

February 04, 2020

Vista Work Order No. 1903649

Ms. Delaney Peterson Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

Dear Ms. Peterson,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 15, 2019 under your Project Name 'Gasco PDI'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1903649 Case Narrative

Sample Condition on Receipt:

One sediment sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613B

This sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-5MS GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13
Extraction Information	16
Sample Data - EPA Method 1613	23
Continuing Calibration	93
Initial Calibration	178

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1903649-01	PDI-016SC-B-06-08-191009	09-Oct-19 09:41	15-Oct-19 08:51	Amber Glass, 120 mL

Client Project: Gasco PDI

ANALYTICAL RESULTS

Sample ID: Method	d Blank						EPA Me	thod 1613B
Matrix: Solid Sample Size: 10.0		QC Batch: B0A0016 Date Extracted: 05-Jan-2020	10:28		ab Sample: B0A0016-BLK1 ate Analyzed : 30-Jan-20 18:21		MS	
Analyte Conc.	. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.241		IS	13C-2,3,7,8-TCDD	89.9	25 - 164	
1,2,3,7,8-PeCDD	ND	0.109			13C-1,2,3,7,8-PeCDD	102	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.124			13C-1,2,3,4,7,8-HxCDD	80.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.128			13C-1,2,3,6,7,8-HxCDD	80.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.133			13C-1,2,3,7,8,9-HxCDD	79.8	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.171			13C-1,2,3,4,6,7,8-HpCDD	102	23 - 140	
OCDD	ND	0.276			13C-OCDD	96.3	17 - 157	
2,3,7,8-TCDF	ND	0.116			13C-2,3,7,8-TCDF	82.2	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0770			13C-1,2,3,7,8-PeCDF	91.8	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0750			13C-2,3,4,7,8-PeCDF	87.8	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.129			13C-1,2,3,4,7,8-HxCDF	94.5	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.127			13C-1,2,3,6,7,8-HxCDF	90.0	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.141			13C-2,3,4,6,7,8-HxCDF	85.0	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0290			13C-1,2,3,7,8,9-HxCDF	90.7	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.151			13C-1,2,3,4,6,7,8-HpCDF	105	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.141			13C-1,2,3,4,7,8,9-HpCDF	112	26 - 138	
OCDF	ND	0.236			13C-OCDF	109	17 - 157	
				CRS	37Cl-2,3,7,8-TCDD	94.9	35 - 197	
					Toxic Equivalent Quotient (T	EQ) Data (pg/g	dry wt)	
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	0.110	0.289						
Total PeCDD	ND	0.109						
Total HxCDD	ND	0.133						
Total HpCDD	ND	0.171						
Total TCDF	ND	0.269						
Total PeCDF	ND	0.0440						
Total HxCDF	ND	0.0290						
Total HpCDF	ND	0.151						

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: OPR								EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g			B0A0016 05-Jan-2020	10:28		Lab Sample:B0A0016-BS1Date Analyzed:30-Jan-20 16:00	Column: ZB-5MS	
Analyte	Amt Found (pg/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	23.0	20.0	115	67 - 158	IS	13C-2,3,7,8-TCDD	101	20 - 175
1,2,3,7,8-PeCDD	104	100	104	70 - 142		13C-1,2,3,7,8-PeCDD	115	21 - 227
1,2,3,4,7,8-HxCDD	114	100	114	70 - 164		13C-1,2,3,4,7,8-HxCDD	84.6	21 - 193
1,2,3,6,7,8-HxCDD	117	100	117	76 - 134		13C-1,2,3,6,7,8-HxCDD	83.5	25 - 163
1,2,3,7,8,9-HxCDD	114	100	114	64 - 162		13C-1,2,3,7,8,9-HxCDD	87.7	21 - 193
1,2,3,4,6,7,8-HpCDD	118	100	118	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	107	26 - 166
OCDD	228	200	114	78 - 144		13C-OCDD	94.5	13 - 199
2,3,7,8-TCDF	26.5	20.0	133	75 - 158		13C-2,3,7,8-TCDF	86.7	22 - 152
1,2,3,7,8-PeCDF	109	100	109	80 - 134		13C-1,2,3,7,8-PeCDF	96.2	21 - 192
2,3,4,7,8-PeCDF	111	100	111	68 - 160		13C-2,3,4,7,8-PeCDF	92.8	13 - 328
1,2,3,4,7,8-HxCDF	121	100	121	72 - 134		13C-1,2,3,4,7,8-HxCDF	109	19 - 202
1,2,3,6,7,8-HxCDF	117	100	117	84 - 130		13C-1,2,3,6,7,8-HxCDF	104	21 - 159
2,3,4,6,7,8-HxCDF	120	100	120	70 - 156		13C-2,3,4,6,7,8-HxCDF	95.0	22 - 176
1,2,3,7,8,9-HxCDF	119	100	119	78 - 130		13C-1,2,3,7,8,9-HxCDF	104	17 - 205
1,2,3,4,6,7,8-HpCDF	114	100	114	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	115	21 - 158
1,2,3,4,7,8,9-HpCDF	116	100	116	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	119	20 - 186
OCDF	247	200	124	63 - 170		13C-OCDF	110	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	101	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: PDI-01	5SC-B-06-08-191009							EPA Me	thod 1613B
Project: Gasco	or QEA, LLC PDI t-2019 9:41	Sample Matrix Sampl % Sol	k: Sediment le Size: 14.4 g		Lat QC	boratory Data o Sample: 1903649-01 b Batch: B0A0016 te Analyzed : 31-Jan-20 07:01	Date Received Date Extracted 1 Column: ZB-5M	d: 05-Jan-2020	
Analyte Conc.	(pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0876			IS	13C-2,3,7,8-TCDD	96.0	25 - 164	
1,2,3,7,8-PeCDD	ND	0.0863				13C-1,2,3,7,8-PeCDD	111	25 - 181	
1,2,3,4,7,8-HxCDD	0.0751			J		13C-1,2,3,4,7,8-HxCDD	87.5	32 - 141	
1,2,3,6,7,8-HxCDD	0.142			J		13C-1,2,3,6,7,8-HxCDD	83.9	28 - 130	
1,2,3,7,8,9-HxCDD	0.260			J		13C-1,2,3,7,8,9-HxCDD	87.8	32 - 141	
1,2,3,4,6,7,8-HpCDD	2.64					13C-1,2,3,4,6,7,8-HpCDD	116	23 - 140	
OCDD	38.6					13C-OCDD	118	17 - 157	
2,3,7,8-TCDF	ND	0.0661				13C-2,3,7,8-TCDF	87.3	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0478				13C-1,2,3,7,8-PeCDF	95.8	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0458				13C-2,3,4,7,8-PeCDF	93.4	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0530				13C-1,2,3,4,7,8-HxCDF	104	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0535				13C-1,2,3,6,7,8-HxCDF	96.2	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0588				13C-2,3,4,6,7,8-HxCDF	92.7	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0751				13C-1,2,3,7,8,9-HxCDF	101	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0864				13C-1,2,3,4,6,7,8-HpCDF	116	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0807				13C-1,2,3,4,7,8,9-HpCDF	127	26 - 138	
OCDF	ND	0.0824				13C-OCDF	130	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	101	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g dry	wt)	
						TEQMinWHO2005Dioxin	0.0857		
TOTALS									
Total TCDD	1.83			В					
Total PeCDD	0.287		0.623						
Total HxCDD	3.03		3.10						
Total HpCDD	6.62								
Total TCDF	0.148								
Total PeCDF	ND	0.0478							
Total HxCDF	ND	0.0751							
Total HpCDF	ND motod dotaction limit	0.0864							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl
	ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue					
Description of Test	Method				
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B				
Dilution GC/HRMS					
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A				
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C				
by GC/HRMS					
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699				
HRGC/HRMS					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B				
GC/HRMS					
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA				
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A				

MATRIX: Drinking Water				
Description of Test	Method			
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA			
	1613/1613B			
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009			

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

K	ANCHOR DEA EEN Wenue, Suite 2600, Seattle, WA 98101	IVIR	ONME	ENTAL SA	MPLE	СН	AIN	OF CUSTODY						
	(1010), Carlo 2000, Colario, WY 30101									COC ID:		VIST1-20191009-171243		
POC:	Delaney Peterson (360-715-2707)		Project:	Gasco	o PDI				Samp	le Custodian:	CO,	SN, BJ, D	L
	1605 Cornwall Avenue, Bellinghar	Bellingham, WA 98225			Client: NW Natural			1903649	3.8°C	Lab:		VISTA - Archive		е
COC Sample Number	Field Sample ID	Sample Type	Matrix	Collecte	ed Time	# Containers	Lab QC*	Test Request	<u>~</u>		Method		TAT**	Preservative
001	PDI-016SC-B-06-08-191009	N	SE	10/09/2019	9:41	1								
								Archive (VISTA)- (-	Eichd Facili	ty)	ARCHIVE		-1	-10°C
								SNO900	+19 11574	1			4	J

NISTA NU-IC/12/19

Comment:					······
at and a second s					
Relinquished By:	Received By:				
Signature		Relinquished By:	Received By:	Relinguished By:	Received By:
Signature	Signature	Signature	Signature	Signature	Signature
Print Name C. OREICO	Print Name, 123 Jen Cana,	Print Name	Print Name	Print Name	Print Name
Company, AQ	Company VAL	Company	Company	Company	Company
Date/Time	Date/Time (0/15/19 08:51	Date/Time	Date/Time	Date/Time	Date/Time

Date Printed: 10/9/2019 Work Order 1903649 * Lab QC Requested for sample when box is checked ** TAT = Turn Around Time in DAYS # POC = Project Point of Contact

Page 1 of 1 Page 13 of 301

Sample Log-In Checklist

		100	12 1110					Page # _	1	of _]	_
Vista Work Orde	r #:	141) 2644		·····			_TAT	Sta		
Samples	Date/Tim	е	C.	Initials:				ocation:	WR-2		
Arrival:	10 15 19	0851		MUS			Shelf/Rack: N				
Delivered By:	FedÊx	UPS	On Tra	ic	GSO	DHI	-	Hand Deliver		Oth	ner
Preservation:	e	Blue Ice				Dry Ice N					
Temp °C: ဒ,၉	(uncorr	ected)	Probe used: Y $I(N)$ Th						TD	7	
Temp °C: 3.6	(correct	ed)	Probe use	ed:	Y / N)	TI	nermome	ter ID:	TR-	7
			•								
									YES	NO	NA
Shipping Contain	er(s) Intact	?							1		
Shipping Custody	hipping Custody Seals Intact?							1			
Airbill 4 of 1								\checkmark			
Chinning Decume	intetion De								./		

Shipping Docume	entation Pres	ent?				\checkmark					
Shipping Contain	turn	Disp	oose								
Chain of Custody / Sample Documentation Present? CUC present in other coder											
Chain of Custody	Chain of Custody / Sample Documentation Complete?										
Holding Time Acc	Holding Time Acceptable?										
	Date/Time		Initials:	Locat	ion:	WF-2					
Logged In: 10/16/19 1009 WUS Shelf/Rack: D-1											
COC Anomaly/Sa	COC Anomaly/Sample Acceptance Form completed?										

Comments:

CoC/Label Reconciliation Report WO# 1903649

	Label II			Label	Sampled			
LabNumber CoC Sample ID	matches COCID		Sampled	Sampled matches	doesn't match	Container	Container	Sample BaseMatrix Comments
4 1903649-01 A PDI-016SC-B-06-08-191009	Ø	001	09-Oct-19 09:4	/	materi	Amber Glass, 120 mL	Correct	Solid

	Yes	No	NA	Comments:
Sample Container Intact?	1			
Sample Custody Seals Intact?			1	
Adequate Sample Volume?	1			
Preservation Documented: Na2S2O3 Trizma None Other		V	1	
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			1	"4" = cooler 4

Verifed by/Date: HOG 10/17/19

EXTRACTION INFORMATION

Process Sheet

Workorder: 1903649

Prep Expiration: 2020-10-08 Client: Anchor QEA, LLC

•

• •

* <u>*</u> •

Method: 1613 Full List Matrix: Solid Client Matrix: Sediment Also run: Percent Solids Workorder Due:03-Jan-20 00:00

TAT: 80

Prep Batch:	BÛAO	016

Prep Data Entered: <u>RP 01-09-20</u> Data and Initials

. .

		Initial Sequence: <u>SOA6068</u>						
LabSampleID	Recon ClientSampleID	Date Received	Location	Comments				
1903649-01	PDI-016SC-B-06-08-191009	15-Oct-19 08:51	WF-2 D-1					

WO Comments: Contract Dioxin - 10g (dry weight)	narasan (dir. j medgilad).	
Pre-Prep Check Out: <u><i>K</i> 12125119</u> Pre-Prep Check In: <u><i>K</i> 12125/14</u>	Prep Check Out: DF 01/03/20 Prep Check In: PF 01/05/20	Prep Reconciled Initale/Date: <u>% re.ht3/14</u> Spike Reconciled Initale/Date: <u>PFD1051L0</u> VialBox(D: <u>IKEA</u>

Page 1 of 1

.

; .

PREPARATION BENCH SHEET

Matrix: Solid

B0A0016

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

	VISTA	G	Sample		S/NS		CRS		AP		BSG		AA		lorisil	RS	
с	Sample ID	Eqv	Amt.		M/WIT ATE		EM/WIT DATE		HEM/ DATE		HEM/ DATE		HEM/ DATE		HEM/ DATE	CHEM/ DAT	
_			(g)	<u>ا</u>						-						1	2
	B0A0016-BLK1	14	(10.00)	₽Ŧ Į	1105119	00 7	-01/06/20	NJ.	01(07/19	<u>ao</u> _	01/07/20	0.0	01/07/20	a0	01/07/20	BUT	01(07/2
	B0A0016-BS1	1	(10.00)	-	Γ	-	- 1		Ĵ		τ΄΄		Τ΄΄				-
	B0A0016-DUP1 1903647-04	15.36	15.46					N	<u>/A</u>								
	B0A0016-DUP2 1904210-09	10.89	11.00														
	1903647-01	10.93	10.99						9		•						
	1903647-02	1899	18.90					M O	1/07/20								
	1903647-03	17.31	17.58														
	1903647-04	15,36	15.56						1								
	1903647-05	1204	12.18					N	A						,		
	1903649-01	14.3	14.36											A	01/07/20		
	1904210-03	11.74	11.96														
	1904210-04	11.95	11.95														
	1904210-05		12.97					,									
	1904210-06	1262	1235					EN T	01/07/20]	
	1904210-07	15,10	13.50		/	The second	<u> </u>	N	A		V	J	'		5	N	
IS Na	ume V(i)	NS Name	VB		RS Name	(\mathbf{e})	RS Name		4 5)	Cycle	Time		UN (SOX)	SDS	Check O		
	D/F 1 ac 1902, 10 AL		DE1913,1			1602,104		9 1 160	\smile			_	bluene		Chemist	ut: Date:DF	01/05/20
			,		CB	•			,	ovos	sha la	Other			Check In Chemist	: Date: <u>⊅</u> F	orlosiza
					м					13.	-0		me(s) <u>20</u>	ML		ID: HKM	
										0106			୯				
	nomtas	_				_		_		- <u>(</u>	/5						

Comments:

1 = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

3 = Sample poured through Na2SO4 to remove water 4 = Precipitate present at Final Volume

Work Order 1903649

5 = Sample homogenized in secondary container

6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

л. . .

.

PREPARATION BENCH SHEET

Matrix: Solid

B0A0016

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

Prep Date/Time: 05-Jan-20 10:28

										L
	VISTA	G	Sample	IS/NS	CRS	AP	ABSG	AA	Florisil	RS
c	Sample ID	Eqv	Amt.	CHEM/WIT	CHEM/WIT	CHEM/	CHEM/	CHEM/	CHEM/	CHEM/WIT
			(g)	DATE	DATE	DATE	DATE	DATE	DATE	DATE
	1904210-08	13.51	13.69	DF Mm 201105/19	0,0,08 0104/20	N/A	Q0 01/07 20	90 01/07/20	A 01/07/20	10 01/07/20
	1904210-09	10.89	10.92	T	T		Ť,			ið til
	1904210-10	10,84	10.88							
	1904210-11	10.86	10.91	4	•			<u> </u>	<u> </u>	

* 1 01/07/20

IS Name	~ 0	NS Name V(S)	CRS Name	RS Name	Cycle Time	APP: SEFUN SOX SDS	Check Out: Chemist/Date: D+ 01/05/20
PCDD/F	IACIAOZIUML	PCDD/F 1951913, 10mL	PCDD/F 1911002,194	LPCDD/F 191103 10ml	Start Date/Time	SOLV: TOLUCAR	
РСВ		PCB	PCB	РСВ	01/05/19	Other NA	Check In: Chemist/Date: DFOLOS
					1358	Final Volume(s)	Balance ID: HKMS-8
PAH		PAH	PAH	РАН			
					01 06 19	<u>_Ciy</u>	

5 = Sample homogenized in secondary container

6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

Comments:

1 = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

3 = Sample poured through Na2SO4 to remove water

4 = Precipitate present at Final Volume Work Order 1903649

Batch: B0A0016

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1903647-01	10.99 🗸	91.46538	10.0520	20√-	- 05-Jan-20 10:28√	DFO			Sediment	1613 Full List
1903647-02	18.9 🗸	52.92818	10.0034	. 20	05-Jan-20 10:28	DFO			Sediment	1613 Full List
1903647-03	17.58	57.77414	10.1567	20	05-Jan-20 10:28	DFO			Sediment	1613 Full List
1903647-04	15.56 🗸	65.10791	10.1308	20	05-Jan-20 10:28	DFO			Sediment	1613 Full List
1903647-05	12.18	83.07155	10.1181	20	05-Jan-20 10:28	DFO			Sediment	1613 Full List
1903649-01	14.36	69.88267	10.0352	20	05-Jan-20 10:28	DFO			Sediment	1613 Full List
1904210-03	11.96 🗸	85.14285	10.1831	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-04	11.95 🗸	84.40749	10.0867	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-05	12.97 🗸	78.32167	10.1583	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-06	12.75 🗸	79.22913	10.1017	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-07	13.5	76.3116	10.3021	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-08	13.69 🗸	74.01478	10.1326	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-09	10.92 🗸	91.79105	10.0236	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-10	10.88	92.2619	10.0381	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
1904210-11	10.91 🗸	92.06963	10.0448	20	05-Jan-20 10:28	DFO			Soil	1613 Full List
B0A0016-BLK1	10			20	05-Jan-20 10:28	DFO				QC
B0A0016-BS1	10 ·			20	05-Jan-20 10:28	DFO	18F1913 v	10		QC
B0A0016-DUP1	15.46			20	05-Jan-20 10:28	DFO				QC
B0A0016-DUP2	11			20 1	05-Jan-20 10:28	/ DFO				QC

All bolded data on report verified against written benchsheet by (initial/date) RR /o1-o9-20

Printed: 1/9/2020 1:11:48PM Page 1 of 1

Work Order 1903649

Rencent Monthly Rencent Monthly Contract

D2216-90 BATCH ID B9L0066

Analyst: JC	Test Code: %Moist/%Solids	
Analyte:	Units: %	Data Entry Vertfied by: (Initial and Date) <u>[L /Z/3/</u> //9/
Dried at 110°C+/-5°C		
Oven ID: <u>01</u> 02		

Date/Time IN: Date/Time OUT Inst: HRMS-9 12/23/19 1500 12/26/19 1415

C D		D		F	G	Ħ	1			М			ρ	
				Intial and Date:	JC 12/23/19	RR 12/26/19			JC 12/23/19			NA		JC 12/23/19
Particle Size	SampiD		SampType	Pan Tare Wt. (gms)	Wet Pan and Sample Weight (g)	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Visual Inspection	Cl-	Before	pH After	Acid Added	Sample Homogenized*
	190364 <u>9-01</u>	Α	Sample	1.2700	8.9400	6.6300	5.3600	69.88	sand	NA		ŇĂ	NA	Y

*Sample homogenized in sample container unless otherwise noted.

Analyst: H	Test Code: %Moist/%Solids	Orde Entry Vertified hus
Analyte:	Units: %	Data Entry Ventfied by: (Initial and Date) <u>AIA</u>
Dried at 110°C+/-5°C Oven ID; (01) 02		

			Date/Time IN;	Date/Time OUT 12/2/2/19 14:15	-									
inst HRMS-9			12123/19	2/26/19]									
	E.		1500	19,15	2	G	H	1	K.	L	M	Ν	0	ρ
				Intial and Date:	R 12/23/19	RR 12/26/19			R 12/2	\$11	1	· .	A A	1 12/23/19
Particle Size	SampiD		SampType	Pan Tare Wt. (gms)	Wet Pan and Sample Weight (g)	RR 12/26/19 Dry Pan and Sample Weight (g) 6.63	Dry Sample Weight (g)	%Solids RawVal	Visual	Cŀ-	pH Before	pH After	Ácid Added	12/23/19 Sample Homogenized* 1
	1903649-01	A	Sample	1.13	8.94	6.63	NA	NA	STIND	1	4	A A		
	1300040-01							I+						
										1				
										–				
										—				
														_
								_						
							_			—				
							-							
			_											
		_												
										T				
													1	

*Sample homogenized in sample container unless otherwise noted.

SAMPLE DATA – EPA METHOD 1613

Quantify San Vista Analytic	nple Summary Report MassLynx 4.1 SCN815 al Laboratory		Page 1 of 2
Dataset:	U:\VG12.PRO\Results\200130R2\200130R2-6.qld		
Last Attered: Printed:	Monday, February 03, 2020 15:25:22 Pacific Standard Time Monday, February 03, 2020 15:26:39 Pacific Standard Time	GPB	02/03/2020
Method: U:\V	/G12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23	C7 0	2/04/2020

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

	# Name	Resp	RA	nly	RRF	withol	Pred.RT	RT	Pred.RRT	RR	Conc.	%Rec	OL.	EMPO
1	1 2,3,7,8-TCDD			NO	0.824	10.000	25.721		1.001				0.241	
2 .	2 1,2,3,7,8-PeCDD			NO	0.912	10.000	30.642		1.001				0.109	
3	3 1,2,3,4,7,8-HxCDD			NO	0.870	10.000	33.976		1.000				0.124	
4 1 1, 1 1	4 1,2,3,6,7,8-HxCDD			NO	0.784	10.000	34.072		1.000				0.128	
5	5 1,2,3,7,8,9-HxCDD			NO	0.798	10.000	34.383		1.001				0.133	
6	6 1,2,3,4,6,7,8-HpCDD			NO	0.737	10.000	37.896		1.000				0.171	
7	7 OCDD	6.11e2	0.68	YES	0.800	10.000	40.889	40.89	1.000	1.000	0.32141		0.208	0.276
8 '	8 2,3,7,8-TCDF	5.36e2	1.70	YES	0.588	10.000	24.832	24.76	1.001	0.998	0.17627		0.122	0.116
9	9 1,2,3,7,8-PeCDF			NO	0.826	10.000	29.376		1.001		-		0.0770	
10	10 2,3,4,7,8-PeCDF			NO	0.850	10.000	30.346		1.001				0.0750	
11	11 1,2,3,4,7,8-HxCDF			NO	0.787	10.000	33.103		1.000				0.129	
12	12 1,2,3,6,7,8-HxCDF			NO	0.720	10.000	33.241		1.000				0.127	
13	13 2,3,4,6,7,8-HxCDF			NO	0.766	10.000	33.840		1.001				0.141	
14	14 1,2,3,7,8,9-HxCDF	9.13e1	0.62	YES	0.709	10.000	34.711	34.80	1.000	1.002	0.042418		0.0978	0.0293
15	15 1,2,3,4,6,7,8-HpCDF			NO	0.732	10.000	36.494		1.001		~		0.151	
16	16 1,2,3,4,7,8,9-HpCDF			NO	0.816	10.000	38.482		1.000				0.141	
17	17 OCDF			NO	0.639	10.000	41.081		1.000				0.236	
18	18 13C-2,3,7,8-TCDD	8.01e5	0.79	NO	1.12	10.000	25.691	25.69	1.026	1.026	179.81	89.9	0.305	
10	19 13C-1,2,3,7,8-PeCDD	6.83e5	0.63	NO	0.841	10.000	30.432	30.62	1.215	1.223	203.47	102	0.339	
20	20 13C-1,2,3,4,7,8-HxCDD	6.19e5	1.26	NO	0.938	10.000	33. 966	33.97	1.014	1.014	160.75	80.4	0.325	
21 2. 000	21 13C-1,2,3,6,7,8-HxCDD	7.00e5	1.25	NO	1.07	10.000	34.066	34.07	1.017	1.017	160.04	80.0	0.286	
22	22 13C-1,2,3,7,8,9-HxCDD	6.76e5	1.25	NO	1.03	10.000	34.368	34.35	1.026	1.025	159.69	79.8	0.296	
	23 13C-1,2,3,4,6,7,8-HpCDD	5.94e5	1.05	NO	0.710	10.000	37.919	37.88	1.132	1.131	203.59	102	0.649	
25 25	24 13C-OCDD	9.51e5	0.88	NO	0.601	10.000	40.799	40.89	1.218	1.221	385.19	96.3	0.407	
25	25 13C-2,3,7,8-TCDF	1.03e6	0.78	NO	1.04	10.000	24.872	24.81	0.993	0.990	164.32	82.2	0.417	
20	26 13C-1,2,3,7,8-PeCDF	1.02e6	1.61	NO	0.917	10.000	29.205	29.35	1.166	1.172	183.59	91.8	0.504	
24	27 13C-2,3,4,7,8-PeCDF	9.63e5	1.55	NO	0.903	10.000	30.157	30.32	1.204	1.210	175.62	87.8	0.512	
	28 13C-1,2,3,4,7,8-HxCDF	6.69e5	0.51	NO	0.861	10.000	33.095	33.10	0.988	88 9.0	189.02	94.5	0.653	
	29 13C-1,2,3,6,7,8-HxCDF	7.74e5	0.52	NO	1.05	10.000	33.196	33.23	0.991	0.992	180.03	90.0	0.537	
	30 13C-2,3,4,6,7,8-HxCDF	6.60e5	0.50	NO	0.946	10.000	33.802	33.81	1.009	1.009	169.91	85.0	0.595	
S1	31 13C-1,2,3,7,8,9-HxCDF	6.07e5	0.53	NO	0.816	10.000	34.703	34.71	1.036	1.036	181.31	90.7	0.690	-

of 2

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: U:\VG12.PR0\Results\200130R2\200130R2-6.qld

Last Altered:	Monday, February 03, 2020 15:25:22 Pacific Standard Time
Printed:	Monday, February 03, 2020 15:26:39 Pacific Standard Time

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

	# Name	Resp	RA	nły	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	. 🕰 .	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	5.07e5	0.44	NO	0.589	10.000	36.445	36.46	1.088	1.088	209.37	105	0.765	
33	33 13C-1,2,3,4,7,8,9-HpCDF	4.12e5	0.43	NO	0.448	10.000	38.455	38.48	1.148	1.149	223.65	112	1.01	
34	34 13C-OCDF	1.05e6	0.86	NO	0.586	10.000	41.034	41.08	1.225	1.226	435.48	109	0.436	
35	35 37CI-2,3,7,8-TCDD	3.29e5			1.09	10.000	25.723	25.70	1.027	1.026	75.911	94.9	0.146	
36	36 13C-1,2,3,4-TCDD	7.98e5	0.80	NO	1.00	10.000	25.080	25.05	1.000	1.000	200.00	100	0.341	
37	37 13C-1,2,3,4-TCDF	1.22e6	0.78	NO	1.00	10.000	23.420	23.39	1.000	1.000	200.00	100	0.432	
38	38 13C-1,2,3,4,6,9-HxCDF	8.22e5	0.52	NO	1.00	10.000	33.520	33.50	1.000	1.000	200.00	100	0.563	
39	39 Total Tetra-Dioxins				0.824	10.000	24.620		0.000		0.10954		0.241	0.289
40	40 Total Penta-Dioxins				0.912	10.000	29.960		0.000				0.0613	
41.	41 Total Hexa-Dioxins				0.784	10.000	33.635		0.000				0.0695	
42	42 Total Hepta-Dioxins				0.737	10.000	37.640		0.000				0.0873	
43	43 Total Tetra-Furans				0.588	10.000	23.610		0.000		0.00000		0.122	0.269
44	44 1st Func. Penta-Furans				0.826	10.000	27,090		0.000				0.0576	
45	45 Total Penta-Furans				0.826	10.000	29.275		0.000		0.00000		0.0348	0.0436
46	46 Total Hexa-Furans				0.766	10.000	33.555		0.000		0.00000		0.0726	0.0293
47	47 Total Hepta-Furans				0.732	10.000	37.835		0.000				0.0768	

.

Quantify Totals Report MassLynx 4.1 SCN815

Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200130R2\200130R2-6.qld

Last Altered: Monday, February 03, 2020 15:25:22 Pacific Standard Time Printed: Monday, February 03, 2020 15:26:39 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

Tetra-Dioxins

	Name	RT	na'i Height	m2 Height	mt Resp	m2 Resp	RA my	Resp	Conc.	EMPC	DL
1.	Total Tetra-Dioxins	21.90	1.553e4	1.107e4	2.317e2	1.651e2	1.40 YES	0.000e0	0.00000	0.088559	0.241
2	Total Tetra-Dioxins	24.49	8.615e3	1.297e4	1.298e2	2.420e2	0.54 YES	0.000e0	0.00000	0.090448	0.241
3	Total Tetra-Dioxins	25.27	8.192e3	1.270e4	1.468e2	2.146e2	0.68 NO	3.614e2	0.10954	0.10954	0.241

Penta-Dioxins

Name	·	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	nły	Resp	Conc.	EMPC	DL
1												1

Hexa-Dioxins

1	Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA ny	Résp	Conc.	EMPC	DL
	1								

Hepta-Dioxins

Name	RT	mit Height	m2 Height	mt Reep	m2 Resp	RA	n/y	Reep	Conc.	EMPC	DL
1											1

Tetra-Furans

Total Tetra-Furans	87		n2 Hoight		m2 Reep	HA NY	Reap	Conte	EMPC	
Total Tetra-Furans	24.27	1.748e4	5.115e3	2.608e2	8.866e1	2.94 YES	0.000e0	0.00000	0.051600	0.122
2,3,7,8-TCDF	24.76	1.680e4	9.609e3	3.376e2	1.985e2	1.70 YES	5.361e2	0.00000	0.11553	0.122
Total Tetra-Furans	25.60	4.772e3	1.398e4	1.351e2	2.750e2	0.49 YES	0.000e0	0.00000	0.10212	0.273

Penta-Furans function 1

	ØĻ
	- 1

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200130R2\200130R2-6.qld

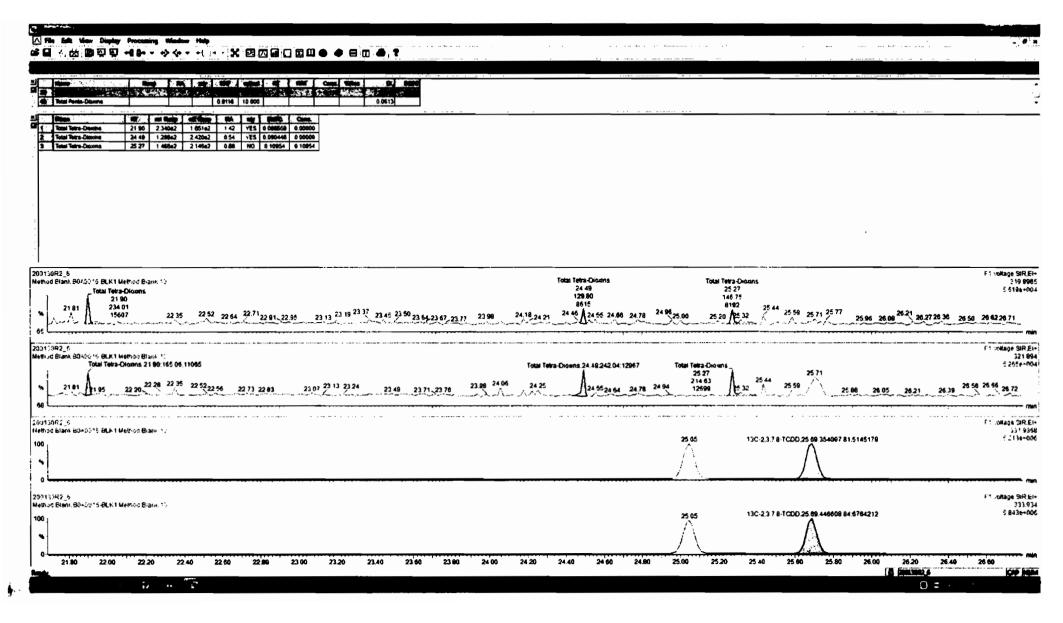
Last Altered:	Monday, February 03, 2020 15:25:22 Pacific Standard Time
Printed:	Monday, February 03, 2020 15:26:39 Pacific Standard Time

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

Penta-Furans

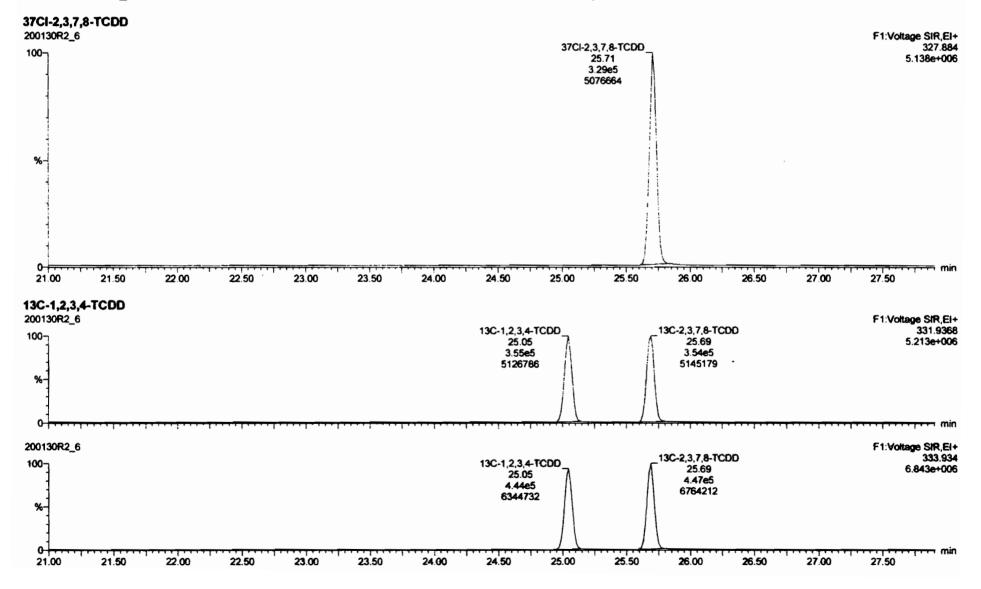
Γ	Nice	RT	m1 Height m2 Height	i mi Resp	m2 Resp	RA ny	Resp	Conc.	EMPC	DU
	Total Penta-Furans	28.03	2.157e3 3.136e3	5.410e1	7.091e1	0.76 YES	0.000e0	0.00000	0.021704	0.0348
	Total Penta-Furans	30.03	3.360e3 4.796e3	5.458e1	8.622e1	0.63 YES	0.000e0	0.00000	0.021896	0.0348

Hexa-Furans

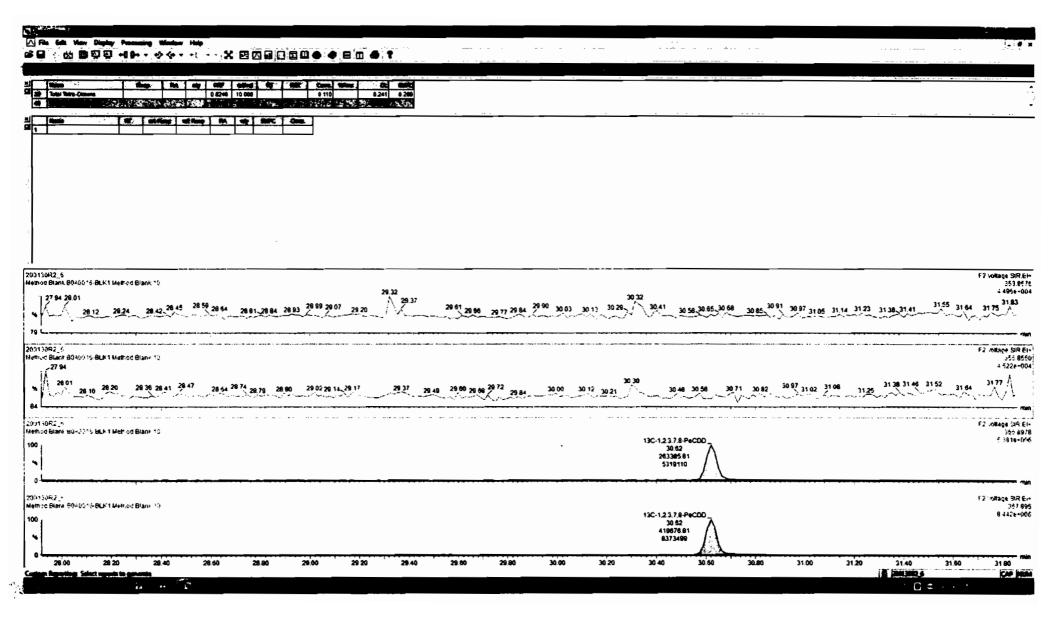

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA oly	Resp	Conc.	EMPC	DÜ
1 1,2,3,7,8,9-HxCDF	34.80	2.705e3 5.156e3	3.489e1	5.640e1	0.62 YES	9.129e1	0.00000 0	0.029289	0.0978

Hepta-Furans

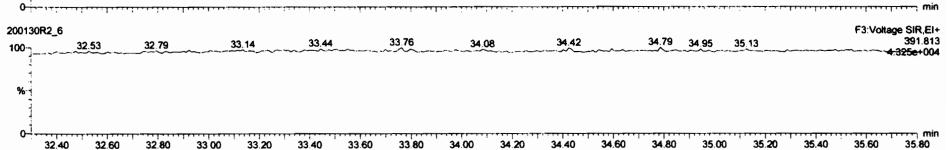
Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	nity	Resp	Conc.	EMPC	DL
1										

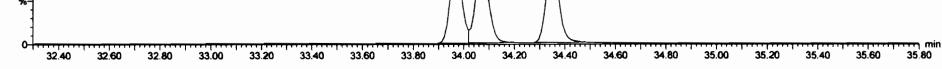

luantify Sam /ista Analytica		MassLynx 4	.1 SCN815								Page 40 of 1
ataset:	Untitled										
ast Altered: rinted:	Friday, January Friday, January										
ame: 20013(0R2 6. Date: 30-	lan-2020. Tim	e: 18:21:31, IC): B0A0016-BLK1	Method Blank	10. Descri	ption: Meth	od Blank			
3,7,8-TCDD						,					
00130R2_6	PO	n		SN	po		/	Sr)	07 440 40-0	F1:Voltage SIR, 10699 319.89
21,20, 2			23.37、	_	24.49 Total	Tetra-Dioxins	s;25.27;2.27e2	:8043	-	27.44;2.43e2; 27.10_27,1	5 6190+(
%					-hi	~	<u>Ila</u> Andra	~ <u>~</u>	26.36 26.62		unth
0			····	·····	•••			<u></u>	* * * * * * * * * *		
00130R2_6				24.49;2.	5e2;12782	Dia ia -	05 07 0 07-0	40740			F1:Vottage SIR,
00- 21.262	21.90 21.30 21.81	22.35			10tal 1624.25 24.55	letra-Dioxins	25.27;2.87e2;	12746		.72 27.19	321.8 27.35 5.265e+(
	21 50 22.00	22.50	23.00	23.50 24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50
3C-2,3,7,8-T 00130R2_6	CDD										F1:Voltage SIR,
% ***					13C-1,2,3,4- 25.05 3,55e5 5126780	Λ		13C-2,3,7,8-TC 25.69 3.54e5 5145179	DD		331.93 5.213e+0
0	••••••••••••••••	••••••••••••••••••••••••••••••••••••••			i i L		,	[u
0130R2_6								13C-2,3,7,8-TC	DD		F1:Voltage SIR, 333.9
00- 					13C-1,2,3,4- 25,05 4,44e5 634473;	Λ	\int	25.69 4.47e5 6764212			6.843e+(
1											

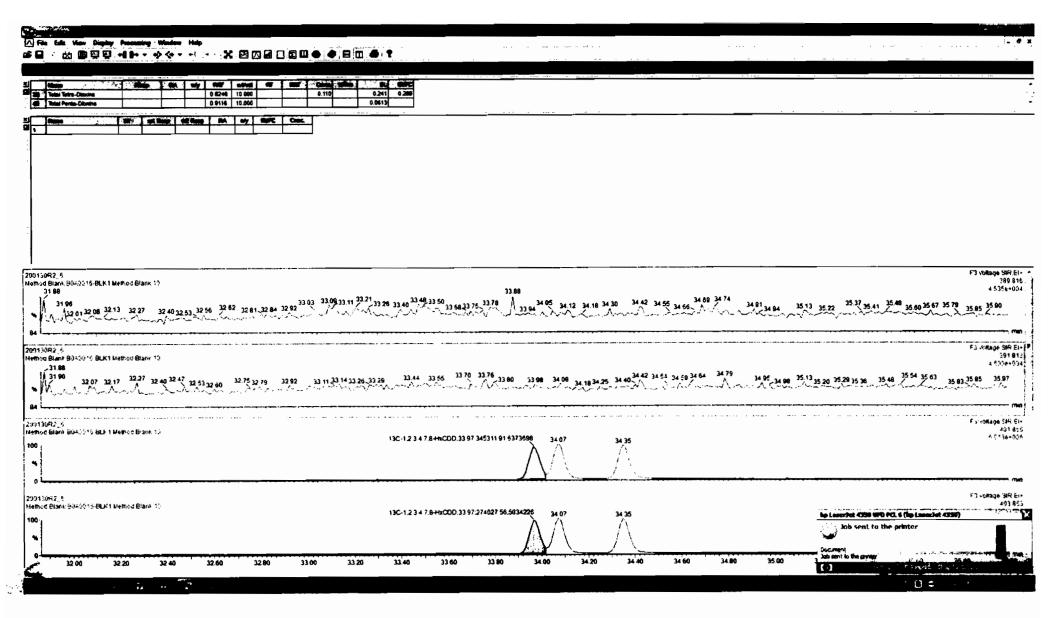
<u>`</u>



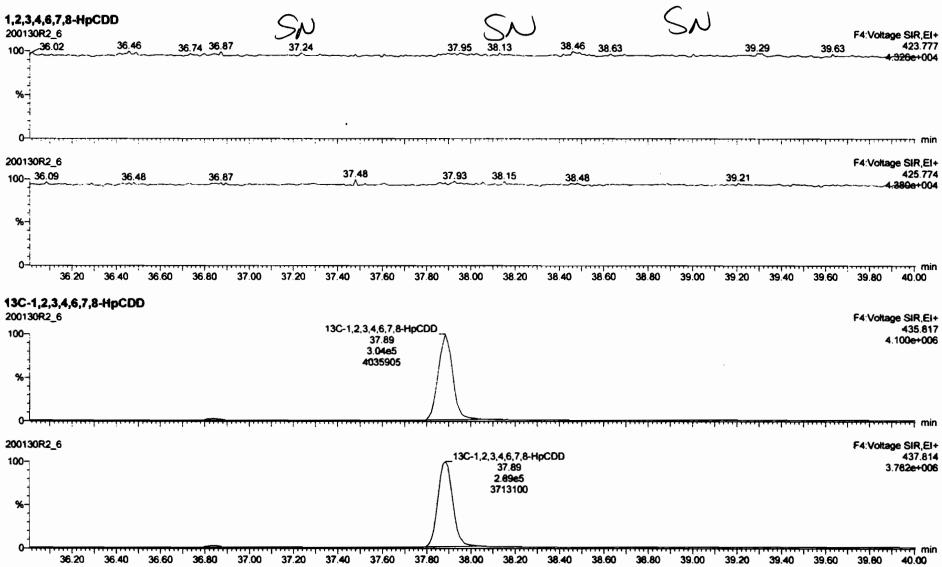
Quantify Sam Vista Analytica	· · ·	Page 41 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

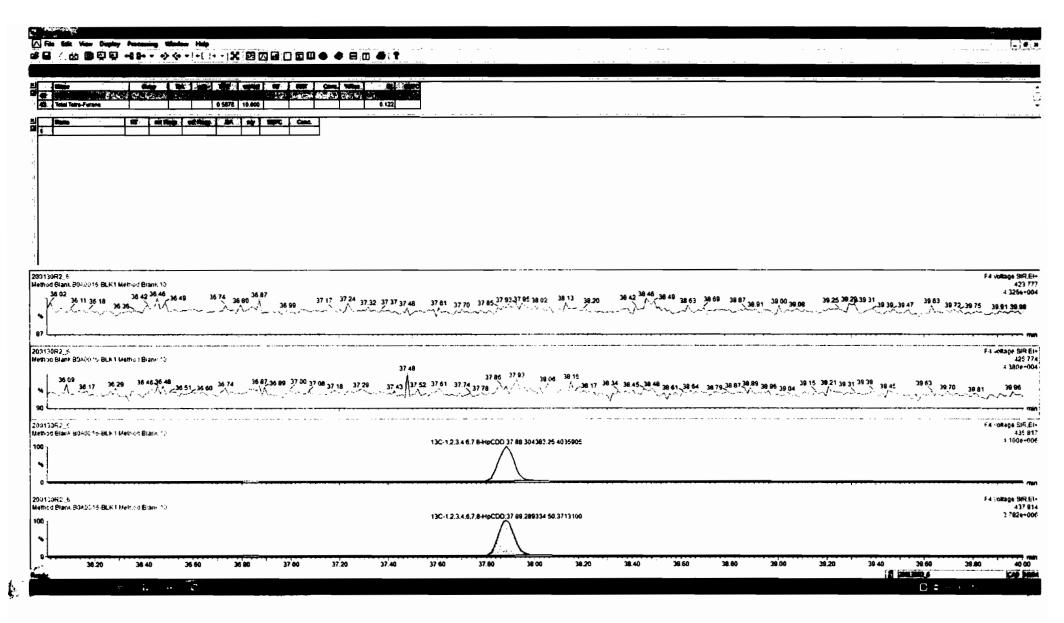

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank


Juantify Sam /ista Analytica	aple Report al Laboratory	MassLynx 4.1 S	CN815				Page 42 of 16
ataset:	Untitled						
ast Altered: rinted:	Friday, January Friday, January	31, 2020 08:36:52 31, 2020 08:37:05	Pacific Standard Time Pacific Standard Time				
lame: 200130	0R2 6, Date: 30-	Jan-2020. Time: 1	8:21:31, ID: B0A0016-BLK1	Method Blank 10). Description: Method (Blank	
,2,3,7,8-PeC 1 00130R2_6	_		G		G		F2:Voltage SIR, E
100-7~27.94	28,45	SN	29.32 29.37	SN 30.03	30.32 30.41 30.60	8 30.5N	31.55 353.85 31.55 4496e+0
%-i		••••••••••••••••••••••••••••••••••••••					
00130R2_6							F2:Voltage SIR,E
00 27.94	28.20	2	29.60	~	30.30	·	31.52 31.64 4.52 2e+ 0
%- 	28.20 28 40 2	28.60 28.80 29	00 29.20 29.40 29.60	29.80 30.00	30.20 30.40 30.60	30.80 31.00 31.20) 31.40 31.60 31.80
3C-1,2,3,7,8-	PeCDD						503/646-66 010/
00130R2_6					13C-1.2,3,7,8-PeCDD 30.62 2.63e5 5319110		F2:Vottage SiR,E 365.89 5.381e+0
00130R2_6						<u></u>	۳۲:۲2:Voltage SIR,E
%					13C-1,2,3,7,8-PeCDD 30.62 4.20e5 8373499		367.8 8.442e+0

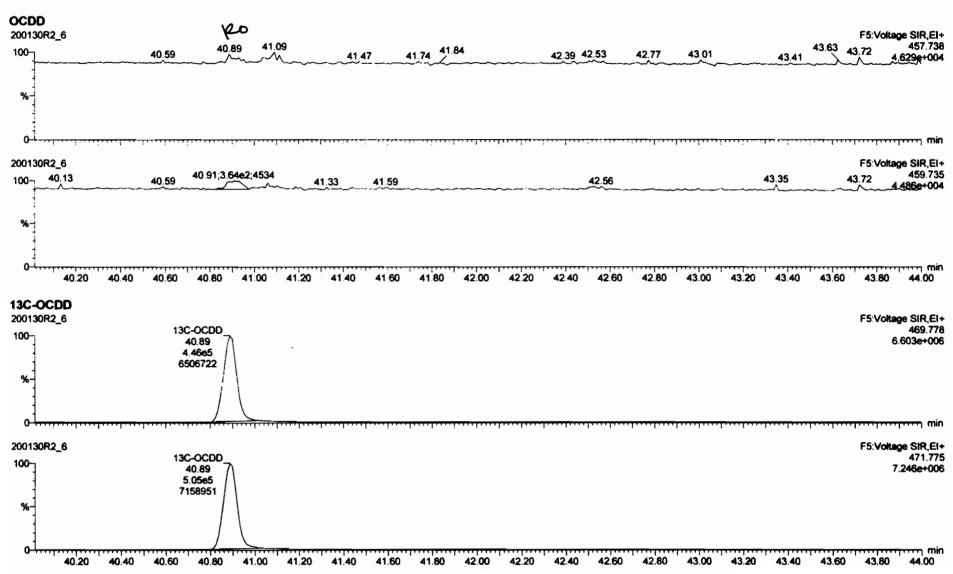


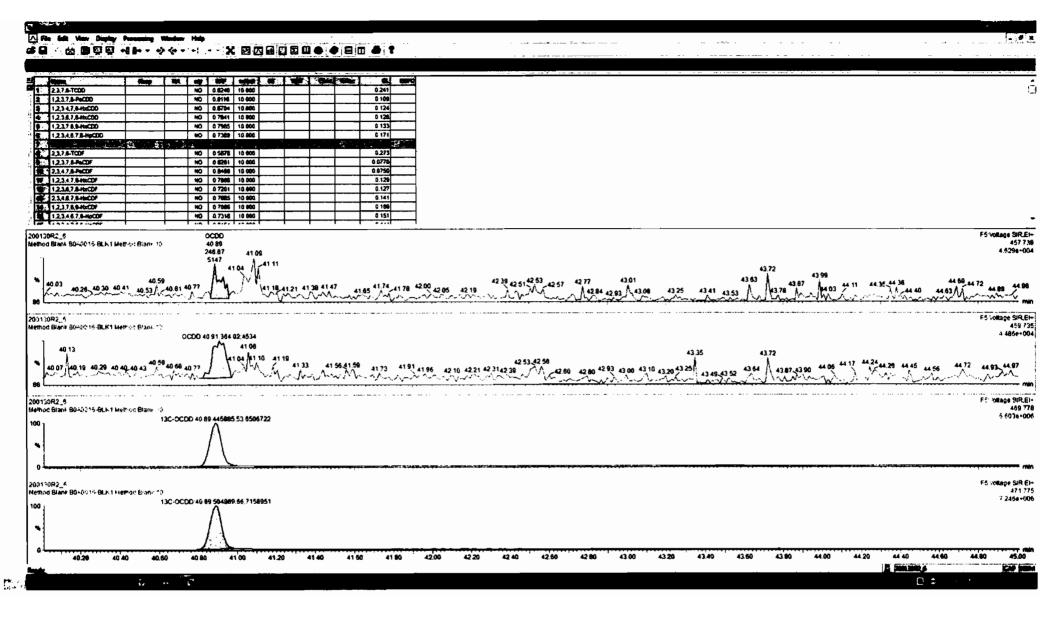
Quantify Sam Vista Analytica		MassLynx 4.1 SCN815					Page 43 of 169
Dataset:	Untitled		•.				
Last Altered: Printed:		31, 2020 08:36:52 Pacific Standar 31, 2020 08:37:05 Pacific Standar					
Name: 20042		ing 2020 Times 49.24.24 ID: DA		ad Blank 40 Description			
Name: 200134 1,2,3,4,7,8-Hx		ian-2020, Time: 18:21:31, ID: B0/	A0016-BLK1 Met	rod Blank 10, Description	n: Method Blank	SN	


13C-1,2,3,4,7,8-HxCDD 200130R2_6 13C-1,2,3,6,7,8-HxCDD;34.07;3.89e5;6804853 100-94-0-200130R2_6 13C-1,2,3,6,7,8-HxCDD;34.07;3.19e5;5349007 13C-1,2,3,6,7,8-HxCDD;34.07;3.11e5;5349007 13C-1,2,3,6,7,8-HxCDD;34.07;3.11e5;5349007 5.425e+006

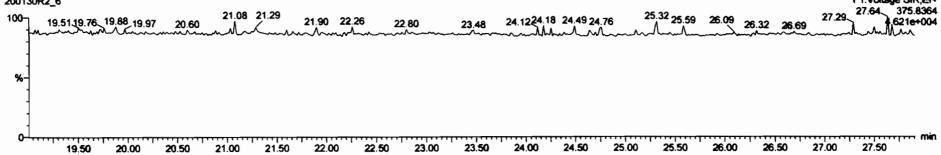


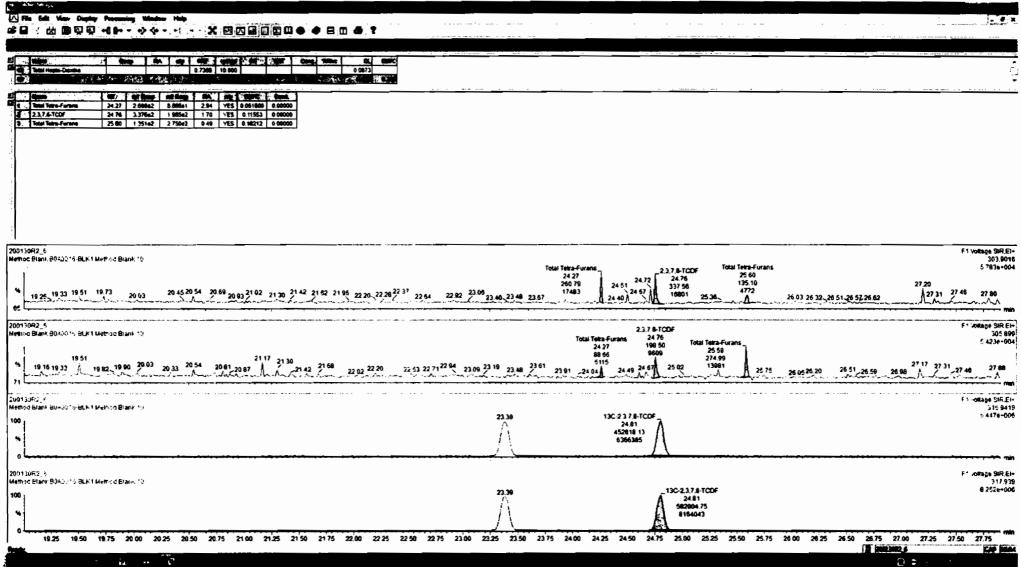
Quantify San Vista Analytic		Page 44 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	
No		





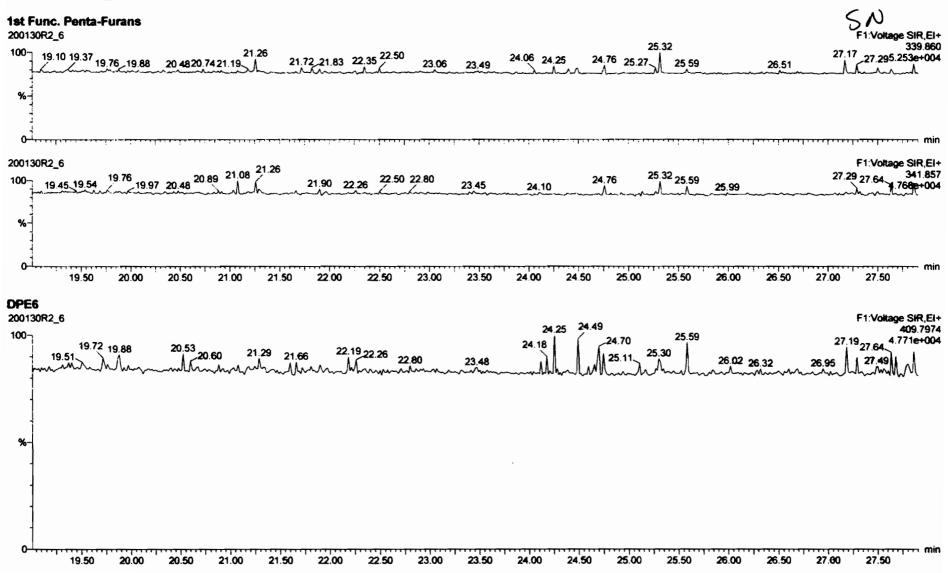
Quantify San Vista Analytica	• • •	Page 45 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	


Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

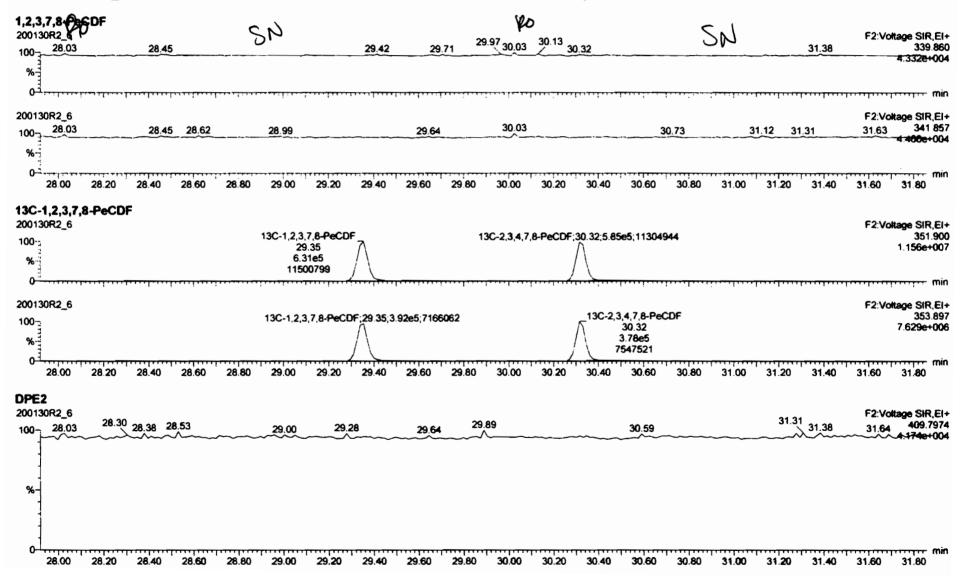


Work Order 1903649

ista Analytica	nple Report al Laboratory	MassLyn	(4.1 SCN815									Page 4	46 of 16
ataset:	Untitled												
ast Altered: rinted:	Friday, Janu Friday, Janu	ary 31, 2020 08 ary 31, 2020 08	:36:52 Pacific :37:05 Pacific	Standard Tim Standard Tim	e e								
lame: 20013		30-Jan-2020, T	ime: 18:21:31	I, ID: B0A0016	6-BLK1 M etho	od Blank	10, Descript						
00130R2_6		SN	4	SN		SN.	PD 24.27;2.61e2;174	24.76	.27e2;16734	_	SAL	F1:Voltag	202 00
19.51	19.73	20.54 20.69	21.30	22 28 22 3	7 22.92	23.48	4.27,2.01e2,174		2	5.60	SN	27.20 27.46 5	.783e+0
%	03e2;6165_19.90	20.54 20.81 2 20.50 21.00	1,17 ^{21.30} 2157 21.50	22.20 2 22.00 22.50	·	23.48	24.27 24.00 24.5	24.76 0 25.0	25.59;2.75e2	26.20 26.00	26.51		305.8 <u>423</u> ę+0
3C-2,3,7,8-T	CDF			13	C-1,2,3,4-TCDF_ 23,39	λ	13C-2,3,7,8-TC 24.81	DF				F1:Volta; 6.	ge SIR,6 315.94 .447e+0
-					5.32e5 6276289	(4,53e5 6366385	A					
•• ₁		. <u></u>			5.32e5	()	4.53e5		····;····;···		•••••		
:	1			13	5.32e5	<u></u>	4.53e5		•••••		••••	F1:Vota 8	n



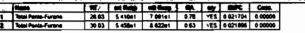
-

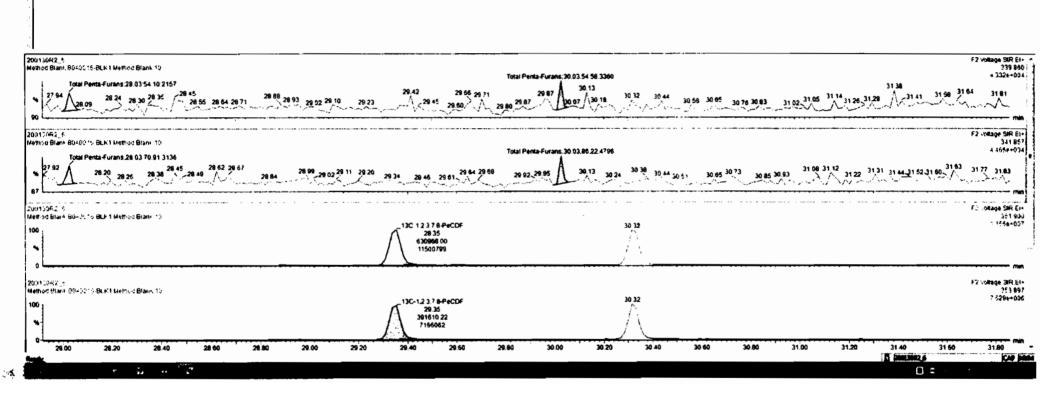

Quantify San Vista Analytica		Page 47 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

Quantify San Vista Analytica		Page 48 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

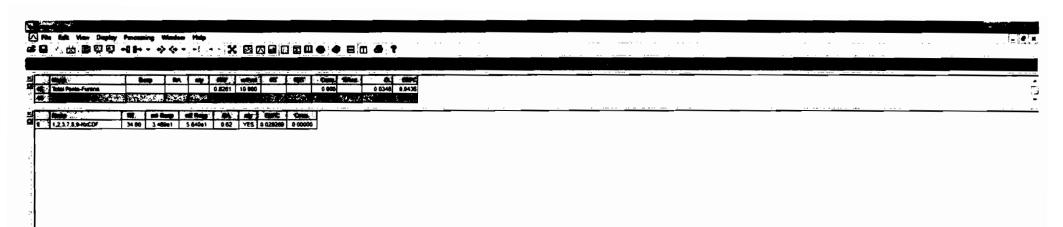
Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank




#= * ☆ ● ♀ ♀ + + + + + + + + * 2 図 집 집 ● ◆ = 0 ● *

and a start of an and a start of

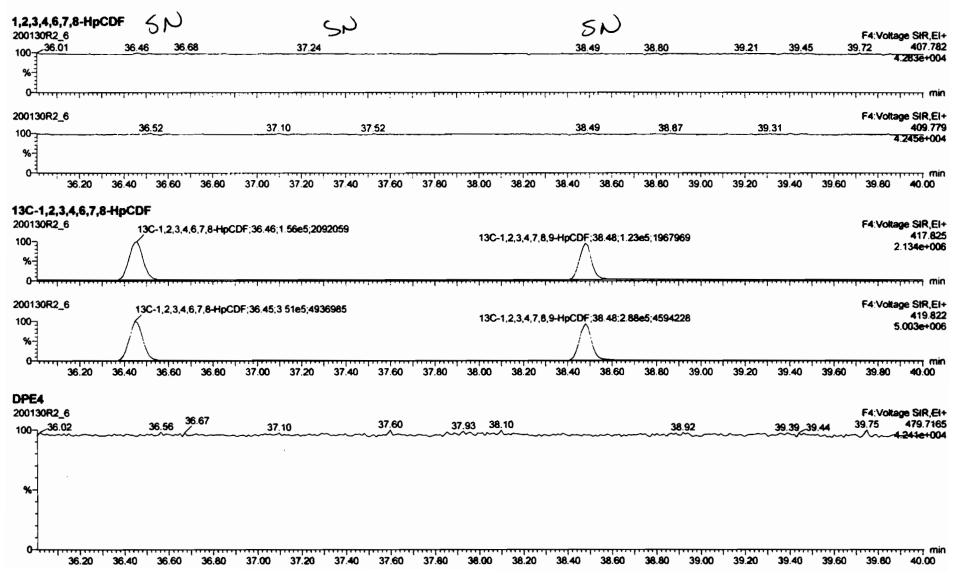
. . .

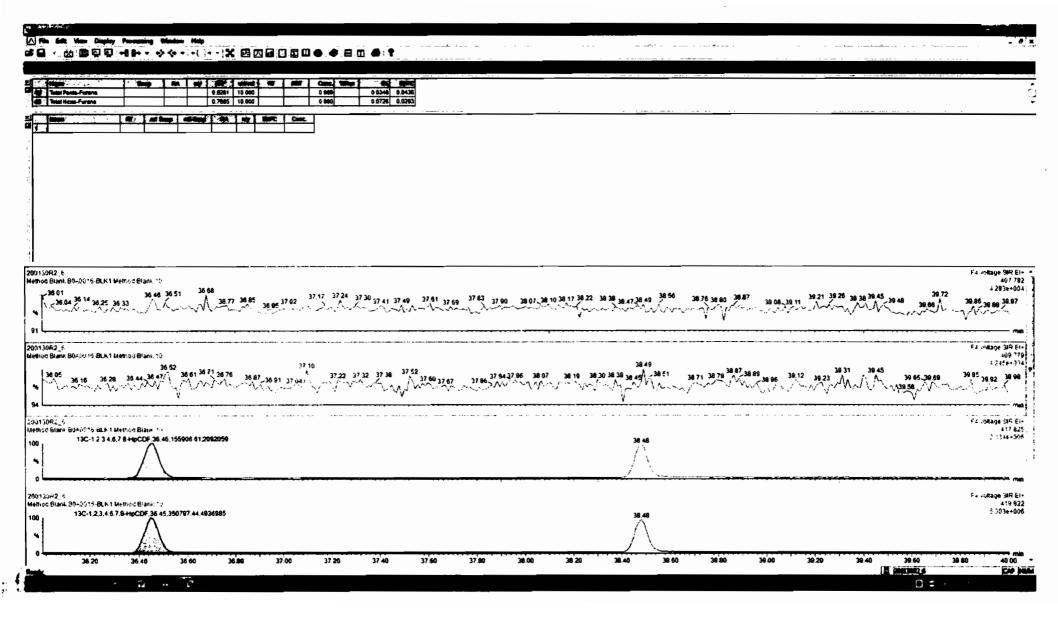


sta Analytical	Laborat		MassLyn	x 4.1 SC	N815											Pa	age 49 of '
taset:	Untitled																
st Altered: nted:						tandard Tin tandard Tin											
me: 200130	R2_6, D	ate: 30-Ja	an-2020, 1	F ime : 18:	21:31, i	D: 80A001	16-BLK1	Method	Blank 1	0, Descri	iption: N	lethod B	lank				
2,3,4,7,8-HxC 0130R2_6 031.8732.0		SN 28 ^{32.49}	32.56		SN.	3.11 33.24		SN 33.67		33.96	34.3	5N 14.34.38	34.55 ^{34.7}	PO 2 34.80		F3:	Voltage SIR 373
6																	4:56 3 e+
0 ⁻¹	32.16		32.56	i	33	12 33.22		33.59	33.80					34.80	34.99	F3:	Voltage SIR 375.
%																	4.0700
0 ⁻¹	32 20	32.40	32.60	32.80	33.00	33.20	33.40	33.60	33.80	34.00	34.20	34.40	34.60	34.80	35.00	35.20	35.40
C-1,2,3,4,7,8	-HxCDF	:														52	
)130R2_6) _귀						13C-1,2,3,4,6	9-HxCDF	; 33.50;2.79	e5;517646	6							Voltage SIF 383 5.260er
6						$\overline{\mathbb{A}}$			\bigwedge			13C-1,2,3,	7,8,9-HxCDF	34.71.2	.09e5;327635	5	
)130R2_6	inner i inner		1													F3 :	Voltage SIR
0)	13C-1,2,3,4,6	6,9-HxCDF	-;33.51;5.42	e5;99783:	53		1 3C-1,2,3	7,8,9-HxCDF	34.71;3	.98e5;631600	9	385 1.012e4
0 ⁻¹	32.20	32.40	32.60	32.80	33.00	33.20	33.40	33.60	33.80	34.00	34.20	34.40	34.60	34.80	35.00	35.20	35.40
PE3 0130R2_6																F3:	Voltage SIR
31.88	7 32.17	32,42			33.0 ^)6		3	3.78 33.8	6 33.98 34	.08	34.37		34.79 			445.1 .37 4.829e
31.95 32.0		\sim	-			•••	~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

35.40 min 33.60 33.80 34.00 34.20 34.40 32.00 33.00 33.40 34.60 34.80 35.00 32.80 33.20 32.40 32.60 35.20 32.20

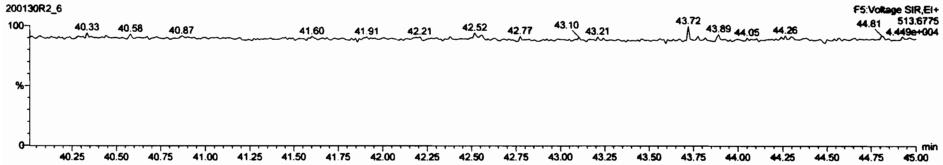
0

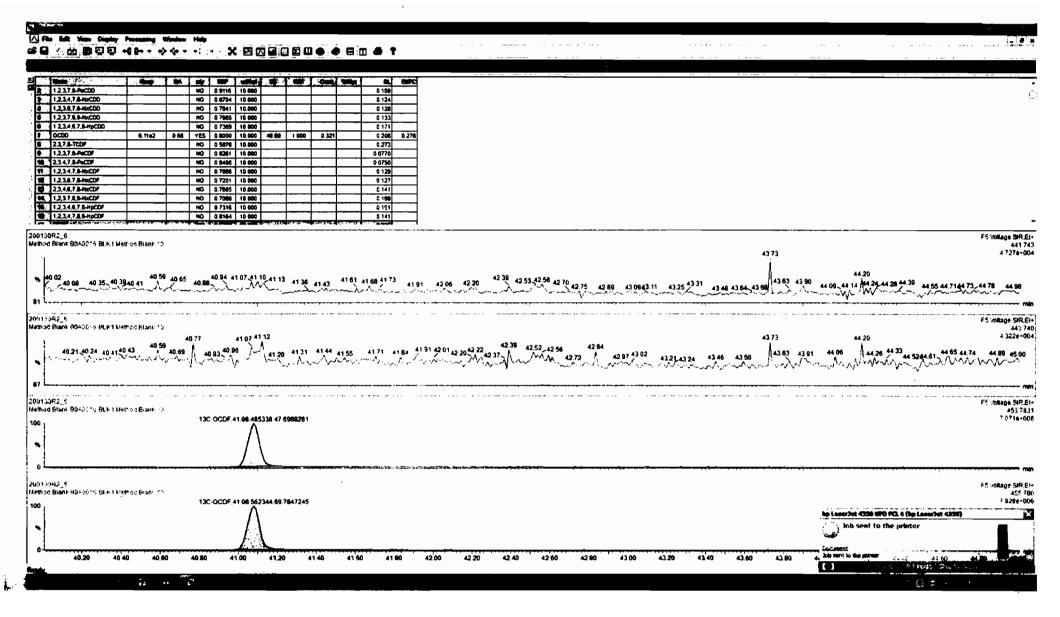



200130R2_6 Method Blank B040016 BLK1 Method Blank 13 31.87 31.96 31.96 31.96 32.08.32 10 32.28 32.35 85	32 49 32 56 32 70 32 78	32 96 33.03 MM	24 33 28 33 40 33 43 33 60	33 67 33 70 ³³ 60 33 96 3	4 01 34 34 34 34 34 	123789+++CO 3480 2489 2705 13442 3455 3465 August		F3 - oftage 31R 3731 4553+0 38,15 40 35 54 35 60 35 70 35 84 35 91 35 97 35 84 35 91 35 97
200133942_6 Method Blank 80=0019 BLK1 Method Blank 12						12.3.7.8 9+HcODF 34.80.5	56 40.5158	F3 - MEage Sife 375 1 976+1
31 96 31.91 32.08 32.04 32.16 32.27 32.41 3 32.04 32.27 32.41 3	2 46 32 56 32.68 32.75	32 92 33 04 33 12 33 3	22 33 27 33 43 33 54 33	59 33 73 33 80 33 90 33 96 33	3 98 34 09 34 21 34 30 3	442 34 55 34 71 34 74 34 85	34 99 35.04 35.08 35.21 35.33	35 37 35 54 35 60 35 70 35 8E 35 97
913092_6 913092_6 950d Blank B040015 BLK 1 Methon Blank 19 0	13C-1 2.3 4 7 8-HrCDF 33	10,225056 15 4235732 33	23 33,50	33 81		34,71		÷i-naape34R 383 €2496=0
		$-\mathcal{N}$		<u></u>		$ \land $	* *********** ************	
G11092_5 Imod Blank 90+0010-20Lk 1 Memod Brain 30 IG N=	13C-1 2.3,4,7,8-tsCDF.33.	10 44 27 16 91,84 25983 33	23 3351	1381 / \		34.71 / \		F3 (5 kage SIR , 395.1 1 312e+0
32 00 32 20 32 40	32 60 32 8	0 33.00 33.20	33 40 33 60	33 80 34.0	0 34.20 34	40 34.60 34.80	35.00 35.20	25 40 35 60 35 80 36 4 (S fantismic.6 particular)

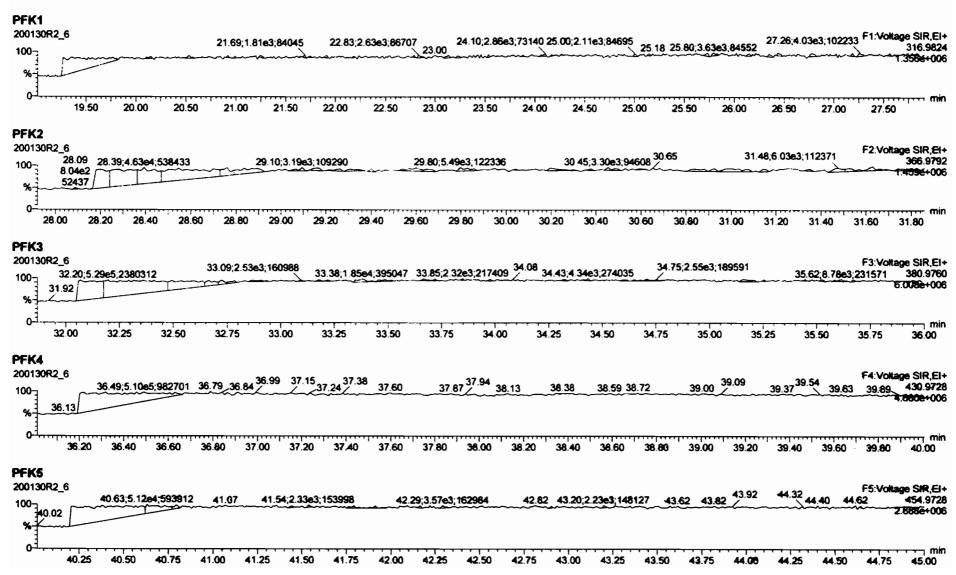
.

