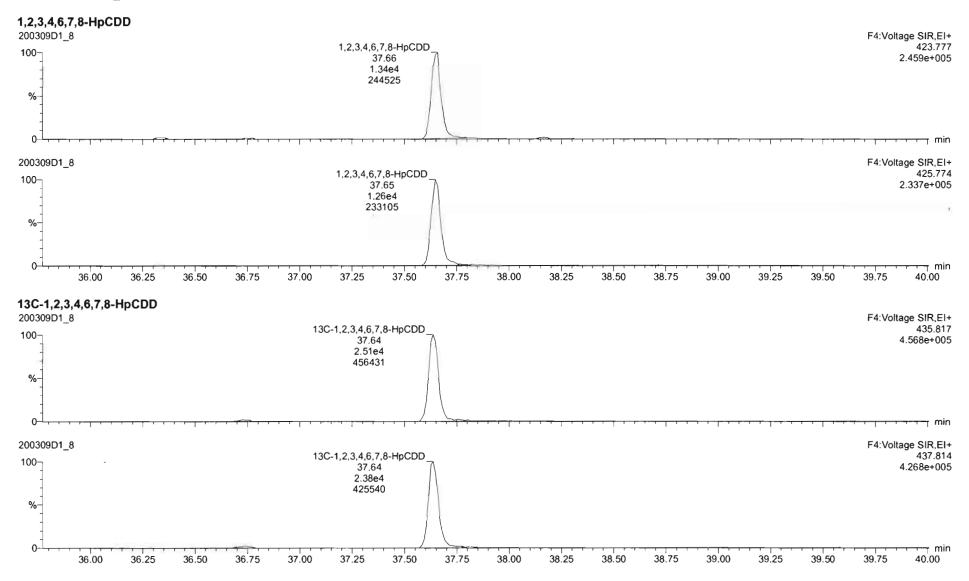
Last Altered:	Tuesday, March 10, 2020 10:04:50 Pacific Daylight Time
Printed:	Tuesday, March 10, 2020 10:07:35 Pacific Daylight Time

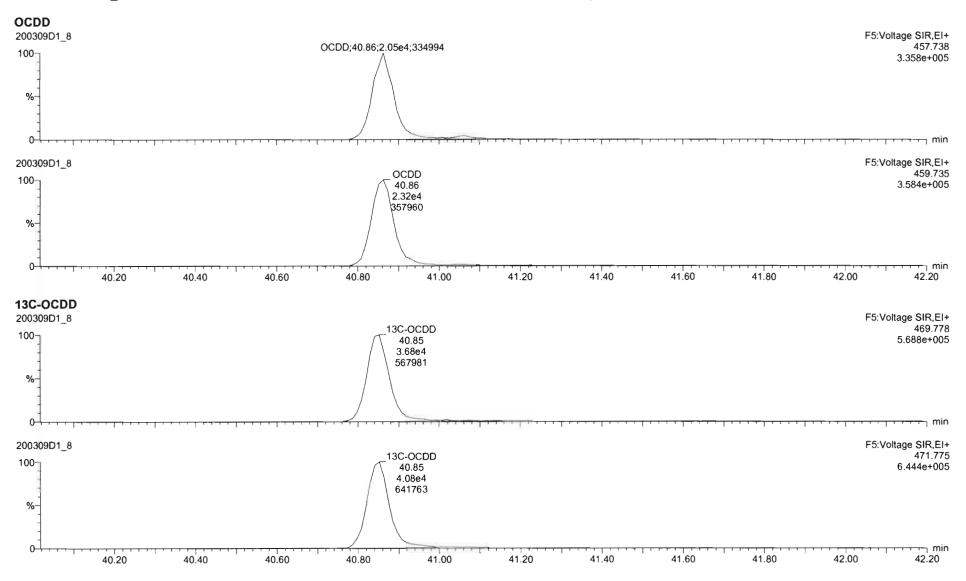

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.34e4	0.43	NO	0.893	1.000	36.175	36.34	1.087	1.092	89.122	89.1 78 -	129 0.614	
33	33 13C-1,2,3,4,7,8,9-HpCDF	4.31e4	0.43	NO	0.613	1.000	38.172	38.16	1.147	1.147	88.244	88.2 77 -	129 0.893	
34	34 13C-OCDF	1.01e5	0.86	NO	0.741	1.000	40.735	41.06	1.224	1.234	170.22	85.1 48 -	207 0.528	
35	35 37CI-2,3,7,8-TCDD	7.09e3			1.18	1.000	25.956	25.90	1.026	1.024	9.2054	92.1 79-	127 0.0703	
36	36 13C-1,2,3,4-TCDD	6.53e4	0.81	NO	1.00	1.000	25.440	25.30	1.000	1.000	100.00	100	0.977	
37	37 13C-1,2,3,4-TCDF	1.05e5	0.80	NO	1.00	1.000	23.970	23.80	1.000	1.000	100.00	100	0.823	
38	38 13C-1,2,3,4,6,9-HxCDF	7.97e4	0.51	NO	1.00	1.000	33.260	33.28	1.000	1.000	100.00	100	0.618	

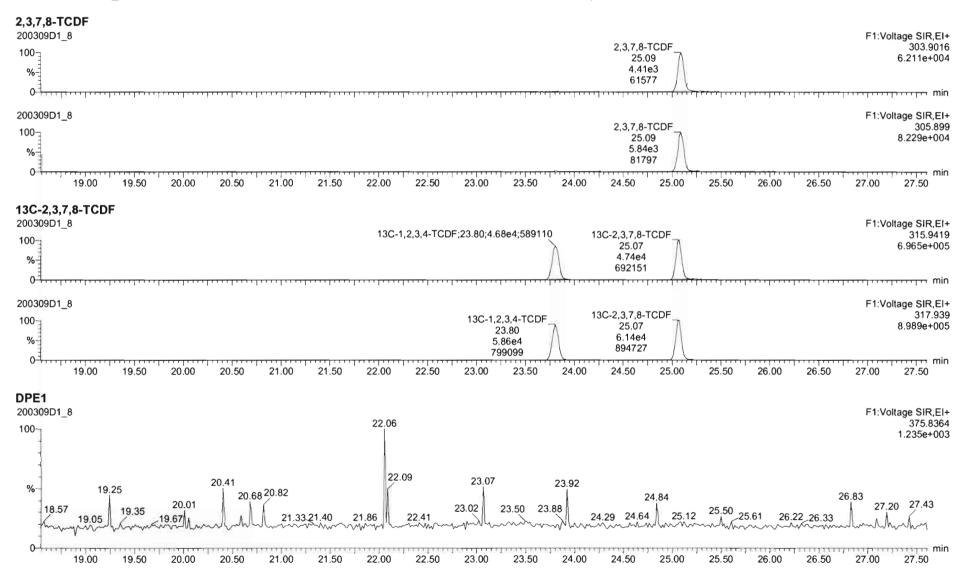
Quantify San Vista Analytica		Page 1 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	


Method: C:\MassLynx\Default.PRO\MethDB\1613_rrt.mdb 09 Mar 2020 11:30:34 Calibration: U:\VG7.PRO\CurveDB\db-5_1613vg7-3-9-20.cdb 09 Mar 2020 17:20:28

