EXH. SLT-11 DOCKETS UE-22__/UG-22__ 2022 PSE GENERAL RATE CASE WITNESS: SUZANNE L. TAMAYO

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

PUGET SOUND ENERGY,

Respondent.

Docket UE-22____ Docket UG-22____

TENTH EXHIBIT (NONCONFIDENTIAL) TO THE PREFILED DIRECT TESTIMONY OF

SUZANNE L. TAMAYO

ON BEHALF OF PUGET SOUND ENERGY

JANUARY 31, 2022

Transport Network Modernization Corporate Spending Authorization (CSA) - Non-Infrastructure or Facilities

Before getting started: This CSA template is to be used for requests that are <u>not</u> related to infrastructure or facilities. Contact the Capital Budget team (<u>CSA-TeamMail@pse.com</u>) for any clarification needed and review the <u>CSA Standard</u>.

The sections provided expand / are not limited to one row. **Ensure you are providing adequate information and backup documentation to support your business case.** If a section or item is not applicable, enter N/A; if unknown, enter TBD. The gray fields are provided as prompts; do not leave these fields with instructions visible.

Date Submitted:	2/27/2020
Officer Sponsor:	Margaret Hopkins
Completed By:	Jason Weber
Phase Gate:	Initiation/Planning to Design

I. Project Overview

You may copy/paste this section from the Initiation Proposal form. Be sure to update each section as applicable, noting any changes from the previous request/Gate.

	hinges on our ability to deploy a modern reliable communication infrastructure for all operational traffic. PSE's existing communication infrastructure has been very reliable over the last 15+ years; however, our present technology is ending its useful life expectancy and is experiencing an industry wide shift in direction. Yesterday's Time Division Multiplexing (TDM) networks are being replaced by carrier grade Multiprotocol Label Switching (MPLS) platforms thereby positioning PSE to realize our goal of becoming a modern digital utility providing reliable electricity and gas to our customers. The MPLS network will have improved network monitoring and analytics compared to the TDM network. This will provided better visibility to the MPLS network and mission critical circuits (i.e. relay protection, Remedial Action Schemes (RAS), and SCADA) allowing for quicker repair and recovery time.									
	PSE's telecom transport network exists throughout PSE's service territory. The transport network provides communication links for the majority of PSE's site-to-site data traffic, including all mission critical transmission line relay protection and RAS. The current networking equipment is end-of-life according to the manufacture. We are currently experiencing diminishing vendor support, examples noted below:									
	 No further Research and Development (R&D) from vendor Equipment is no longer manufactured Equipment is no longer repaired by vendor Vendor no longer provides Technical Assistance Center (TAC) access Equipment requires costly 3rd party hardware repair and TAC support 									
	• Component replacement to maintain reliable network operation is dependent upon refurbished hardware									

This equates to a considerable reliability risk for PSE in the following areas:

- Transmission line Relay Protection
- Remedial Action Schemes (RAS)
- Electrical and Gas Supervisory Control And Data Acquisition (SCADA)
- Ability to execute on Grid Modernization efforts / Smart Grid

The current network utilizes TDM technology, which is rapidly becoming obsolete and offers limited bandwidth, limits our ability to deliver enhanced capabilities. TDM does not support newer end-user system protocols compared with newer MPLS technologies.

As PSE migrates towards newer technologies, our current TDM network will not be able to support this transition. Upgrading to a newer MPLS network will:

- Mitigate diminishing vendor supply and repair of TDM equipment.
- Avoiding operational cost required to maintain discontinued end-of-life equipment
- Enable PSE's transport network to scale and adapt to evolving future smart grid capabilities.

Out of necessity, PSE telecom began a TDM to MPLS conversion in 2014. At the current spend rate it was estimated a full modernization from TDM to MPLS could take between 12-15 years to complete. The goal of this CSA request is to take an accelerated approach towards upgrade and overhaul of the transport network in response to increasing technology demands. During 2019, the team completed the initiation and planning phase and will start the design phase in 2020.

Future Vision:To modernize our telecom network so it is capable of leveraging today's
technology while supporting the needs of our customers to safely and efficiently
receive electricity and gas.

Proposed Solution: Build a transport network that invests in digital capabilities. Which will ultimately replace PSE's existing and vulnerable transport network while providing continued support for existing legacy applications.

Improvements include:

- Tools for system monitoring and statistic reporting will enable PSE to respond to customers' service interruptions with increased efficiency.
- System management software will simplify key operator tasks and complexity required to provision end-to-end service connections resulting in increased system operator efficiency and gas and electric customer system reliability through enhanced automated intelligence.

