

alue (\$/kww)

3,000

2,000

ov Value

System Rating from 1.250

PV System

Specify Ranges

Clean Power Researc

Docume

MN

Select Individual Systems

120/ac] in 0.250

• increments

(180° = South)

los = Horizontal)

April 14, 2014

Prepared for Washington UTC

Prepared by **Clean Power Research**

Agenda

- Introduction
- Transparency Elements and Assumptions

Dual-Atis Tracker

Technical Analysis

- Economic Analysis
- Final VOS Calculation

Agenda

Introduction

Dual-Atis Tracker

- Transparency Elements and Assumptions
- Technical Analysis
- Economic Analysis
- Final VOS Calculation

Minnesota's VOS Calculation Methodology 25 Year Levelized Value

ie = South)

Dual-Atis traction

Avoided Fuel Cost Avoided Plant O&M - Fixed Avoided Plant O&M - Variable Avoided Gen Capacity Cost Avoided Reserve Capacity Cost Avoided Trans. Capacity Cost Avoided Dist. Capacity Cost Avoided Environmental Cost Avoided Voltage Control Cost Solar Integration Cost

Selecc

to 1.750

pv System

Loss **Distributed PV** Load Match Gross Value × (1 + **Savings Factor** Value Factor (\$/kWh) (%) (%) (\$/kWh) GV1 LSF-Energy V1 GV2 ELCC LSF-Energy V2 GV3 V3 LSF-Energy GV4 LSF-ELCC V4 ELCC GV5 ELCC LSF-ELCC V5 GV6 ELCC LSF-ELCC V6 PLR LSF-PLR GV7 V7 GV8 LSF-Energy V8

Value of Solar

What is a VOS tariff?

to 1.750

- It is the rate that represents utility-specific long term value of distributed solar generation.
- It is not an incentive program, but it does not preclude a (supplemental) incentive program.
- It includes both utility avoided costs and societal benefits.

Dual-Atis traction

- Societal benefits are a public policy decision. These are paid for by all ratepayers (solar and non-solar) to allow the utility to recover costs.
- It is based on marginal (not average) costs.
- It may be based on either gross generation or net energy exported to grid.
- It is an identical rate for all rate classes.
- It is recalculated annually for new customers.

MN Legislative Background

Dual-Atis Tractic

to 1.750

DV System

- Minnesota passed legislation^{*} in 2013 that allows IOUs to apply to the PUC for a Value of Solar (VOS) tariff as an alternative to net metering.
- The methodology must meet certain requirements contained in the legislation (details to follow).
- Commerce selected Clean Power Research to support process of developing the methodology. Commerce guided the process and made key policy decisions.
- Excellent stakeholder process: Four workshops, draft methodology posted for comment. Process included active engagement of all three IOUs, local and national solar organizations, public agencies, and individuals.
- Commerce submitted the methodology to the PUC for approval (1/31).
 Adopted (3/12).

Charges and Credits

to 1.750

Dual-Atis Tracker South)

NET LOAD

pv System

Ranges O Select

MN VOS FRAMEWORK:

Separates charges and credits

- **VOS Credit** applies to gross PV production
- **Charges** apply to gross Customer Load (at applicable rate schedule)

Key MN Legislative Requirements

Dual-Agis Traction

- Allow recovery of cost to serve customer-participants.
- Account for "the value of energy and its delivery, generation capacity, transmission capacity, transmission and distribution line losses, and environmental value."
- May incorporate other values "based on known and measurable evidence of the cost or benefit of solar operation to the utility." (e.g., local manufacturing, high-value locations).
- Annually updated.
- Credit to "represent the present value of the future revenue streams of the value components", minimum 20 year contract.