Quantify Sam Vista Analytica		Page 50 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	


Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: 80A0016-BLK1 Method Blank 10, Description: Method Blank



Work Order 1903649


	nple Report al Laboratory	MassLynx 4.1 S	SCN815									Page 5	61 of 16
ataset:	Untitled												
ast Altered: rinted:		31, 2020 08:36:52 31, 2020 08:37:09											
ame: 20013	0R2_6, Date: 30~	Jan-2020, Time: '	18:21:31, ID: B0)A0016-BLK1 M	ethod Blank 10,	Descriptio	n: Method E	Blank					
CDF 00130R2_6		SN										F5:Voltag	e SIR E
00- <u>1</u>	40.59	41.10	41.68	·····	42.56			43.73	13.90	44.20.44.2	24	_	441.74 727e+ 00
0		 		• • • · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·····	• • • • • • • •	<u>-</u>		• •		mi
00130R2_6	40.59 40.77	40.96 41.12	41.44	42.22	42.39 42.52 42	84		43,73	44.06	44,20		F5:Voltag	443.74
%									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			4	322€+00
0 ⁻¹	25 40.50 40.75	41.00 41.25	41.50 41.75	42.00 42.25	42.50 42.75	43.00	43.25 43.50	43.75	44.00	44.25	44.50	44.75	45.00
3C-OCDF 00130R2_6 00-	13C-00	CDF;41.08;4.85e5;696	86281										e SIR, E 453.783 071e+00
0 ¹	· · · · · · · · · · · · · · · · · · ·	···· /··· >····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •			- , ,		• • • • • •	•••	F5:Voltag	n xeSHR.E
0130R2_6	13C-OC	CDF;41.08;5.62e5;784	47245										455.7 928e+0
00130R2_6 00		/ \											

Quantify San Vista Analytica		Page 52 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

Name: 200130R2_6, Date: 30-Jan-2020, Time: 18:21:31, ID: B0A0016-BLK1 Method Blank 10, Description: Method Blank

Quantify San Vista Analytica	al Laboratory	MassLynx 4.1 SCN815		
Dataset:	U:\VG12.PRO\Results\2001	30R2\200130R2-3.qld		
Last Altered: Printed:		3:46:22 Pacific Standard Time 15:28:27 Pacific Standard Time		

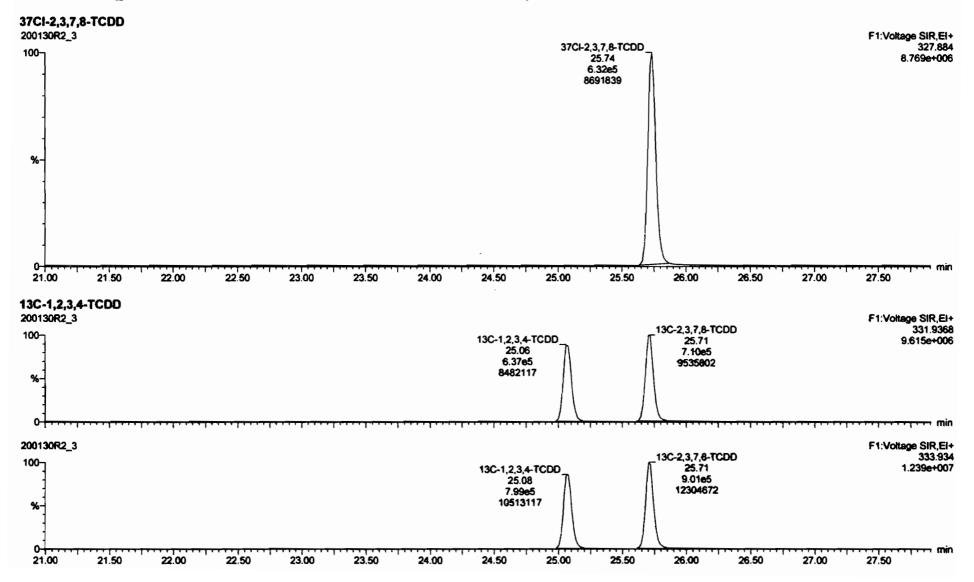
648 02/03/2020 C7 02/04/2020

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

	# Name	Reep	RA	afy	RRF	WAYOF	Pred.RT	RT	Pred.RRT	RRT	Coac.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.52e5	0.77	NO	0.824	10.000	25.736	25.74	1.001	1.001	22.954		0.145	23.0
2	2 1,2,3,7,8-PeCDD	6.56e5	0.63	NO	0.912	10.000	30.658	30.65	1. 001	1.000	103.57		0.126	104
3	3 1,2,3,4,7,8-HxCDD	5.99e5	1.23	NO	0.870	10.000	33.9 9 8	34.00	1.000	1.000	114.08		0.164	114
4	4 1,2,3,6,7,8-HxCDD	6.22e5	1.23	NO	0.784	10.000	34.094	34.10	1.000	1.000	117.24		0.174	117
5	5 1,2,3,7,8,9-HxCDD	6.26e5	1.21	NO	0.798	10.000	34.405	34.38	1.001	1.000	114.12		0.174	114
6	6 1,2,3,4,6,7,8-HpCDD	5.02e5	1.02	NO	0.737	10.000	37.907	37.92	1.000	1.001	118.05		0.417	118
z	7 OCDD	7.87e5	88.0	NO	0.800	10.000	40.900	40.91	1.000	1.000	227.84		0.247	228
6	8 2,3,7,8-TCDF	1.71e5	0.74	NO	0.588	10.000	24.862	24.85	1.001	1.001	26.529		0.156	26.5
9	9 1,2,3,7,8-PeCDF	9.71e5	1.54	NO	0.826	10.000	29.376	29.37	1.001	1.000	109.46		0.166	109
10 -	10 2,3,4,7,8-PeCDF	9.60e5	1.53	NO	0.850	10.000	30.362	30.35	1.001	1.000	110.78		0.156	111
11	11 1,2,3,4,7,8-HxCDF	6.7 4e 5	1.16	NO	0.787	10.000	33.125	33.13	1.000	1.000	120.55		0.243	121
12	12 1,2,3,6,7.8-HxCDF	6.96e5	1.18	NO	0.720	10.000	33.252	33.25	1.000	1.000	116.56		0.238	117
13	13 2,3,4,6,7,8-HxCDF	6.31e5	1.17	NO	0.766	10.000	33.851	33.84	1.001	1.001	120.41		0.275	120
14	14 1,2,3,7,8,9-HxCDF	5.41e5	1.16	NO	0.709	10.000	34.722	34.74	1.000	1. 001	118.79		0.334	119
15	15 1,2,3,4,6,7,8-HpCDF	4.30e5	0.95	NO	0.732	10.000	36.505	36.49	1.001	1.001	114.24		0.419	114
18	16 1,2,3,4,7,8,9-HpCDF	3.83e5	0.96	NO	0.816	10.000	38.493	38.50	1.000	1.000	115.90		0.412	116
17	17 OCDF	7.72e5	0.85	NO	0.639	10.000	41.091	41.10	1.000	1.000	247.03		0.275	247
18	18 13C-2,3,7,8-TCDD	1.61e6	0.79	NO	1.12	10.000	25.706	25.70	1.026	1.026	201.10	101	0.215	1
19	19 13C-1,2,3,7,8-PeCDD	1.39e6	0.64	NO	0.841	10.000	30.450	30.64	1.215	1.222	230.00	115	0.326	
20	20 13C-1,2,3,4,7,8-HxCDD	1.21e6	1.27	NO	0.938	10.000	33.988	33.99	1.014	1.014	169.24	84.6	0.286	
21	21 13C-1,2,3,6,7,8-HxCDD	1.35e6	1.26	NO	1.07	10.000	34.088	34.09	1.017	1.017	167.03	83.5	0.251	
	22 13C-1,2,3,7,8,9-HxCDD	1.37e6	1.26	NO	1.03	10.000	34.390	34.37	1.026	1.025	175.35	87.7	0.260	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.15e6	1.03	NO	0.710	10.000	37.943	37.90	1.132	1.131	213.70	107	0.535	1
	24 13C-OCDD	1.73e6	0.89	NO	0.601	10.000	40.826	40.90	1.218	1.220	378.01	94.5	0.268	
	25 13C-2,3,7,8-TCDF	2.19e6	0.78	NO	1.04	10.000	24.886	24.84	0.993	0. 9 91	173.48	86.7	0.269	1
	26 13C-1,2,3,7,8-PeCDF	2.15e6	1.57	NO	0.917	10.000	29.222	29.35	1.166	1.171	192.37	96.2	0.417	-
	27 13C-2,3,4,7,8-PeCDF	2.04e6	1.60	NO	0.903	10.000	30.174	30.33	1.204	1.210	185.50	92.8	0.423	
	28 13C-1,2,3,4,7,8-HxCDF	1.42e6	0.51	NO	0.861	10.000	33.116	33.13	0.988	0.968	216.91	108	0.417	
	29 13C-1,2,3,6,7,8-HMCDF	1.66e6	0.51	NO	1.05	10.000	33.217	33.24	0.991	0.992	208.21	104	0.343	1
	30 13C-2,3,4,6,7,8-HxCDF	1.37e6	0.51	NO	0.946	10.000	33.824	33.82	1.009	1.009	190.00	95.0	0.380	
	31 13C-1,2,3,7,8,9-HxCDF	1.29e6	0.51	NO	0.816	10.000	34.725	34.72	1.036	1.036	207.20	104	0.440	1

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: U:\VG12.PRO\Results\200130R2\200130R2-3.gld

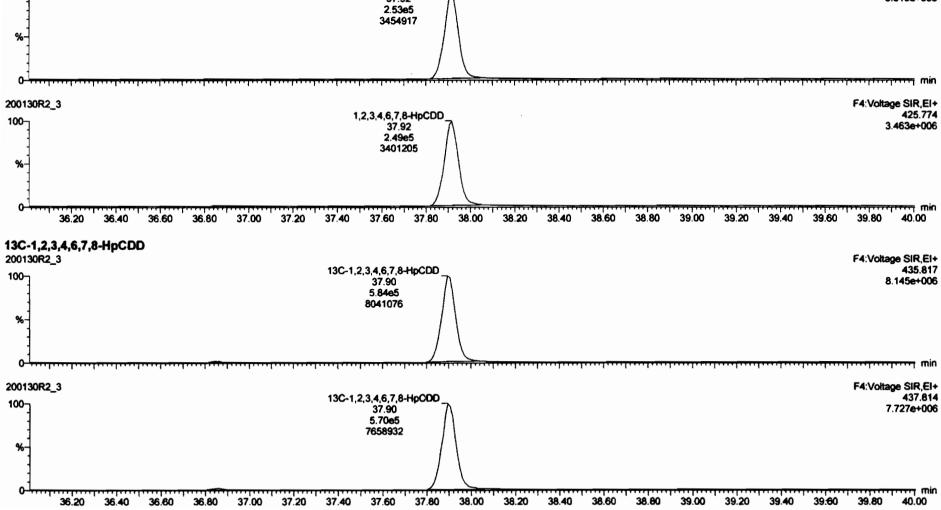

.....

Last Altered: Friday, January 31, 2020 08:46:22 Pacific Standard Time Printed: Monday, February 03, 2020 15:28:27 Pacific Standard Time

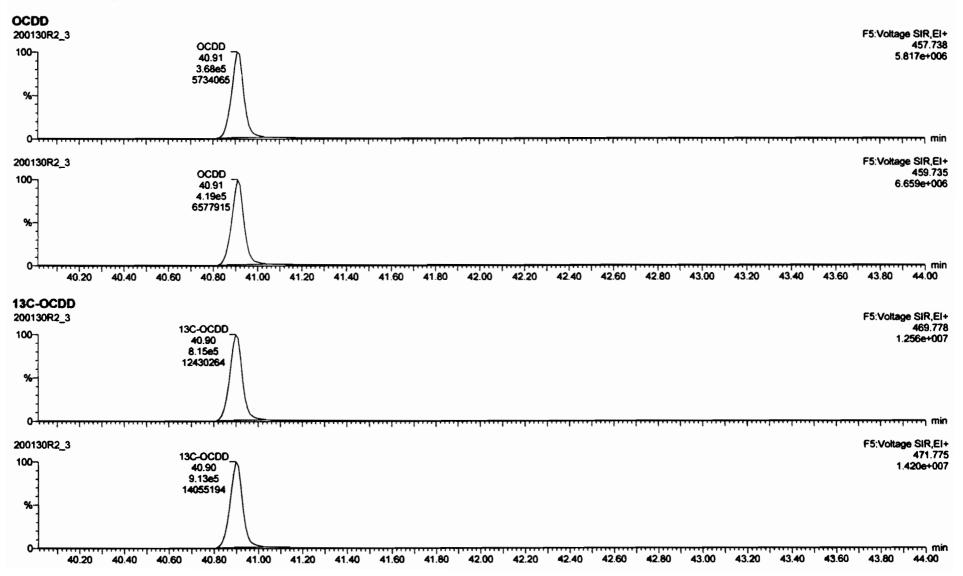
	# Name	Rew	RA	nly	RRF	within	PredAT	RT	Pred.RRT	RRT	Conc.	%Rec	DL.	· EMPO
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.03e6	0.43	NO	0.589	10.000	36.468	36.47	1.088	1.088	229.79	115	0.612	1
3 2	33 13C-1,2,3,4,7,8,9-HpCDF	8.10e5	0.43	NO	0.448	10.000	38.479	38.49	1.148	1.148	237.62	119	0.804	
34	34 13C-OCDF	1.96e6	0.88	NO	0.586	10.000	41.060	41.09	1.225	1.226	439.14	110	0.307	
36	35 37CI-2,3,7,8-TCDD	6.32e5			1.09	10.000	25.738	25.74	1.027	1.027	81.067	101	0.0885	
36	36 13C-1,2,3,4-TCDD	1. 44e 6	0.80	NO	1.00	10.000	25.080	25.06	1.000	1.000	200.00	100	0.240	
37	37 13C-1,2,3,4-TCDF	2.44e6	0.78	NO	1.00	10.000	23.420	23.42	1.000	1.000	200.00	100	0.279	
38	38 13C-1,2,3,4,6,9-HxCDF	1.52e6	0.51	NO	1.00	10.000	33.520	33.52	1.000	1.000	200.00	100	0.359	

tuantify Sam lista Analytica				Page 1 of 16
ataset:	Untitled			
ast Altered: rinted:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time			
alibration: L	G12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 J:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 202 0R2_3, Date: 30-Jan-2020, Time: 16:00:38, ID: B0A0016-BS1 (
3,7,8-TCDD	-	·		
00130R2_3		2,3,7,8-TCDD 25,74 6,63e4 918395		F1:Voltage SIR,E 319.89 9.606e+0
%_				
0 [······································	F1:Voltage SIR,
00-1 		2,3,7,8-TCDD 25.74		321.6 1.201e+0
%-		8.60e4 1159550		
0 21.00	21.50 22.00 22.50 23.00 23.50 24.00	24.50 25.00 25.50	26.00 26.50 27.00	27.50
3C-2,3,7,8-T	CDD			F1:Voltage SIR,
00130Rz_3		13C-1,2,3,4-TCDD	13C-2,3,7,8-TCDD 25.71	331.93 9.615e+(
		25.06 6.37e5 8482117	7.10e5 9535802	
%		6462117		
0	*****	····		
00130R2_3		13C-1,2,3,4-TCDD 25.08 7.99e5 10513117	13C-2,3,7,8-TCDD 25.71 9.01e5 12304672	F1:Voltage SIR, 333.(1.239e+(
0 21.00	21.50 22.00 22.50 23.00 23.50 24.00	24.50 25.00 25.50	26.00 26.50 27.00	27.50

Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 2 of 169
Dataset:	Untitled		
Last Altered: Printed:		y 31, 2020 08:36:52 Pacific Standard Time y 31, 2020 08:37:05 Pacific Standard Time	



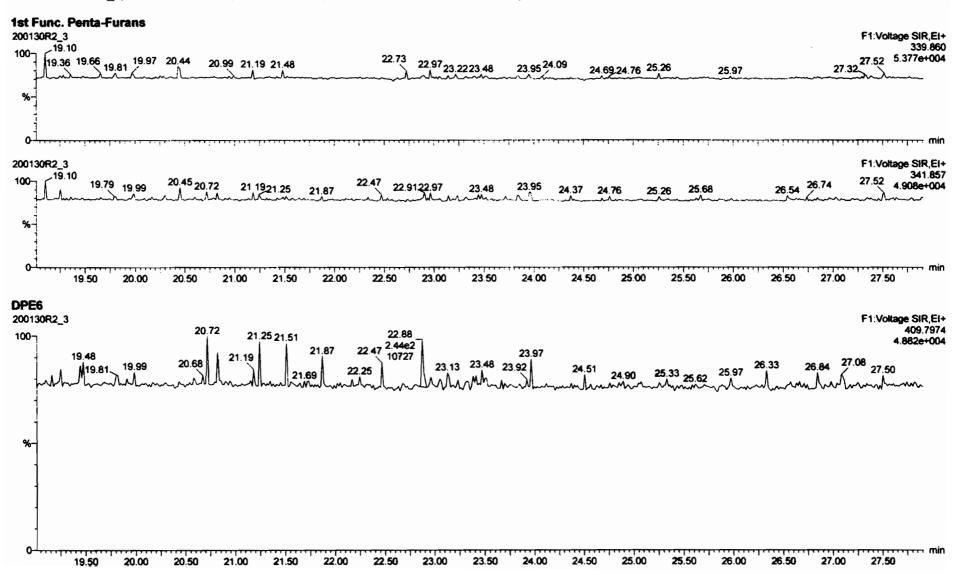
luantify Sam ista Analytica			Page 3 of 16
ataset:	Untitled		
ast Altered: rinted:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time		
ame: 20013	0R2_3, Date: 30-Jan-2020, Time: 16:00:38, ID: B0A0016-BS1 OF	PR 10, Description: OPR	
,2,3,7,8-PeC 00130R2_3			F2:Voltage SIR,E
⁰⁰]		1,2,3,7,8-PeCDD	353.857 4.758e+00
%-		4705788	
0 			
00130R2_3			F2:Voltage SIR,EI
00 -]		1,2,3,7,8-PeCDD_ 30.65 /∖	355.855 7.396e+00
-		4.02e5 (\ 7331299 (\	
%-			
1			
0- ¹	28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60	29.80 30.00 30.20 30.40 30.60 30.80 31.00 31	.20 31.40 31.60 31.80
3C-1,2,3,7,8	PeCDD		F2:Voltage SIR,E
00130R2_3		13C-1,2,3,7,8-PeCDD 30.64	365.897 9.741e+00
		5.43e5 9673605	3.7410-00
%-			
0 ⁴ ,			
00130R2_3			F2:Voltage SIR,E
100		13C-1,2,3,7,8-PeCDD 30.64 8.46e5	367.89 1.516e+00
]		15067312	
%- 1			
-			
0	28.20 28.40 28.60 28.80 29.00 29.20 29.40 29.60	29.80 30.00 30.20 30.40 30.60 30.80 31.00 31	.20 31.40 31.60 31.80


	al Laboratory MassLynx 4.1 SCN815		Page 4 of
aset:	Untitled		
it Altered: nted:	Friday, January 31, 2020 08:36:52 Pacific Standa Friday, January 31, 2020 08:37:05 Pacific Standa	ard Time ard Time	
	0R2_3, Date: 30-Jan-2020, Time: 16:00:38, ID: B	0A0016-BS1 OPR 10, Description: OPR	
,3,4,7,8-Hx 130R2_3	CDD	1,2,3,4,7,8-HxCDD 34.00 3.30e5 5691638	F3:Voltage SIR 389. 5.749e+
130R2_3		1,2,3,4,7,8-HxCDD 34.00 2.69e5 4663866 1,2,3,7,8,9-HxCDD 34.38 2.83e5 4533266	F3:Voltage SIR 391. 4.713e+
32.40	32.60 32.80 33.00 33.20 33.40 3	33.60 33.80 34.00 34.20 34.40 34.60 34.80 3	15.00 35.20 35.40 35.60 35.8
C-1,2,3,4,7 , 130R2_3	,8-HxCDD	13C-1,2,3,6,7,8-HxCDD;34.09;7.54e5;12168304	F3:Voltage SIR 401. 1.232e+
130R2_3		13C-1,2,3,6,7,8-HxCDD;34.08;6.00e5;9678246	F3:Voltage SIR 403. 9.789e+
32.40	32.60 32.80 33.00 33.20 33.40 3	33.60 33.80 34.00 34.20 34.40 34.60 34.80 3	35.00 35.20 35.40 35.4

·

Quantify San Vista Analytic		Page 5 of 16
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	
Last Altered: Printed:		
lame: 20013	00R2_3, Date: 30-Jan-2020, Time: 16:00:38, ID: B0A0016-BS1 OPR 10, Description: OPR	
1,2,3,4,6,7,8-	HpCDD	F4:Voltage SIR,E
200100102_0	1,2,3,4,6,7,8-HpCDD_	423.7

Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 6 of 169
Dataset:	Untitled		
Last Altered: Printed:	Friday, Janua Friday, Janua	ry 31, 2020 08:36:52 Pacific Standard Time ry 31, 2020 08:37:05 Pacific Standard Time	

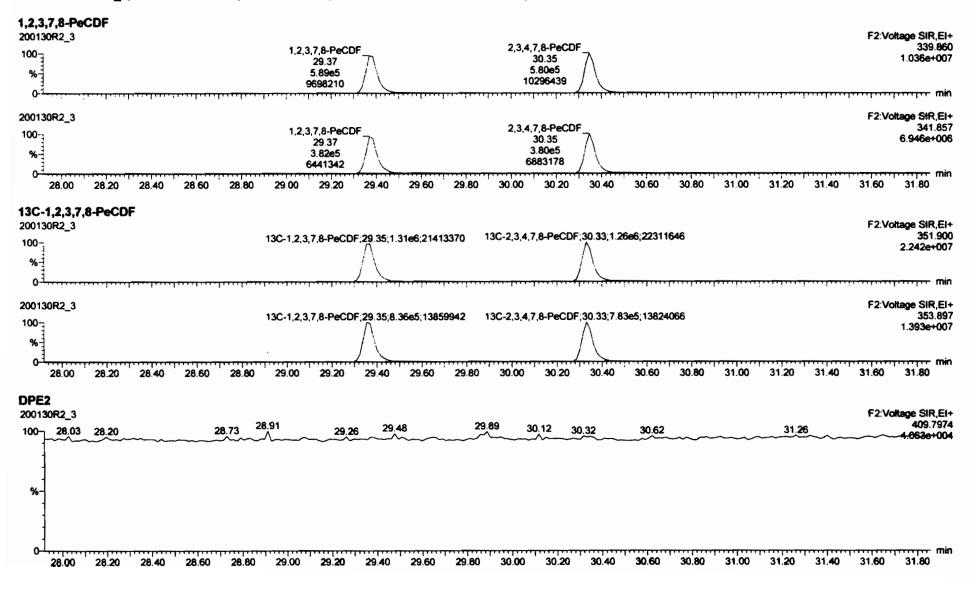

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: Untitled

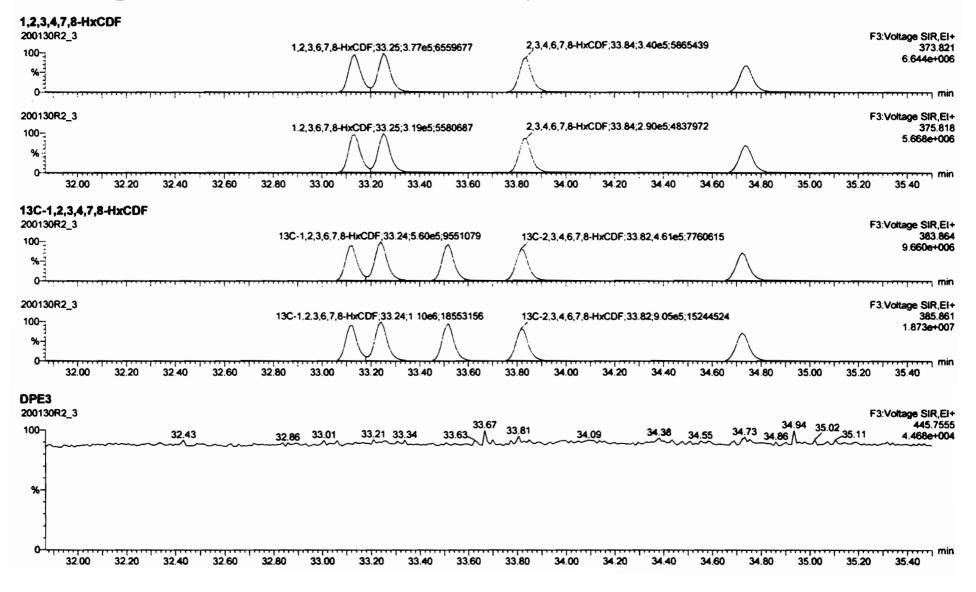
Last Altered: Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time

8-TCDF DR2_3			F1:Voltage SIR,E
		2,3,7,8-TCDF 24.85 7,25e4	303.90 1.017e+00
***		974988	
0R2_3			F1:Voltage SIR,E
		2,3,7,8-TCDF 24.85	305.8 1.326e+0
		9.8264 1283647	
19.50 20.00 20.50 21.00 21.50 22.0) 22.50 23.00 23.50	24.00 24.50 25.00 25.50	26.00 26.50 27.00 27.50
2,3,7,8-TCDF			54 Martine 010 4
0R2_3	13C-1,2,3,4-TCDF_	13C-2,3,7,8-TCDF_	F1:Voltage SIR,E 315.94
	23.42 1.07e6	24.84 9.59e5	1.252e+0
	12382778	12376218	
0R2_3			F1:Voltage SiR,E
-	13C-1,2,3,4-TCDF 23,42	13C-2,3,7,8-TCDF 24.84	317.93 1.604e+00
	1.3666	1.23e6 15886941	
19.50 20.00 20.50 21.00 21.50 22.0		24.00 24.50 25.00 25.50	26.00 26.50 27.00 27.50
l			
0R2_3	22.88		F1:Voltage SIR,E
	22.88 2.0362 22.47 7632 23.48	23,97 24,19	F1:Voltage SIR,E 375.830 5.241e+00

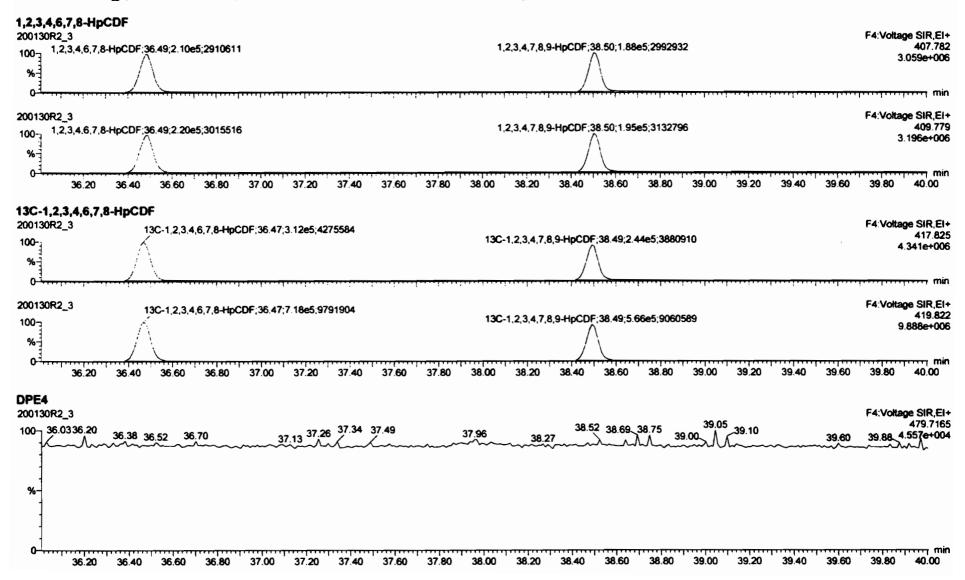
Quantify San Vista Analytica		.1 SCN815	Page 8 of 169
Dataset:	Untitled		
Last Altered: Printed:	Friday, January 31, 2020 08:36 Friday, January 31, 2020 08:37		

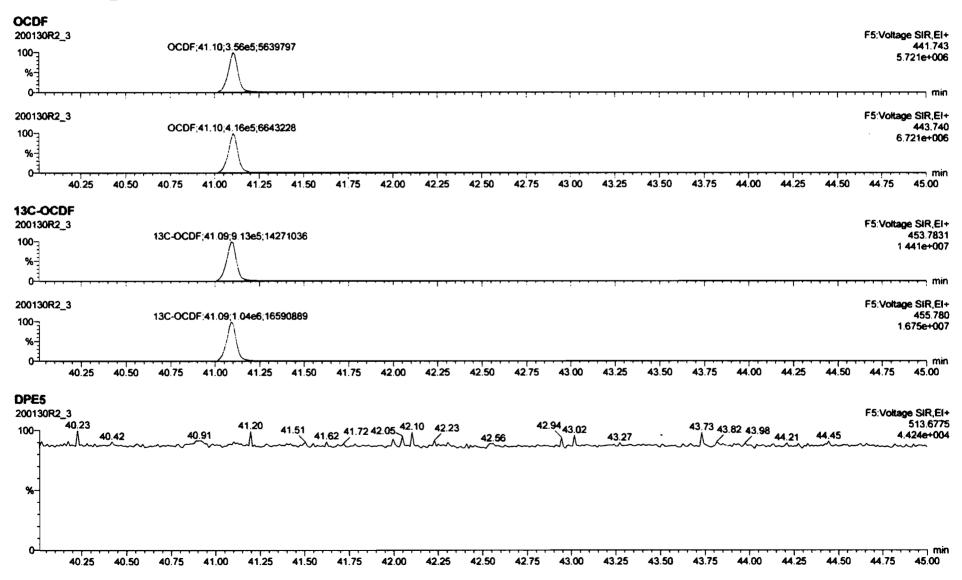


Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	


Page 9 of 169

Dataset: Untitled


Last Altered: Friday, January 31, 2020 08:36:52 Pacific Standard Time Printed: Friday, January 31, 2020 08:37:05 Pacific Standard Time


Quantify Sam Vista Analytica	• • •	Page 10 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

Quantify Sam Vista Analytica		Page 11 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

Quantify San Vista Analytic		Page 12 of 169
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 08:36:52 Pacific Standard Time Friday, January 31, 2020 08:37:05 Pacific Standard Time	

Quantify Sam Vista Analytica	al Laboratory MassLynx 4.1 SCN815	······	Page 1 of 2
Dataset:	U:\VG12.PRO\Results\200130R3\200130R3-6.qld		
Last Altered: Printed:	Tuesday, February 04, 2020 11:46:28 Pacific Standard Time Tuesday, February 04, 2020 11:54:41 Pacific Standard Time		GPB 02/04/2020

C7 02/04/2020

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R3_6, Date: 31-Jan-2020, Time: 07:01:52, ID: 1903649-01 PDI-016SC-B-06-08-191009 14.36, Description: PDI-016SC-B-06-08-191009

	# Name	Resp	RA	n/y	RRF	wtho	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1,	1 2,3,7,8-TCDD			NO	0.824	10.035	1 25.721		1.001				0.0876	
2	2 1,2,3,7,8-PeCDD			NO	0.912	10.035	30.642		1.001				0.0863	
3	3 1.2,3,4,7,8-HxCDD	3.02e2	1.37	NO	0.870	10.035	33.997	34.00	1.000	1.000	0.075116		0.0766	0.0751
4	4 1,2,3,6,7.8-HxCDD	5.60e2	1.29	NO	0.784	10.035	34.094	34.09	1.000	1.000	0.14201		0.0814	0.142
5	5 1,2,3,7,8,9-HxCDD	1. 05e3	1.21	NO	0.798	10.035	34.394	34.38	1.001	1.001	0.25957		0.0868	0.260
6	6 1,2,3,4,6,7,8-HpCDD	9.04e3	1.02	NO	0.737	10.035	37.907	37.92	1.000	1.001	2.6423		0.154	2.64
7 "	7 OCDD	1.23e5	0.87	NO	0.800	10.035	40.900	40.91	1.000	1.000	38.573		0.101	38.6
8	8 2,3,7,8-TCDF			NO	0.588	10.035	24.832		1.001				0.0661	
9	9 1,2,3,7,6-PeCDF			NO	0.826	10.035	29.376		1.001				0.0478	
10	10 2,3,4,7,8-PeCDF			NO	0.850	10.035	30.361		1.001				0.0458	
11	11 1,2,3,4,7,8-HxCDF			NO	0.787	10.035	33.114		1.000				0.0530	
12	12 1,2,3,6,7,8-HxCDF			NO	0.720	10.035	33.252		1.000				0.0535	
13	13 2,3,4,6,7,8-HxCDF			NO	0.766	10.035	33.851		1.001				0.0588	
14	14 1,2,3,7,8,9-HxCDF			NO	0.709	10.035	34.722		1.000				0.0751	
15	15 1,2,3,4,6,7,8-HpCDF			NO	0.732	10.035	36.505		1.001				0.0864	
16	16 1,2,3,4,7,8,9-HpCDF			NO	0.816	10.035	38.493		1.000				0.0807	
17	17 OCDF			NO	0.639	10.035	41.091		1.000				0.0824	
18	18 13C-2,3,7,8-TCDD	1.1 4e6	0.79	NO	1.12	10.035	25.691	25.69	1.026	1.026	191.32	96.0	0.151	
19	19 13C-1,2,3,7,8-PeCDD	9. 94e5	0.65	NO	0.841	10.035	30.432	30.62	1.215	1.223	220.30	111	0.315	
20	20 13C-1,2,3,4,7,8-HxCDD	9.20e5	1.26	NO	0.938	10.035	33.988	33.99	1.014	1.014	174.32	87.5	0.310	
21	21 13C-1,2,3,6,7,8-HxCDD	1.00e6	1.25	NO	1.07	10.035	34.089	34.09	1.017	1.017	167.31	83.9	0.273	
	22 13C-1,2,3,7,8,9-HxCDD	1.01e6	1.23	NO	1.03	10.035	34.390	34.36	1.026	1.025	174.92	87.8	0.282	
	23 13C-1,2,3,4,6,7,8-HpCDD	9.25e5	1.04	NO	0.710	10.035	37.944	37.90	1.132	1.131	231.57	116	0.560	1
an shekarar ta karar ta karar Karar ta karar ta kar	24 13C-OCDD	1.59e6	0.89	NO	0.601	10.035	40.826	40.90	1.218	1.220	469.98	118	0.411	
	25 13C-2,3,7,8-TCDF	1.50e6	0.77	NO	1.04	10.035	24.872	24.81	0.993	0.990	174.02	87.3	0.225	
	26 13C-1,2,3,7,8-PeCDF	1.45e6	1.59	NO	0.917	10.035	29.205	29.35	1.166	1.172	190.87	95.8	0.441	
	27 13C-2,3,4,7,8-PeCDF	1.39e6	1.57	NO	0.903	10.035	30.157	30.33	1.204	1.211	186.11	93.4	0.448	
	28 13C-1,2,3,4,7,8-HxCDF	1.00e6	0.51	NO	0.861	10.035	33.117	33.11	0.988	0.988	206.84	104	0.568	
	29 13C-1,2,3,6,7,8-HxCDF	1.13e6	0.51	NO	1.05	10.035	33.217	33.24	0.991	0.992	191.78	96.2	0.467	
	30 13C-2,3,4,6,7,8-HxCDF	9.83e5	0.51	NO	0.946	10.035	33.824	33.82	1.009	1.009	184.85	92.7	0.517	
	31 13C-1,2,3,7,8,9-HxCDF	9.24e5	0.51	NO	0.816	10.035	34.726	34.72	1.036	1.036	201.34	101	0.600	

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200130R3\200130R3-6.qld

Last Altered:	Tuesday, February 04, 2020 11:46:28 Pacific Standard Time
Printed:	Tuesday, February 04, 2020 11:54:41 Pacific Standard Time

Name: 200130R3_6, Date: 31-Jan-2020, Time: 07:01:52, ID: 1903649-01 PDI-016SC-B-06-08-191009 14.36, Description: PDI-016SC-B-06-08-191009

	Rece	RA	ndy:	RRF	wanted	Pred.R.F	RT	Pred.RRT	RRT	Conc.	%Rec	<u>OL</u>	
32 13C-1,2,3,4,6,7,8-HpCDF	7.67e5	0.44	NO	0.589	10.035	36.469	36.47	1.088	1.088	231.31	116	0.650	
33 13C-1,2,3,4,7,8,9-HpCDF	6.40e5	0.45	NO	0.448	10.035	38.480	38.49	1.148	1.148	253.78	127	0.855	
34 34 13C-OCDF	1.71e6	0.87	NO	0.586	10.035	41.061	41.09	1.225	1.226	517.58	130	0.422	
35 37CI-2,3,7,8-TCDD	4.69e5			1.09	10.035	25.723	25.72	1.027	1.027	80.530	101	0.0611	
36 13C-1,2,3,4-TCDD	1.07e6	0.79	NO	1.00	10.035	25.080	25.05	1.000	1.000	199.30	100	0.168	
37 37 13C-1,2,3,4-TCDF	1.65e6	0.79	NO	1.00	10.035	23.420	23.39	1.000	1.000	199.30	100	0.233	
38 38 13C-1,2,3,4,6,9-HxCDF	1.1 2e6	0.51	NO	1.00	10.035	33.520	33.52	1.000	1.000	199.30	100	0.489	
39 39 Total Tetra-Diokins				0.824	10.035	24.620		0.000		1.8325		0.0876	1.83
40 40 Total Penta-Dioxins				0.912	10.035	29.960		0.000		0.28737		0.0863	0.623
41 41 Total Hexa-Dioxins				0.784	10.035	33.635		0.000		3.0267		0.0849	3.10
42 42 Total Hepta-Dioxins				0.737	10.035	37. 64 0		0.000		6.6208		0.1 54	6.62
43 43 Total Tetra-Furans				0.588	10.035	23.610		0.000		0.14800		0.0661	0.148
44 44 1st Func. Penta-Furans				0.826	10.035	27.090		0.000				0.0160	
45 45 Total Penta-Furans				0.826	10.035	29.275		0.000				0.0217	
46 Total Hexa-Furans				0.766	10.035	33.555		0.000				0.0257	
47 47 Total Hepta-Furans			_	0.732	10.035	37.835		0.000				0.0426	

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200130R3\200130R3-6.qld

Last Altered:	Tuesday, February 04, 2020 11:46:28 Pacific Standard Time
Printed:	Tuesday, February 04, 2020 11:54:41 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R3_6, Date: 31-Jan-2020, Time: 07:01:52, ID: 1903649-01 PDI-016SC-B-06-08-191009 14.36, Description: PDI-016SC-B-06-08-191009

Tetra-Dioxins

Г	Name	RT	m1 Height	m2 Height	mt Resp	m2 Resp	RA	sty	Resp	Conc.	EMPC	DL
h	Total Tetra-Dioxins	23.53	3.969e4	5.070 c 4	3.455e3	4.251e3	0.81	NO	7.707e3	1.6287	1.6287	0.0876
2	Total Tetra-Dioxins	25.03	6.337e3	8.732e3	3.847e2	5.798e2	0.66	NO	9.644e2	0.20382	0.20382	0.0876

Penta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Reep	m2 Resp	RA	n/y	Reep	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.49	3.671e3	8.637e3	2.839e2	6.23 4e 2	0.46	YES	0.000e0	0.00000	0.16163	0.0863
2	Total Penta-Dioxins	28.93	8.368e3	1.331e4	4.034e2	7.183e2	0.56	NO	1.122e3	0.24682	0.24682	0.0863
3	Total Penta-Dioxins	29.66	4.705e3	5.461e3	7.175e1	1.125e2	0.64	NO	1.843e2	0.040550	0.040550	0.0863
4	Total Penta-Dioxins	29.92	5.102e3	6.377e3	4.214e2	4.840e2	0.87	YES	0.000e0	0.00000	0.17360	0.0863

Hexa-Dioxins

	Mame	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	nly	Resp	Conc.	EMPC	OL
1	Total Hexa-Dioxins	32.51	8.771e4	6.536e4	3.685e3	2.890e3	1.27	NO	6.576e3	1.7075	1.7075	0.0849
2	Total Hexa-Dioxins	33.33	2.648e4	2.475e4	1.794e3	1.450e3	1.24	NO	3.244e3	0.84247	0.84247	0.0849
3	1,2,3,4,7,8-HxCDD	34.00	4.551e3	2.805e3	1.743e2	1.274e2	1.37	NO	3.018e2	0.075116	0.075116	0.0766
4	1,2,3,6,7,8-HxCDD	34.09	5.755e3	5.143e3	3.160e2	2.443e2	1.29	NO	5.603e2	0.14201	0.14201	0.0814
5	Total Hexa-Dioxins	34.30	5.060e3	3.355e3	1.879e2	1.256e2	1.50	YES	0.000e0	0.00000	0.073048	0.0849
6	1,2,3,7,8,9-HxCDD	34.38	1.175e4	8.304e3	5.769e2	4.776e2	1.21	NO	1.054e3	0.25957	0.25957	0.0868

Hepta-Dioxins

1 Total Hepta-Dioxins	RT	mt Height	mil Holght	mi Reep	m2 Resp	RA	aly .	Resp	Conc.	EMPC	ÐĽ
Total Hepta-Dioxins	36.86	1.095e5	1.109e5	6.923e3	6.683e3	1.04	NO	1.361e4	3.9785	3.9785	0.154
2 1,2,3,4,6,7,8-HpCDD	37.92	7.008e4	7.682e4	4.574e3	4.462e3	1.02	NO	9.036e3	2.6423	2.6423	0.154

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200130R3\200130R3-6.qld

Last Altered: Tuesday, February 04, 2020 11:46:28 Pacific Standard Time Printed: Tuesday, February 04, 2020 11:54:41 Pacific Standard Time

Name: 200130R3_6, Date: 31-Jan-2020, Time: 07:01:52, ID: 1903649-01 PDI-016SC-B-06-08-191009 14.36, Description: PDI-016SC-B-06-08-191009

Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Reep	m2 Resp	RA	n/y 😳	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.78	4.087e3	4.946e3	2.605e2	3.929e2	0.66	NO	6.534e2	0.14800	0.14800	0.0661

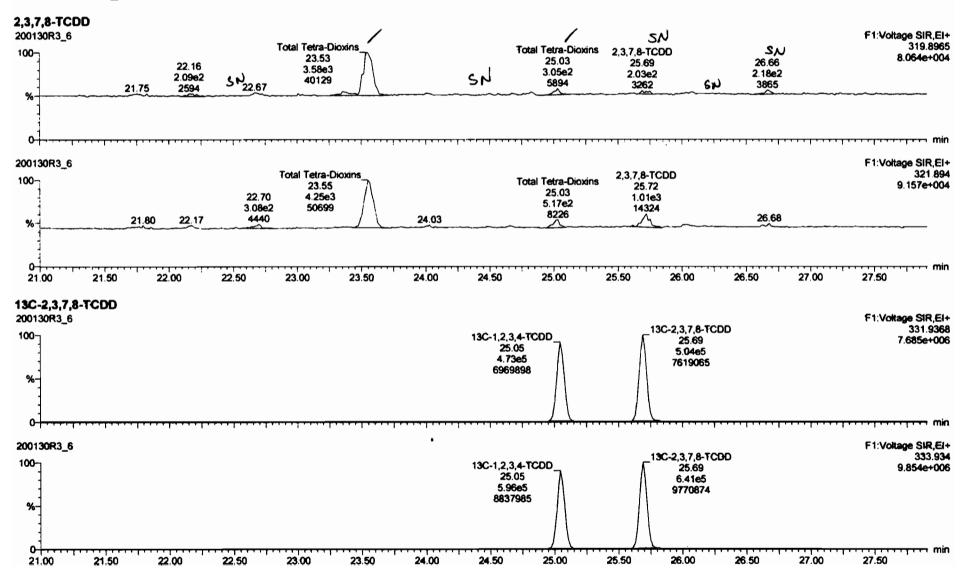
Penta-Furans function 1

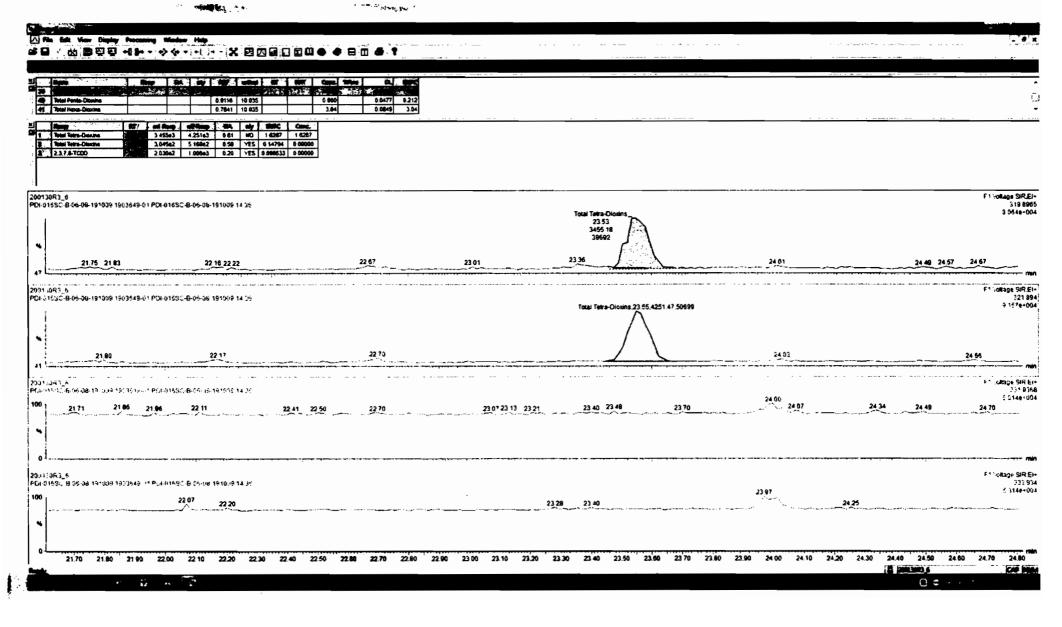
Name	RT	m1 Height	m2 Height	mt Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1											

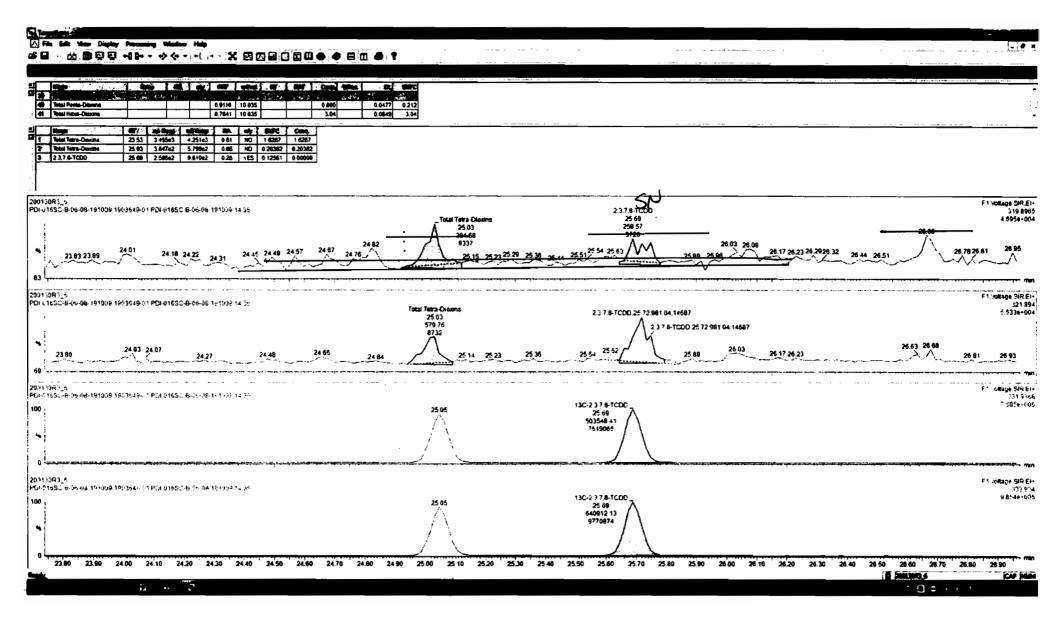
Penta-Furans

Neme	ŔT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	nAy	Resp	Conc.	EMPC	DL
1										1

Hexa-Furans

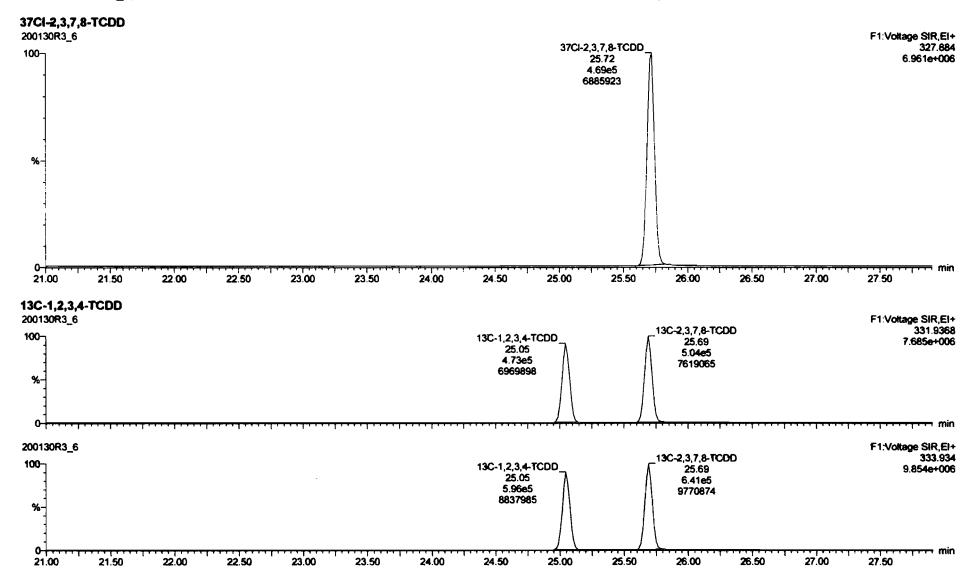

Name RT	 n1 Height m2 Height	m1 Resp	m2 Resp	RA	niy	Reep	Conc.	EMPC	DL
1									

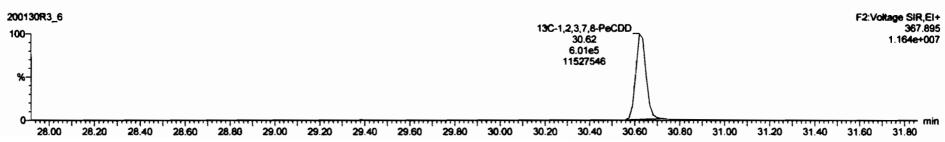

Hepta-Furans

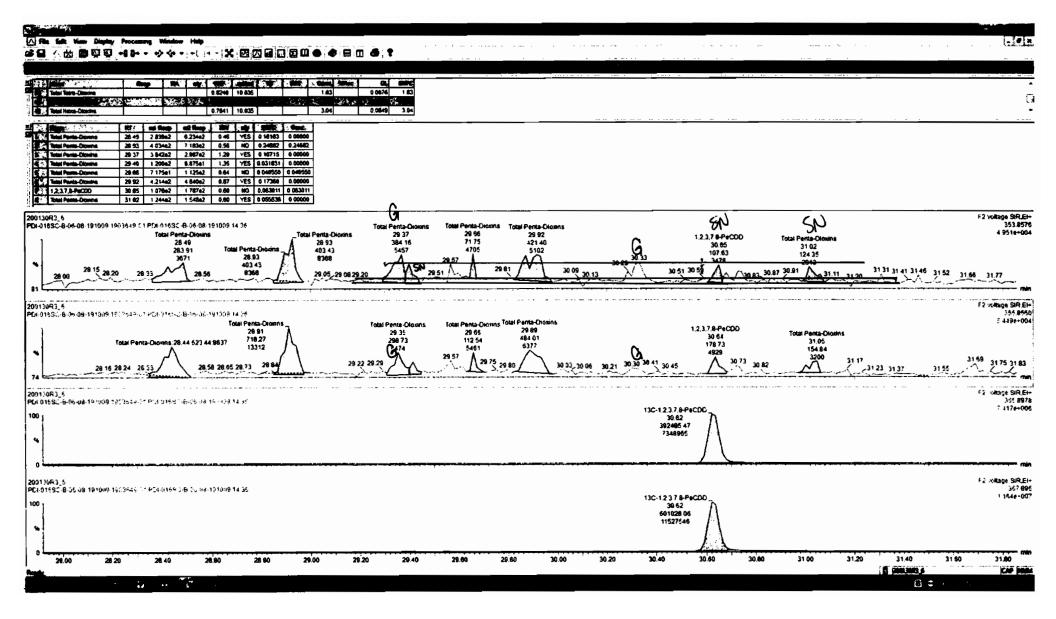

Neme	RT	m1 Height m2 Height	m1 Reep	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Quantify Sam Vista Analytica		Page 14 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	

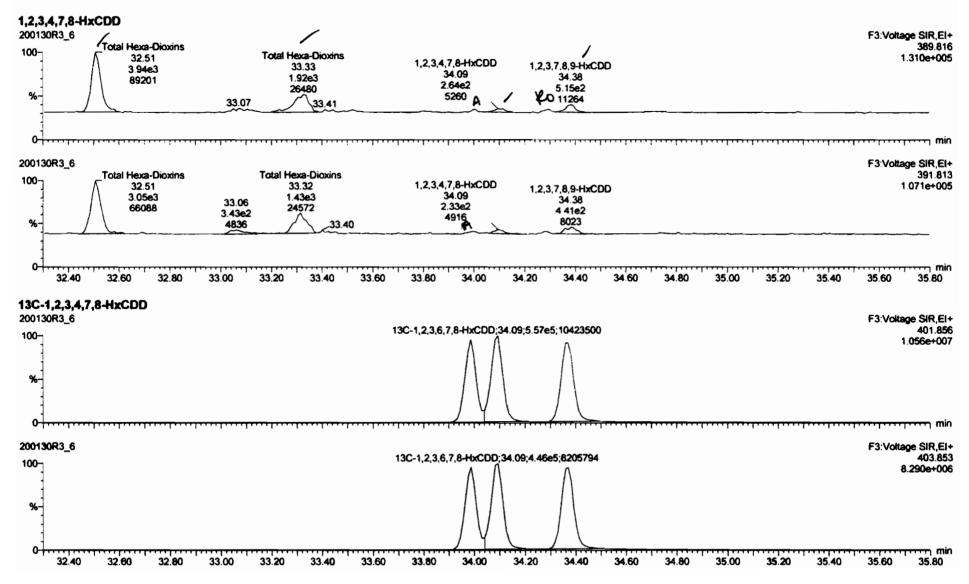
Name: 200130R3_6, Date: 31-Jan-2020, Time: 07:01:52, ID: 1903649-01 PDI-016SC-B-06-08-191009 14.36, Description: PDI-016SC-B-06-08-191009



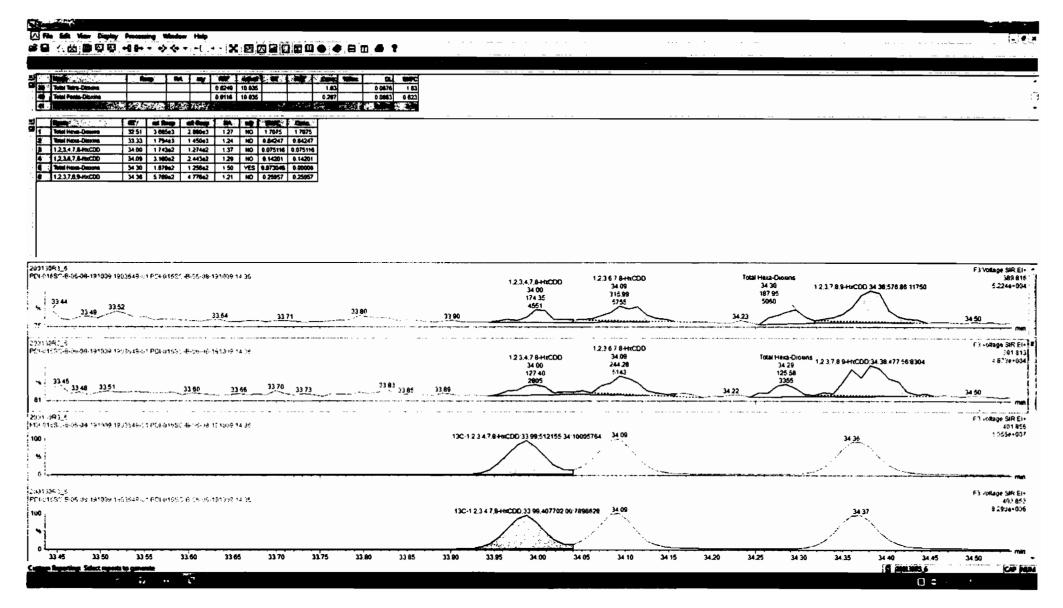



Quantify Sam Vista Analytica		Page 15 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	

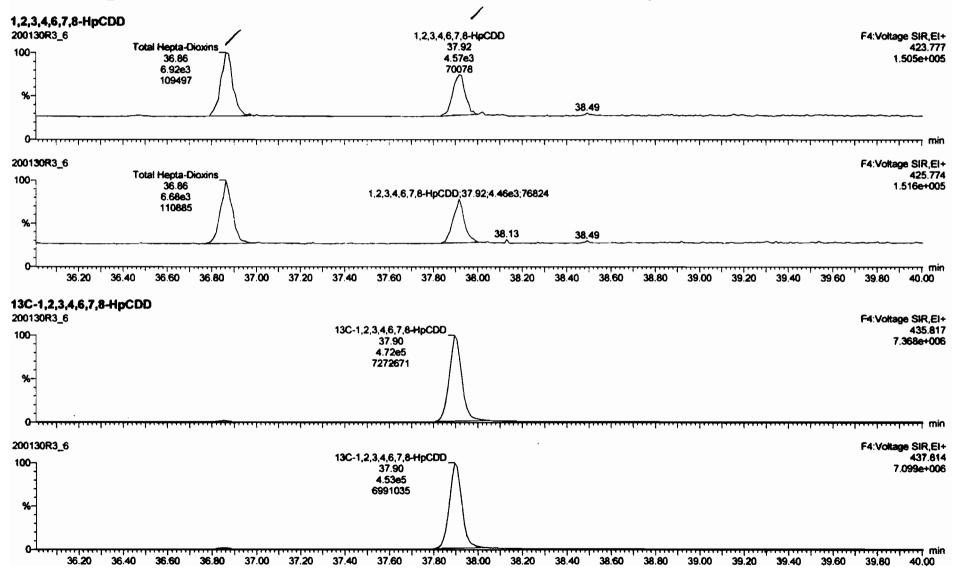
Name: 200130R3_6, Date: 31-Jan-2020, Time: 07:01:52, ID: 1903649-01 PDI-016SC-B-06-08-191009 14.36, Description: PDI-016SC-B-06-08-191009

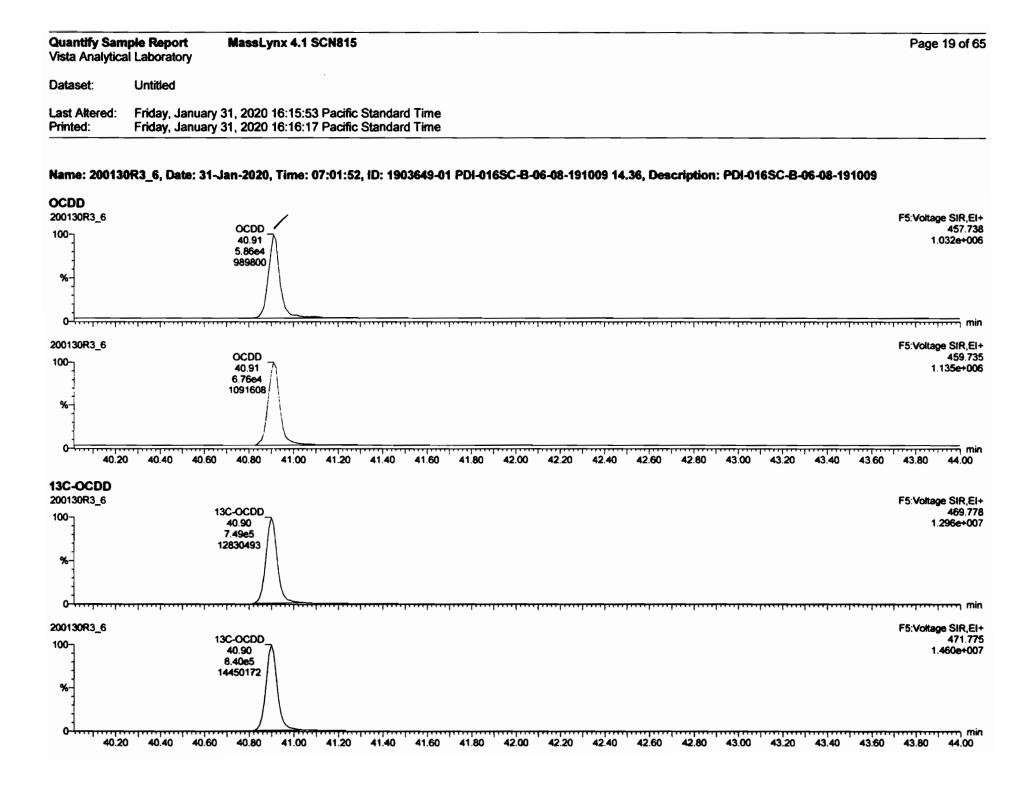


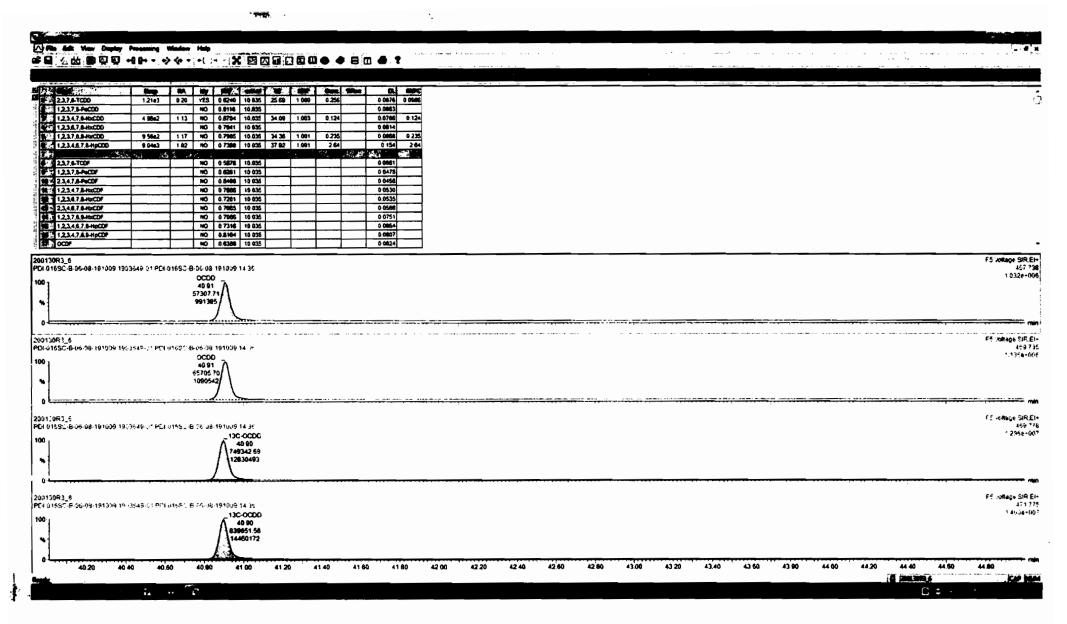
Vista Analytica	n ple Report al Laboratory	MassLynx 4.1 SCN	1815									Pa	ge 16 of 6
ataset:	Untitled												
ast Altered: Printed:	Friday, January Friday, January	31, 2020 16:15:53 Pa 31, 2020 16:16:17 Pa	icific Standar Icific Standar	d Time d Time									
lame: 20013	0R3_6, Date: 31-	Jan-2020, Time: 07:0	1:52, ID: 190	03649-01 PDI-0	016SC-B-06-08	3-191009 14.36, Do	escriptic	on: PDI-	016SC-E	3-06-08-1	91009		
1 ,2,3,7,8-PeC 200130R3_6 ¹⁰⁰ 7		Total Penta-Dioxins;28.93;3	3.73e2;8177	SN29.57529.66	¥0 29.87 29.92	30.33;2,19e2;3861	SA- 30.65) 30.73	SN 31,02	31.3	1 31.46		tage SIR,EI 353.8576 4.951e+004
%													
1													
1													min
	44:5 96e2:8351 Tu	otal Penta-Dioxins;28.91;7.	07e2;12929	·····	29.89 4.64e2				····1			F2:Vo	min tage SIR,EI+ 355.8550
200130R3_6	44;5.96e2;8351 To	otal Penta-Dioxins;28.91;7.	07e2;12929 29.3	35 29.57 29.66		30.30	30.64	30.73	31.05	·····		F2:Vo	tage SIR,EI4
200130R3_6	44;5.96e2;8351 T	otal Penta-Dioxins:28.91;7.		29.57 29.66	4.64e2	30.30	30.64	30.73	31.05	·····i·····		F2:Vo	tage SIR,EI 355.8550
00130R3_6 100-1 28. 100-1 28.		otal Penta-Dioxins;28.91;7.0	29.3	95 29.57 29.66	4.64e2	30.30 30.20 30.40	30.64	30.73	31.05			F2:Vo	tage SIR, EI 355.8550 5.449e+004
200130R3_6 100 28. 	28.20 28.40		29.3	·····	4.84e2 6377	30.20 30.40	30.60	<	<u> </u>		31.40	F2:Vot 31.69 31.60	tage SIR,EI 355.855 5.449e+004
200130R3_6 100-1 28. 	28.20 28.40		29.3	·····	4.84e2 6377		30.60	<		31.20	31.40	F2:Vot 31.69 31.60	tage SIR,EI4 355.8550 5.449e+004



Quantify Sam Vista Analytica		Page 17 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	



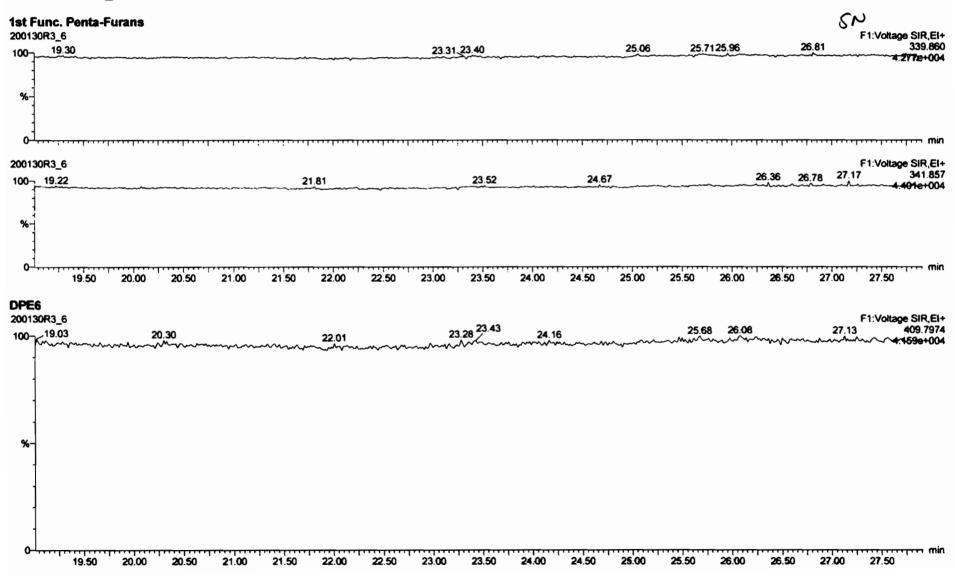

A File Edit View Deploy Processing Window Holp					- 0 x
¢♀ ∞ ₽♀♀ +++ - > + +() X ⊠⊠⊕ ⊡ ⊡ ● + + = □ ● †	No. 1977 1 10 1 10 10 10 10 10				
Name Array No. No.<	Advanced and the second s	and the second		<u> </u>	ů
Naty NT of Stage of Stage of Stage of Stage of Stage cons. 4 Total Herse-Douxina 32 51 3 085c3 2 880c3 1 27 MQ. 1 17075 1 7875 3 Total Herse-Douxina 32 51 3 085c3 2 880c3 1 27 MQ. 1 17075 1 7875 3 Total Herse-Douxina 33 33 1 794c1 1 450c13 1.24 MD. 0 8/247 0 4/247 3 1 2.3.4.7.8-MucCDD 34 06 2 844c2 2 335c2 1 13 MD. 0 1/2363 0 12363 4 1 2.3.7.8.8-MuCDD 34 38 5 146c2 4.410c2 1.17 MD. 6 23531 0 29531				<u>, , , , , , , , , , , , , , , , , , , </u>	• domesti (1997) • 100
200130R1_5 PF4-0165° #-06-08-1910394 (#0.18.49.// 1.PC%)14550-8-06-34-1910//9.14.36 Total Haxa-Diorons 32.51.3685.21.877.11	^{23 05} 33 37	Total Hexa-Olodins 33:33 1793:96 26480 33:41	33 52		F3108age SIR.EI+ 389 816 1 313e-005
20311043_6 PCH-01635_8_PCH-00-141_019_14_3545-01 PCH-015550_8-06-08-121000_14_06 Total Hera-Diomes_12_51_2890_39_65361	33.06	Total Heza-Dixans 33 32 1450 35 24751 33 40			F3.vonage SIR EI+ 99 813 * 071e+015
2001.063.5					F3 - Oltage SIR EI+
EGL016SC-6-06-08-19170-19-19-19-19-06-08-191709-14-36 100 22.41 22.56 22.87	33 04	33_31 33_30 2	3 44 33 49 33 56	33 64	401856 1004-525e -
0		anal dan disembat sa Million di anton di Mandal di Salah manda yanan kun dise di Andri Andri	an na 2000 ay 1940 ya 1940 ya 1940 ay 1		F3 Votage SIR EI+
PD401685 9 566 13 101 1 10 1003445 - 1 5 04 0455 5 06 15 12 10 10 10 10 10 10 10 10 10 10 10 10 10	33 03 33 07	324 33.29 33.34	33 49	33,67	403 853 4 511e+004
	and and an array of the second se		, 1999, a 1999, a 1999, 1999, 1999, 1997, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 200		
0 32 40 32 45 32 50 32 55 32 60 32 65 32 70 32 75 32 80 32 85 32 80 32 85 3	2 00 33 05 33 10 33 15 33 20	33,25 33,30 33,25 33,40	33 45 33 50 33 55 33	3.60 33.65 33.70 33.75 33	A 33.85


:

Quantify San Vista Analytica		Page 18 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	

aset:	Untitle	ed								
t Altered: ited:	Frida Frida	y, January 31 y, January 31	, 2020 16:15:53 Pac , 2020 16:16:17 Pac	ific Standard Tir	ne ne					
ne: 20013	0R3 6.	Date: 31-Ja	n-2020, Time: 07:01	:52. ID: 190364	9-01 PDI-016SC	-B -06 -08-1910	09 14.36, Des	cription: PDI-016S4	C-B-06-08-1910	09
7,8-TCDF		SN						54)		F1:Voltage Sif
_	19.64	Total Tetra-Fur	ans;20.78;2.16e2;3759	52	23.01 23.34	23.91	SN	25.51 25.72	26.42 Su	303. 4.449e
130R3_6								•••••		F1:Voltage SI
]	19.69	Total Tetra-Fun	ans;20.77;3.42e2;4530		22.64 22.98 23.31		24.81	25.74	· · · · · · · · · · · · · · · · · · ·	30 4.538e
1	50 2	20.00 20.50	21.00 21.50	22.00 22.5	50 23.00 23	3.50 24.00	24.50 25 .	00 25.50 26.0	0 26.50 27	7.00 27.50
C-2,3,7,8-T 130R3_6		20.00 20.50	21.00 21.50		30 23.00 23 3C-1,2,3,4-TCDF 23.39 7.28e5 8664519	13C-2,3 2 6	24.50 25. 3,7,8-TCDF 4.81 51e5 63556	00 25.50 26.0	0 26.50 27	7.00 27.50 F1:Vottage SI 315 9.250e
19: C-2,3,7,8-T 130R3_6		20.00 20.50	21.00 21.50	1 ,,	3C-1,2,3,4-TCDF 23.39 7.28e5 8664519	13C-2,3 2 6 91	8,7,8-TCDF 4.81 51e5 63556	00 25.50 26.0	0 26.50 25	7.00 27.50 F1:Voltage SI 315 9.250e F1:Voltage SI
19: C-2,3,7,8-T 130R3_6 130R3_6 130R3_6		20.00 20.50	21.00 21.50	1 ,,	3C-1,2,3,4-TCDF 23,39 7.28e5	13C-2,3 6 91 13C-2,3 2 8	8,7,8-TCDF 14.81 51e5	00 25.50 26.0	0 26.50 2	7.00 27.50 F1:Vottage SI 315 9.250e F1:Vottage Si 31 1.191e
19: 2-2,3,7,8-T 130R3_6 130R3_6 130R3_6 130R3_6 130R3_6 130R3_6	CDF	20.00 20.50		1 ,,	3C-1,2,3,4-TCDF 23.39 7.28e5 8664519 3C-1,2,3,4-TCDF 23.39 9.26e5 11132268	13C-2,3 6 91 13C-2,3 2 8	8,7,8-TCDF 4.81 51e5 63556 7,8-TCDF 4.81 46e5	****		7.00 27.50 F1:Vottage SI 315 9.250e F1:Vottage Si 31 1.191e
19: 2-2,3,7,8-T 130R3_6 130R3_6 130R3_6	CDF			1 	3C-1,2,3,4-TCDF 23.39 7 28e5 8664519 3C-1,2,3,4-TCDF 23.39 9.26e5 11132268	13C-2,3 6 91 13C-2,3 8 118 3.50 24.00	8,7,8-TCDF 44.81 51e5 63556 3,7,8-TCDF 4.81 46e5 319876	·····		7.00 27.50 F1:Voltage SI 315 9.250e F1:Voltage SI 31 1.191e 7.00 27.50 F1:Voltage SI 27.31 375
19: 5-2,3,7,8-T 130R3_6 130R3_6 130R3_6 19: E1 130R3_6	CDF	20.00 20.50) 21.00 21.50	1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3C-1,2,3,4-TCDF 23.39 7 28e5 8664519 3C-1,2,3,4-TCDF 23.39 9.26e5 11132268	13C-2,3 6 91 13C-2,3 8 118 3.50 24.00	8,7,8-TCDF 4.81 51e5 63556 3,7,8-TCDF 4.81 46e5 319876 24.50 25	00 25.50 26.0	0 26.50 21	F1:Voltage SII 315. 9.250e F1:Voltage SII 31 ⁷ 1.191e 7.00 27.50 F1:Voltage SII

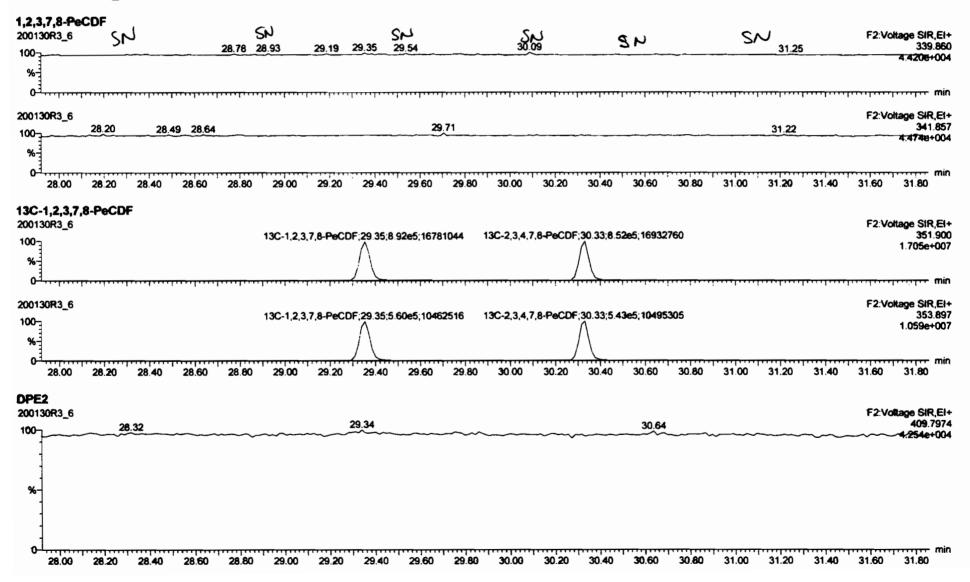
4۔ 27.50 min 26.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.50 27.00

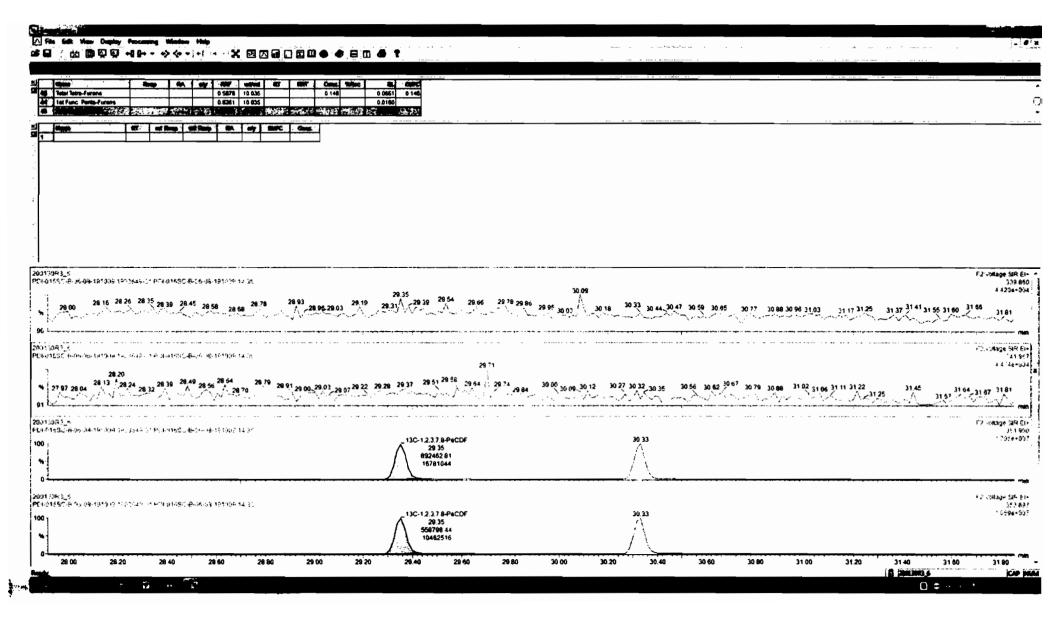

Quantify Sample Report

MassLynx 4.1 SCN815

Page 20 of 65

State -				
[An Edit Ver Digity Processing Window Hite 양물 / 故國聖聖 에 \$+ • ◇ ◆ • · + (+ · X·23 四日,□ 월 때 ● ◆ 8 Ⅲ ● ; *				- C ×
		на и и .	, a see an annuage of a lot of a lot of a	а стана <mark>н</mark> аници.
Lington and the second se		• • • • •	· · · · · · · · · · · · · · · · · · ·	
CT CARLES AND				-
46. 10.025 0.0160 48. Total Pents-Furans 0.0261 10.035 0.0217				
High ART I at them all them the at Store	<u> </u>			
Image: Second Teams 20.78 2.095e2 3.929e2 0.06 HO 0.14800 0.14800				
Ŋ				
200130R3_6 PDk015SC-8-06-08-191909 1903548-01 PDk01655-8-05-08-191939 14 35				F 1 Voltage SiR Et+ 303 9016
Total Tetra-Furrans.20 78 260 52 4087				1.4494-004
Total Tetra-Furans 20 78,260 52,4087	22 77 2301 23 28 23 34 23 51	24.03 24.13 24.69 24.81 25.0	8 25 23 25 51 25 72 26 09 26 24 26 42 26 63	26 96 27 14 27 43 27.61 27 76 27.96
19.13 19.39 1 19.87 20.29 ML 21.35, 21.42 21.80 22.11 22.20 22.55 22	65 27 77 23 01 23 28 23 34 23 51 23 57 65 27 77 1 23 28 23 34 23 51 23 57	Swinn the month of the state	a and the second as broken in the	main remain and when the
				· · · · · · · · · · · · · · · · · · ·
200130R2_F PDF010SC-6-0F08+19100R1903049-01 PDF015SC-6-06-1015910-F14-05				F* sollsge 5(R,E1+) 00f 399(
Total Tetra-Furans.20 77 392 92,4946				4.536e+004
4 19 15 19.38 19.09 Total Tetra-Furans. 20.77 392.92 4946 Total Tetra-Furans. 20.77 392.92 4946 21 83 22 08 22 19 22 41 22 21 59 21 90 21 83 22 08 22 19 22 41 22 21 59 21 90 21 59 21 59 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 21 59 21 50 20 50	64 22 7622 98 23 31 23.45 23 89	23.92.24 01-24 19 24 48 25 0	18 25 38 25 55 25 74 25 83 26 15 26 29 26 36 26 66	26 78 26 90 27 23 27 43 27 7127 66
as the set of the set	Welson and the second second	and the second second second second	and the second	
200130K)_6 PEL-01631-560+08 191009 1803549-01 PE+016SU #-06194-191005 14 +-				F1 Joltage SIREI+ 315 9416
100 ,	23.39	13C-2.3 7.8-TCDF 24 61		3 2206+008
		951388 75 9163556		
	/ \	/		
2001004 5_6 PEL 6160008-06 09-181005 1960849-01 PCI 01680-8-66-00 1816-15 14.90				F 1 collage SIR EI+ 17 839
100-1	23,39	13C-2378-TCDF 2481 Å		1 191e-00?
	/\	845706 75		
	/ \			
18.25 19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25 22.50	22 75 23 00 23 25 23 50 23 75	24.00 24.25 24.50 24.75 25.00		
Contrary Reporting Select reports to generate				

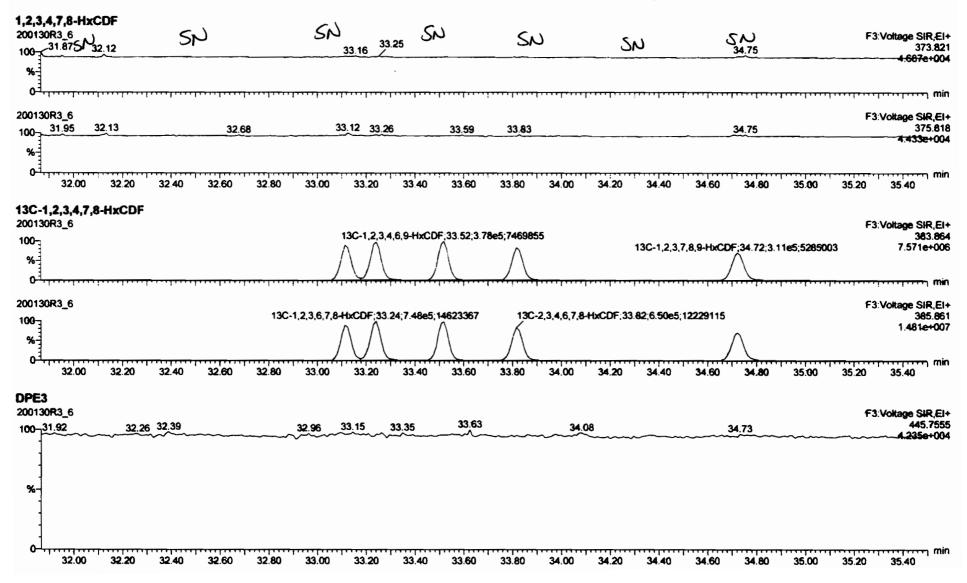

Quantify San Vista Analytica		Page 21 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	

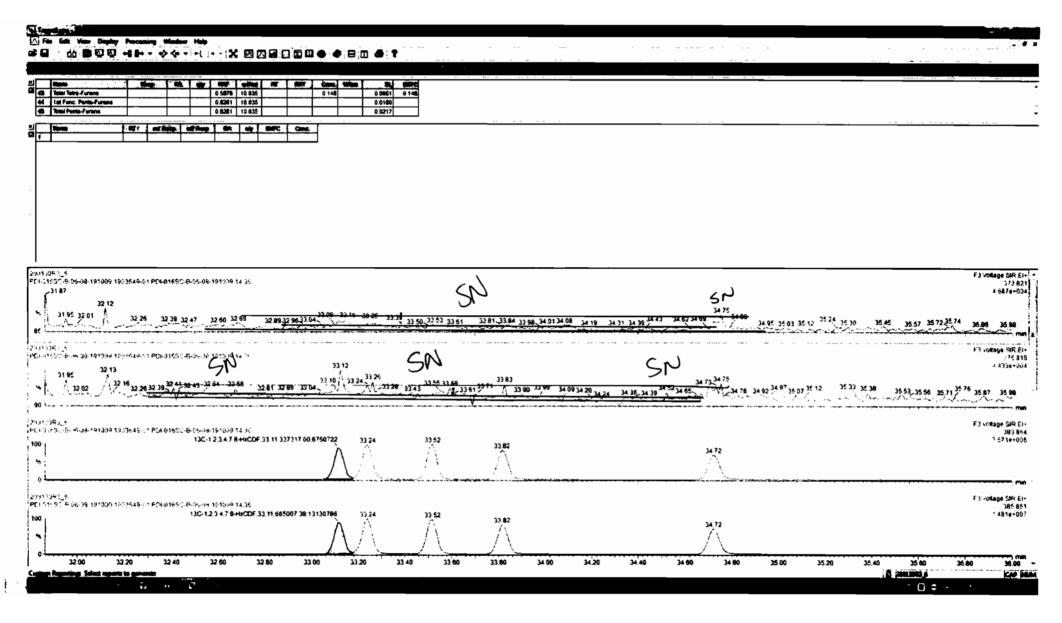


Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

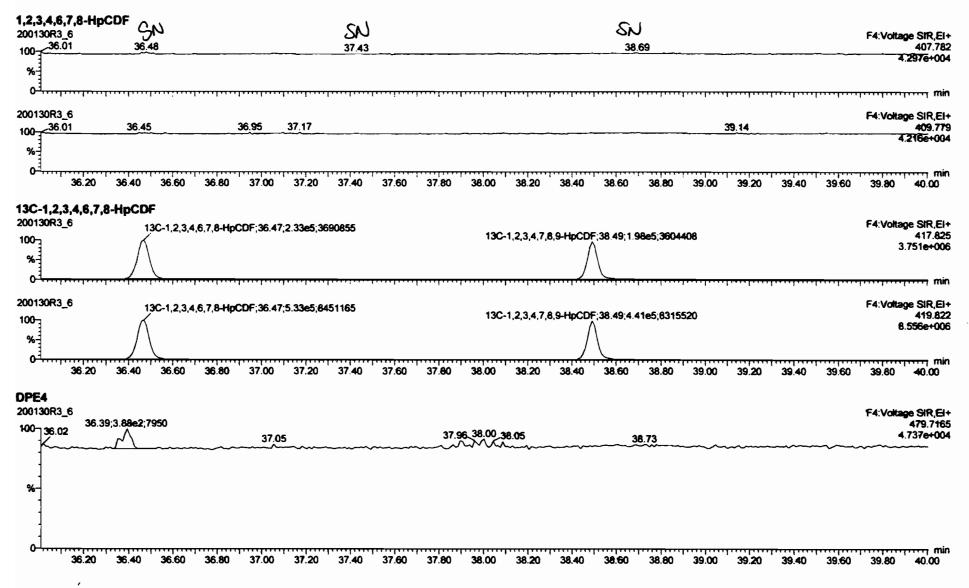
Dataset: Untitled

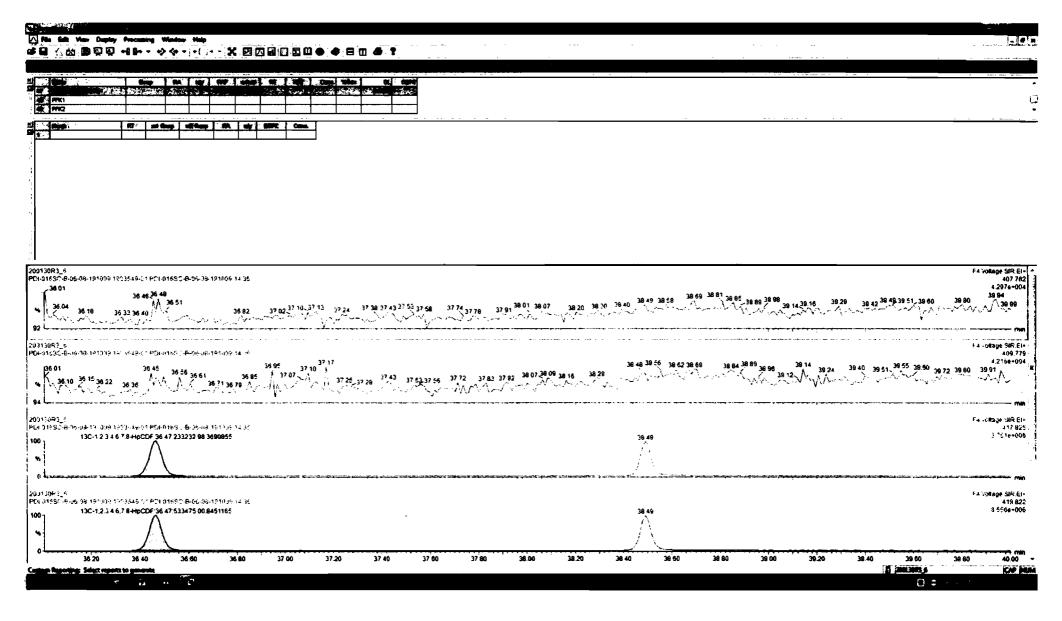
Last Altered:Friday, January 31, 2020 16:15:53 Pacific Standard TimePrinted:Friday, January 31, 2020 16:16:17 Pacific Standard Time

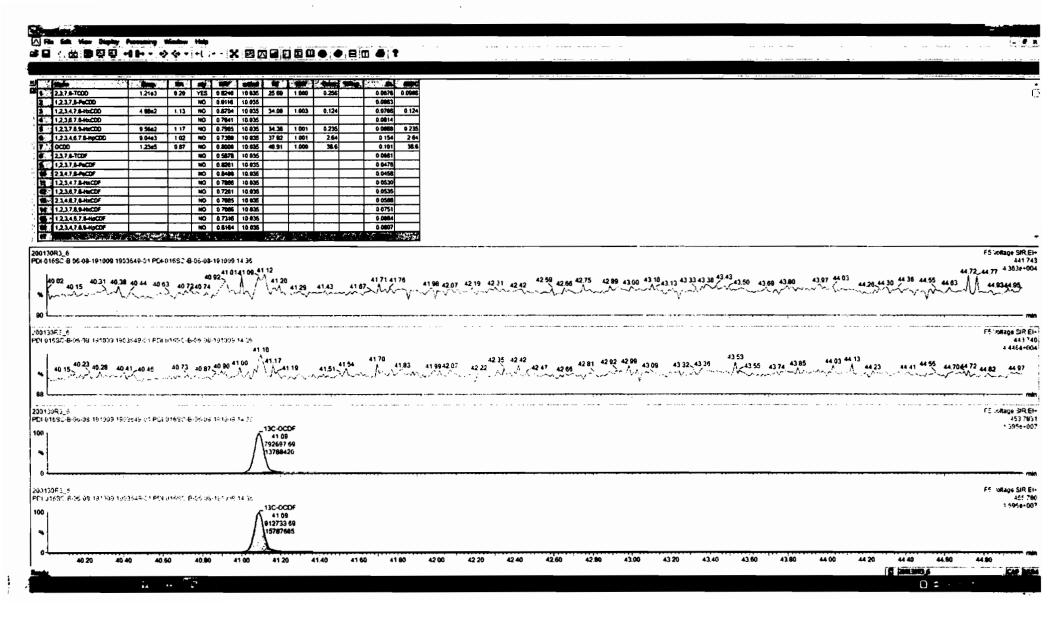


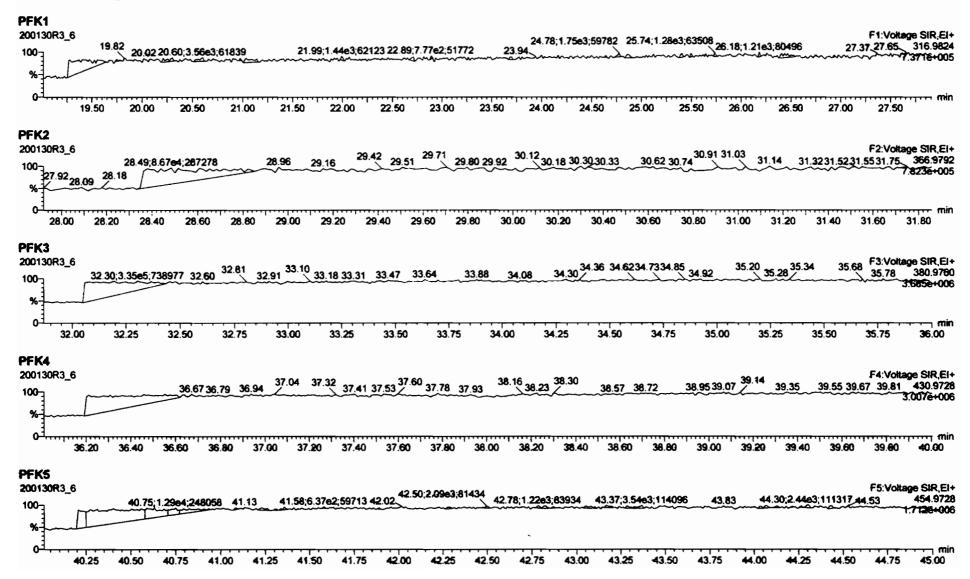


Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory


Dataset: Untitled


Last Altered:Friday, January 31, 2020 16:15:53 Pacific Standard TimePrinted:Friday, January 31, 2020 16:16:17 Pacific Standard Time


Quantify Sam Vista Analytica		Page 24 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	



Quantify Sam Vista Analytica		Page 25 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	

SN OCDF 200130R3_6 F5:Voltage SIR,EI+ 41.01 41.12 44.72 441,743 40.38 41.71 43.10 43.38 100-4.363e+004 %-0---- min 200130R3_6 F5:Voltage SIR,EI+ 41.00 41.10 41.17 41.70 443.740 42.42 42.99 43.53 44.13 100-4.4466+004 %-0n min 40,25 40,50 40,75 41.00 41.25 41.50 41.75 42.00 42,25 42.50 42,75 43.00 43.25 43.50 43.75 44.00 44.25 44.50 44.75 45.00 13C-OCDF 200130R3_6 F5:Voltage SIR,EI+ 13C-OCDF;41.09;7.93e5;13788420 453.7631 100-1.395e+007 %-Onim r 200130R3_6 F5:Voltage SIR,EI+ 13C-OCDF;41.09;9.13e5;15787685 455.780 100 1.595e+007 %-0min – 40.25 40.50 40.75 41.00 41.25 41.50 41.75 42.00 42.25 42.50 42.75 43.00 43.25 43.50 43.75 44.00 44.25 44,50 44.75 45.00 DPE5 200130R3_6 F5:Voltage SIR,EI+ 43.09 43.18 43.34 41.99 513.6775 44.77. 40.27 40.57 40.89 41.06 41.38,41.43 41.86 43.95 100-338e+004 %nim r 40.25 40.50 40.75 41.00 41.25 41.50 41.75 42.00 42.25 42.50 42.75 43.00 43.25 43.50 43.75 44.00 44.25 44.50 44.75 45.00

Quantify San Vista Analytica		Page 26 of 65
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 16:15:53 Pacific Standard Time Friday, January 31, 2020 16:16:17 Pacific Standard Time	

CONTINUING CALIBRATION

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: ST200130R2-1			Reviewed By: 02/03/2020	_	
End Calibration ID:NA			initiais & Date		í.
	Beg.	End		Beg.	End
Ion abundance within QC limits?	\checkmark	NA	Mass resolution >		V
Concentrations within criteria?	\checkmark		□ 5k □ 6-8K □ 8K 対 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	\square		Intergrated peaks display correctly?	v	NA
First and last eluters present?		ф	GC Break <20%		
Retention Times within criteria?		þ	8280 CS1 End Standard:		
Verification Std. named correctly?		Φ	- Ratios within limits, S/N <2.5:1, C81 within 12 hours		NA
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?		ф	A END RES CHECK HAD ONE MASS <10K		
Correct ICAL referenced?	GRB				
Run Log:					
- Correct instrument listed?	\checkmark	J			
- Samples within 12 hour clock?	$\langle \mathbf{\hat{y}} \rangle$	N			
- Bottle position verfied?	G	RB			

Quantify Sample Summary Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

U:\VG12.PRO\Results\200130R2\200130R2-1.qld Dataset:

Last Altered:	Thursday, January 30, 2020 15:24:44 Pacific Standard Time
Printed:	Thursday, January 30, 2020 15:25:55 Pacific Standard Time

CT 02/03/2020

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R2_1, Date: 30-Jan-2020, Time: 14:14:22, ID: ST200130R2_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
1	1 2,3.7,8-TCDD	8.34e4	7.87e5	0.79	NO	0.824	25.75	25.75	NO	1.001	1.001	12.856	129	NO
2	2 1,2,3,7,8-PeCDD	2.78e5	5.68e5	0.65	NO	0.912	30.67	30.67	NO	1.001	1.001	53.631	107	NO
3	3 1,2,3,4,7,8-HxCDD	2.86e5	5.80e5	1.24	NO	0.870	34.01	34.01	NO	1.000	1 000	56.512	113	NO
4	4 1,2,3,6,7,8-HxCDD	3.03e5	6.75e5	1.21	NO	0.784	34.09	34.12	NO	1.000	1.001	57.258	115	NO
5	5 1,2,3,7,8,9-HxCDD	2.82e5	6.61e5	1 23	NO	0.798	34.40	34.39	NÔ	1.001	1 001	53.475	107	NO
6	6 1,2,3,4,6.7,8-HpCDD	2.25e5	5 35e5	1.02	NO	0.737	37.93	37.93	NO	1.000	1.000	57.133	114	NO
7	7 OCDD	4.44e5	9.51e5	0.88	NO	0.800	40.91	40.92	NO	1.000	1 000	116.76	117	NO
8	8 2,3,7,8-TCDF	7.97e4	1.13e6	0.71	NO	0.588	24.88	24 87	NO	1.001	1.001	11 974	120	NO
9	9 1,2,3,7,8-PeCDF	4.15e5	8.96e5	1 50	NO	0.826	29.39	29.39	NO	1.001	1.001	56 008	112	NO
10	10 2,3.4,7.8-PeCDF	4.16e5	8.57e5	1.55	NO	0.850	30.38	30.36	NO	1.001	1.001	57.067	114	NO
11	11 1,2,3,4,7,8-HxCDF	2.84e5	6.48e5	1 17	NO	0.787	33.12	33.15	NO	1.000	1.001	55.786	112	NO
12	12 1,2,3,6,7,8-HxCDF	3.16e5	7 7 4e 5	1.18	NO	0.720	33.25	33.26	NO	1.000	1.001	56.783	114	NO
13	13 2,3,4,6,7,8-HxCDF	3.05e5	7.04e5	1.20	NO	0.766	33.86	33.84	NO	1.001	1.000	56.424	113	NO
14	14 1,2,3,7,8,9-HxCDF	2.46e5	6.28e5	1.17	NO	0.709	34.73	34.74	NO	1.000	1.000	55.355	111	NO
15	15 1,2,3,4.6,7,8-HpCDF	2.17e5	5.43e5	0.96	NO	0.732	36.52	36.49	NO	1.001	1.000	54.696	109	NO
16	16 1,2,3,4,7,8,9-HpCDF	1.88e5	4.08e5	0.98	NO	0.816	38 50	38 51	NO	1.000	1.000	56.617	113	NO
17	17 OCDF	4.35e5	1 08e6	0.86	NO	0 639	41.10	41.12	NO	1.000	1.001	126.49	126	NO
18	18 13C-2,3,7,8-TCDD	7.87e5	6 33e5	0.79	NO	1.12	25.74	25.72	NO	1.026	1.025	111.49	111	NO
19	19 13C-1,2,3,7,8-PeCDD	5.68e5	6.33e5	0.65	NO	0.841	30.49	30.65	NO	1.215	1.222	106.60	107	NO
20	20 13C-1,2,3,4,7,8-HxCDD	5.80e5	7.16e5	1.25	NO	0.938	34.00	34.00	NO	1.014	1.014	86.399	86.4	NO
21	21 13C-1,2,3,6,7,8-HxCDD	6.75e5	7 16e5	1 26	NO	1.07	34.10	34.09	NO	1.017	1.017	88.410	88.4	NO
22	22 13C-1,2,3,7,8,9-HxCDD	6.61e5	7.16e5	1.22	NO	1.03	34.40	34.37	NO	1.026	1.025	89.582	89.6	NO
23	23 13C-1,2,3,4,6,7,8-HpCDD	5.35e5	7.16e5	1.02	NO	0.710	37.96	37 92	NO	1.132	1.131	105.27	105	NO
24	24 13C-OCDD	9.51e5	7.16e5	0.90	NO	0.601	40.84	40.91	NO	1.218	1.220	220.96	110	NO
25	25 13C-2,3,7,8-TCDF	1.13e6	1.04e6	0.77	NO	1.04	24.92	24.85	NO	0.993	0.990	104.97	105	NO
26	26 13C-1,2,3,7,8-PeCDF	8.96e5	1.04e6	1.55	NO	0.917	29.26	29.37	NO	1.166	1.171	93.904	93.9	NO
27	27 13C-2,3,4,7,8-PeCDF	8.57e5	1.04e6	1.56	NO	0.903	30.21	30.35	NO	1.204	1.209	91.214	91.2	NO
28	28 13C-1,2,3,4,7,8-HxCDF	6.48e5	7.16e5	0.52	NO	0.861	33.13	33.12	NO	0.988	0.988	105.02	105	NÓ
29	29 13C-1,2,3,6,7,8-HxCDF	7.74e5	7.16e5	0.52	NO	1.05	33.23	33.24	NO	0.991	0.991	103.19	103	NO
30	30 13C-2,3,4,6,7,8-HxCDF	7.04e5	7.16e5	0.52	NO	0.946	33.83	33.83	NO	1.009	1.009	103.98	104	NO
31	31 13C-1,2,3,7,8,9-HxCDF	6.28e5	7.16e5	0.52	NO	0.816	34.74	34.73	NO	1.036	1.036	107.50	107	NO

Page 1 of 2

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: U:\VG12.PRO\Results\200130R2\200130R2-1.qld

Last Altered:	Thursday, January 30, 2020 15:24:44 Pacific Standard Time
Printed:	Thursday, January 30, 2020 15:25:55 Pacific Standard Time

Name: 200130R2_1, Date: 30-Jan-2020, Time: 14:14:22, ID: ST200130R2_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

1	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
32	32 13C-1,2,3,4,6,7,8-HpCDF	5.43e5	7.16e5	0.43	NO	0.589	36.48	36.48	NO	1.088	1.088	128.78	129	NO
33	33 13C-1,2,3,4,7,8,9-HpCDF	4.08e5	7.16e5	0.43	NO	0.448	38.49	38.50	NO	1.148	1.148	127.01	127	NO
34	34 13C-OCDF	1.08e6	7.16e5	0.87	NO	0.586	41.07	41.10	NO	1.225	1.226	256.37	128	NO
35	35 37CI-2,3,7,8-TCDD	7.58e4	6.33 e 5			1.09	25.77	25.75	NO	1.027	1.026	11.035	110	NO
36	36 13C-1,2,3,4-TCDD	6.33e5	6.33e5	0.78	NO	1.00	25.08	25.09	NO	1.000	1 000	100.00	100	NO
37	37 13C-1,2,3,4-TCDF	1.04e6	1.04e6	0.79	NO	1.00	23.42	23.43	NO	1.000	1.000	100.00	100	NO
38	38 13C-1,2,3,4,6,9-HxCDF	7.16e5	7.16e5	0.51	NO	1.00	33.52	33.53	NO	1.000	1.000	100.00	100	YES 🚧
39	39 Total Tetra-Dioxins		7.87e5			0.824	24.62		NO	0.000		105.07		NO
40	40 Total Penta-Dioxins		5.68e5			0.912	29.96		NO	0.000		248.36		NO
41	41 Total Hexa-Dioxins		0.00e0			0.784	33.63		NO	0.000		271 52		NO
42	42 Total Hepta-Dioxins		5.35e5			0.737	37 64		NO	0.000		151 84		NO
43	43 Total Tetra-Furans		1.13e6			0 588	23.61		NO	0.000		64.681		NO
44	44 1st Func. Penta-Furans		0 00e0			0.826	27.09		NO	0.000		97.497		NO
45	45 Total Penta-Furans		0.00e0			0.826	29.27		NO	0.000		200.91		NO
46	46 Total Hexa-Furans		0.00e0			0.766	33.56		NO	0.000		315.01		NO
47	47 Total Hepta-Furans		0.00e0			0.732	37.83		NO	0.000		111.31		NO

	aple Summary Report al Laboratory VG-11	MassLynx 4.1 SCN815	Page 1 of 1
Dataset:	Untitled		
Last Altered: Printed:		20 15:27:11 Pacific Standard Time 20 15:27:21 Pacific Standard Time	

Method: U:\VG12.PRO\MethDB\CPSM.mdb 23 Jan 2020 15:01:26 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R2_1, Date: 30-Jan-2020, Time: 14:14:22, ID: ST200130R2_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

COLUMN 1	# Name	RT
1	1 1,3,6,8-TCDD (First)	21.80
2	2 1,2,8,9-TCDD (Last)	26.69
3	3 1,2,4,7,9-PeCDD (First)	28.47
4	4 1,2,3,8,9-PeCDD (Last)	31.05
5	5 1,2,4,6,7,9-HxCDD (First)	32.52
6	6 1,2,3,7,8,9-HxCDD (Last)	34.39
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.87
8	8 1,2,3,4,6,7,8-HpCDD (Last)	37.93
9	9 1,3,6,8-TCDF (First)	19.69
10	10 1,2,8,9-TCDF (Last)	26.84
11	11 1,3,4,6,8-PeCDF (First)	26.81
12	12 1,2,3,8,9-PeCDF (Last)	31.29
13	13 1,2,3,4,6,8-HxCDF (First)	31.97
14	14 1,2,3,7,8,9-HxCDF (Last)	34.74
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.49
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.51

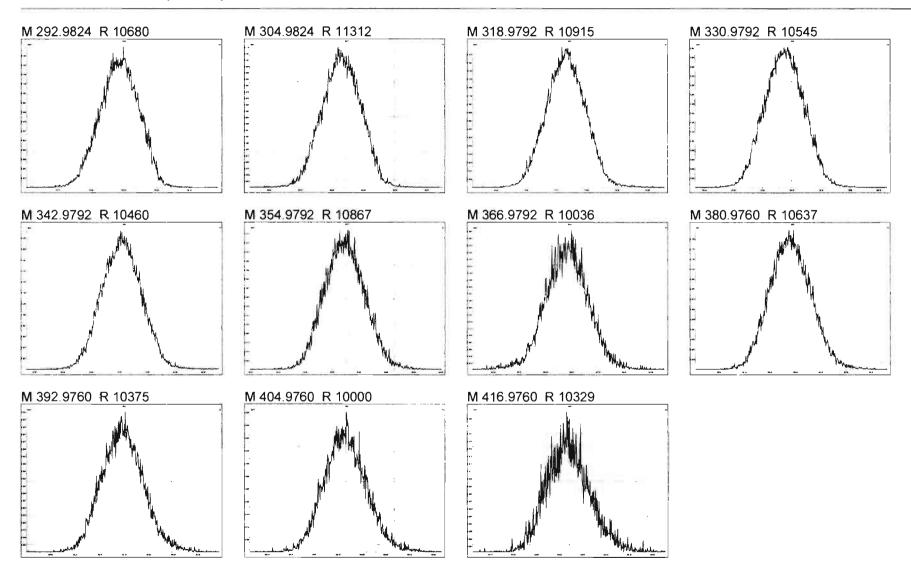
Quantify Compound Summary ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11

Dataset: Untitled

Last Altered:	Friday, January 31, 2020 09:48:55 Pacific Standard Time
Printed:	Friday, January 31, 2020 09:49:01 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Compound name: 2,3,7,8-TCDD

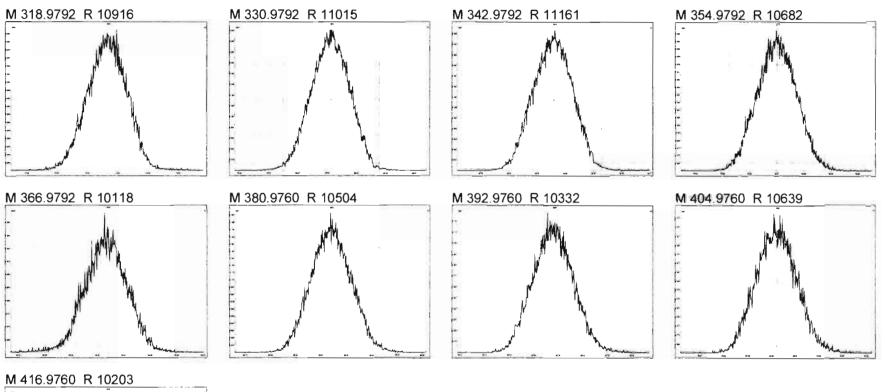

	Name	ID	Acq.Date	Acq.Time	
1	200130R2_1	ST200130R2_1 1613 CS3 1911604	30-Jan-20	14:14:22	
2	200130R2_2	B0A0133-BS1 OPR 1	30-Jan-20	15:14:19	
3	200130R2_3	B0A0016-BS1 OPR 10	30-Jan-20	16:00:38	
4	200130R2_4	SOLVENT BLANK	30-Jan-20	16:47:35	
5	200130R2_5	B0A0133-BLK1 Method Blank 1	30-Jan-20	17:34:32	
6	200130R2_6	B0A0016-BLK1 Method Blank 10	30-Jan-20	18:21:31	
7	200130R2_7	1904210-01 PDI-FB-1911191346 0.99738	30-Jan-20	19:08:32	
8	200130R2_8	1904210-02 PDI-RB-1911191254 1.01128	30-Jan-20	19:55:30	
9	200130R2_9	1904161-20 PDI-071SC-A-09-10-191001 16.47	30-Jan-20	20:42:27	
10	200130R2_10	1904161-13@5X PDI-064SC-A-00-01-190929	. 30-Jan-20	21:29:27	
11	200130R2_11	1903647-01 PDI-045SC-B-04-06-191010 10.99	30-Jan-20	22:16:27	
12	200130R2_12	1903647-02 PDI-067SC-B-00-02-191010 18.9	30-Jan-20	23:03:32	
13	200130R2_13	1903647-03 PDI-067SC-B-02-04-191010 17.58	30-Jan-20	23:50:32	
14	200130R2_14	1903647-04 PDI-067SC-B-04-06-191010 15.56	31-Jan-20	00:37:32	
15	200130R2_15	1904207-04RE1 PDI-076SC-A-05-06-191013	31-Jan-20	01:24:32	

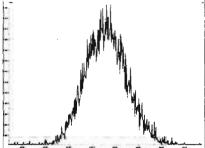
MassLynx 4.1 SCN815

Page 1 of 1

File: Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

Printed: Thursday, January 30, 2020 14:07:36 Pacific Standard Time

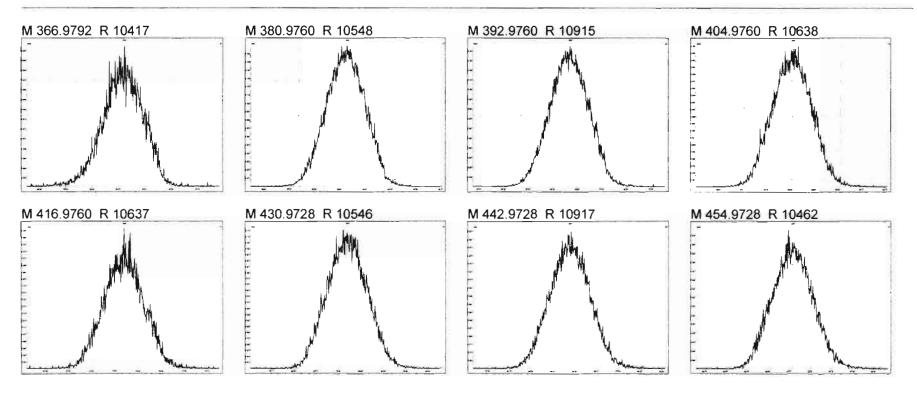



MassLynx 4.1 SCN815

Page 1 of 1

File: Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Printed: Thursday, January 30, 2020 14:08:31 Pacific Standard Time

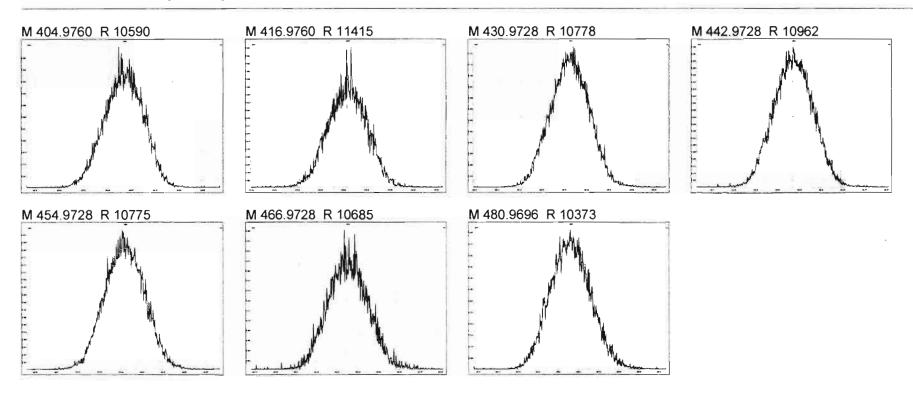


MassLynx 4.1 SCN815

Page 1 of 1

File: Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 3 @ 200 (ppm)

Printed: Thursday, January 30, 2020 14:09:31 Pacific Standard Time

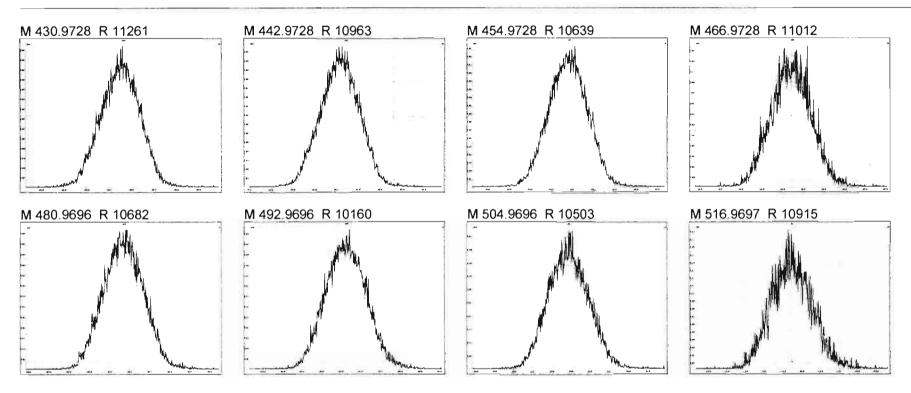


MassLynx 4.1 SCN815

Page 1 of 1

File: Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 4 @ 200 (ppm)

Printed: Thursday, January 30, 2020 14:10:21 Pacific Standard Time

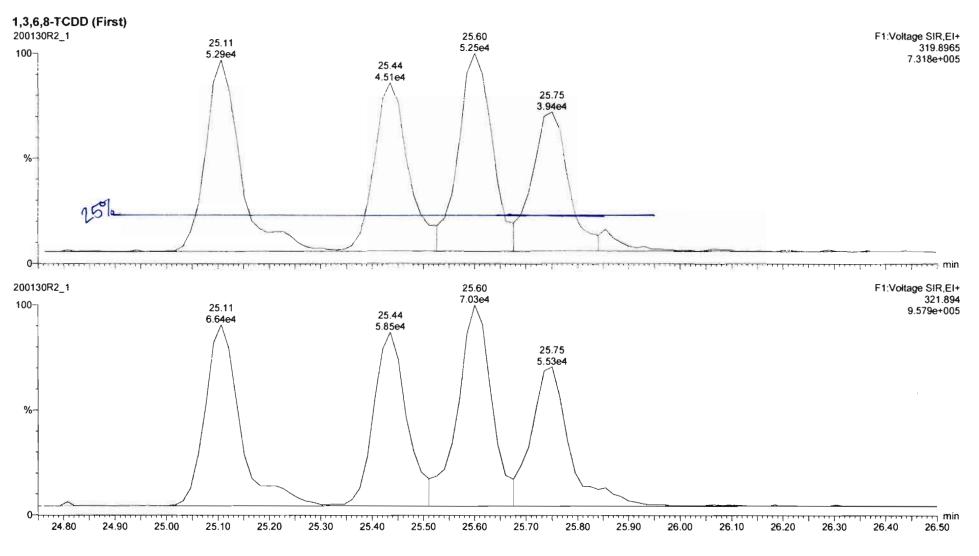


MassLynx 4.1 SCN815

Page 1 of 1

File: Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 5 @ 200 (ppm)

Printed: Thursday, January 30, 2020 14:10:50 Pacific Standard Time

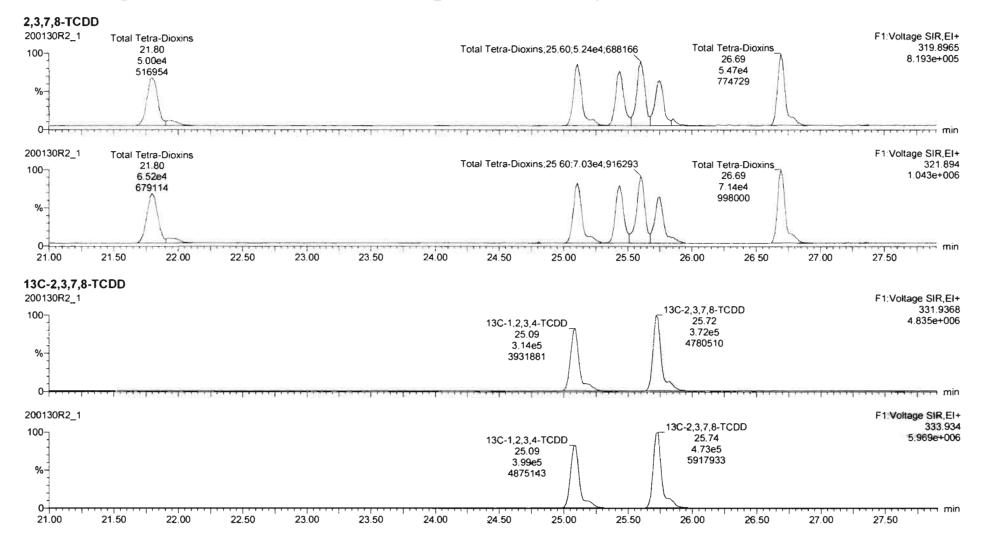

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11

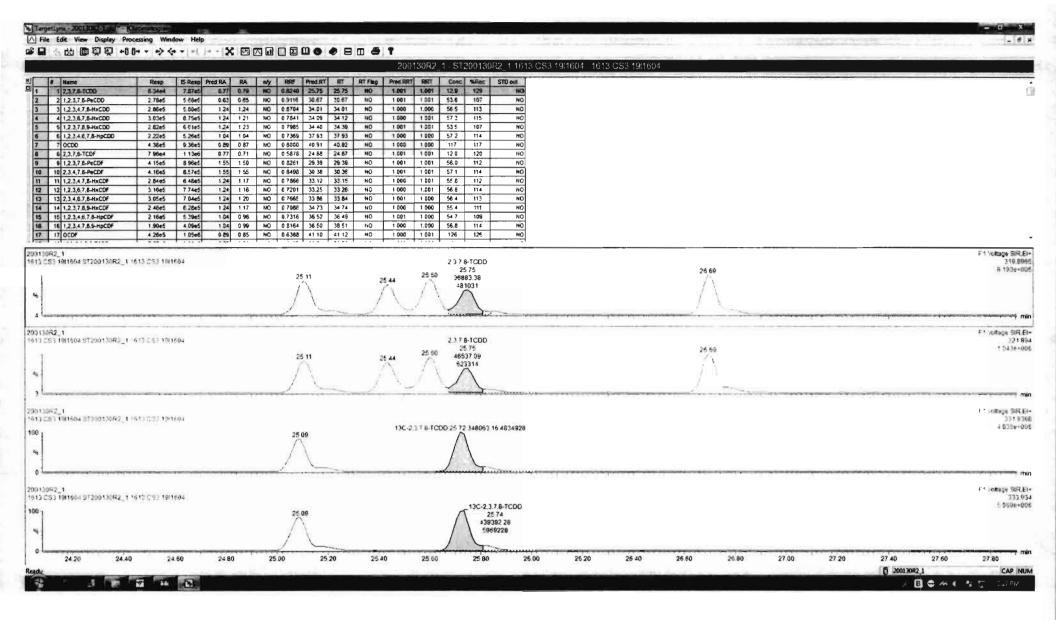
Dataset: Untitled

Last Altered:Thursday, January 30, 2020 15:27:11 Pacific Standard TimePrinted:Thursday, January 30, 2020 15:27:21 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\CPSM.mdb 23 Jan 2020 15:01:26 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

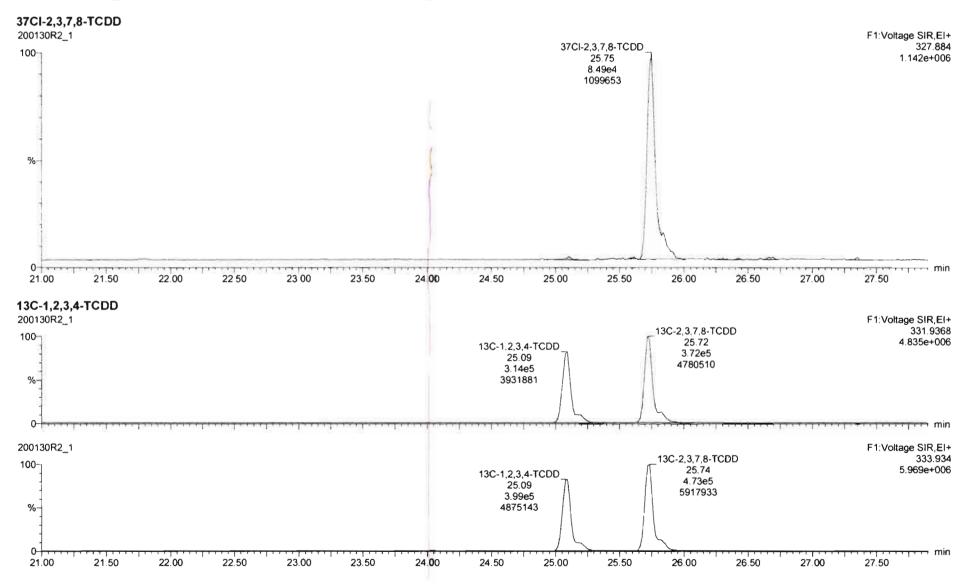
Name: 200130R2_1, Date: 30-Jan-2020, Time: 14:14:22, ID: ST200130R2_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

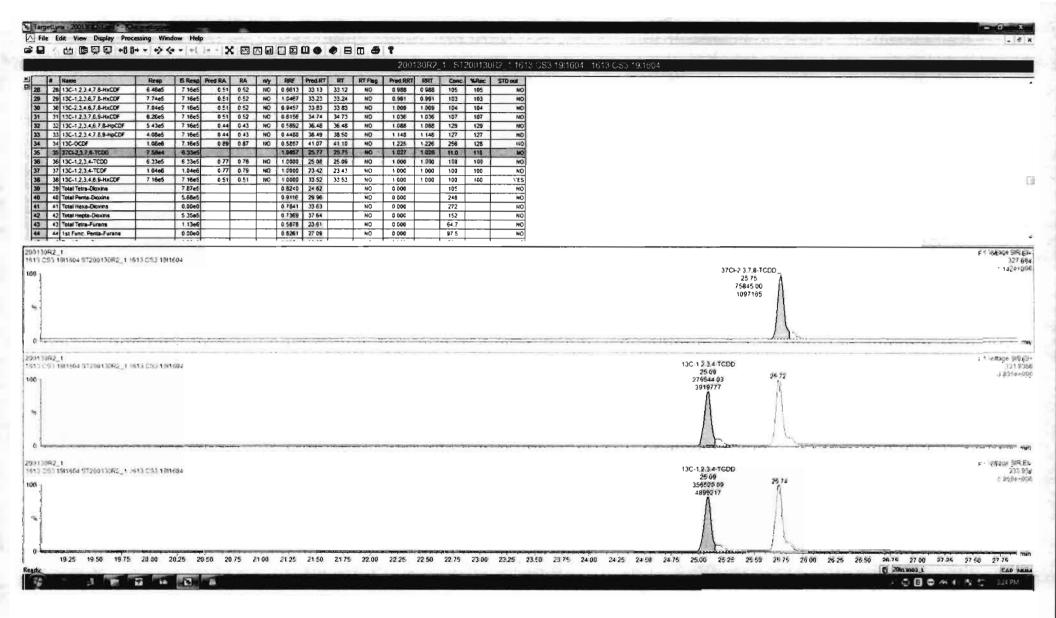


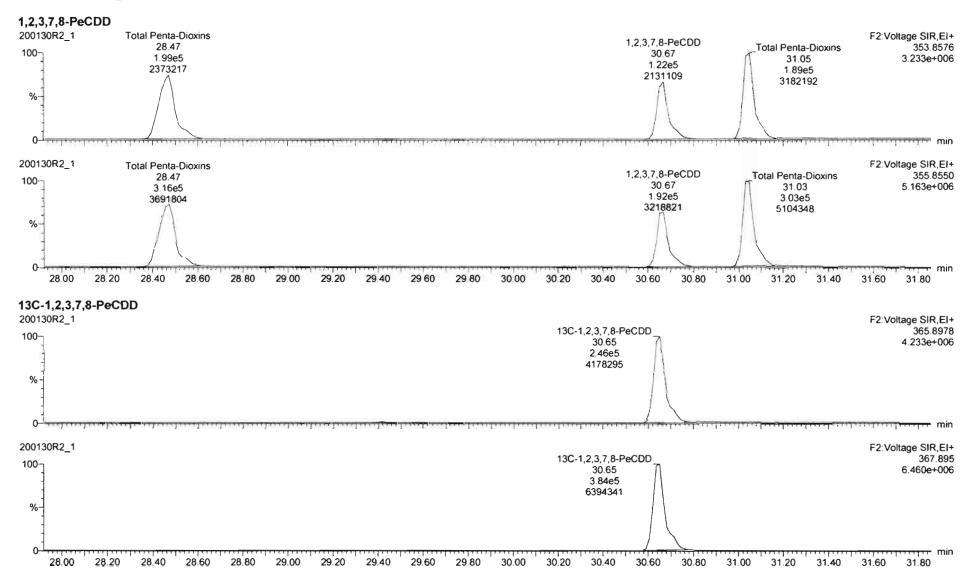

Work Order 1903649

Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

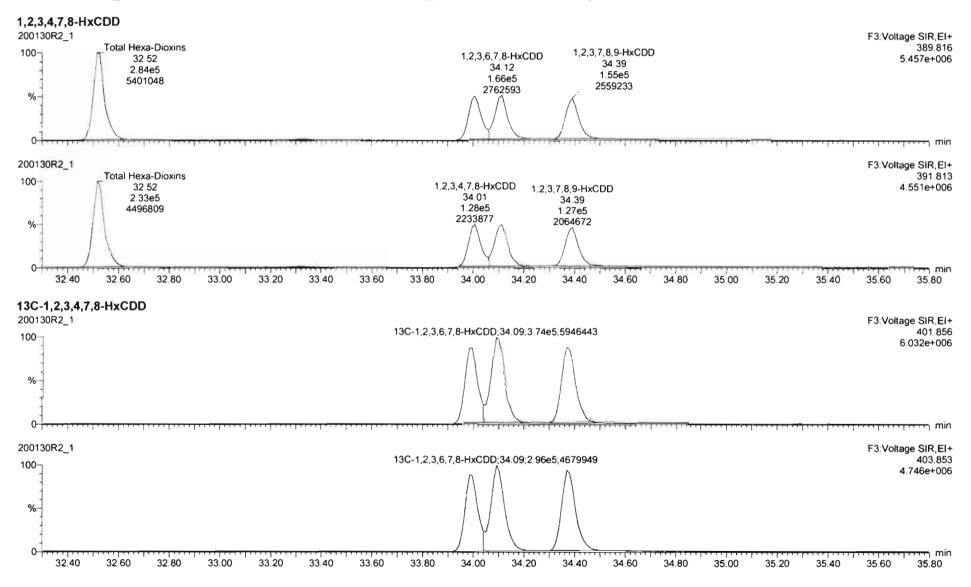
Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50


Name: 200130R2_1, Date: 30-Jan-2020, Time: 14:14:22, ID: ST200130R2_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604




Quantify San Vista Analytica		Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

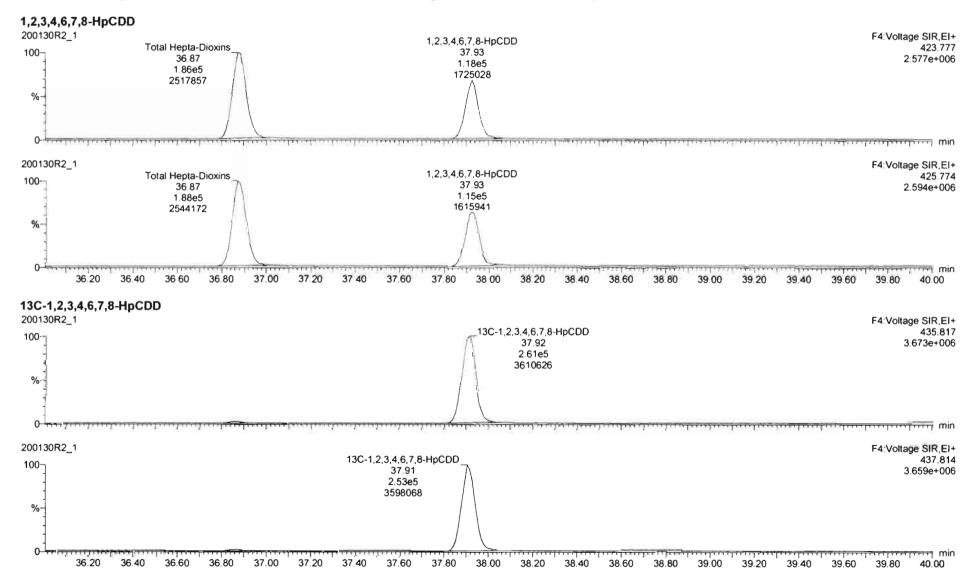
Name: 200130R2_1, Date: 30-Jan-2020, Time: 14:14:22, ID: ST200130R2_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604




Quantify Sam Vista Analytica	• •	MassLynx 4.1 SCN815	Page 3 of 13
Dataset:	Untitled		
Last Altered: Printed:		nuary 30, 2020 15:26:25 Pacific Standard Time nuary 30, 2020 15:26:36 Pacific Standard Time	

	200130R2_1 - ST200130R2_1 1613 CS3 19/1604 - 1613 CS3 19/1604	4
# Hame	Resp IS Resp Pred RA RA My RRF Pred RT RT RT Fing Pred RRT RTT Conc %Rec STD out	
1 2.3.7,6-7000	6.34e4 7.87e5 0.77 0.79 MO 0.8240 25.75 25.15 NO 1.001 1.001 1.29 1.29 NO	
2 1,2,3,7,8-PeCOD	2.7865 5.6665 0.63 0.65 NO 0.9116 30.67 30.67 NO 1.061 1.001 53.6 167 NO	
3 1.2.3,4.7,8-HxCDD	2.88e5 5.80e5 1.24 1.24 HO 0.8704 34.01 34.01 HO 1.000 1.000 56.5 113 HD	
4 1.2 3.8.7.8-MxCDD	3 03e5 6 75e5 124 121 NO 0.7641 34.06 34.12 NO 1.000 1.001 57.3 115 NO	
5 1.2.3,7.8,9-HxCOD 6 1.2.3,4.6,7.8-HpCDD	2.82e5 6.61e5 1.24 1.23 NO 0.7985 34.40 34.39 NO 1.001 1.001 5.35 107 NO 2.22e5 5.26e5 1.04 1.04 NO 0.7369 37.62 27.93 ND 1.000 57.2 11.4 NO	
7 0000	2.2265 9.565 0.28 0.87 NO 0.500 149 273 10 100 100 172 11 NO	
6 2.3 7.8-TCDF	7 96e4 1 13e6 0 77 0 71 NO 0 5878 24.88 24.87 NO 1 001 1 001 12.0 120 NO	
9 1.2.3.7 8-PeCDF	4 15e5 8 96e5 1 55 1 50 NO 0 8261 29 39 25 36 NO 1 001 1 001 56 0 112 HO	
10 2.3.4.7 8-PeCDF	4.1665 8.57e5 1.55 1.55 NO 0.8498 30.38 30.36 HD 1.001 1.001 57.1 114 HD	
11 1.2.3.4.7.8-HxCDF	28465 64865 124 117 HO 07866 33.12 33.15 HO 1980 1.001 55.6 112 HO	
12 1.2.3.6.7.8-HxCDF 13 2.3.4.6.7.8-HxCDF	3.16e5 7.74e5 124 1.16 NO 0.7201 33.25 33.26 NO 1.000 1.001 56.8 114 HO 3.05e5 7.04e5 1.24 1.20 NO 0.7665 33.86 33.84 NO 1.001 1.000 56.4 113 NO	
14 1.2.3.7.8.9-HxCDF	2.4565 / 14450 1.24 1.20 100 0.7605 3.300 3.3474 NO 1000 300 113 NO	
15 1.2.3.4.6.7.8-HpCDF	2 1665 5 3965 1 54 0 96 NO 0 7316 3652 36 49 NO 1 001 1 000 54 7 199 NO	
16 1.2.3.4.7.8.9-HpCDF	1.90e5 4.05e5 1.04 0.99 NO 0.8164 38.50 38.51 NO 1.000 1.000 56.8 114 HO	
17 000	4.28e5 1.05e6 0.85 0.85 NO 0.6388 41.10 41.12 NO 1.000 1.001 1.26 1.25 NO	
R2_1		F2 Voltage SIRJ
R2_1 01190404S1200130R2_1	30.67 167722.38 1158823	F2 Watege SR4 per ge 6 16 Je+0
9F7_1	and an and a second a second a second a second a second a s	r2 voltage SRL
33 191604 37200130R2_1	13C-12.378-PeCDO.3065222706564177326	296 99 4 200+0
	 - 6415 (1981 \$501\$100a) 	
0R2_1 53 191664 31206130R2_1	1 1612 (283 19)1484 13C-1.2.3.7.8-P#CDD.30 66.344920.53 6375490	F2 voltage SiRL 367.6 5.46/te-0
		367.6
		367.6

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	



In					and the second second second	3 19/1604 - 1613 CS3 19/1504	
Name 1 2.3.7.8-TCDD	6 3464 7 8765		NO 0.8240 25.75 25.75 HO		NRec STD out		
2 1.2.3,7.8-PeCDD	2 7845 5.584		NO 0 9116 30.67 30.67 HO		107 NO		
1.2.3,4.7,8-HxCDD	2.66e5 5.80et		NO 0.8704 34.01 34.01 NO		113 NO		
4 1.2.3.6.7,6-HxC00	3.03e5 6.75e	and the second division of the second divisio	NO 0.7841 34.09 34.12 NO		115 NO		
5 1.2.3,7.8,9-HxCDD 5 1.2.3,4.6,7.8-HpCDD	2 82e5 6 51e		NO 0.7985 34.40 34.39 NO NO 0.7369 37.93 37.93 NO		107 NO 114 NO		
0000	4.38e5 9.36e		NO 0.6000 40 91 40 92 NO	and the second se	117 HO		
8 2,3.7.8-TCOF	7 9664 1 1364	0 77 0 71	NO 0.5878 24.88 24.87 NO	1 001 1 001 120	120 NO		
9 1.2.3.7 8-PeCDF	4 15e5 8 96et		NO 0.8261 29.39 29.39 NO		112 HO		
0 2.3 4.7.8-PeCDF	4.16e5 8.57et		NO 0.8498 30.38 30.36 NO NO 0.7866 33.12 33.15 NO		114 NO 112 NO		
2 1.2.3,6 7.8-HxCDF	3 16e5 7 74e		NO 0.7201 33.25 33.26 NO		112 NO 114 NO		
3 2,3,4,6,7,8-HxCDF	3 05e5 7 04e		NO 0.7665 33.86 33.84 NO		113 NO		
1.2.3.7.8.9-HxCDF	2 4665 6.286	5 124 1.17	NO 0.7086 34.73 34.74 NO	1 000 1 000 55 4	111 ND		
1.2.3.4.6.7.8-HpCDF	2 1665 5 396		NO 07316 36.52 36.49 NO		109 KO		
5 1.2.3,4.7.8.9-HpCDF 7 OCDF	1.90e5 4.09et 4.26e5 1.05et		NO 0.8164 36.50 38.51 NO NO 0.6368 41.10 41.12 NO		114 NO 126 NO		
	1		······································				
_1							F ? WHEN
19/1604 ST200130R2_	1 1613 CS3 19/1604						140
		12.3.6	7 8-HxCDD:34 12:166057 81 2762593	34,39			54
		(
		1		1 N			
		J.		in the			
			· · · · · · · · · · · · · · · · · · ·				
1							1910.0
1901604 \$1290130R2	1615231 191664		1 mm - 1 2 2 2 1 mm - 10 - 2 1 1				F3.Voltag
		34 0	123678+HCDD 141	3 136857 98 221 3027			22
		13	\land	1.100			
		1		1 1			
		1					
W 10 100							
_1							F1 water
1911604 37200130R2_1	11610 091 191604	100 200 200					
		13C-12.367	7.8-HxCDD 34 09.376439 78 50 31940	34 37			-59
		1		C			
		AN		10 mg			
		20	7	1 No.			
					the second second	a la sue de la companya	
							C/T Looper
1 19(1604/37200130R2_1	11613 (237 10/1004						F7.(984)
and a second of		13C-1,2,3,67	7.8-HxCDD:34 09:298299 38:4745708	34 37			47
		0	\wedge	1			
		/		XX			
		1 2		1 2			
		/	T				

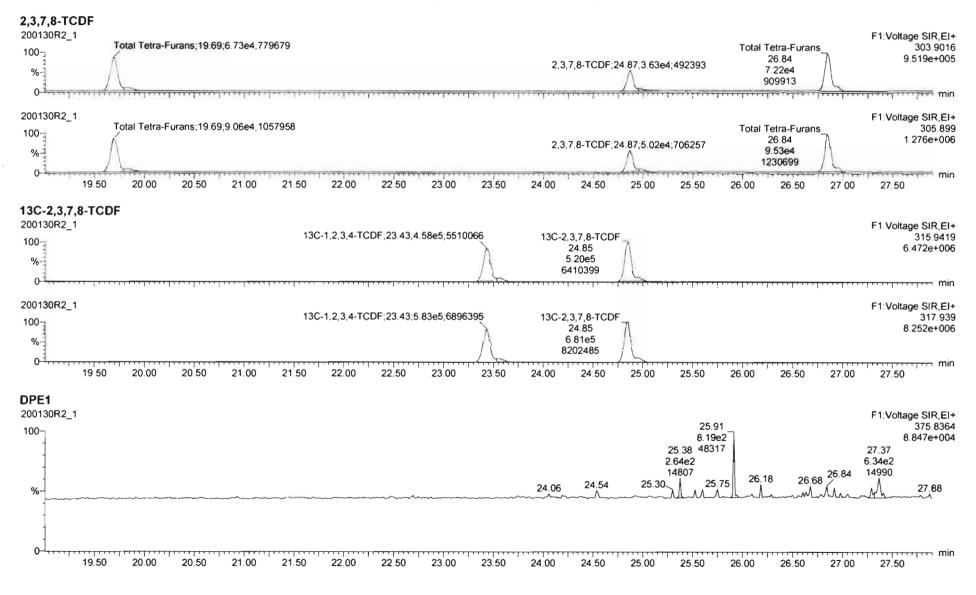
Ρ

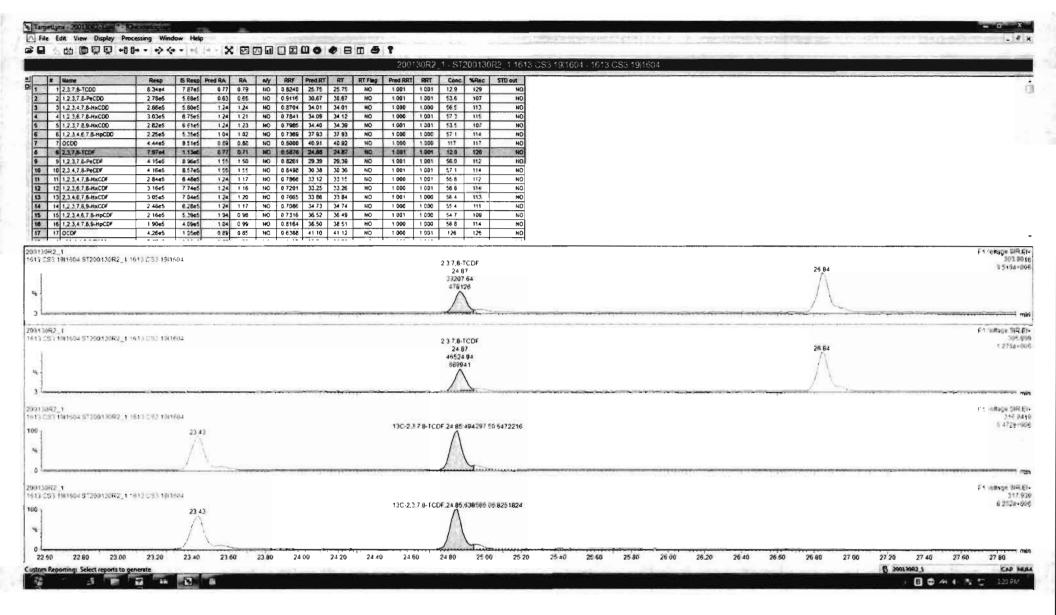
nly R8F Pred.RT RT RT Fing Pred.RT RRT Conc %Rec STD out 1 0.0 0.8240 25.75 25.75 NO 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 5.55 1.17 MO 1 NO 0.754 3.401 3.401 1.000 1.000 5.55 1.13 MO 1 NO 0.7841 3.40% 3.412 NO 1.000 1.001 5.73 1.15 MO	ţ
NO 0.9116 30.67 30.67 NO 1.001 1.001 53.6 107 HO	
1 NO 0.8704 34.01 34.01 NO 1000 1000 585 113 NO	
NO 07841 34.09 34.12 NO 1.000 1.001 57.3 115 NO	
NO 0 7985 34.40 34.39 NO 1 L01 1 001 53.5 107 NO NO 0 7369 37 93 37 93 NO 1 000 57.2 11.4 NO NO 0 8500 40 91 40 92 NO 1 000 117 117 NO	
NO 0.5669 3.783 3.783 1.783 1.782 1.118 NO NO 0.5606 40.99 40.62 NO 1.000 1.000 1.77 NO	
NO 0 5578 24.88 24.87 NO 1 001 1 001 1 20 120 NO	
NO 0 8261 29 39 25 38 NO 1 001 1 001 56 0 112 NO	
NO 0.8496 30.38 30.36 NO 1.001 1.001 57.1 114 NO	
MO 0.8496 30.38 30.36 MO 1.001 1.001 57.1 11.4 MO 1 MO 77261 33.25 33.15 MO 1.000 10.31 55.6 11.2 MO 1 MO 0.7201 33.25 33.26 MO 1.000 1.021 56.8 11.4 MO 1 MO 0.7201 33.25 33.84 MO 1.000 1.001 1.000 56.4 11.3 MO 1 MO 0.7201 33.25 33.84 MO 1.000 56.4 11.3 MO 1 MO 0.7206 3.3.34 MO 1.000 56.4 11.3 MO 1 MO 0.7086 3.3.34 MO 1.000 56.4 11.3 MO	
6 HO 07201 33.25 33.26 HO 1000 1031 56.8 114 HO	
NO 07665 33 66 33 84 NO 1 001 1 000 56 4 113 NO NO 07086 3473 3474 NO 1 000 1 000 55 4 111 NO	
NO 07316 36.52 36.49 NO 1000 56.7 109 NO	
V NO 0 8164 38.50 38.51 NO 1 000 1 300 568 114 NO	
NO 0 6386 41 13 41 12 NO 1 000 1 501 126 126 NO	
34 01 34 12 1 2 3.7 8 9-HbCDD:34 39 155437 09:2559233	oltage SIR EH 769 514 7 875e+004
	offage SIR El
34 01 34 12 12 37 8 9+6CDD.34 39 126800.32.2064672	2.2856+004
13C-17.2.2.7.8 3-44CDD	mir
137	ottage SIREF 401 856
34 00 34 09 333067 66 \$348506	5 032e-00
	oftage 3IREI 403.85
33 99 34 09 13C-1.2.3 7 8.9 HxCOO 34 37 298050 53.4480975	47466+00