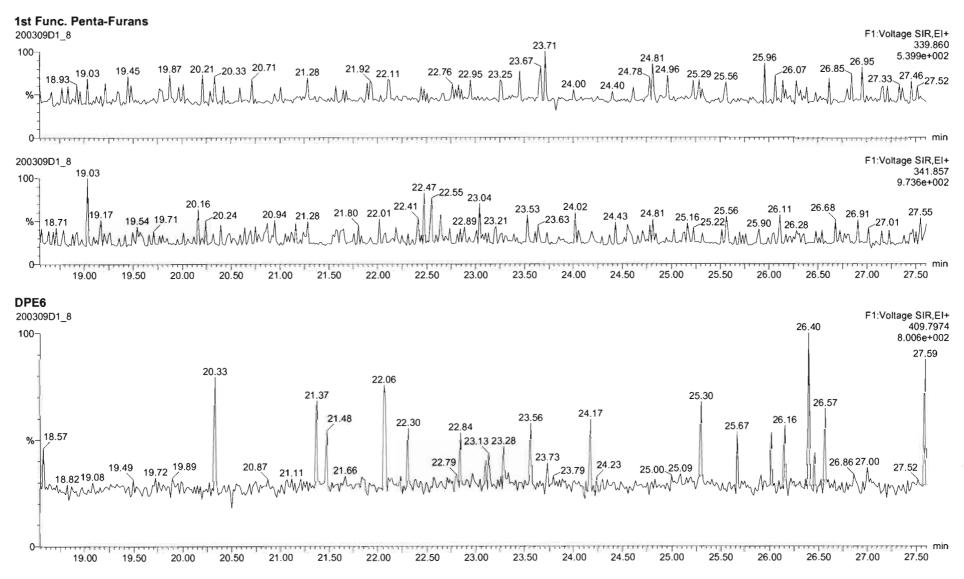

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	

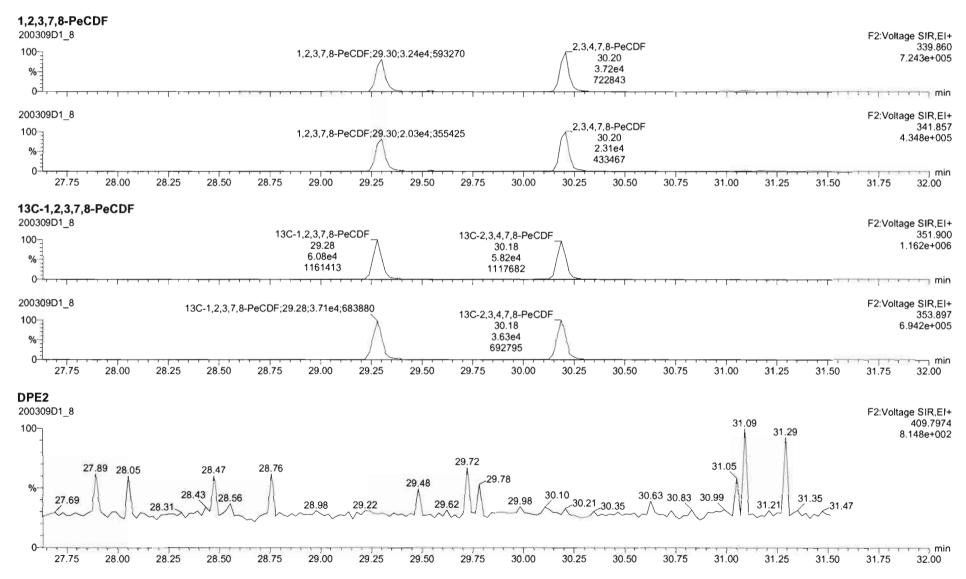

Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	

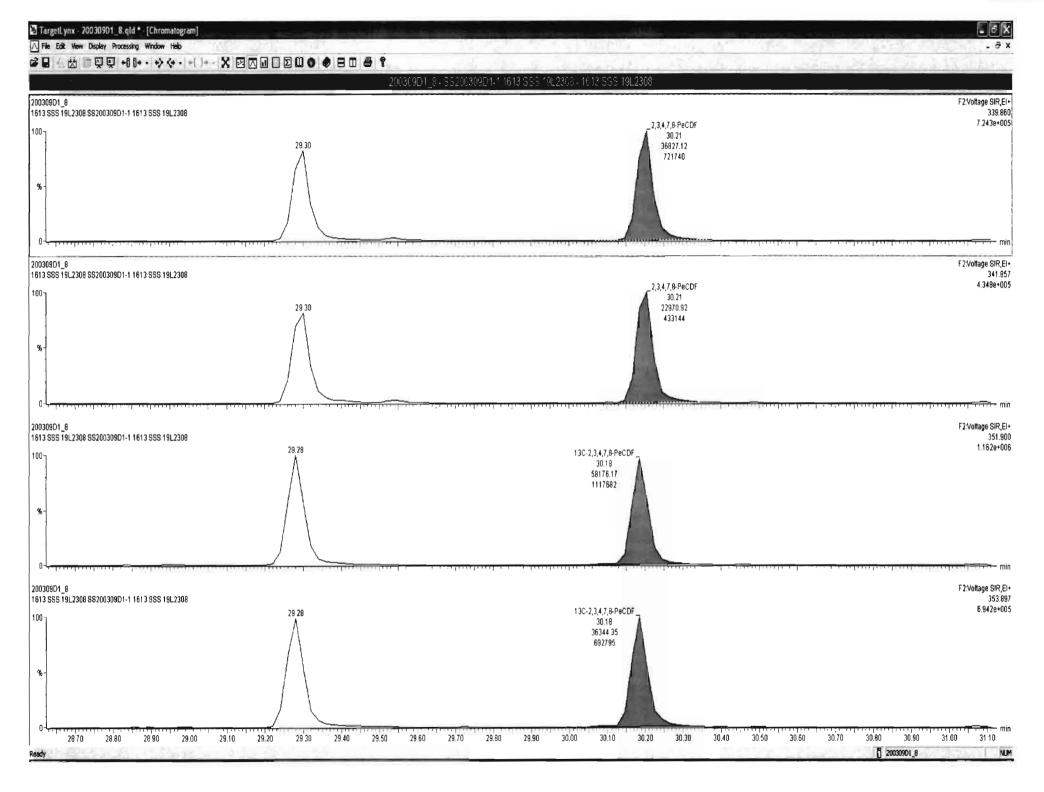

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	

Quantify Sam Vista Analytica	· · ·	Page 6 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	

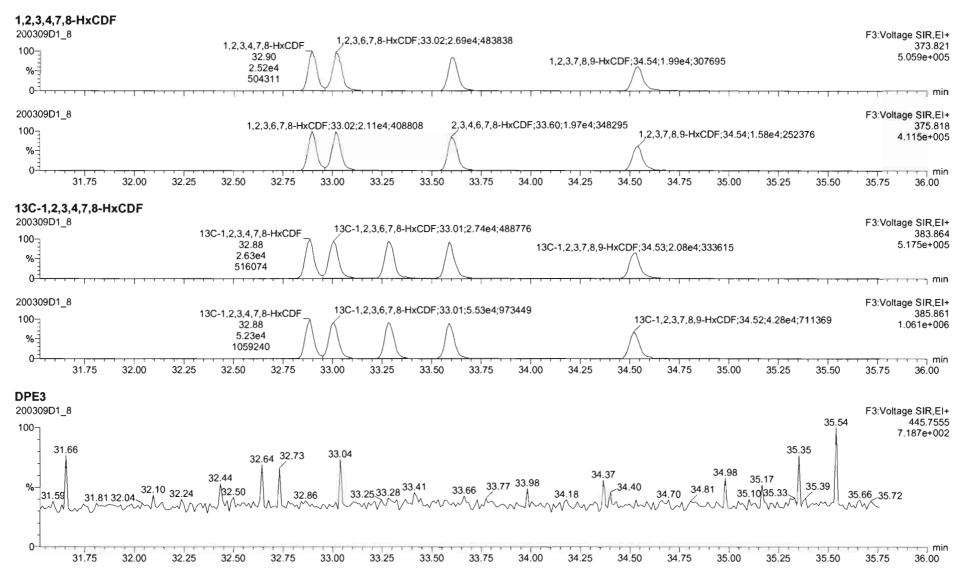

Quantify San Vista Analytica		Page 7 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	

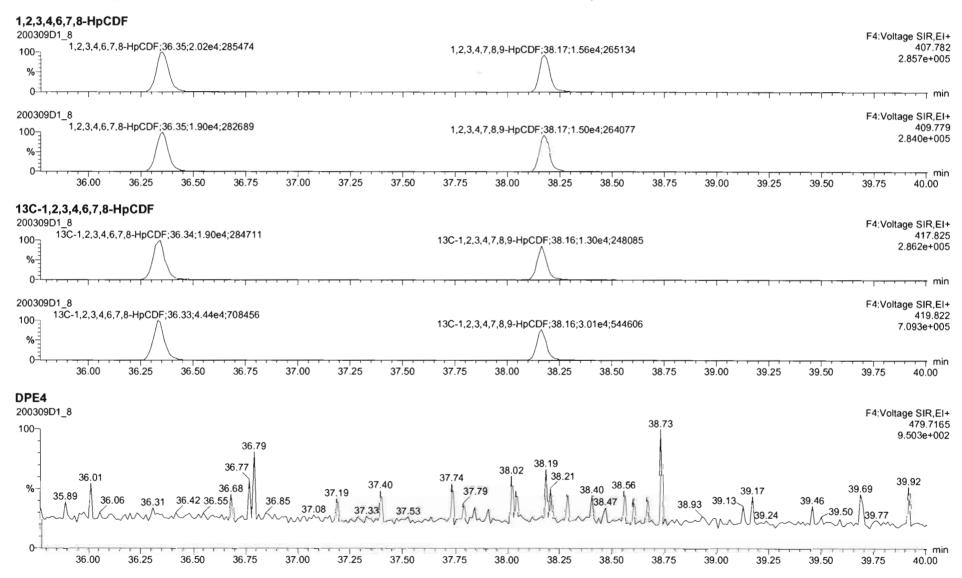

Vista Analytical Laboratory


Dataset: U:\VG7.PRO\Results\200309D1\200309D1_8.qld

Last Altered:Tuesday, March 10, 2020 09:46:21 Pacific Daylight TimePrinted:Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time

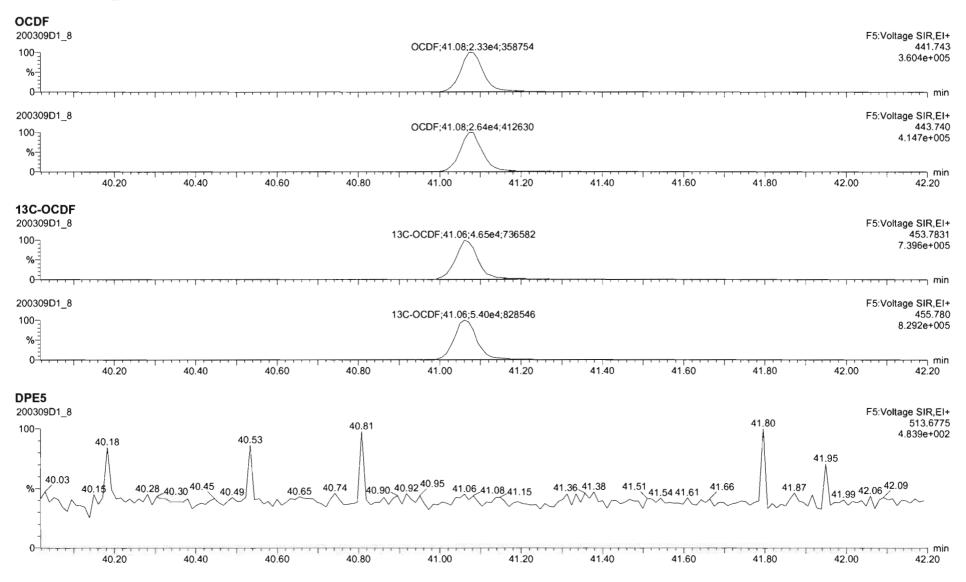
Quantify Sam Vista Analytica	· · ·	Page 9 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	