VOS components included

Dual-Atis Tracker South)

to 1.750

pv System

Oselect

Randes

Value Component	Basis	Legislative Guidance	Notes
Avoided Fuel Cost	Energy market costs (portion attributed to fuel).	Required (energy)	Includes cost of long-term price risk
Avoided Plant O&M Cost	Energy market costs (portion attributed to	Required	
	O&M).	(energy)	
Avoided Generation	Capital cost of generation to meet peak	Required	
Capacity Cost	load.	(capacity)	
Avoided Reserve Capacity	Capital cost of generation to meet	Required	
Cost	planning margins and ensure reliability.	(capacity)	
Avoided Transmission	Capital cost of transmission.	Required	
Capacity Cost		(transmission	
		capacity)	
Avoided Distribution	Capital cost of distribution.	Required	
Capacity Cost		(delivery)	
Avoided Environmental	Externality costs.	Required	
Cost		(environmental)	

VOS components included as placeholders

Dual-A is Tracker South)

pv System

Randes

Select

Value Component	Basis	Legislative Guidance	Notes
Voltage Control	Cost to regulate distribution (future inverter designs)		Future (TBD)
Integration Cost	Added cost to regulate system frequency with variable solar.		Future (TBD)

Agenda

pv System

Introduction

OSelect

to 1.750

Transparency Elements and Assumptions

Dual-Atis Tracket

- Technical Analysis
- Economic Analysis
- Final VOS Calculation

Fixed assumptions, part 1

Dual-Atis traction

ie = South)

to 1.750

Common to all utilities

Select

pv System

Fuel Prices					
Guaranteed NG fuel prices			Environmental Externalities		
2014	\$3.93	\$ per MMBtu	Environmental discount rate	3.00%	per year
2015	\$4.12	\$ per MMBtu	Environmental costs	(shown in sepa	rate table)
2016	\$4.25	\$ per MMBtu			
2017	\$4.36	\$ per MMBtu	Economic Assumptions		
2018	\$4.50	\$ per MMBtu	General escalation rate	2.37%	per year
2019	\$4.73	\$ per MMBtu			
2020	\$5.01	\$ per MMBtu			
2021	\$5.33	\$ per MMBtu	Treasury Yields		
2022	\$5.67	\$ per MMBtu	1 Year	0.13%	
2023	\$6.02	\$ per MMBtu	2 Year	0.29%	
2024	\$6.39	\$ per MMBtu	3 Year	0.48%	
2025	\$6.77	\$ per MMBtu	5 Year	1.01%	
			7 Year	1.53%	
Guaranteed NG fuel price escalation	4.75%		10 Year	2.14%	
			20 Year	2.92%	
PV Assumptions			30 Year	3.27%	
PV degradation rate	0.50%	per year			
PV life	25	years			

Fixed assumptions, part 2

Dual-Atis Traches

e south)

Environmental costs, common to all utilities

to 1.750

Select

Ranges

Derived from **EPA Social Cost** of Carbon

pv System

		60 Cost				-	
Veer	Analysis						
1ear	rear						
2014	0	1.939	0.066	0.000	0.012	0.000	2.017
2015	I	2.039	0.067	0.000	0.013	0.000	2.119
2016	2	2.142	0.069	0.000	0.013	0.000	2.224
2017	3	2.249	0.070	0.000	0.013	0.000	2.333
2018	4	2.360	0.072	0.000	0.014	0.000	2.446
2019	5	2.475	0.074	0.000	0.014	0.000	2.562
2020	6	2.594	0.076	0.000	0.014	0.000	2.684
2021	7	2.717	0.077	0.000	0.015	0.000	2.809
2022	8	2.844	0.079	0.000	0.015	0.000	2.939
2023	9	2.976	0.081	0.000	0.015	0.000	3.073
2024	10	3.113	0.083	0.000	0.016	0.000	3.212
2025	11	3.255	0.085	0.000	0.016	0.000	3.356
2026	12	3.401	0.087	0.000	0.016	0.000	3.505
2027	13	3.482	0.089	0.000	0.017	0.000	3.588
2028	14	3.637	0.091	0.000	0.017	0.000	3.746
2029	15	0.745	0.093	0.000	0.018	0.000	0.856
2030	16	3.888	0.096	0.000	0.018	0.000	4.002
2031	17	4.136	0.098	0.000	0.018	0.000	4.252
2032	18	4.314	0.100	0.000	0.019	0.000	4.433
2033	19	4.498	0.103	0.000	0.019	0.000	4.620
2034	20	4.688	0.105	0.000	0.020	0.000	4.813
2035	21	4.885	0.107	0.000	0.020	0.000	5.013
2036	22	5.089	0.110	0.000	0.021	0.000	5.219
2037	23	5.299	0.113	0.000	0.021	0.000	5.433
2038	24	5.517	0.115	0.000	0.022	0.000	5.654

