EXH. CAK-7 (Apdx. B) DOCKETS UE-22__/UG-22_ 2022 PSE GENERAL RATE CASE WITNESS: CATHERINE A. KOCH

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

PUGET SOUND ENERGY,

Respondent.

Docket UE-22____ Docket UG-22

APPENDIX B (NONCONFIDENTIAL) TO THE SIXTH EXHIBIT TO THE PREFILED DIRECT TESTIMONY OF

CATHERINE A. KOCH

ON BEHALF OF PUGET SOUND ENERGY

JANUARY 31, 2022

Advanced Metering Infrastructure Data Enablement Strategy

Use Case Identification, Strategy, and Planning at Puget Sound Energy GRID MODERNIZATION STRATEGY AND ENABLEMENT

Contents

Introduction	3
Background Information – Working Group Goals and Structure	3
AMI Deployment at PSE and Purpose of the Working Group	3
Goals of the Working Group	4
Participants	4
Structure and timeline:	5
Meeting 1 – AMI Data Collection and Current Uses	5
Meter Data Collection at PSE	6
Meter Data Uses at PSE	7
Meeting 2 – Example AMI Data Use Cases	9
Use Case Categorization	9
Meetings 3-6 – Use Case Evaluation	10
Subject Matter Expert Surveys	11
Use Case Evaluation Workbooks	11
Subject Matter Expert Interviews	15
Meetings 7-8 – Outcomes of Evaluation Process and Next Steps	
Data Requirements	16
Rankings Use Cases using Evaluation Scores	17
Grouping by Similar Data Needs	
Sequencing by Subject Area	19
Moving from Evaluation Criteria to Decisions	20
Meter Data Use Case Themes	20
Selected Use Cases	20
Selected Use Cases Other Ongoing Use Cases	20 21
Selected Use Cases Other Ongoing Use Cases Use Case Summary and Current Status	20 21 22
Selected Use Cases Other Ongoing Use Cases Use Case Summary and Current Status What's next	20 21 22 23
Selected Use Cases Other Ongoing Use Cases Use Case Summary and Current Status What's next Business Case Development	20 21 22 23 23
Selected Use Cases Other Ongoing Use Cases Use Case Summary and Current Status What's next Business Case Development Gas Specific Use Cases	20 21 22 23 23 23
Selected Use Cases Other Ongoing Use Cases Use Case Summary and Current Status What's next Business Case Development Gas Specific Use Cases Future Data Enhancements	20 21 22 23 23 23 23 23 24

Tables

Table 1 - Overview of Stakeholder Meetings	5
Table 2 - AMI Load Profile Channels Currently Enabled at PSE	6
Table 3- Natural Gas Load Profile Channels	6
Table 4 – AMI Data Use Case Names, Abbreviated Names, and Subject Area	9
Table 5 - Evaluation Meeting Primary Participants	10
Table 6 - Evaluation Criteria	13
Table 7 - Current Status of Use Cases	22
Table 8 - Future AMI Data Enhancement Considerations	24
Table 9 - Participant List	26
Table 10 - Commercial and Industrial Meter Load Profile Channels	27
Table 11 - Residential Meter Load Profile Channels	28
Table 12 - Data platforms and tools overview	28
Table 13 - AMI Data Use Case Descriptions	30

Figures

Figure 1 - Visual Representation of Primary PSE Meter Data Uses	8
Figure 2 - Use Cases by Benefits and Feasibility	
Figure 3 - Use Cases by Data Groupings	18
Figure 4 - Use Cases by Subject Area	19
Figure 5 - Evaluation Flow Chart	35

Introduction

In the spring of 2020, the Grid Modernization Strategy and Enablement team ("Grid Modernization team") established the Advanced Metering Infrastructure ("AMI") Data Enablement Working Group. This document provides background information on the deployment of AMI at Puget Sound Energy ("PSE") and the working group's goals, processes, and outcomes. The first phase of the working group consisted of eight meetings from March to June 2020 to develop the framework of an AMI data use case roadmap and to identify high priority use cases for business case development. Beyond the first phase, the working group will continue to refine the use case roadmap, serve as a centralized resource and clearinghouse for AMI data use cases, and provide support and expertise in initiating AMI data use cases.

Background Information – Working Group Goals and Structure

AMI Deployment at PSE and Purpose of the Working Group

Puget Sound Energy initiated the meter upgrade project in March 2018, and by the end of 2023, approximately 1.1 million electric meters and 800,000 gas modules (the AMR module is being replaced with an AMI module while the physical meter remains) will be exchanged. In total, PSE will invest an estimated \$473 million in AMI communication network and metering equipment. As of August 2020, ~400,000 AMI electric meters and ~270,000 AMI gas modules have been installed.

PSE views AMI as a foundational technology that enables use cases throughout the organization to benefit customers directly and indirectly as part of the broader company-wide initiatives to modernize the grid and meet the objectives of the Clean Energy Transformation Act. As part of the AMI business case, PSE recognized direct monetary benefits from Conservation Voltage Reduction ("CVR"), distribution automation utilizing the AMI network, and avoided investment to maintain the outdated AMR system. Beyond the quantified monetary benefits identified in the business case, additional benefits identified but not quantified in the business case included reduced billing exceptions (reduction of estimated bills, improved accuracy of demand billing, and improved inventory management process as part of the deployment validation process) and demand response opportunities (including time-based rates, reduced infrastructure investment needed to implement direct load control programs). The AMI deployment was also identified as a foundational step to support micro-grids and smart city attributes (e.g., smart street lighting), distributed generation integration, electric vehicle integration, and customer home-area network interface. As part of this working group, additional benefits and use cases that will utilize AMI data as will be identified and prioritized for implementation to further validate the investment in AMI technology.

One intention of this working group is to recognize the discussion within the utility industry around the challenges of fully realizing the benefits of AMI. For example, a January 2020 ACEEE report titled "Leveraging Advanced Metering Infrastructure to Save Energy" identified six areas where utilities should be utilizing AMI technology to help customers conserve energy.¹ Of the 52 utilities included in the study, only Portland General Electric was utilizing AMI technology to support all six energy conservation strategies. In some states, utility regulators have rejected utility proposals for AMI investments due to a

¹ <u>https://www.aceee.org/research-report/u2001</u>

lack of details around how the investment will be utilized to benefit customers such as Dominion Power in Virginia² and Eversource and National Grid in Massachusetts³.

PSE conducted an internal gap analysis in 2018 that identified several potential risk areas that could prevent PSE from fully realizing the benefits of the AMI deployment. One of the primary risks identified was that PSE would not have a centralized resource to identify and prioritize AMI data use cases and to coordinate AMI capabilities and use cases across different PSE initiatives and work groups. The focus of this working group is to eliminate the identified risk in the 2018 gap analysis and strategically evaluate and coordinate AMI data use cases across PSE. The AMI Data Enablement Working Group is part of a broader joint Operations goal at PSE designed to leverage AMI capabilities for grid modernization and customer service by focusing on, in addition to AMI data enablement, topics regarding AMI metering operations, AMI network governance, and electric and gas SCADA over the AMI network. As an outcome of this joint goal, in July 2020, an AMI Alliance group was formed to address business governance involving the evolution of the foundational AMI solution capabilities and related data. The AMI Alliance recognizes that business changes will need to be governed and this process will help ensure AMI and its data value can be utilized throughout the company.

Goals of the Working Group

The primary goal of this working group is to identify, prioritize, and initiate the development of high value AMI data use cases. As part of the process, the working group seeks opportunities to align the development of AMI data use cases to the Grid Modernization Roadmap and coordinates with the Data Enablement and Enrichment Program. Members of this working group stay informed of upcoming opportunities, internal strategies, and initiatives relevant to the AMI data enablement working group.