Vista Analytical Laboratory

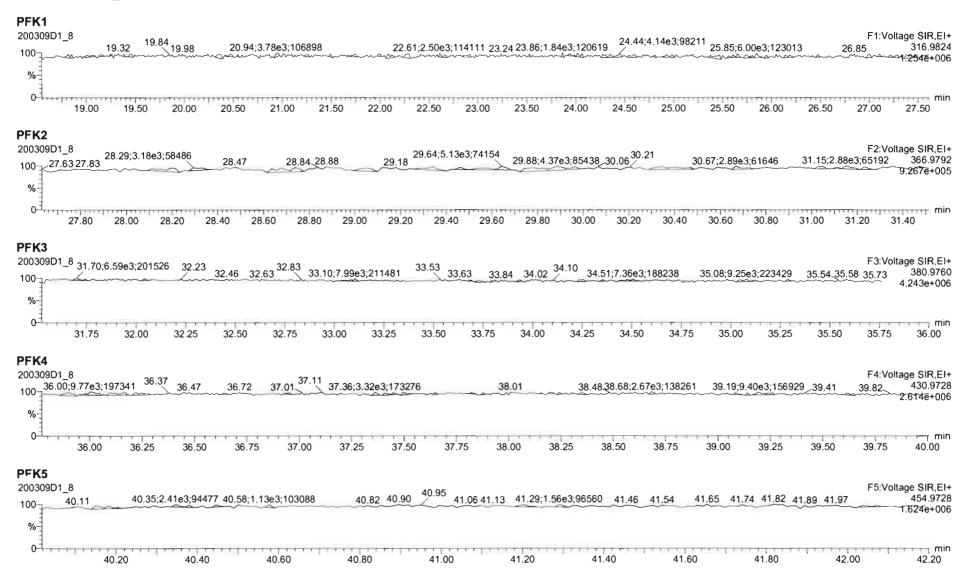
Dataset: U:\VG7.PRO\Results\200309D1\200309D1_8.qld

Last Altered:Tuesday, March 10, 2020 09:46:21 Pacific Daylight TimePrinted:Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time


Quantify San Vista Analytica		Page 11 of 13
Dataset:	U:\VG7.PRO\Results\200309D1\200309D1_8.qld	
Last Altered: Printed:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time	

Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_8.qld


Last Altered:Tuesday, March 10, 2020 09:46:21 Pacific Daylight TimePrinted:Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time

Quantify Sample Report	MassLynx 4.1
Vista Analytical Laboratory	

Dataset: U:\VG7.PRO\Results\200309D1\200309D1_8.qld

Last Altered:	Tuesday, March 10, 2020 09:46:21 Pacific Daylight Time
Printed:	Tuesday, March 10, 2020 09:53:02 Pacific Daylight Time

Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory VG-9 MassLynx 4.1

Dataset:	U:\VG7.PRO\Results\200211D2\200211D2_	_CRV.qld
----------	---------------------------------------	----------

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Wednesday, February 12, 2020 10:35:39 Pacific Standard Time

DB 2/12/20 CT 02/12/2020

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 10:17:56

Compound name: 2,3,7,8-TCDF

Response Factor: 0.9819 RRF SD: 0.0791981, Relative SD: 8.06581 Response type: Internal Std (Ref 2), Area * (IS Conc. / IS Area) Curve type: RF

100-	# Name	Std. Conc	RA	n/y	RT	Resp	IS Resp	Conc.	RRF
1	1 200211D2_3	0.250	0.86	NO	17.23	3.04e2	1.39e5	0.223	0.876
2	2 200211D2_4	0.500	0.66	NO	17.22	6.08e2	1.13e5	0.549	1.08
3	3 200211D2_5	2.00	0.73	NO	17.23	2.63e3	1.30e5	2.06	1.01
4	4 200211D2_6	10.0	0.75	NO	17.23	1.15e4	1.25e5	9.33	0.916
5	5 200211D2_7	40.0	0.74	NO	17.23	5.76e4	1.51e5	39.0	0.957
6	6 200211D2_8	300	0.73	NO	17.23	4.81e5	1.52e5	321	1.05

Compound name: 13C-2,3,7,8-TCDF Response Factor: 1.08271 RRF SD: 0.0939058, Relative SD: 8.67318 Response type: Internal Std (Ref 3), Area * (IS Conc. / IS Area) Curve type: RF

	# Name	Std. Conc	RA	n/y	RT	Resp	IS Resp	Conc.	RRF
1	1 200211D2_3	100	0.72	NO	17.20	1.39e5	1.13e5	113	1.23
2	2 200211D2_4	100	0.71	NO	17.20	1.13e5	1.14e5	91.7	0.993
3	3 200211D2_5	100	0.71	NO	17.20	1.30e5	1.34e5	89.3	0.967
4	4 200211D2_6	100	0.75	NO	17.20	1.25e5	1.15e5	101	1.09
5	5 200211D2_7	100	0.71	NO	17.20	1.51e5	1.35e5	103	1.11
0	6 200211D2_8	100	0.72	NO	17.20	1.52e5	1.38e5	102	1.11

Quantify Compound Summary Report MassLynx 4.1 Vista Analytical Laboratory VG-9 Vista Analytical Laboratory VG-9

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:35:39 Pacific Standard Time

Compound name: 13C-1,2,3,4-TCDF Response Factor: 1 RRF SD: 7.02167e-017, Relative SD: 7.02167e-015 Response type: Internal Std (Ref 3), Area * (IS Conc. / IS Area) Curve type: RF

-	# Name	Std. Conc	RA	n/y	RT	Resp	IS Resp	Conc.	RRF
1	1 200211D2_3	100	0.70	NO	15.17	1.13e5	1.13e5	100	1.00
2	2 200211D2_4	100	0.71	NO	15.18	1.14e5	1.14e5	100	1.00
3	3 200211D2_5	100	0.74	NO	15.17	1.34e5	1.34e5	100	1.00
4	4 200211D2_6	100	0.72	NO	15.17	1.15e5	1.15e5	100	1.00
5	5 200211D2_7	100	0.73	NO	15.17	1.35e5	1.35e5	100	1.00
6	6 200211D2_8	100	0.73	NO	15.17	1.38e5	1.38e5	100	1.00

Compound name: 13C-1,2,3,4-TCDD Response Factor: 1026.38 RRF SD: 123.841, Relative SD: 12.0658 Response type: External Std, Area Curve type: RF

	# Name	Std. Conc	RA	n/y	RT	Resp	IS Resp	Conc.	RRF
1	1 200211D2_3	100	0.79	NO	15.78	1.04e5		102	1040
2	2 200211D2_4	100	0.77	NO	15.78	8.57e4		83.5	857
3	3 200211D2_5	100	0.79	NO	15.78	9.44e4		92.0	944
4	4 200211D2_6	100	0.79	NO	15.78	9.87e4		96.1	987
5	5 200211D2_7	100	0.78	NO	15.78	1.13e5		110	1130
6	6 200211D2_8	100	0.78	NO	15.78	1.20e5		116	1200

X

Quantify Sam	ple Summary Report	MassLynx 4.1	Page 1 of 6
Dataset:	U:\VG7.PRO\Results\200	0211D2\200211D2_CRV.qld	
Last Altered: Printed:		2, 2020 10:17:56 Pacific Standard Time 2, 2020 10:38:05 Pacific Standard Time	

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 10:17:56

Name: 200211D2_3, Date: 11-Feb-2020, Time: 21:00:36, ID: ST200211D2-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	3.04e2	0.86	NO	0.982	1.000	17.23	0.22305	89.2	0.0931
2	2 13C-2,3,7,8-TCDF	1.39e5	0.72	NO	1.08	1.000	17.20	113.42	113	0.342
3	3 13C-1,2,3,4-TCDF	1.13e5	0.70	NO	1.00	1.000	15.17	100.00	100	0.371
4	4 13C-1,2,3,4-TCDD	1.04e5	0.7 9	NO	1030	1.000	15.78	101.65	102	0.291

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Wednesday, February 12, 2020 10:38:05 Pacific Standard Time

Name: 200211D2_4, Date: 11-Feb-2020, Time: 21:32:19, ID: ST200211D2-2 1613 CS1 19L2303, Description: 1613 CS1 19L2303

No. Concern	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	6.08e2	0.66	NO	0.982	1.000	17.22	0.54947	110	0.147
2	2 13C-2,3,7,8-TCDF	1.13e5	0.71	NO	1.08	1.000	17.20	91.711	91.7	0.381
3	3 13C-1,2,3,4-TCDF	1.14e5	0.71	NO	1.00	1.000	15.18	100.00	100	0.412
4	4 13C-1,2,3,4-TCDD	8.57e4	0.77	NO	1030	1.000	15.78	83.528	83.5	0.324

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:38:05 Pacific Standard Time

Name: 200211D2_5, Date: 11-Feb-2020, Time: 22:04:03, ID: ST200211D2-3 1613 CS2 19L2304, Description: 1613 CS2 19L2304

CARLENCE AND	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	2.63e3	0.73	NO	0.982	1.000	17.23	2.0631	103	0.121
2	2 13C-2,3,7,8-TCDF	1.30e5	0.71	NO	1.08	1.000	17.20	89.279	89.3	0.292
3	3 13C-1,2,3,4-TCDF	1.34e5	0.74	NO	1.00	1.000	15.17	100.00	100	0.316
4	4 13C-1,2,3,4-TCDD	9.44e4	0.79	NO	1030	1.000	15.78	92.007	92.0	0.336

Page 3 of 6

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Wednesday, February 12, 2020 10:38:05 Pacific Standard Time

Name: 200211D2_6, Date: 11-Feb-2020, Time: 22:35:45, ID: ST200211D2-4 1613 CS3 19L2305, Description: 1613 CS3 19L2305