Known neighboring utilities utilizing MPLS for telecom transport:

- Ameren
- Avista
- Chelan County PUD

SE PUGET SOUND ENERGY The Energy To Do Great Things

	Grays Harbor PUD
	Hawaiian Electric
	Idaho Power
	• Northwestern Energy
	Pacific Corp
	• PGE (Portland General Electric)
	Salt River Project
	Tacoma PUD
Primary ISP Alignment:	Financial: Strategic Five-Year Plan
	Customer: Customer experience will be enhanced because PSE is investing in greater system reliability and information integrity for our critical communication assets, thereby providing reliable services for the communities PSE serves.
	Process & Tools: System reliability and integrity, improve safety and security of operating systems, extract and leverage existing technical assets.
	People: Develop/Retain best employees, innovation and continuous improvements Safety: N/A
Data Governance Considerations:	□Straightforward and well □Complex and understood □Complex and not well articulated
Data Governance Considerations: OCM Considerations:	\Box Straightforward and well understood \boxtimes Complex and well understood \square Complex and not well articulatedImpacted Users (Internal): $\boxtimes < 100$ $\square < 500$ $\square > 500$
Data Governance Considerations: OCM Considerations:	\Box Straightforward and well understood \boxtimes Complex and well understood \square Complex and not well articulatedImpacted Users (Internal): $\boxtimes < 100$ $\square < 500$ $\square > 500$ Impacted Customers (External):
Data Governance Considerations: OCM Considerations:	□Straightforward and well □Complex and well understood □Complex and not well articulated Impacted Users (Internal): □< 500
Data Governance Considerations: OCM Considerations:	□Straightforward and well ⊠Complex and well understood □Complex and not well articulated Impacted Users (Internal): ⊠< 100
Data Governance Considerations: OCM Considerations:	□Straightforward and well ⊠Complex and well understood □Complex and not well articulated Impacted Users (Internal): ⊠< 100
Data Governance Considerations: OCM Considerations: Project Complexity:	□Straightforward and well □Complex and well understood □Complex and not well articulated Impacted Users (Internal): □< 500
Data Governance Considerations: OCM Considerations: Project Complexity: Cost Estimate Maturity Score:	□Straightforward and well □Complex and □Complex and understood well understood not well articulated Impacted Users (Internal): □< 500
Data Governance Considerations: OCM Considerations: Project Complexity: Cost Estimate Maturity Score: Expected Start Date If Funded:	□Straightforward and well □Complex and well understood □Complex and not well articulated Impacted Users (Internal): □< 500

II. Phase Gate Change Summary

Include a summary description of changes, including reasons and justification since the last submission / Phase Gate. If details are included in a supporting document, include a link to that document and indicate section or guidance, as applicable.

Scope:	N/A
Budget - Initial Estimate:	N/A
Budget - Net of Changes:	N/A

The Energy To Do Great Things

Schedule:	N/A
Benefits:	N/A
Risk Profile:	N/A

III. Key Schedule and Financial Information

Estimated Five Year Allocation: Enter values in the cells below for years anticipated, up to five years, plus any expected future years. Ongoing O&M begins after project close-out.

Category:	Year 1	Year 2	Ye	ar 3	Year 4	Year 5	Year 6	Total
Capital (incl. contingency)	\$1,000,000	\$1,500,000	\$1,58	89,000	\$2,589,000	\$2,589,000	\$2,089,000	\$11,356,000
Captial – Maintenance	\$0	\$89,000	\$89,0	000	\$89,000	\$89,000	\$89,000*	\$445,000
Project-related O&M (non-OCM)	\$0	\$0	\$0		\$0	\$0	\$0	\$0
Project-related O&M (OCM)	\$0	\$0	\$0		\$0	\$0	\$0	\$0
OMRC (T&D only)	\$0	\$0	\$0		\$0	\$0	\$0	\$0
Ongoing O&M	\$0	\$0	\$89,0	000	\$178,000	\$267,000	\$356,000	\$890,000
Cash O&M Benefits	\$0	\$0	\$0		\$0	\$0	\$0	\$0
Payback in Years = N/A				Years	= Total Costs /	Annual Cash	Benefits	·

*Note: Annual Maintenance Costs are trued up at the beginning of each year. Year 6 maintenace costs are to pay for all routers/devices deployed in year 5.