Participants

In the first phase of the working group, 18 different groups from across PSE participated and provided input and expertise on different parts of the data collection process and meter data end-uses. The list of participating teams is below. Table 9 shows the complete list of participants.

- Teams at PSE providing subject matter expertise:
 - New Products, Customer Insights, Energy Efficiency, Energy Advisors, Rates & Cost of Service, Billing, Customer Solutions, Performance Quality, Asset Management, Distribution Planning, Load Forecasting, Advanced Distribution Management System ("ADMS"), System Protection, Automation, and Controls ("PAC")
- Teams at PSE providing technical expertise:
 - Meter Data Management System ("MDMS"), Data Enablement, Amazon Web Services ("AWS")/Platform of Insights ("POI"), Meter Engineering, Communications Initiatives

² <u>https://www.utilitydive.com/news/virginia-rejects-dominions-752m-smart-meter-plan-other-grid-mod-proposal/575007/</u>

³ <u>https://www.greentechmedia.com/articles/read/massachusetts-rejects-smart-meter-rollouts-as-competitive-energy-undermines</u>

Structure and timeline:

The initial formation of the working group consisted of eight meetings with stakeholders to identify, describe, and prioritize use cases. Meetings 3 through 6 were split into smaller groups by subject area including Customer Care and Billing; Asset Management, Distribution Planning, and Load Forecasting; Customer Programs and Products, and System Operations. An overview of the working session topics and goals in Table 1.

Meeting Topic	Key Question to Discuss in this Meeting	Outcome by the end of the Meeting
Meeting 1 – Kick-off and Introductions	What can we do with AMI (i.e., what is the current status of PSE's AMI metering capabilities and how is meter data being used)?	The group understands the basics of AMI and tools that utilize meter data at PSE.
Meeting 2 – Overview of Use Cases; Identify Challenges and Synergies	How has AMI been used across the industry and how would those use cases successfully translate to PSE?	The group understands how PSE could implement AMI data use cases and the strategy to help guide the process.
Meetings 3 - 6 Deep Dive and In-Category Prioritization	What are the top priorities and data needs for this small group and how can AMI data support this small group?	Each small group identifies small group's current uses of meter data, identifies challenges using meter data, and discusses planned and potential high value use cases of the AMI.
Meeting 7 – Recap Deep Dives and Begin Prioritization	What similarities and common data or operational needs were identified in the Deep Dive process?	Full working group is debriefed on the discussions that occurred in the deep dives and the group is ready to engage in the final prioritization process.
Meeting 8 – Prioritization Finalization	When we apply the prioritization criteria, what AMI data use cases should be the top priority for PSE to focus on implementing first and who needs to be involved in the planning?	Discuss outcomes of working group and the high priority AMI data use cases that will move onto the business case development stage.

Table 1 - Overview of Stakeholder Meetings

Meeting 1 – AMI Data Collection and Current Uses

In the first meeting, the primary goal was to establish a common understanding of AMI technology and uses at PSE. Based on conversations with the meter technology provider (Landis+Gyr), Meter Engineering, and the MDMS teams, documentation was created to share basic information on the AMI load profile channels and data collection process

Meter Data Collection at PSE

Electric Meters

Residential electric meters have 8 load profile channels and commercial and industrial electric meters have 16 load profile channels. The full list of potential load profile channels is listed in the Appendix in Table 10 for commercial and industrial meters and Table 11 for residential meters. In addition to the load profile channel data collection, meters also collect and communicate event data such as outage alerts, variance alerts, and meter errors through the AMI network.

Currently, for electric AMI meters, up to 11 channels of 15-minute interval data are collected and stored in Landis+Gyr's Command Center ("CC") including the channels and data listed in Table 2.

Channel	Data Type
1	kWh (delivered)
101	kWh (received)
3	kVARh (delivered)
103	kVARh (received)
83	Vh (delivered Phase A)
84	Vh (delivered Phase B)
85	Vh (delivered Phase C)
86	Ah (delivered Phase A)
87	Ah (delivered Phase B)
88	Ah (delivered Phase C)
89	Ah (delivered Neutral)

Table 2 - AMI Load Profile Channels Currently Enabled at PSE

Most meters only receive interval data from channels 1, 101, and 83. Command Center communicates data to MDMS for channels 1, 3, 101, and 103 for commercial and industrial meters and only channels 1 and 101 for residential meters.

Natural Gas Meter Data Collection

AMI gas modules communicate total consumption information and one load profile of data. As listed in Table 3, for residential meters, AMI modules have 15-minute load profile intervals and for commercial and industrial meters, AMI modules have 60-minute load profile intervals.

Table 3- Natural Gas Load Profile Channels

|--|

33	CCF (delivered)
76	CCF (corrected)

Meter Data Validation

15-minute interval data for electric meters is sent from Command Center to MDMS four times per day (every six hours) and gas interval data is sent once per day. A PSE process to clean the data, "Data Validation, Editing, Estimation ("VEE")," is performed on all interval data once per day; therefore, daily data for both AMI and AMR meters is not available with full VEE until the afternoon of the following day.

Meter Data Uses at PSE

Currently at PSE, meter data is used by many groups directly and indirectly. The flow chart in Figure 1 is designed to be illustrative of the PSE meter data environment. The core meter data environment is on the left with MDMS and SAP serving as the primary data repositories and tools for essential functionality and like billing and customer service. The different colored data workflows to the right illustrate some of the different end user tools that utilize meter data across different groups including Planning, Operations, Load Forecasting, IT, Customer Insights, Revenue Protection, and Energy Efficiency.

Two new initiatives that have broad applications across at PSE, the Meter Analytics Record ("MAR") and Meter Analytics Solution ("MAS"), should be specifically mentioned due to their foundational nature as a means to get meter data to a wide variety of teams and serve as an analytical foundation for many different AMI data use cases. Representatives from the MAS and MAR teams participated in this working group, and as AMI data becomes increasingly prevalent and data uses evolve, it will be important to continue to coordinate the AMI data applications across PSE. For more information on each data use and tool, please see Table 12 in the Appendix.

Figure 1 - Visual Representation of Primary PSE Meter Data Uses

Meeting 2 – Example AMI Data Use Cases

Using industry research, white papers, and conversations with PSE stakeholders, the Grid Modernization team established a list of approximately 50 different AMI data use cases. These use cases included electric specific opportunities (e.g., Volt/VAR Optimization) and use cases that would be applicable to both electric and gas (e.g., Billing Alerts). There are a few gas specific opportunities that were not included in the use case list in Meeting 2 and the evaluation process conducted in the remaining meetings. These gas specific use cases were addressed separately with the gas teams to ensure that the few gas specific use cases were thoroughly discussed. Throughout the process, this list was refined through discussion to clarify the use case names, amend descriptions, or consolidate use cases where needed (while keeping the use cases specific enough to allow for meaningful distinctions throughout the evaluation process). The resultant list was 38 AMI data use cases in Table 4.

Use Case Categorization

The use cases were split into subject matter areas to allow for more targeted deep discussion between groups with similar data needs and uses and to allow for easier "in subject area" comparisons and discussion rather than addressing all use cases at once. The four subject areas are Customer Care, Asset Management and Planning, Products and Programs, and Operations. The full list of use cases, abbreviations used for those use cases in documentation and graphics, and which subject area each use case was grouped with is listed in Table 4. Please note that some use cases may be relevant to multiple subject areas, but each grouping was determined as the best fit for subject area classification. For more detailed description of each use cases, please see Table 13 in the Appendix.