- Court	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	1.15e4	0.75	NO	0.982	1.000	17.23	9.3257	93.3	0.185
2	2 13C-2,3,7,8-TCDF	1.25e5	0.75	NO	1.08	1.000	17.20	100.76	101	0.364
3	3 13C-1,2,3,4-TCDF	1.15e5	0.72	NO	1.00	1.000	15.17	100.00	100	0.394
4	4 13C-1,2,3,4-TCDD	9.87e4	0.79	NO	1030	1.000	15.78	96.149	96.1	0.331

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:38:05 Pacific Standard Time

Name: 200211D2_7, Date: 11-Feb-2020, Time: 23:07:28, ID: ST200211D2-5 1613 CS4 19L2306, Description: 1613 CS4 19L2306

a galas	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	5.76e4	0.74	NO	0.982	1.000	17.23	38.981	97.5	0.158
2	2 13C-2,3,7,8-TCDF	1.51e5	0.71	NO	1.08	1.000	17.20	102.61	103	0.300
3	3 13C-1,2,3,4-TCDF	1.35e5	0.73	NO	1.00	1.000	15.17	100.00	100	0.325
4	4 13C-1,2,3,4-TCDD	1.13e5	0.78	NO	1030	1.000	15.78	110.19	110	0.311

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Wednesday, February 12, 2020 10:38:05 Pacific Standard Time

/

Name: 200211D2_8, Date: 11-Feb-2020, Time: 23:39:11, ID: ST200211D2-6 1613 CS5 19L2307, Description: 1613 CS5 19L2307

100	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	4.81e5	0.73	NO	0.982	1.000	17.23	321.06	107	0.243
2	2 13C-2,3,7,8-TCDF	1.52e5	0.72	NO	1.08	1.000	17.20	102.22	102	0.295
3	3 13C-1,2,3,4-TCDF	1.38e5	0.73	NO	1.00	1.000	15.17	100.00	100	0.319
4	4 13C-1,2,3,4-TCDD	1.20e5	0.78	NO	1030	1.000	15.78	116.47	116	0.322

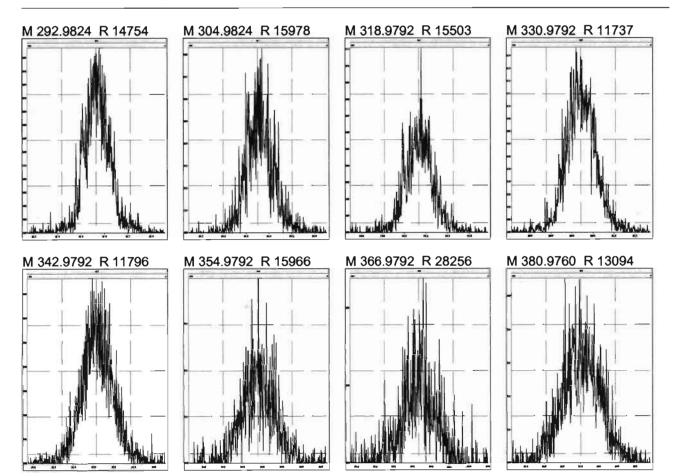
Quantify Compound Summary Report Vista Analytical Laboratory VG-11 MassLynx 4.1

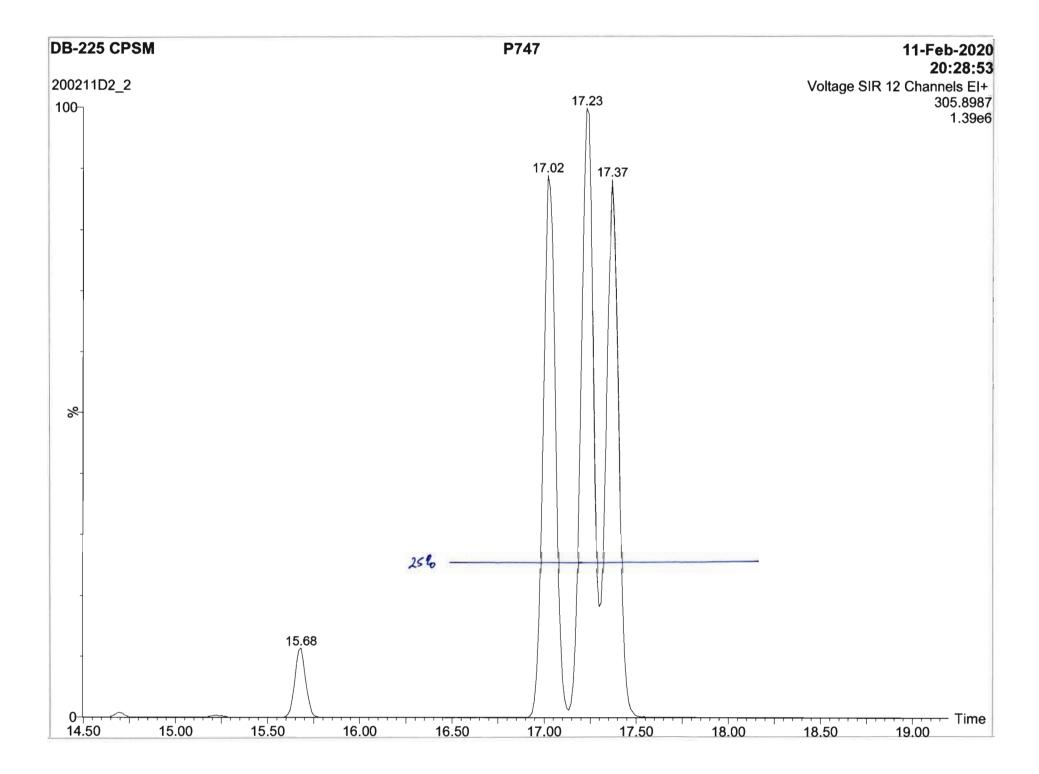
Untitled Dataset:

Last Altered:	Wednesday, February 12, 2020 10:45:15 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:45:35 Pacific Standard Time

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: C:\MassLynx\Default.PRO\CurveDB\db-225_m23tcdfvg7-2-11-20.cdb 11 Feb 2020 14:52:18

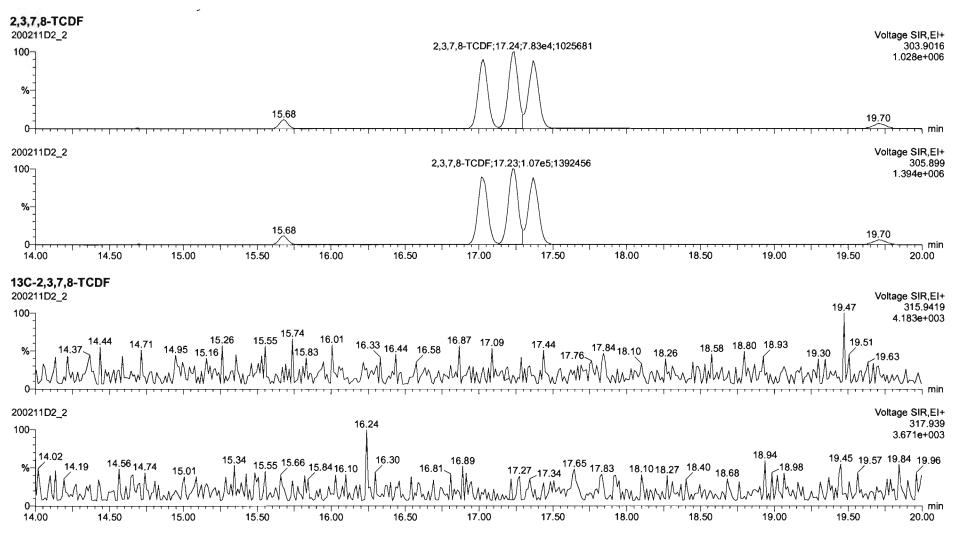
Compound name: 2,3,7,8-TCDF


100	Name	ID	Acq.Date	Acq.Time
1	200211D2_1	SOLVENT BLANK	11-Feb-20	19:58:43
2	200211D2_2	CP200211D2-1 DB-225 CPSM	11-Feb-20	20:28:53
3	200211D2_3	ST200211D2-1 1613 CS0 19L2302	11-Feb-20	21:00:36
4	200211D2_4	ST200211D2-2 1613 CS1 19L2303	11-Feb-20	21:32:19
5	200211D2_5	ST200211D2-3 1613 CS2 19L2304	11-Feb-20	22:04:03
6	200211D2_6	ST200211D2-4 1613 CS3 19L2305	11-Feb-20	22:35:45
7	200211D2_7	ST200211D2-5 1613 CS4 19L2306	11-Feb-20	23:07:28
8	200211D2_8	ST200211D2-6 1613 CS5 19L2307	11-Feb-20	23:39:11
9	200211D2_9	SOLVENT BLANK	12-Feb-20	00:10:54
10	200211D2_10	SS200211D2-1 1613 SSS 19L2308	12-Feb-20	00:42:33
11	200211D2_11	SOLVENT BLANK	12-Feb-20	01:14:15
12	200211D2_12	1903740-08RE1 PDI-097SC-B-06-08-191017	12-Feb-20	01:45:58
13	200211D2_13	1903740-07RE1 PDI-097SC-B-04-06-191017	12-Feb-20	02:17:39
14	200211D2_14	1903740-06RE1 PDI-097SC-B-02-04-191017	12-Feb-20	02:49:21
15	200211D2_15	1903740-01RE1 PDI-031SC-B-00-02-191017	12-Feb-20	03:21:03
16	200211D2_16	1903740-05RE1 PDI-097SC-B-00-02-191017	12-Feb-20	03:52:45