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

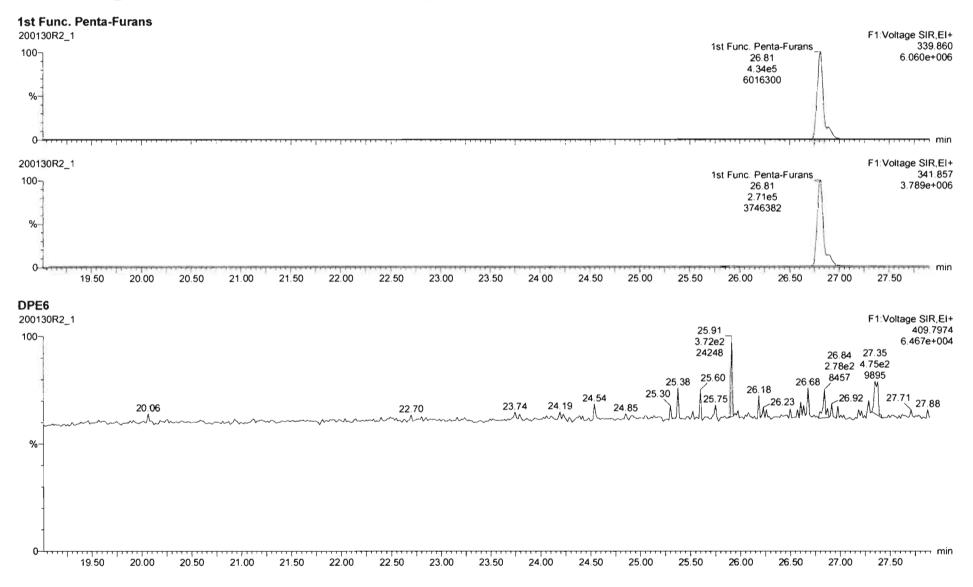
and the second sec		130R2_11613/CS3.19/1604 - 1613/CS3.19/1604
# Name		ec STD out
1 2.3.7 8-TCDD 2 1.2.3.7.8-PeCOD		9 NO 17 HO
3 1 2 3,4 7.8-HxCDD		3 NO
4 123678-HxCDD		5 NO
5 1.2.3.7 8.9-HxCOD		7 NO
6 1,2.3,4,6,7,8-HpCDO		4 NO 7 NO
7 0000		
8 2.3 7 6-TCDF 9 1.2.3.7 8-PeCDF		0 NO 2 NO
10 2.3 4.7 8-PeCDF		
11 12.3.4 7.8-HxCDF		2 NO
12 1.2.3.6.7.8-HxCDF		4 HO
13 2.3.4.6 7.8-HxCDF		3 NO
14 1.2.3.7.8,9-HxCDF		5 HO
15 1.2 3.4.6.7.8-HpCDF		9 NO
16 1.2 3.4.7.8.9-HpCDF		4 NO 6 NO
R2_1		F4 tohage
11 19/1504 S1200130R2_1		
	1 2 3 4 6.7 8-HcCDD.37 93.11358	4 ¹⁷
	the second se	
82.1		F4 voltage 1
53 19416(4 ST20(4)(0R2_1 1		- 4 5 1966
	1 2 3 = 6 7 8-HeCDD 37 93 11780	4 1001/08
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
R2_1 51191604 ST200130R2 11	613 (31) (01) 604	F 4 votage 1
a second a second a	13C-12 3467.8-HpCDD:37 92 27086	
	\land	
A REAL PROPERTY OF A REAL PROPER		
R2_1		F / voltage
ST 19(160+ ST200130R2_1	1613 093 19(1604	4
	13C-1.2.3 ± 6.7.8+tpCDD.37.91.264474	1.3669792
	\wedge	

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

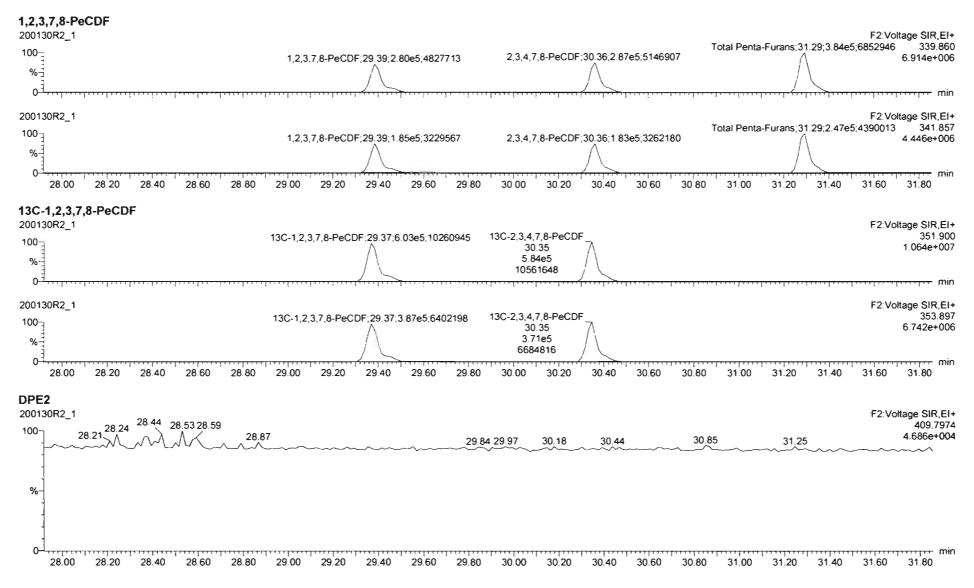

							200130	R2_1 - S	T200130	R2_11613 CS3 19/1604 - 1613 CS3 19/1604	
# Name		Pred RA RA	My RR				ALC: NOT THE REAL PROPERTY OF		C %Rec		
1 2.3.7.8-TCDD	6 3464 7 87							12.9		ON	
2 1.2.3.7.8-PeCDO	2 78e5 5 68						1 001 1.0			NO	
3 1.2.3.4.7.8-HxCDD	2.85e5 5.80		NO 0.571					000 56.5		NO	
4 1,2 3 8 7,8-HxCOD	3.03e5 8.75		NC 0.78					301 573		80	
5 1.2.3.7.8.9-HxCOD	2 82e5 6 61		NO 0.79				1 001 11		_	NO.	
6 1.2 3.4.6.7 8-HpCDD	2.2565 5.35		NO 073					000 57 1		NO	
7 0000 6 2 3 7 8-TCDF	4.4465 9.5%	and the local literature of the second	NO 0.60	the second se			1.000 11			NO NO	
6 2,3.7,8-TCDF 9 1,2 3,7 8-PeCDF	7 96e4 1 13 4 15e5 8 96						1 001 11			NO	
10 2,3,4,7,8-PeCOF	4 16e5 8.57		NO 684				1 001 1		_	08	
11 1.2.3.4.7.8-HxCDF	2 8485 8 48		NO C 75			HO HO	1000 1			RO RO	
12 1.2.3.6.7.8-HxCDF	3 16e5 7 74		NC G72				1000 11		_	NO	
13 2.3.4.6.7.8-HxCDF	3 05e5 7 04		NO 075					000 564	_		
14 1.2.3.7.8.9-HxCOF	2 46e5 6 28		NO 070			NO		000 55 4	_		
15 1.2.3.4 6.7 8-HpCDF	2 1665 5.29		NO 0.73		and the second se			000 547	_	См Ом	
16 1.2.3.4.7.8.9-HpCDF	1 90e5 4 09		NO 0.81			NO		56.8		NO	
17 OCDF	4.28e5 1 05		NO C 634				1 000 11			NO	
	1.1000000		1	+		- 1					
CS3 1911604 ST200130R2_1		0 92 2078 16 30 32	53454								:Itage SIR.E 457 7 3 311e-00
CS3 1911604 ST200130R2_1	OCDD:4	0 92 207816 30.32	53454								457 7 3 311e-00
CS3 191604 ST200130R2_1	0CDD.4	Λ									457 7 3 311e=0
CS3 1911604 ST200130R2_1 50R2_1 CS1 1911604 ST2001.WR2_1	0CDD.4	Λ						1			457 7 3 311e=0
CS3 1911604 ST200130R2_1 50R2_1 CS1 1911604 ST2001.WR2_1	0CDD.4	Λ						1			457 7 3 311e=0
CS3 1911604 ST200130R2_1 0872_1 CS1 1911804 ST2001.WR2_1	0CDD.4	Λ									457 7 3 311e=0
CS3 1911604 ST200130R2_1 50R2_1 CS3 1911604 ST2001.WR2_1	0CDD.4	Λ						1	-		457.7 5.811e-0 7
CS3 1911604 ST200130R2_1 50R2_1 CS1 1911604 ST2001 WR2_1	0CDD.4 *813 : 53 1911504 0CDD.4	Λ	5580 4					,		Pố vọ	457 7 3 311e+0 9 10536+0
CS3 1911604 ST200130R2_1 50R2_1 CS1 1911604 ST2001 WR2_1	0CDD.4 *813 : 53 1911504 0CDD.4	0 92 2364 15 14 36	5580 4						-	Pố vọ	457 7 3 311e+0 9 10536+0
CS3 191604 ST200130R2_1 30R2_1 CS1 191804 ST2001 WR2_1	0CDD.4 *813 : 53 1911504 0CDD.4	0 92 2364 15 14 36	5580 4							F5 vo	457 7 3 311e+0 459 7 459 7 3 9556-0
CS3 1911604 ST200130R2_1 30R2_1 CS1 1911804 ST200130R2_1 90R2_1	0CDD.4 1813 553 191904 0CDD.4	0 92 236415 14 29								档 vo P3 夜	457 7 3 8116+0 7 7 7 8536+0 8536+0 8536+0 8536+0 8536+0 8536+0 8536+0 8536+0 8536+0 8536+0 8536+0
CS3 1911604 ST200130R2_1	0CDD.4 1813 553 191904 0CDD.4	0 92 2364 15 14 36								档 vo P3 夜	457.7 3 811e-0
CS3 1911604 ST200130R2_1 30R2_1 CS1 1911804 ST200130R2_1 30R2_1	0CDD.4 1813 553 191904 0CDD.4	0 92 236415 14 29								档 vo P3 夜	467 3 311e-C 3 311e-C 459 2 8536-C 3 8536-C 459 2 8536-C 459 2 8536-C
19982_1 10 CS3 1911604 ST200130R2_1 10 CS1 1911604 ST2001 WR2_1 10 CS1 1911604 ST2001 WR2_1 10 CS1 1911604 ST2001 WR2_1	0CDD.4 1813 553 191904 0CDD.4	0 92 236415 14 29								档 vo P3 夜	467 3 311e-C 3 311e-C 459 2 8536-C 3 8536-C 459 2 8536-C 459 2 8536-C
CS3 1911604 ST200130R2_1 30R2_1 CS1 1911804 ST200130R2_1 30R2_1	0CDD.4 1813 553 191904 0CDD.4	0 92 236415 14 29								档 vo P3 夜	467 3 311e-C 3 311e-C 459 2 8536-C 3 8536-C 459 2 8536-C 459 2 8536-C


200130R2_1 1613 CS3 191604 ST200130R2_1 1613 CS3 191604

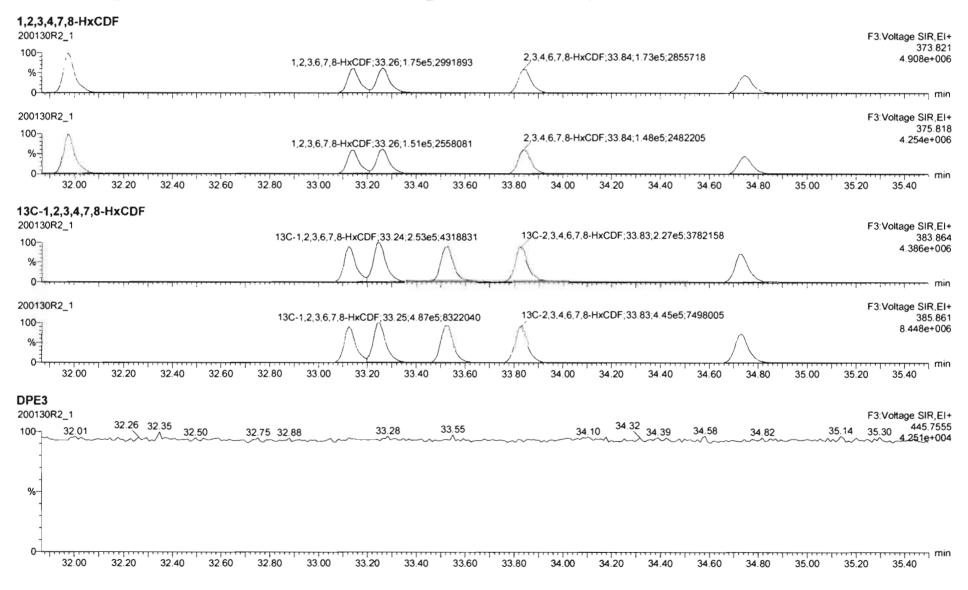
471775 79106+006


		and the second se		A REAL PROPERTY AND INCOME.	and the second se																		C /4 1		
n Repo	ting: Select n	reports to g	enerate	A	and the second	and the state of t	in the second				and the second		and the second s	And all the state of the			and the second	and the second	the second second	and a state	and states	E 2001 30R2	1	100 Mar 42	CAP NU
	40.20	40 40	40.60	40 80	41.00	41 20	41 40	41 50	41.80	42.00	42 20	42 40	42.60	42 80	43 00	43 20	43.40	43.60	43 80	44.00	44 20	44.40	44 50	44 80	45 00
				/	L																				
				1	1																				
					1																				

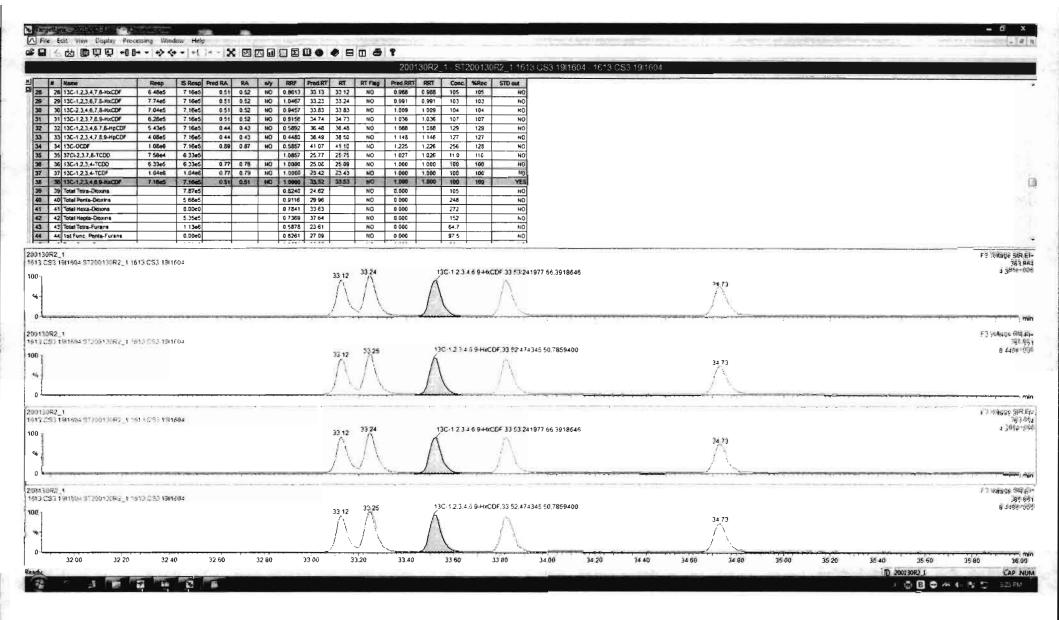
Quantify San Vista Analytica		Page 7 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	



Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

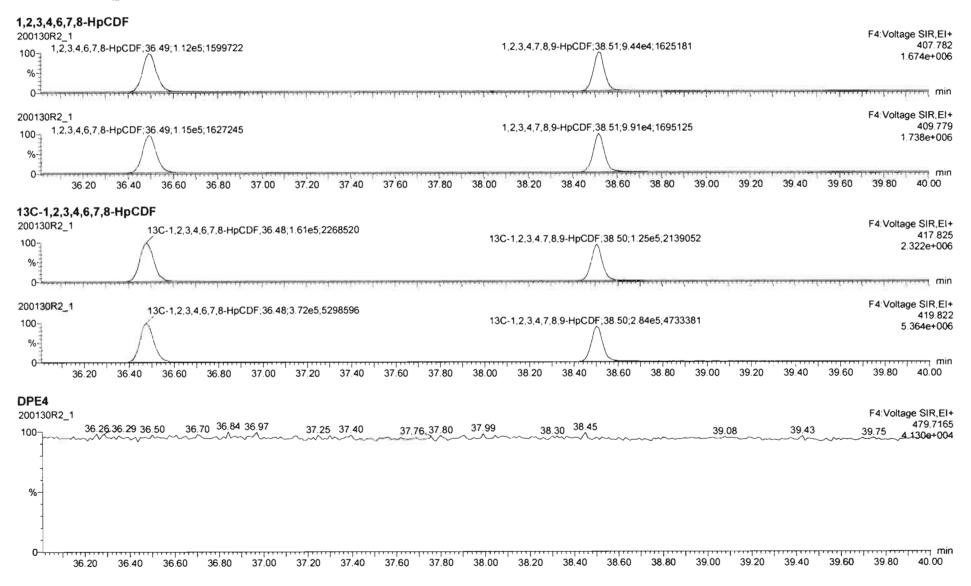

Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

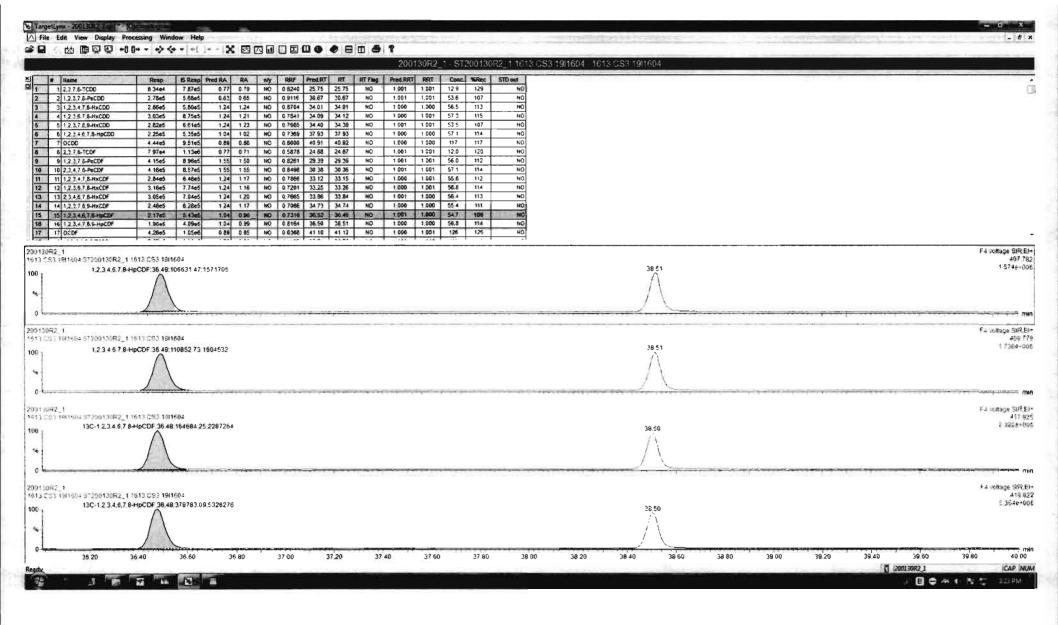
1.1									200		1.		_1 1613 CS3 19/1604 - 16	13 053 19.1604			
	Neme 2.3.7.6-TCDD		S Resp Pred R 7 87e5 0			240 25.75	T RT	RT Fleg NO	Pred.RRT 1 CO1	FBRT 1 001	Conc. 9	129	HO HO				
	1.2.3.7.8-1CDD				110 09		10 67	NO				107	HO				
	1.2 3.4.7.8-HxCDD				NO 08		34 01	NO				113	NO				
	1.2.3.6.7.8-HxCDD				NO 0.7		34 12	NO	1 000			115	NO				
	1.2.3.7 8.9-HxCOD				NO 07		34 39	NO	1 001			107	NO				
	5 1.2 3.4.6.7 8-H0CDD				NO 07		46.92	NO	1 000			117	10				
	237.6-TCDF					878 24 88		NO	1 001			120	NO				
	1,2,3,7,8-P+CDF	4.15e5			NO 0.6		29.39	NP	1.001			112	NO				
	2.3.4.7.8-PeCDF					498 30 38		ND	1 001			114	NO				
	1.2.3.4.7.8-HxCDF				NO 07	866 33 12	33 15	NO	1 600			112	NO				
	2.3.4.6.7.8-HxCDF				NO 07		33 84	NO	1 001			113	NO				
	1.2.3.7.8.9-HxCDF				NG 07			NO	1 000			111	NÖ				
	1.2.3.4.6.7 8-HpCDF					316 36 52		NO	1.001			109	HO				
	1,2,3,4,7,8.9-HpCDF					164 36.50		NO	1 000	1 000		114	NO				
7 1	OCDF	4 26e5	1.0566 0	89 0.85	NO	388 41 10	41 12	NO	1000	1001	126	126	- NU				
13082	1		4	1.00.1													F2 voltage SIR.
	1911604 ST200130R2_1 161	13.053 191160	\$					1	2 3.7,8-Pe 29 39	COF							339.1
1									248736.	28						31,29	6 914e H
									479570	7				30,36		\wedge	
									\wedge					12		$\langle \rangle$	
														1 Ac		/ ~	
			*****						dame.	dime.				and the second	······································		
11000																	F2 Voltage SIR.E
130R2	191664/S1200130R2_1-61	0.050 19(160	4					1	23.78-Pe								14184 14184
i.									29 39 165968.							31,59	+ 4468+0
									322014					30.36		1	
1									Λ					1		11	
1														11		V %-	
-									dine.	Tala	-			······································		many the man	
					-												
13052	1 191564 87290130R2 1 161	11 121 1016	a.														F 2 1000 (e SHLE 1911 90
1. 10 1 1 2	Cardon of Examples 1. 21	17. 14. 201 121 121					130-1	2.3.7.8-PeC	305					30.35			1 0646-00
								29 37	A					A			
1								4966 75 0255360	$\langle \rangle$					11			
1								0255300						1.4			
1						,				Lugar				1	* * **		
1																	
1																	
11062		· · · ·															
11062		13 0 53 19166	ŧ											20.24			353.89
110R2		13 0 53 161 166	ε				130-1.	2 3 7.8-PeC	DF -					30 35			353.89
11082		13 0 53 16(166	ĩ					29 37	XDF					30 36			f 2 yettage SHR E 353.85 6 742e+00
6 0 11 10R2 13 CS1		13 0 53 191164	ε				3							30 35			353.89
0 0 0 11062 13CS7		13 0 53 16(166	ε				3	29.37 51359.13		1~				30,36			353.8

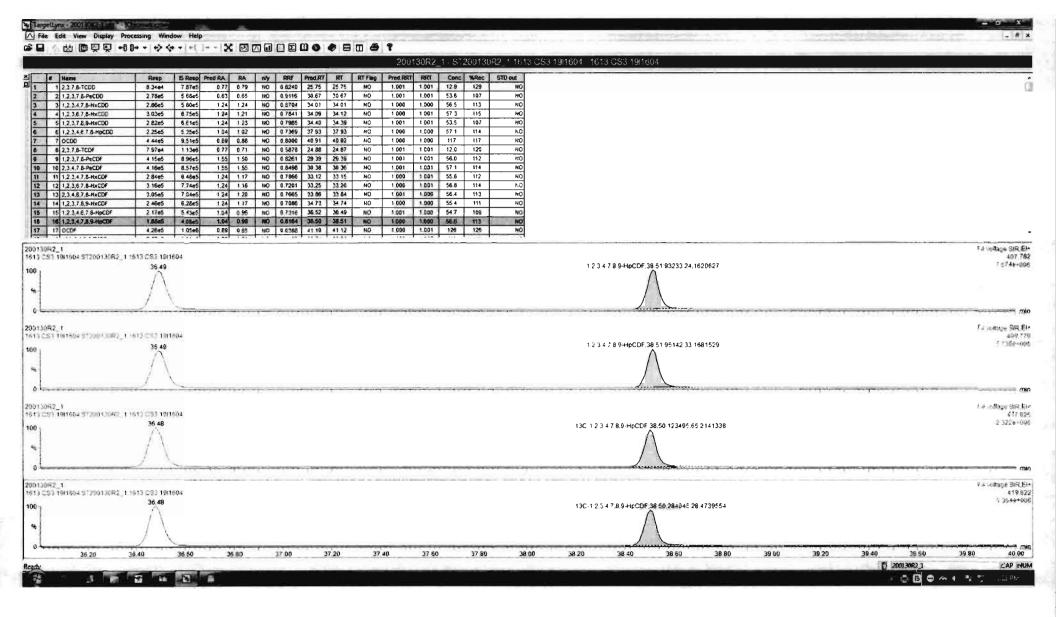

										200	130R2	1 - ST	200130	DR2_1 1613 CS	3 1911604 - 1613 CS	53 19/1604					
	Hame	Resp	IS Resp	RA	ny	RRF			RT Fing	Pred.RR			%Rec	STD out				 			
	1 2.3.7.8-TCDD	8.3464	7 87e5	0.79	_				NO	1.001	1 001	12.9	129	NO							
	2 1.2.3.7.8-PeCDD 3 1.2.3.4.7.8-HxCDD	2.78e5 2.66e5	5.68e5	0.65		0.9116		30.67	NO	1.001	1 001	53.6 56.5	107	NO							
	4 1.2 3.6 7.8-HxCDD	2.00e5 3.03e5	8.75e5	121				34.01	NO	1 000	1 000	57.3	115	NO							
	5 1,2.3.7 8.9-HxCDD	2 8265	6 51e5	1 23				34 30	NO	1.001	1 001	\$3.5	107	NO							
	6 1.2 3.4 6 7 8-HpCDO	2.25e5	5.35e5	1 02			37 93		NO	1.000	1 000	57 1	11.4	NO							
	7 0000	4 4405	9.5105	0.88				40.92	NO	1 000	1 000	117	117	KO							
	6 2.3 7,8-TCDF 9 1 2.3.7 8-PeCDF	7 97e4	1 13e6 8 96e5	 071		0 5878		24.67	NO NO	1 001	1 001	12.0	120	NO							
	0 2.3.4.7.8-Pecor	4,1565	8.57e5	1.55		0.8498	30.36	30.36	ND	1.001		57.1	114	-							
	11 1.2 3.4 7 8-HXCOF	2 8465	8 48e5	1.17				33 15	NO	1 000		5.5.8	112	NO							
	2 1.2.3,6.7.8-HxCOF	3 16e5	7 74e5	1.16	NO			33.26	NO	1 000	1 081	56.8	114	NO							
	3 2.3.4.6 7.8-HxCDF	3.05e5	7 04e5	1.20		0 7665		33 84	CN.	1 00 1	1 000	56.4	113	NO							
	4 1.2 3.7.8.9-HxCDF	2 46e5	6.28e5	1 17				34 74	HO	1 000	1 000	55.4	111	NO							
	15 1.2 3.4.6.7 8-HpCDF	2 1685	5 3965 4 09e5	0.98		0 7316	36.52 36.50		NO NC	1 001 1 000	1 000	56.8	109	- HO							
	7 OCDF	4.26+5	1 05e6	0.85		8853.0			NO	1 000		126	126	NO							
			1	 1.84	1000	Piller I							*								
130R3	2 1 TIR1604 ST20013062_1	1613 2 53 1 10	1602							29 36)					2 3 4 7 8 PeCD 30 36 162973 16 3252477	F		31	29	62 sollage 4 44
11052		1613 ES 2 194	1604	 						29 37	~			e i ste en indersta	13C-2 3 4 7 6-P 30 35 522788 66 10552588	• Λ	2794	 			F2 Soldage
1033				 					1000	<u>/</u>	5						Stat: 21	 			 F2 voltage
13053	(_1 19/1604 57200130R2_1	1615 093 19	1604							29.37					13C-2,3,4 7 8-P						674

Quantify San Vista Analytica		Page 10 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	

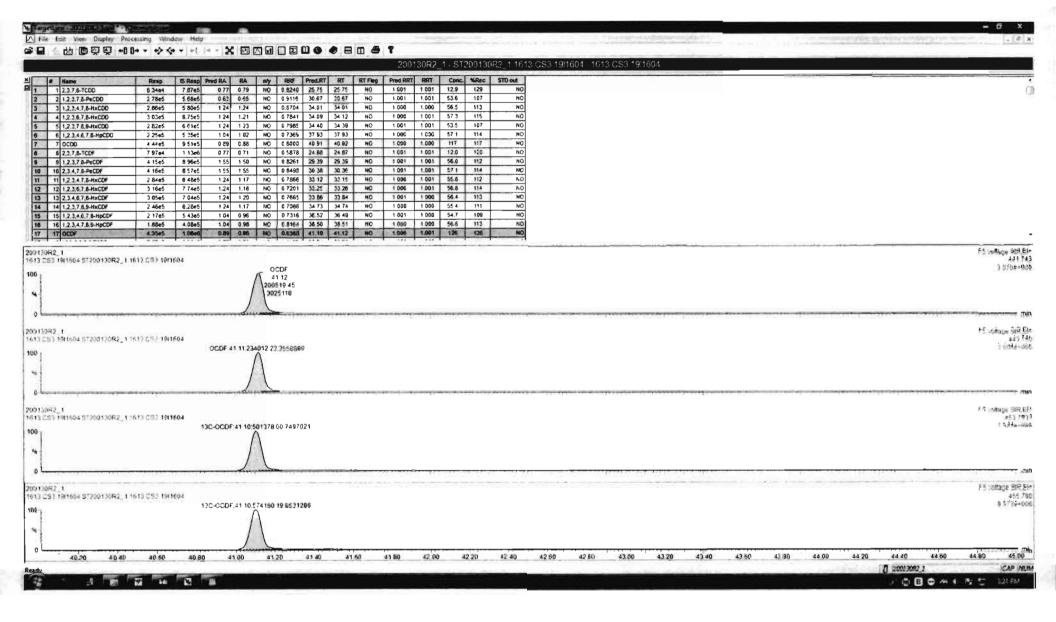
					200130R2_1 - ST	200130F2_1 1613	S3 19/1604 - 1613 CS3 19/1604	
Name	Resp 6 Resp Pre		RRF Pred.RT RT			%Rec STD out		
1 2.3 7 8-TCDD	6 34e4 7 87e5		8240 25.75 25.75		1 001 1 001 12 9			
2 1.2.3.7 8-PeCOD	27865 5.5865	0.63 0.65 NO 0		HO .	1 001 1 001 53.6			
3 1,2,3,4,7,6-HxCDD	2 66e5 5 80e5	1.24 1.24 NO 0		ON CN	1.000 1.000 56.5 1.000 1.001 57.3	113 NO 115 NO		
4 1.2 3.6.7.8-HxCDO 5 1.2 3.7.8.9-HxCDO	3 03e5 6 75e5 2 82e5 6 61e5	124 121 NO 0 1.24 123 NO 0			1 000 1 001 57 3 1 001 1 001 53 5			
6 1234678-HoCDD	2 25e5 5 35e5	104 102 NO 0		NO	1000 1000 571			
7 0000	4.44e5 9.51e5	0 DH 38.0 93.9		HO HO	1 000 1 060 117	117 HO		
6 2.3 7.8-1CDF	7 97e4 1 13e6	0.72 0.71 NO 0	5878 24 88 24 87	NO	1 001 1 001 12.0	120 NO		
9 1,2.3,7 8-PeCOF	4 15e5 8 96e5	1.55 1.50 NO 0		NO	1 001 1 001 56.0	112 NO		
0 2 3 4 7 8-PeCDF	4 16e5 8.57e5	155 155 NO 0		NO	1 001 1.001 57 1	114 NO		
11 1,2,3,4,7,8-HtcCOF	215465 6.4865		0.7868 33.12 33.15		1.000 1.001 55.8	112 NO		
2 1.2.3.6.7.6-HxCDF 3 2.3.4.6.7.6-HxCDF	3 16et 7 74e5 3 05e5 7 94e5	1.24 1.16 NO 0 1.24 1.20 NO 0		NO NO	1 000 1 001 56.8 1 001 1 000 56.4			
4 1.2 3.7 8.9-HxCDF	246e5 828e5	124 117 NO 0		NO	1000 1000 554	111 KQ		
5 1,2 3.4 6 7 8-HpCDF	2 1665 5 3965	1.04 0.96 NO 0		NO	1001 1000 547	109 HO		
E 12347.8.9-HOCDF	1 90e5 4 09e5	1.04 0.99 NO 0	2.8164 36.50 38.51	NO	1000 1000 56.8	114 NO		
7 000#	4 22e5 1 05e6	0.89 0.85 NO 0	6368 41 10 41 12	CH CH	1 000 1.001 126	125 HO		
2_1	ATTEND OF SHOE		1.2.3.4 7.8 HxCDF					F3 Voltage SIR.
1911604 \$1200130R2_1.1	43 033 19(1904		33 15					373. 4 908e+
31 97			15357161					* 2002 **
Δc			2878752	33 26		33 84		
1. 1.			Δ	$-\Lambda$		10	34 74	
1 N.			/ \	1/2		7 N.	\sim	
Contraction of the second			and the second second			* * * * * * * * * * * * * * * * * * *	and the state of the	الإستحدادي بساعي مناجعة بالعربية المعموم فالمتحد والمراجع
2.1			7 3 1 220,05					F1 initiage SIR.
19(1604 5120013087_1 1	13.031101604		123478-HrCDF					3751
31.97			33 14 130761 03					3 25.4e+1
1			2394615	33.26		3384		
1 \			À	1		33.0-	34,74	
V N			/	-1X				
free and the second sec				¥			and the second	an a
1								k 1 Voltage SIR
1011604/3720013062_1_1								383
	13C-1	2.3 4 7.8-HxCDF.33 12 2	22921 23 3966914	3324	33 63	33.83		+ 366**
			À	Λ	14	TN	34,73	
			$\{ \setminus $	9 V	1.5	1.1	1	
				$\sqrt{\sqrt{2}}$	1 No		/	
			hourse				and the second	
1								F) whate SR
1941604 \$7295130R2_1 1		.2.3 4.7 8-HxCDF:33.12:4	25010 56 7624732	33 25				385. 8 446e+
	15021	2.5 - / 0 - WOOI .33. (2.5	X	1	33.52	33,83	34 73	hp LaserJet 4350 UPD PCL 6 (hp LaserJet 4350)
			\wedge	Δ	13	(\land)	24 K3	Ready
			$ \rangle$	I	$1 \rightarrow$	1 2	[λ	
				VN		1 5	$\int X$	
							and a sub-tradiction of the second data and the se	and the second
32 00 32 20	32 40 33	2 60 32 80	33.00	13.20	33.40 33.60	33 80	4 00 34 20 34 40 34 50 34 80 3	5.00

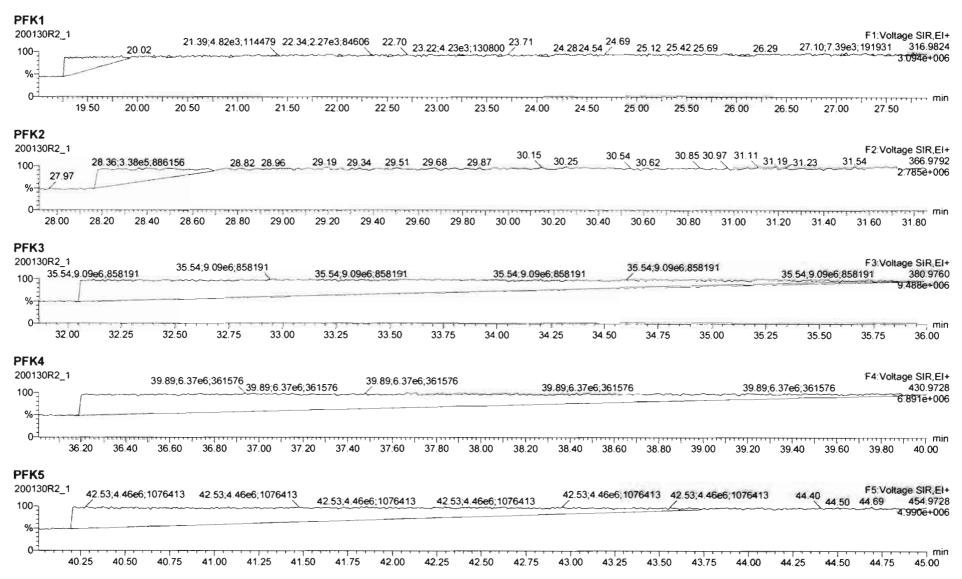

	200130R2_1 - ST200130R2_11613 CS3 19/1604 - 1613 CS3 19/1604		
Resp IS Resp Pred RA RA nly RRF Pred.RT RT 8.34e4 7.87e5 0.77 0.79 NO 0.8240 25.75 25.75	RT Flag Pred RRT RRT Conc. %Rec STD out H0 1.001 1.2.9 1.29 NO		
2 78e5 5 68e5 0.63 0.65 NO 0 9116 30.67 20.57	NO 1.001 1.001 53.6 107 NO)
2 85e5 5 80e5 124 1.24 NO 0.8704 34.01 34.01	ND 1.000 1.000 56.5 113 NO		
3 03e5 8.75e5 1 24 1 21 1/0 0 7841 24 09 34 12 2.82e5 6 61e5 1 24 1 23 NO 0 7985 34 40 34 39	NO 1000 1001 573 II5 NO NO 1001 1031 535 I07 HO		
2,25e5 5,35e5 1.04 1.02 NO 0,73e9 37.93 37.93	HO 1006 1000 571 114 NO		
4.44e5 9.51e5 0.29 0.88 NO 0.8000 40.91 40.92			
7 97e4 1 13e6 0.77 0.71 NO 0 5878 24.88 24.87 4 15e5 8.96e5 1.55 1.50 NO 0.8261 29.39 25.39	NO 1001 1001 12 120 NO NO 1001 1001 566 112 NO		
4 16e5 8.57e5 1.55 1.55 NO 0.8498 20.38 30.36	NO 1001 1001 571 114 NO		
2 84e5 6.48e5 1.24 1.17 NO 0.7866 33.12 33.15	NO 1000 1001 55.6 112 NO		
3.16e5 7.74e5 1.24 1.16 HO 0.7201 31.25 33.26	NO 1000 1001 56.8 114 NO		
3.05e5 7.04e5 124 120 NO 0.7665 33.86 33.84 2.46e5 6.28e5 124 1.17 NO 0.7086 34.73 34.74	NO 1.001 1.000 56.4 113 NO NO 1.000 1.000 55.4 111 NO		
2 16e5 5 39e5 1 04 0.98 NO 0 7316 36.52 36.49			
1 90e5 4 09e5 1.04 0.99 NO 0.8164 38.50 38.51	NO 1.000 1.000 56.8 114 NO		
4 26e5 1 05e8 0 89 0 85 NO 0 6368 41 10 41 12	NO 1.006 1.001 126 126 NO		C
1 :613 CS3 19/1604 1.	33 67 8-HHCOF 33 26 1700 15 73 2966815 33 84	34 74	F2 votinge SIR Er 73 59 4 500e-00
1 1613 010 тбітера I. 53 14	13 6 7 8 Hr CDF 13 26 14 5 3 26 14 5 3 4 1	provention and the second s	ាង #3 voltage ទាគ E រកទ 64 4 ខ្លt42 - 00
Å	2538987 33 84	34.74	17W
11613 (23) 191604			PD voltage SHLEH 303 854
13C-123.6.78+bt	DF 33 24 264775 41 4386016 33 83		* 389#-001
A		34.73	
1 1613 (783 19/1604			7 2 võinige Bird. Bir 395 86
12C-1.2.5.6.7.8-H	CDF 33.25.508915 44.8449208 23.83	34 73	\$ 1186-001
Δ.			
\wedge		Δ	

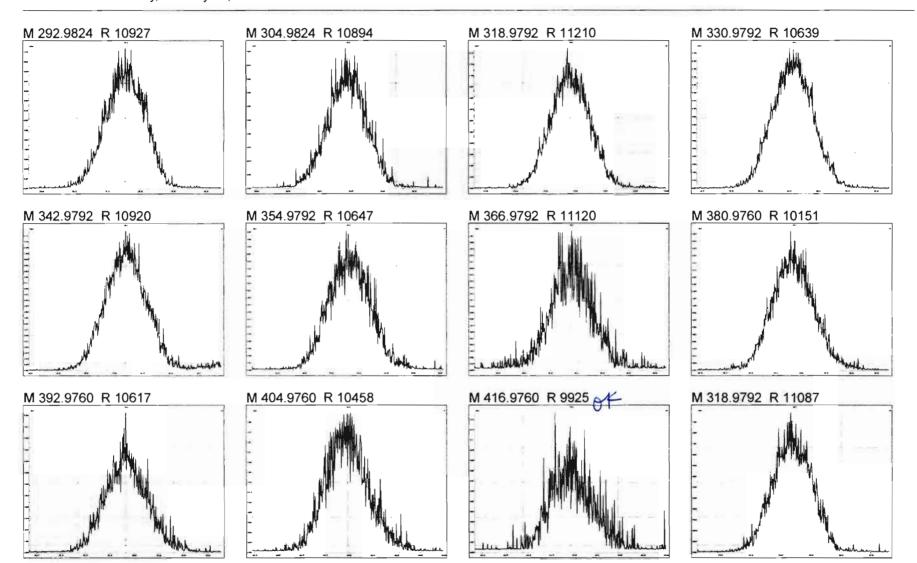


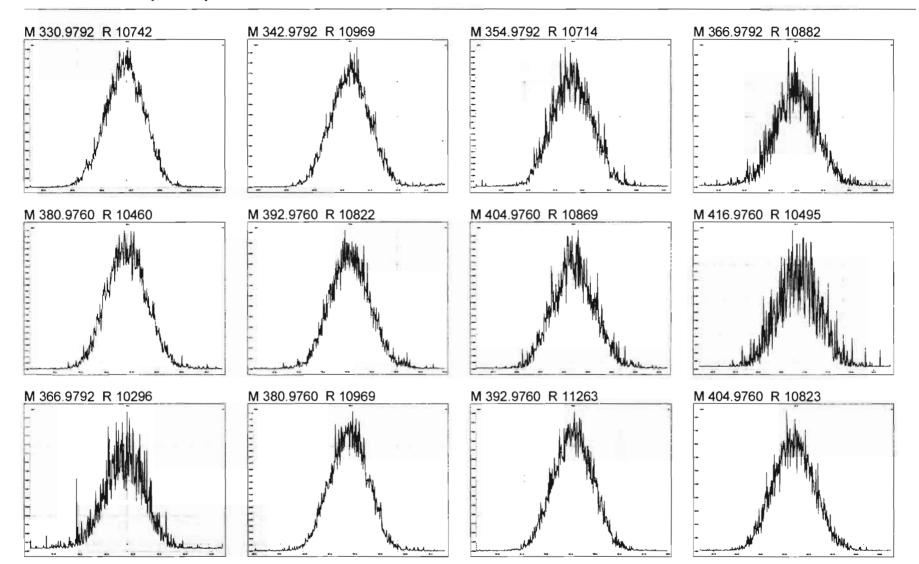

	200130R2_*	ST200130R2_1 1612 CS3 191604 - 1613 CS3 19160	04	
		Conc %Rec STD out		
		129 129 NO 336 107 NO		
278e5 568e5 0.63 0.65 NO 285e5 5.80e5 1.24 1.24 NO				
	0 7841 34 09 34 12 NO 1 000 1 001 5			
	0 7965 34.40 34 39 NO 1 001 1 001 5			
	0 7369 37 53 37 93 ND 1 000 1 000 5			
4.44e5 9.51e5 0.89 0.88 NO 7.97e4 1.13e6 0.77 0.71 NO		117 117 NO 120 120 NO		
		8.0 112 HO		
	0 8498 30 38 30 36 NO 1 001 1 001 5	17 1 114 NO		
2 5465 6 4665 1 24 1 17 NO				
		868 114 HO 868 113 HO		
3.05e5 7.04e5 1.24 1.20 HO 2.40e5 8.28e5 1.24 1.17 HO	and the second sec	54 111 NO		
		4 7 109 NO		
		6 8 114 NO		
4 26e5 1 05e6 0 89 0 85 NO	0.6388 41 10 41 12 NO 1.000 1.001	126 126 40		
				F3 voltage SIR.E
093 199104		2 3 4 6.7 8-HxCDF		373.8
		33 84		4 908e+0
	33 15 33 26	165886.28 2817031		
	A 75		34 74	
	$\langle X_{-} \rangle \langle X_{-} \rangle$		A	
	and the second			
				771 - a 645 P
122 19(1604		2.3.4.6.7.8-HxCDF		F3 koltage SIRE 375.6:
		3384		4 254e+00
	33 14 33 20	138737 75 2425306		
	3314 3320	2420306	34 74	
	and the second second			
	and an external second s			
		13C-2 3 4 6 7 8-HxCDF		
C9 F 19(1604		3383		FD Voltage StRLE 183 64
rear and a second a	13 12 ³³ 24 33 53	240105.89 3851412		4 385e×00
		3861412	34.73	
	TX = TX = TX		A	
			1. 2	
				F3 Watape SiRLE
CD2 1911664	13.26	13ር 2 3 4 5 7 ይታቀርጥሮ 12 63 / 64264 41 7506640		365.8
CB3 19(1664	33,12 ^{33,25} 33,52	13C-2.3 4 5 7.8+tsCDF.33 83 454264 41.7590840		365.8
C93 19(1664	$ \overset{33,12}{\wedge} \overset{33,25}{\wedge} \overset{33,52}{\wedge} $	13C-2.3 4 5 7.8+txCDF.33 83 454264 41,7590840	34.73	385.8 8 ±48⊭+0
C93 19(1664	33.12 33.25 33.52	13C-2.3 4 6 7.8+tsCDF.33 63 454264 41.7590640		365.85
CD3 19(1664	33.12 33.25 33.52	13C-2.3 4 5 7,8+tsCDF,33 83 454264 41,7590840		365.85
C32 19(1664 32.40 32.60 32.80	Λ	13C-2.3 4 5 7.8+HxCDF.33 83 464264 41.7590640	34,73	395.8 8 448+0

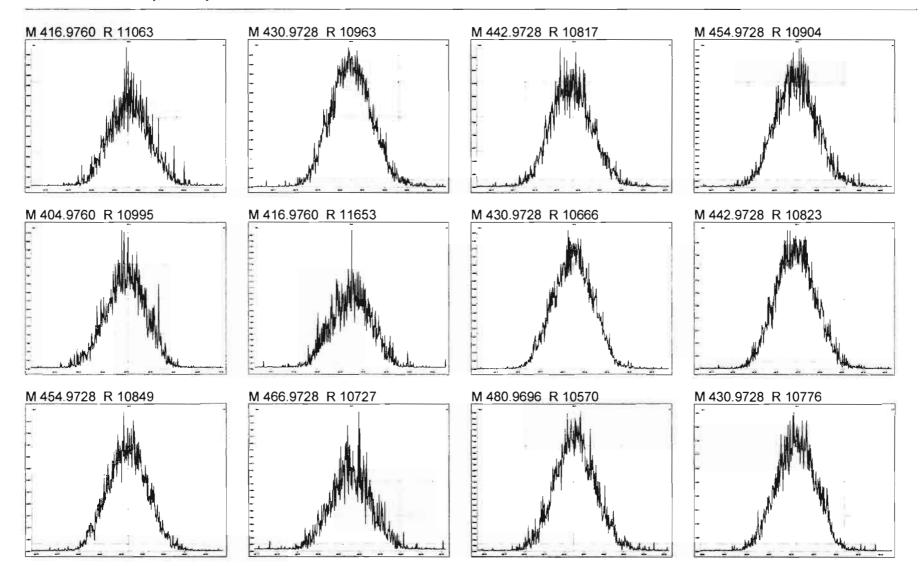
]+ - +> <+ - +(-			80							A second second	 	-	and a second
					20	0130R2_1 - S	1200130R2_1	613 CS3 19 1604 - 1	013 CS3 1911604					
Isanc 1237.6-T00 1237.6-T00 123.7.6-T00 123.7.6-T00 123.7.6-T00 123.67.8-HxCD0 5123.67.8-HxCD0 6123.467.8-HxCD0 70000 8123.7.8-T00F 9123.7.8-T00F 9123.7.8-PeC0F 123.47.8-PeC0F 123.47.8-PeC0F	Resp IS Resp Pr 6.34e4 7.87e5 7.87e5 2.78e5 5.88e5 5.80e5 2.05e5 5.80e5 2.85e5 2.05e5 5.86e5 5.86e5 2.25e5 5.81e5 2.25e5 2.25e5 5.81e5 3.15e5 4.44e5 9.51e5 4.46e5 4.15e5 8.96e5 4.16e5	0 77 0 79 0 63 0 65 1 24 1.24 1 24 1.21 1 24 1 23 1 04 1 02 0 89 0.88 0 77 0 71 1 50 1 50 1 55 1 55	NO 0.7369 37 NO 0.8000 40. NO 0.5878 24 NO 0.8261 29 NO 0.8495 30	75 25 75 67 20.67 01 34 01 05 34 12 40 34 39 93 37 93 91 40 92 88 24.87 39 25 35 38 30 36	NO 1 001 NO 1 001 ND 1 000 NO 1 001 NO 1 001 NO 1 001 NO 1 001	1 001 129 1 001 53.6 1 000 56 5 1 001 57.3 1 001 57.3 1 000 57.1 1 000 57.1 1 000 177 1 001 56.0 1 001 57.1	107 113 115 107 114 117 120 112 112 114	<u>869969696986</u>						
11 12.3.4.7.8-HxCOF 12 12.3.8.7.8-HxCOF 13 2.3.8.7.8-HxCOF 14 12.3.7.8.5-HxCOF 14 12.3.7.8.5-HxCOF 15 12.3.4.7.8.5-HxCDF 16 12.3.4.7.8.5-HxCDF 17 0COP	2 84e5 6 48e5 3 16e5 7 74e5 3 05e5 7 70e5 2 46e5 6 20e5 2 16e5 5 39e5 1.90e5 4 05e5 4 25e5 1 05e6	124 116 124 120 124 117 104 098 104 0.99	NO 0.7665 33 NO 0.7086 34 NO 0.7316 36 NO 0.2164 36	25 33.26 86 32.84 73 34.74 52 36.49 50 38.51	NO I 000 ND I 000 ND I 000 ND I 001 ND I 001 ND I 001 NO I 000 NO I 000 NO I 000	1 001 55.6 1 001 56.6 1 000 55.4 1 000 55.4 1 000 55.4 1 000 54.7 1 000 56.6 1 001 126	112 114 112 111 111 109 114					 		F2 warme SIR
2197	613.CS2 19(1904			33 15	33 28		33.84			1 2 3 7 8,9 HXCC 34 74 1326 18 83 2087940	9F			F3 %###9 914 773 3 908**
82_1 12 2491604 ST200430982_1 33 92	415. (~17 19 (16.04			314 M	19,26		33 84			1 2 3 7 8 9 + bCE 34.74 113727 45 1938106				P2 voltage SVR 375. 3 254++
22_1 3 1911604 ST20013082_1 1	617 CSJ 191894			33 12 33	24	33,63	13,83			13C-1.2 3 7 8 3 HH 34 73 214517 46 3138599	GF			f) инфоре 543 383 / X85e*
22_1 3 1911804 ST200130R2_1 1	\$12 (782 19 17)))			33.12 3	325	33.52 A	33.83	,		13C 12 3.7 8 9 Htt 34.73 413386 91 5126284	CDF			F3 voltage BIR 385 8 148a-

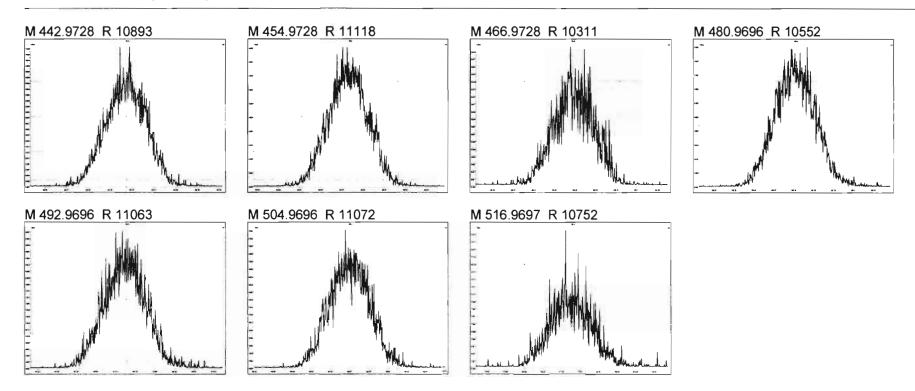

Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	




Quantify Sam Vista Analytica			nx 4.1 SCN81	5												Page	12 of 1
ataset:	Untitled																
ast Altered: Printed:	Thursday, Thursday,	January 30, 20 January 30, 20	20 15:26:25 P 20 15:26:36 P	acific Star acific Star	idard Tin Idard Tin	ne ne											
Name: 20013	0R2_1, Date	: 30-Jan-2020,	Time: 14:14:	22, ID: ST	200130	R2_1 161	3 CS3 1	911604,	Descrip	otion: 16	13 CS3	1911604					
DCDF 200130R2_1			OCDF													F5:Voltag	ge SIR,E 441.7
100 %			41.12 1.96e5 3002355													3.	.070e+0
200130R2_1 100		OCDF.41.11;2.	30e5;3541997													F5:Voltag	
0 ⁻¹	5 40.50	40.75 41 00	41.25 41.5) 41.75	42.00	42.25	42.50	42.75	43 00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45 00
13C-OCDF 200130R2_1		13C-OCDF;41 10;	4.92e5,7459769													F5:Voltag 7.	ge SIR,E 453.78 544e+0
200130R2_1		13C-OCDF;41.10;	5.63e5;8486508					.,								F5:Voltag 8.	
0 ¹ 40.2	5 40.50	40.75 41.00	41.25 41.5	0 41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.00
DPE5 200130R2_1 100-															44.52	F5:Voltag 44.85 3.21e2 6	513.67
	40.56	40.98					42	.62		43.21		43	.87 44.15	44.30 44. 2		22246 44.78	~~~
%																	
0	5 40.50	40.75 41.00	41.25 41.5	0 41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	


Quantify Sam Vista Analytica		Page 13 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, January 30, 2020 15:26:25 Pacific Standard Time Thursday, January 30, 2020 15:26:36 Pacific Standard Time	


MassLynx 4.1 SCN815


MassLynx 4.1 SCN815

MassLynx 4.1 SCN815

MassLynx 4.1 SCN815

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: ST200180R3-1			Reviewed By: <u>Q1 or/o4/2520</u> Initials & Date	_	
End Calibration ID:NA				~	
	Beg.	End		Beg.	ک End
ion abundance within QC limits?		NA	Mass resolution <u>></u>		\checkmark
Concentrations within criteria?	\checkmark	ф	□ 5k □ 6-8K □ 8K ∲10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	\square	Ψ	Intergrated peaks display correctly?	7	NA
First and last cluters present?	\square	Ф	GC Break <20%		
Retention Times within criteria?		中	8280 CS1 End Standard:		
Verification Std. named correctly?		ф	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		AM
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?		Φ	Comments: (a) Both BEG. 4 END RES CHECK HAVE BELOW (DK.	5 1-2 M	ALLET
Correct ICAL referenced?	GRO		Berne		
Run Log:					
- Correct Instrument listed?	7	V			
- Samples within 12 hour clock?	(\mathbf{Y})	N			
- Bottle position verfied?		JRB			

.

• {

2

Quantify San Vista Analytic	nple Summary Report MassLynx 4.1 SCN815 al Laboratory	Page 1 of 2
Dataset:	U:\VG12.PRO\Results\200130R3\200130R3-2.qld	
Last Altered: Printed:	Friday, January 31, 2020 15:57:02 Pacific Standard Time Friday, January 31, 2020 16:01:44 Pacific Standard Time	GRB 01/31/2020

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 1911604

		Ree		-		REF	Productor	H	RIT Plag	. The second second		C. Cont		STD and
	1 2,3,7,8-TCDD	6.09 e4	6.36e5	0.78	NO	0.824	25.72	25.72	NO	1.001	1.001	11.624	116	NO
	2 1,2,3,7,8-PeCDD	2.42e5	5.0 3e 5	0.63	NO	0.912	30.66	30.65	NO	1.001	1.001	52.730	105	NO
	3 1,2,3,4,7,8-HxCDD	2.25e5	4.48e5	1.20	NO	0.870	33.99	34.00	NO	1.000	1.001	57.830	116	NO
	4 1,2,3,6,7,8-HxCDD	2.32e5	5.09e5	1.19	NO	0.784	34.08	34.09	NO	1.000	1.000	58.049	116	NO
ŧ .	5 1,2,3,7,8,9-HxCDD	2.20e5	4.85e5	1.23	NO	0.798	34.39	34.37	NO	1.001	1.000	56.897	114	NO
B .	6 1,2,3,4,6,7,8-HpCDD	1.75e5	4.27e5	0.97	NO	0.737	37.91	37.92	NO	1.000	1.001	55.516	111	NO
1	7 OCDD	3.60e5	7.79e5	0.86	NO	0.800	40.90	40.91	NO	1.000	1.000	115.38	115	NO
} .	8 2,3.7,8-TCDF	6.40e4	9.08e5	0.74	NO	0.588	24.83	24.84	NO	1.001	1.001	11.984	120	NO
₿ n n n n	9 1,2,3,7,8-PeCDF	3.45e5	7.46e5	1.52	NO	0.826	29.38	29.37	NO	1.001	1.001	55.906	112	NO
io i	10 2,3,4,7,8-PeCDF	3.53e5	7.32e5	1.55	NO	0.850	30.36	30.35	NO	1.001	1.001	56.695	113	NO
11	11 1,2,3,4,7,8-HxCDF	2.18e5	4.95e5	1.18	NO	0.787	33.11	33.13	NO	1.000	1.000	55.913	112	NO
2	12 1,2,3,6,7,8-HxCDF	2.40e5	5.88e5	1. 15	NO	0.720	33.24	33.25	NO	1.900	1.001	56.740	113	NO
3	13 2,3,4,6,7,8-HxCDF	2.31e5	5.30e5	1.16	NO	0.766	33.85	33.83	NO	1.001	1.000	56.760	114	NO
4	14 1,2,3,7,8,9-HxCDF	1.89e5	4.78e5	1.19	NO	0.709	34.72	34.73	NO	1.000	1.000	55.960	112	NO
5	15 1,2,3,4,6,7,8-HpCDF	1.63e5	4.09e5	0.98	NO	0.732	36.51	36.48	NO	1.001	1.000	54.360	109	NO
	16 1,2,3,4,7,8,9-HpCDF	1.36e5	2.91e5	0.96	NO	0.816	38.49	38.50	NO	1.000	1.000	57.132	114	NO
	17 OCDF	3.31e5	8.32e5	0.84	NO	0.639	41.09	41.10	NO	1.000	1.000	124.52	125	NO
	18 19C-2,3,7,8-TCDD	6.36e5	5.51e5	0.79	NO	1.12	25.69	25.69	NO	1:026	1.026	103.38	103	NO
	19 13C-1,2,3,7,8-PeCDD	5.03e5	5.51e5	0.63	NO	0.641	30.43	30.64	NO	1.215	1.223	108.53	109	NO
	20 13C-1,2,3,4,7,8-HxCDD	4.48e5	5.45e5	1.28	NO	0.938	33.98	33.98	NO	1.014	1.014	87.668	87.7	NO
	21 13C-1,2,3,6,7,8-HxCDD	5.09e5	5.45e5	1.28	NO	1.07	34.08	34.08	NO	1.017	1.017	87.749	87.7	NO ·
Sala - Sala	22 13C-1,2,3,7,8,9-HxCDD	4.85e5	5.45e5	1.24	NO	1.03	34.38	34.36	NO	1.026	1.025	66.448	86.4	NO
Alter Pr	23 13C-1,2,3,4,6,7,8-HpCDD	4.27e5	5.45e5	1.06	NO	0.710	37.93	37.90	NO	1.132	1.131	110.44	110	NO
	24 13C-OCDD	7.79e5	5.45e5	0.90	NO	0.601	40.81	40.90	NO	1.218	1.221	238.04	119	NO
14-1-1-1	25 13C-2,3,7,8-TCDF	9.08e5	7.97e5	0.78	NO	1.04	24.87	24.81	NO	0.993	0.990	109.88	110	NO
	26 13C-1,2,3,7,8-PeCDF	7.46e5	7.97e5	1.58	NO	0.917	29.20	29.35	NO	1.166	1.172	102.08	102	NO
	27 13C-2,3,4,7,8-PeCDF	7.32e5	7.97e5	1.58	NO	0.903	30.16	30.33	NO	1.204	1.211	101.77	102	NO
1. A. W	28 13C-1,2,3,4,7,8-HxCDF	4.95e5	5.45e5	0.52	NO	0.861	33.11	33.11	NO	0.988	0.988	105.55	106	NO
-	29 13C-1,2,3,6,7,8-HxCDF	5.88e5	5.45e5	0.52	NO	1.05	33.21	33.23	NO	0.991	0.992	103.16	103	NO
	30 13C-2,3,4,6,7,6-HxCDF	5.30e5	5.45e5	0.52	NO	0.946	33.81	33.82	NO	1.009	1.009	183.00	103	NO
	31 13C-1,2,3,7,8,9-16CDF	4.78e5	5. 45e5	0.52	NO	0.816	34.71	34.72	NO	1.036	1.036	107.59	108	NO

CT 02/04/2020

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Image: Comparison of Compa

Dataset: U:\VG12.PRO\Results\200130R3\200130R3-2.qld

```
Last Altered: Friday, January 31, 2020 15:57:02 Pacific Standard Time
Friday, January 31, 2020 16:01:44 Pacific Standard Time
```

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 1911604

			(S Camp		(S.,			RE		and Press borns		6		
	32 13C-1,2,3,4,6,7,8-HpCDF	4.09e5	5.45e5	0.45	NO	0.589	36.46	36.47	NO	1.088	1.088	127.60	128	NO
994394. 	33 13C-1,2,3,4,7,8,9-HpCDF	2.91e5	5.45e5	0.44	NO	0.448	38.47	38.49	NO	1.148	1.149	119.44	119	NO
	34 13C-OCDF	8.32e5	5.45e5	0.87	NO	0.586	41.05	41.09	NO	1.225	1.226	260.87	130	NO
	35 37CI-2,3,7,8-TCDD	6.30e4	5.51e5			1.09	25.72	25.70	NO	1.027	1.026	10.531	105	NO
	36 13C-1,2,3,4-TCDD	5.51e5	5.51e5	0.80	NO	1.00	25.08	25.05	NO	1.000	1.000	100.00	100	NO
	37 13C-1,2,3,4-TCDF	7.97e5	7.97e5	0.79	NO	1.00	23.42	23.39	NO	1.000	1.000	100.00	100	NO
	38 13C-1,2,3,4,6,9-HxCDF	5.45e5	5.45e5	0.51	NO	1.00	33.52	33.51	NO	1.000	1.000	100.00	100	YES OF
	39 Total Tetra-Dioxins		6.36e5			0.824	24.62		NO	0.000		98.200		NO
	40 Total Penta-Dioxins		5.03e5			0.912	29.96		NO	0.000		219.99		NO
	41 Total Hexa-Dioxins		0.00e0			0.784	33.63		NO	0.000		280.21		NO
	42 Total Hepta-Dioxins		4.27e5			0.737	37.64		NO	0.000		145.71		NO
	43 Total Tetra-Furans		9.08e5			0.588	23.61		NO	0.000		55.699		NO
	44 1st Func. Penta-Furans		0.00e0			0.826	27.09		NO	0.000				NO
	45 Total Penta-Furans		0.00e0			0.826	29.27		NO	0.000		191.46		NO
	46 Total Hexa-Furans		0.00e0			0.766	33.56		NO	0.000		313.85		NO
	47 Total Hepta-Furans		0.00e0			0.732	37.83		NO	0.000		111.49		NO

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11 VG-11

Dataset: Untitled

Last Altered: Friday, January 31, 2020 15:50:36 Pacific Standard Time Printed: Friday, January 31, 2020 15:50:41 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-1-28-20.mdb 28 Jan 2020 16:09:23 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-29.cdb 22 Jan 2020 09:29:50

Compound name: 2,3,7,8-TCDD

	Terre		Actor	
	200130R3_1	SOLVENT BLANK	31-Jan-20	03:06:50
	200130R3_2	ST200130R3_1 1613 CS3 19/1604	31-Jan-20	03:53:47
	200130R3_3	SOLVENT BLANK	31-Jan-20	04:40:47
	200130R3_4	B0A0016-DUP1 Duplicate 15.46	31-Jan-20	05:27:46
	200130R3_5	1903647-05 PDI-067SC-8-06-08-191010 12.18	31-Jan-20	06:14:54
6	200130R3_6	1903649-01 PDI-016SC-8-06-08-191009 14.36	31-Jan-20	07:01:52
7	200130R3_7	1904210-03 PDI-1138RAB-00-10-191118 11.96	31-Jan-20	07:48:52
	200130R3_8	1904210-04 PDI-138RAB-00-10-191118 11.95	31-Jan-20	08:35:50
	200130R3_9	1904210-05 PDI-138RAB-10-19.1-191118 12.97	31-Jan-20	09:22:49
	200130R3_10	1904210-06 PDI-139RAB-00-10-191115 12.75	31-Jan-20	10:09:50
	200130R3_11	1904210-07 PDI-139RAB-10-20-191115 13.5	31-Jan-20	10:56:50
	200130R3_12	1904210-08 PDI-139RAB-20-25.5-191118 13.69	31-Jan-20	11: 43:50
	200130R3_13	1904210-09 PDI-145RAB-00-10-191114 10.92	31-Jan-20	12:30:49
	200130R3_14	B0A0016-DUP2 Duplicate 11	31-Jan-20	13:17:52
	200130R3_15	1904210-10 PDI-145RAB-10-20-191114 10.88	31-Jan-20	14:04:50
	200130R3_16	1904210-11 PDI-145RAB-20-24.7-191114 10.91	31-Jan-20	14:51:50

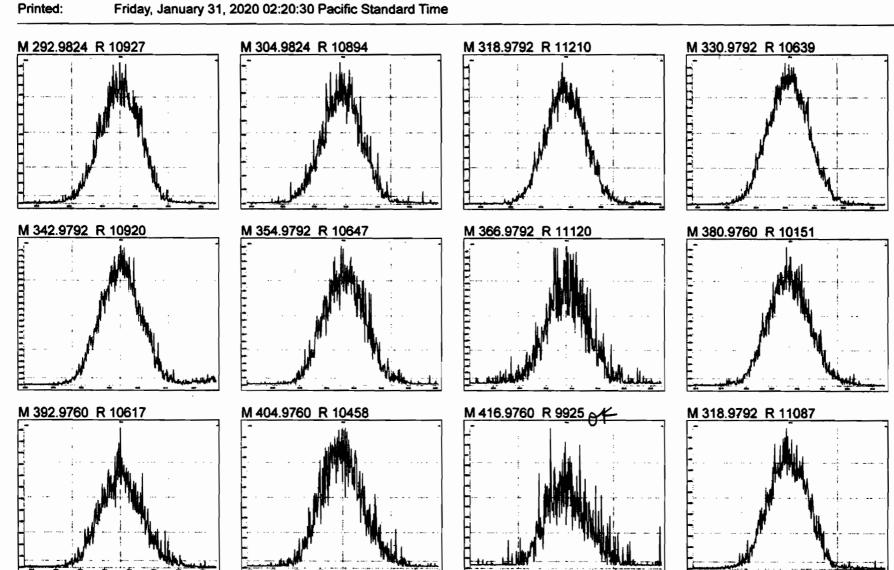
Page 1 of 1

Quantify Sample Summary Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory VG-11	

Page 1 of 1

Dataset: Untitled

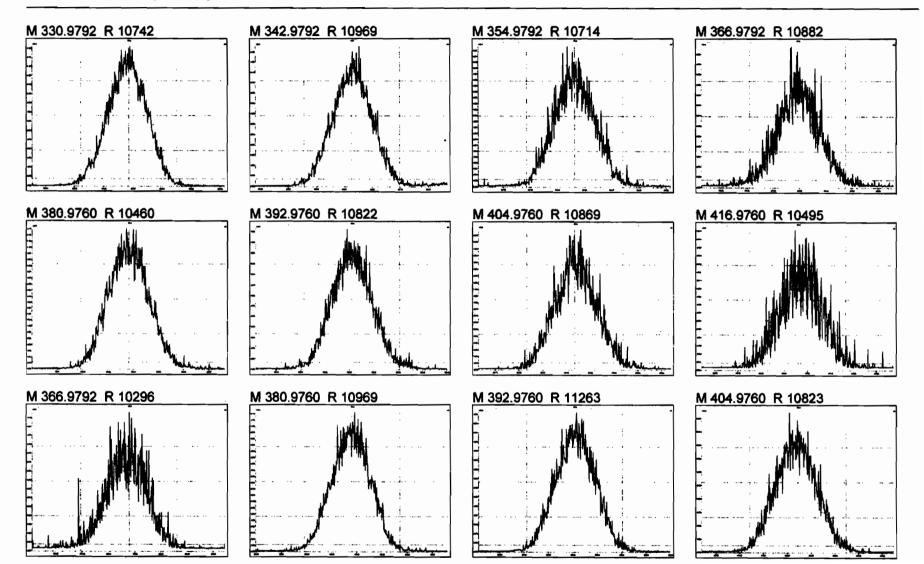
Last Altered: Friday, January 31, 2020 15:49:38 Pacific Standard Time Printed: Friday, January 31, 2020 15:49:43 Pacific Standard Time


Method: U:\VG12.PRO\MethDB\CPSM.mdb 23 Jan 2020 15:01:26 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 1911604

		RU
	1 1,3,6,8-TCDD (First)	21.74
2	2 1,2,8,9-TCDD (Last)	26.66
3	3 1,2,4,7,9-PeCDD (First)	28.44
4	4 1,2,3,8,9-PeCDD (Last)	31.03
5	5 1,2,4,6,7,9-HxCDD (First)	32.51
6	6 1,2,3,7,8,9-HxCDD (Last)	34.37
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.86
8	8 1,2,3,4,6,7,8-HpCDD (Last)	37.92
9	9 1,3,6,8-TCDF (First)	19.64
10	10 1,2,8,9-TCDF (Last)	26.81
11 ., .	11 1,3,4,6,8-PeCDF (First)	26.78
12	12 1,2,3,8,9-PeCDF (Last)	31.28
PI .	13 1,2,3,4,6,8-HxCDF (First)	31.96
14	14 1,2,3,7,8,9-HxCDF (Last)	34.73
14	15 1,2,3,4,6,7,8-HpCDF (First)	36.48
	16 1,2,3,4,7,8,9-HpCDF (Last)	38.50

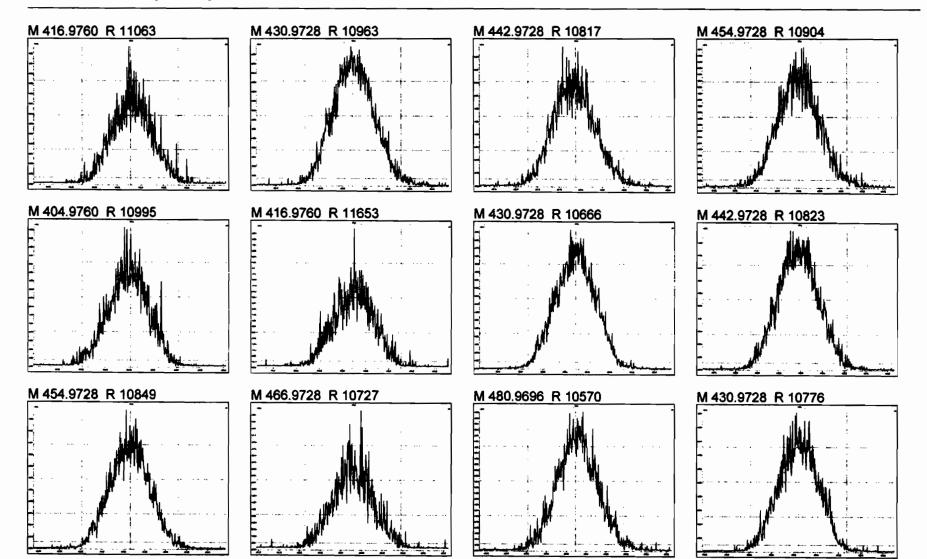
MassLynx 4.1 SCN815


Printed:

•

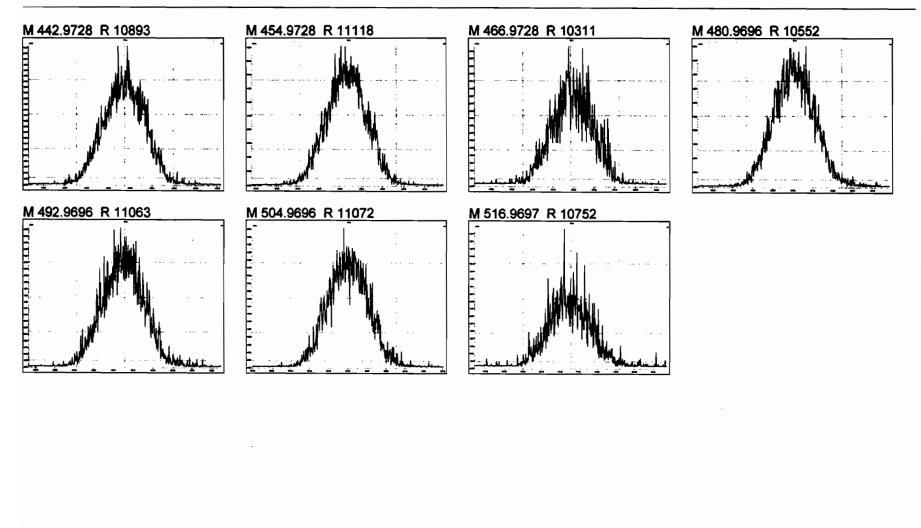
MassLynx 4.1 SCN815

Printed: Friday, January 31, 2020 02:20:30 Pacific Standard Time



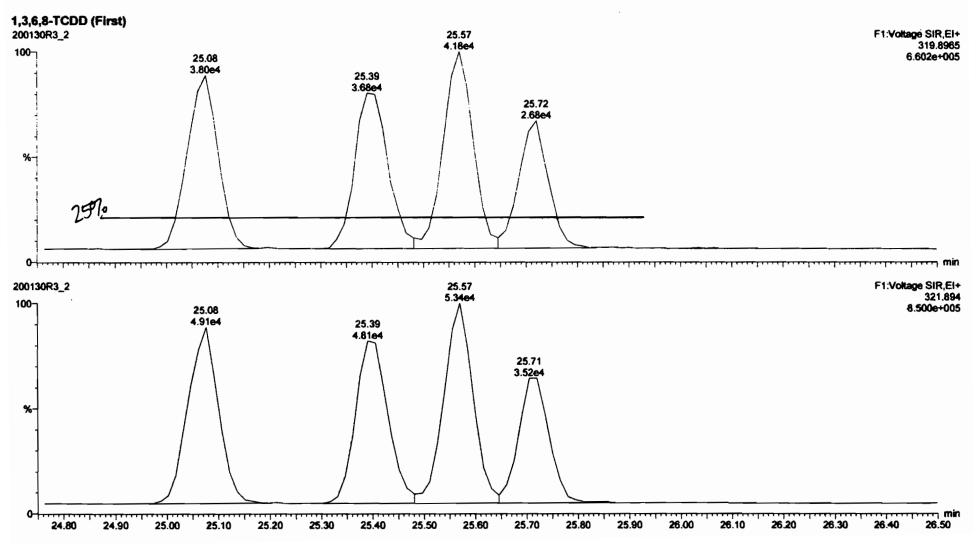
i.