Annual Cash Benefits Summary by Department: Add/remove rows, as needed. Please insert hyperlink to Benefits Realization Plan for further detail in the Supporting Documents section below.

Department Name	Annual Amount	Benefit Description
N/A		

Ongoing Annual O&M by Department: (e.g., maintenance, FTEs, cloud storage, etc.) Add/remove rows, as needed.

Category	Year 1 & 2	Year 3	Year 4	Year 5	Year 6	Year 7
IT Shared Services	\$0	\$89,000	\$178,000	\$267,000	\$356,000	\$445,000

Non-Cash Benefits / Upgrading to an MPLS network aligns PSE with our goal of transitioning to emerging digital technologies. A new MPLS network would assist in avoiding high costs **Future Cost Avoidance:** related to finding refurbished and often unreliable equipment to maintain our current TDM network. As previously stated, this technology is becoming outdated industry wide.

The Energy To Do Great Things

High-Level Schedule

Guidance: The following is an example of a high level schedule. Timeline detail may be shown on a monthly, quarterly or yearly (etc.) basis, and should reflect major phases and high level milestones.

Options: Utilize the below Visio template -OR – insert a similar view (e.g., MS Project/Primavera rollup). If you insert a similar view, delete the below template and instructions.

To update the below timeline, double click on the image and change the dates in the Start and Finish columns. Once you click outside the image, Visio will close. It may take 30 seconds to a minute after you have clicked outside of the image for the bars at right to reflect the revised dates.

Line	l Hanvela Ohana	Ghant	Finish	2019			2019				2020			2021			2022				2023				2024			
#	Lijecycle Phase	Start	Finish	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1	Initiation	1/2/2019	7/4/2019			J																						
2	Planning	7/5/2019	12/31/2019																									
3	Design	1/1/2020	12/22/2020																									
4	Execution	2/1/2021	9/30/2024																									
5	Close-out	10/3/2024	11/29/2024																									

IV. Data Governance

All projects require a discussion with the Data Services Data Governance (DG) Manager, email dataservices@pse.com to coordinate. Consider the project's data needs such as data quality, metadata, data

integration, data sharing, and data lifecycle management.	DG can help you to minimize project risk and improve
your estimates when you visualize, store or move data.	

DG Controls	Description
Data Quality	N/A
Data Integration	N/A
Metadata	N/A
Data Lifecycle	N/A
Data Sharing	N/A

V. Project Alternatives

Project Alternatives Assessment: Identify alternatives assessed with this project. If a separate Business Needs and Alternatives document is created, utilize this section to identify critical/top alternatives, and include a link to the supporting document for further detail. Add/remove rows as needed.

Alternative	Pros	Cons	Cost	Duration
Do Nothing	PSE will not allocate	PSE will continue to use		Until PSE
	resources time and funds	and invest in our existing		chooses
	to implement an MPLS	legacy TDM system,		another
	network.	which is a becoming		transport
		antiquated.		network
				option, cost
				likely to
				increase every
				passing year.
Continue to use annual	Costs for building the	It will take 12 – 15 years	This method is	12 – 15 years.
refresh budget to	network would be spread	to upgrade PSE's	expected to	
sustain a minimal	out over a longer period	Transport network with	cost more over	
deployment.	of time.	increasing annual costs	the long run	
		while maintaining two	maintaining	

The Energy To Do Great Things

Alternative	Pros	Cons	Cost	Duration
		different types of	two different	
		technology on our	technologies.	
		transport network (TDM	_	
		and MPLS).		
		We are currently		
		experiencing unreliable		
		quality control repairs by		
		3 rd party vendors on our		
		TDM equipment.		
Several vendors were	By comparison, SEL	SEL ICON is based upon	Comparative	
considered during an	ICON may have been an	a SONET ring network.	_	
evaluation selection	easier deployment.	It uses proprietary		
process. The closest		protocols, which could		
alternative was SEL		introduce integration risk		
ICON.		with other systems.		
		Additional design		
		requirements were		
		required to move from a		
		mesh network to a ring		
		network. SEL ICON		
		could be integrated into		
		an MPLS network,		
		which would require an		
		additional router and		
		associated cost per site.		

VI. <u>Risk Management Summary</u>

Identify anticipated risks associated with this project. Consider Project Dependency, Project Timing, Resourcing and Regulatory risks. When the project risk register is created, utilize this section to identify critical/top risks and include a link to the risk register in the Supporting Documents section below. Add/remove rows as needed.