Resolution Check Report

MassLynx 4.1

Tuesday, February 11, 2020 19:58:33 Pacific Standard Time

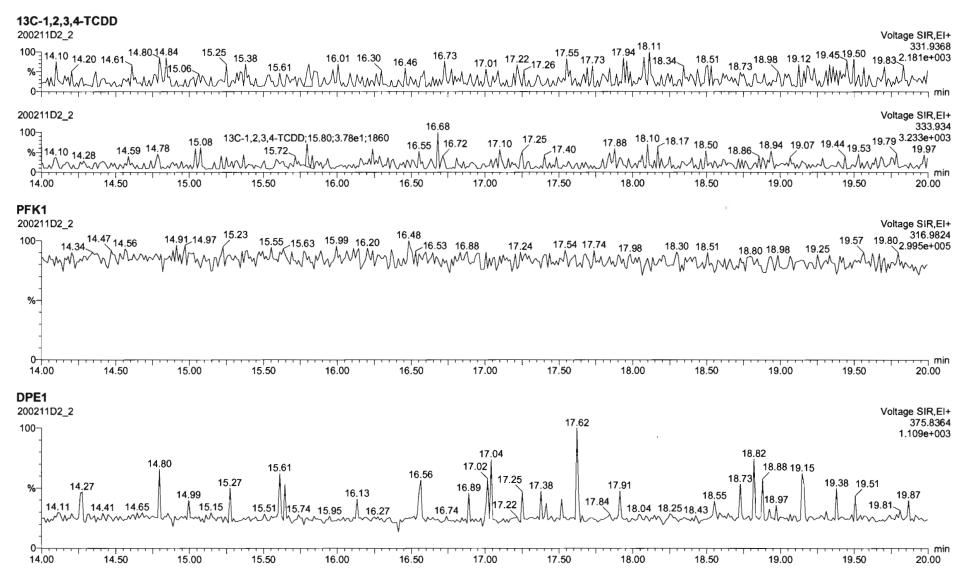

Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200111D2_2.qld

Last Altered:	Wednesday, February 12, 2020 10:13:49 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:15:34 Pacific Standard Time

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: C:\MassLynx\Default.PRO\CurveDB\db-225_m23tcdfvg7-2-11-20.cdb 11 Feb 2020 14:52:18

Name: 200211D2_2, Date: 11-Feb-2020, Time: 20:28:53, ID: CP200211D2-1 DB-225 CPSM, Description: DB-225 CPSM

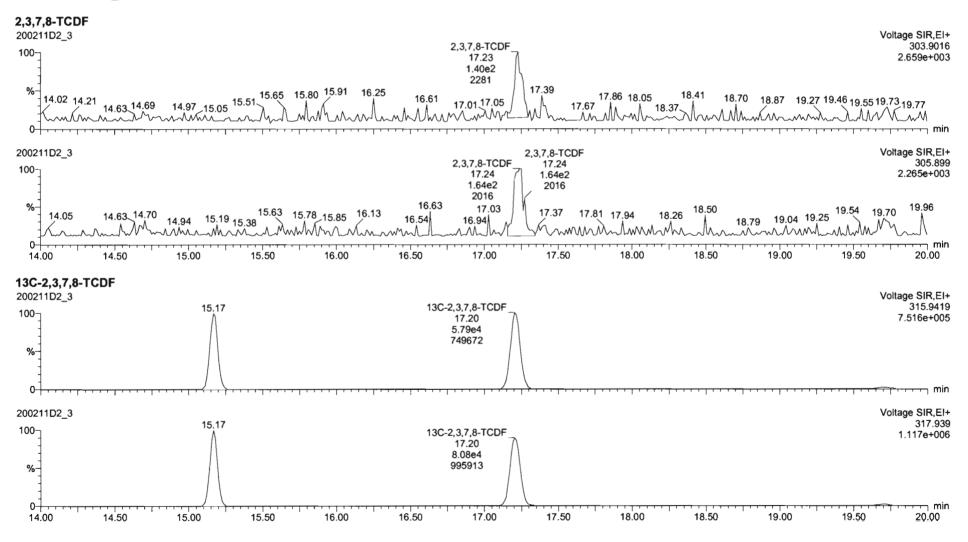


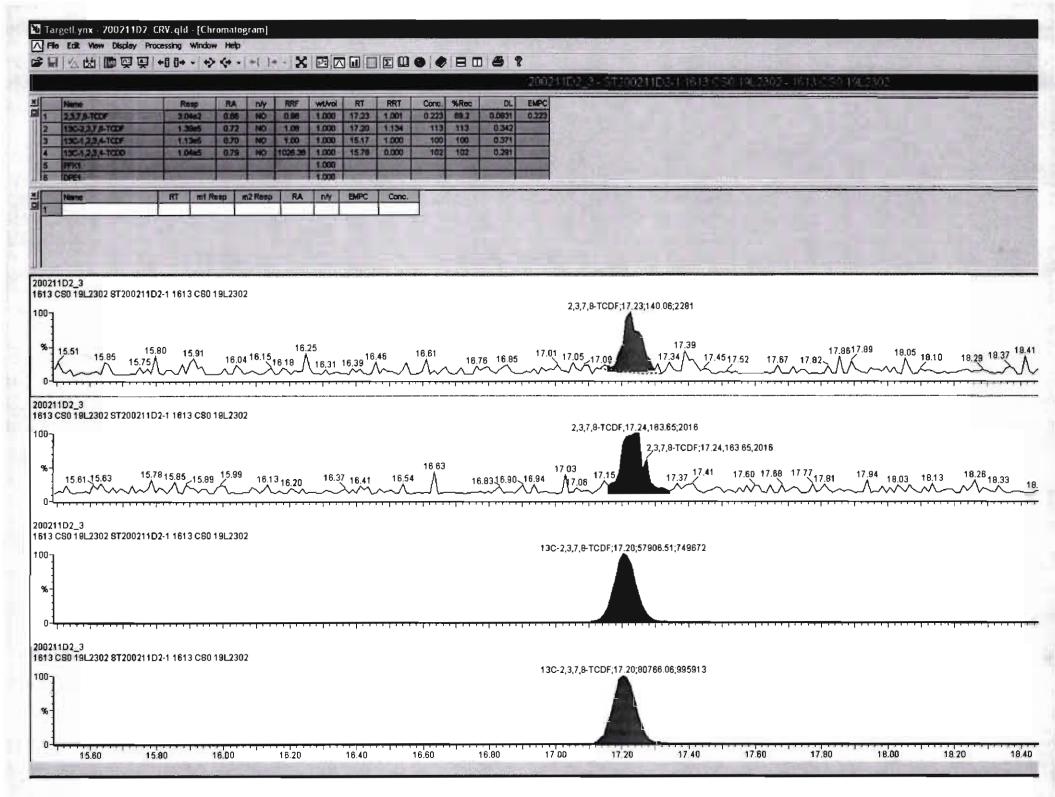
Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200111D2_2.qld

Last Altered: Wednesday, February 12, 2020 10:13:49 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:15:34 Pacific Standard Time

Name: 200211D2_2, Date: 11-Feb-2020, Time: 20:28:53, ID: CP200211D2-1 DB-225 CPSM, Description: DB-225 CPSM