MassLynx 4.1 SCN815


Page 3 of 4

MassLynx 4.1 SCN815

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11

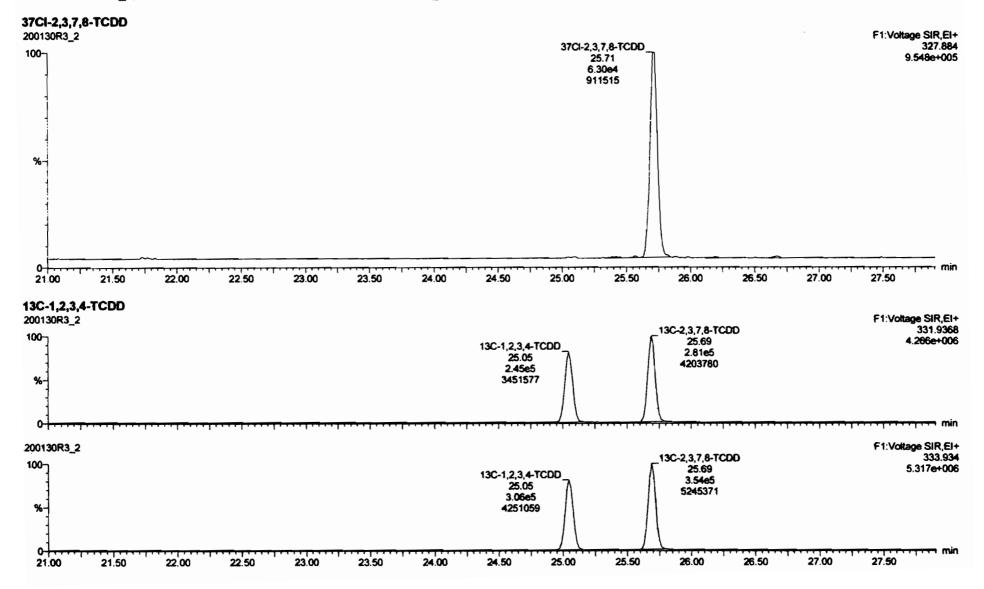

Vista Analytical Laboratory VG-11

Dataset: Untitled

Last Altered: Friday, January 31, 2020 15:49:38 Pacific Standard Time Printed: Friday, January 31, 2020 15:49:43 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\CPSM.mdb 23 Jan 2020 15:01:26 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 1911604



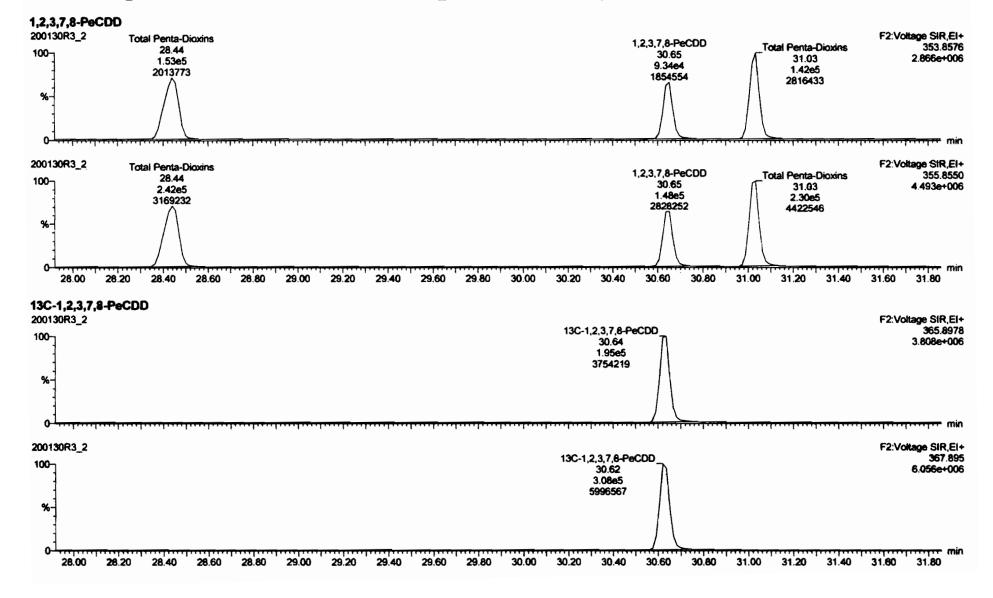
Work Order 1903649

Wantify Sam lista Analytica		MassLynx 4.1 SCN815								Page 1 of 1
ataset:	Untitled									
ast Altered: rinted:	Friday, January Friday, January 3	31, 2020 15:49:11 Pacific S 31, 2020 15:49:21 Pacific S	tandard Time							
alibration: L	J:\VG12.PRO\Cur	3\1613rrt-1-28-20.mdb 28 veDB\db5_1613vg12-1-21 lan-2029, Time: 03:53:47,	-20.cdb 22 Jan 202		, Des	cription: 1613	CS3 1911604	L		
3,7,8-TCDD	-	,			•	•				
00130R3_2	Total Tetra-Dioxins 21.74 4.02e4			Total Tetra-Dioxins;2	5.57;4.1	7e4;617050	Total Tetr 26.	66 7		F1:Voltage SIR,E 319.89 6.943e+0
%	416632				\int	M	4.16 651			
0	•••••••	· · · · · · · · · · · · · · · · · · ·	*****							F1:Voltage SIR,
⁰⁰]	Total Tetra-Dioxins 21.74 5.34e4			Total Tetra-Dioxins;2	5.57;5.2 A	964;804916	Total Tetr 26. 5.33	66 J		321.6 9.272e+0
%	553028				\bigwedge		889	512	l	
0	21.50 22.00	22.50 23.00	23.50 24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50
C-2,3,7,8-T	CDD									F1:Voltage SiR;
00-]				13C-1,2,3,4-TC	רסס	Г	13C-2,3,7,8-TCC 25.69 2.81e5	90		331.93 4.266e+0
%-				25.05 2.45e5 3451577	\bigwedge		4203760			
o]	······					***	<u></u>		· · · · · · · · · · · · · · · · · · ·	
00130R3_2 00-1						-	13C-2,3,7,8-TCI	QQ		F1:Voltage SIR; 333.
%-				13C-1,2,3,4-TC 25.05 3.06e5 4251059		Ň	25.69 3. 54e5 5245371			5.317 e+(
0 21.00	21.50 22.00	22.50 23.00	23.50 24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50

Quantify San Vista Analytica	• • •	Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time	

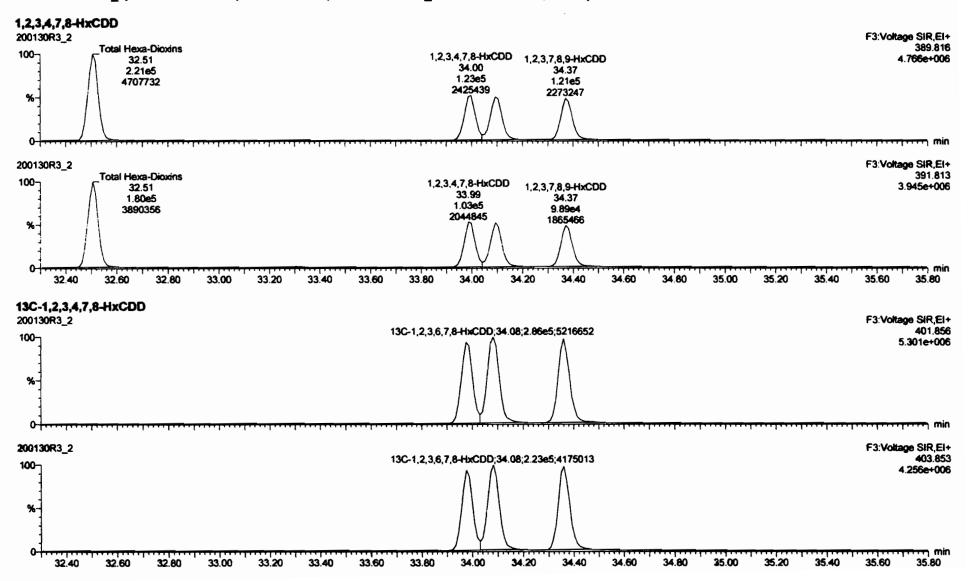
Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Image: Comparison of Comparison of

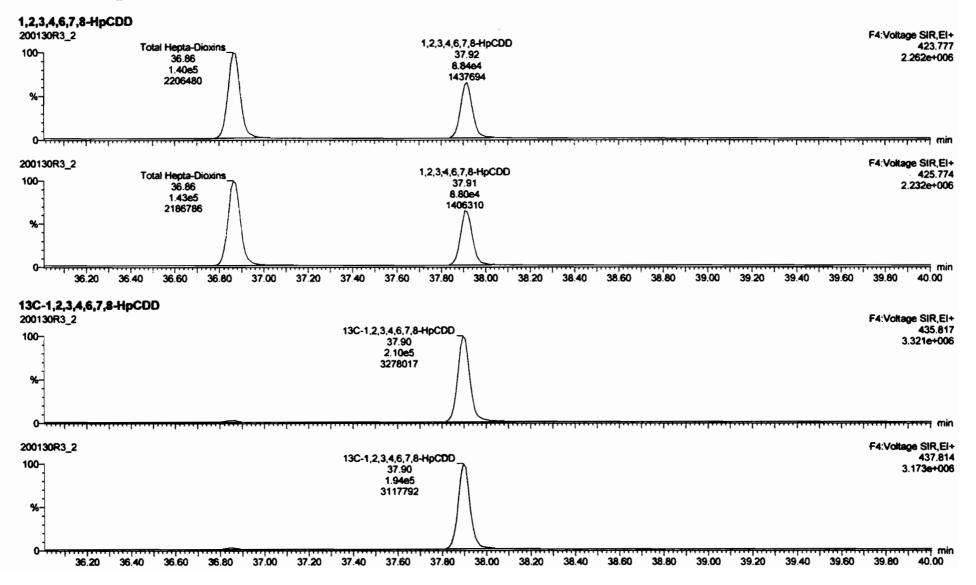

VISIA ANALYUCAI LADUIAI

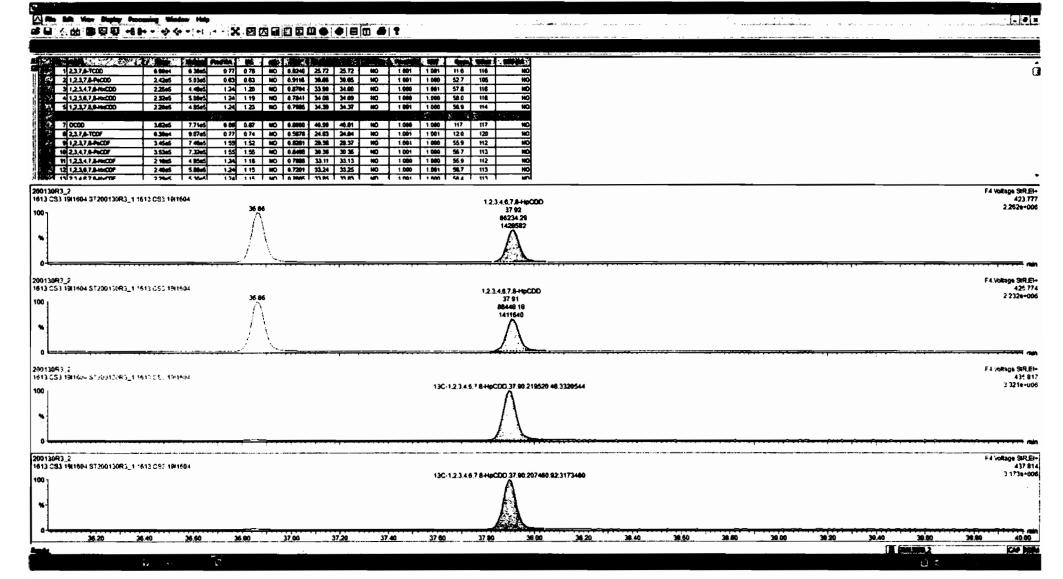
Page 3 of 13

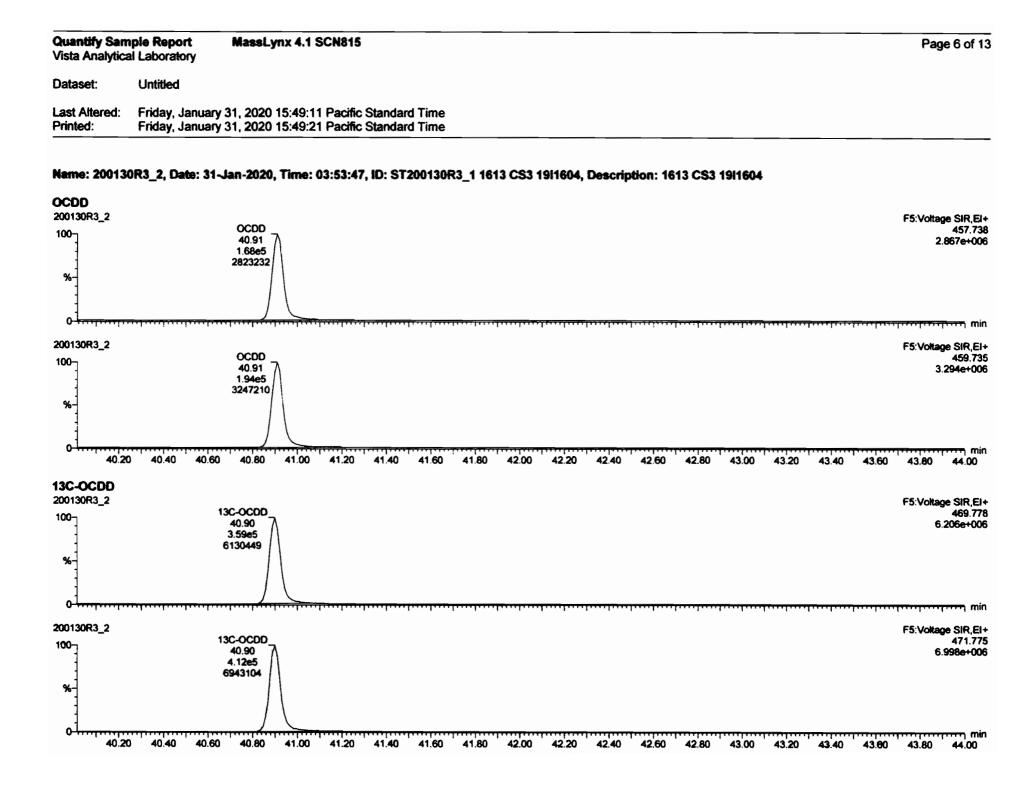
Dataset: Untitled

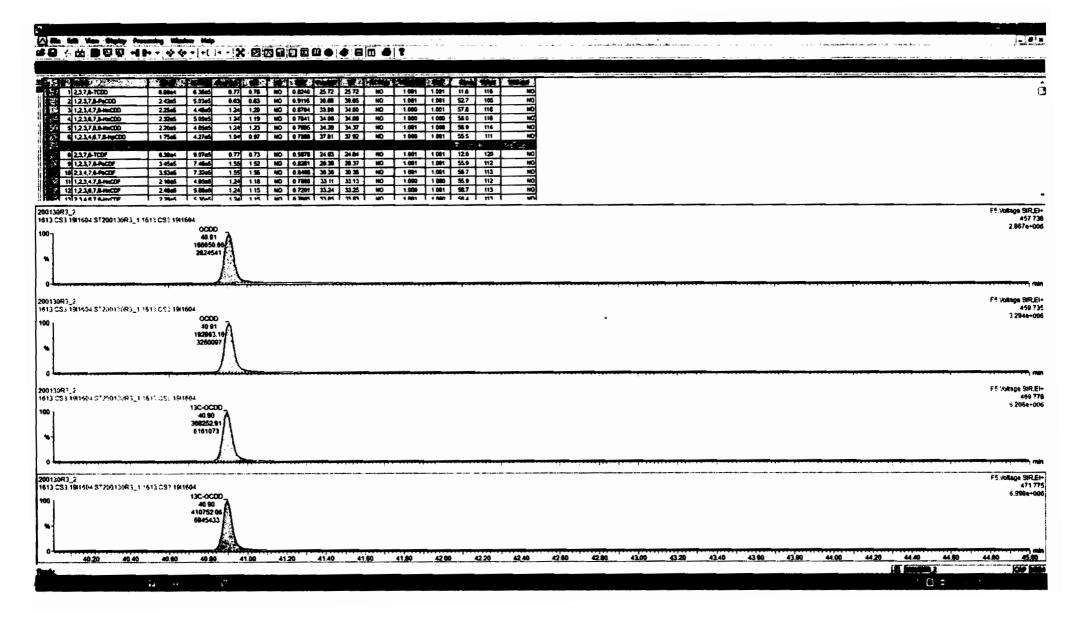

Last Altered: Friday, January 31, 2020 15:49:11 Pacific Standard Time Printed: Friday, January 31, 2020 15:49:21 Pacific Standard Time

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

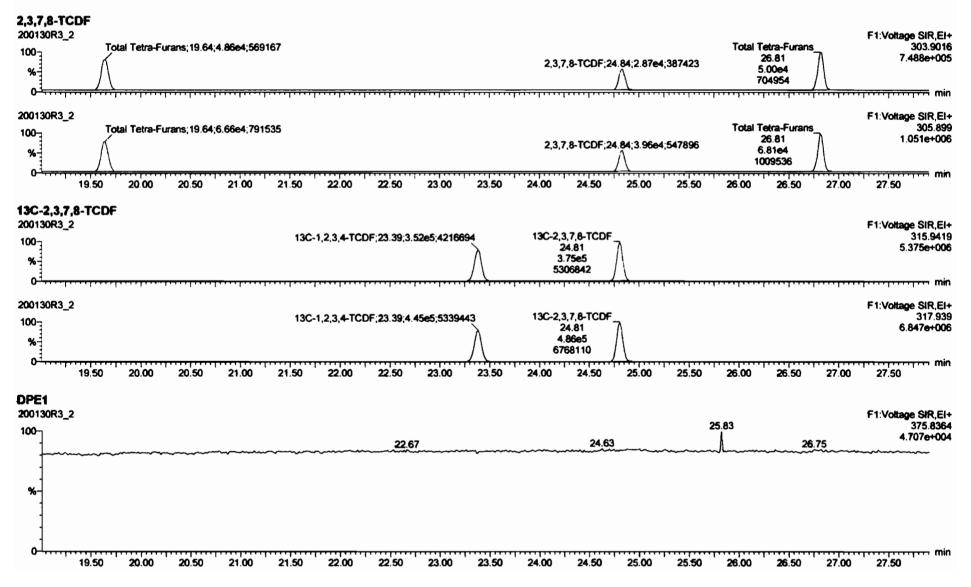

Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time	


Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 19/1604, Description: 1613 CS3 19/1604

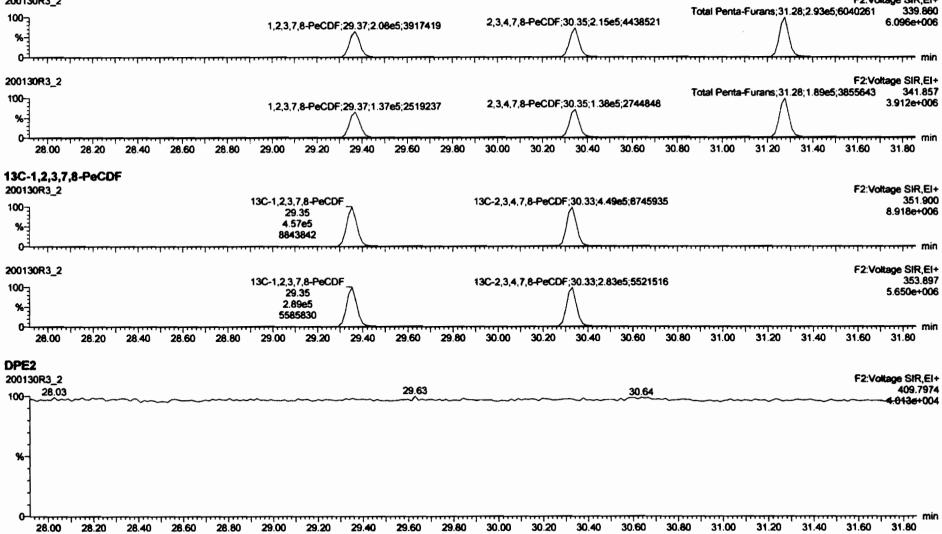



Quantify San Vista Analytica		Page 5 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time	

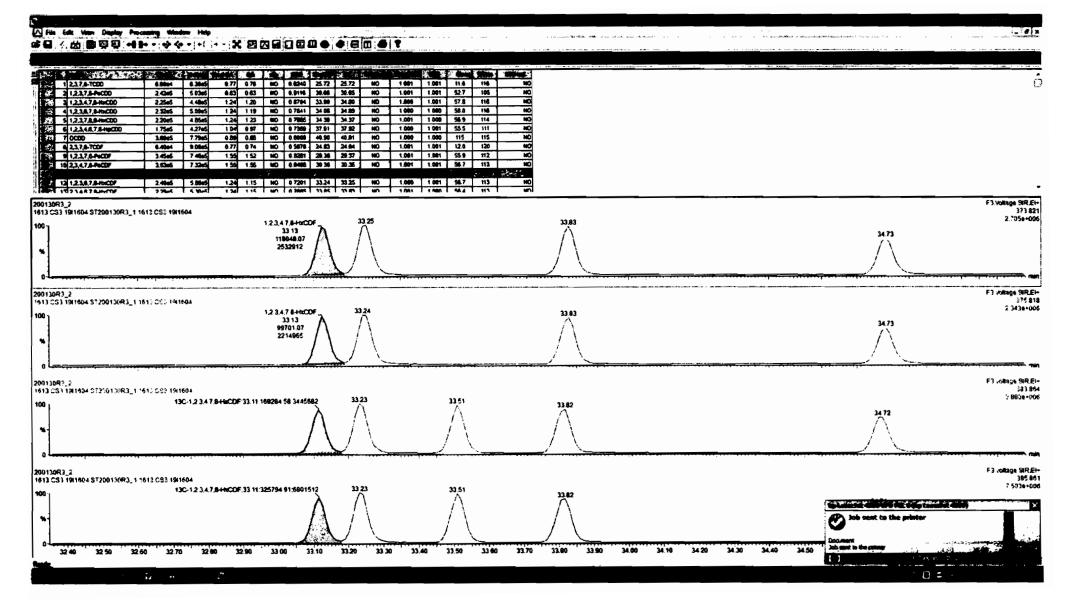
Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 19/1604, Description: 1613 CS3 19/1604

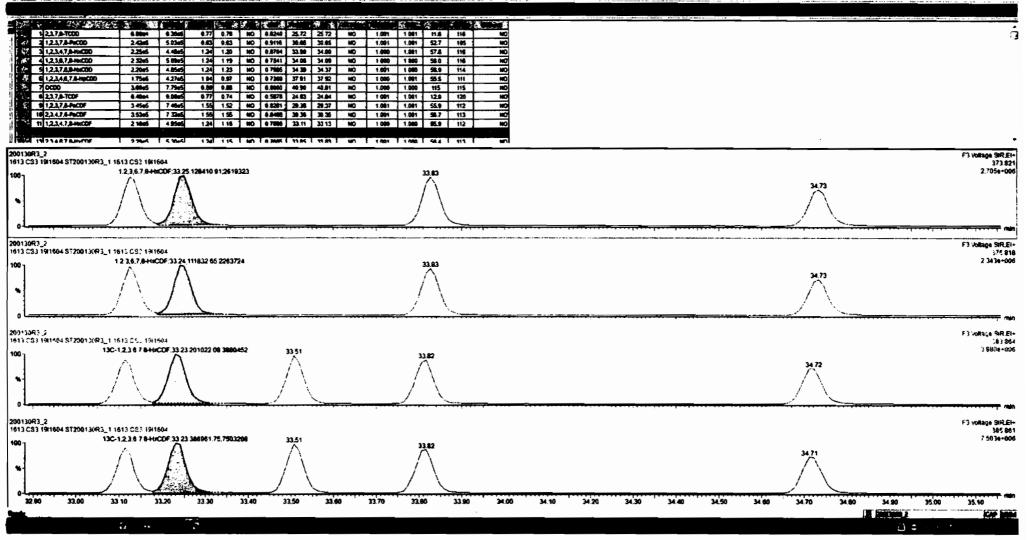


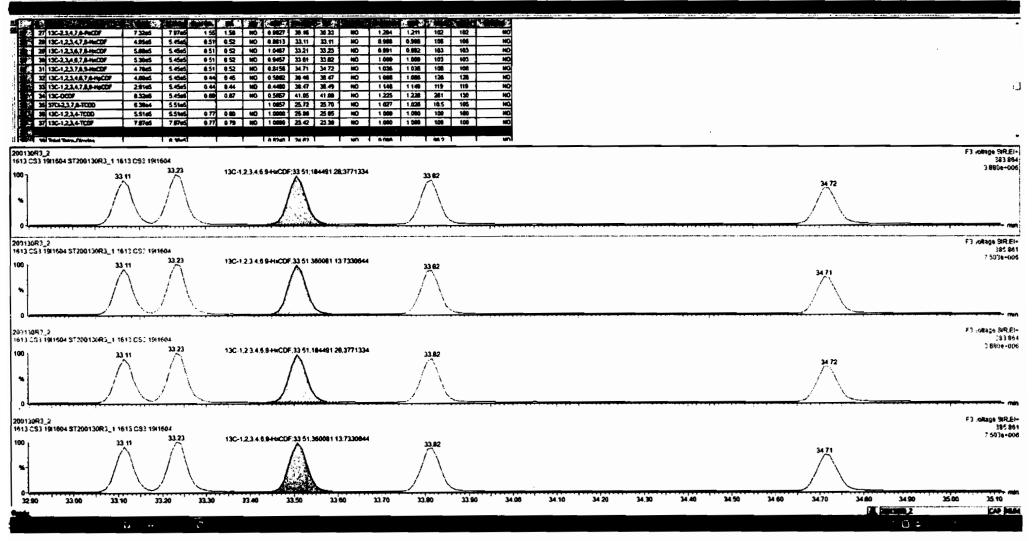
Quantify Sam Vista Analytica	• • •	Page 7 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time	

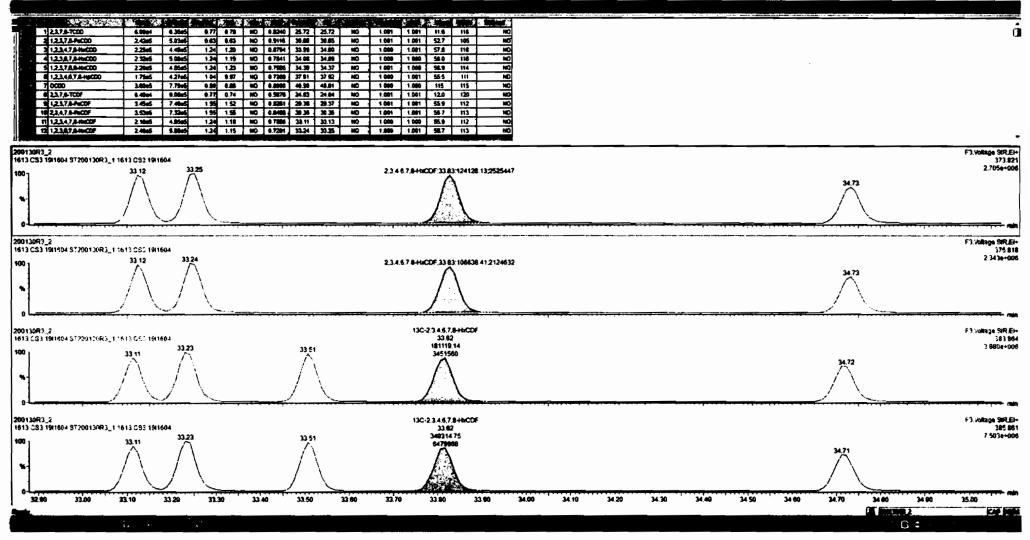

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 19/1604, Description: 1613 CS3 19/1604

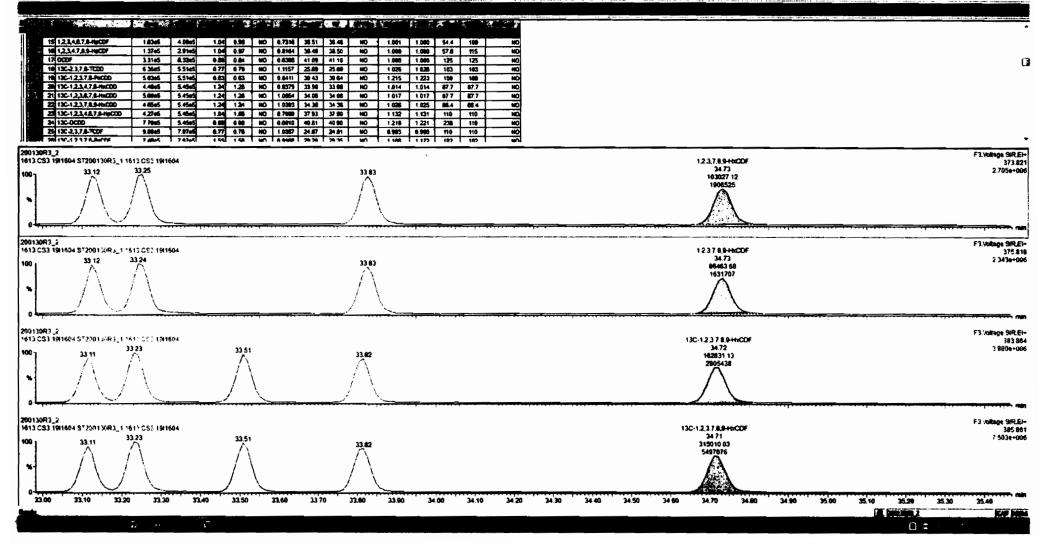
A file falt View Starty Pressing Minder Halp 1-HE F THE REAL FROM ALL FROM A CONTRACTOR OF A CONTRACT OF A LOUIS STOLEN BUT I RO 5 3 1237A-7000 1237A-7000 1247A-744000 107 512347A-44000 077 076 NO 0.6240 25.72 25.72 NO 1.001 6.8001 6.3065 1 001 11.6 116 110 1 0.43 0.63 NO 0.9116 30.66 30.65 NO 1.001 1.001 52.7 165 NO 2.4246 5.0346 2,2545 4.4845 1.24 1.20 HD 0.8784 33.88 34.80 HD 1.008 1.001 57.8 118 NO 4 123A7,84%000 5 1237,84%000 6 12346,7,84%000 1 19 10 67841 34 08 34 08 HO 1 000 1 000 58 0 116 110 2,3245 5,0945 1.24 124 123 NO 07885 34.39 34.37 NO 1001 1080 58.9 114 10 2,2065 4,8565 134 0.97 NO 0.7380 37.91 37.92 NO 1.000 1.001 55.5 111 1.7546 4.2745 ð 7 0000 3.6045 7.7945 0.86 0.85 MO 0.8000 46.96 40.01 MO 1.000 1.000 715 115 5 1.55 1.52 ND 0.5281 28.36 28.37 NO 1.961 1.001 55.9 112 9 1237A-MCDF 3.4546 7.4645 3.5345 7.324 1.55 1.55 NO 0.0400 30.36 32.35 NO 1.001 58.7 113 ð 11 1234784600 2.1005 4.8505 1.24 1 18 WO 0.7806 33 11 33.13 WO 1 006 1 000 55.0 112 5 124 115 NO 0.7201 30.24 30.25 NO 1.000 1.001 58.7 115 124 115 NO 0.7001 30.26 173.65 NO 1.000 1.001 54.4 115 5 8 24046 5.8445 12 12347 AHOOF 2784 4 104 1123487844 F1.Voltage SIR.EI+ 200130R3_2 1613 CS3 19/1604 ST200130R3_1 1613 C93 19/1604 303 9016 2.3.7.8-TCOF 26.81 7 408e-005 100 24.84 27161.94 379721 ۰. F1 Voltage SIR.EI+ 200130R3 2 305 399 1613 CS3 19/1604 ST200130R3_1 1612 CS2 19/1604 2.3.7.8-TCDF 26.61 10510+006 100 24.84 36799.03 532991 ń aw F1 voltage SIR.EI+ 215 9419 200130RF_2 1513 CS3 1911604 ST210130R3_1 1613 CS3 1911604 F 375e+006 13C-2 3 7.8-TCDF 24 81.397424 97:5374768 100 F1 voltage SIRLEI+ 317 939 20013083 2 1613 CS3 1911604 ST200130R3_1 1613 CS2 1911604 6 8474-005 13C-2.3.7.8-TCDF 24.81.510637 91:6846576 100 26 80 27.00 27 20 25.20 25.60 26,20 26.40 26 60 25.00 25.40 26.00 23 60 23.80 24.00 24 20 24.40 24.60 24.80 25.00 E Indiana Z a Sebera m dia ten de anti-С : . .


	ple Report I Laboratory		ssLynx 4	.1 SCN81	5											Page 8 of
taset:	Untitled															
st Altered: inted:	Friday, Jan Friday, Jan	uary 31, 2 wary 31, 2	020 15:49 020 15:49):11 Pacif):21 Pacif	ic Standa ic Standa	ard Time ard Time										
me: 20013(R3_2, Date	: 31-J an- 2	2020, Tim	e: 03:53:	47, ID: Si	T200130	R3_1 161	3 CS3 19	11604, D	escription	: 1613 C	S3 1911(64			
t Func. Per 0130R3_2	ta-Furans															F1:Voltage SIR,
<u>م</u> _														20	5.78 A	339.0 5.168e+0
%-																
0 ¹					***	· · · · · · · · · · · · · · · · · · ·	,				· • · • • • • • • • •					,,,,,,,,,,,,,,,, ,,
130R3_2		• •			•			. ,					· •			F1:Voltage SIR
^ل ە														26	5.77 1	341. 3.279e+
% -																
0 ¹ ,	····	· · · · · · · · · · · · · · · · · · · 	····	****										<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
19.	50 20.00	20.50	21.00	21.50	22.00	22.50	23.00	23.50	24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50
*E6 0130R3_2																F1:Voltage SIR,
0- 19.42		0.27	mm	mm	21.99	22.53	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23.97	24.33 24.82	24.93	~~~~~	25.89 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	26	.75	409.7 4085e+
]																
1																
6-																
4																
1																
1																
م																
19.	50 20.00	20.50	21.00	21.50	22.00	22.50	23.00	23.50	24.00	24.50	25.00	25.50	26.00	26.50	27.00	27.50

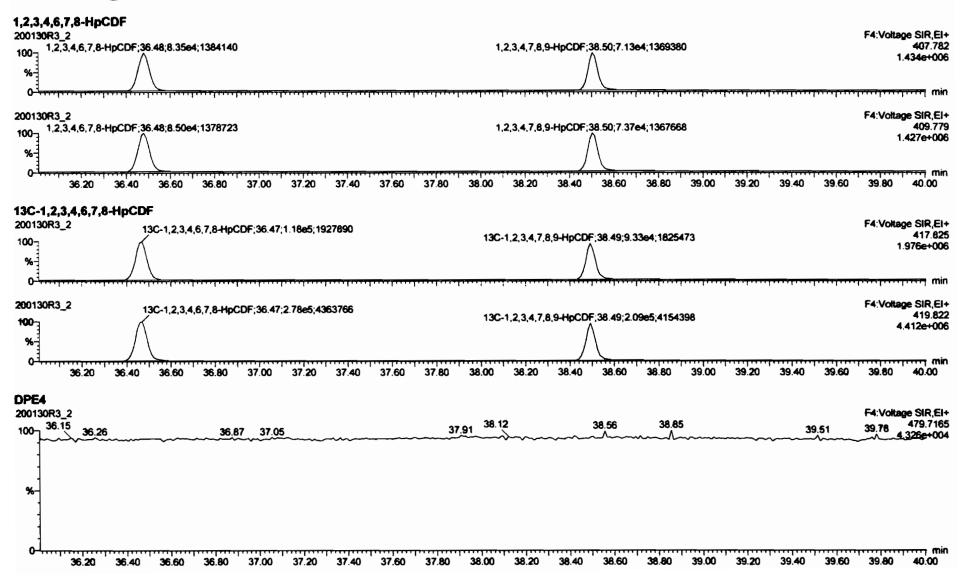

Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time	
Name: 20013	R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 191160	l, Description: 1613 CS3 19/1604
1,2,3,7,8-PeC 200130R3_2	DF	F2:Voltage SIR,EI+
100-		Total Penta-Furans;31.28;2.93e5;6040261 339.860

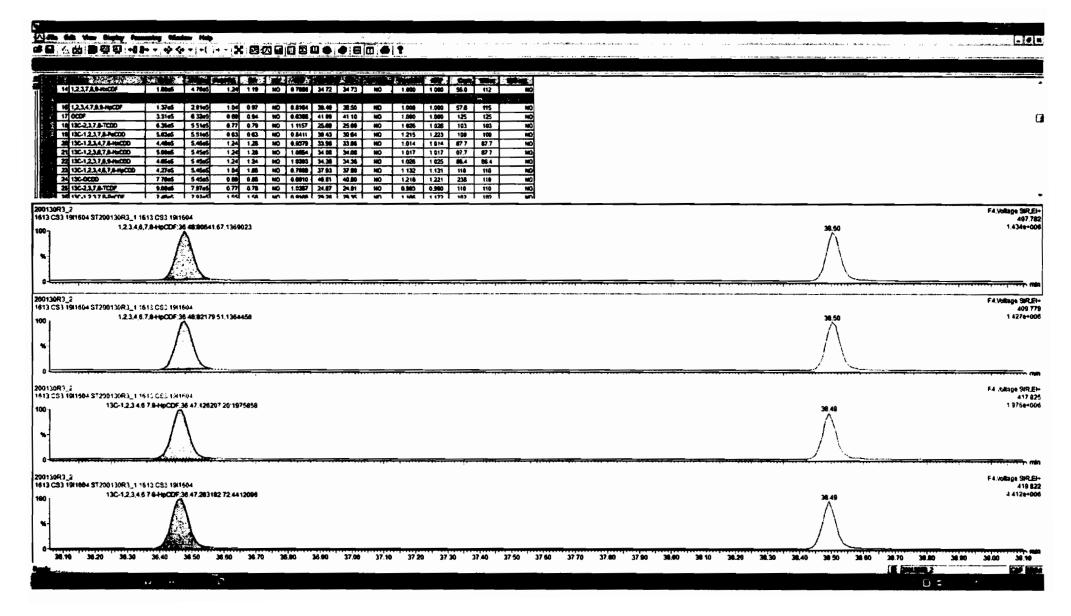

	x 4.1 SCN815			Page 10 of 1
Untitled				
R3_2, Date: 31-Jan-2020, 1	lime: 03:53:47, iD: ST200130R3_1 1613 CS	3 1911604, Description: 1613 CS3	1911604	
CDF				F3:Voltage SIR,EI
	1,2,3,6,7,8-HxCDF;33,25;1.31e5;2638153	2,3,4,6,7,8-HxCDF;33.83;1.29e5;255	53741	373.82 4.357e+00
			• • • • • • • • • • • • • • • • • • • •	mi F3:Voltage SIR,EI
	1,2,3,6,7,8-HxCDF;33,24;1,15e5;2283087	2,3,4,6,7,8-HxCDF;33.83;1.10e5;214	14642	375.81 3.672e+00
32.20 32.40 32.60	32.80 33.00 33.20 33.40 33.60	33.80 34.00 34.20 34.40	34.60 34.80 35.0	00 35.20 35.40
3-HxCDF	13C-1,2,3,6,7,8-HxCDF;33.23;1.92e5;3812005 ∧ /\ /\	13C-2,3,4,6,7,8-HxCDF;33.82;1.69e5	5;3378812	F3:Voltage SIR,EI 383.66 3.880e+00
			\frown	·····
	13C-1,2,3,6,7,8-HxCDF;33.23;3.74e5;7405665	13C-2,3,4,6,7,8-HxCDF;33.82;3.32e5	5;6375551	F3:Voltage SiR,EI 385.86 7.503e+00
		\bigwedge	\wedge	
32.20 32.40 32.60	32.60 33.00 33.20 33.40 33.60	33.60 34.00 34.20 34.40	34.60 34.80 35.0	00 35.20 35.40
2 11 32 52	33.16	34.09 34.38		F3:Voltage SIR,EI 445.755
				4.0528+00
	Laboratory Untitled Friday, January 31, 2020 19 Friday, January 31, 2020 19 R3_2, Date: 31-Jan-2020, 1 CDF 32.20 32.40 32.60 B-HxCDF	Untitled Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time R3_2, Date: 31-Jan-2020, Time: 03:53:47, iD: ST200130R3_1 1613 CS CDF 1.2,3,6,7,8+tbcDF;33,25;1.31e5;2638153 1.2,3,6,7,8+tbcDF;33,25;1.31e5;2638153 1.2,3,6,7,8+tbcDF;33,24;1.15e5;2283087 1.2,3,6,7,8+tbcDF;33,24;1.15e5;2283087 1.2,3,6,7,8+tbcDF;33,24;1.15e5;2283087 1.2,3,6,7,8+tbcDF;33,23;1.92e5;3812005 13C-1,2,3,6,7,8+tbcDF;33,23;1.92e5;3812005 13C-1,2,3,6,7,8+tbcDF;33,23;1.92e5;3812005 13C-1,2,3,6,7,8+tbcDF;33,23;1.92e5;3812005 13C-1,2,3,6,7,8+tbcDF;33,23;1.92e5;3812005 13C-1,2,3,6,7,8+tbcDF;33,23;3.74e5;7405665 13C-1,2,3,6,7,8+tbcDF;33,23;3.74e5;7405665	Laboratory Untitled Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time R3_2, Date: 31-Jan-2020, Time: 03:53:47, iD: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 CDF 1.2,3,6,7,8-HxCDF;33.25;1.31e5;2638153 2.3,4,6,7,8-HxCDF;33.83;1.29e5;255 1.2,3,6,7,8-HxCDF;33.24;1.15e5;2283087 2.3,4,6,7,8-HxCDF;33.83;1.10e5;214 1.2,3,6,7,8-HxCDF;33.24;1.15e5;2283087 2.3,4,6,7,8-HxCDF;33.83;1.10e5;214 32:20 32:40 32:60 32:80 33:00 33:20 33:40 33:60 33:80 34:00 34:20 34:40 B-HxCDF 13C-1,2,3,6,7,8-HxCDF;33.23;1.92e5;3812005 13C-2,3,4,6,7,8-HxCDF;33.82;1.69et 13C-1,2,3,6,7,8-HxCDF;33.23;1.92e5;3812005 13C-2,3,4,6,7,8-HxCDF;33.82;1.69et 13C-1,2,3,6,7,8-HxCDF;33.23;3,74e5;7405665 13C-2,3,4,6,7,8-HxCDF;33.82;3,32et 13C-2,3,4,6,7,8-HxCDF;33.82;40 32;60 32;60 32;60 33;60 33;60 33;60 3	Laboratory Untitled Friday, January 31, 2020 15:49:21 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 1911604 CDF 1.2,3.6,7,8+thCDF:33.25;1.31e5:2638153 2.3,4.6,7,8+thCDF:33.83;1.29e5:2553741 1.2,3.6,7,8+thCDF:33.24,1.15e5:2283087 2.3,4.6,7,8+thCDF:33.83;1.10e5:2144642 2.3,4.6,7,8+thCDF:33.83;1.10e5:2144642 1.2,3.6,7,8+thCDF:33.24,1.15e5:2283087 1.2,3.6,7,8+thCDF:33.24,1.15e5:2283087 1.2,3.6,7,8+thCDF:33.24,1.15e5:2283087 1.2,3.6,7,8+thCDF:33.24,1.15e5:2283087 1.2,3.6,7,8+thCDF:33.23,1.10e5:2144642 1.2,3.6,7,8+thCDF:33.23,1.10e5:214665 1.3,2,2,3.4,6,7,8+thCDF:33.82,1.69e5:3378812 1.3,2,2,3.4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3.4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3.4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3.4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3.4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3,4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3,4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3,4,6,7,8+thCDF:33.82,3.32e5:6375551 1.3,2,2,3,4,6,7,8+thCDF:33.82,3.32e5 1.3,4,0,3,4,0,3,4,0,3,4,0,3


0 35.40 32.00 33.40 34.00 32.20 32.40 32.60 32.80 33.00 33.20 33.60 33.80 34.20 34.40 34.60 34.80 35.00 35.20

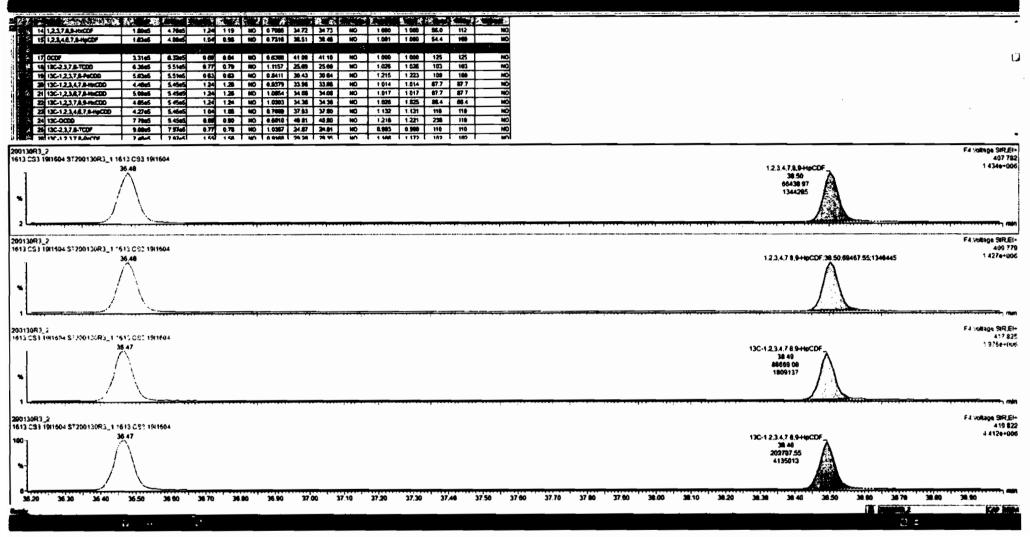

_ @ ×

- / *


and a second second



. . .

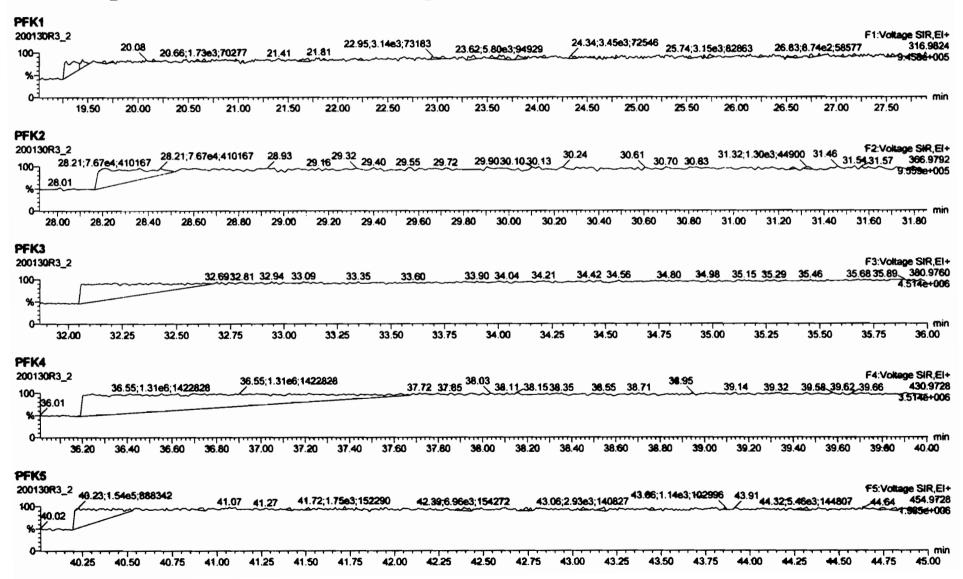

Quantify San Vista Analytica		Page 11 of 13
Dataset:	Untitled	
Last Altered: Printed:	Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time	

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 1911604, Description: 1613 CS3 1911604

-

uantify Sam sta Analytica			MassLy	ynx 4.1 S	SCN815													Page	e 12 of
ataset:	Untitled																		
st Altered: inted:	Friday, J Friday, J																		
						10.07					.	A'							
ume: 20013(CDF	DR3_2, Da	te: 31-J	2 n-20 20,	, (<i>im</i> e: (J3:53:47	, ID: ST	200130	43_1 16 1	13 CS3 1	1911604,	Descrip	1001: 16	13 CS3	1911604					
0130R3_2																		F5:Volta	
ю [.] ∃			OCDF 41.10 7	۱														2	441.1 2.81 8e+ (
% -			1.51e5	\															
0 ¹	· • • • • • • •	• • • • • •		\				····					•••	• • • • •			· · · · · ·		
0130R3_2																		F5:Volta	ge SiR,
0		OCD	.(F:41.10;1	79e 5;3214	251													3	443.
%			/`	/															
0 ¹	· • · · · · · · · · · ·	- -											· • • • • • •						
40.2	5 40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0
0130R3_2 0		3	-OCDF 11.09 .87e5 175068															F5:Volta	453.7 5.956e+
)130R3_2																		F5:Volta	
0-, -		13C-OC	DF;41.09;	4.45e5;78	58835														455. 7.939 e +
%			γ	\														•	
0 ¹	5 40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0
PE5 0130R3_2																		F5:Volta	ioe SIR
40,10			0.90			41	.86	42.22			43.04		43.6	43.78		44,21			513.6 4.390e+
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~	~~~~~		Lun			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	45.04			Amali		-A-m		······	~~~~
]																			
%-																			
1																			
<u></u>																			
40.2	5 40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44,75	45.0

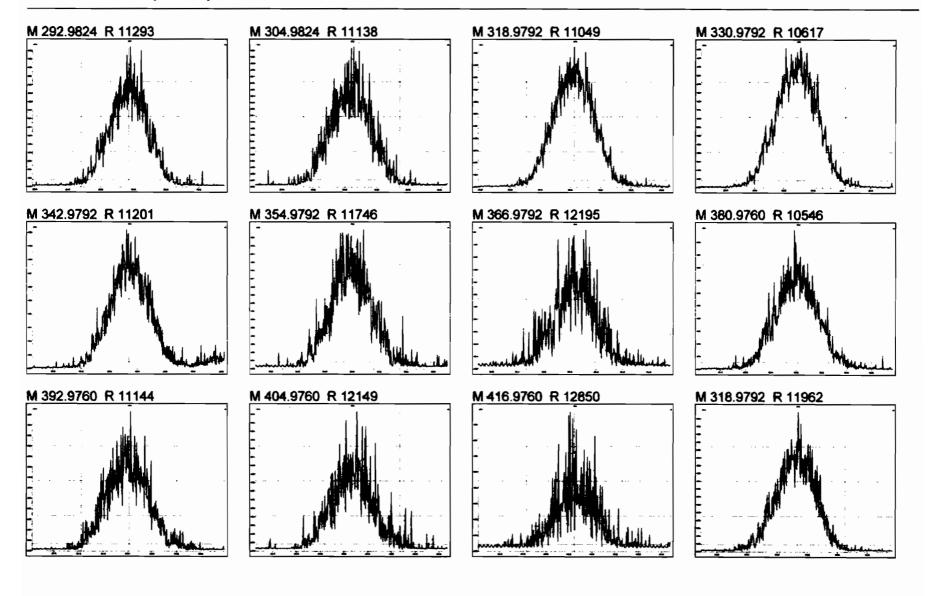
,


.

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

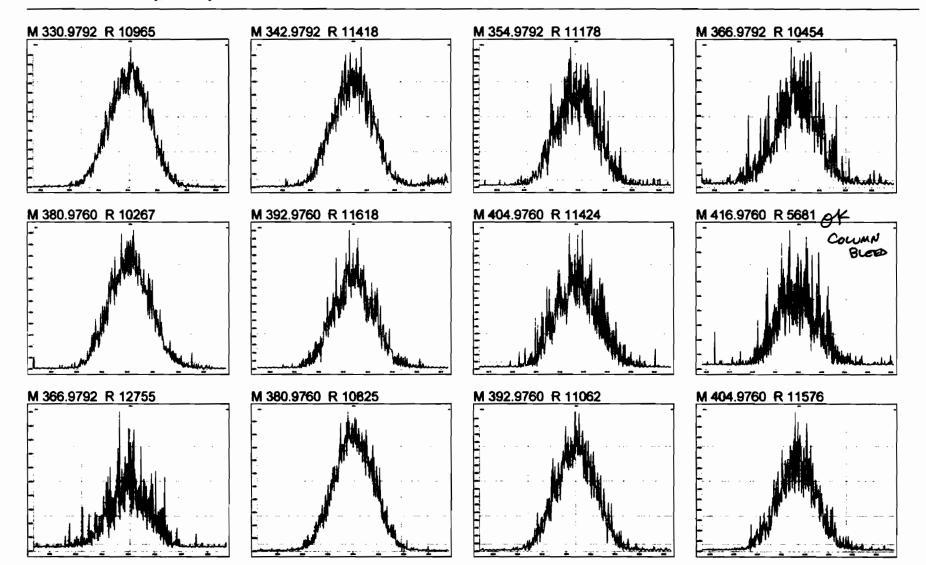
Dataset: Untitled

Last Altered: Friday, January 31, 2020 15:49:11 Pacific Standard Time Friday, January 31, 2020 15:49:21 Pacific Standard Time

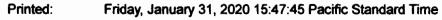

Name: 200130R3_2, Date: 31-Jan-2020, Time: 03:53:47, ID: ST200130R3_1 1613 CS3 19I1604, Description: 1613 CS3 19I1604

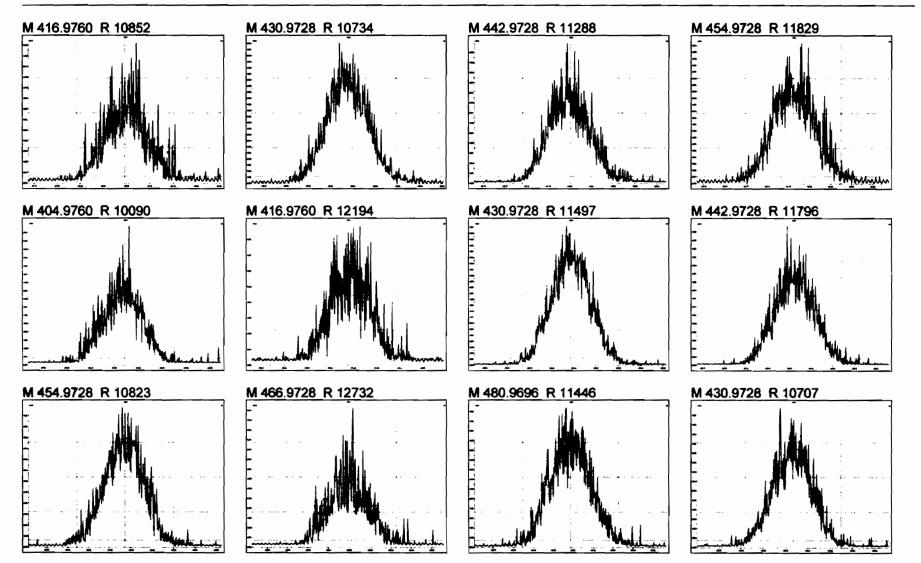
MassLynx 4.1 SCN815

Page 1 of 4



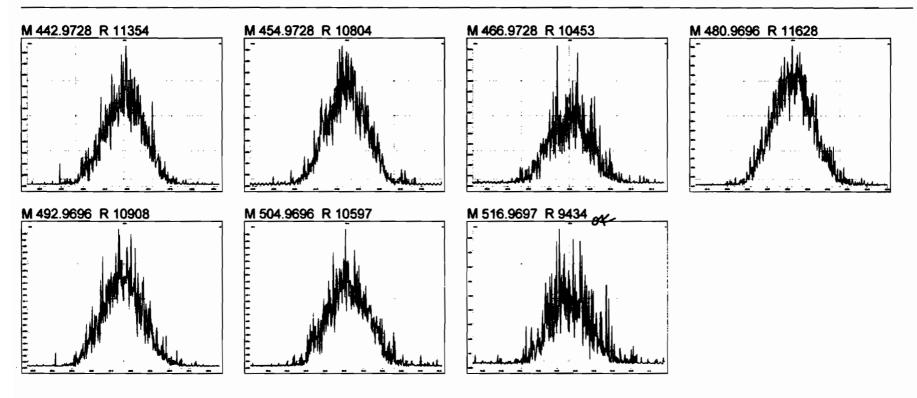
MassLynx 4.1 SCN815


Page 2 of 4



MassLynx 4.1 SCN815

Page 3 of 4



MassLynx 4.1 SCN815

Page 4 of 4

INITIAL CALIBRATION

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset:	U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld
Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-1-15-20.mdb 21 Jan 2020 11:10:24 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Compound name: 2,3,7,8-TCDD Response Factor: 0.824003 RRF SD: 0.106482, Relative SD: 12.9225 Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: RF

1.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	0.250	0.68	NO	25.85	1.000	3.58e3	1.96e6	0.222	-11.3	0.731	MM
2	200121R1_2	0.500	0.77	NO	25.85	1.001	7.18e3	1.99e6	0.437	-12.6	0.720	bb
3	200121R1_3	2.00	0.75	NO	25.89	1.001	3.33e4	2.18e6	1.85	-7.4	0.763	bb
4	200121R1_4	10.0	0.75	NO	25.85	1.001	1.39e5	1.68e6	10.0	0.3	0.827	db
5	200121R1_5	40.0	0.76	NO	25.87	1.001	8.97e5	2.41e6	45.3	13.1	0.932	bb
6	200121R1_6	300	0.77	NO	25.89	1.001	7.61e6	2.61e6	354	17.9	0.971	bb

Compound name: 1,2,3,7,8-PeCDD Response Factor: 0.911647 RRF SD: 0.0797461, Relative SD: 8.74747 Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: RF

3.5	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	0.64	NO	30.76	1.000	1.49e4	1.48e6	1.10	-11.6	0.806	bb
2	200121R1_2	2.50	0.59	NO	30.74	1.000	3.07e4	1.46e6	2.31	-7.5	0.843	bb
3	200121R1_3	10.0	0.58	NO	30.76	1.000	1.42e5	1.60e6	9.73	-2.7	0.887	bb
4	200121R1_4	50.0	0.63	NO	30.76	1.000	5.59e5	1.19e6	51.5	3.0	0.939	bb
5	200121R1_5	200	0.62	NO	30.76	1.000	3.69e6	1.86e6	218	9.0	0.993	bb
6	200121R1_6	1500	0.63	NO	30.77	1.000	3.22e7	2.15e6	1650	9.8	1.00	bb

Page 1 of 16

DB 1/22/20 C1 01/22/2020

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 1,2,3,4,7,8-HxCDD

Response Factor: 0.870361 RRF SD: 0.1132, Relative SD: 13.0061 Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: RF

-	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.23	NO	34.12	1.000	1.09e4	1.15e6	1.09	-12.5	0.762	bd
2	200121R1_2	2.50	1.22	NO	34.10	1.001	2.10e4	1.15e6	2.11	-15.7	0.734	bd
3	200121R1_3	10.0	1.20	NO	34.10	1.000	1.06e5	1.28e6	9.54	-4.6	0.830	bd
4	200121R1_4	50.0	1.24	NO	34.10	1.001	4.27e5	9.39e5	52.2	4.4	0.908	bď
5	200121R1_5	200	1.19	NO	34.10	1.000	2.99e6	1.51e6	228	13.8	0.990	bd
6	200121R1_6	1500	1.20	NO	34.12	1.000	2.69e7	1.80e6	1720	14.6	0.998	bd

Compound name: 1,2,3,6,7,8-HxCDD

Response Factor: 0.784064 RRF SD: 0.0638384, Relative SD: 8.14199 Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area) Curve type: RF

19 10	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.14	NO	34.21	1.000	1.19e4	1.30e6	1.17	-6.8	0.731	db
2	200121R1_2	2.50	1.19	NO	34.20	1.000	2.26e4	1.28e6	2.24	-10.3	0.703	db
3	200121R1_3	10.0	1.20	NO	34.21	1.000	1.08e5	1.43e6	9.65	-3.5	0.756	db
4	200121R1_4	50.0	1.19	NO	34.21	1.001	4.29e5	1.07e6	51.4	2.8	0.806	db
5	200121R1_5	200	1.20	NO	34.21	1.001	3.00e6	1.76e6	217	8.7	0.852	db
6	200121R1_6	1500	1.20	NO	34.22	1.000	2.63e7	2.05e6	1640	9.1	0.856	db

Compound name: 1,2,3,7,8,9-HxCDD

Response Factor: 0.798497 RRF SD: 0.0803566, Relative SD: 10.0635 Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area) Curve type: RF

to and	Name	Std. Conc	.R/4	n/y	RT	RRT	Resp	IS Flesp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.17	NO	34.51	1.001	1.14e4	1.21e6	1.18	-5.6	0.754	bb
2	200121R1_2	2.50	1.15	NO	34.49	1.000	2.18e4	1.26e6	2.18	-13.0	0.695	bb

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset:	U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 1,2,3,7,8,9-HxCDD

1.00	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200121R1_3	10.0	1.22	NO	34.50	1.001	1.06e5	1.43e6	9.33	-6.7	0.745	bb
4	200121R1_4	50.0	1.22	NO	34.49	1.001	4.28e5	1.04e6	51.3	2.6	0.820	db
5	200121R1_5	200	1.21	NO	34.49	1.000	2.97e6	1.68e6	222	10.8	0.885	bb
6	200121R1_6	1500	1.19	NO	34.50	1.000	2.63e7	1.96e6	1680	11.8	0.893	bb

Compound name: 1,2,3,4,6,7,8-HpCDD Response Factor: 0.736928 RRF SD: 0.0903282, Relative SD: 12.2574 Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	0.96	NO	38.05	1.001	7.79e3	9.17e5	1.15	-7.8	0.679	bb
2	200121R1_2	2.50	1.05	NO	38.02	1.000	1.43e4	9.02e5	2.15	-13.8	0.635	bb
3	200121R1_3	10.0	1.00	NO	38.05	1.001	6.21e4	9.27e5	9.09	-9.1	0.670	bb
4	200121R1_4	50.0	0.99	NO	38.03	1.001	2.40e5	6.36e5	51.1	2.3	0.754	bb
5	200121R1_5	200	1.00	NO	38.03	1.001	1.97e6	1.19e6	225	12.6	0.830	bb
6	200121R1_6	1500	0.99	NO	38.05	1.000	1.77e7	1.38e6	1740	15.9	0.854	bb

Compound name: OCDD

Response Factor: 0.799993 RRF SD: 0.0791297, Relative SD: 9.8913 Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	2.50	0.86	NO	41.03	1.001	1.42e4	1.53e6	2.32	-7.3	0.742	bb
2	200121R1_2	5.00	0.86	NO	41.01	1.001	2.69e4	1.51e6	4.45	-11.0	0.712	bd
3	200121R1_3	20.0	0.86	NO	41.02	1.000	1.12e5	1.50e6	18.7	-6.3	0.750	bb
4	200121R1_4	100	0.86	NO	41.01	1.000	3.71e5	9.18e5	101	1.0	0.808	bb
5	200121R1_5	400	0.85	NO	41.02	1.000	3.62e6	2.03e6	446	11.6	0.893	bb
6	200121R1_6	3000	0.86	NO	41.03	1.000	3.66e7	2.72e6	3360	11.9	0.895	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 2,3,7,8-TCDF

Response Factor: 0.587758 RRF SD: 0.0889725, Relative SD: 15.1376 Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area) Curve type: RF

173 H	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	0.250	0.73	NO	25.00	1.001	3.29e3	2.47e6	0.226	-9.5	0.532	bb
2	200121R1_2	0.500	0.68	NO	24.99	1.001	6.15e3	2.53e6	0.414	-17.2	0.487	bb
3	200121R1_3	2.00	0.69	NO	25.02	1.001	2.93e4	2.77e6	1.80	-10.2	0.528	bb
4	200121R1_4	10.0	0.69	NO	24.99	1.001	1.29e5	2.15e6	10.2	1.5	0.597	bb
5	200121R1_5	40.0	0.71	NO	24.99	1.001	8.09e5	3.02e6	45.6	14.0	0.670	bb
6	200121R1_6	300	0.72	NO	25.02	1.001	6.94e6	3.24e6	364	21.4	0.714	bb

Compound name: 1,2,3,7,8-PeCDF

Response Factor: 0.826078 RRF SD: 0.0786342, Relative SD: 9.51897 Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1 384	200121R1_1	1.25	1.56	NO	29.49	1.001	2.06e4	2.18e6	1.14	-8.7	0.754	bb
2	200121R1_2	2.50	1.47	NO	29.48	1.001	3.89e4	2.14e6	2.20	-12.0	0.727	bb
3	200121R1_3	10.0	1.55	NO	29.49	1.001	1.94e5	2.43e6	9.65	-3.5	0.797	bb
4	200121R1_4	50.0	1.52	NO	29.48	1.001	7.65e5	1.78e6	51.9	3.8	0.857	bb
5	200121R1_5	200	1.50	NO	29.48	1.001	4.89e6	2.70e6	219	9.6	0.906	bb
6	200121R1_6	1500	1.50	NO	29.49	1.001	4.35e7	3.17e6	1660	10.7	0.915	bb

Compound name: 2,3,4,7,8-PeCDF

Response Factor: 0.84982 RRF SD: 0.0827911, Relative SD: 9.74219 Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area) Curve type: RF

The set	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.55	NO	30.47	1.001	2.06e4	2.15e6	1.13	-9.7	0.768	bb
2	200121R1_2	2.50	1.51	NO	30.45	1.000	3.96e4	2.12e6	2.19	-12.3	0.746	bb

Dataset:	U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered: Wednesday, January 22, 2020 09:29:50 Pacific Standard Time Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 2,3,4,7,8-PeCDF

The second	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3 001	200121R1_3	10.0	1.56	NO	30.45	1.000	1.98e5	2.38e6	9.81	-1.9	0.834	bb
4	200121R1_4	50.0	1.51	NO	30.45	1.001	7.59e5	1.74e6	51.5	2.9	0.875	bb
5	200121R1_5	200	1.49	NO	30.45	1.001	4.95e6	2.65e6	220	10.0	0.934	bb
6	200121R1_6	1500	1.50	NO	30.47	1.001	4.46e7	3.15e6	1660	10.9	0.943	bb

Compound name: 1,2,3,4,7,8-HxCDF Response Factor: 0.786631 RRF SD: 0.109057, Relative SD: 13.8638 Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area) Curve type: RF

- 1.R	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1 33	200121R1_1	1.25	1.15	NO	33.24	1.000	9.08e3	1.07e6	1.08	-13.6	0.680	bd
2	200121R1_2	2.50	1.11	NO	33.23	1.001	1.74e4	1.06e6	2.09	-16.3	0.659	bd
3	200121R1_3	10.0	1.18	NO	33.24	1.001	8.87e4	1.19e6	9.50	-5.0	0.747	bd
4	200121R1_4	50.0	1.17	NO	33.23	1.000	3.55e5	8.64e5	52.2	4.4	0.821	bd
5	200121R1_5	200	1.16	NO	33.23	1.000	2.46e6	1.37e6	229	14.4	0.900	bd
6	200121R1_6	1500	1.14	NO	33.24	1.000	2.22e7	1.62e6	1740	16.1	0.914	bd

Compound name: 1,2,3,6,7,8-HxCDF

Response Factor: 0.720113 RRF SD: 0.0803142, Relative SD: 11.153 Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area) Curve type: RF

1.0	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X =: dropped
1	200121R1_1	1.25	1.11	NO	33.36	1.000	1.06e4	1.29e6	1.14	-9.1	0.655	db
2	200121R1_2	2.50	1.20	NO	33.35	1.000	1.95e4	1.27e6	2.13	-14.8	0.614	db
3	200121R1_3	10.0	1.17	NO	33.36	1.000	9.98e4	1.45e6	9.57	-4.3	0.689	db
4	200121R1_4	50.0	1.15	NO	33.35	1.000	3.92e5	1.04e6	52.3	4.6	0.753	db
5	200121R1_5	200	1.15	NO	33.36	1.001	2.68e6	1.68e6	221	10.7	0.797	db
6	200121R1_6	1500	1.15	NO	33.37	1.001	2.42e7	1.98e6	1690	12.9	0.813	db

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 2,3,4,6,7,8-HxCDF

Response Factor: 0.766474 RRF SD: 0.103369, Relative SD: 13.4863 Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Coric	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.19	NO	33.94	1.000	9.43e3	1.16e6	1.06	-15.1	0.651	bb
2	200121R1_2	2.50	1.14	NO	33.93	1.001	1.84e4	1.14e6	2.11	-15.4	0.648	bb
3	200121R1_3	10.0	1.17	NO	33.94	1.001	9.67 e4	1.31e6	9.66	-3.4	0.740	bb
4	200121R1_4	50.0	1.16	NO	33.93	1.001	3.84e5	9.50e5	52.8	5.6	0.809	bb
5	200121R1_5	200	1.15	NO	33.93	1.000	2.65e6	1.51e6	228	14.2	0.875	bb
6	200121R1_6	1500	1.14	NO	33.94	1.000	2.38e7	1.82e6	1710	14.2	0.875	bb

Compound name: 1,2,3,7,8,9-HxCDF

Response Factor: 0.708637 RRF SD: 0.0936, Relative SD: 13.2084 Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area) Curve type: RF