Use Case Name	Short Name	Subject Area
More information and control - Customer Aggregate Usage Data	AggregatedData	Customer Care
Monitor Asset Health (voltage anomalies)	AssetHealth	Asset Management and Planning
Battery Incentive & Management	Battery	Products and Programs
More information and control - Billing Alerts	BillAlerts	Customer Care
Improved Bill Generation	BillGen	Customer Care
Capacity Planning / Sizing Assets	CapacityPlan	Asset Management and Planning
Identify customer-owned DER	CustomerDER	Asset Management and Planning
Improved Customer Safety	CustomerSafety	Customer Care
Improved Customer Engagement with additional data	CustomerService	Customer Care
Customized Engagement around Products/Services	CustomizedEngagement	Products and Programs
Distribution Automation	DA	Operations
Demand Response / Demand Management	DR	Products and Programs
Energy Efficiency Program Optimization	EE Optimize	Products and Programs
EV Planning and Integration	EV	Products and Programs
Metering Issues -Theft and Fraud Detection; Meter Failures	FraudDetect	Customer Care

Table 4 – AMI Data Use Case Names, Abbreviated Names, and Subject Area

Grid Reliability / renewables and DERs integration / Hosting Capacity Analysis	GridRelHCA	Asset Management and Planning
Identify Unsafe Working Conditions	IdentifyUnsafeConditions	Operations
More information and control - In Home Displays and other Smart Devices	IHD	Products and Programs
Customer Load Disaggregation	LoadDisagg	Products and Programs
Load Forecasting	LoadForecast	Asset Management and Planning
Meter Ping Functionality	MeterPing	Customer Care
Model Validation / Improved Data Quality	ModelValidation	Asset Management and Planning
Momentary Outages / Power Quality	MomentaryOutages	Operations
Outage management - Nested Outages	NestedOutages	Operations
Leveraging the Network / SCADA	Network	Operations
Support Non-Wires Solutions	NWS	Asset Management and Planning
Predictive Analytics for Operations	OpsAnalytics	Operations
Outage Management - Customer Communication	OutageComm	Customer Care
Outage Management - Detection	OutageDetect	Operations
Power Quality / Voltage Compliance / Real- time Operating Conditions	PowerQuality	Operations
Bill Payment - Automated or Pre-Paid	PrePay	Customer Care
Solar PV - Customer Billing and Utility Planning	PV	Products and Programs
Designing Rate Programs / Pricing	RatesPricing	Products and Programs
Remote Connect and Disconnect	RemoteConnect	Customer Care
Controllable Customer Resources / Smart Consumer Devices	SmartDevices	Products and Programs
Asset Health (utilization factor) - Under and Over Loaded Transformers	TransformerLoading	Asset Management and Planning
Transformer Mapping / Phase Identification / Switching Analysis	TransformerMapping	Asset Management and Planning
Volt/VAR Optimization	VVO	Operations

Meetings 3-6 – Use Case Evaluation

Each meeting focused on one of the four subject matter areas, and each meeting had a subset of primary participants who served as subject experts. The PSE teams that provided subject matter expertise are in Table 5 listed below. Each subject matter expert completed a pre-meeting survey, evaluation workbooks, and individual interviews with the Grid Modernization team.

Table 5 - Evaluation Meeting Primary Participants

Subject Area	Team
Meeting 3 – Customer Care	Customer Solutions – Journey Management
	Strategic Customer Insights

	Customer Solutions – Billing and Payment		
	Customer Care – Performance Quality		
Meeting 4 – Asset Management and Planning	System Planning – Asset Management		
	Distribution System Planning		
	Load Forecasting		
Meeting 5- Products and Programs	New Product Development		
	Energy Efficiency		
	Rates and Cost of Service		
	Energy Advisors		
Meeting 6- Operations	Electric System Operations		
	System Protection, Automation, Control		

The goal of each of these four meetings was to discuss current and future meter data needs and uses, review the list of AMI data use cases that this group would evaluate, and provide an overview of the evaluation process and next steps.

Subject Matter Expert Surveys

Each set of subject matter experts completed an online survey to prepare for the meeting's topics of discussion including meter data needs and uses, and preliminary thoughts on potential AMI data use cases. The survey questions were:

- How does your team currently use meter data (e.g., to generate bills, to identify high energy consumption accounts, etc.)? Please consider secondary uses (e.g., primary use is to generate bills; secondary use is to investigate customer inquiries of bills).
- What barriers or challenges does your team currently face accessing meter data (if any)? Are there other challenges currently impacting your work with meter data (e.g., data quality, data format, etc.)?
- What is currently planned within your group that will utilize AMI data? Please include anything currently in development or included on a longer term plan/roadmap (i.e., what would be included in a future response to question 1)
- What are your top 3 use cases for your group (i.e., which use cases that you think should be a top priority for your team)?
- Are there any use cases currently categorized as part of different subject area that you would like to discuss as part of this meeting's discussion?

Use Case Evaluation Workbooks

Beyond discussion of current and planned meter data uses, the other primary purpose of these meetings was to introduce the evaluation questions that would provide a thorough and transparent way

to benchmark each use case. The evaluation framework was established in coordination with the Data Enablement and Enrichment Program, a program that had recently evaluated various data enablement use cases (including a few that were meter data related). The evaluation questions were designed to cover a wide variety of metrics and benefits. Not every evaluation question would be highly relevant for each use case (e.g., use cases that require a new program may not increase productivity of PSE employees since it would create new work, but those use case may score highly on benefits to customers and alignment to PSE strategies), and the goal was to have a holistic set of questions that would help differentiate "high value" use cases from both the operational side and also the customer facing side. A conceptual flow chart of how the evaluation questions would sequence to help guide the prioritization process is included in Figure 5 in the Appendix.

The evaluation questions that were completed for each AMI data use case on a scale of 1-5 are described in the Table 6.

Table 6 - Evaluation Criteria

Scoring Questions	Score				
	1	2	3	4	5
How thoroughly does	Newly introduced	General	Understood, but not	Requested by	Part of an active
the business understand		understanding	in scope	business, but not in	project.
benefit of the use case?				scope	
To what degree does the	None	Indirectly	One	Two	Three or more
use case improve					
performance of SQI					
metrics?					
How many customers	Impacts a handful of	Impacts multiple sub-	Impacts residential OR	Impacts either all gas	Impacts all electric
are impacted by this use	customers (e.g., EV	groups of customers	commercial/industrial	OR all electric	AND gas customers
case?	owners)	(e.g., customers with	customers	customers	
		solar, EV chargers, or			
To what degree does the	None	Indirectly	One	Тжо	Three or more
use case support DSE		mancetty			
stratogic initiativos					
What productivity	No change	Small reduction if	Moderate reduction in	Significant reduction	Automation/
increase is expected	No change	work effort	work effort	in work effort	elimination of work
from this use case?					effort
How much doos the use	One for one	Adds new feature or	Adds multiple	Significant	Adds new process or
now much does the use	replacement of existing	ontion	features or options	enhancement to	canability
case enhance PSE	capability	option		existing process.	capability
	None	Indirectly	One	Тжо	Three or more
Does the use case	None	munectry		100	Three of more
reduce risk in any of the					
the Entermise Bick					
Management Dreamers					
for the year?					
for the year?	Data ta support usa	Data can be readily	Data can be readily	Data can be readily	Data can be readily
what regulatory nurdles	case cannot be shared	shared	shared	shared	charod
exist for this use case?	(privacy or				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	/	/