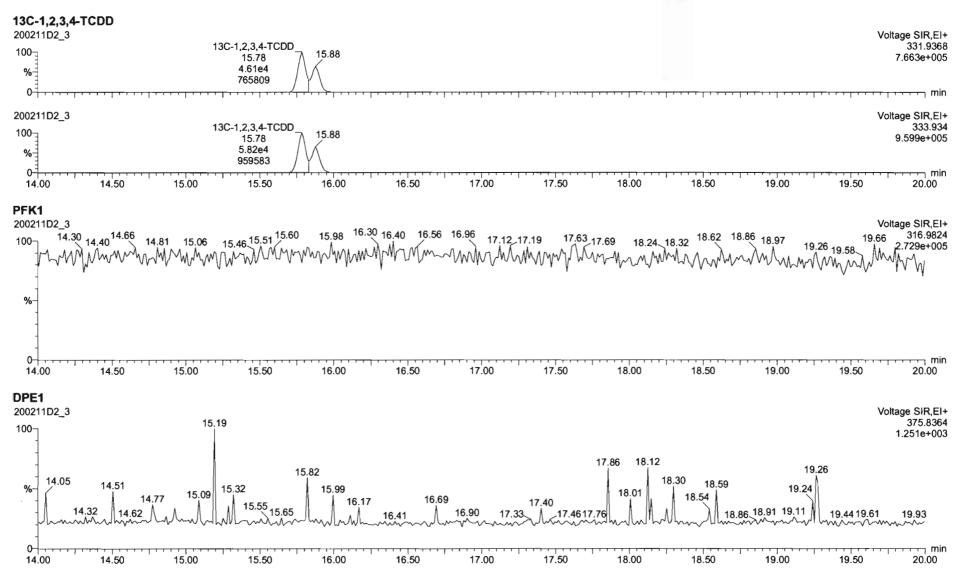

Vista Analytical Laboratory VG-11

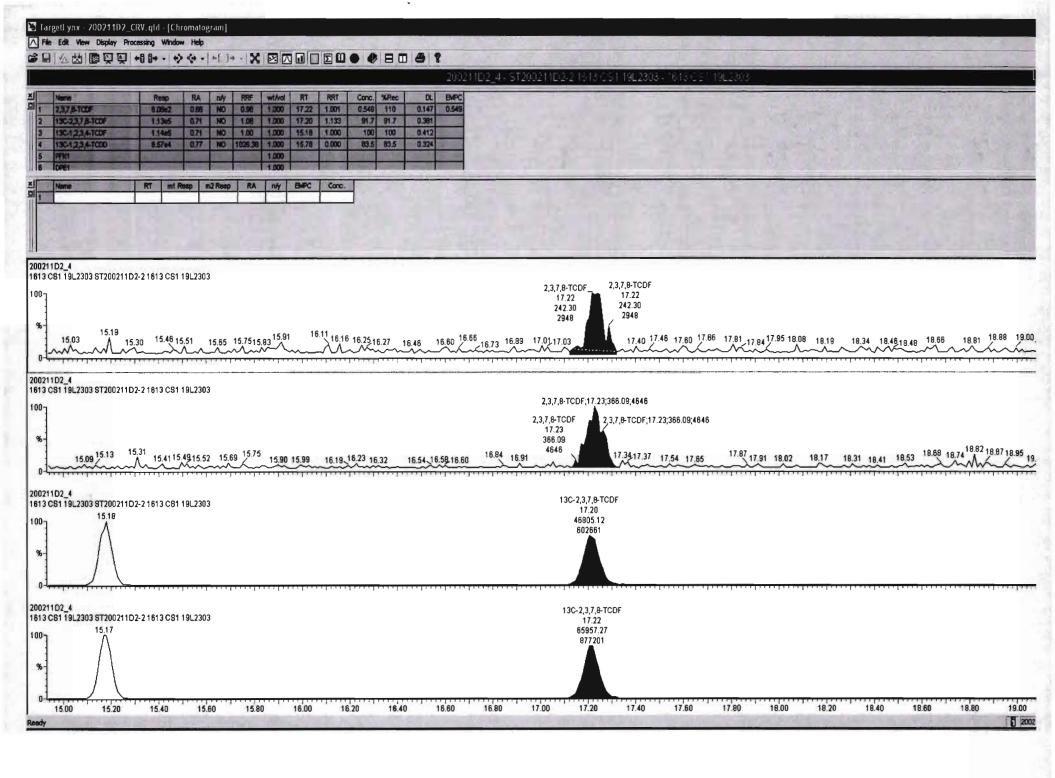

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 10:17:56

Name: 200211D2_3, Date: 11-Feb-2020, Time: 21:00:36, ID: ST200211D2-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

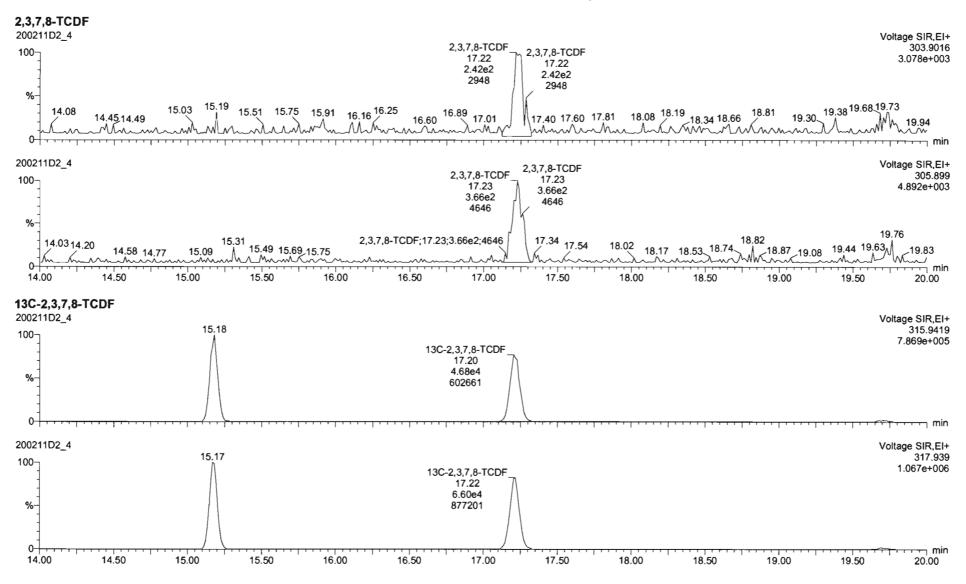



Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:Wednesday, February 12, 2020 10:17:56 Pacific Standard TimePrinted:Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_3, Date: 11-Feb-2020, Time: 21:00:36, ID: ST200211D2-1 1613 CS0 19L2302, Description: 1613 CS0 19L2302

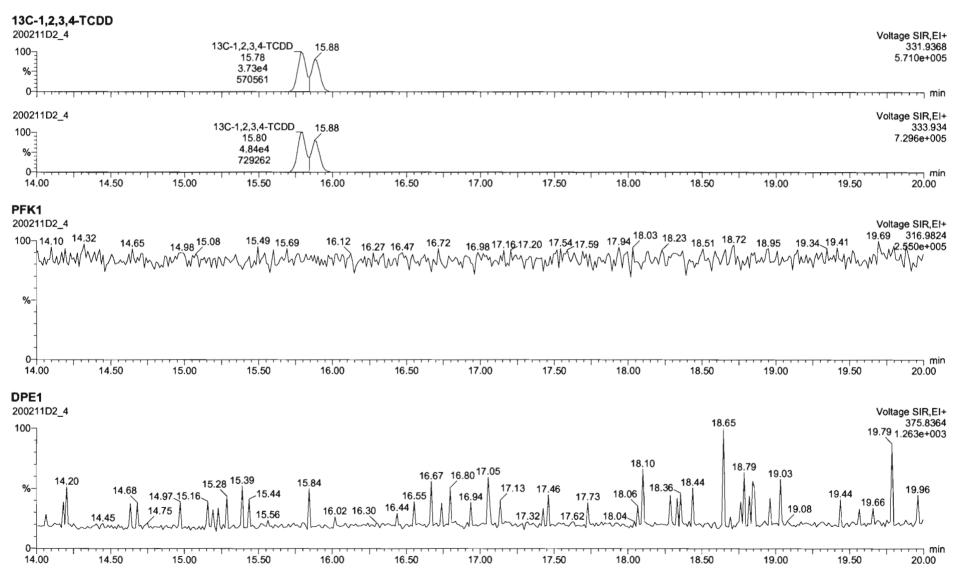


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_4, Date: 11-Feb-2020, Time: 21:32:19, ID: ST200211D2-2 1613 CS1 19L2303, Description: 1613 CS1 19L2303

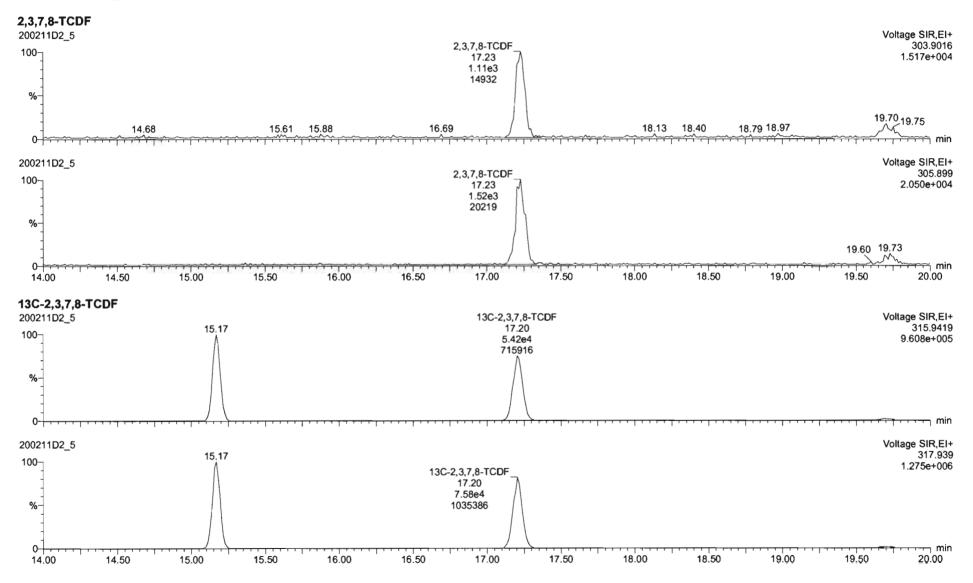


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_4, Date: 11-Feb-2020, Time: 21:32:19, ID: ST200211D2-2 1613 CS1 19L2303, Description: 1613 CS1 19L2303

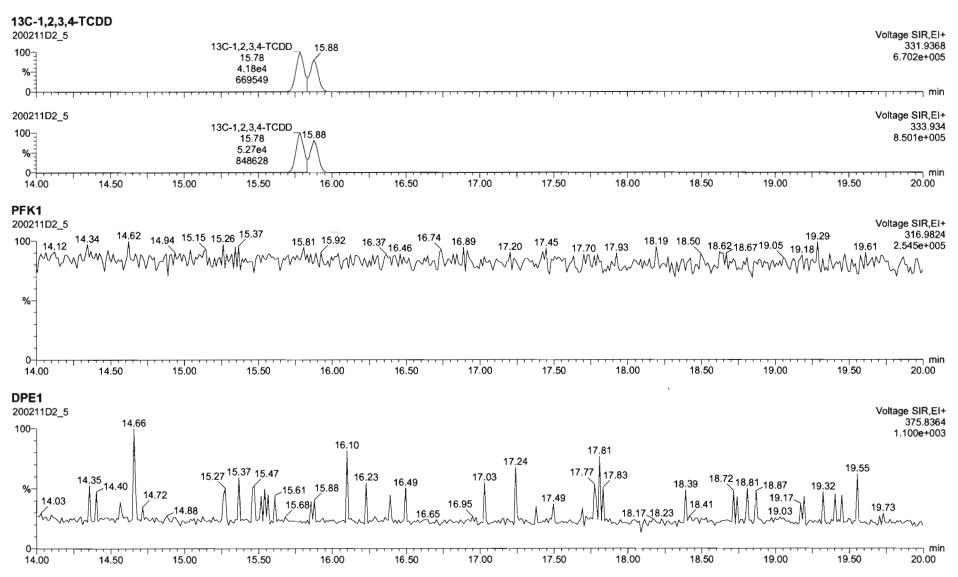


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_5, Date: 11-Feb-2020, Time: 22:04:03, ID: ST200211D2-3 1613 CS2 19L2304, Description: 1613 CS2 19L2304

