AVISTA CORP. RESPONSE TO REQUEST FOR INFORMATION

JURISDICTION:	WASHINGTON	DATE PREPARED:	04/23/2015
CASE NO.:	UE-150204 & UG-150205	WITNESS:	Don Kopczynski
REQUESTER:	UTC Staff - Nightingale	RESPONDER:	Larry La Bolle
TYPE:	Data Request	DEPT:	State & Federal Regulation
REQUEST NO.:	Staff - 112	TELEPHONE:	(509) 495-4710
		EMAIL:	larry.labolle@avistacorp.com

REQUEST:

See page 15 - section III.J. Please provide the study demonstrating that the AMI project will result in \$491,882 of reduced energy costs for its Washington customers. Please include all assumptions, worksheets and any other material relied upon by the study to determine the above-referenced cost savings.

RESPONSE: When customers have access to detailed and timely energy-use data they will be able to better understand their energy use. And, when coupled with utility-provided information and education on energy consumption, customers will have new, advanced tools to undertake the structural and behavioral changes necessary to achieve their own personal energy conservation objectives.

To estimate these energy savings, Avista evaluated both residential and commercial customers. Residential customers were further divided into three main groups for modeling, based on their monthly energy use. From Avista's experience, for those customers who elected to install energy conservation measures, their average energy reduction was estimated to be 3%. This was a conservative estimate when compared to savings that have been reported by others in the region: 5-15 % and 0-10 % for direct and indirect feedback, respectively $_{1,2,3}$. The expected customer participation rate of up to 5 %, coupled with the expected energy savings of 3 %, was applied to Avista's Washington electric customer base to yield an estimated energy savings of approximately 5,786 MWh (Expected participation is 1,170 commercial customers and 7,079 residential customers, for a total of 8,248 customers with varying degrees of installation of measures). The direct financial benefit to customers, on average, was estimated to be \$491,882 (5,786,000 kWh X \$0.085).

The computation, determination, or source of these values is provided in Excell format in Staff_DR_112 Attachment A, under the tab labeled "Energy Efficiency." This worksheet, beginning on line 11, contains the financial and other information used to calculate the benefit value, and the source of each element of information is also provided. Where values are calculated in the worksheet, the particular computation, as well as the location of the data used, is provided by "mouse clicking" on the referenced cell.

- 1. <u>BC Hydro SMART METERING & INFRASTRUCTURE PROGRAMBUSINESS CASE (4% REDUCTION</u> <u>WITH 30% PENETRATION) (http://www.bchydro.com/content/dam/BCHydro/customer-</u> portal/documents/projects/smart-metering/smi-program-business-case.pdf)
- 2. <u>PIKE RESEARCH EFFECTIVE CUSTOMER ENGAGEMENT UTILITIES MUST SPEAK CUSTOMERS' LANGUAGE</u> (http://opower.com/uploads/library/file/24/Opower_WP_Effective_Customer_Engagement .pdf.pdf)
- 3. <u>Behavioral approaches to energy conservation pay off (intelligentutility.com</u> <u>/article/12/02/behavioral-approaches-energy-</u> <u>conservationpay&utm_medium=eNL&utm_campaign=IU_DAILY2&utm_term=Original-Member)</u>

Energy Efficiency Customer Benefits

There are two principal areas of energy efficiency savings enabled by the deployment of advanced meters, efficiency measures undertaken by the customer as a result of better understanding their patterns of energy use, and energy savings associated with the utility's management of the electric distribution system.

CVR Energy usage reduction

1 Avoided Energy Purchased in kWh (from Utility CVR sp 2 Avista average cost per kWh 3 Total

Source or Reference

13,798,937 See Appendix Benefits CVR tab to see how this value was determined \$0.086 Avg of Tier 2 for residential and Tier 2 for Schedule 21 \$1,186,708.61 Calculation

Energy Savings due to better understanding of energy usage

Model 1

promote investment as well as influencing behaviour. Savings have been shown in the region of 5-15% and 0-10% for direct feedback respectively.