Risk	Likelihood	Impact of Occurrence	How Monitored	Mitigation
Cooperation among various PSE teams to coordinate resources. (Substation Operations, Relay Protection, Network, Technicians, Load Office, System Operations, Gas Operations, EMS, IT Facilities)	Medium	High	Resource allocation tool.	Meet with the various departments in Q1/Q2 of 2020 to discuss their needed resources and scheduling of work.
Vendor product availability	Medium	High	Coordination with vendor management team.	Project planning and ordering for upcoming deployment.Maintain proper inventory of parts in the PSE store warehouse.

Risk	Likelihood	Impact of Occurrence	How Monitored	Mitigation
Engineer and technician knowledge and understanding of new network and technologies	Medium	High	Will consult with Nokia and SCI on training options	Nokia will provide training. The consulting firm of SCI will also provide information and guidance during the execution phase
Resources availability including technicians and engineers to design, and migrate services.	High	High	Project planning and monitoring competing projects that could reduce available resources.	Confirm PSE resource availability and/or work with consultant companies to provide support.
TDM network has diminishing vendor supportability and new product production.	Medium	High	Inventory control to track the limited hardware available	Expedite deployment of MPLS network.
Insufficient power and rack space in comm rooms and/or substation control houses	Medium	High	Sites visits to comm sites and substations	IT facilities to review the DC batteries deployed at comm sites & substations. Deploy new DC batteries or upgrade existing DC batteries. Add additional relay racks.
Integration of new MPLS network traversing existing microwave system.	Low	Medium	While working with our consulting firm we will create test plans and implement them in our new lab prior to field production.	Upgrading microwave software to support synchronized timing. Include additional GPS timing equipment throughout the network.
Our current ability to accurately anticipate overheads is a financial concern.	Medium	Medium	Monthly reports.	CSA BA will be encouraged to monitor burn rate and provide appropriate monthly reports.

VII. <u>Supporting Documentation</u>

Insert hyperlinks to the documents or embed a copy of a document in the sections below. If you embed a document, remove placeholder rows provided. If you choose to provide hyperlinks, ensure access to the referenced location is setup/provided in advance. Add/remove rows, as needed. *Not required for projects less than \$1 million, but may be required by your aligned PMO.

Cost Estimating and Budget:	Transport Network Modernization - IT Cost Estimate		
Business Needs and Alternatives*:	See chart above		
Benefits Realization Plan:	Transport Network Modernization - Benefits Plan		
Project Audit Checklist:	Project Audit Checklist		
OCM Sizing Worksheet*:	OCM Sizing Worksheet_Transport Network Modernization		
Risk Register*:	Transport Network Modernization - Risk Log		
Cost Estimation Classification Document*:	Transport Network Modernization - Cost Estimation Classification		

VIII. <u>CSA Approvals</u>

Add/remove rows as needed in the table below. All impacted Benefit Owners must approve the CSA at each Phase Gate for projects greater than \$1 million. Email approval is acceptable, send copies to the Capital Budget team at <u>CSA-TeamMail@pse.com</u>. For a project in the Strategic Project Portfolio (SPP) review the <u>Escalation</u> Criteria for appropriate escalation and approvals.

For guidance on approval authority levels, follow <u>CTM-07 Invoice Payment Approval</u>.

Note: The Project Manager is responsible for ensuring full required approval is obtained, sending proof of approvals to the Capital Budget team, and maintaining the final signed copy with the project documentation. *Not required for projects less than \$1 million.

Prepared By	Title	Role	Date	Signature
Brad Stevenson	IT M2 Telecom	Contributor	11/25/2019	
Chad Nelson	IT Architect Networks	Contributor	11/25/2019	
Casey Hutchinson	Sr Telecom Engineer	Contributor	11/25/2019	
Joel Snow	Sr IT Project Manager	Contributor	1/24/2020	

Approved By	Title	Role	Date	Signature
Jason Weber	Mgr Information Technology (M3) Energy Control Sys/Telecomm	Sponsor	2/7/2020	
Jeff Neumann	Dir IT Infrastructure Svcs, IT Infrastructure	Director	2/7/2020	RE Review Requested - Transport Network Modernization - CSA.msg
Margaret Hopkins	VP & Chief Information Officer	Officer		
		Benefit Owner*		

Please direct any questions to either:

- The Capital Budget team at <u>CSA-TeamMail@pse.com</u>, or
 The Enterprise Project and Performance Project Practices team at <u>EPP-ProjectPracticesTeam@pse.com</u>