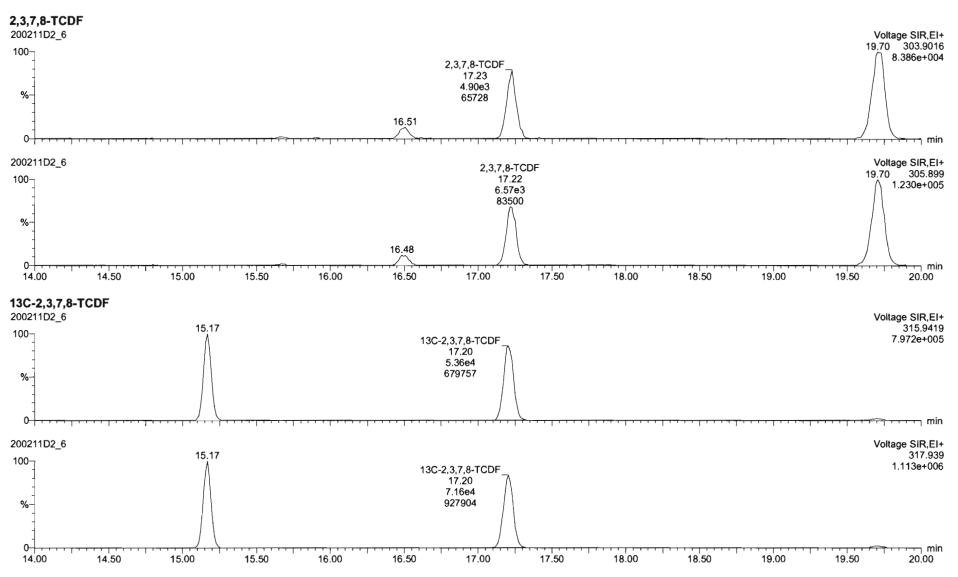


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_5, Date: 11-Feb-2020, Time: 22:04:03, ID: ST200211D2-3 1613 CS2 19L2304, Description: 1613 CS2 19L2304

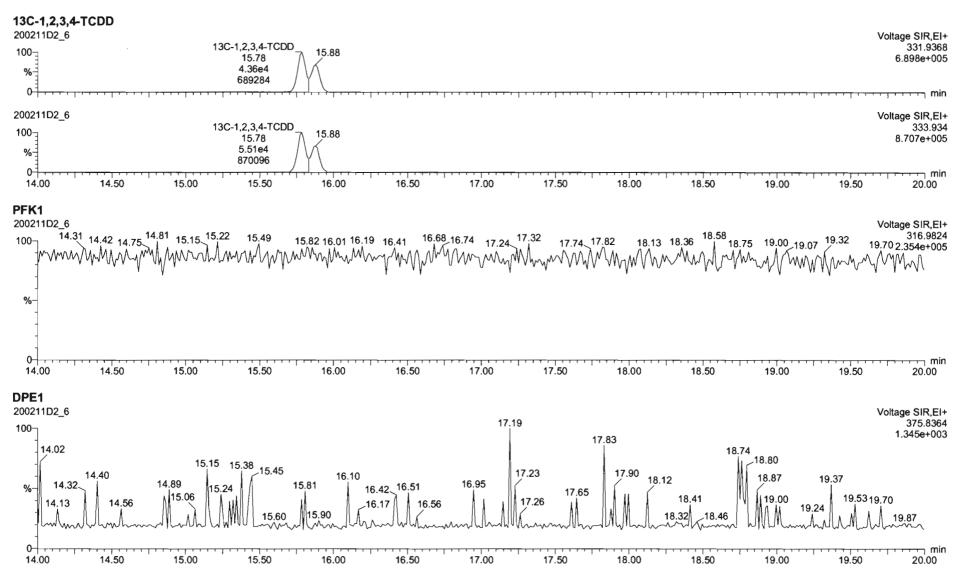


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_6, Date: 11-Feb-2020, Time: 22:35:45, ID: ST200211D2-4 1613 CS3 19L2305, Description: 1613 CS3 19L2305

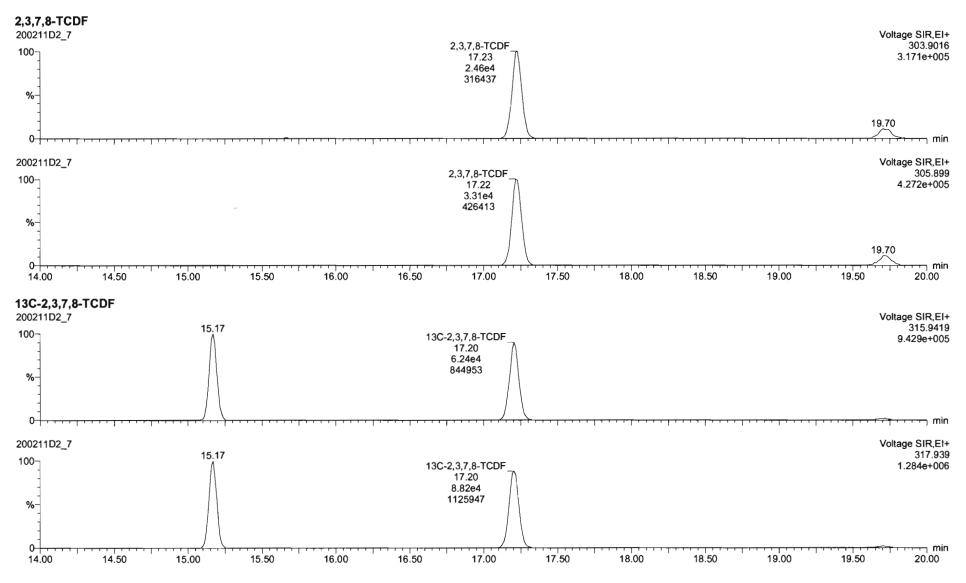


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_6, Date: 11-Feb-2020, Time: 22:35:45, ID: ST200211D2-4 1613 CS3 19L2305, Description: 1613 CS3 19L2305

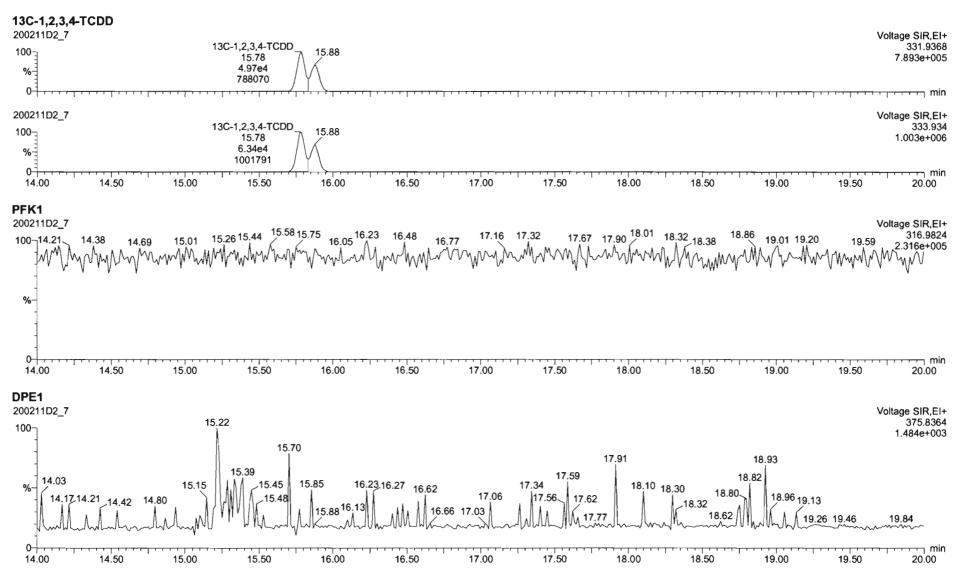


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_7, Date: 11-Feb-2020, Time: 23:07:28, ID: ST200211D2-5 1613 CS4 19L2306, Description: 1613 CS4 19L2306

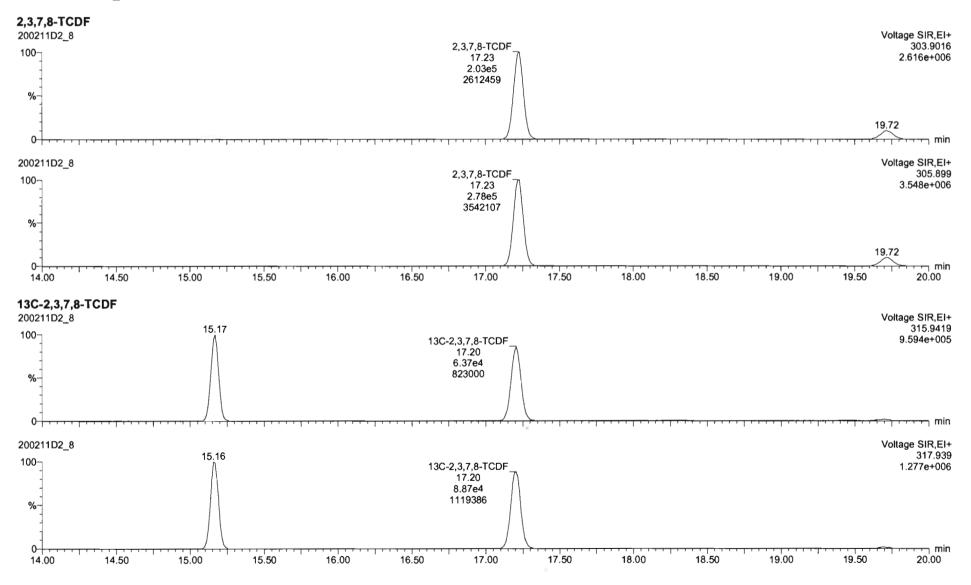


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered: Wednesday, February 12, 2020 10:17:56 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_7, Date: 11-Feb-2020, Time: 23:07:28, ID: ST200211D2-5 1613 CS4 19L2306, Description: 1613 CS4 19L2306