EXAMPLE: VOS Data Table (required), Part 1

Dual-A is Trackes

PV System

Ranges U Select

	Input Data	Units
Economic Factors		
Start Year for VOS applicability	2014	
Discount rate (WACC)	8.00%	per year
Load Match Analysis (see calculation method)		
ELCC (no loss)	40%	% of rating
PLR (no loss)	30%	% of rating
Loss Savings - Energy	8%	% of PV output
Loss Savings - PLR	5%	% of PV output
Loss Savings - ELCC	9%	% of PV output
PV Energy		
First year annual energy (see calc. method)	1800	kWh per kW-AC
Transmission		
Capacity-related transmission capital cost	\$200	\$ per kW
Years until new transmission capacity is needed	0	years
Transmission life	60	years
Transmission capital cost escalation	2.00%	per year

EXAMPLE: VOS Data Table (required), Part 2

Dual-A is Trackes

pv System

Ranges U Select

	Input Data	Units
Power Generation		
Peaking CT, simple cycle		
Installed cost	900	\$/kW
Heat rate	9,500	BTU/kWh
Intermediate peaking CCGT		
Installed cost	1,200	\$/kW
Heat rate	6,500	BTU/kWh
Other		
Solar-weighted heat rate (see calc. method)	8000	BTU per kWh
Fuel Price Overhead	\$0.50	\$ per MMBtu
Generation life	50	years
Heat rate degradation	0.100%	per year
O&M cost (first Year) - Fixed	\$5.00	per kW-yr
O&M cost (first Year) - Variable	\$0.0010	\$ per kWh
O&M cost escalation rate	2.00%	per year
Reserve planning margin	15%	
Distribution		
Capacity-related distribution capital cost	\$200	\$ per kW
Distribution capital cost escalation	2.00%	per year
Peak load	5000	MW
Peak load growth rate	1.00%	per year

Agenda

Introduction

Select

to 1.750

Transparency Elements and Assumptions

Technical Analysis

Dual-Atis Tracker

- Economic Analysis
- Final VOS Calculation

Fleet Production Shape

to 1.750

Dual-Atis Tracker

"Why not just use a single, representative PV system, for the solar profile?"

Fleet Orientations

to 1.750

Dual-Alis Tracker South)

Austin Energy 2013

Ranges

Select

PV System

VOS rates are based on the Fleet Production Shape, time-synched with utility load

South)

Dual-Atis Traches

py System

Select

Fleet Production Shape

to 1.750

Dual-Agis Tracher

The Fleet Production Shape...

- is the hourly output of <u>the marginal PV resource</u>, 1 kW-AC
- has units of kW per kW-AC
- has the same shape as the aggregate fleet, but scaled to size

Three options to obtain this:

- Actual Fleet Metered Production
- Actual Fleet Simulated Production
- Load-based Fleet Simulated Production

Three different loss savings factors

Dual-Atis Traches

PV System

Select

to 1.750

	Losses Avoided	Key hours of Load Analysis Period	Weighting
Loss Savings _{ELCC}	T&D	All	Exponential by load
Loss Savings _{PLR}	D Only	Peak	None
Loss Savings _{AvoidedEnergy}	T&D	All	None

 $ELCC_{WithLosses} = ELCC_{WithoutLosses}(1 + LossSavings_{ELCC})$

Displayed in Levelized Calculation Chart

Agenda

- Introduction
- Transparency Elements and Assumptions
- Technical Analysis

to 1.750

Economic Analysis

Dual-Atis Tracke South

Final VOS Calculation

Example Component Calculation

Dual-Atis Traction

ne s South)