	transmission/generation restrictions) OR Unlikely to be approved by UTC	PSE would need UTC proceeding Example: Time Varying Rates as part of next rate case	PSE would modify a program previously approved by UTC (i.e., may need to inform UTC and/or request updated approval)	PSE may inform UTC of utilization of data (e.g., a tool, program, platform)	Utilization of data (e.g., a tool, program, platform) does not require any regulatory component.
Is the data needed to support this use case available (collected)?	Data not available through AMI	Near real-time data More granular data for bellwether meters (e.g., 5 minute interval data)	15-minute data for new load profile channels, 1 day lag (all meters)	15-minute data for new load profile channels, 1 day lag (bellwether meters only)	15 minute kWh data, data sent 4x per day (electric), 1x per day gas; 1 day lag (to validate all data for the previous day)
Is the supporting data for this use case easily accessible?	Data not available through AMI	New load profile channels, new meter events	Some meter events and current/voltage data collected by meters or Command Center but not loaded to MDMS	15-minute kWh, Voltage, and Current data stored in MDMS/AWS but access is being developed (MAR)	Daily kWh data currently collected and stored in MDMS and AWS / HANA Studio (MAS)
What is the availability of technical dependencies that are needed to support this use case?	Requires new enterprise-wide technologies not currently planned to enable use case	Requires new platform (e.g., DERMS) with enterprise connections (e.g., GIS, SAP)	Requires new platform or technology that is standalone (e.g., a new tool to analyze transformer loading) OR Requires changes to existing enterprise connections (SAP, GIS, Web portal)	Standalone (external) tool/ product with enhancement (e.g., enhancements to OPOWER by providing more granular kWh data)	Enhancing (internal) tool/product or existing processes such as providing more granular kWh data to the Load Forecasting team for their internal analysis

Subject Matter Expert Interviews

Within the evaluation criteria, the questions were split into two categories. In the first category, the focus was on questions that could be categorized as the "benefits/value" set of questions, and in the second category of questions, the focus was on questions in the above table that could be categorized as the "data requirements / feasibility" set of questions. The breakdown was as follows:

- "Benefits/Value" Evaluation Areas
 - Business Maturity/Understanding
 - Corporate (SQI) Metrics
 - Customer Impact
 - Enterprise Risk Reduction
 - Enhancement of Capabilities
 - Strategic Alignment (ISP)
 - Productivity Increase
- "Data Requirements / Feasibility" Evaluation Areas
 - Regulatory Feasibility
 - Data Collection
 - Data Availability/Access
 - Technical Dependencies

Each subject matter expert completed an Excel workbook after the meeting to evaluate each use case in their subject area for the first six questions in Table 6. The evaluation criteria for "Enterprise Risk Reduction" and "Regulatory Feasibility" were evaluated by the Grid Modernization team to provide consistent scoring across these metrics since they were not specific to subject matter experts focus areas nor the technical data team's expertise. The last three questions were scored based on a combination of individual interviews conducted by the Grid Modernization team with each subject matter expert to better understand the data requirements and what the use case would look like if implemented, and with the assistance of the meter engineering and data teams to create evaluation categories that would represent the challenges of collecting or presenting this data for use cases. These interview questions with each subject matter expert focused on discussing the following questions:

- If a project has been indicated as an "ongoing" project, does this project actively include enhancements/changes as a result of AMI deployment (i.e., even though PSE has existing "Billing Alerts", only mark "ongoing" if there is ongoing work to implement AMI data to enhance/change the Billing Alerts)
- If the use case is ongoing, what is the name of the ongoing project?
- What AMI data types (e.g., 15-minute kWh data, voltage data, etc.) would be needed to support this use case?

- What data frequency (e.g., 5-minute intervals), latency (e.g., data from the previous hour), and history (e.g., 3 years of historical data) would be needed to support this use case?
- What systems other than MDMS/Command Center (e.g., GIS, SAP) would need to be coordinated/integrated for this use case?
- What would it look like to implement this use case at PSE (i.e., please provide a brief description of what this use case would like if successfully implemented)?

Through the interviews discussing these questions, a list of basic data requirements and integrations were documented for each use case. The common framework for scoring (e.g., if a use case requires new load profile channels then it should be scored as a "4" relative to a "5" for use cases that utilize existing load profile channels) that was established with the support of the technical teams, could then be applied to each of these use cases. For criteria that was evaluated by multiple subject matter experts, scores were averaged across the use cases and compiled for discussion in the final two meetings.

Meetings 7-8 – Outcomes of Evaluation Process and Next Steps

Data Requirements

After the scoring was completed, the results were consolidated and summarized. The final two meetings focused on sharing findings and discussing the evaluation process. One of the goals of this working group evaluation process was to identify what AMI data use cases can be implemented using the data that is currently available from PSE's AMI system and which uses cases would require an enhancement or modification. The majority of AMI data use cases that were evaluated would utilize data that is currently available. Some of the high-level data requirements for the use cases are summarized below:

- 27 Use cases will utilize data currently collected from the meters
- 14 Use cases will utilize existing 15-minute kWh data (or hourly/daily data is sufficient)
- 10 Use cases will utilize 15-minute voltage or current data
- 7 Use cases would require "near real time data"
- 6 Use cases could utilize new meter events or load profile channels
- 5 Use cases require meter events (power up/down)

Please note that the counts above are not mutually exclusive and do not sum to the total number of use cases evaluated since some use cases may utilize multiple data types and have different data latency requirements

Given the subjective nature of the evaluation process, we created several visualizations to help identify high value use cases and to organize all the input received throughout the process. Each of the following figures uses colors to indicate which subject area the use case is from (blue – Asset Management and Planning, yellow – Customer Care, orange – Products and Programs, green – Operations). Use cases in bold ovals have been identified as "ongoing" or "in development."

Rankings Use Cases using Evaluation Scores

The chart below shows the rankings for each use case for the "benefits/value" criteria along the x-axis and the rankings for "data requirements / feasibility" criteria along the y-axis. This graphic helps identify the "high value", "easy to implement", and "high value and easy to implement" use cases. Use cases in the top right quadrant ranked highly for value and benefits (i.e., higher value use cases) and feasibility (i.e., easier to implement). Please note that small differences in scores can result in large differences in ranks (e.g., if the top 10 use cases scored between 18 and 19 for data requirements and feasibility and the next highest ranked use case scored 17.5, then it could look much lower (e.g., rank of 11 vs. 1) than the difference in raw scores between #1 and #11.

Figure 2 - Use Cases by Benefits and Feasibility

Grouping by Similar Data Needs

Figure 3 shows use cases grouped by data needs and integration considerations. As the use cases move from left to right, they progress from "crawl" to "walk" to "run" to show where PSE might want to start. This visualization is one way to look at sequencing the use cases to gauge relative complexity and also recognizing the similar data requirements for many use cases. While the initial focus may be on a handful of use cases, the data enablement process (e.g., collecting, cleaning, and staging data) for one use case could then be adapted to support additional use cases with the same data needs. Please note that this visualization is a simplification of data needs and feasibility, and that this analysis only uses the scores as a guide, but each use case is not placed precisely based on score.

Figure 3 - Use Cases by Data Groupings

Sequencing by Subject Area

Figure 4 shows a potential progression of use case development within an area and the interconnectedness of the use cases. Similarly to Figure 3, it progresses through a "crawl" to "walk" to "run" to show where PSE might want to start along the x-axis. The progression along the y-axis is not relevant since the groupings are by subject area. The dashed lines indicate where use cases can support or improve related use cases, and the solid lines indicate a dependency. For example, while Load Forecasting does not require Load Disaggregation, it could be improved with a fully implemented Load Disaggregation use case. A direct example would be Improved Outage Communications to customers being directly dependent on the Outage Detection use case. Please note that this figure does not prioritize coordinating similar data needs and that each use case is not placed precisely based on score.