17-20	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.15	NO	34.86	1.001	7.60e3	9.61e5	1.12	-10.8	0.632	bb
2	200121R1_2	2.50	1.14	NO	34.85	1.001	1.48e4	9.89e5	2.12	-15.3	0.600	bb
3	200121R1_3	10.0	1.21	NO	34.85	1.000	7.28e4	1.12e6	9.19	-8.1	0.651	bb
4	200121R1_4	50.0	1.17	NO	34.85	1.001	3.08e5	8.31e5	52.3	4.6	0.741	bb
5	200121R1_5	200	1.15	NO	34.85	1.000	2.14e6	1.33e6	228	14.0	0.808	bb
6	200121R1_6	1500	1.16	NO	34.86	1.000	1.93e7	1.57e6	1730	15.5	0.819	bb

Compound name: 1,2,3,4,6,7,8-HpCDF

Response Factor: 0.731638 RRF SD: 0.111983, Relative SD: 15.3058 Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area) Curve type: RF

- F	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF 2	X = dropped
1	200121R1_1	1.25	0.90	NO	36.61	1.000	5.75e3	7.08e5	1.11	-11.3	0.649	MM
2	200121R1_2	2.50	1.01	NO	36.61	1.001	1.09e4	7.21e5	2.06	-17.5	0.604	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1 CRV.gld

Last Altered: Wednesday, January 22, 2020 09:29:50 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 1,2,3,4,6,7,8-HpCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200121R1_3	10.0	0.96	NO	36.62	1.001	5.24e4	8.04e5	8.91	-10.9	0.652	bb
4	200121R1_4	50.0	0.98	NO	36.60	1.000	2.23e5	5.77e5	52.7	5.4	0.771	bb
5	200121R1_5	200	0.96	NO	36.61	1.000	1.62e6	9.59e5	231	15.4	0.844	bb
6	200121R1_6	1500	0.97	NO	36.62	1.000	1.50e7	1.15e6	1780	18.8	0.869	bb

Compound name: 1,2,3,4,7,8,9-HpCDF Response Factor: 0.816406 RRF SD: 0.124425, Relative SD: 15.2406 Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area) Curve type: RF

Sec. 1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	1.25	1.08	NO	38.61	1.000	4.66e3	5.25e5	1.09	-13.0	0.710	bb
2	200121R1_2	2.50	0.93	NO	38.60	1.000	9.58e3	5.53e5	2.12	-15.1	0.693	bb
3	200121R1_3	10.0	0.93	NO	38.61	1.000	4.30e4	5.88e5	8.96	-10.4	0.731	bb
4	200121R1_4	50.0	0.95	NO	38.60	1.000	1.84e5	4.40e5	51.2	2.5	0.837	bb
5	200121R1_5	200	0.96	NO	38.61	1.001	1.37e6	7.10e5	236	18.1	0.964	bb
6	200121R1_6	1500	0.97	NO	38.62	1.000	1.35e7	9.33e5	1770	17.9	0.963	bb

Compound name: OCDF

Response Factor: 0.638789 RRF SD: 0.0810198, Relative SD: 12.6833 Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	2.50	0.86	NO	41.22	1.000	1.03e4	1.48e6	2.17	-13.1	0.555	bb
2	200121R1_2	5.00	0.86	NO	41.20	1.000	2.07e4	1.50e6	4.33	-13.4	0.553	bb
3	200121R1_3	20.0	0.80	NO	41.21	1.000	8.44e4	1.41e6	18.8	-6.2	0.599	bb
4	200121R1_4	100	0.84	NO	41.20	1.000	2.96e5	8.88e5	104	4.5	0.667	bb
5	200121R1_5	400	0.84	NO	41.21	1.000	2.87e6	1.98e6	455	13.6	0.726	bb
6	200121R1_6	3000	0.84	NO	41.23	1.000	2.97e7	2.70e6	3430	14.5	0.731	bb

Quantify Compound Summary ReportMassLynx 4.1 SCN815Vista Analytical Laboratory

Dataset:	U:\VG12.PRO\Results\200121R1\200121R1	CRV.gld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-2,3,7,8-TCDD

Response Factor: 1.11572 RRF SD: 0.045003, Relative SD: 4.03353 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	0.78	NO	25.85	1.026	1.96e6	1.80e6	97.8	-2.2	1.09	bb
2	200121R1_2	100	0.79	NO	25.84	1.025	1.99e6	1.83e6	97.7	-2.3	1.09	bb
3	200121R1_3	100	0.78	NO	25.85	1.025	2.18e6	2.01e6	97.2	-2.8	1.08	bb
4	200121R1_4	100	0.79	NO	25.84	1.026	1.68e6	1.42e6	106	5.6	1.18	bb
5	200121R1_5	100	0.78	NO	25.84	1.025	2.41e6	2.23e6	96.9	-3.1	1.08	bb
6	200121R1_6	100	0.79	NO	25.86	1.025	2.61e6	2.23e6	105	4.7	1.17	bb

Compound name: 13C-1,2,3,7,8-PeCDD

Response Factor: 0.841144 RRF SD: 0.0616639, Relative SD: 7.33095 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

4 3	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	0.64	NO	30.74	1.219	1.48e6	1.80e6	97.7	-2.3	0.822	bb
2	200121R1_2	100	0.63	NO	30.74	1.219	1.46e6	1.83e6	94.6	-5.4	0.795	bb
3	200121R1_3	100	0.63	NO	30.74	1.219	1.60e6	2.01e6	94.6	-5.4	0.796	bb
4	200121R1_4	100	0.65	NO	30.74	1.220	1.19e6	1.42e6	99.6	-0.4	0.838	bb
5	200121R1_5	100	0.63	NO	30.74	1.219	1.86e6	2.23e6	99.2	-0.8	0.834	bb
6	200121R1_6	100	0.64	NO	30.76	1.219	2.15e6	2.23e6	114	14.3	0.961	bb

Compound name: 13C-1,2,3,4,7,8-HxCDD

Response Factor: 0.937941 RRF SD: 0.0670362, Relative SD: 7.14717 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%E)ev	RRF	X = dropped
1	200121R1_1	100	1.26	NO	34.10	1.014	1.15e6	1.28e6	95.1	-4.9	0.892	bd
2	200121R1_2	100	1.26	NO	34.08	1.014	1.15e6	1.28e6	95.8	-4.2	0.898	bd

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered: Wednesday, January 22, 2020 09:29:50 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-1,2,3,4,7,8-HxCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200121R1_3	100	1.26	NO	34.09	1.014	1.28e6	1.44e6	94.6	-5.4	0.888	bd
4	200121R1_4	100	1.26	NO	34.08	1.014	9.39e5	9.71e5	103	3.1	0.967	bd
5	200121R1_5	100	1.24	NO	34.09	1.014	1.51e6	1.64e6	98.2	-1.8	0.921	bd
6	200121R1_6	100	1.25	NO	34.10	1.014	1.80e6	1.69e6	113	13.1	1.06	bd

Compound name: 13C-1,2,3,6,7,8-HxCDD

Response Factor: 1.06543 RRF SD: 0.0819846, Relative SD: 7.69496 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	1.24	NO	34.20	1.017	1.30e6	1.28e6	94.9	-5.1	1.01	db
2	200121R1_2	100	1.24	NO	34.19	1.017	1.28e6	1.28e6	94.4	-5.6	1.01	db
3	200121R1_3	100	1.24	NO	34.20	1.017	1.43e6	1.44e6	93.4	-6.6	0.995	db
4	200121R1_4	100	1.25	NO	34.19	1.017	1.07e6	9.71e5	103	3.0	1.10	db
5	200121R1_5	100	1.24	NO	34.19	1.017	1.76e6	1.64e6	101	0.7	1.07	db
6	200121R1_6	100	1.25	NO	34.21	1.017	2.05e6	1.69e6	114	13.7	1.21	db

Compound name: 13C-1,2,3,7,8,9-HxCDD

Response Factor: 1.03027 RRF SD: 0.0777089, Relative SD: 7.54257 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

137.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	1.23	NO	34.48	1.025	1.21e6	1.28e6	91.7	-8.3	0.945	bb
2	200121R1_2	100	1.24	NO	34.48	1.026	1.26e6	1.28e6	95.6	-4.4	0.985	bb
3	200121R1_3	100	1.22	NO	34.48	1.025	1.43e6	1.44e6	96.2	-3.8	0.991	bb
4	200121R1_4	100	1.22	NO	34.47	1.025	1.04e6	9.71e5	104	4.4	1.08	bb
5	200121R1_5	100	1.23	NO	34.48	1.026	1.68e6	1.64e6	99.4	-0.6	1.02	bb
6	200121R1_6	100	1.23	NO	34.49	1.026	1.96e6	1.69e6	113	12.7	1.16	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-1,2,3,4,6,7,8-HpCDD Response Factor: 0.709925 RRF SD: 0.0610429, Relative SD: 8.5985 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1 12	200121R1_1	100	1.04	NO	38.02	1.131	9.17e5	1.28e6	101	0.6	0.714	bb
2	200121R1_2	100	1.02	NO	38.01	1.131	9.02e5	1.28e6	99.4	-0.6	0.706	bb
3	200121R1_3	100	1.03	NO	38.02	1.131	9.27e5	1.44e6	90.8	-9.2	0.645	bb
4	200121R1_4	100	1.00	NO	38.01	1.131	6.36e5	9.71e5	92.2	-7.8	0.654	bb
5	200121R1_5	100	1.03	NO	38.01	1.131	1.19e6	1.64e6	102	2.2	0.726	bb
6	200121R1_6	100	1.02	NO	38.03	1.131	1.38e6	1.69e6	115	14.8	0.815	bb

Compound name: 13C-OCDD Response Factor: 0.600957 RRF SD: 0.113803, Relative SD: 18.9369 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

3 337.	Name	Std. Conc:	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	200	0.88	NO	41.01	1.220	1.53e6	1.28e6	198	-0.9	0.596	bb
2	200121R1_2	200	0.88	NO	40.98	1.219	1.51e6	1.28e6	197	-1.4	0.592	bb
3	200121R1_3	200	0.88	NO	41.01	1.220	1.50e6	1.44e6	174	-13.2	0.521	bb
4	200121R1_4	200	0.89	NO	41.00	1.220	9.18e5	9.71e5	157	-21.3	0.473	bb
5	200121R1_5	200	0.88	NO	41.01	1.220	2.03e6	1.64e6	206	3.0	0.619	bb
6	200121R1_6	200	0.88	NO	41.03	1.220	2.72e6	1.69e6	268	33.9	0.805	bb

Compound name: 13C-2,3,7,8-TCDF Response Factor: 1.03665 RRF SD: 0.0391627, Relative SD: 3.7778 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

ALL DITO	Name	Std. Conc	IRA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1 45	200121R1_1	100	0.74	NO	24.97	0.991	2.47e6	2.48e6	96.4	-3.6	0.999	bb
2	200121R1_2	100	0.73	NO	24.97	0.991	2.53e6	2.52e6	96.8	-3.2	1.00	bb

Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PR0\Results\200121R1\200121F

Wednesday, January 22, 2020 09:29:50 Pacific Standard Time Last Altered: Wednesday, January 22, 2020 09:53:59 Pacific Standard Time Printed:

Compound name: 13C-2,3,7,8-TCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200121R1_3	100	0.74	NO	24.99	0.991	2.77e6	2.71e6	98.6	-1.4	1.02	bb
4	200121R1_4	100	0.73	NO	24.96	0.990	2.15e6	1.99e6	105	4.6	1.08	bb
5	200121R1_5	100	0.73	NO	24.97	0.991	3.02e6	2.95e6	98.8	-1.2	1.02	bb
6	200121R1_6	100	0.73	NO	24.99	0.991	3.24e6	2.98e6	105	4.9	1.09	bb

Compound name: 13C-1,2,3,7,8-PeCDF Response Factor: 0.916847 RRF SD: 0.0754197, Relative SD: 8.22599 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	1.55	NO	29.48	1.169	2.18e6	2.48e6	96.2	-3.8	0.882	bb
2	200121R1_2	100	1.54	NO	29.46	1.169	2.14e6	2.52e6	92.5	-7.5	0.848	bb
3	200121R1_3	100	1.55	NO	29.48	1.169	2.43e6	2.71e6	97.6	-2.4	0.895	bb
4	200121R1_4	100	1.55	NO	29.46	1.169	1.78e6	1.99e6	97.9	-2.1	0.898	bb
5	200121R1_5	100	1.53	NO	29.46	1.169	2.70e6	2.95e6	99.7	-0.3	0.914	bb
6	200121R1_6	100	1.54	NO	29.48	1.169	3.17e6	2.98e6	116	16.0	1.06	bb

Compound name: 13C-2,3,4,7,8-PeCDF

Response Factor: 0.902658 RRF SD: 0.0778583, Relative SD: 8.62544 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	1.55	NO	30.44	1.207	2.15e6	2.48e6	96.0	-4.0	0.867	bb
2	200121R1_2	100	1.55	NO	30.44	1.207	2.12e6	2.52e6	93.4	-6.6	0.843	bb
3	200121R1_3	100	1.57	NO	30.45	1.207	2.38e6	2.71e6	97.1	-2.9	0.877	bb
4	200121R1_4	100	1.53	NO	30.44	1.208	1.74e6	1.99e6	96.8	-3.2	0.874	bb
5	200121R1_5	100	1.55	NO	30.44	1.207	2.65e6	2.95e6	99.5	-0.5	0.898	bb
6	200121R1_6	100	1.54	NO	30.45	1.207	3.15e6	2.98e6	117	17.1	1.06	bb

.

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-1,2,3,4,7,8-HxCDF Response Factor: 0.861328 RRF SD: 0.0533731, Relative SD: 6.1966 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

154	USUS .	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1		200121R1_1	100	0.49	NO	33.23	0.988	1.07e6	1.28e6	96.7	-3.3	0.833	bd
2	1120	200121R1_2	100	0.49	NO	33.21	0.988	1.06e6	1.28e6	96.0	-4.0	0.826	bd
3		200121R1_3	100	0.49	NO	33.22	0.988	1.19e6	1.44e6	95.8	-4.2	0.825	bd
4		200121R1_4	100	0.48	NO	33.22	0.988	8.64e5	9.71e5	103	3.3	0.890	bd
5		200121R1_5	100	0.49	NO	33.22	0.988	1.37e6	1.64e6	97.0	-3.0	0.835	bď
6	1175	200121R1_6	100	0.49	NO	33.23	0.988	1.62e6	1.69 e 6	111	11.3	0.958	bd

Compound name: 13C-1,2,3,6,7,8-HxCDF Response Factor: 1.04669 RRF SD: 0.067318, Relative SD: 6.43153 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

TTO NT	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1 389.75	200121R1_1	100	0.49	NO	33.35	0.992	1.29e6	1.28e6	96.3	-3.7	1.01	db
2	200121R1_2	100	0.49	NO	33.34	0.992	1.27e6	1.28e6	95.1	-4.9	0.996	db
3	200121R1_3	100	0.49	NO	33.35	0.992	1.45e6	1.44e6	96.2	-3.8	1.01	db
4	200121R1_4	100	0.49	NO	33.34	0.992	1.04e6	9.71e5	102	2.4	1.07	db
5	200121R1_5	100	0.49	NO	33.34	0.992	1.68e6	1.64e6	97.9	-2.1	1.02	db
6	200121R1_6	100	0.50	NO	33.35	0.992	1.98e6	1.69e6	112	12.0	1.17	db

Compound name: 13C-2,3,4,6,7,8-HxCDF Response Factor: 0.945665 RRF SD: 0.0695985, Relative SD: 7.35974 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

11	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	0.49	NO	33.93	1.009	1.16e6	1.28e6	95.4	-4.6	0.902	bb
2	200121R1_2	100	0.49	NO	33.91	1.009	1.14e6	1.28e6	94.1	-5.9	0.889	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_C	CRV.gld
--	---------

Last Altered: Wednesday, January 22, 2020 09:29:50 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-2,3,4,6,7,8-HxCDF

TO A DECISION OF	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3 31 97	200121R1_3	100	0.49	NO	33.92	1.009	1.31e6	1.44e6	96.0	-4.0	0.908	bb
4 33 91	200121R1_4	100	0.49	NO	33.91	1.009	9.50e5	9.71e5	103	3.5	0.978	bb
5	200121R1_5	100	0.49	NO	33.92	1.009	1.51e6	1.64e6	97.6	-2.4	0.923	bb
6	200121R1_6	100	0.49	NO	33.93	1.009	1.82e6	1.69e6	113	13.4	1.07	bb

Compound name: 13C-1,2,3,7,8,9-HxCDF

Response Factor: 0.815567 RRF SD: 0.0668162, Relative SD: 8.19261 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

l.	1 11 1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1		200121R1_1	100	0.48	NO	34.84	1.036	9.61e5	1.28e6	91.8	-8.2	0.748	bb
2	34 83 5	200121R1_2	100	0.48	NO	34.83	1.036	9.89e5	1.28e6	94.9	-5.1	0.774	bb
3		200121R1_3	100	0.48	NO	34.84	1.036	1.12e6	1.44e6	95.3	-4.7	0.777	bb
4		200121R1_4	100	0.48	NO	34.83	1.036	8.31e5	9.71e5	105	4.9	0.856	bb
5		200121R1_5	100	0.49	NO	34.84	1.036	1.33e6	1.64e6	99.2	-0.8	0.809	bb
6	315-	200121R1_6	100	0.49	NO	34.85	1.036	1.57e6	1.69e6	114	13.9	0.929	bb

Compound name: 13C-1,2,3,4,6,7,8-HpCDF

Response Factor: 0.589153 RRF SD: 0.047443, Relative SD: 8.05274 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

1. AV	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	0.41	NO	36.60	1.088	7.08e5	1.28e6	93.7	-6.3	0.552	bb
2	200121R1_2	100	0.41	NO	36.59	1.088	7.21e5	1.28e6	95.8	-4.2	0.565	bb
3 08.00	200121R1_3	100	0.41	NO	36.60	1.088	8.04e5	1.44e6	94.9	-5.1	0.559	bd
4 10.01	200121R1_4	100	0.41	NO	36.59	1.088	5.77e5	9.71e5	101	0.9	0.594	bb
5	200121R1_5	100	0.41	NO	36.60	1.089	9.59e5	1.64e6	99.3	-0.7	0.585	bb
6	200121R1_6	100	0.41	NO	36.61	1.089	1.15e6	1.69e6	115	15.5	0.680	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-1,2,3,4,7,8,9-HpCDF Response Factor: 0.447956 RRF SD: 0.0532865, Relative SD: 11.8955 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

See .	Name	Std, Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	0.41	NO	38.60	1.148	5.25e5	1.28e6	91.2	-8.8	0.409	bd
2	200121R1_2	100	0.40	NO	38.59	1.148	5.53e5	1.28e6	96.7	-3.3	0.433	bb
3	200121R1_3	100	0.41	NO	38.60	1.148	5.88e5	1.44e6	91.3	-8.7	0.409	bb
4	200121R1_4	100	0.41	NO	38.59	1.148	4.40e5	9.71e5	101	1.1	0.453	bb
5	200121R1_5	100	0.41	NO	38.59	1.148	7.10e5	1.64e6	96.7	-3.3	0.433	bb
6	200121R1_6	100	0.42	NO	38.61	1.148	9.33e5	1.69e6	123	23.1	0.551	bb

Compound name: 13C-OCDF

Response Factor: 0.585674 RRF SD: 0.119724, Relative SD: 20.4422 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

1. TE	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	200	0.85	NO	41.21	1.226	1.48e6	1.28e6	197	-1.3	0.578	bb
2	200121R1_2	200	0.84	NO	41.19	1.225	1.50e6	1.28e6	200	0.1	0.586	bb
3	200121R1_3	200	0.84	NO	41.20	1.225	1.41e6	1.44e6	167	-16.4	0.490	bb
4	200121R1_4	200	0.84	NO	41.19	1.225	8.88e5	9.71e5	156	-21.9	0.457	bb
5	200121R1_5	200	0.84	NO	41.20	1.226	1.98e6	1.64e6	206	3.0	0.603	bb
6	200121R1_6	200	0.84	NO	41.22	1.226	2.70e6	1.69e6	273	36.5	0.799	bb

Compound name: 37CI-2,3,7,8-TCDD Response Factor: 1.08568 RRF SD: 0.146073, Relative SD: 13.4545 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	0.250			25.87	1.026	4.03e3	1.80e6	0.207	-17.3	0.898	bb
2	200121R1_2	0.500			25.87	1.026	8.79e3	1.83e6	0.442	-11.5	0.961	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered: Wednesday, January 22, 2020 09:29:50 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 37CI-2,3,7,8-TCDD

AT COMPANY	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	200121R1_3	2.00			25.87	1.026	4.39e4	2.01e6	2.01	0.4	1.09	bb
4 3165	200121R1_4	10.0			25.85	1.026	1.56e5	1.42e6	10.1	1.0	1.10	bb
5	200121R1_5	40.0			25.87	1.026	1.03e6	2.23e6	42.7	6.7	1.16	bb
6	200121R1_6	200			25.89	1.026	5.85e6	2.23e6	241	20.6	1.31	bb

Compound name: 13C-1,2,3,4-TCDD Response Factor: 1 RRF SD: 9.93014e-017, Relative SD: 9.93014e-015 Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area) Curve type: RF

	RIC	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	25.21	200121R1_1	100	0.80	NO	25.21	1.000	1.80e6	1.80e6	100	0.0	1.00	bb
2	25-23	200121R1_2	100	0.80	NO	25.21	1.000	1.83e6	1.83e6	100	0.0	1.00	bb
3		200121R1_3	100	0.80	NO	25.23	1.000	2.01e6	2.01e6	100	0.0	1.00	bb
4		200121R1_4	100	0.80	NO	25.20	1.000	1.42e6	1.42e6	100	0.0	1.00	bb
5		200121R1_5	100	0.80	NO	25.21	1.000	2.23e6	2.23e6	100	0.0	1.00	bb
6	3650	200121R1_6	100	0.80	NO	25.23	1.000	2.23e6	2.23e6	100	0.0	1.00	bb

Compound name: 13C-1,2,3,4-TCDF Response Factor: 1

Response Factor: 1 RRF SD: 9.93014e-017, Relative SD: 9.93014e-015 Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area) Curve type: RF

1	177	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	123154	200121R1_1	100	0.74	NO	23.58	1.000	2.48e6	2.48e6	100	0.0	1.00	bb
2		200121R1_2	100	0.75	NO	23.58	1.000	2.52e6	2.52e6	100	0.0	1.00	bb
3		200121R1_3	100	0.74	NO	23.59	1.000	2.71e6	2.71e6	100	0.0	1.00	bb
4		200121R1_4	100	0.74	NO	23.57	1.000	1.99e6	1.99e6	100	0.0	1.00	bb
5		200121R1_5	100	0.75	NO	23.58	1.000	2.95e6	2.95e6	100	0.0	1.00	bb
6		200121R1_6	100	0.75	NO	23.59	1.000	2.98e6	2.98e6	100	0.0	1.00	bb

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_CRV.qld

Last Altered:	Wednesday, January 22, 2020 09:29:50 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:53:59 Pacific Standard Time

Compound name: 13C-1,2,3,4,6,9-HxCDF Response Factor: 1 RRF SD: 9.93014e-017, Relative SD: 9.93014e-015 Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	200121R1_1	100	0.48	NO	33.63	1.000	1.28e6	1.28e6	100	0.0	1.00	bb
2	200121R1_2	100	0.49	NO	33.61	1.000	1.28e6	1.28e6	100	0.0	1.00	bb
3	200121R1_3	100	0.48	NO	33.63	1.000	1.44e6	1.44e6	100	0.0	1.00	bb
4	200121R1_4	100	0.49	NO	33.61	1.000	9.71e5	9.71e5	100	0.0	1.00	bb
5	200121R1_5	100	0.50	NO	33.61	1.000	1.64e6	1.64e6	100	0.0	1.00	bb
6	200121R1_6	100	0.49	NO	33.63	1.000	1.69e6	1.69e6	100	0.0	1.00	bb

Quantify Sample Summary Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory VG-11	

Dataset: Untitled

Last Altered: Wednesday, January 22, 2020 11:16:46 Pacific Standard Time Printed: Wednesday, January 22, 2020 11:17:01 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\CPSM.mdb 22 Jan 2020 11:16:40 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Name: 200121R1_4, Date: 21-Jan-2020, Time: 16:32:26, ID: ST200121R1_4 1613 CS3 19I1604, Description: 1613 CS3 19I1604

1000	# Name	RT
1	1 1,3,6,8-TCDD (First)	21.95
2	2 1,2,8,9-TCDD (Last)	26.80
3	3 1,2,4,7,9-PeCDD (First)	28.55
4	4 1,2,3,8,9-PeCDD (Last)	31.14
5	5 1,2,4,6,7,9-HxCDD (First)	32.60
6	6 1,2,3,7,8,9-HxCDD (Last)	34.49
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.99
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.03
9	9 1,3,6,8-TCDF (First)	19.82
10	10 1,2,8,9-TCDF (Last)	26.95
11	11 1,3,4,6,8-PeCDF (First)	26.90
12	12 1,2,3,8,9-PeCDF (Last)	31.38
13	13 1,2,3,4,6,8-HxCDF (First)	32.06
14	14 1,2,3,7,8,9-HxCDF (Last)	34.85
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.60
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.60

Quantify Compound Summary ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11

Dataset: Untitled

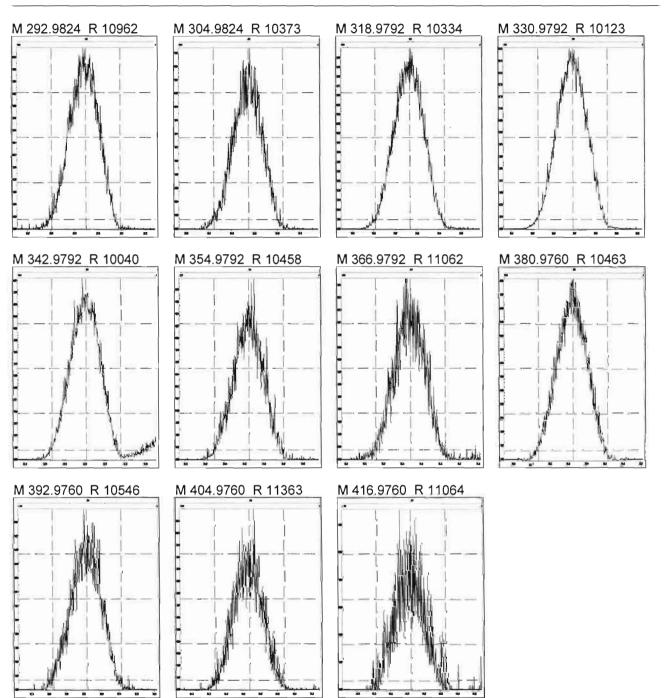
Last Altered:	Wednesday, January 22, 2020 09:56:31 Pacific Standar	d Time
Printed:	Wednesday, January 22, 2020 09:56:54 Pacific Standar	

Method: U:\VG12.PRO\MethDB\1613rrt-1-15-20.mdb 21 Jan 2020 11:10:24 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

Compound name: 2,3,7,8-TCDD

and a street	Name	ID	Acq.Date	Acq.Time
1	200121R1_1	ST200121R1_1 1613 CS0 19C2201	21-Jan-20	14:11:21
2	200121R1_2	ST200121R1_2 1613 CS1 19C2202	21-Jan-20	14:58:26
3	200121R1_3	ST200121R1_3 1613 CS2 19C2203	21-Jan-20	15:45:27
4	200121R1_4	ST200121R1_4 1613 CS3 19I1604	21-Jan-20	16:32:26
5	200121R1_5	ST200121R1_5 1613 CS4 19C2205	21-Jan-20	17:19:23
6	200121R1_6	ST200121R1_6 1613 CS5 19C2206	21-Jan-20	18:06:23
7	200121R1_7	SOLVENT BLANK	21-Jan-20	18:53:23
8	200121R1_8	SS200121R1_1 1613 SSS 19C2207	21-Jan-20	19:40:22
9	200121R1_9	SOLVENT BLANK	21-Jan-20	20:27:20
10	200121R1_10	QC200121D1_1 HRMS-191231-1 1613 BLK-1	21-Jan-20	21:14:18
11	200121R1_11	QC200121D1_2 HRMS-191231-2 1613 BS-1	21-Jan-20	22:01:20

Experiment Calibration Report


MassLynx 4.1 SCN815

File:

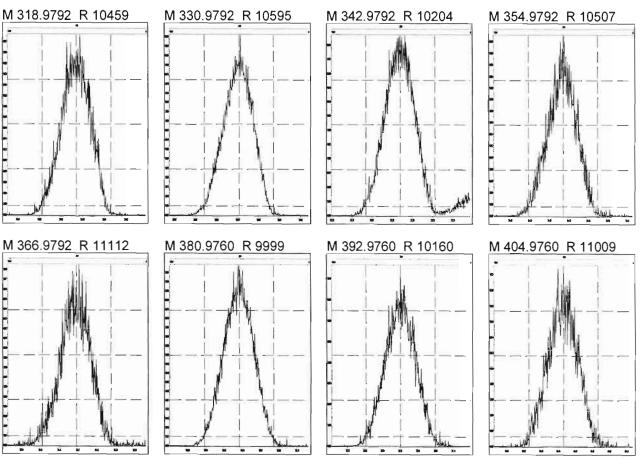
Printed:

Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 1 @ 200 (ppm)

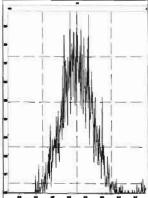
Tuesday, January 21, 2020 14:06:23 Pacific Standard Time

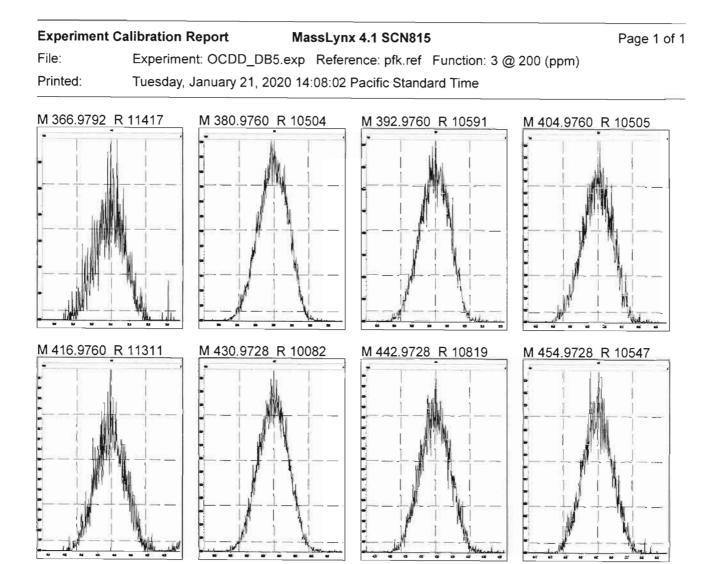
Experiment Calibration Report

MassLynx 4.1 SCN815

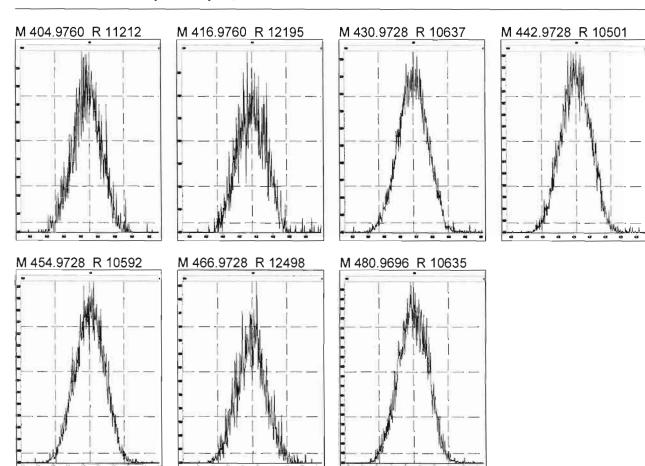

Page 1 of 1

File:

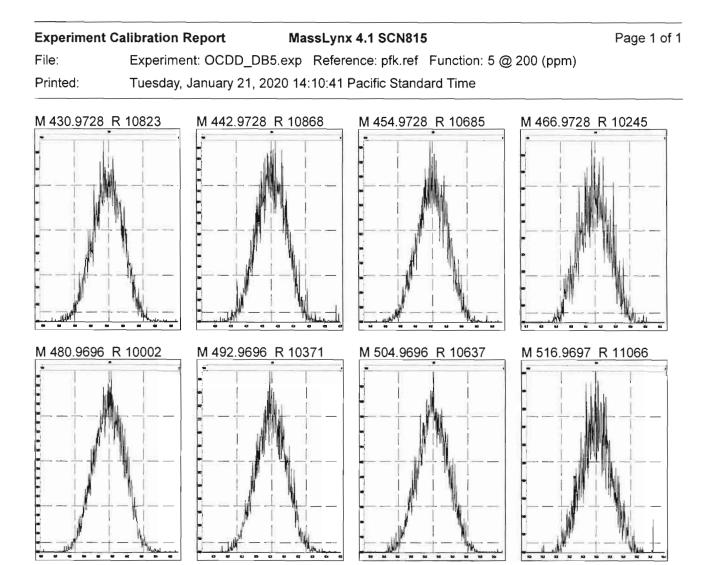

Printed:

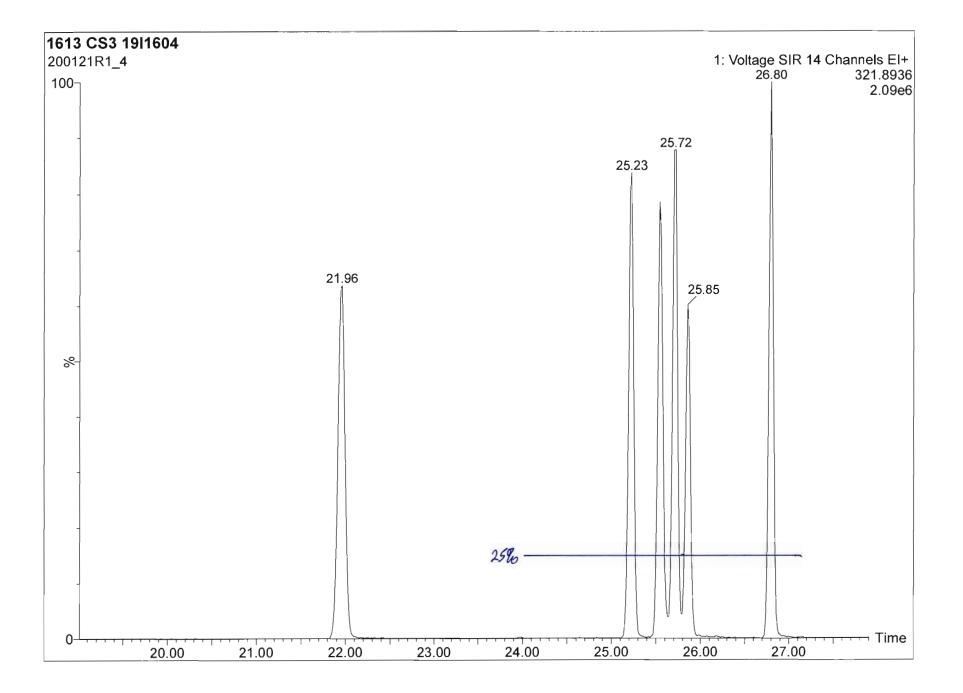

Experiment: OCDD_DB5.exp Reference: pfk.ref Function: 2 @ 200 (ppm)

Tuesday, January 21, 2020 14:06:59 Pacific Standard Time

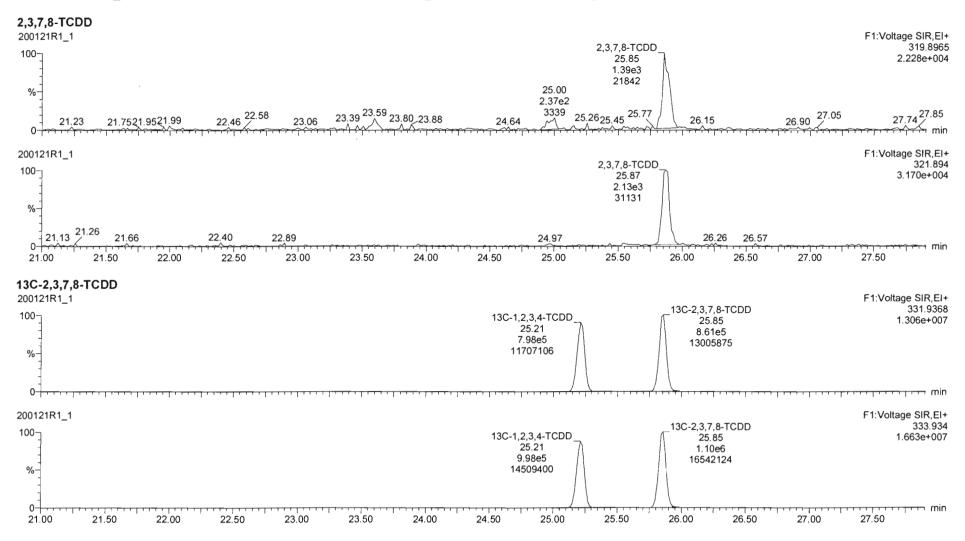


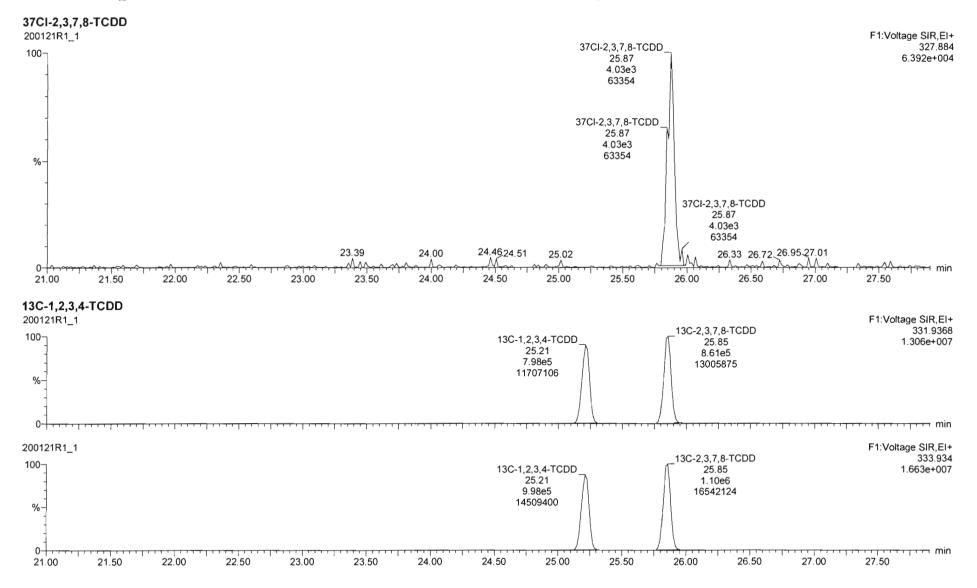
M 416.9760 R 11311





Experiment Calibration ReportMassLynx 4.1 SCN815File:Experiment: OCDD_DB5.expReference: pfk.refFunction: 4 @ 200 (ppm)Printed:Tuesday, January 21, 2020 14:09:20 Pacific Standard Time

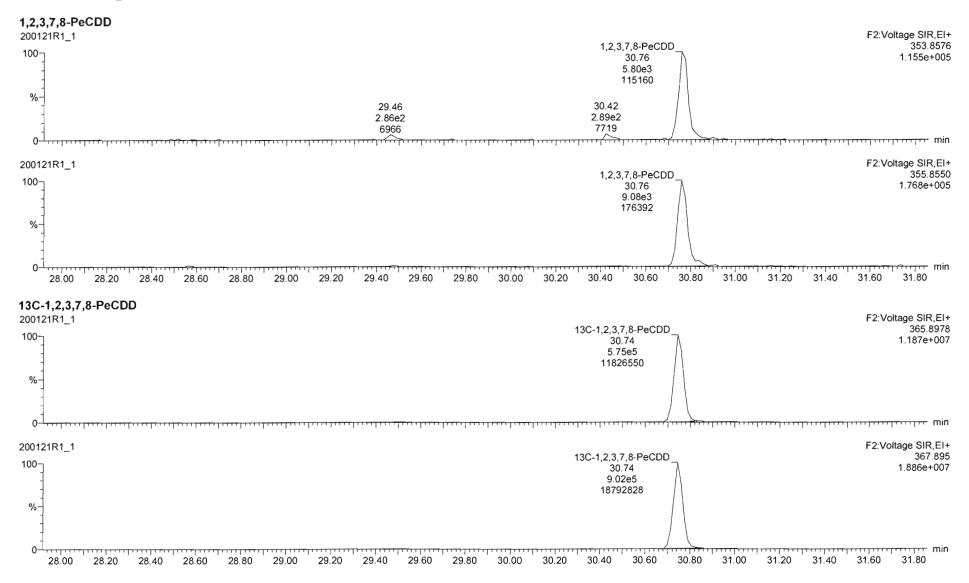

Page 1 of 1


Quantify Sam Vista Analytica	• •	MassLynx 4.1 SCN815	Page 1 of 78
Dataset:	Untitled		
Last Altered: Printed:	Wednesday, J Wednesday, J	anuary 22, 2020 09:03:58 Pacific Standard Time anuary 22, 2020 09:17:36 Pacific Standard Time	

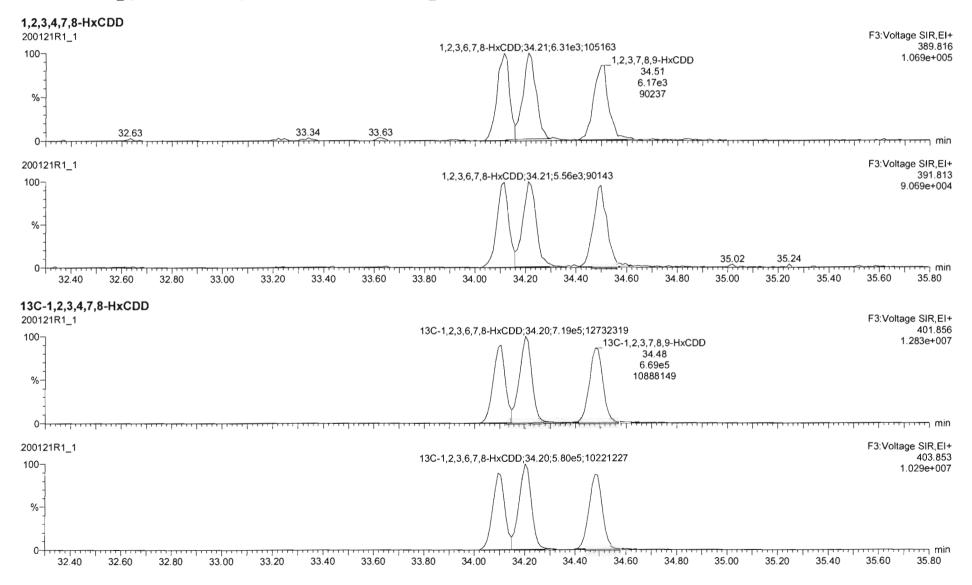
Method: U:\VG12.PRO\MethDB\1613rrt-1-15-20.mdb 21 Jan 2020 11:10:24 Calibration: 22 Jan 2020 09:03:58

IL Norme			200121	R1 1-ST200121R	1 1 1613 CS0 10	C2201 4613 CSC	1002201					12.4		
	RT RA Th Arse	EArm Std. Conc		AT 7-0120012 IK	1 1013 030 15	02201-1010-000			- Charl					
1 2,3,7,8-TCUD	25.85 0.880 NO 3.5619e3	1.960466 0.250												
2 1,2,3,7,8-PeCDO 3 1,2,3,4,7,8-HxCDO	30.76 0.639 NO 1.4878+4	1.4769+6 1.250												
3 1,2,3,4,7,8-HxC00 4 1,2,3,6,7,8-HxC00	34.12 1.226 NO 1.0911e4 34.21 1.135 NO 1.1869e4	1.1455e6 1.250 1.2988e6 1.250				8 (5 K K K K K K K K K K K K K K K K K K								
		1.2129e6 1.250												
6 1.2.3.4.6.7.8-HpCDD	38.05 0.963 NO 7.7851e3	9.1692e5 1.250												
7 0000		1.5297e6 2.500												
8 2.3.7.8-TCDF 9 1.2.3.7.8-PeCDF		2 4749e6 0.250 2.1835e6 1.250												
10 2.3.4.7.8-PeCDF		2.1468e6 1.250												
11 1,2,3,4,7,8-HxCDF		1.0692e6 1.250												
12 1,2,3.6,7,8-HxCDF		1.2942e6 1.250												
13 2,3.4.6,7,8-HxCDF 14 1,2,3.7,8,9-HxCDF		1.1585e6 1.250 9.6092e5 1.250												
11411237.83-0000	34.86 1.151 HOI 7.5952631	9.6092851 1.250	1 -10.61 13.21 0.7091 0.09361	and a second second	a strategicture	and the second second		10.00	1			T ALL		
Chromatogram			The second s											0 6
121R1_1													F	1.voltage SIR.
13 CS0 19C2201 ST200121R1	1_1 1613 CS0 19C2201													319 89
0-1							2.3,7,8-TCDD							2.228e+0
							1449.86							
6-j							22123							
23.39 23.46	23.59 23.80 23.88		24.64	24.94 25.00	25.15 25.26	25.45 25.54	25.72 25.17	100	26.15					
0					$\rightarrow \rightarrow $		****		+	*****			.90 27.0	به لمد د د ال
012181_1								-						1 Vollage SIR.E
13 CS0 19C2201 ST200121R1	1_1 1613 CS0 19C2201												F	321 8
0-1							2.3,7,8-TCDD;25 87:2	132.03;31131						3.170e+0
-														
				24.07										
			ای اخ خدامی وال اف ا	24 97	· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			26.26		26.57		.	 "
╵ ╎╷╷╒╒╗╗╴┍╕╒╻╷╷╗╗┍														
·	·•·••													
121R1_1 3 CS0 19C2201 ST200121R1	1 1613 CS0 19C2201												F	1 Voltage SIR.E
3 CS0 19C2201 ST200121R1	L 1 1613 CS0 19C2201						130	-2.3.7.8-TCDD					F	1 Voltage SIR.E 331.93 1.306e+0
3 CS0 19C2201 ST200121R1	L_1 1613CS0 19C2201				25.21		6	2.3.7.8-TCDD 25.85					F	331.93
3 CS0 19C2201 ST200121R1	יייזי דיין דייין איזיין דייין די				25.21		A	25.85 861361.94					F	331.93
3 CS0 19C2201 ST200121R1	L_1 1613 CS0 19C2201				25.21		A	25.85					F	331.93
3 CS0 19C2201 ST200121R1	L_1 1613CS0 19C2201				25.21		A	25.85 861361.94					F	331.93
3 CS0 19C2201 ST200121R1	L_1 1613 CS0 19C2201	******			25.21	••••	A	25.85 861361.94					• •	331.93
3 G30 T9C2201 ST200121R1		·····		····	2521	••••	A	25.85 861361.94	•••••		·····			331.93 1.305e+0
13 CS0 T9C2201 ST200121R1		***		*1****	2521	•••••		25.85 861361.94 13005875		•••••				331.93 1.305e+0
3 GSO TPC2201 ST200121R1		····		****	25,21			25.85 861361.94 13005875	•••••	•••••				331.93 1.305e+(
3 GS0 1962201 ST200121R1		*****		·····		•••••	A	25.85 861361.94 13005875 						331.93 1.305e+(
3 C30 T9C2201 ST200121R1		***					A	25.85 861361.94 13005875	•••••					331.9: 1.305e+(
1 CS0 19C2201 ST200121R1		*****		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			A	25.85 861361.94 13005875 				·····		331.93 1.305e+(

Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 2 of 78
Dataset:	Untitled		
Last Altered: Printed:		nuary 22, 2020 09:03:58 Pacific Standard Time nuary 22, 2020 09:17:36 Pacific Standard Time	



Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	


Page 3 of 78

Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Quantify San Vista Analytica	mple Report MassLynx 4.1 SCN815 cal Laboratory	Page 4 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Quantify San Vista Analytica		Page 5 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

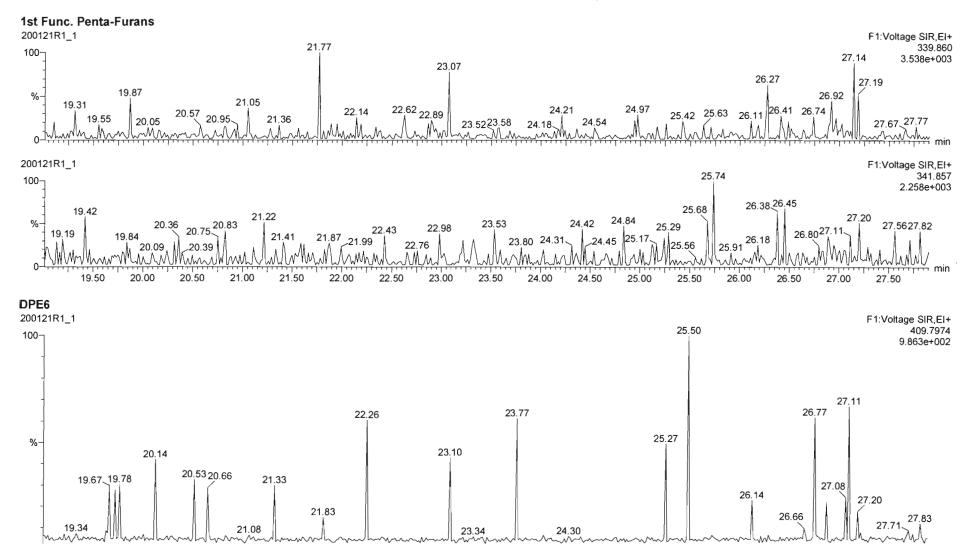
Vista Analytica	ple Report al Laboratory	MassLynx 4.1 SCN8	5									Page 6 of 7
Dataset:	Untitled											
ast Altered: Printed:		January 22, 2020 09:03:56 January 22, 2020 09:17:36									_	
lame: 20012′	1R1_1, Date: 2	1-Jan-2020, Time: 14:11	21, ID: ST20012	1R1_1 161	3 CS0 190	C2201, Des	scription: 1	613 CS0	19C2201			
OCDD												
200121R1_1 100~] _ _		OCDD 41.03 6.56e3 101904									F5:\	/oltage SIR,El 457.73 1.038e+00
%- - - -		41.2 2.256 5651	2		····						•	mi
200121R1_1								1				/oltage SIR,EI
100 % 		OCDD_ 41.02 7.63e3 113865										459.73 1.148e+00
0- ¹	40.40 40.0	50 40.80 41.00 41.2	41.40 41.60	41.80	42.00	42.20 42.·	40 42.60	42.80	43.00	13.20 43.40	43.60 43.	mi 80 44.00
3C-OCDD 00121R1_1											F5:V	/oltage SIR,EI
%		13C-OCDD 41.01 7.14e5 11377630										469.77 1.146e+00
0												יייין mir
00121R1_1		13C-OCDD 41.01 8.15e5 12764360									F5:V	/oltage SIR,EI- 471.77! 1.285e+007

Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory

Dataset: Untitled

Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time



Page 8 of 78

Dataset: Untitled

Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Name: 200121R1_1, Date: 21-Jan-2020, Time: 14:11:21, ID: ST200121R1_1 1613 CS0 19C2201, Description: 1613 CS0 19C2201

20.00

20.50

21.00

21.50

22.00

22.50

23.00

23.50

24.00

24.50

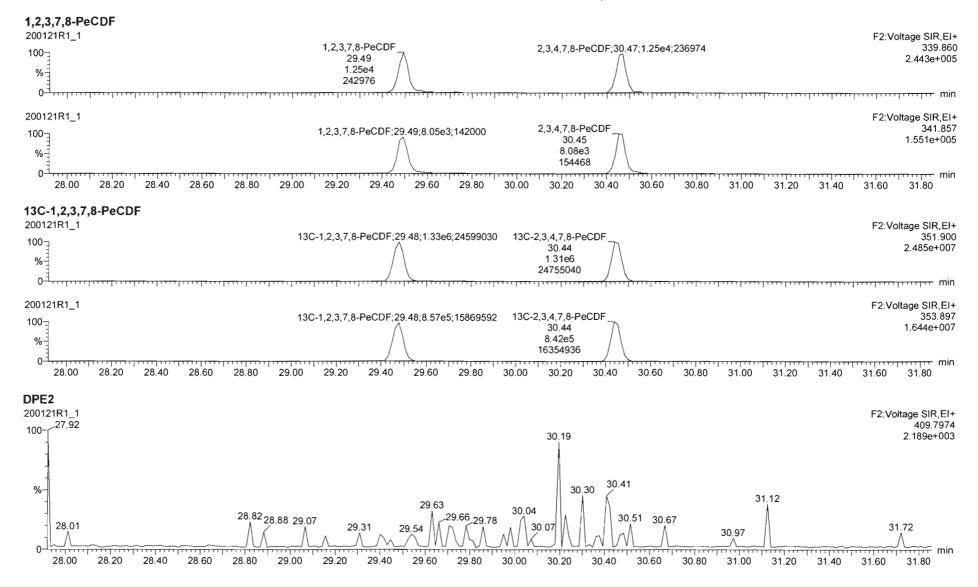
25.50

25.00

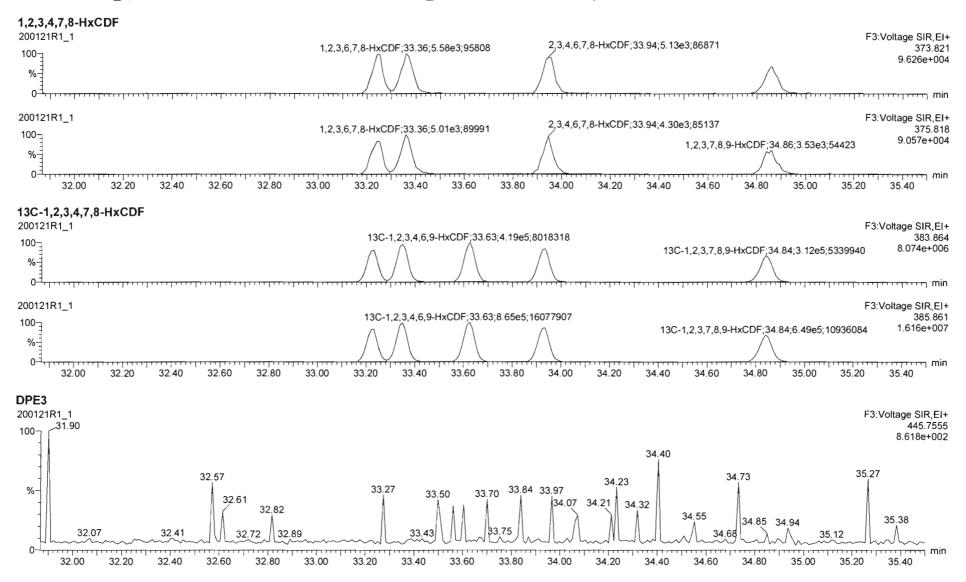
26.00

26.50

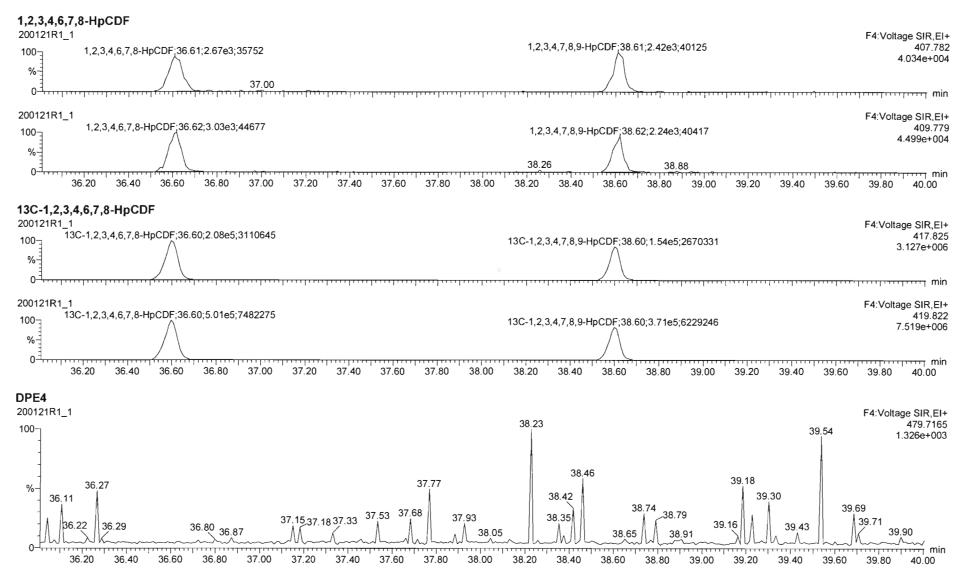
27.00

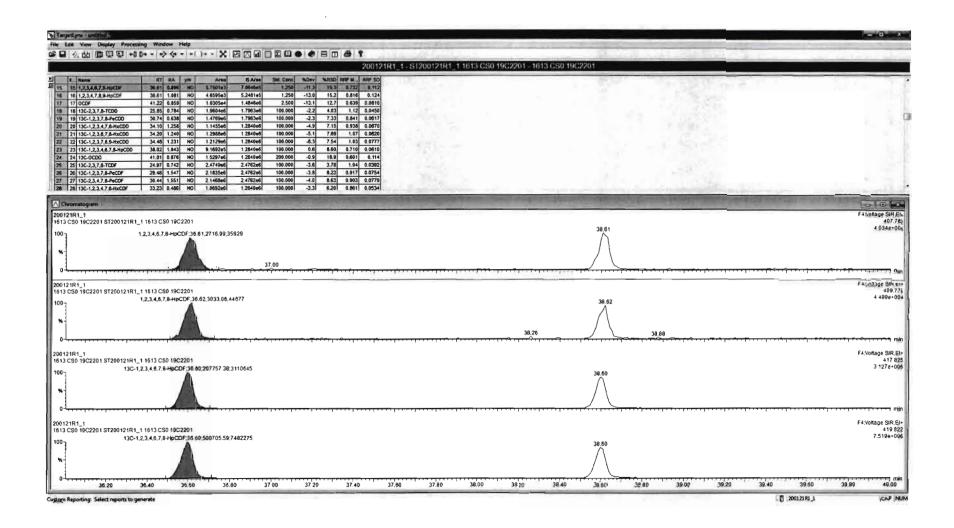

19.50

0-


27.50

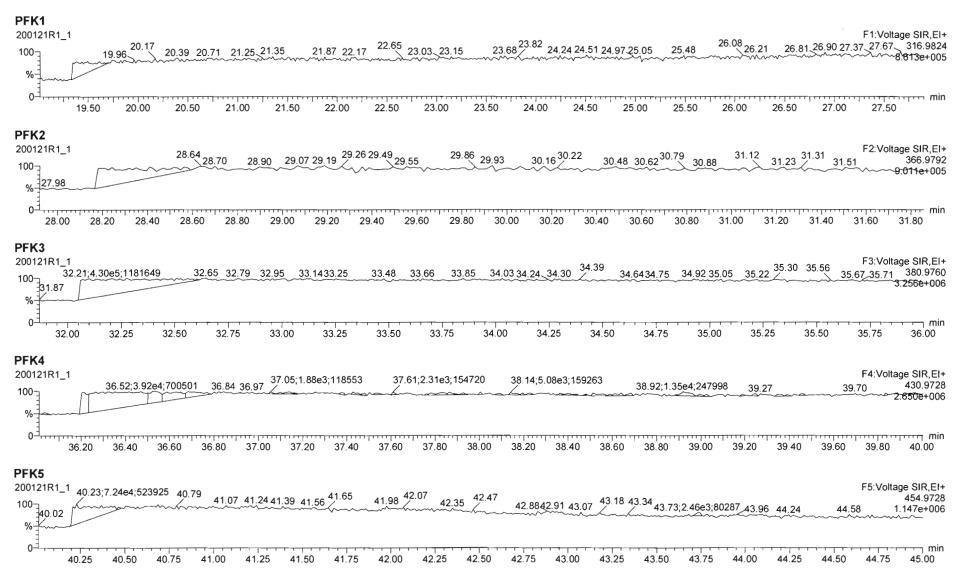
min ידידי


Quantify San Vista Analytica		Page 9 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



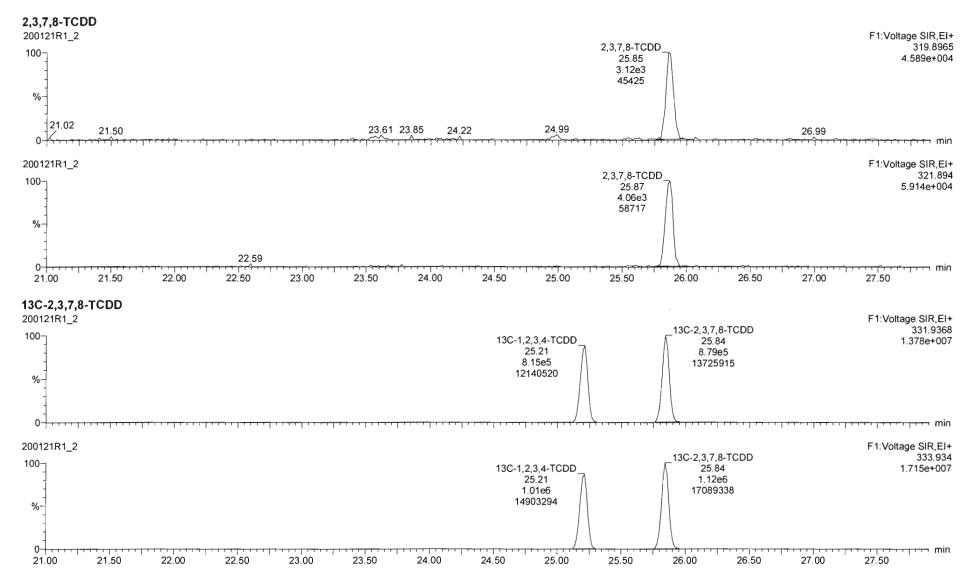
Quantify San Vista Analytica		Page 10 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Quantify San Vista Analytica		Page 11 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

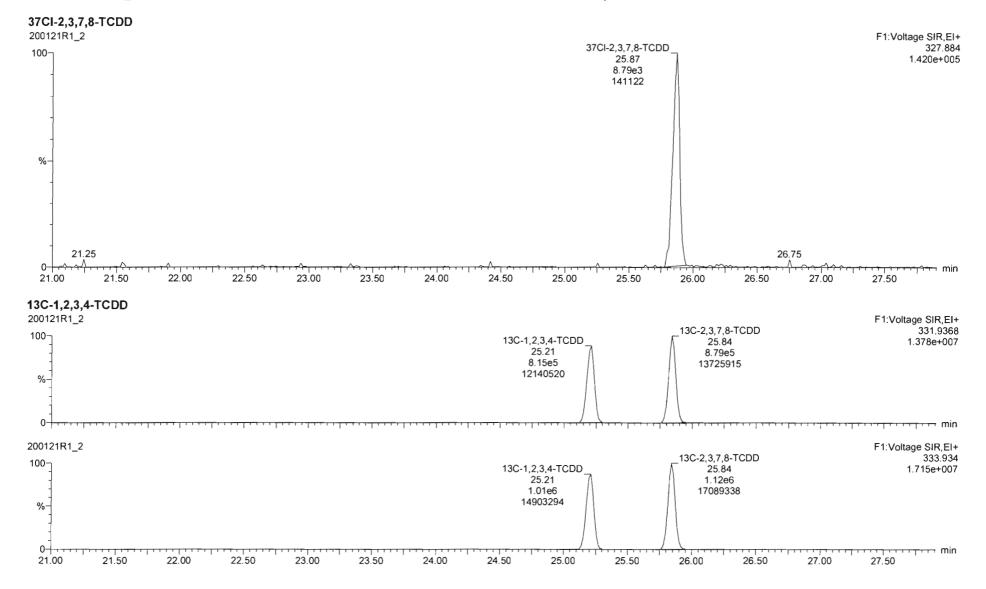


ista Analytica	ple Repor		MassLy	/nx 4.1	SCN815													Pag	e 12 of 7
ataset:	Untitled																		
ast Altered: rinted:	Wedneso Wedneso																		
lame: 200121	IR1_1, Dat	æ: 21-Ja	ın-2020,	Time:	14:11:21	, ID: ST	200121	R1_1 16	13 CS0 1	19C2201	l, Descr	iption: 1	613 CS) 19C22	01				
OCDF 00121R1_1																		E5:Volta	age SIR,E
00-					CDF														441.74
%-				/ \ 4.7	.22 6e3													,	7.770e+00
0 [±] [±]			, , , , , , ,		338 ^	· · · · · · · · · · ·			· ···									┈┯┲┲╼	
00121R1_1											-							F5:Volta	ige SIR,E
- F00					DF .22														443.74 3.929e+00
%				/ \ 5.5	4e3													c	5.9290+00
		, , , , , , ,		\leftarrow	095 					· · · · · · ·			· · · · · · ·						— — m
40.25	40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.00
3C-OCDF																			
00121R1_1				130	C-OCDF													F5:Volta	ige SIR,El 453.783
00					1.21 .80e5													1	.068e+00
%					518158														
		, .												<u>-</u>	į				ייין mi
00121R1_1 00¬		13C-0	OCDF;41.2	20;8.04e	5;12944453	1												F5:Volta	ge SIR,El 455.78
%-				Λ														1	.302e+00
0				/															
40.25	40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.00
PE5																			
0121R1_1																		F5:Volta	ge SIR,El
⁰⁰							4	2.15										5	513.677 079e+00
-																	44.	60	
-			41.	12							43.00								
%-				41.	. ³⁵ 41.39			l l	42.6	50	43.00								
40.26 4	0 36				41.54	44.00	`		()	42.70	2 00								
1 And	1 40.39 40	.65 40.8	37	41.25	Ulunh_	41.80) 42.01	42.36	42.48	ah a	2.98	43.1843.25	43.5	8 43.73	43.94	44.23 4	4.34	44.71 44	86
<u> </u>						- \							/	~~~~~			,		mi

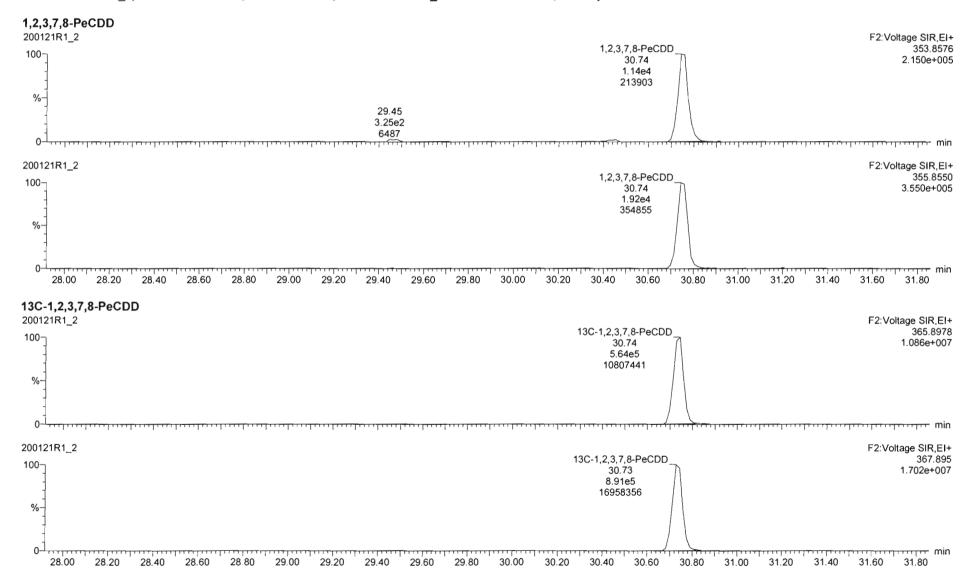
Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory


Dataset: Untitled

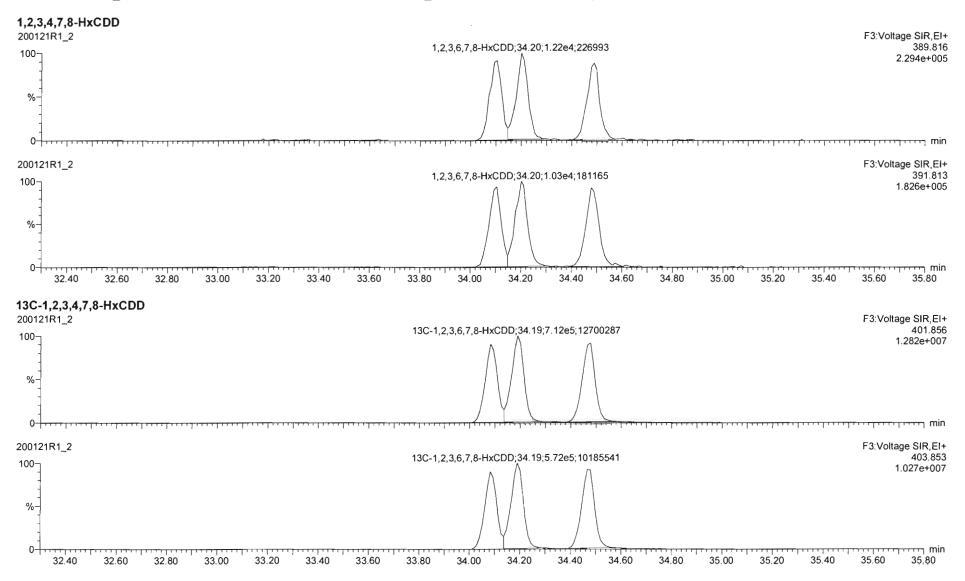
Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time



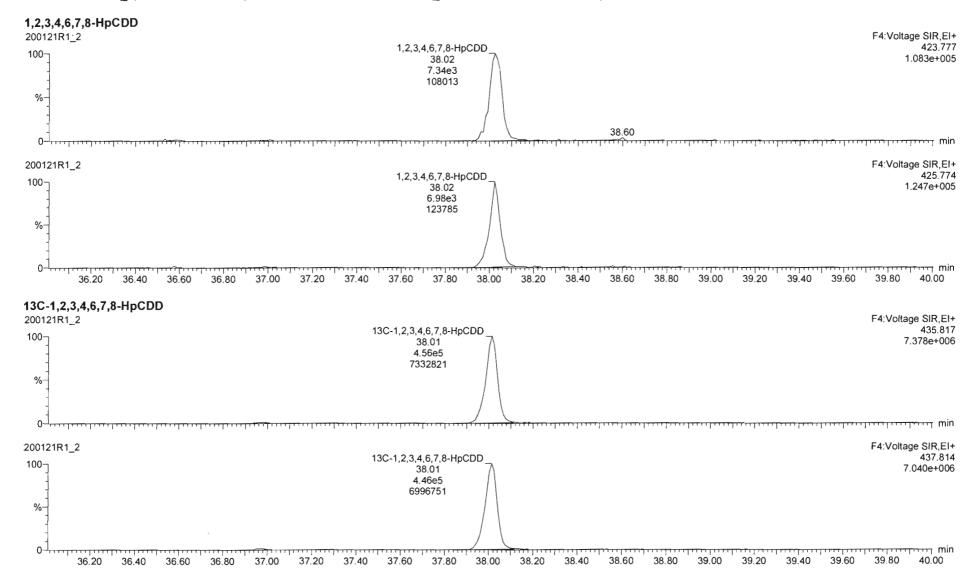
Dataset: Untitled

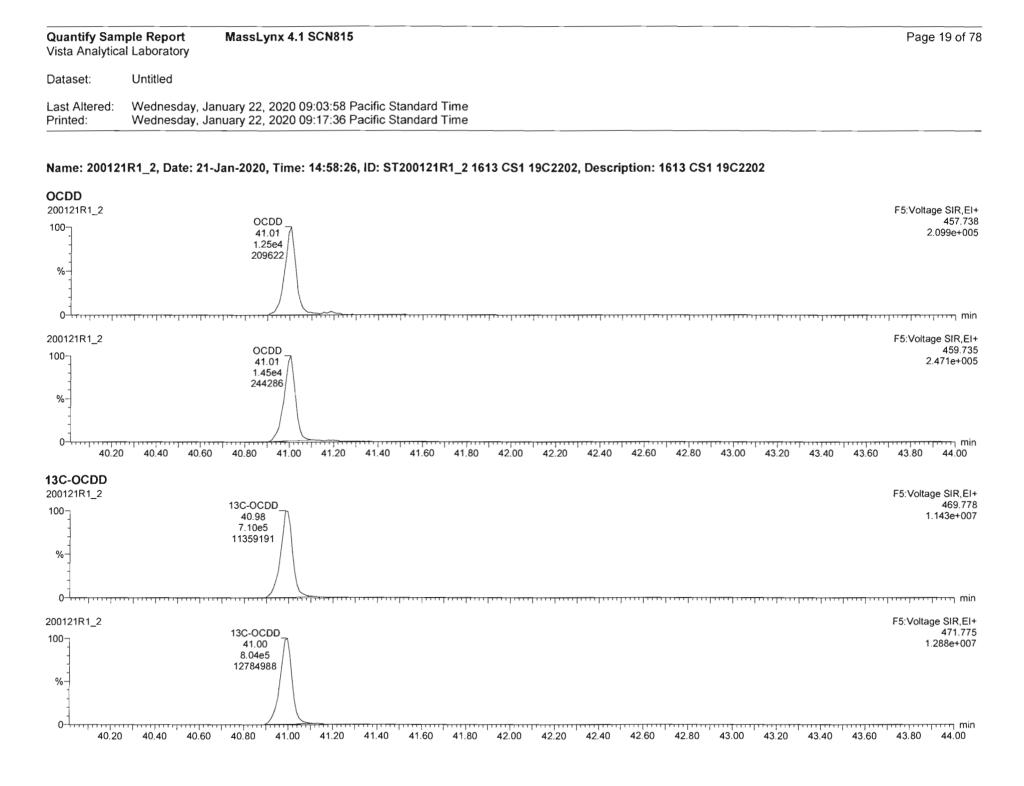

Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Quantify Sam Vista Analytica		Page 15 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