Avoided Fuel Costs

Select

to 1.750

pv System

				Pri	ces		Со	sts] [Disc.	Costs
Year	Guarante	Burnertip	Heat	Utility	VOS	p.u. PV	Utility	VOS	Discount	Utility	VOS
	ed NG	NG Price	Rate			Producti			Factor		
	Price					on					
	(\$/MMBt	(\$/MMBt	(Btu/kW	(\$/kWh)	(\$/kWh)	(kWh)	(\$)	(\$)	(risk	(\$)	(\$)
	u)	u)	h)						free)		
2014	\$3.93	\$4.43	8000	\$0.035	\$0.061	1,800	\$64	\$110	1.000	\$64	\$110
2015	\$4.12	\$4.65	8008	\$0.037	\$0.061	1,791	\$67	\$110	0.999	\$67	\$110
2016	\$4.25	\$4.79	8016	\$0.038	\$0.061	1,782	\$68	\$109	0.994	\$68	\$109
2036	\$11.30	\$12.70	8178	\$0.104	\$0.061	1,612	\$167	\$99	0.523	\$88	\$52
2037	\$11.84	\$13.30	8186	\$0.109	\$0.061	1,604	\$175	\$98	0.504	\$88	\$50
2038	\$12.41	\$13.94	8194	\$0.114	\$0.061	1,596	\$182	\$98	0.485	\$88	\$48

Validation: Present Value	\$1,999	\$1,999
---------------------------	---------	---------

Agenda

- Introduction
- Transparency Elements and Assumptions
- Technical Analysis

to 1.750

Dual-Atis Tracker

Economic Analysis

Final VOS Calculation

VOS levelized calculation chart (required)

Dual-Alis Tracker South)

Economic

Value

х

25 Year Levelized Value

Ranges O Select

to 1.750

pv System

	(\$/kWh)	(%)	(%)	(\$/kWh)
Avoided Fuel Cost	E1		DLS-Energy	V1
Avoided Plant O&M - Fixed	E2	ELĊĊ	DLS-ELCC	V2
Avoided Plant O&M - Variable	E3		DLS-Energy	V3
Avoided Gen Capacity Cost	E4	ELĊĊ	DLS-ELCC	V4
Avoided Reserve Capacity Cost	E5	ELĊĊ	DLS-ELCC	V5
Avoided Trans. Capacity Cost	E6	ELĊĊ	DLS-ELCC	V6
Avoided Dist. Capacity Cost	E7	PLR	DLS-PLR	V7
Avoided Environmental Cost	E8		DLS-Energy	V8
Avoided Voltage Control Cost				
Solar Integration Cost				

Load Match

(No Losses)

х

(1 +

Lev. VOS

Distributed

PV Value

Distributed

Loss

Savings

Example Results

to 1.750

Select

py System

Inflation-adjusted VOS schedule calculated from levelized VOS

Dual-Atis Traunes

e = South)

MN Reference Documents

to 1.750

Minnesota Department of Commerce VOS page:

Dual-Aris Tracher

https://mn.gov/commerce/energy/topics/resources/energylegislation-initiatives/value-of-solar-tariff-methodology%20.jsp

Ben Norris Sr. Consultant Clean Power Research ben@cleanpower.com Brian Boler DGValuator[™] Product Manger Clean Power Research ben@cleanpower.com

Appendix

3

PV System

Ranges Select

to 1.750

Dual-Alis Tracker South)

Effective Capacity

to 1.750

Select

PV System

- Two measures of "effective capacity" are used:
 - Effective Load Carrying Capability (ELCC)
 - Peak Load Reduction (PLR)
- Both measures depend upon penetration level

Dual-Atis traction

is a South)

- VOS is based on current penetration level:
 - "Built in" to load shape used in load analysis
 - Current VOS participants compensated at current penetration level
 - Future VOS participants compensated at future penetration level

Marginal fuel

- Methodology assumes that PV displaces natural gas during solar operating hours
- Consistent with MISO market experience