Figure 4 - Use Cases by Subject Area

Moving from Evaluation Criteria to Decisions

Meter Data Use Case Themes

With a thorough evaluation process soliciting input and expertise from stakeholders across PSE, several key themes emerged:

- 1) Previous AMR data uses and tools were frequently specific to an individual team and created as a one-off solution.
- 2) Several use cases that will utilize AMI data are already in development or have initiated planning.
- 3) The majority of use cases can be initiated with the existing data collection and presentment processes, but several high-value use cases would necessitate enhancements.
- 4) Several use cases will enable other use cases with dependencies on the underlying data collection or implementation of a related use case.
- 5) Several use cases have interest or support from teams not directly "owning" the underlying data or application of a use case.

Selected Use Cases

Based on the rankings and evaluation scores, interviews that confirmed relative levels of interest in use cases, and new insights on dependencies and cross-organizational interests, the group selected and vetted four use cases. The selected use cases were all evaluated as high value with moderate to easy feasibility and implementation, and an emphasis was placed on use cases that are intersectional and will leverage the collaborative set of stakeholders who participated in this process. Each of the selected use cases will require input and coordination from at least two functionally different teams (e.g., Energy Efficiency and Customer Care / Customer Experience teams). The selected use cases would not be initiated in the near-term without the support of this working group.

- **Outage Detection Operations** incorporating meter power up/down events and voltage data in near-real time into ADMS/OMS
 - Why was this specific use case selected: Improved outage detection was a core benefit cited in the AMI Business Case and is one of the most widely cited benefits of AMI.
 Implementing this use case would have a direct impact on SQI metrics (SAIDI and SAIFI times) and would be foundational to dependent use cases such as improved outage communication to customers and identifying nested outages.
- Asset Health Asset Management and Planning using AMI data to support asset monitoring/awareness (e.g., this transformer is trending towards failure) and help groups make operational or design decisions
 - Why was this specific use case selected: Asset Health scored highly in terms of benefits and this use case will leverage existing kWh and voltage interval data being collected by the meters. This use case has a well-defined scope, and implementing this use case will help enable future use cases like transformer loading analysis. Peer utilities have

successfully implemented preventative or mitigation related to asset healthy utilizing AMI data. $^{\rm 4}$

- Load Disaggregation Customer Programs and Products identifying discrete energy loads within homes or businesses
 - Why was this specific use case selected: Load disaggregation is becoming increasingly discussed by utilities as customers continue to add new devices to homes (e.g., EVs, batteries, heat pumps, etc.) and seek more insight and control of their energy use. Not only will load disaggregation provide customers with more insight into their energy consumption, but the development of this use case will support the Load Forecasting, Rates and Cost of Service, Energy Efficiency, and New Product Development teams.
- **Customer Usage Data (Aggregated Data) Customer Care** providing customers more granular and timely usage data from the meter (i.e., not load disaggregation) to help them better understand and manage their energy consumption
 - Why was this specific use case selected: One of the primary components of any AMI business case is providing customers with more granular and timely meter data. This is a foundational use case to support any use case related to customer pricing and billing (e.g., time varying rates, demand response, EV charging incentives, bill pre-payment, etc.) and the baseline expectation for utilities is increasingly becoming that customers will be able to view their interval data throughout the billing cycle. Developing this use case at PSE will facilitate discussions between the Energy Efficiency teams that work with Home Energy Reports and OPOWER billing alerts and the Customer Care, Billing, and Customer Experience teams that generate customer bills, provide customer support, and also send high bill alerts.

The four selected use cases were all chosen with the intent to avoid the most complicated or least feasible use case in the initial round; however, use cases that have high value to PSE but may have scored lower in terms of feasibility will be considered in the near-term to identify ways to support these use cases. This will be done by initiating the prerequisite requirements or enabling the foundational data needs and coordination. For example, a use case that will require data changes (e.g., near-real time data or new load profile channels) will be included as part of the near-term planning discussion regarding potential longer-term AMI data enhancements.

Other Ongoing Use Cases

In addition to the four priority use cases, several use cases were identified as ongoing or in development throughout the meetings, evaluation process, and interviews. One important outcome of this working group is the discussion and documentation of ongoing activities using AMI data between teams that may not have otherwise coordinated. By documenting these use cases, identifying opportunities to collaborate on use cases, and recognizing potential redundancies, this working group will help facilitate strategic planning across PSE. As related or foundational use cases are completed, PSE will be better positioned to make sure that holistic solutions are implemented and opportunities for quick follow-on

⁴ <u>https://smartenergycc.org/wp-content/uploads/2019/05/VOEAMI-2019-Final.pdf</u>, pg. 20

wins to existing use cases are shared. Several ongoing or in-development use cases were identified including:

- **Fraud Detection** Use case that will be supported by the development of the Meter Analytics Solution
- Demand Response, Rates and Pricing, Energy Efficiency Optimization, Aggregated Data (via the Energy Efficiency team), and Load Forecasting, Power Quality, VVO Use cases that will be supported by the development of the Meter Analytical Record providing better access to 15-minute kWh and voltage data
- Smart Devices and In-Home Display Use cases that are being evaluated by the Energy Efficiency teams for pilot projects

Use Case Summary and Current Status

The complete list of use cases and their current status are outlined in Table 7 - Current Status of Use Cases. Use cases with a status of "AMI Data Enablement Roadmap" are not currently in development or part of a different group's roadmap.

Table 7 - Current Status of Use Cases

Use Case Name	Status
Asset Health (utilization factor) - Under and Over Loaded Transformers	Top 4 - Initiating Development –
	AMI Data Enablement Roadmap
Battery Incentive & Management	AMI Data Enablement Roadmap
Bill Payment - Automated or Pre-Paid	Planned - Customer Care Roadmap
Capacity Planning / Sizing Assets	AMI Data Enablement Roadmap
Controllable Customer Resources / Smart Consumer Devices	Ongoing - Energy Efficiency
Customer Load Disaggregation	Top 4 - Initiating Development –
	AMI Data Enablement Roadmap
Customized Engagement around Products/Services	AMI Data Enablement Roadmap
Demand Response / Demand Management	Ongoing - Bainbridge and Duvall
Designing Rate Programs / Pricing	Ongoing - Pricing Pilots
Distribution Automation	Planned - Grid Mod Roadmap
Energy Efficiency Program Optimization	Ongoing - Energy Efficiency
EV Planning and Integration	AMI Data Enablement Roadmap
Grid Reliability / DERs integration / Hosting Capacity Analysis	Planned - Grid Mod Roadmap
Identify customer-owned DER	AMI Data Enablement Roadmap
Identify Unsafe Working Conditions	AMI Data Enablement Roadmap
Improved Bill Generation	Technical Functionality Complete
Improved Customer Engagement with Additional Data	AMI Data Enablement Roadmap
Improved Customer Safety	AMI Data Enablement Roadmap
Leveraging the Network / SCADA	AMI Data Enablement Roadmap
Load Forecasting	Ongoing - MAR
Meter Ping Functionality	Technical Functionality Complete
Metering Issues -Theft and Fraud Detection / Meter Failures	Ongoing - MAS
Model Validation / Improved Data Quality	AMI Data Enablement Roadmap
Momentary Outages / Power Quality	AMI Data Enablement Roadmap

Monitor Asset Health (voltage anomalies)	AMI Data Enablement Roadmap
More information and control - Billing Alerts	AMI Data Enablement Roadmap
More information and control - Customer Usage Data	Top 4 - Initiating Development – AMI Data Enablement Roadmap
More information and control - In Home Displays and Smart Devices	Ongoing - Energy Efficiency
Outage Management - Customer Communication	AMI Data Enablement Roadmap
Outage Management - Detection	Top 4 - Initiating Development – AMI Data Enablement Roadmap
Outage management - Nested Outages	AMI Data Enablement Roadmap
Power Quality / Voltage Compliance / Real-time Operating Conditions	Ongoing - ADMS
Predictive Analytics for Operations	AMI Data Enablement Roadmap
Remote Connect and Disconnect	Technical Functionality Complete
Solar PV - Customer Billing and Utility Planning	AMI Data Enablement Roadmap
Support Non-Wires Solutions	AMI Data Enablement Roadmap
Transformer Mapping / Phase Identification / Switching Analysis	AMI Data Enablement Roadmap
Volt/VAR Optimization	Ongoing - Grid Mod Roadmap

What's next

Business Case Development

The Grid Modernization team will work with stakeholders from the working group, in addition to new use case specific subject experts, throughout the summer and fall 2020 to develop business cases for the four high priority use cases. Subject matter experts will provide input to refine the use cases and the Grid Modernization team will help facilitate the requirements gathering process and document the outcomes. The business case development process will help determine a path forward for each of these use cases through discussion of the following topics: refining the definition of and scope of the use case, documenting the need and benefits, estimating costs and timeline, and identifying risks and alternatives.