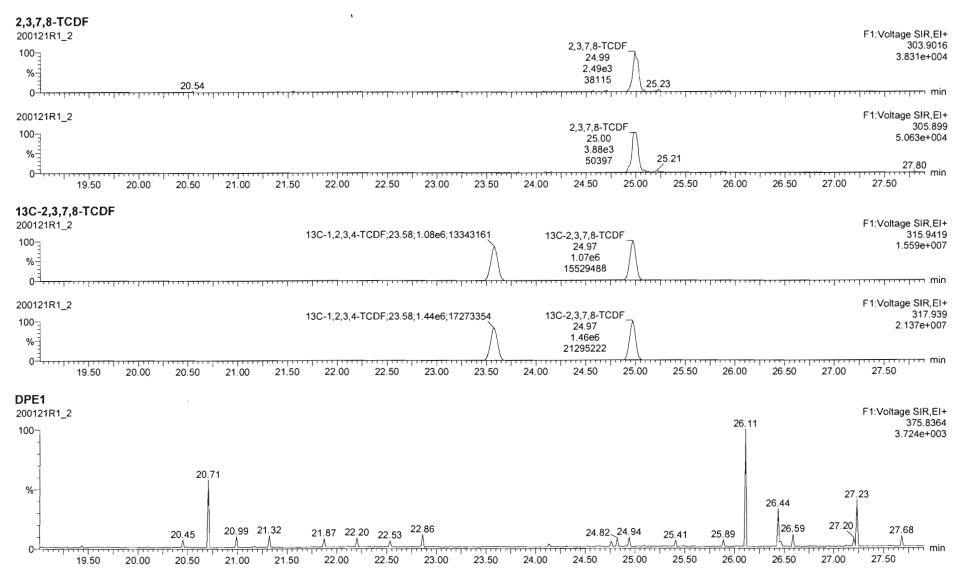
Quantify San Vista Analytic	mple Report MassLynx 4.1 SCN815 cal Laboratory	Page 16 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

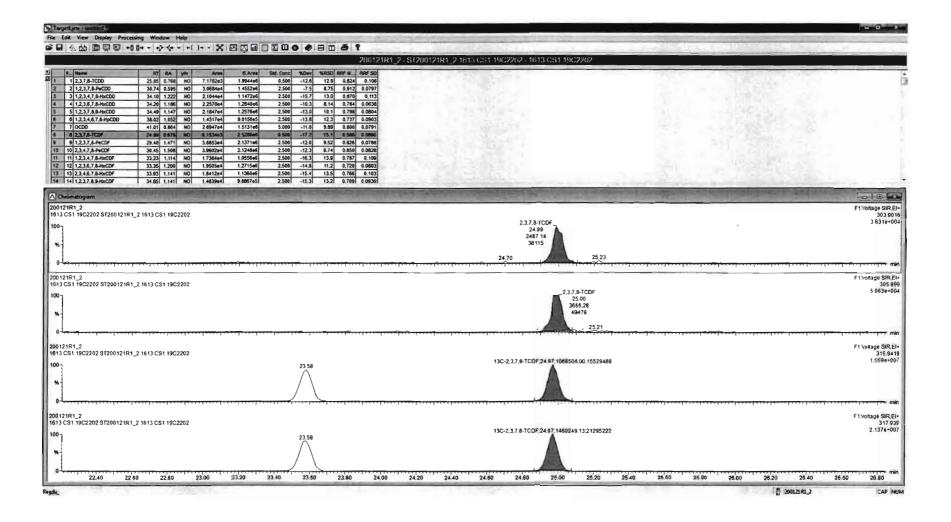



Work Order 1903649

Quantify Sam Vista Analytica		Page 17 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 18 of 78
Dataset:	Untitled		
Last Altered: Printed:		nuary 22, 2020 09:03:58 Pacific Standard Time nuary 22, 2020 09:17:36 Pacific Standard Time	





Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: Untitled

Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Quantify San Vista Analytica		Page 21 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

22.88 339.860 100-3.237e+003 25.56 %-24.52 22.22 22.41 19.21 21.20 26.35 26.45 21.63 26.92 27.71 20.68 23.83 23.03 23.59 24.99 27.32 19.52 25.20 25.81 25.94 19.94 20.42 26.89 21.31 23.48 21.98 24.28 0-👬 min 200121R1_2 F1:Voltage SIR,EI+ 26.03 26.90 341.857 100~ 2.716e+003 26.93 27.05 27.67 22.56 %-25.26 25.38 25.97 21.48 21.71 20.81 22.67 23.19 23.37 27.11 26.24 23.91 20.23 26.42 26.57 21.83 24.72 27.74 20.47 21.19 21 24.52 19.2819.54 23.82 25.72 22 22.37 24 01 M______ min MMM m mm WΛ 0-19.50 20.00 20.50 21,00 21,50 22,00 22,50 23.00 23.50 24.00 25.00 25,50 26.00 26.50 27.00 27.50 24.50 DPE6 200121R1_2 F1:Voltage SIR,EI+ 20.99 409.7974 100~ 3.149e+003 % 23.83 22.85 23.03 22.05 24.51_24.63 19.72 25.81 23.74 0min 🕂

19.50

20.00

20.50

21.00

21.50

22.00

22.50

23.00

23.50

24.00

24.50

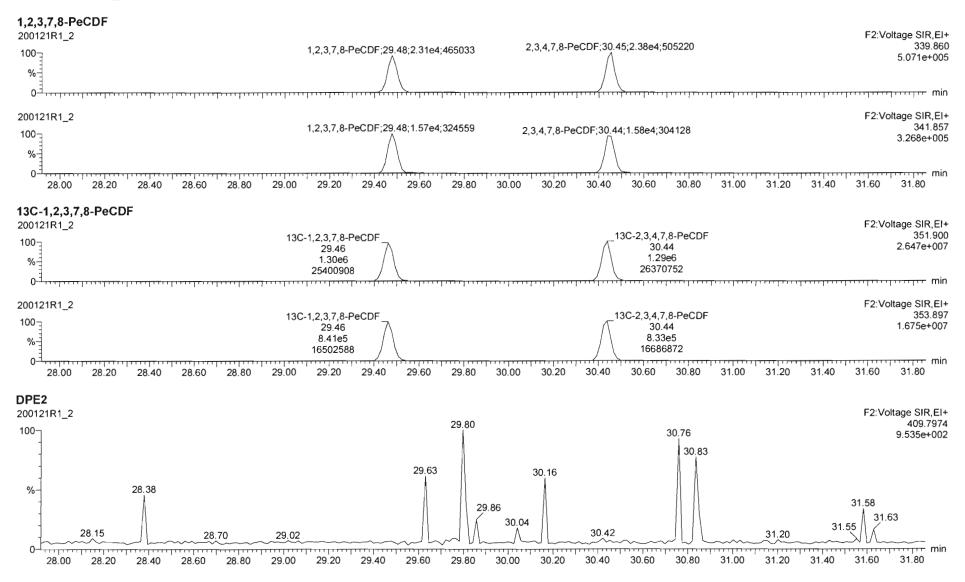
25.00

25.50

26.00

26.50

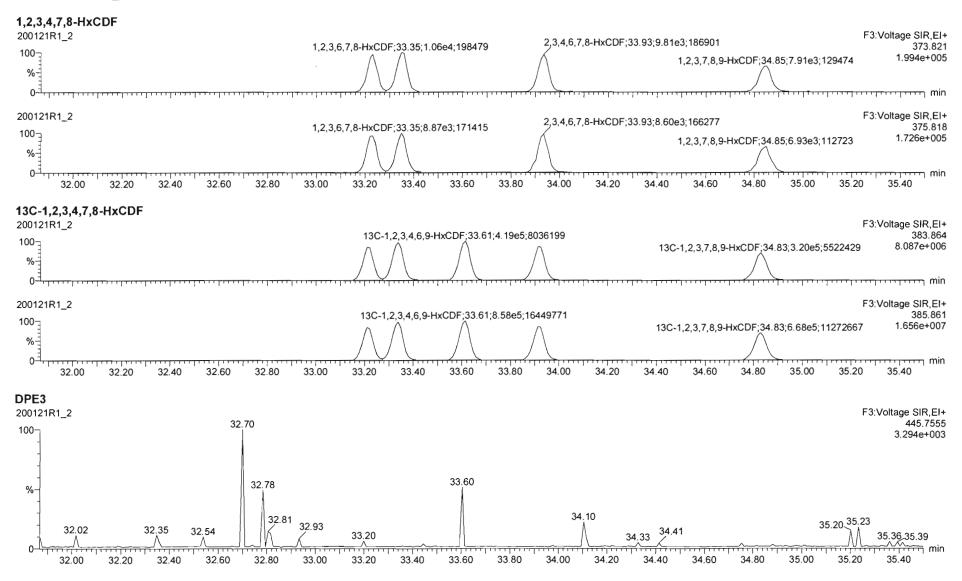
27.00


1st Func. Penta-Furans

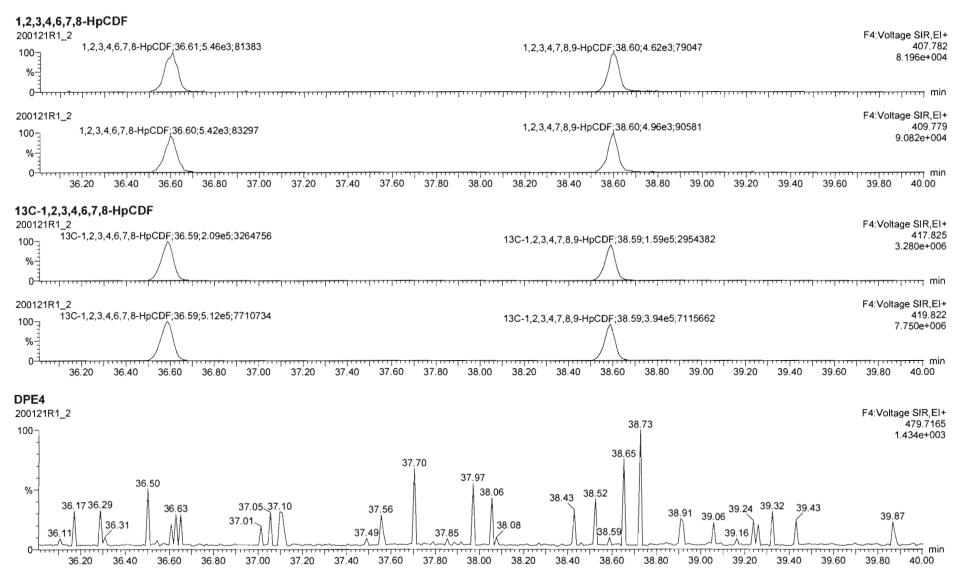
200121R1_2

27.50

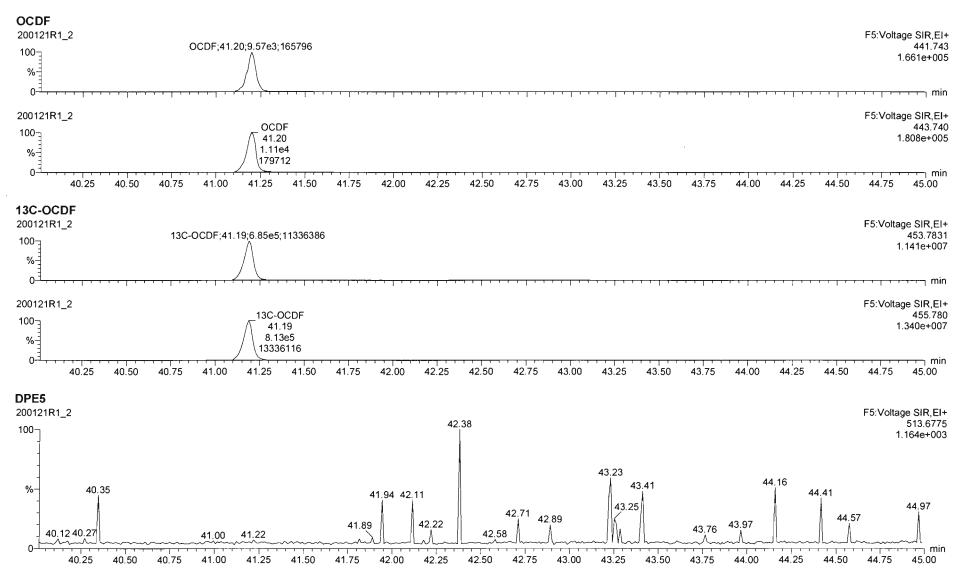
F1:Voltage SIR,EI+


Quantify Sam Vista Analytica		Page 22 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

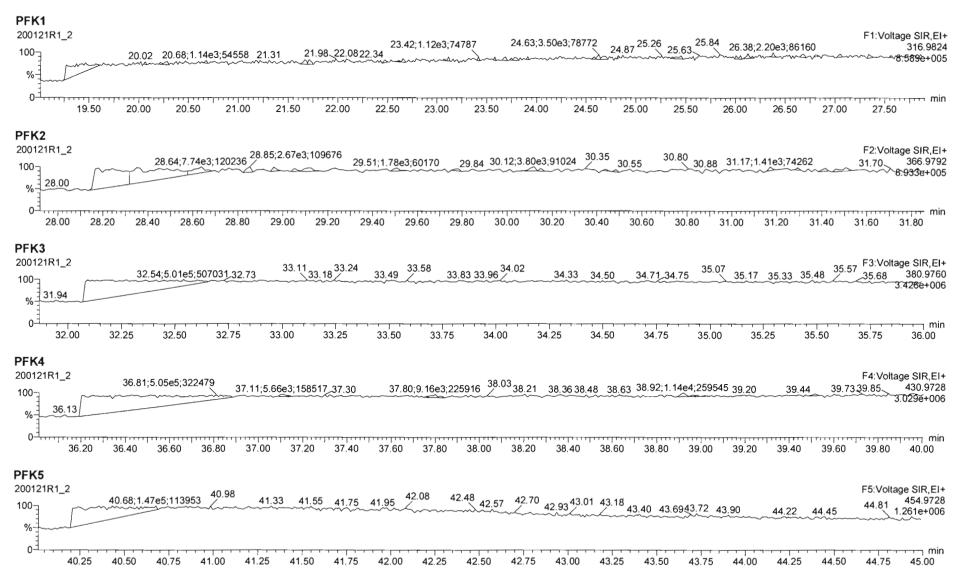

Dataset: Untitled

Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time



Dataset: Untitled

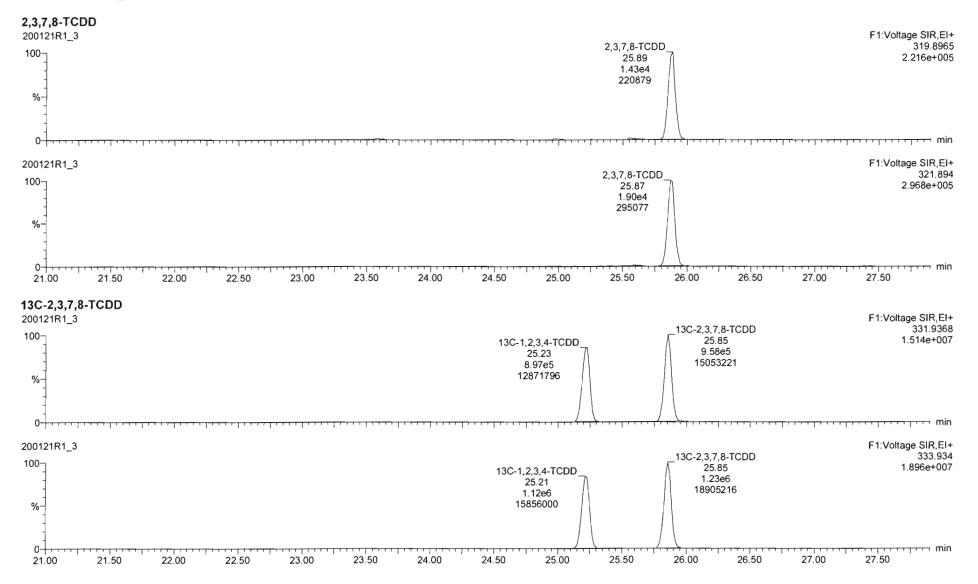
Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Quantify San Vista Analytica		MassLynx 4.1 SCN815	Page 25 of 78
Dataset:	Untitled		
Last Altered: Printed:		anuary 22, 2020 09:03:58 Pacific Standard Time anuary 22, 2020 09:17:36 Pacific Standard Time	

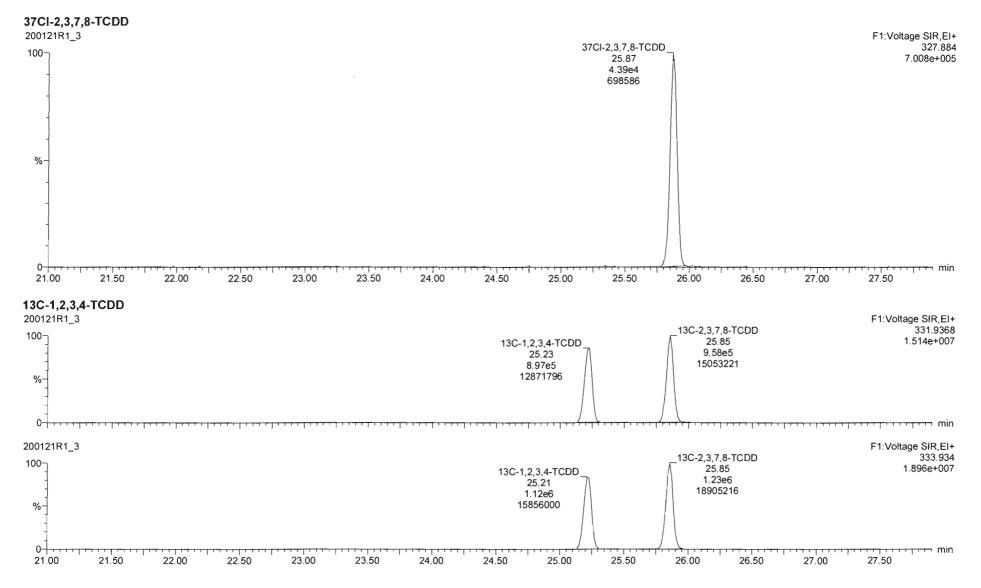
Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: Untitled

Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

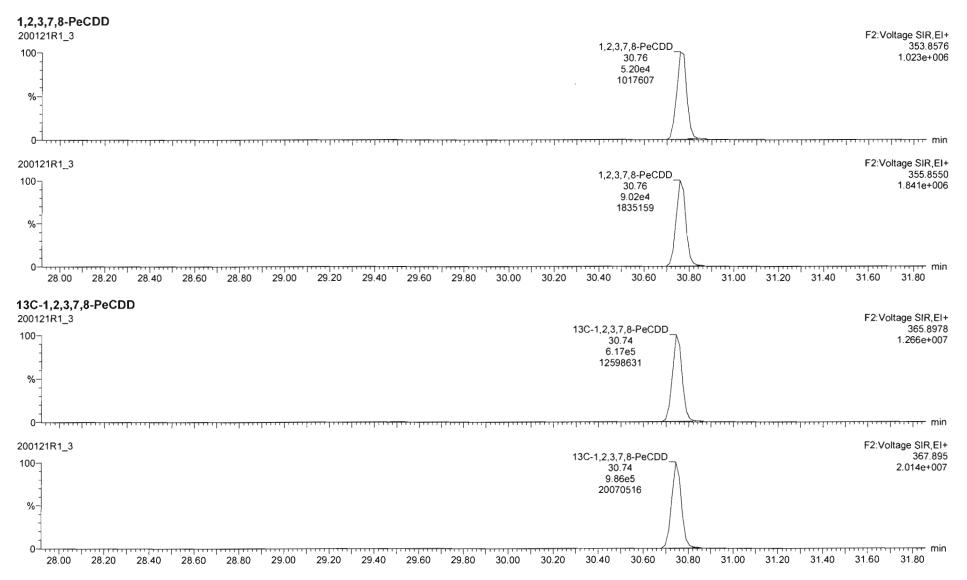


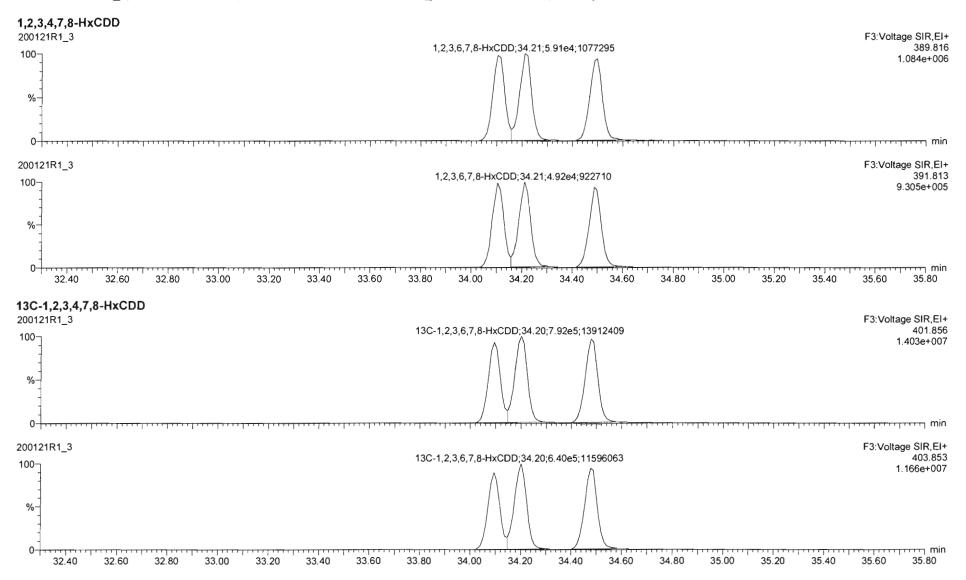
Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	


Page 27 of 78

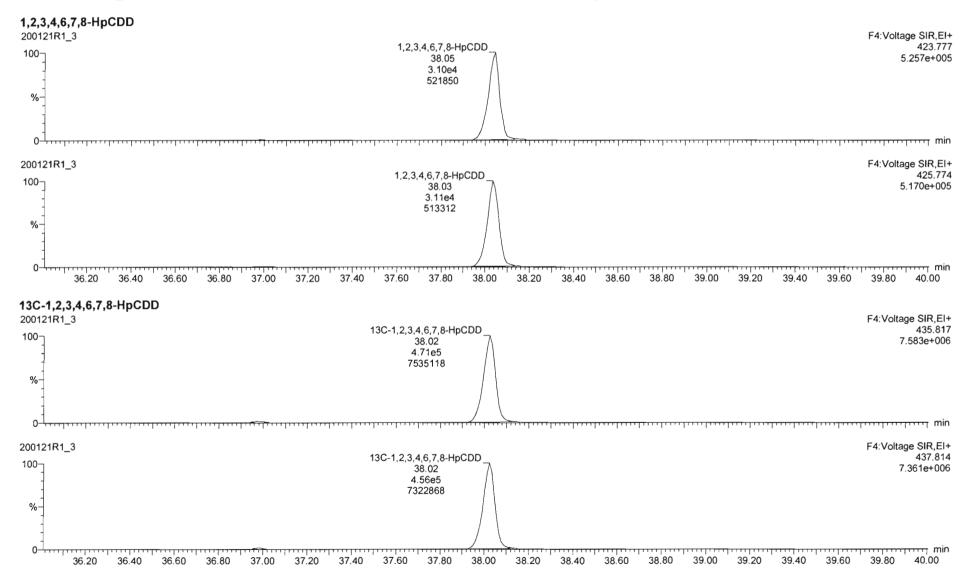
Dataset: Untitled

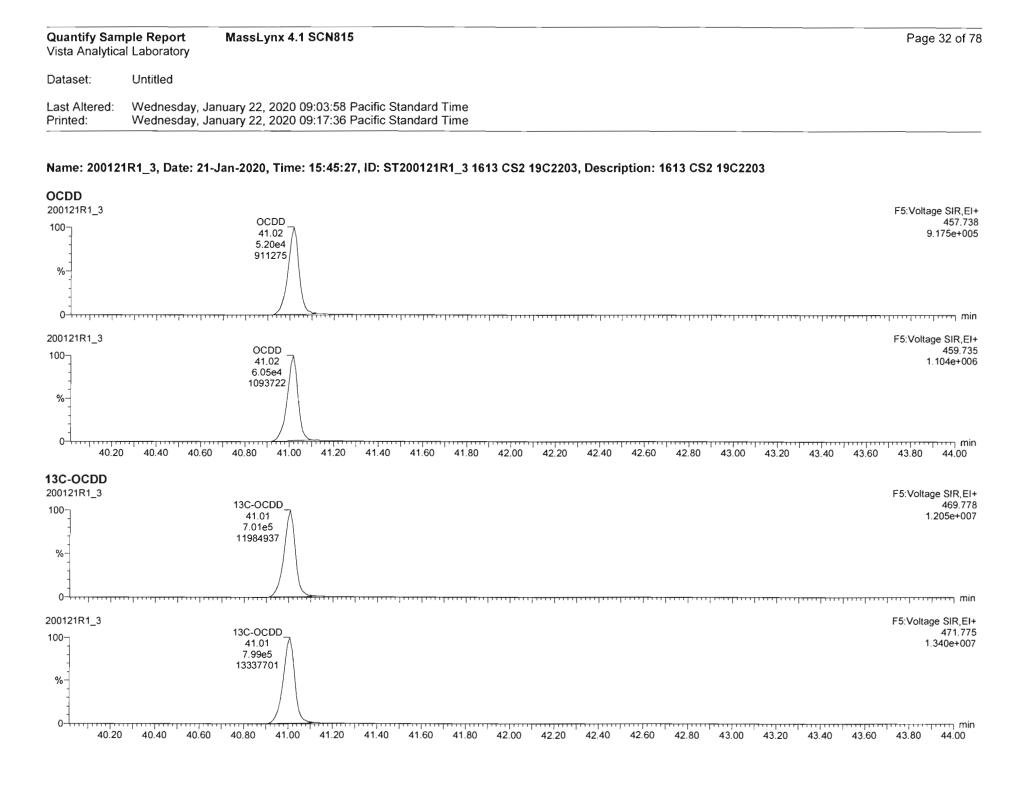
Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 28 of 78
Dataset:	Untitled		
Last Altered: Printed:		uary 22, 2020 09:03:58 Pacific Standard Time uary 22, 2020 09:17:36 Pacific Standard Time	

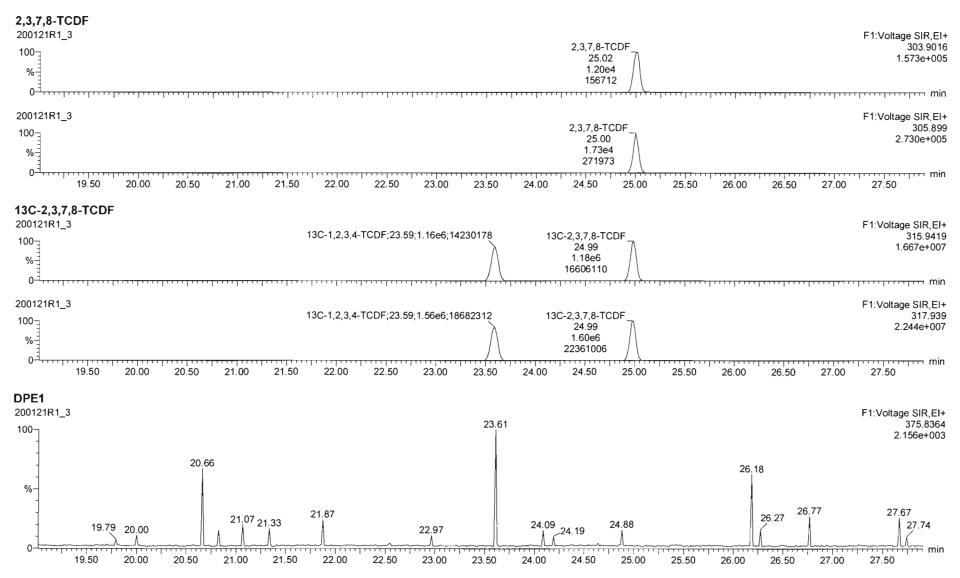

Page 29 of 78

Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

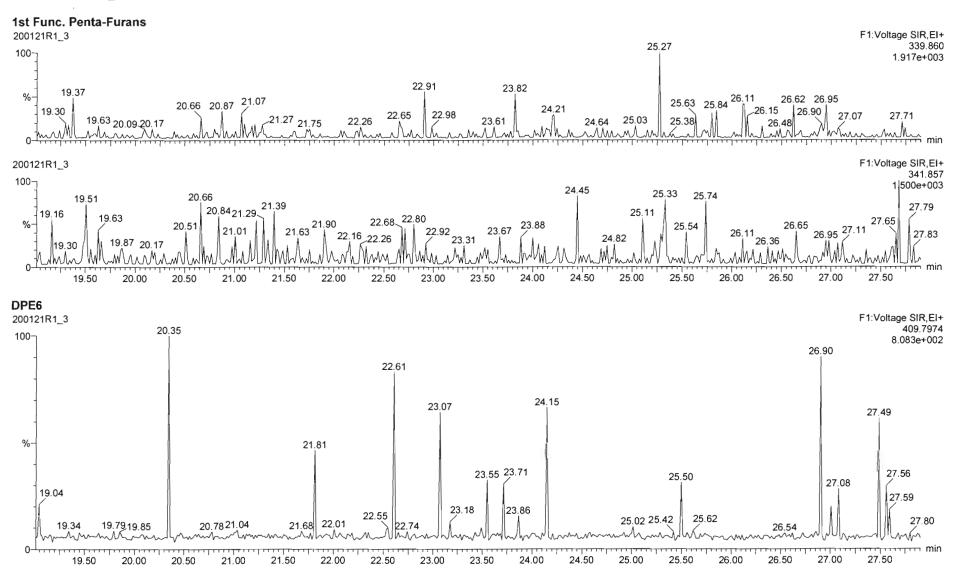


Quantify San Vista Analytica		Page 30 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



Quantify Sam Vista Analytica		Page 31 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

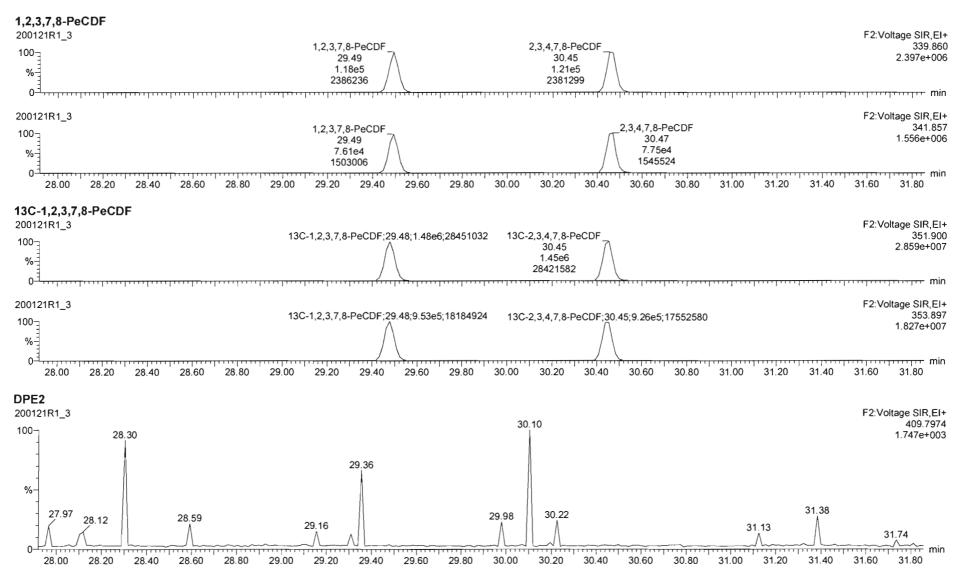
Quantify Sam Vista Analytica		Page 33 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



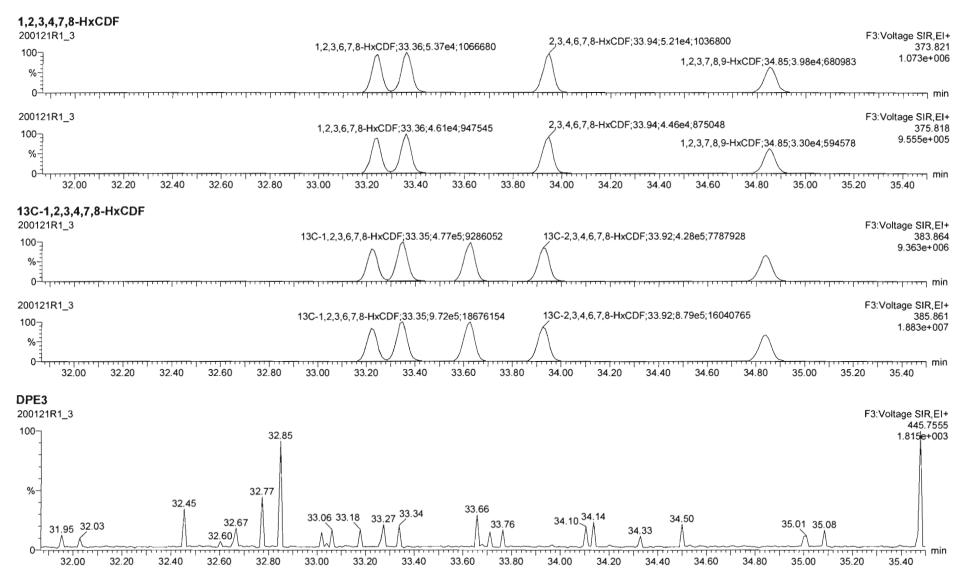
Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Page 34 of 78

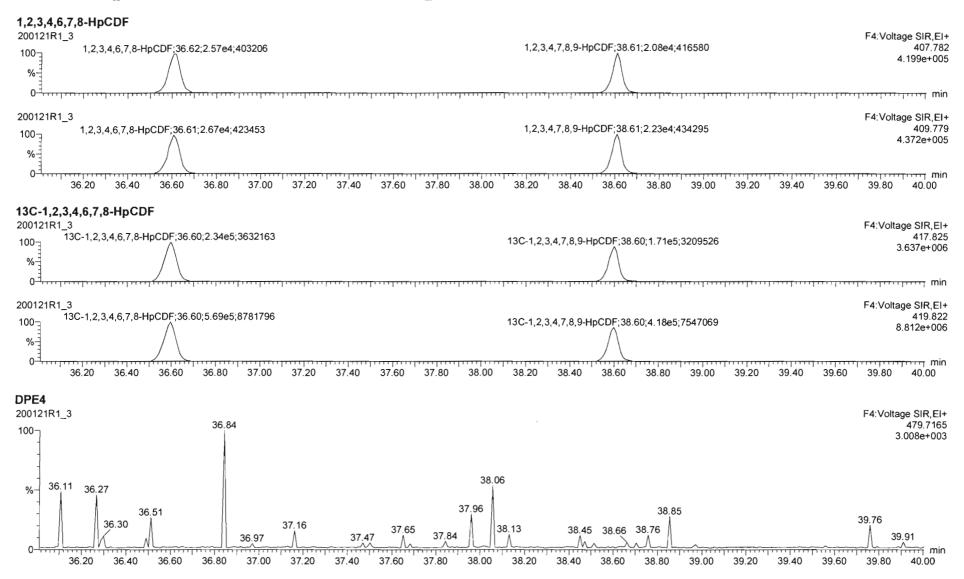
Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

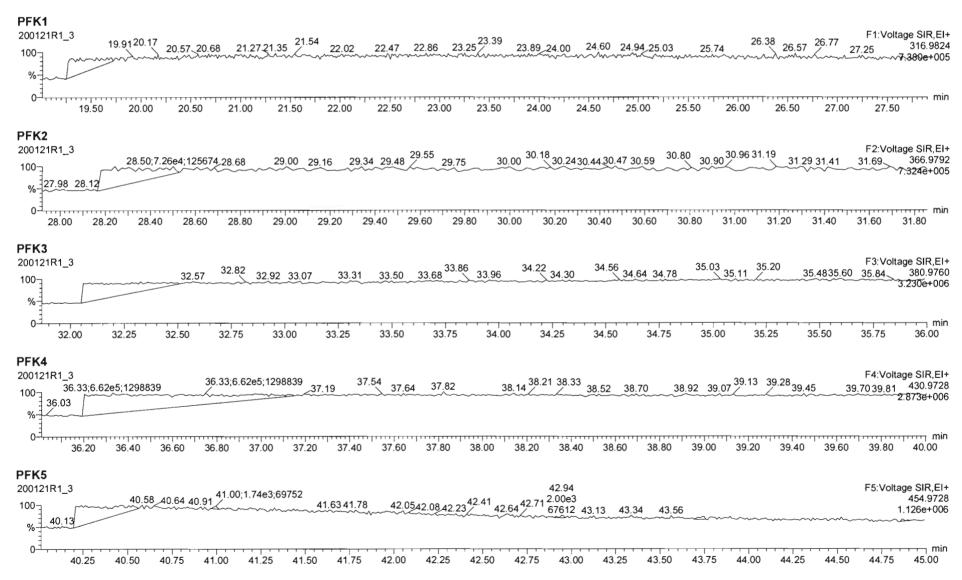

Dataset: Untitled

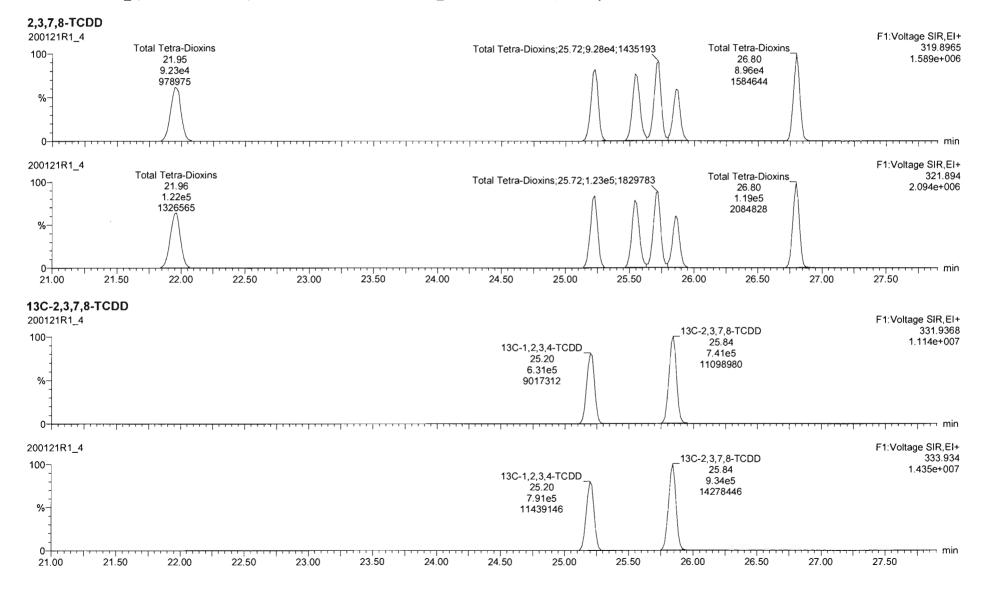
Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Dataset: Untitled

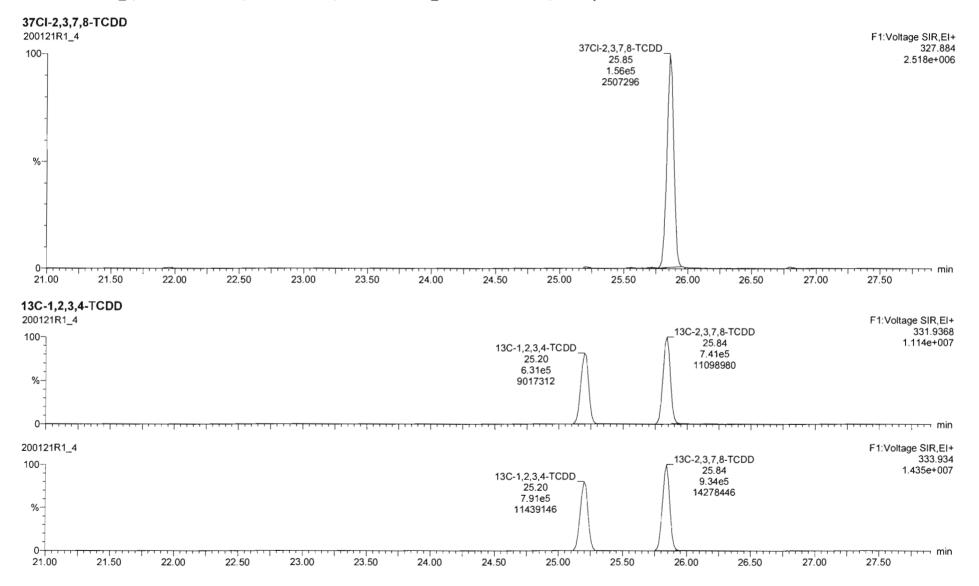
Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Dataset: Untitled

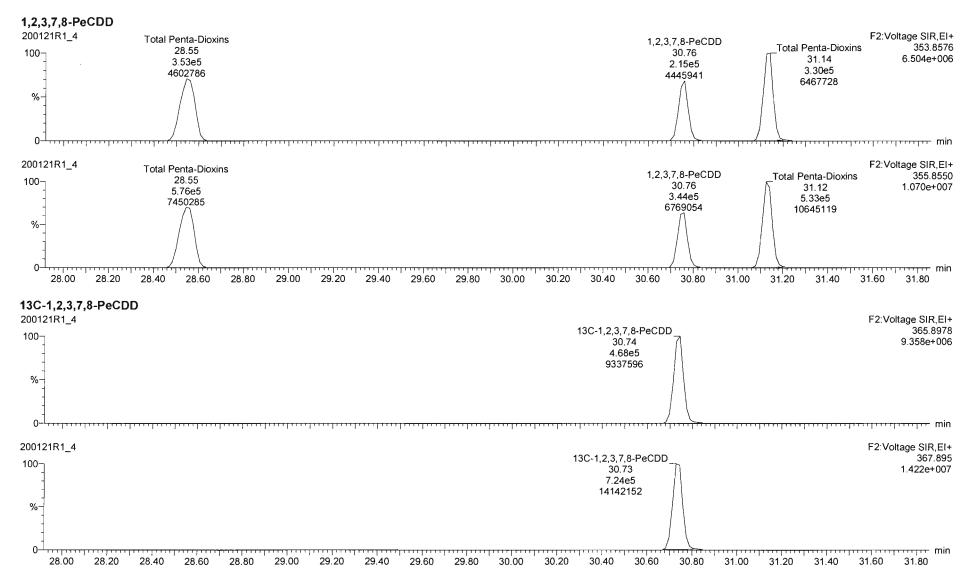

Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Quantify Sam /ista Analytica			MassLy	ynx 4.1 9	SCN815													Page	e 38 of 1
)ataset:	Untitled																		
ast Altered: Printed:	Wednes Wednes	day, Jan day, Jan	uary 22, uary 22,	2020 09 2020 09	9:03:58 F 9:17:36 F	Pacific S Pacific S	tandard tandard	Time Time											
ame: 200121	1R1 3 Da	ite: 21-1	an-2020	Time	15-45-27	זא יחו י	200121	R1 3 16	13 CS2	1902203	R Descr	intion:	1613 CS	2 19022	03				
CDF				, mie.	10.40.27	, 10. 01	200121		10 002	100220	, Desei		1013 03		00				
00121R1_3				OCI 41.2 3.76 6962	21 e4													F5:Volta	ge SIR,I 441.7 .995e+(
0 ⁻¹				OCI 41.2	21													F5:Volta	ge SIR, 443.7 .175e+0
%-1 0-1	6 40.50	40.75	41.00	4.68 8147 41.25		41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	
8 C-OCDF 00121R1_3 %		13C	-OCDF;41.	20;6.45e5	;10992415	i												F5:Voltag	ge SIR,E 453.78 108e+0
0				<u> </u>															} r
0121R1_3 0				41	DCDF .20 4e5 4596													F5:Voltaç 1.	ge SIR,1 455.7 257e+0
0 ⁻¹	40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.00
PE5 0121R1_3															44.02			F5:Voltag	ge SIR, E 513.67 096e+0
~																			
40	. ³² 40.40		41	1.14 ⁴¹	.39					42	2.88			43.76				44.79	
40.28		0.65 ^		<u> </u>	41.5	9	~~~~~~	42.28			A 45.		13.41 		l	~~~~~~		44.79	m
40.25	40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25		42.75			43.50	43.75	44.00	44.25	44.50	44.75	45.

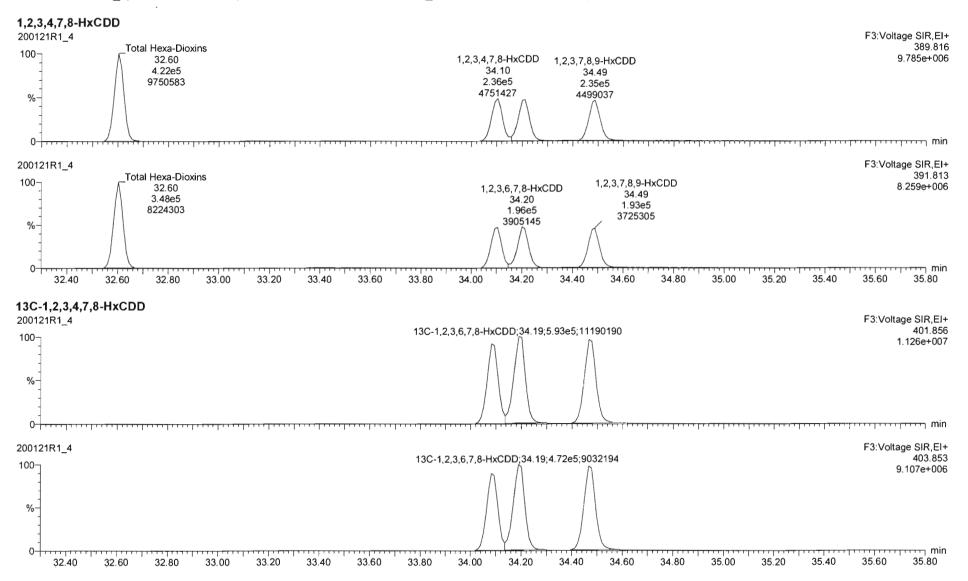
Dataset: Untitled


Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

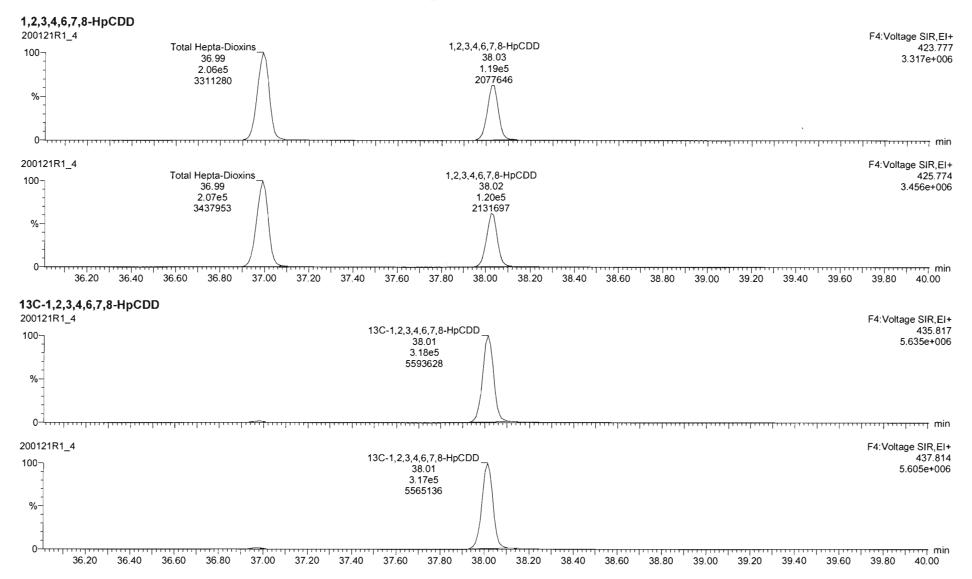
Quantify Sam Vista Analytica		Page 40 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

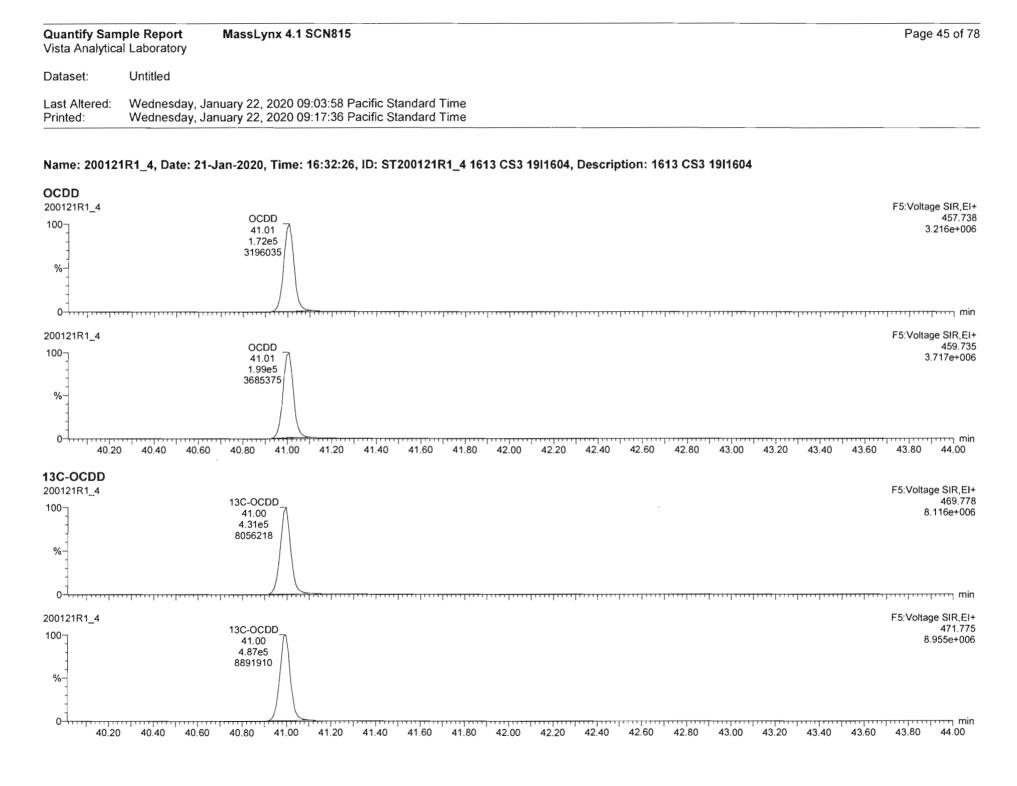


Quantify Sam Vista Analytica		Page 41 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



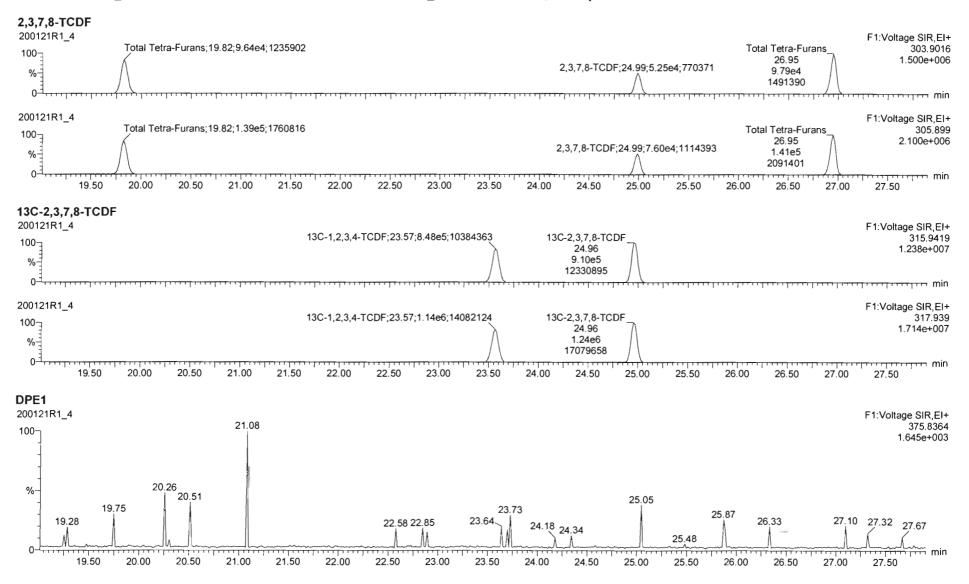
Work Order 1903649


Quantify Sam Vista Analytica		Page 42 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

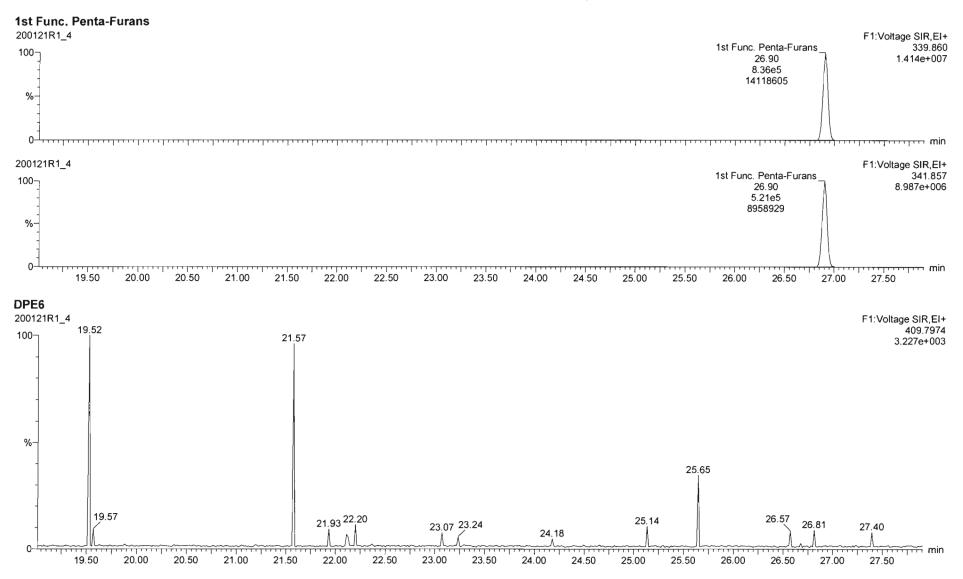


Quantify San Vista Analytica		Page 43 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Quantify Sam Vista Analytica		Page 44 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	


Work Order 1903649

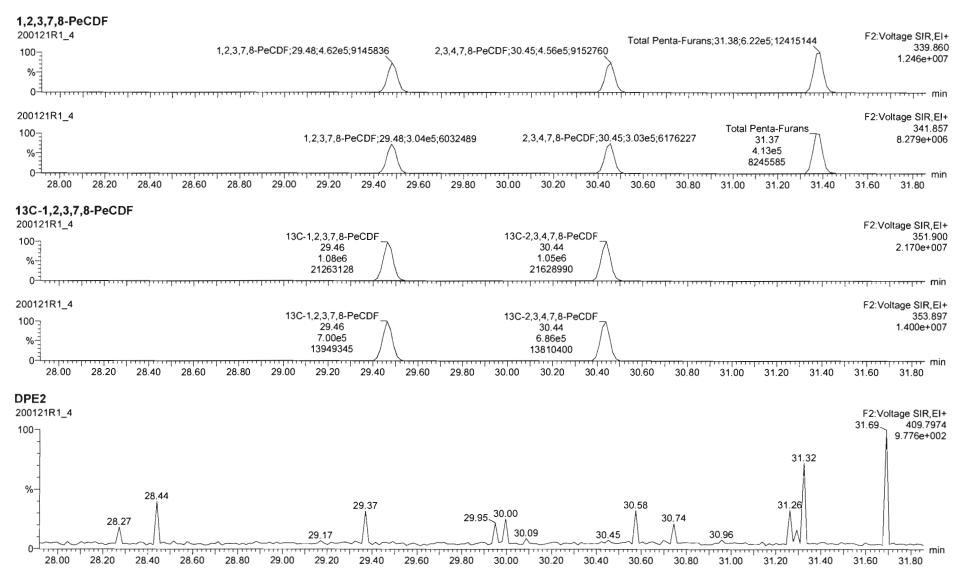
Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory


Dataset: Untitled

Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Name: 200121R1_4, Date: 21-Jan-2020, Time: 16:32:26, ID: ST200121R1_4 1613 CS3 19I1604, Description: 1613 CS3 19I1604

Quantify Sam Vista Analytica		SCN815	Page 47 of 78
Dataset:	Untitled		
Last Altered: Printed:	Wednesday, January 22, 2020 (Wednesday, January 22, 2020 (

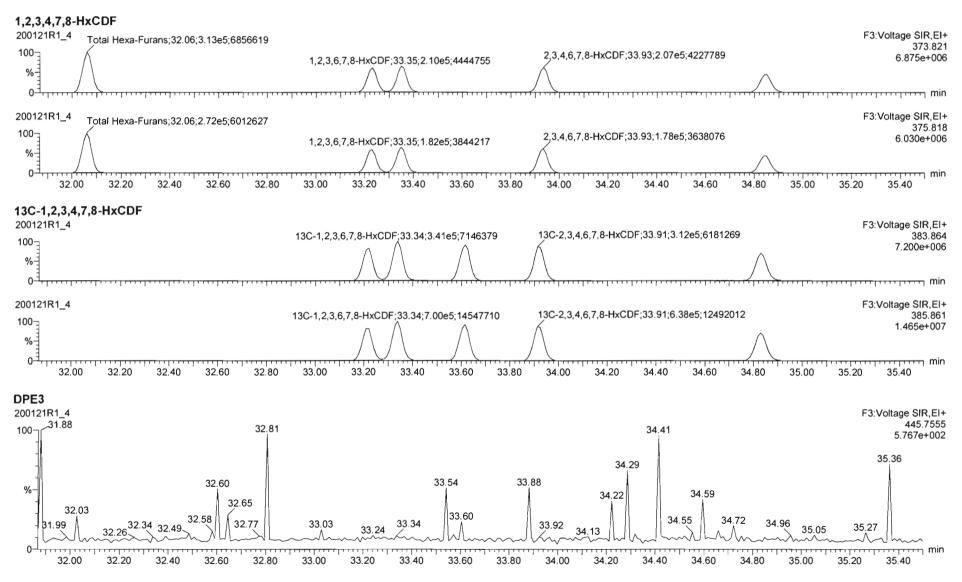


Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: Untitled

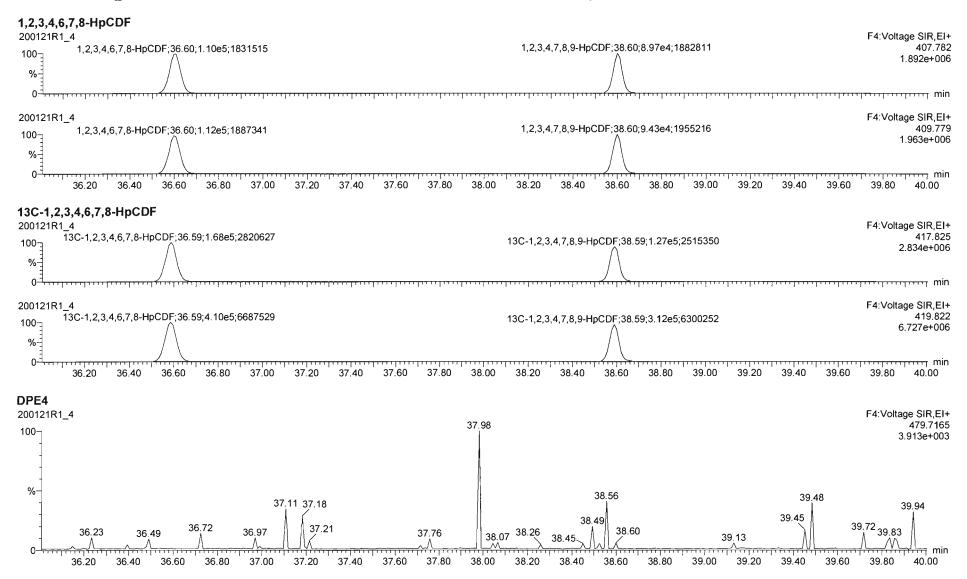
Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Name: 200121R1_4, Date: 21-Jan-2020, Time: 16:32:26, ID: ST200121R1_4 1613 CS3 19I1604, Description: 1613 CS3 19I1604



Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: Untitled

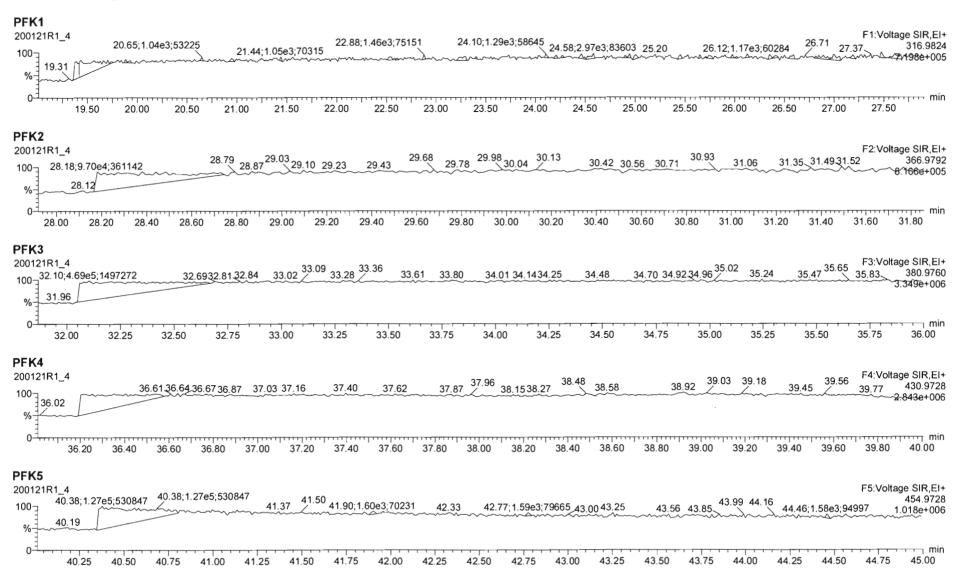

Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Name: 200121R1_4, Date: 21-Jan-2020, Time: 16:32:26, ID: ST200121R1_4 1613 CS3 19I1604, Description: 1613 CS3 19I1604

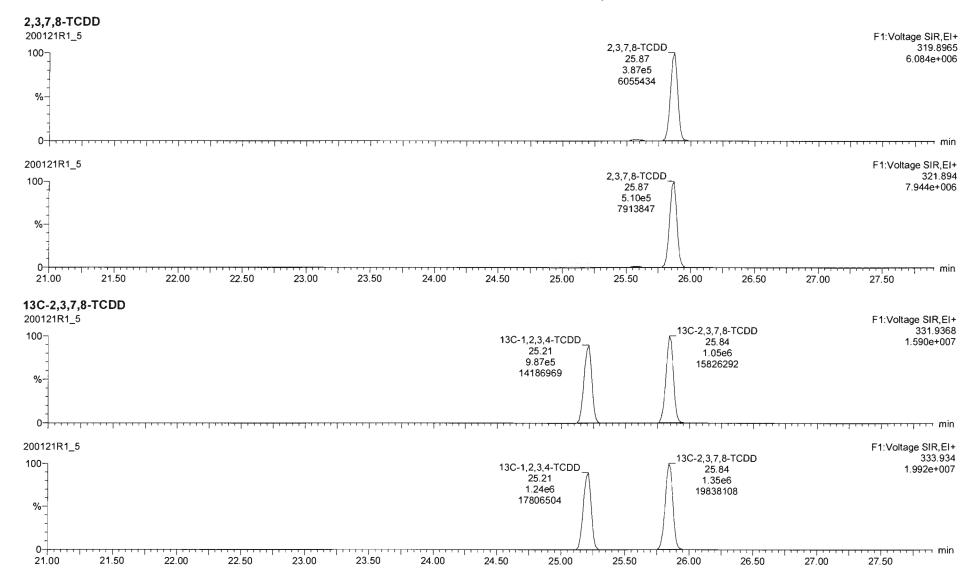
Quantify San Vista Analytica		Page 50 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Name: 200121R1_4, Date: 21-Jan-2020, Time: 16:32:26, ID: ST200121R1_4 1613 CS3 19I1604, Description: 1613 CS3 19I1604

Work Order 1903649

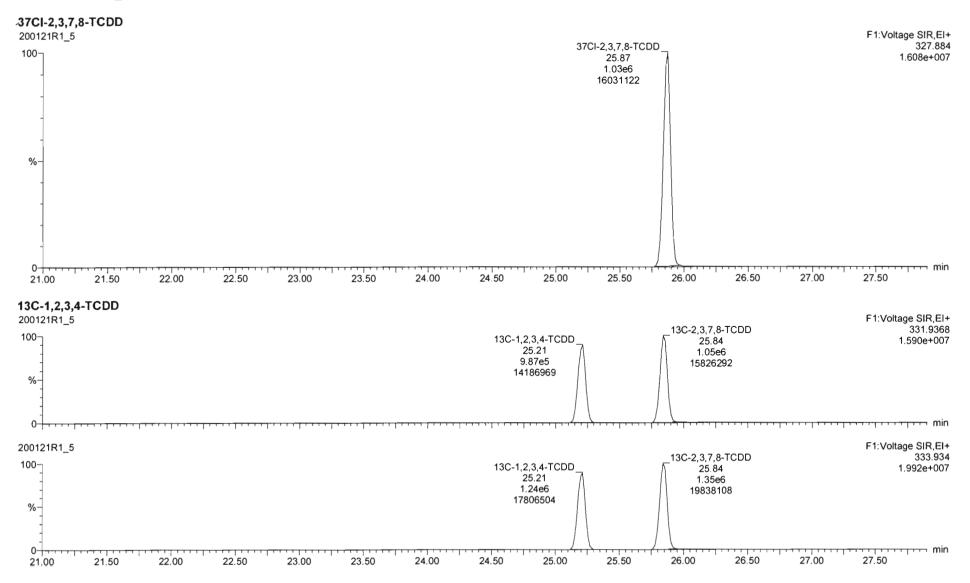

/ista Analytica	n <mark>ple Repo</mark> r al Laborato		MassLy	/nx 4.1 \$	SCN815													Page	e 51 of 7
ataset:	Untitled																		
ast Altered: rinted:	Wednes Wednes																		
ame: 20012	1R1_4, Da	te: 21-Ja	an-2020,	, Time: '	16:32:26	5, ID: ST	200121	R1_4 16	13 CS3 1	1911604,	Descrip	otion: 16	13 CS3	19 1604	Ļ				
0CDF 00121R1_4																		F5:Volta	ge SIR,EI
00 %			OCDF 41.20 1.35e5 260685	5														2	441.74 2.620e+00
0			OCDF 41.20 1.61e5	$\overline{\Lambda}$						_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_ ,						ge SIR,El 443.74 166e+00
20 0 40.2	5 40.50	40.75	314412 41.00		41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	—, —, mir 45.00
3C-OCDF 00121R1_4				4.0	OCDF .19 7e5 7712														ge SIR,EI 453.783 2560e+00
0 ¹				13C-0 41. 48. 8798	.19 2e5														ge SIR,EI 455.78 .860e+00
0 ¹ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	
PE5 00121R1_4 ^{DO}] 4	10.35										42.94								ge SIR,EI 513.677 .191e+00
- - %-								42.20										44.69	

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

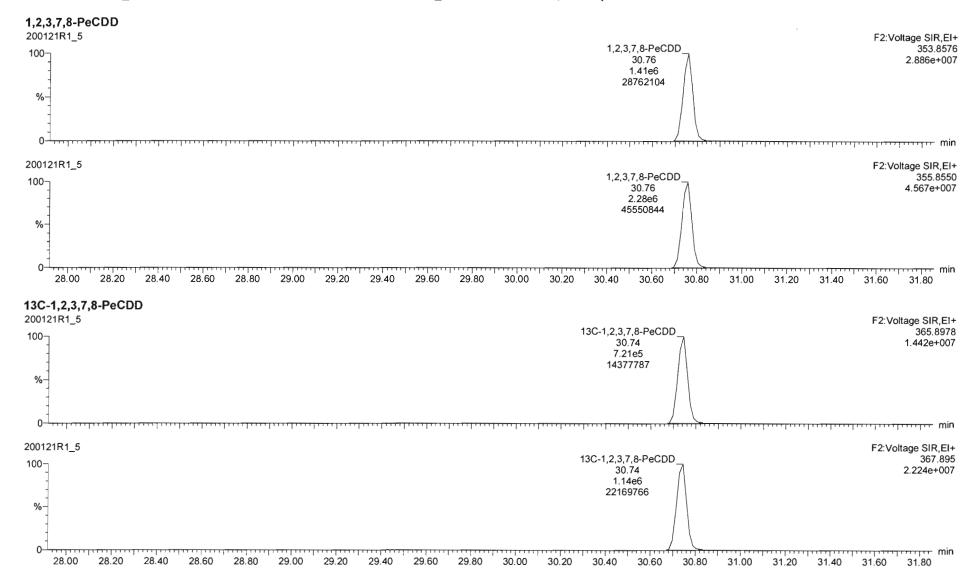

Dataset: Untitled

Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

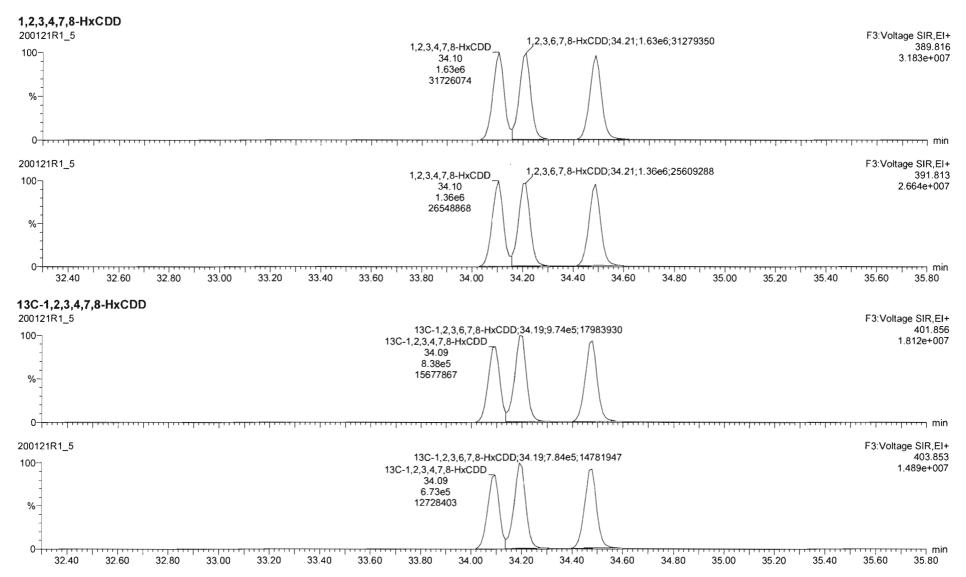
Name: 200121R1_4, Date: 21-Jan-2020, Time: 16:32:26, ID: ST200121R1_4 1613 CS3 19I1604, Description: 1613 CS3 19I1604

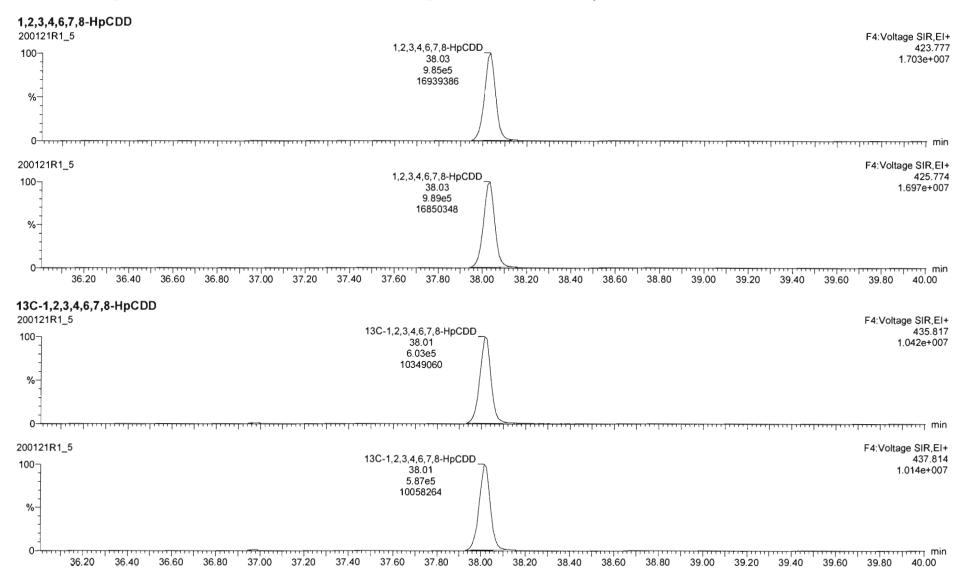


Quantify Sam Vista Analytica		Page 53 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