х

Caluclation of total kWh by the c	ustom	er grou	ps modeled

	Number	kWh	
Commercial Customers	23,385	1,804,801,283	
Residential Customers	212,659	2,482,493,050	
Under 500 kWh/Mo	46,061	154,446,492	
500 - 1000 kWh/Mo	85,416	762,768,267	
Over 1000 kWh/Mo	81,121	1,564,546,291	
Total		6,769,055,383	

	Customers	% Participating	kWh Savings	3%	* Based on an assumption of 3% percent reduction in energy use. References ₁₋₁₀ (Reviewed literature to estimate
Commercial Customers	23,385	5%	2,707,202		
Residential Customers	212,659				* Customer counts obtained from Customer Information System
Under 500 kWh/Mo	46,061	1%	46,334		* % Participating estimates were based on qualitative assessments from literature and Avista Experience
500 - 1000 kWh/Mo	85,416	3%	686,491		* Based on a weighted average retail electric rate of \$0.085 per kWh
Over 1000 kWh/Mo	81,121	5%	2,346,819		
Total			5,786,847	\$491,882	Monetary savings to customers

\$491,882 Monetary savings to customers

References

- $6\%\ http://www.slideshare.net/breakingnews/unlocking-energy-efficiency-in-the-us-economy-1789726$
- http://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdf
- 3 14% http://finance-commerce.com/2014/09/sustainable-reducing-energy-use-through-behavioral-science/ 4 http://opower.com/uploads/library/file/24/Opower WP Effective Customer Engagement.pdf
- http://www.elp.com/articles/2013/07/study-utility-customer-engagement-programs-are-worth-it.html https://www.energystar.gov/buildings/program-administrators/state-and-local-governments/campaigns
- 2%
 http://www.energyvortex.com/pages/headlinedetails.cfm?id=4857

 2%
 http://www.intelligentutility.com/article/12/02/behavioral-approaches-energy-conservation-pay&utm medium=eNL&utm campaign=IU DAILY2&utm term=Original-Member

0.09% <- Estimated reduction in retail load for these customer groups

- 9 4% http://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/projects/smart-metering/smi-program-business-case.pdf
- 10 3% http://www.utilitydive.com/news/could-reducing-peak-demand-5-be-as-simple-as-asking/329102/

REV_CLASS_CDE	htOfUSAGE_P	nOfACCUM_USAGE_QT
01	212,659	2,482,493,050
21	23,385	1,804,801,283
39	570	80,159
31	359	205,546,579
80	56	12,095,526
51	1	2,875

Conservation Tools (in-home feedback)	\$220 M BC Hydro will offer a rebate		An increase/
Offering customers opportunities to monitor		program to encourage customers	decrease of 1 per
their electricity consumption in new ways	Range is:	to choose a basic, market	cent in customer
can lead to increased awareness of energy	\$170 M-\$270 M	available in-home display.	participation
consumption and therefore increased conservation behaviour. Customers will be offered two feedback options:		Customer take-up of in-home display is assumed at 30 per cent.	translates to approximately \$1.2 M in PV.
 Near real-time feedback delivered via an optional in-home display device; and/or 		Energy savings from in-home displays are 4 per cent with eight year persistence.	
 Hourly data, provided within 24 hours, through the Power Smart website. 		Website-based energy savings are 2 per cent, with 15 per cent penetration of residential customers.	

Exhibit D: U.S. energy efficiency supply curve - 2020

Value represented above includes benefits to Avista's customers, not Avista.

Dockets UE-150204 & UG-150205 Exhibit No. BRA-15 Page 3 of 4

ANI can increase CVR savings 1 is based on voltage alarming. Avista has 70 feeders with Integrated Volt Var Control (VVC) which is an application that implements CVR for energy savings based on power flow and primary measurement points. Using power flow (IVVC) provides a good estimate of voltage, but requires us to assume a conservative minimum voltage at each meter since we don't know the exact characteristics/loading of each transformer and secondary circuit. With voltage alarming at the meter level, we could set the IVVC system to a lower setpoint and verify each customer receives the appropriate voltage. Our estimation is that this could provide at least 0.5% additional energy savings over the 2% 2/VVC is achieving today. The cost savings below are based on the same method used for SGIG/SGDP cost savings for

Benefits Description

Source or Reference

Component Estimate

 Component Estimate
 1,667,139,240
 Used ArcGis to associate meters to feeders and summed up usage for trailing 12 months (Nov 2013 - Oct 2014)

 Annual Usage on Feeders with IVVC (installed over time (kW)
 1,067,139,240
 Used ArcGis to associate meters to feeders and summed up usage for trailing 12 months (Nov 2013 - Oct 2014)

 Annual Usage on Feeders with IVVC (installed over time (kW)
 1,057,039,240
 Used ArcGis to associate meters to feeders and summed up usage for trailing 12 months (Nov 2013 - Oct 2014)

 Entimate Reduction in voltage (DR)
 1,039,2643,228
 Assume balance of feeders upgraded over the life of the meters (15 years) = 50% of remaining