In addition, there will be ongoing coordination with the groups that are working on the ongoing and indevelopment use cases independently of this group. Throughout the process the Grid Modernization team will share updates with the larger working group as use cases are developed and as the AMI Data Enablement road map evolves.

Gas Specific Use Cases

Following the identification of the four priority AMI data use cases, the Grid Modernization team discussed gas specific AMI data opportunities with the Gas Operations and Gas System Integrity ("GSI") teams. In the broader AMI and natural gas discussion, most of the gas specific opportunities are equipment or network dependent. One of the more commonly cited opportunities is the installation of methane detectors or leak detectors that can utilize the AMI network for communication. One other area of interest from the Gas Operations side was overall consolidation of communication devices that could potentially utilize the AMI network. Both of these opportunities are not AMI data specific (rather hardware and network specific) and were not considered near-term high priority uses by the Gas Operations team. Moving forward, they will be coordinated in conjunction with the AMI Data Use Case Roadmap.

The GSI team is primarily interested in the increased granularity of data and also the potential for new data types to such as temperature or pressure to support gas quality, demand response, and planning models. Moving forward, the Grid Modernization team will continue to support the GSI team's efforts to analyze and utilize the AMI gas data. As the GSI team participates in the MAR development process and has improved access to AMI gas data, the Grid Modernization team will help document, roadmap, and support any gas specific AMI data use cases that are identified.

Future Data Enhancements

For the use case evaluation process, the "minimum viable data" to support any given use case was assumed to simplify the scoring process and establish baseline data requirements to initiate AMI data use cases. Use cases that have a wide range of implementation options (i.e., simple vs. advanced) were scored based on the most straightforward implementation scenario. For example, Electric Vehicle Planning and Integration was scored under the assumption that 15-minute interval data with a 1 day lag can support better planning and incentive development. More advanced options (e.g., providing near real time data to customers or managed charging) should be considered as a future state of this use case, but this more advanced application of AMI data to support EV programs was not the basis for scoring at this time. Table 8 outlines use cases that had distinct future data needs that were identified in the stakeholder interviews. Most of the future data enhancements identified make use of "near real time" data even if it is not required today.

Use Case	Minimum Data Collection	Minimum Data Loading Frequency	Future Data Needs
DR	15-minute kWh	1 day lag ok	near-real time
PV	15-minute kWh - consumption and production	Monthly	near-real time
CapacityPlan	15-minute kWh	Monthly	kVa data
OpsAnalytics	15-minute voltage	1 day lag ok	near-real time
CustomerUsageData	15-minute kWh	1 day lag ok	near-real time
AssetHealth	15 minute voltage	1 day lag ok	near-real time
EV	15-minute kWh	Monthly	near-real time
CustomizedEngagement	15-minute kWh	1 day lag ok	near-real time data; potentially 5-minute data and voltage/current

Table 8 - Future AMI Data Enhancement Considerations

LoadDisagg	15-minute kWh	1 day lag ok	near-real time; potentially in-device connection to AMI network (Zigbee)
Battery	15-minute kwh	Monthly	near-real time; potentially voltage/current data
RatesPricing	15-minute kWh	1 day lag ok	near-real time
PowerQuality	15-minute data	1 day lag ok	near-real time; kVa data
FraudDetect	Daily kWh (in the future 15-minute kWh), meter events/flags (power up/down events)	1 day lag ok	tilt/tamper meter events

The potential data enhancements will be discussed as part of the ongoing AMI Alliance, which acts as a clearing house for proposed changes related to business impacts. This collective alliance of business and information technology members meets regularly to discuss business requests for changes of the AMI solution and safeguards and grows the value of the AMI program at PSE.

The AMI Data Enablement roadmap will continue refinement and the above documentation serves as a living document that will be updated to reflect changing technologies, tools, priorities, and needs at PSE.

Appendix

Table 9 - Participant List

Name	Role	Team	
Jay Creech	Group Lead	Grid Modernization Strategy and Enablement	
Elaine Markham	Group Advisor	Grid Modernization Strategy and Enablement	
Kindra Bregg	Participant, Completed Use Case Evaluations	Customer Solutions – Billing and Payment	
Theresa Burch	Completed Use Case Evaluations	Customer Solutions – Billing and Payment	
Sue Cagampang	Participant, Completed Use Case Evaluations	Distribution System Planning	
Gamze Cetken	Participant	Data Enablement and Enrichment	
Chakri Damidi	Participant	Data Enablement and Enrichment	
Chhandita Das	Participant	Rates and Cost of Service	
Rachelle Dillard	Participant, Completed Use Case Evaluations	Energy Efficiency – Residential Energy Management	
Kevin Gowan	Participant, Completed Use Case Evaluations	System Planning - Asset Management	
Sarah Haroldsen	Participant, Completed Use Case Evaluations	Electric System Operations - ADMS	
Adam Harrison	Participant, Completed Use Case Evaluations	Electric System Operations - ADMS IT	
Birud Jhaveri	Participant	Rates & Regulatory Affairs	
Paul Johnson	Participant	Amazon Web Services/Platform of Insights IT Architecture	
Srini Kalmikonda	Participant	Data Enablement and Enrichment	
Karen Koch	Participant	Communications Initiatives	
Chad Larson	Participant, Completed Use Case Evaluations	Electric System Operations	
Claire Locke	Participant, Completed Use Case Evaluations	Strategic Customer Insights	
Therese Miranda-	Participant, Completed Use		
Blackney	Case Evaluations	New Product Development	
Lorin Molander	Participant, Completed Use Case Evaluations	Load Forecasting	
Patrick Moore	Participant, Completed Use Case Evaluations	Customer Care - Performance Quality	
Ani Mukhopadhyay	Participant	Data Enablement and Enrichment	
Brian Nguyen	Participant	Meter Engineering	
Ben Pelkey	Participant, Completed Use Case Evaluations	Energy Advisors	
Taylor Pitts	Participant, Completed Use Case Evaluations	Energy Efficiency – Business Energy Management	

Valerie Poole	Participant	Meter Data Management System
Allison Sains	Participant	Meter Data Management System
Will Spencer	Participant	Data Enablement and Enrichment
Louis Tibbs	Participant, Completed Use Case Evaluations	System Protection, Automation, Control
Adam Van Assche	Participant, Completed Use Case Evaluations	Customer Solutions – Journey Management
Patrick Weaver	Participant	Energy Efficiency – Residential Energy Management