Dual-Atis Traction

- During some hours of year, other fuels (e.g., coal) may be on margin
 - Assumes that these occur in non-solar hours; or that
 - Overall impact of coal displacement is small

Fleet Simulation California ISO 2012

to 1.750

Select

Ranges

pv System

- 4.49 kW-AC
- SunPower Inverter (SPR-5000X, 240V)
- 27 Modules (SunPower 210 W, SPR-210-WHT)
- 37.76281° N, 122.44313° W
- South, 10 degree tilt
- Commissioned
 April 2008

Example solar shapes by configuration Duke Energy, 2013

Dual-Alis Tracket

pv System

0+ 0 OSelect

Ranges

to 1.750

June 29

18

VOS rating convention: kW-AC (with losses)

kW-AC = kW-DC_{STC} x Module Derate x Inv Efficiency x Loss Factor

Example:

pv System

 $10 \text{ kW DC}_{\text{STC}}$

X 90% module derate factor

X 95% inverter load-weighted efficiency

X 85% other loss factor

to 1.750

Dual-Atis Traches

7.27 kW-AC

Load Analysis Period

to 1.750

Used for hourly loss calculations, ELCC calculation, PLR calculation, annual energy calculation

Dual-Atis Traction

- Must be at least one year
- Must be made up of complete, full years (not partial years)

Load Analysis Data

to 1.750

Dual-Alis Tracker

Includes:

pv System

Utility loads (hourly)

Select

- Distribution loads (hourly)
- Fleet Production Shape

Requirements:

- Time synchronized
- Cleaned

Non-linear loss model example

Dual-Atis traches

- South

Based on SDG&E secondary loss factors, 2012

to 1.750

pv System

Select

Requirements for loss savings calculations

Dual-Atis Traction

- 1. Losses calculated for each hour of the Load Analysis Period.
- 2. The marginal PV resource is used (Fleet Production Shape), time-synched with utility generation load.
- 3. Transmission and distribution losses calculated separately using distinct loss study data.
- 4. Calculated on marginal basis (e.g., if load is 1000 kW and PV produces 1 kW, then the marginal loss savings are losses at 1000 kW minus losses at 999 kW.
- 5. Distribution losses should be based on the power entering the distribution system, after transmission losses.

Requirements for loss savings calculations (continued...)

Dual-Asis Trache

- Avoided transmission losses should take into account both the avoided load due to marginal PV and the avoided distribution losses.
- 7. Calculations of avoided losses should not include no-load losses (e.g., corona, leakage current).
- 8. Calculations of avoided losses in any hour should take into account the non-linear relationship between losses and load.

Three different discount rates

Dual-A is Tracker South)

to 1.750

PV System

OSelect

Ranges

Discount Rate	Purpose	Source
Risk-free discount rate	Discounting and levelizing avoided fuel costs	U.S. Treasury yields of various terms
Environmental discount rate	Discounting and levelizing environmental costs	EPA (corresponds to future CO ₂ costs)
Utility discount rate	Discounting and levelizing all other costs	Utility weighted average cost of capital (WACC)

Avoided Fuel Costs

to 1.750

Fuel price volatility

 Fuel costs are subject to high and unknown volatility.
 Fluctuations in fuel costs are passed on to customers through a fuel adjustment charge. Therefore, the cost of fuel volatility is borne by customers.

Dual-Atis traction

- PV energy is delivered into the grid at a fixed, long-term rate, not subject to fuel price volatility.
- To account for this difference, long term, guaranteed fuel prices are used, and discounting/levelizing is done using riskfree rates.