 Energy Reduction KWh
 1,3789,337
 Calculation

 Weighted Average Cost of Energy
 3,126,709
 Calculation

 Swings due to Avoided cost of energy
 5,126,709
 Calculation

Table 1: Shows which feeders have IVVC today, and the energy they use:

	Feeders	Usage_PTs	Accum_Usage	% Feeders	% Usage_PTs	Accum_Usag
All	206	229,320	3,852,435,696	100%	100%	100%
No IVVC	136	127,188	2,185,296,456	66%	55%	57%
IVVC	70	102,132	1,667,139,240	34%	45%	43%

References -reness 1 <u>Low-Cost CVR May Pay for Your AMI System. Jerry Jackson, Ph.D., Smart Grid Research Consortium</u> 2 Navigant Research, Avista Utilities' Conservation Voltage Reduction Program (April 2014) – Reference No.: 164638

Table 2

c 2	Freder	Mataza
2471251	reeder	ivieters 624
3HT12F2		1071
2471262		18/1
3HT12F3 3HT12F4		2310
3HT12F5		1941
2011213		1941
2011210		550
201120		414
00001207		2250
9021272		2350
AIR12F3		4//
ARD12F1		1
AKU12F2		923
BEA12F1		15/9
BEA12F2		2947
BEA12F3		239
BEA12F4		334
BEA12F5		514
BEA12F6		653
BEA13T09		2
BKR12F1		1878
BKR12F2		1311
BKR12F3		1178
BLA311		2
C&W12F1		2089
C&W12F2		2407
C&W12F3		1573
C&W12F4		1715
C&W12F5		2042
C&W12F6		1965
CFD1210		1744
CFD1211		1114
CHE12F1		1758
CHE12F2		1567
CHE12F3		2126
CHE12F4		1565
CHW12F2		1031
CHW12F3		703
CHW12F4		501
CLA56		3
CLV12F1		864
CLV12F2		1459
CLV12F3		1
CLV12F4		1453
CLV34F1		1626
COB12F1		2280
COB12F2		1759
DEP12F1		2259
DEP12F2		1057
DIA231		610
DIA232		384
DRY1208		1161
DRY1209		545
DVP12F1		947
DVP12F2		197
ECL221		570
ECL222		1462
EFM12F1		1550
EFM12F2		785
EWN241		436
F&C12F1		305/
F&C12F2		2054
F&C12F3		1344
F&C12F4		2544
F&C12F5		1763
F&C12F6		1975
FOR12F1		601
FOR2.3		1
FWT12F1		2261
OPT12F2		531
ORI12E1		144
ORI12E2		17/
ORI12E3		1174
OTH501		11/0
0111502		
011502		
011505		
010005		
PAL311		699
PAL312		46
PDL1201		1642
PUL1202		2060
PDL1203		1612
PDL1204		282
POT322		1
PST12F1		454
PVW241		
RDN12F1		555
RDN12F2		329
RIT731		694
RIT732		481
ROK451		326

Dockets UE-150204 & UG-150205 Exhibit No. BRA-15 Page 4 of 4

ROS12F1	3143
ROS12F2	985
ROS12F3	2352
ROS12F4	983
ROS12F5	2024
ROS12F6	2462
ROX751	74
RSA431	668
SE12F1	1856
SE12F2	2943
SE12F3	2028
SE12F4	2161
SE12F5	2226
SIP12F1	1
SIP12F2	215
SIP12F3	171
SIP12F4	1984
SIP12F5	112
SLK12F1	1652
SLK12F2	916
SLK12F3	241
SLW1368	691
SOT521	1144
SOT522	716
SOT523	673
SPA442	238
SPI12F1	805
SPI12F2	372
SPR761	480
SPU121	2058
SPU122	2
SPU123	1558
SPU124	2
SPU125	3
SUN12F1	3080
SUN12F2	2108
SUN12F3	2603
SUN12F4	1281
SUN12F5	545
SUN12F6	1655
TKO411	554
TKO412	316
TUR111	18
TUR112	2165
TUR113	1829
TUR115	157
TUR116	2242
TUR117	2484
TVW131	1
TVW132	1789
VAL12F1	1059
VAL12F2	374
VAL12F3	699
WAK12F1	1734
WAK12F2	1505
WAK12F3	1507
WAK12F4	1266
WAK12F4 WAS781	1266 242
WAK12F4 WAS781 WIL12F1	1266 242 629