Table 10 - Commercial and Industrial Meter Load Profile Channels

Delivered kWh	Total kVAh Phasor	Voltage Sag Phase A	Delivered dVA RMS
Received kWh	Q1 kVAh Phasor	Voltage Sag Phase B	Received dVA RMS
Total kWh	Q2 kVAh Phasor	Voltage Sag Phase C	Total kVA RMS
Q1 kWh	Q3 kVAh Phasor	Voltage Sag Any Phase	Q1 kVA RMS
Q2 kWh	Q4 kVAh Phasor	Voltage Swell Phase A	Q2 kVA RMS
Q3 kWh	Delivered kVArh Phasor	Voltage Swell Phase B	Q3 kVA RMS
Q4 kWh	Received kVArh Phasor	Voltage Swell Phase C	Q4 kVA RMS
Delivered kVarh	Total kVArh Phasor	Voltage Swell Any Phase	Delivered kVA Phasor
Received kVarh	Q1 kVArh Phasor	Temperature (Degrees C)	Received kVA Phasor
Total kVarh	Q2 kVArh Phasor	Delivered kW	Total kVA Phasor
Q1 kVarh RMS	Q3 kVArh Phasor	Received kW	Q1 kVA Phasor
Q2 kVarh RMS	Q4 kVArh Phasor	Total kW	Q2 kVA Phasor
Q3 kVarh RMS	Phase A RMS Volts	Q1 kW	Q3 kVA Phasor
Q4 kVarh RMS	Phase B RMS Volts	Q2 kW	Q4 kVA Phasor
Delivered kVAh RMS	Phase C RMS Volts	Q3 kW	Delivered kVAr Phasor
Received kVAh RMS	Phase A RMS Amps	Q4 kW	Received kVAr Phasor
Total kVAh RMS	Phase B RMS Amps	Delivered kVAr	Total kVAr Phasor
Q1 kVAh RMS	Phase C RMS Amps	Received kVAr	Q1 kVAr Phasor
Q2 kVAh RMS	Phase Neutral RMS Amps	Total kVAr	Q2 kVAr Phasor
Q3 kVAh RMS	Average Power Factor	Q1 kVAr RMS	Q3 kVAr Phasor
Q4 kVAh RMS	Frequency	Q2 kVAr RMS	Q4 kVAr Phasor
Delivered kVAh Phasor	External Input 1	Q3 kVAr RMS	
Received kVAh Phasor	External Input 2	Q4 kVAr RMS	

Table 11 - Residential Meter Load Profile Channels

FOCUS AX and AXe Channels			
+kWh	-kWh		
V2h/Vh Ph. A	V2h/Vh Ph. B		
V2h/Vh Ph. C	I2/Ih Ph. A		
I2/Ih Ph. B	I2/Ih Ph. C		
Sag V Ph. A*	Sag V Ph. B*		
Sag V Ph. C*	Swell V Ph. A*		
Swell V Ph. B*	Swell V Ph. C*		
Sag V Any Ph. *	Swell V Any Ph*		
Delta Temperature	Temperature		
Frequency	Delivered kVARh		
Received kVARh	Delivered kVAh		
Received kVAh			

*Voltage Sags and Swells for each phase use selectable thresholds.

Table 12 - Data platforms and tools overview

Platform or Tool	Used By	Used For	Status
Synergi	Distribution Planning	To support power flow modeling	In use
PI ProcessBook	Distribution Planning, Plant Technical Services	To view electric distribution system data for operational areas; Playback data to analyze events	In use, could be supplemented or replaced by GridCure
LoadSEER	Distribution Planning, Grid Modernization	To provide distribution planning and DER tools with automated circuit planning scenario capabilities and load shape forecasts	In procurement process
GridCure	Asset Management, Plant Technical Services	To produce interactive asset health dashboards and actionable insights for the transformer population	In pilot evaluation phase
ADMS	Electric System Operations	To provide tools to monitor and control our distribution network in real time	In development

Load Forecasting Daily Requirements EDW Request	Load Forecasting and Energy Efficiency	To provide a database of daily usage data by meter	In use; Ad-hoc solution
Meter Analytical Record ("MAR")	All PSE	To provide 15-minute electric and gas interval data in an consistent and easy to use format	In Development
Platform or Tool	Used By	End Use	Status
AWS/Data Lake	IT	To store unstructured and structured data in the cloud	In use
Platform of Insights/SAP HANA	All PSE (primarily Customer Insights currently)	To serve as the data virtualization platform that connects data sources from across PSE	In use with additional enhancements planned
Power BI/SAP Hana Studio/Data Science Server	All PSE (primarily Customer Insights currently)	To provide end-user tools to analyze and present data in the Platform of Insights	In use with additional enhancements planned
Data Raker	Revenue Protection, Billing Performance, Customer Insights, Load Forecasting	To provide an internally platform to view, research and analyze meter data	In use with internal replacement in development
Meter Analytics Solution ("MAS")	All PSE	To replace Data Raker with an in-house solution that integrates meter data and leverages new analytical capabilities established in the Platform of Insights	In development
OPOWER	Energy Efficiency	To support customer communications including Home Energy Reports and usage variation alerts	In use, contract expires fall 2020

MDL ("Meter Data Link")	Energy Efficiency	To serve as an internal meter data tool to view and research meter history	In use
My Data	Energy Efficiency	To provide a customer-facing tool for compliance for Energy Star Portfolio Manager	In use, replacement planned
My Data Manager	Energy Efficiency	To provide a customer-facing data platform for commercial/industrial customers to view usage and billing data	In use, replacement planned

Table 13 - AMI Data Use Case Descriptions

Asset Health (utilization factor) -	Transformer Load Management can use additional AMR/AMI
Under and Over Loaded	system data to estimate the load on service transformers with
Transformers	much greater precision. TLM will be able to identify
	transformers that are at risk of failure due to overload, and the
	secondary division of a distribution transformer.
Battery Incentive & Management	During the EMI Consulting-led ideation workshop, participants
	noted how important backup generation is to PSE customers,
	how PSE lacks visibility into whether customers have onsite
	backup generation such as a generator or an electric battery,
	and how useful it would be if PSE could control batteries.
Bill Payment - Automated or Pre-	Pre-pay billing programs reduce billing fluctuations,
Paid	unanticipated high electric bills, and service disruptions for
	customers on pre-pay programs by communicating usage on
	regular intervals
Capacity Planning / Sizing Assets	With AMI, utilities can collect specific customer usage data at
	the daily, hourly, 15-minute level with high levels of accuracy to
	improve previously used general monthly load profiles to
	forecast future load and plan future capacity.
Controllable Customer Resources /	Control technologies include devices such as programmable
Smart Consumer Devices	communicating thermostats (PCTs) and direct load control
	(DLC) devices that utilities and customers use to automatically
	control customers' heating and cooling systems or other
	energy-intensive devices. In addition, home area networks
	(HAN) and energy management systems can be installed to
	automatically control appliances in response to price signals,
	load conditions, or pre-set preferences.
Customer Load Disaggregation	AMI can help utilities identify discrete (behind the meter)
	energy loads within homes or businesses. There are several
	new approaches to energy disaggregation and behind the