Avoided Fuel Costs

to 1.750

Three options for obtaining guaranteed fuel prices:

Dual-Atis tracker

- Futures Market
 - Based on NYMEX futures, 4.75% escalation after 12 years
 - Details provided in methodology
- Long Term Price Quotation
 - Same, except utility obtains 25-year quotation from AA-rated supplier of natural gas
- Utility-guaranteed Price
 - Utilities include in their rate filing a mechanism for removing the fuel adjustment charges for the solar customer over the 25 year term

Solar weighted heat rate

to 1.750

Dual-Alis Tracke

by System

$$HeatRate_{0} = \frac{\sum HeatRate_{j} \times FleetProduction_{j}}{\sum FleetProduction_{j}}$$

- Gives heat rate input value
- Used for the first year
- Evaluated over hours of Load Analysis Period
- Use actual marginal heat rates, Fleet Production Shape

Avoided Gen. Capacity Cost

Dual-Atis traction

e = South)

to 1.750

Based on costs of two technologies: peaking CT and intermediate CCGT

pv System

- CT has high heat rate, low cost
- CCGT has low heat rate, high cost
- The "displaced capacity" must be consistent with the "displaced fuel" (i.e., from the same "displaced resource")
- Therefore, the capital cost of the displaced resource is assumed to be between the CT and CCGT, using the Solar Weighted Heat Rate to interpolate

Avoided Dist. Capacity Cost **Two Options**

Dual-Atis traction

ie = South)

to 1.750

Selecc

Ranges

pv System

	Data Sources	VOS
System-wide Avoided Costs	System-wide data is used	Single result, applies to all locations
Location-specific Avoided Costs	Local costs, growth rates, etc	Multiple VOS results, allows "targeting" of high-value areas

(Example) Deferrable Dist. Cost Evaluation

Dual-A is Tracke South)

pv System

Ranges

Select

Account	Account Name	Additions (\$) [A]	Retirements (\$) [R]	Net Additions (\$) = [A] - [R]	Capacity Related?	Deferrable (\$)
	DISTRIBUTION PLANT					
360	Land and Land Rights	13,931,928	233,588	13,698,340	100%	13,698,340
361	Structures and Improvements	35,910,551	279,744	35,630,807	100%	35,630,807
362	Station Equipment	478,389,052	20,808,913	457,580,139	100%	457,580,139
363	Storage Battery Equipment					
364	Poles, Towers, and Fixtures	310,476,864	9,489,470	300,987,394		
365	Overhead Conductors and Devices	349,818,997	22,090,380	327,728,617	25%	81,932,154
366	Underground Conduit	210,115,953	10,512,018	199,603,935	25%	49,900,984
367	Underground Conductors and Devices	902,527,963	32,232,966	870,294,997	25%	217,573,749
368	Line Transformers	389,984,149	19,941,075	370,043,074		
369	Services	267,451,206	5,014,559	262,436,647		
370	Meters	118,461,196	4,371,827	114,089,369		
371	Installations on Customer Premises	22,705,193		22,705,193		
372	Leased Property on Customer Premises					
373	Street Lighting and Signal Systems	53,413,993	3,022,447	50,391,546		
374	Asset Retirement Costs for Distribution Plant	15,474 <u>,</u> 098	2,432 <u>,</u> 400	13,041 <u>,</u> 698		
TOTAL		3,168,661,143	130,429,387	3,038,231,756		\$ 856,316,173

MN Example Calculation (illustrative only)

Dual-Alis Tracker South)

25 Year Levelized Value

to 1.750

Select

PV System

Ranges

Avoided Fuel Cost Avoided Plant O&M - Fixed Avoided Plant O&M - Variable Avoided Gen Capacity Cost Avoided Reserve Capacity Cost Avoided Trans. Capacity Cost Avoided Dist. Capacity Cost Avoided Dist. Capacity Cost Avoided Environmental Cost Avoided Voltage Control Cost Solar Integration Cost

Economic Value	Load Match (No Losses)	Distributed Loss Savings	Distributed PV Value
(\$/kWh)	(%)	(%)	(\$/kWh)
\$0.056		8%	\$0.061
\$0.003	40%	9%	\$0.001
\$0.001	-VO		\$0.001
\$0.048		9	\$0.021
\$0.007	40%	9%	\$0.003
\$0.018	40%	9%	\$0.008
\$0.008	30%	5%	\$0.003
\$0.027		8%	\$0.029

\$0.127