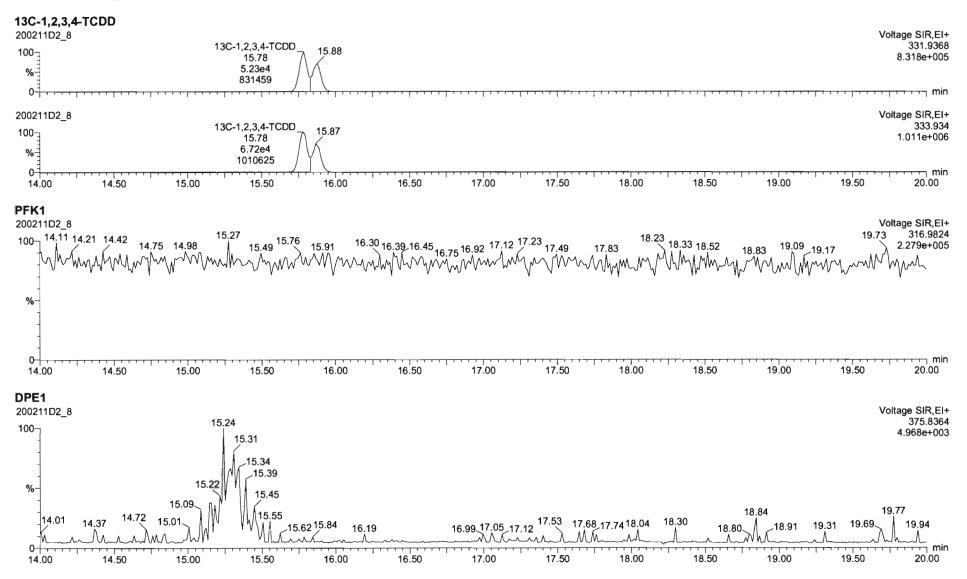


Quantify Sample Report MassLynx 4.1 Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_8, Date: 11-Feb-2020, Time: 23:39:11, ID: ST200211D2-6 1613 CS5 19L2307, Description: 1613 CS5 19L2307

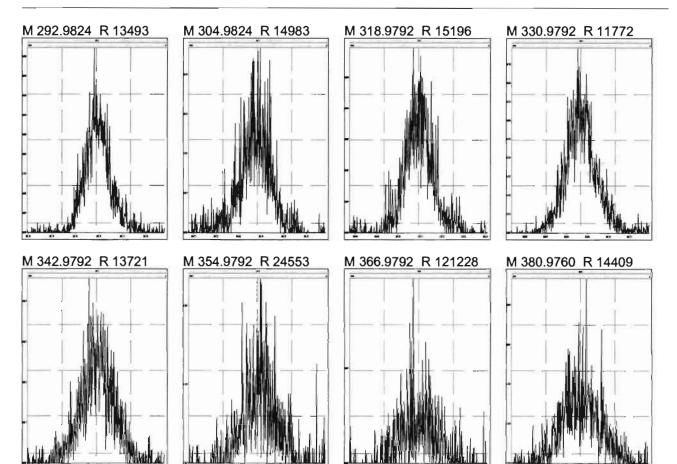


Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_CRV.qld

Last Altered:	Wednesday, February 12, 2020 10:17:56 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:38:37 Pacific Standard Time

Name: 200211D2_8, Date: 11-Feb-2020, Time: 23:39:11, ID: ST200211D2-6 1613 CS5 19L2307, Description: 1613 CS5 19L2307



Resolution Check Report

MassLynx 4.1

Wednesday, February 12, 2020 04:26:13 Pacific Standard Time

Quantify Sample Summary Report MassLynx 4.1

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_10.qld

Last Altered:Wednesday, February 12, 2020 10:51:20 Pacific Standard TimePrinted:Wednesday, February 12, 2020 10:52:52 Pacific Standard Time

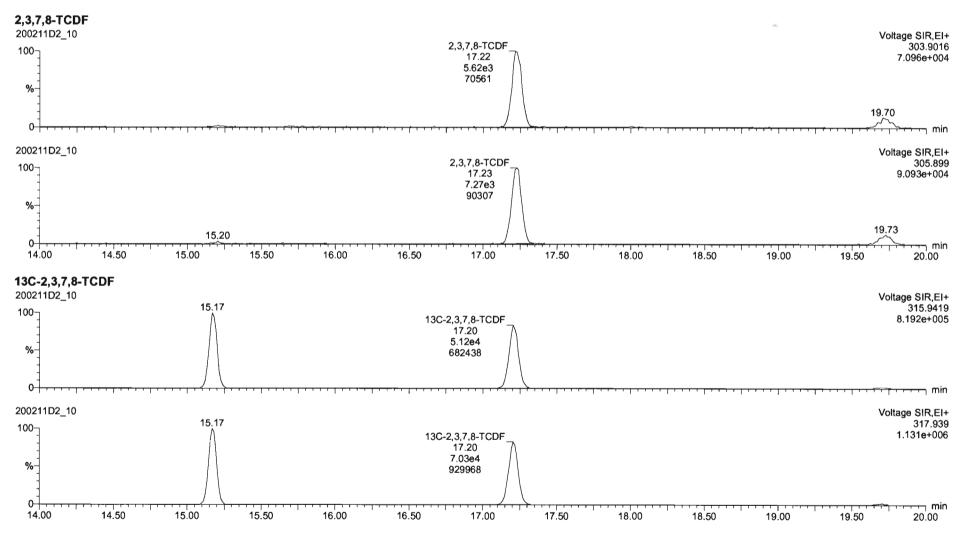
2/12/20 morpe/2020 DB

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 10:17:56

Name: 200211D2_10, Date: 12-Feb-2020, Time: 00:42:33, ID: SS200211D2-1 1613 SSS 19L2308, Description: 1613 SSS 19L2308

- March	# Name	Resp	RA	n/y	RRF M	wt/vol	RT	Conc.	%Rec	DL
1	1 2,3,7,8-TCDF	1.29e4	0.77	NO	0.982	1.000	17.22	10.800	108	0.183
2	2 13C-2,3,7,8-TCDF	1.22e5	0.73	NO	1.08	1.000	17.20	92.025	92.0	0.305
3	3 13C-1,2,3,4-TCDF	1.22e5	0.72	NO	1.00	1.000	15.17	100.00	100	0.330
4	4 13C-1,2,3,4-TCDD	8.99 c 4	0.76	NO	1030	1.000	15.78	87.563	87.6	0.304

Page 1 of 1

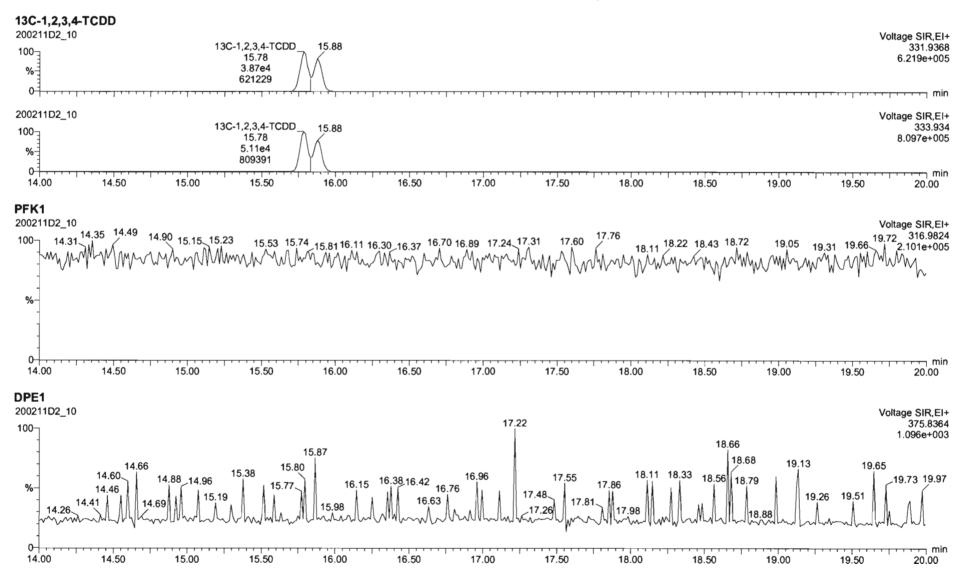

Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_10.qld

Last Altered:	Wednesday, February 12, 2020 10:51:20 Pacific Standard Time
Printed:	Wednesday, February 12, 2020 10:53:15 Pacific Standard Time

Method: C:\MassLynx\Default.PRO\MethDB\tcdf.mdb 11 Feb 2020 09:33:24 Calibration: U:\VG7.PRO\CurveDB\db-225_1613tcdfvg7-2-11-20.cdb 12 Feb 2020 10:17:56

Name: 200211D2_10, Date: 12-Feb-2020, Time: 00:42:33, ID: SS200211D2-1 1613 SSS 19L2308, Description: 1613 SSS 19L2308



Vista Analytical Laboratory VG-11

Dataset: U:\VG7.PRO\Results\200211D2\200211D2_10.qld

Last Altered: Wednesday, February 12, 2020 10:51:20 Pacific Standard Time Printed: Wednesday, February 12, 2020 10:53:15 Pacific Standard Time

Name: 200211D2_10, Date: 12-Feb-2020, Time: 00:42:33, ID: SS200211D2-1 1613 SSS 19L2308, Description: 1613 SSS 19L2308