	meter data analytics that vary based on the granularity of the
	data that is accessible, how quickly the data can be analyzed,
	and the depth of historical records to draw from: Landis+Gyr
	and Sense utilize real-time and high-resolution disaggregation;
	Itron and Bidgely mine historical data for personalized insights.
Customized Engagement around	AMI data enables utilities to customize and target solutions to
Products/Services	groups of residential and business customers based on their
	energy usage, behaviors, and preferences.
Demand Response / Demand	Analysis of AMI data can support demand management
Management	programs throughout their lifecycle. The analysis becomes a
	part of program planning, implementation, and evaluation. AMI
	meters could support real time energy consumption data
	sharing or on-demand meter readings to support customer
	participation.
Designing Rate Programs / Pricing	Time-based rates and incentive programs encourage customers
	to reduce electricity use during times of peak demand through
	price signals or rebates. These programs should be easy for
	customers to understand and compare pricing options while
	meeting current and future utility needs.
Distribution Automation	From a network perspective, when utilities are evaluating AMI
	and plan to leverage the AMI for distribution automation
	application, they also must evaluate the suitability of the
	communications architecture for current and emerging
	applications. Please note this is being considered as part of a
	separate initiative. This working group is focused on AMI Data
	Enablement - The implications for our group are focused on
	how much of the network bandwidth (if any) should be
	reserved for this use case.
Energy Efficiency Program	AMI data can support energy efficiency program planning,
Optimization	implementation, and evaluation to help utilities and program
	implementers to easily and efficiently maximize the
	effectiveness of their programs.
EV Planning and Integration	AMI provides accurate time-stamping of energy consumption
	information that can help utilities better integrate EVs that will
	have large impacts on the size and timing of electricity demand
	as the market for EVs continues to grow.
Grid Reliability / renewables and	Real-time visibility and granular data help utilities manage the
DERs integration / Hosting	challenge of increasingly complex power flows as more
Capacity Analysis	intermittent generation is added and the integration of EVs and
	DERs such as rooftop solar and energy storage systems
Identify customer-owned DER	AMI meters can help utilities identify customer-owned DERs
	(e.g., EV's, Storage, Solar PV systems) and understand the
	Impacts of customer-owned systems
Identity Unsate Working	AMI can help identify downed live conductors and unregistered

Improved Bill Generation	AMI and billing systems generate more consistent and accurate
	bills automatically, with fewer recording errors and customer
	complaints
Improved Customer Engagement	AMI Data helps utilities personalize communications and the
with Additional Data	products and services, and with more information for customer
	service rens utilities can better resolve calls and improve
	customer satisfaction
Improved Customer Safety	AMI data can beln improve customer safety by belning identify
	unregistered PV installations/code violations, downed live
	conductors bested customer papels (sockets using
	temperature data to belo with fire prevention, and belo
	determine fire caused outages using temperature data
Lowersging the Network (SCADA	The AMI communication network can be loweraged to provide
Leveraging the Network / SCADA	two way communication betwoon control contor and
	distributed concerns controllers and switches. Often times these
	distributed sensors, controllers and switches. Often times these
	feeder devices. This sould also include accommunicating with substations and
	reeder devices. This could also include communicating with
	smart inverters, smart street lighting, integrating water meters
	I his working group is focused on Aivii Data Enablement - The
	implications for our group are focused on how much of the
	network bandwidth (if any) should be reserved for this use
	case.
Load Forecasting	Granular interval data improves load modeling / load
	forecasting, projected load growth, and helps better predict risk
	areas, and adjust distribution plans. Enables PSE to track actual
	energy consumption for sub-groups of customers (e.g.,
	customer class and rate schedule) to estimate impacts of
	weather patterns, fluctuations in the economy, and any other
	policy or phenomenon (e.g., COVID-19) that impact the
	Company's financial outlook.
Meter Ping Functionality	The meter ping functionality can determine the energized
	status of the meter. Utilities can use it in response to a
	customer call to determine if an outage is a customer issue (i.e.,
	a tripped breaker) or system issue.
Metering Issues -Theft and Fraud	AMI meters can help detect instances of meter tampering,
Detection / Meter Failures	which indicate potential cases of electricity theft. Many utilities
	have systems that issue alarms or notifications when
	irregularities in consumption activity are identified.
Model Validation / Improved Data	Smart meters provide information (i.e., usage, voltage,
Quality	temperature, etc.) on the operational parameters of the
	distribution grid. Voltage data is being used in many activities
	including validating primary circuit models, sizing transformers,
	identifying over or under loaded transformers, validating
	demand response participation, improving power quality and
	increasing system reliability. With AMI, estimated reads have
	virtually disappeared. Experienced utilities advise that you

	collect as much data as you can from the start—even if you are
	not planning to use it.
Momentary Outages / Power	AMI integrated with OMS can help operators gain advanced
Quality	visibility to certain outage conditions and enable better
	identification and tracking of momentary outages and power
	quality issues
Monitor Asset Health (voltage	Analyzing the meter data, pairing it with other data, and using
anomalies)	analytics to find anomalies in the data that might otherwise be
	"hidden" is allowing utilities to diagnose system issues and
	proactively fix problems before an outage occurs or the
	customer notices an issue. Utilities are also able to use the data
	to look at recurring problems and better determine the cause
More information and control -	High bill alerts help customers track their energy usage and
Billing Alerts	costs and additional data for high bill research that helps
	customers tie behavior to costs and make changes that can
	lower their bill.
More information and control -	Web portals and apps can provide AMI meter data to empower
Customer Aggregate Usage Data	customers to understand their usage patterns and find
	opportunities to lower their energy costs.
More information and control - In	In home displays can provide real-time curated data for
Home Displays and other Smart	measurement and verification along with energy-focused
Devices	customer engagement. The functionality of IHDs can be
	supplemented or replaced by customer portals and custom
	energy apps.
Outage Management - Customer	AMI systems can utilities proactively communicate with
Communication	customers so they do not have to call in to report an outage.
	Utilities can more accurately determine the location of outages
	and dispatch crews more efficiently. Utilities can also provide
	updates and provide more complete restorations as crews can
	verify that the restoration is complete before moving to
	another area including detecting "nested" outages.
Outage Management - Detection	AMI's last gasp functionality can let the utility know there is an
	outage and utilities can verify outages through meter pings.
	Utilities can provide outage updates and proactive outage
	notifications to customers; Pairing AMI data with other data
	from the outage management system (OMS) can help utilities
	predict the location of the failure so they can send the crew to
	the location, helping to minimize the outage duration.
Outage management - Nested	Utilities can ping to all the meters or to meters in a given area.
Outages	This is especially helpful in identifying smaller outages nested
	within larger outages so crews can verify restoration is
	complete before leaving an area more complete restorations.
	Crews can verify that the restoration is complete before moving
	to another area including detecting "nested" outages.
Power Quality / Voltage	The accurate voltage information along a circuit that AMI
Compliance / Real-time Operating	provides gives utilities data that can help them to more
Conditions	precisely manage distribution voltages, troubleshoot power

	quality issues, and evaluate switching scenarios. AMI can also be used as a system-wide voltage monitoring program to validate secondary voltage range compliance or evaluate the impact of DERs
Predictive Analytics for Operations	Using outage data (data, time, momentary/sustained, cause, location) and weather/storm data models to predictively analyze expected systems and customer impacts.
Remote Connect and Disconnect	AMI also enables remote connections and disconnections and on-demand, out-of-cycle meter readings. This functionality helps support changes in occupancy, reoccurring non-payment issues, and prepaid service offerings. In cases of emergency, the remote service switch may be used to support firefighters and other first responders.
Solar PV - Customer Billing and Utility Planning	Utilities can utilize AMI data to help customers evaluate rooftop solar options by providing tools that analyze AMI recorded energy usage history and rate information. Utilities can also utilize AMI to help track data for electricity delivered to local distribution grids through net metering mechanisms.
Support Non-Wires Solutions	Better data and improved models for assessing system conditions and predicting demand impacts and energy savings levels can help identify where customer DER programs and demand-side solutions can support non-wires solutions
Transformer Mapping / Phase Identification / Switching Analysis	The accurate voltage information along a circuit that AMI provides gives utilities data that can help them to more precisely manage distribution voltages, troubleshoot power quality issues, and evaluate switching scenarios. With AMI voltage data, utilities have actual voltage measurements to validate the primary circuit models.
Volt/VAR Optimization	Managing voltages to save energy and reduce peak-driven strains on the grid isn't a new idea. With the ability to measure voltage at all of the endpoints, smart meters can be a key tool in the process.

Figure 5 - Evaluation Flow Chart