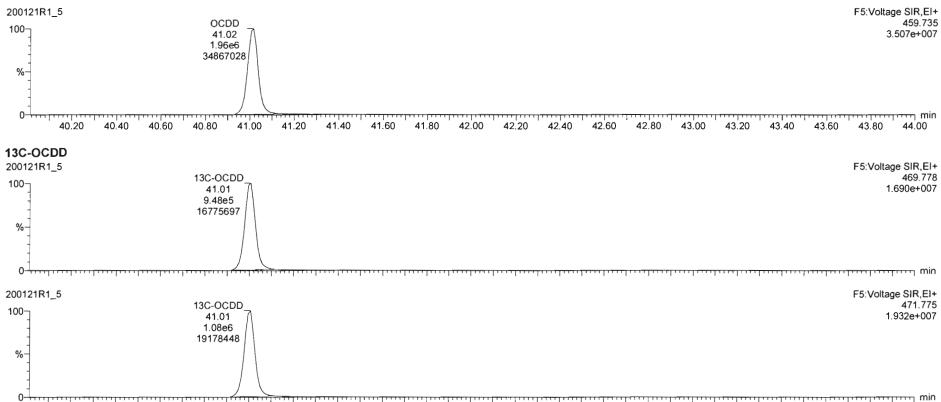


Work Order 1903649


Quantify Sam Vista Analytica		MassLynx 4.1 SCN815	Page 54 of 78
Dataset:	Untitled		
Last Altered: Printed:		ary 22, 2020 09:03:58 Pacific Standard Time ary 22, 2020 09:17:36 Pacific Standard Time	

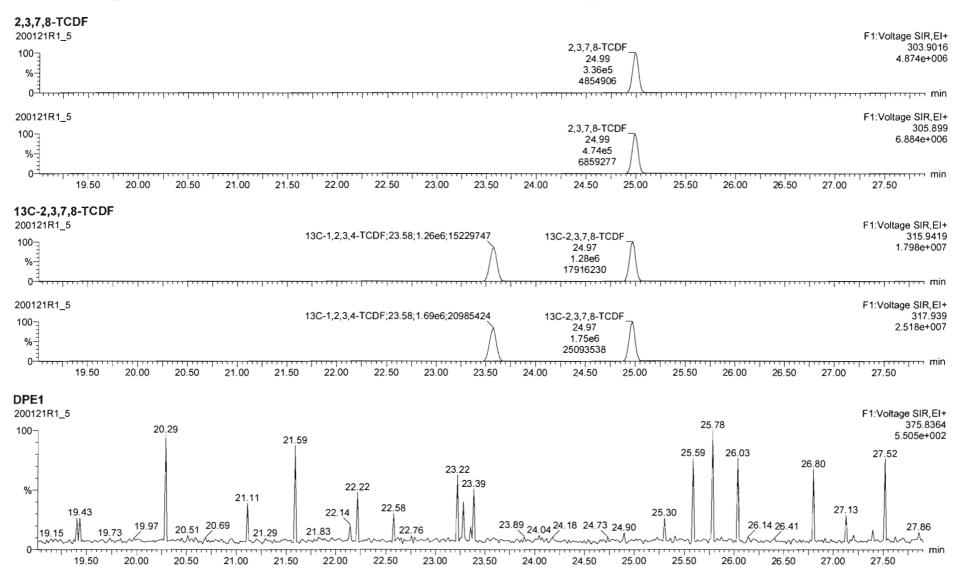

Quantify Sam Vista Analytica		Page 55 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

Quantify San Vista Analytica		Page 56 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



Quantify Sam Vista Analytica		Page 57 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

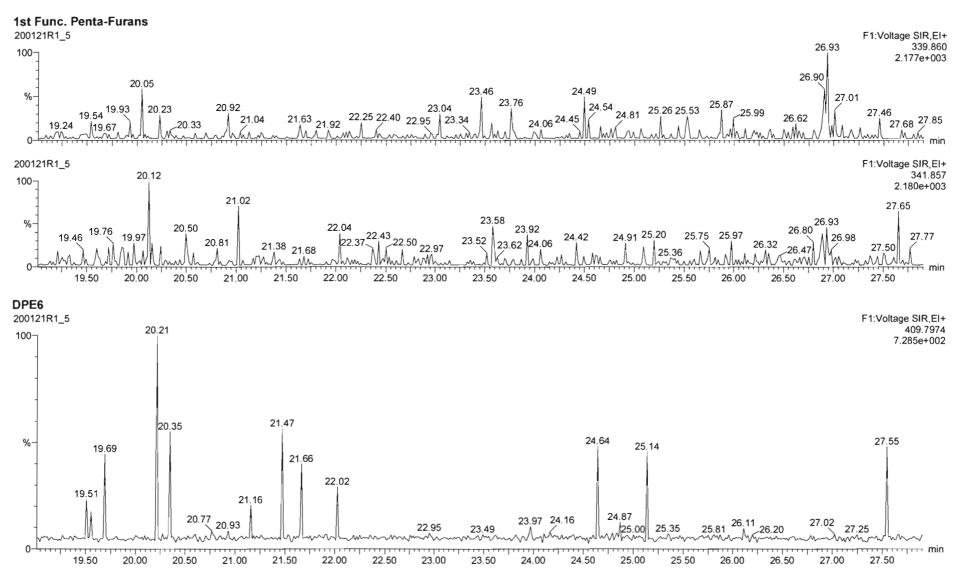
Vista Analytica	ple Report MassLynx 4.1 SCN815	Page 58 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	
Name: 20012	P4 5 Date: 24 Jan 2020 Time: 47:40:22 JD: ST200424P4 5 4642 CS4 40C2205 Departmenti	on: 1612 CS4 10C220E
	R1_5, Date: 21-Jan-2020, Time: 17:19:23, ID: ST200121R1_5 1613 CS4 19C2205, Description	on: 1613 CS4 19C2205
Name: 20012 OCDD 200121R1_5		F5:Voltage SIR,EI+
OCDD	OCDD 41.02	F5:Voltage SIR,EI 457.738
OCDD 200121R1_5	OCDD _	

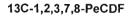


40.20 40.40 40.60 40.80 41.00 41.20 41.40 41.60 41.80 42.00 42.20 42.40 42.60 42.80 43.00 43.20 43.40 43.80 43.60 44.00

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: Untitled

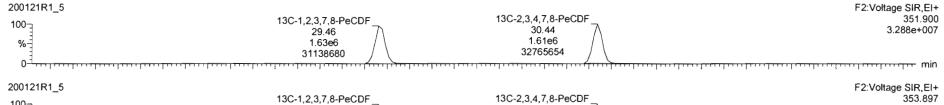
Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Quantify Sam Vista Analytica		sLynx 4.1 SCN815		Page 61 of 7
Dataset:	Untitled			
Last Altered: Printed:		22, 2020 09:03:58 Pacific Standard Time 22, 2020 09:17:36 Pacific Standard Time		
lame: 20012	1R1_5, Date: 21-Jan-2	020, Time: 17:19:23, ID: ST200121R1_5 1613 CS4	19C2205, Description: 1613 CS4 19C2205	
.2.3.7.8-PeC	DF			
1,2,3,7,8-PeC 200121R1_5 100	DF	1,2,3,7,8-PeCDF;29.48;2.93e6;56263160	2,3,4,7,8-PeCDF;30.45;2.97e6;60423764	F2:Voltage SIR,EI+ 339.860 6.062e+007

28.00 28.20

28.40

28.60


28.80

29.00

29.20

29.40

29.60

30.00

30.20

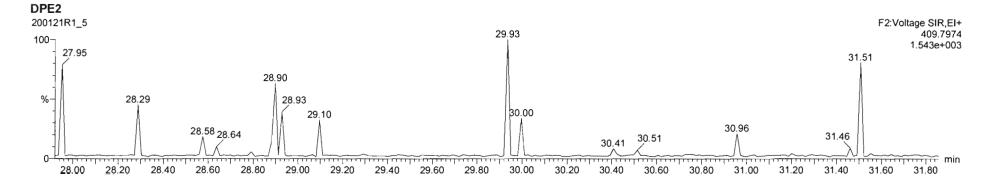
30.40

30.60

30.80

31.00

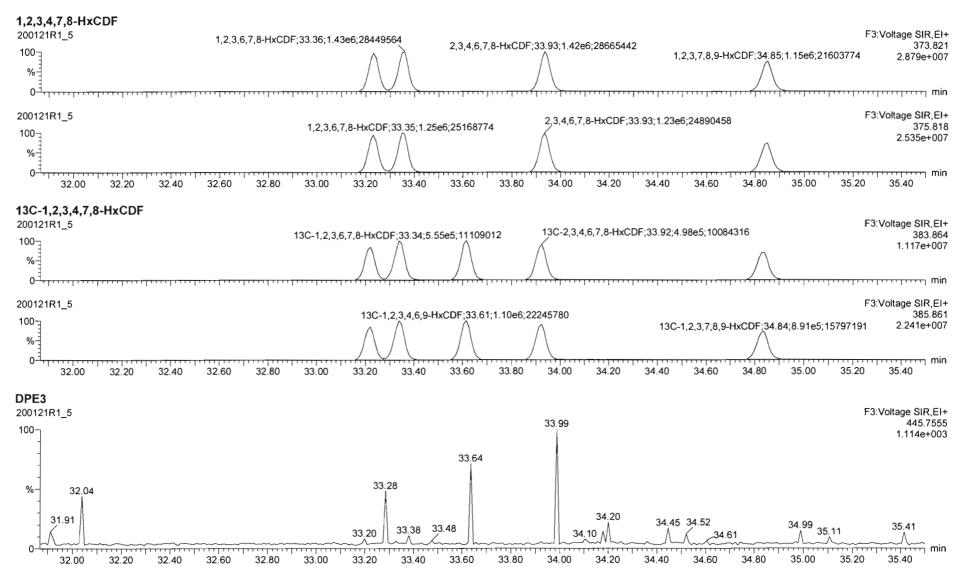
31.20

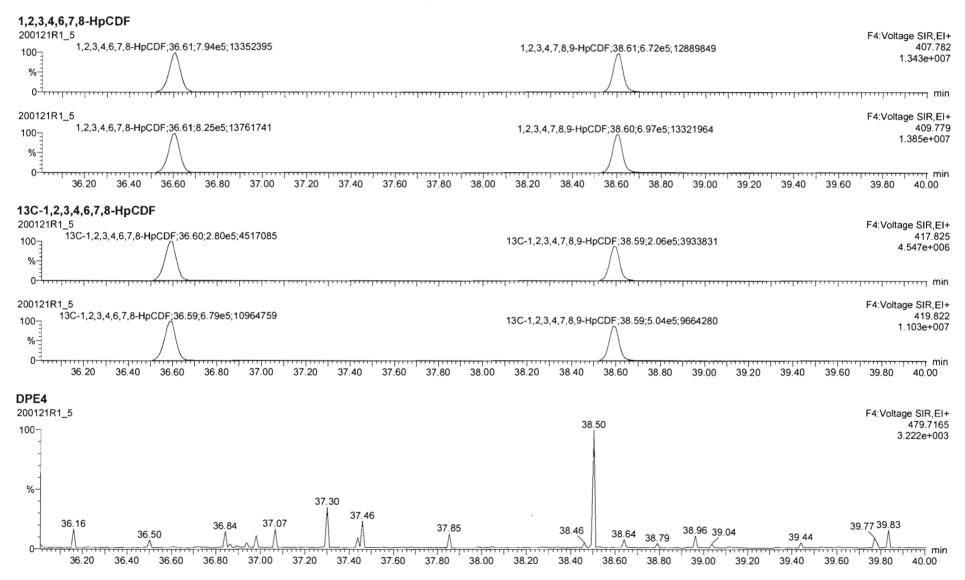

31.40

31.60

31.80

29.80

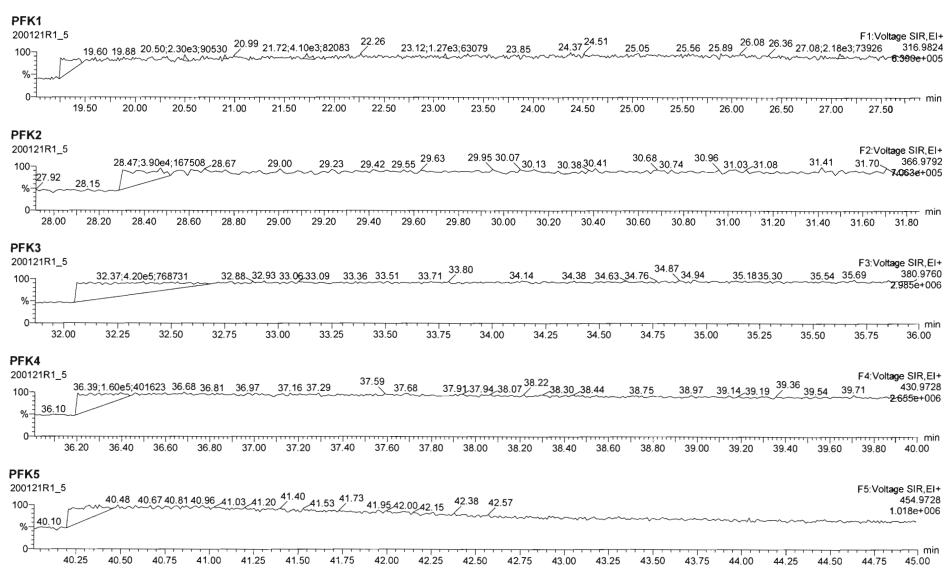



Quantify Sample ReportMassLynx 4.1 SCN815Vista Analytical Laboratory

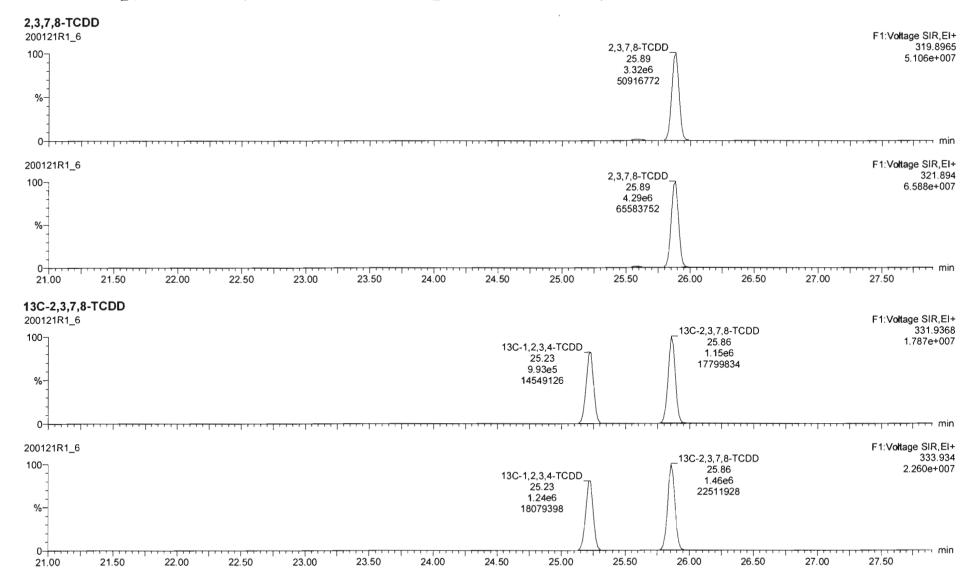
Dataset: Untitled

Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

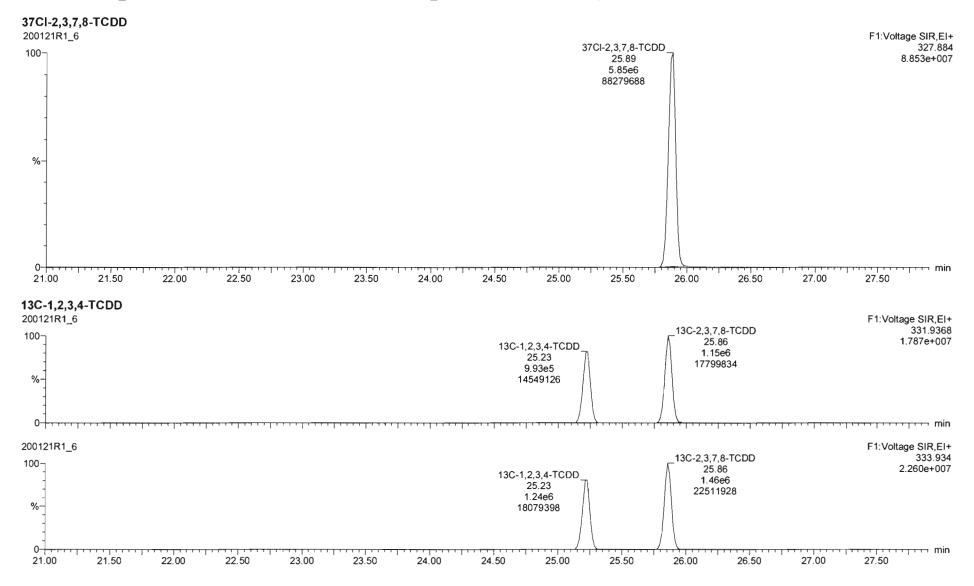
Quantify San Vista Analytic		Page 63 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



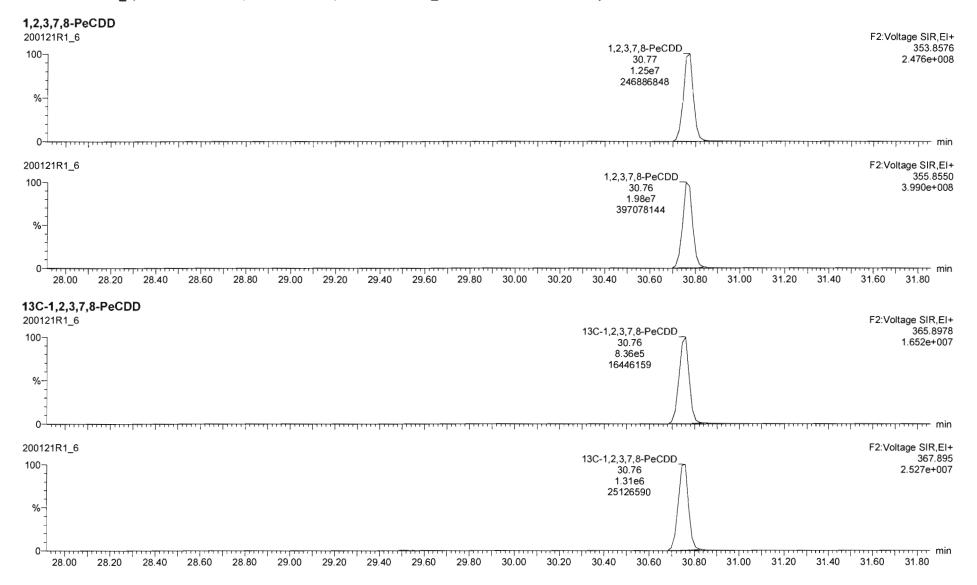
antify Sam ta Analytica			MassLy	nx 4.1 \$	SCN815													Page	e 64 of
taset:	Untitled																		
st Altered: nted:	Wednes Wednes	day, Jan day, Jan	uary 22, uary 22,	2020 09 2020 09	9:03:58 F 9:17:36 F	Pacific St Pacific St	andard andard	Time Time											
me: 200121	1R1_5, Da	te: 21-J	an-2020,	Time:	17:19:23	8, ID: ST	2001211	R1_5 16	13 CS4 1	19C2205	i, Descri	ption: 1	613 CS4	19C22	05				
DF 121R1_5																		F5:Volta	
)				√ 41	CDF 1.21 81e6													2	441. .411e+
6- <u>]</u> D-]		· · · · · · · · · · · ·			73498					-, , , , , , -, -,						······································			
121R1_5	ľ								,			·	·	·	·			F5:Volta	
				41	CDF .21 66e6 21272													2	443. .828e+
40.25	5 40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0
C-OCDF				41	OCDF 1.20 03e5 02926													F5:Volta	453.7 .601e+
		· · · · · · ·		<u> </u>											•••	, , , ,		F5:Volta	
121R1_5			13C-OCD 41.19 1.07e6 19074616	Λ															455. 918e+
<u>∃</u> _,40.25	40.50	40.75	41.00	41.25	41.50	41.75	42.00	42.25	42.50	42.75	43.00	43.25	43.50	43.75	44.00	44.25	44.50	44.75	45.0
E 5 121R1_5 40.08																		F5:Voltag	ge SIR, 513.6 .210e+
-										42.70	43.	12						4	4.91
					41.	61			10.11		42.94		43.49 4	3.57	44,03				
1 ()			41.02			41.65			42.44				- A AA		~ 1				11


Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

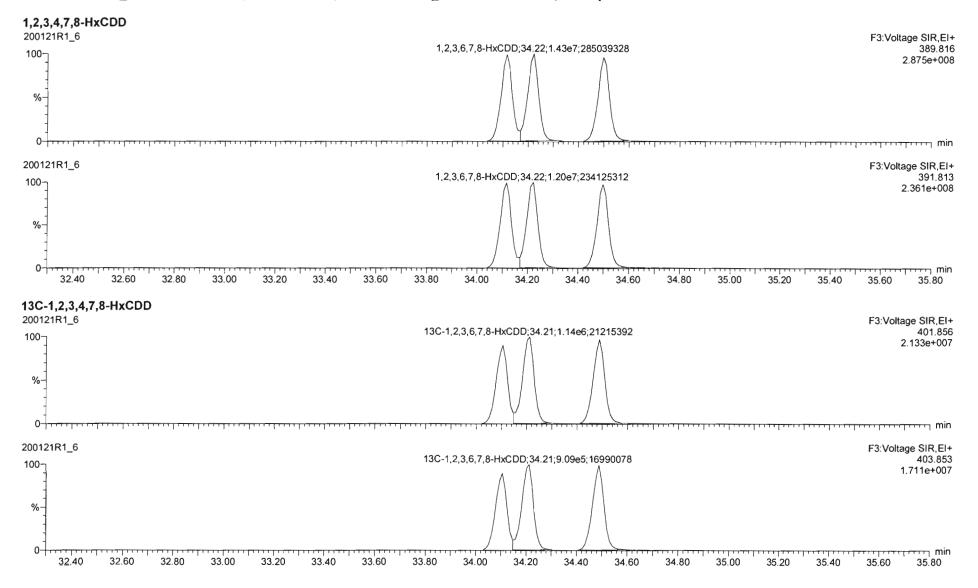
Dataset: Untitled

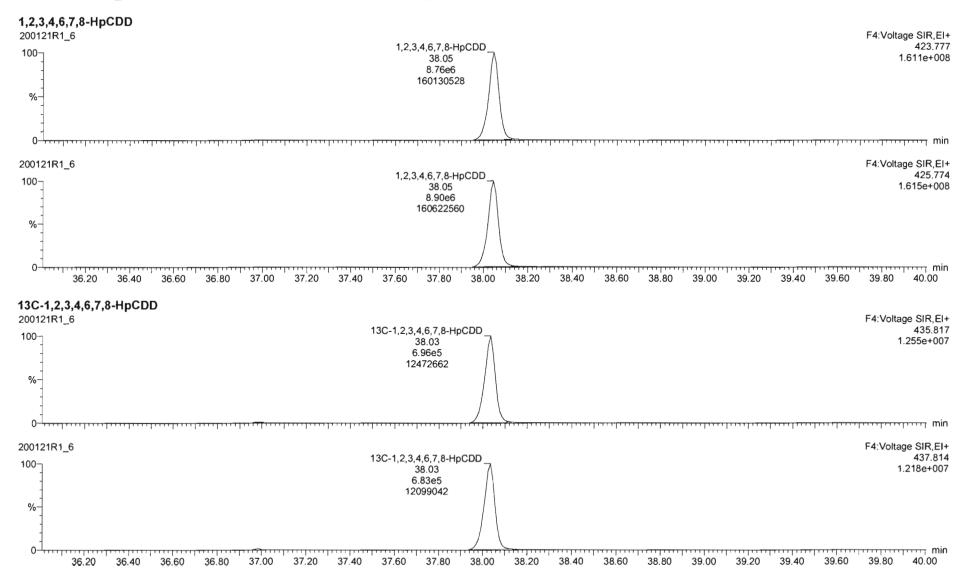

Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

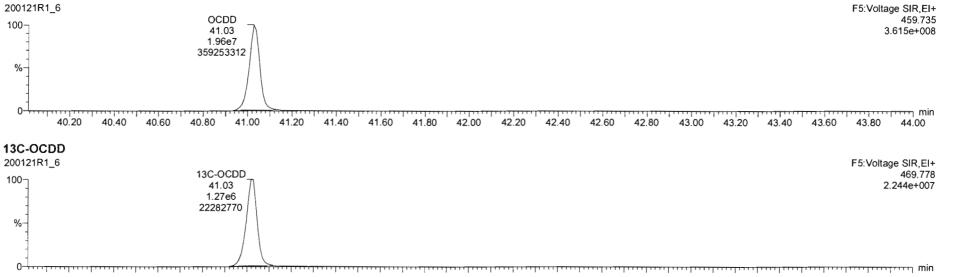
Quantify Sam Vista Analytica		Page 66 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	



Quantify Sam Vista Analytica		Page 67 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

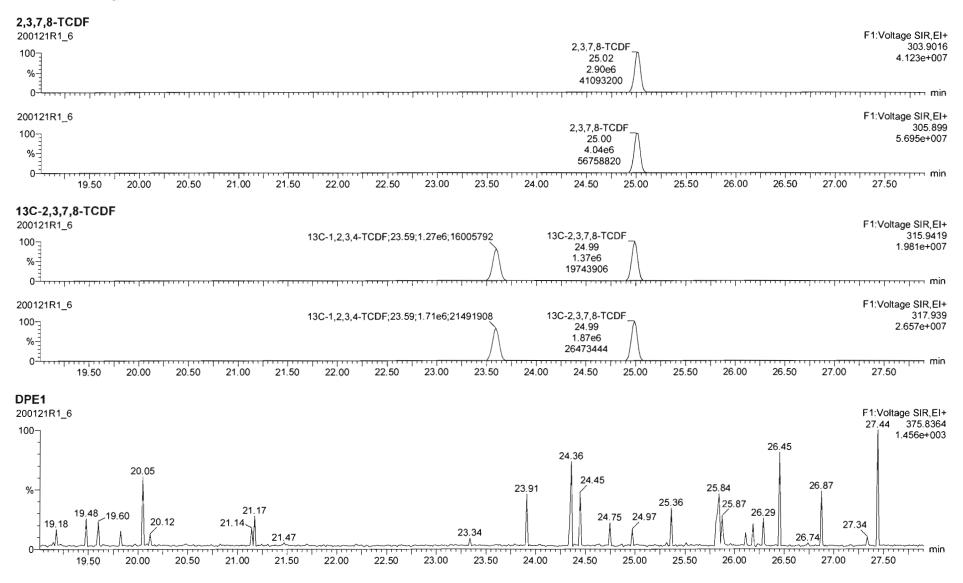

Work Order 1903649


Quantify San Vista Analytica		Page 68 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	


Work Order 1903649

Quantify Sam Vista Analytica		Page 69 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	

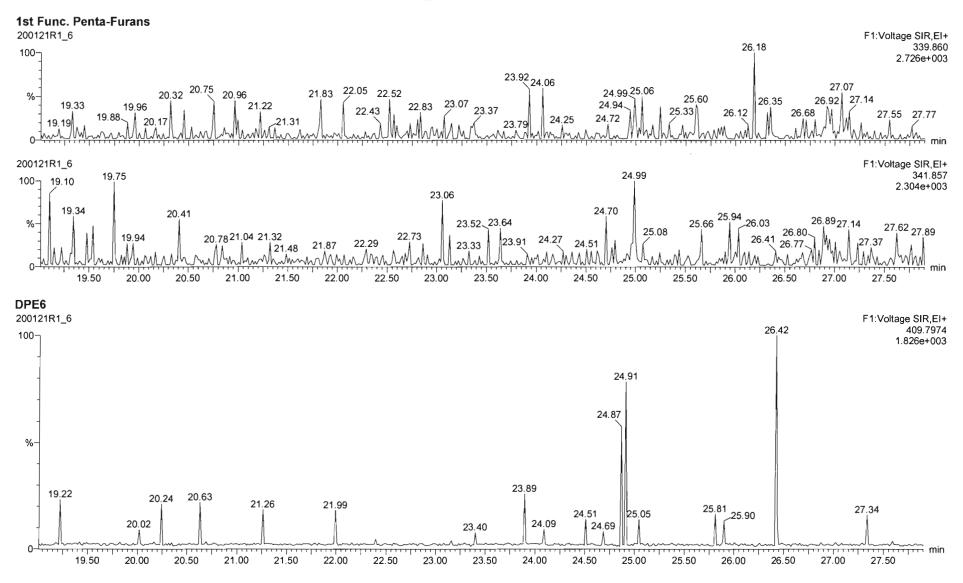
Quantify Sam Vista Analytica		Page 71 of 78
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Wednesday, January 22, 2020 09:17:36 Pacific Standard Time	
Name: 20012	1R1_6, Date: 21-Jan-2020, Time: 18:06:23, ID: ST200121R1_6 1613 CS5 19C2206, Descri	iption: 1613 CS5 19C2206
OCDD 200121R1_6		F5:Voltage SIR,EI+
100	OCDD 41.03 1.69e7 303858240	457.738 3.058e+008
%		
0		min היהידייינייינייינייינייינייינייינייינייי


40.20 40.40 40.60 40.80 41.00 41.20 42.20 42.40 42.60 43.00 43.60 41.40 41.60 41.80 42.00 42.80 43.20 43.40 43.80 44.00

0_

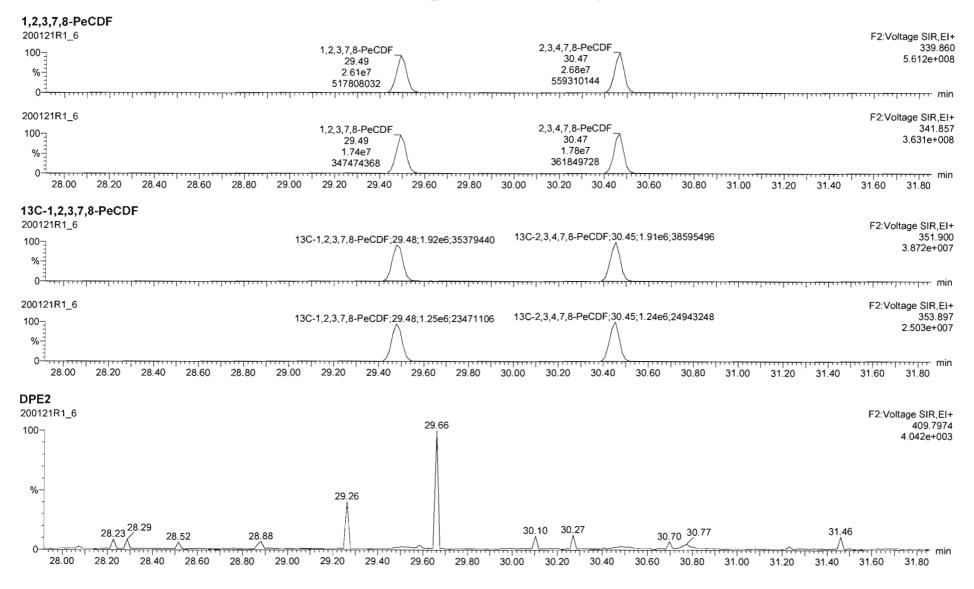
Quantify Sample ReportMassLynx 4.1 SCN815Vista Analytical Laboratory

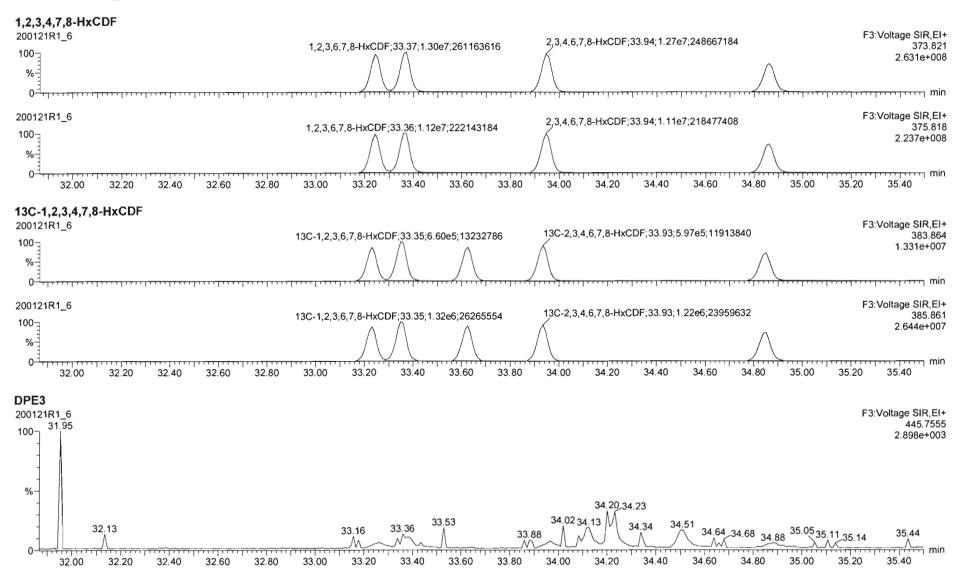
Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

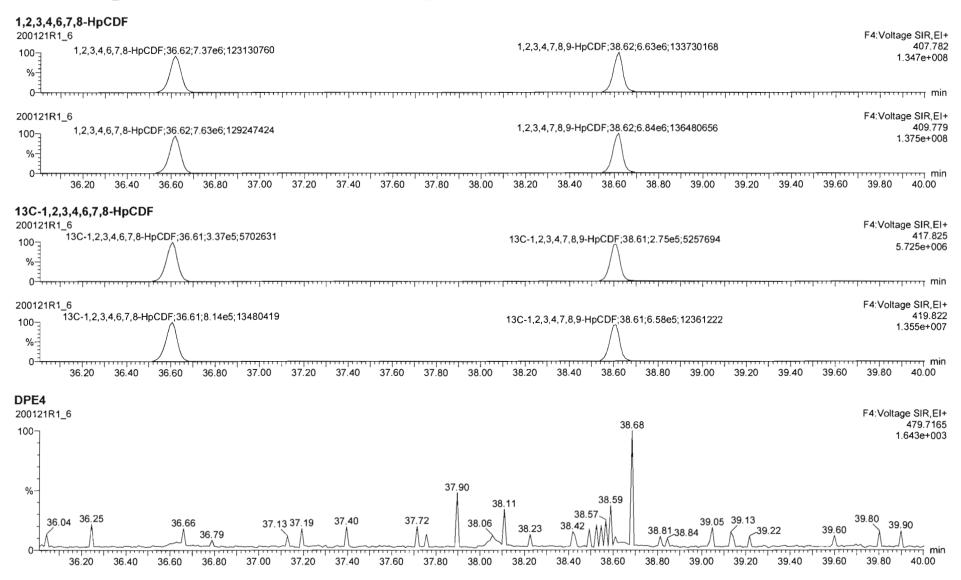
Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: Untitled

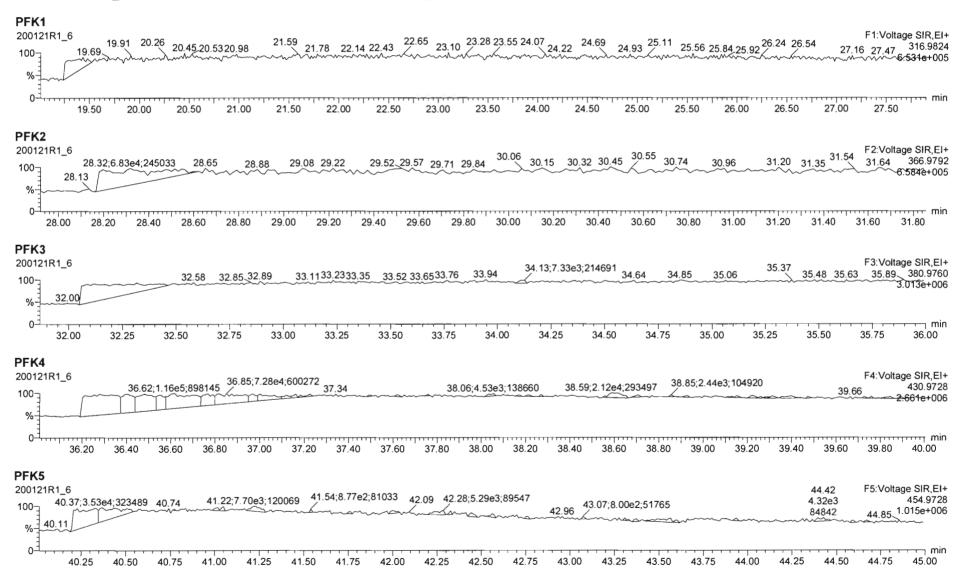
Last Altered:	Wednesday, January 22, 2020 09:03:58 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:17:36 Pacific Standard Time


Quantify San Vista Analytic	mple Report cal Laboratory	MassLynx 4.1 SCN815	Page 75 of 78
Dataset:	Untitled		
Last Altered: Printed:		January 22, 2020 09:03:58 Pacific Standard Time January 22, 2020 09:17:36 Pacific Standard Time	

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

Dataset: Untitled

Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time

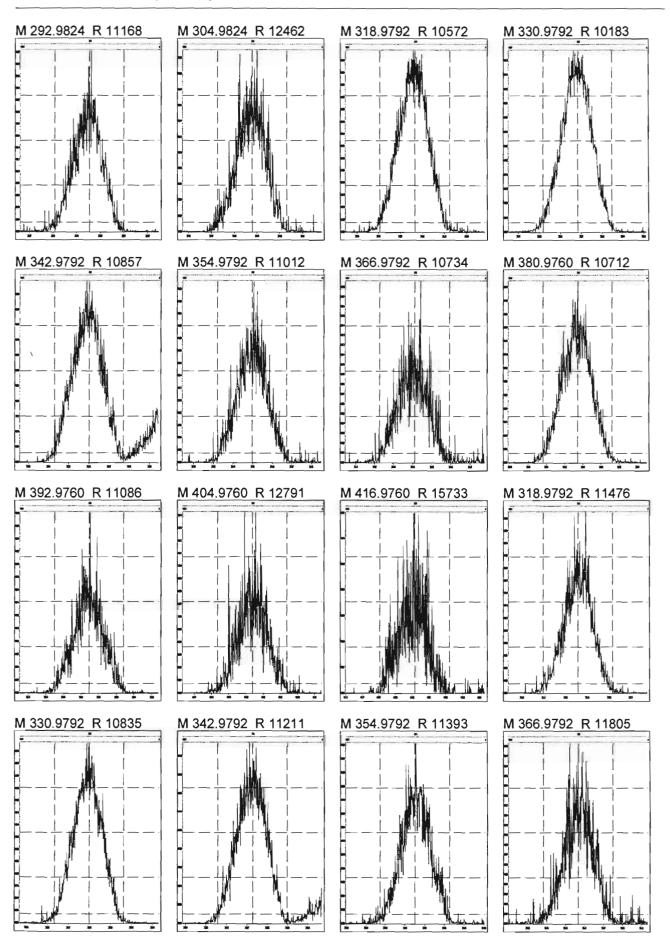


Dataset: Untitled Last Altered: Wednesday, January 22, 2020 09:03:58 Pacific Standard Time Printed: Wednesday, January 22, 2020 09:17:36 Pacific Standard Time Name: 200121R1_6, Date: 21-Jan-2020, Time: 18:06:23, ID: ST200121R1_6 1613 CS5 19C2206, Description: 1613 CS5 19C2206 CCDF 200121R1_6 100^{-4}_{-4} 136e7 $200121R1_6$ 100^{-4}_{-4} $100^{$	Page 77 of
$\begin{array}{c} \text{wednesday, January 22, 2020 09:17:36 Pacific Standard Time} \\ ame: 200121R1_6, Date: 21-Jan-2020, Time: 18:06:23, ID: ST200121R1_6 1613 CS5 19C2206, Description: 1613 CS5 19C2206 \\ \hline CDF \\ 0121R1_6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
$\begin{array}{c} \text{CDF} \\ \text{00121R1_6} \\ \text{00121R1_6} \\ \text{00121R1_6} \\ \text{00121R1_6} \\ \text{002} \\ \text{00121R1_6} \\ \text{002} \\ $	
$\begin{array}{c} \text{CDF} \\ \text{D0121R1_6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
$\begin{array}{c} \text{OCDF} \\ 1.23 \\ 1.36e7 \\ 264032016 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
$\begin{array}{c} OCDF \\ 41.23 \\ 1.3667 \\ 264032016 \\ \end{array}$	
$\begin{array}{c} 41.23\\ 1.36e7\\ 264032016\\ \hline \\ 00121R1_6\\ 0\\ 40.25 \\ 40.50 \\ 40.55 \\ 40.50 \\ 40.75 \\ 41.00 \\ 41.25 \\ 41.50 \\ 41.75 \\ 42.00 \\ 42.25 \\ 42.50 \\ 42.75 \\ 43.00 \\ 43.25 \\ 43.50 \\ 43.75 \\ 44.00 \\ 43.75 \\ 44.00 \\ 43.25 \\ 43.50 \\ 43.75 \\ 44.00 \\ 41.22 \\ 1.24e6 \\ \end{array}$	F5:Voltage SIR, 441.7
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	2.658e+0
$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$	·······
$\begin{array}{c} 0 \\ 0 \\ 41.23 \\ 1.61e7 \\ 309377984 \\ 0 \\ 40.25 \\ 40.50 \\ 40.55 \\ 40.50 \\ 40.75 \\ 41.00 \\ 41.25 \\ 41.50 \\ 41.75 \\ 42.00 \\ 42.25 \\ 42.50 \\ 42.75 \\ 43.00 \\ 43.25 \\ 43.50 \\ 43.75 \\ 44.00 \\ \hline \\ \textbf{30} \\ $	F5:Voltage SIR,
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	443.7 3.115e+0
$0^{\frac{1}{40.25}} 40.50 \ 40.75 \ 41.00 \ 41.25 \ 41.50 \ 41.75 \ 42.00 \ 42.25 \ 42.50 \ 42.75 \ 43.00 \ 43.25 \ 43.50 \ 43.75 \ 44.00$	
8C-OCDF 0121R1_6 00 30 30 30 30 30 41.22 1.24e6	44.25 44.50 44.75 45.00
0121R1_6 0 13C-OCDF 41.22 1.24e6	44.25 44.50 44.75 45.00
00 % 3 13C-OCDF 41.22 1.24e6	F5:Voltage SIR,
%/ 1.24e6	453.78 2.276e+0
- / \ 22b08b34	2.2700+0
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0121R1_6	F5:Voltage SIR,
13C-OCDF √ 41.22	455.7 2.673e+0
% / \ 1.47e6 26569430	
0 ⁴ 40.25 40.50 40.75 41.00 41.25 41.50 41.75 42.00 42.25 42.50 42.75 43.00 43.25 43.50 43.75 44.00	44.25 44.50 44.75 45.00
	44.20 44.00 44.70 40.00
PE5)0121R1_6	F5:Voltage SIR,
	44.77 513.67 1.042e+0
41.04	1.042010
41.76	
40.89 40.95 41.76 42.33 41.50 41.82 41.82 41.82	
41.23 41.55 41.99 43.34	44.30 44.69
40.27 40.36 40.51 40.69	4.12
	\sim
40.25 40.50 40.75 41.00 41.25 41.50 41.75 42.00 42.25 42.50 42.75 43.00 43.25 43.50 43.75 44.00	44.25 44.50 44.75

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: Untitled

Last Altered:Wednesday, January 22, 2020 09:03:58 Pacific Standard TimePrinted:Wednesday, January 22, 2020 09:17:36 Pacific Standard Time



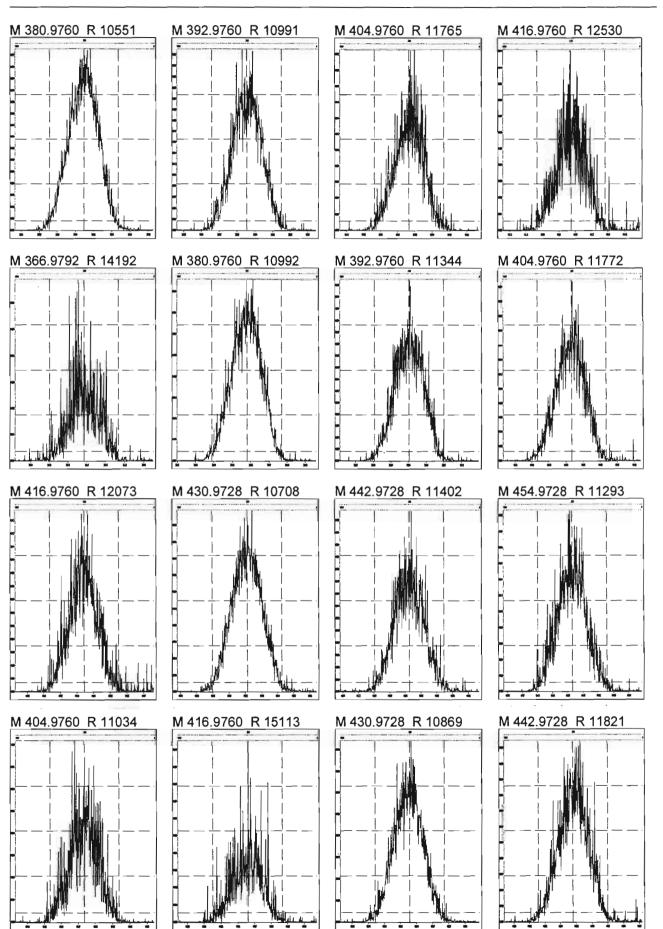
Resolution Check Report

MassLynx 4.1 SCN815

Tuesday, January 21, 2020 22:57:12 Pacific Standard Time

Work Order 1903649

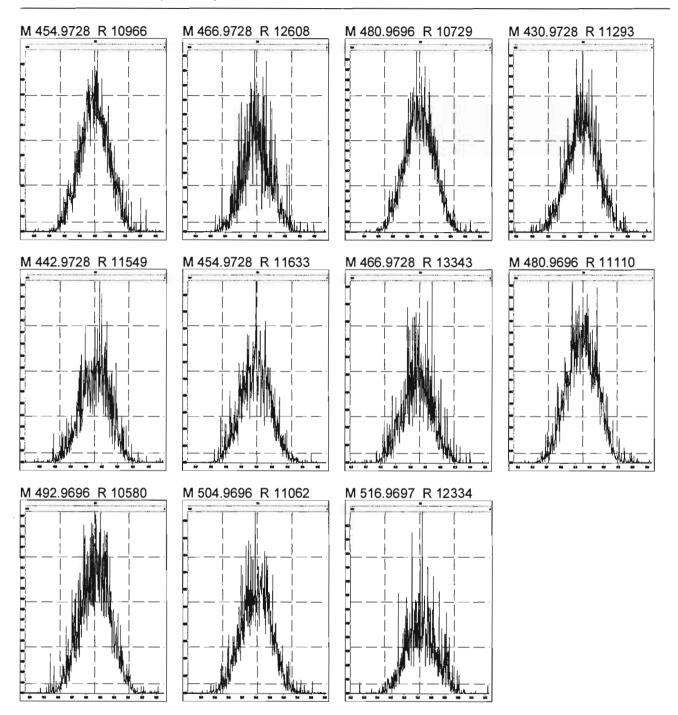
Page 284 of 301


Resolution Check Report

MassLynx 4.1 SCN815

Page 2 of 3

Tuesday, January 21, 2020 22:57:12 Pacific Standard Time


Work Order 1903649

Resolution Check Report

MassLynx 4.1 SCN815

Tuesday, January 21, 2020 22:57:12 Pacific Standard Time

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

U:\VG12.PRO\Results\200121R1\200121R1_SSS.qld Dataset:

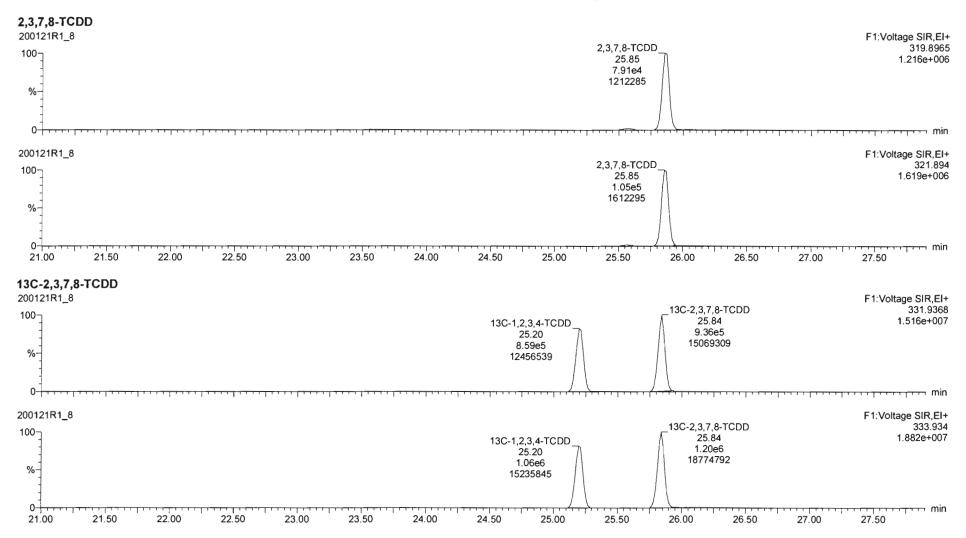
Last Altered:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 10:02:30 Pacific Standard Time

DB 1/22/20 C7 01/22/2020

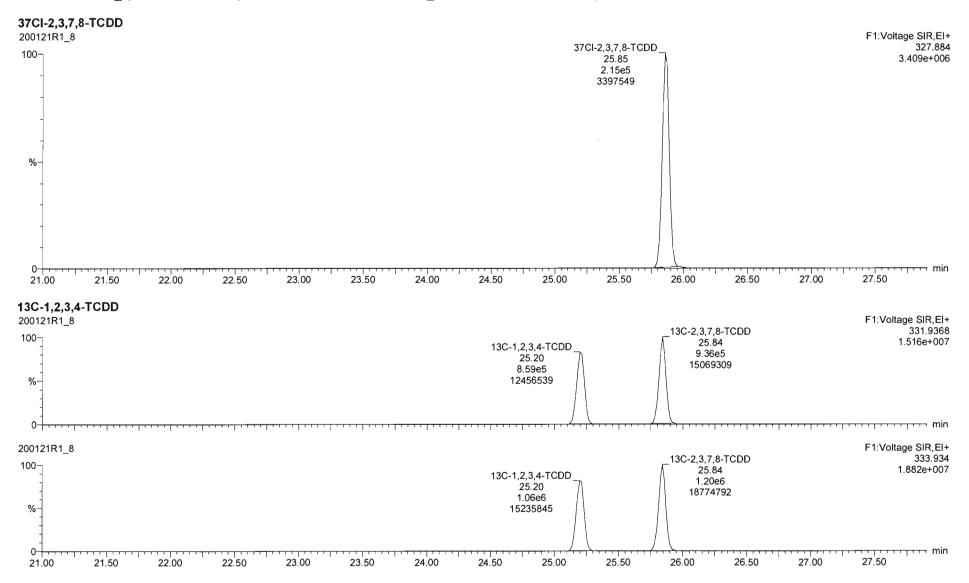
Method: U:\VG12.PRO\MethDB\1613rrt-1-15-20.mdb 21 Jan 2020 11:10:24 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50

10.23	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.84e5	0.75	NO	0.824	1.000	25.871	25.85	1.001	1.001	10.441	104	0.0185	10.4
2	2 1,2,3,7,8-PeCDD	8.04e5	0.61	NO	0.912	1.000	30.765	30.76	1.001	1.000	53.036	106	0.0418	53.0
3	3 1,2,3,4,7,8-HxCDD	6.31e5	1.22	NO	0.870	1.000	34.093	34.10	1.000	1.001	54.796	110	0.0648	54.8
4	4 1,2,3,6,7,8-HxCDD	6.59e5	1.17	NO	0.784	1.000	34.190	34.21	1.000	1.001	55.282	111	0.0657	55.3
5	5 1,2,3,7,8,9-HxCDD	6.26e5	1.21	NO	0.798	1.000	34.512	34.49	1.001	1.000	54.538	109	0.0692	54.5
6	6 1,2,3,4,6,7,8-HpCDD	4.01e5	1.00	NO	0.737	1.000	38.025	38.03	1.000	1.001	54.358	109	0.0994	54.4
7	7 OCDD	7.82e5	0.85	NO	0.800	1.000	40.995	41.01	1.000	1.000	107.95	108	0.0650	108
8	8 2,3,7,8-TCDF	1.73e5	0.70	NO	0.588	1.000	24.997	24.99	1.001	1.001	10.947	109	0.0219	10.9
9	9 1,2,3,7,8-PeCDF	1.07e6	1.51	NO	0.826	1.000	29.482	29.48	1.001	1.001	52.282	105	0.0451	52.3
10	10 2,3,4,7,8-PeCDF	1.24e6	1.51	NO	0.850	1.000	30.469	30.45	1.001	1.001	59.189	118	0.0427	59.2
11	11 1,2,3,4,7,8-HxCDF	5.59e5	1.16	NO	0.787	1.000	33.221	33.23	1.000	1.000	57.856	116	0.0767	57.9
12	12 1,2,3,6,7,8-HxCDF	6.25e5	1.16	NO	0.720	1.000	33.348	33.35	1.000	1.000	57.011	114	0.0670	57.0
13	13 2,3,4,6,7,8-HxCDF	5.73e5	1.16	NO	0.766	1.000	33.957	33.93	1.001	1.000	54.935	110	0.0772	54.9
14	14 1,2,3,7,8,9-HxCDF	4.61e5	1.16	NO	0.709	1.000	34.829	34.85	1.000	1.001	55.318	111	0.105	55.3
15	15 1,2,3,4,6,7,8-HpCDF	3.69e5	0.96	NO	0.732	1.000	36.623	36.60	1.001	1.000	57.559	115	0.0892	57.6
16	16 1,2,3,4,7,8,9-HpCDF	2.89e5	0.99	NO	0.816	1.000	38.588	38.60	1.000	1.000	56.845	114	0.0888	56.8
17	17 OCDF	6.31e5	0.84	NO	0.639	1.000	41.187	41.20	1.000	1.000	110.02	110	0.0530	110
18	18 13C-2,3,7,8-TCDD	2.14e6	0.78	NO	1.12	1.000	25.844	25.84	1.026	1.026	99.587	99.6	0.0478	
19	19 13C-1,2,3,7,8-PeCDD	1.66e6	0.63	NO	0.841	1.000	30.614	30.74	1.215	1.220	102.80	103	0.0733	
20	20 13C-1,2,3,4,7,8-HxCDD	1.32e6	1.26	NO	0.938	1.000	34.085	34.08	1.014	1.014	94.308	94.3	0.0822	
21	21 13C-1,2,3,6,7,8-HxCDD	1.52e6	1.26	NO	1.07	1.000	34.186	34.19	1.017	1.017	95.435	95.4	0.0724	
22	22 13C-1,2,3,7,8,9-HxCDD	1.44e6	1.22	NO	1.03	1.000	34.488	34.48	1.026	1.026	93.258	93.3	0.0748	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.00e6	1.03	NO	0.710	1.000	38.052	38.01	1.132	1.131	94.380	94.4	0.121	
24	24 13C-OCDD	1.81e6	0.86	NO	0.601	1.000	40.942	41.00	1.218	1.220	201.46	101	0.123	
25	25 13C-2,3,7,8-TCDF	2.69e6	0.74	NO	1.04	1.000	25.020	24.97	0.993	0.991	99.034	99.0	0.0546	
26	26 13C-1,2,3,7,8-PeCDF	2.49e6	1.54	NO	0.917	1.000	29.379	29.46	1.166	1.169	103.45	103	0.0973	
27	27 13C-2,3,4,7,8-PeCDF	2.47e6	1.53	NO	0.903	1.000	30.336	30.44	1.204	1.208	104.43	104	0.0989	
28	28 13C-1,2,3,4,7,8-HxCDF	1.23e6	0.50	NO	0.861	1.000	33.211	33.22	0.988	0.988	95.295	95.3	0.128	
29	29 13C-1,2,3,6,7,8-HxCDF	1.52e6	0.50	NO	1.05	1.000	33.312	33.34	0.991	0.992	97.190	97.2	0.105	
30	30 13C-2,3,4,6,7,8-HxCDF	1.36e6	0.49	NO	0.946	1.000	33.920	33.92	1.009	1.009	96.243	96.2	0.116	
31	31 13C-1,2,3,7,8,9-HxCDF	1.18e6	0.50	NO	0.816	1.000	34.825	34.83	1.036	1.036	96.448	96.4	0.135	

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

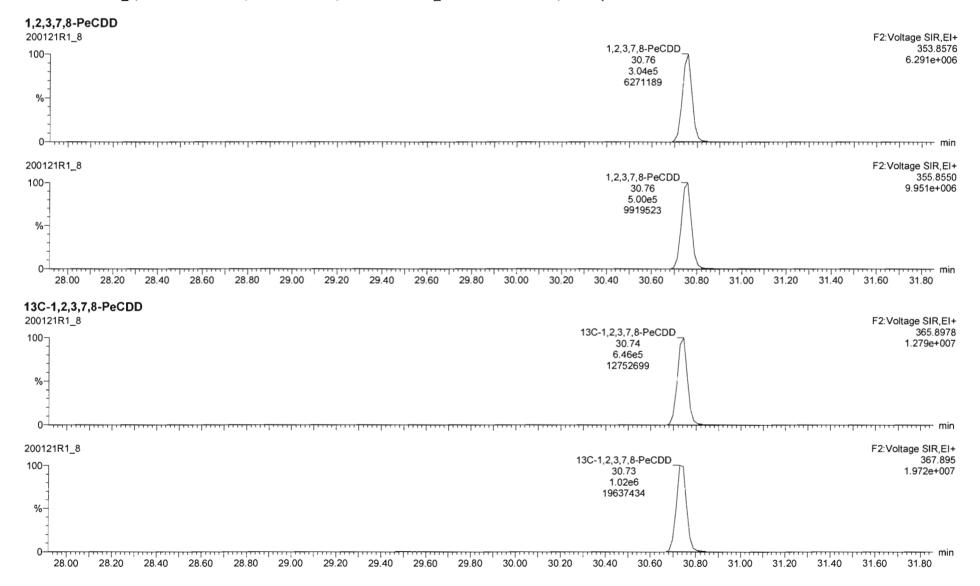

Dataset: U:\VG12.PRO\Results\200121R1\200121R1_SSS.qld

Last Altered: Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Printed: Wednesday, January 22, 2020 10:02:30 Pacific Standard Time


28 FT	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	8.76e5	0.41	NO	0.589	1.000	36.573	36.59	1.088	1.088	99.376	99.4	0.141	
33	33 13C-1,2,3,4,7,8,9-HpCDF	6.24e5	0.41	NO	0.448	1.000	38.589	38.59	1.148	1.148	93.096	93.1	0.186	
34	34 13C-OCDF	1.80e6	0.85	NO	0.586	1.000	41.178	41.19	1.225	1.225	205.10	103	0.0864	
35	35 37CI-2,3,7,8-TCDD	2.15e5			1.09	1.000	25.877	25.85	1.027	1.026	10.281	103	0.0115	
36	36 13C-1,2,3,4-TCDD	1.92e6	0.81	NO	1.00	1.000	25.260	25.20	1.000	1.000	100.00	100	0.0534	
37	37 13C-1,2,3,4-TCDF	2.62e6	0.74	NO	1.00	1.000	23.860	23.57	1.000	1.000	100.00	100	0.0566	
38	38 13C-1,2,3,4,6,9-HxCDF	1.50e6	0.49	NO	1.00	1.000	33.590	33.61	1.000	1.000	100.00	100	0.110	

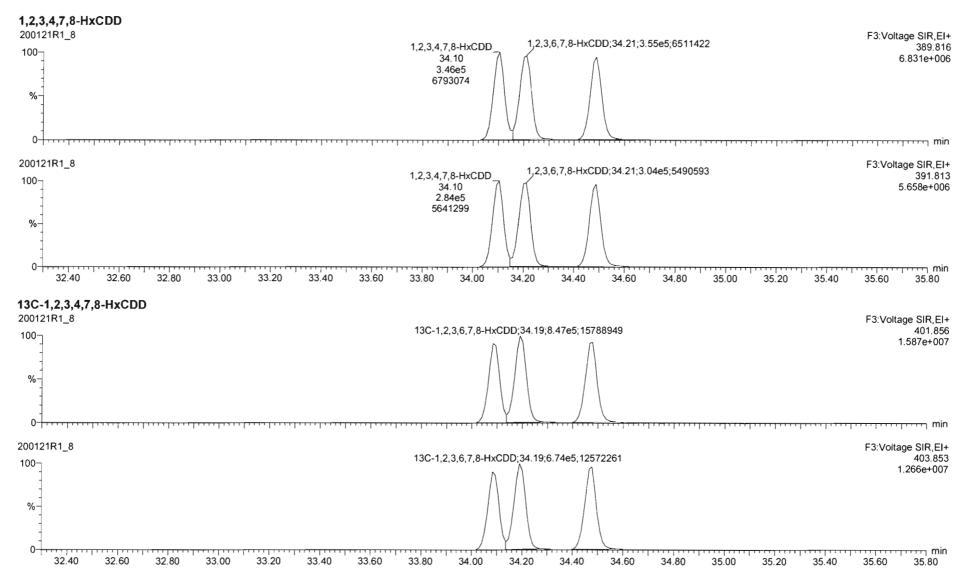
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	

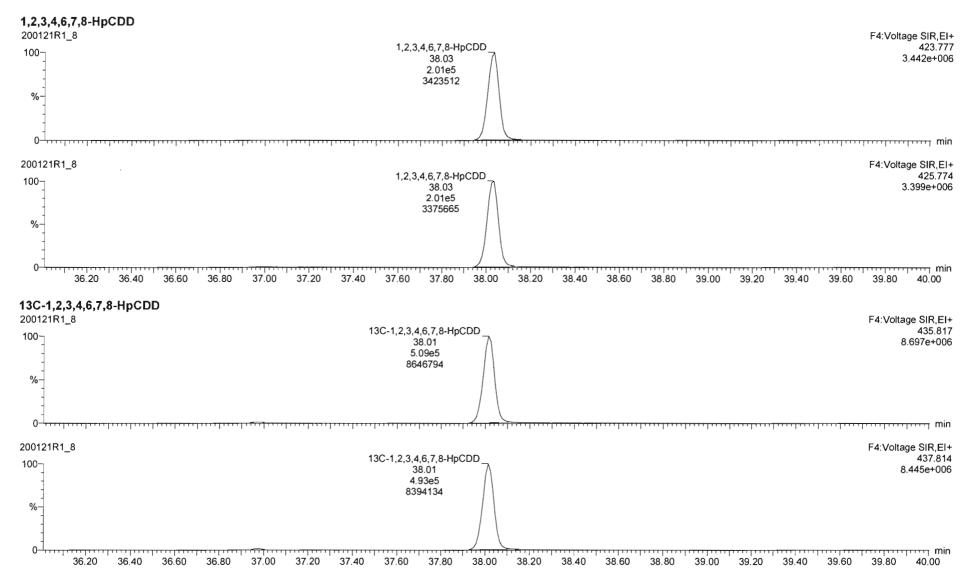
Method: U:\VG12.PRO\MethDB\1613rrt-1-15-20.mdb 21 Jan 2020 11:10:24 Calibration: U:\VG12.PRO\CurveDB\db5_1613vg12-1-21-20.cdb 22 Jan 2020 09:29:50



Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	

Work Order 1903649

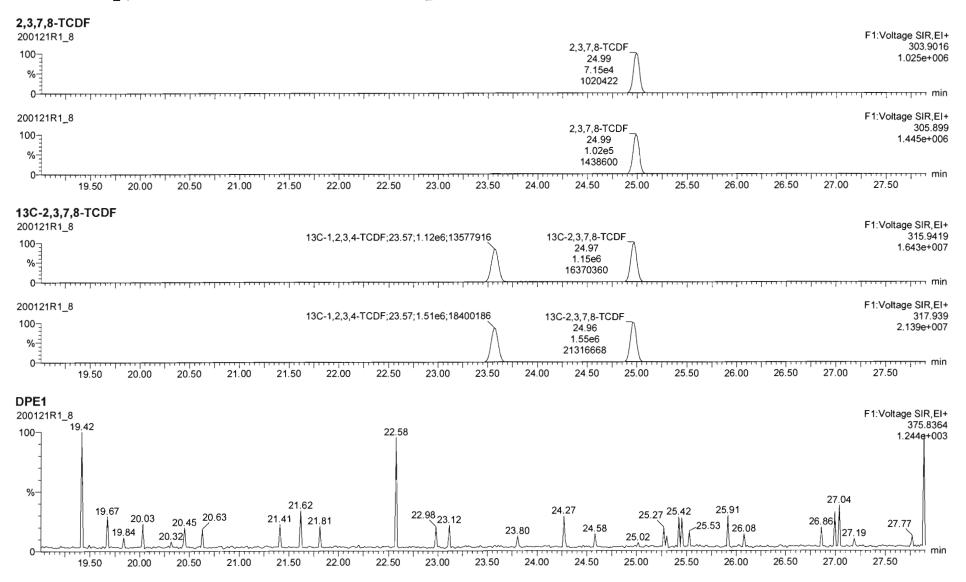

Quantify San Vista Analytica		Page 3 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	


Work Order 1903649

Page 291 of 301

Quantify San Vista Analytic		Page 4 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	

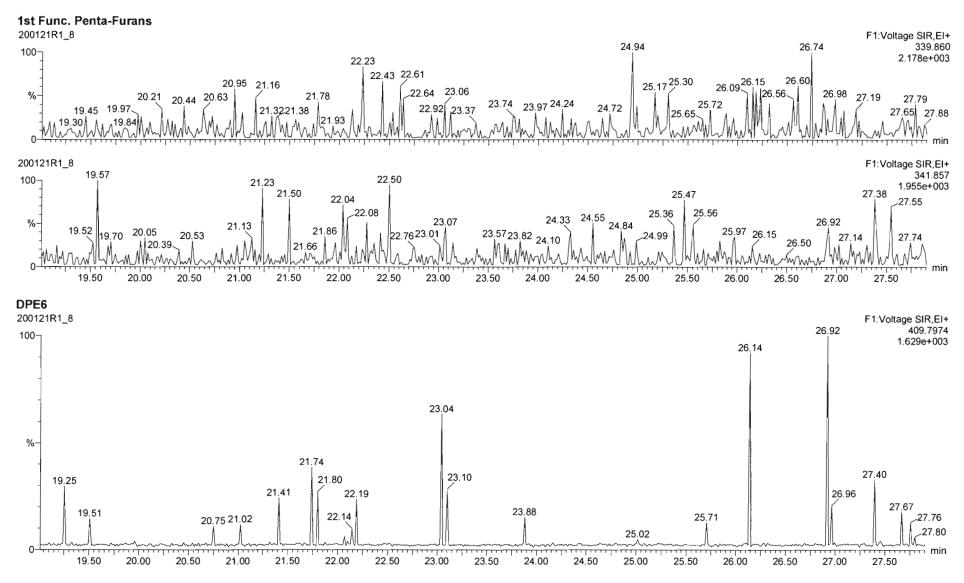
Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	

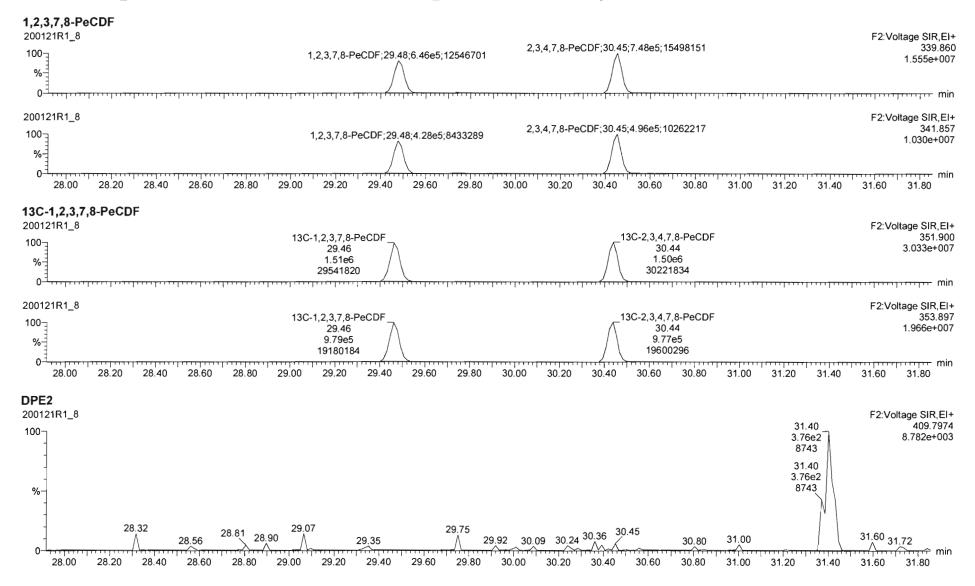


Work Order 1903649

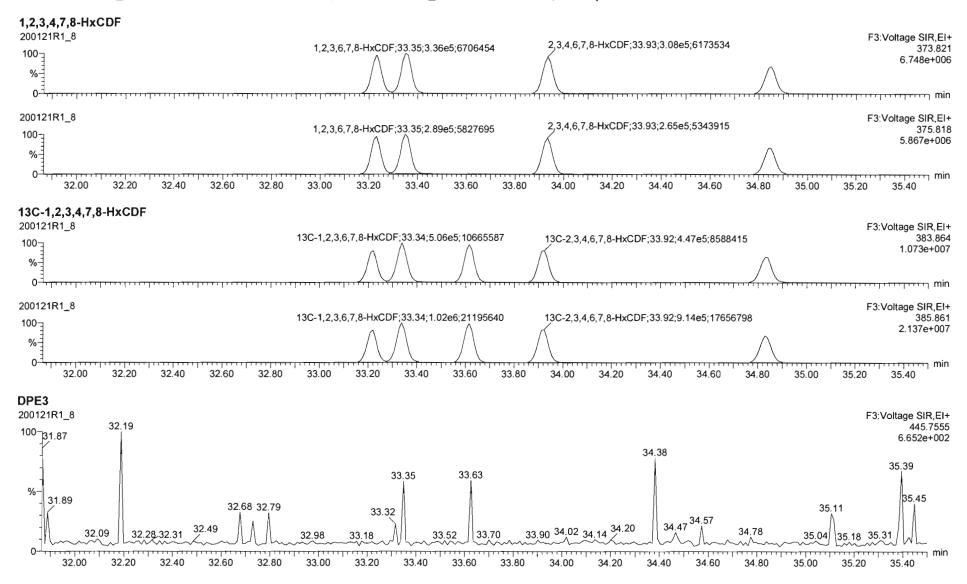
Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

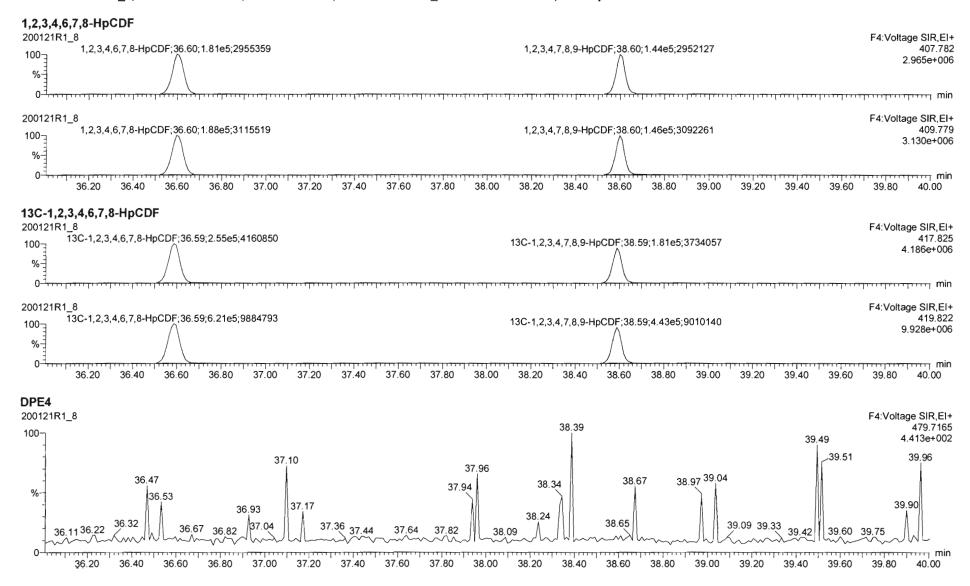
Dataset: Untitled

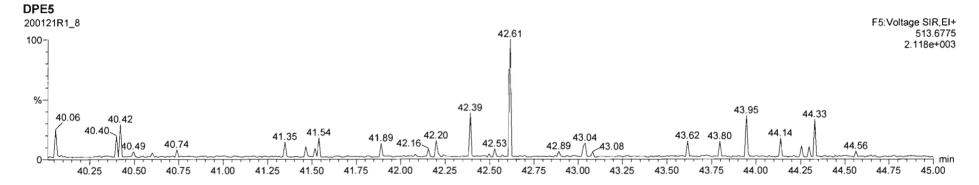

Last Altered:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:59:05 Pacific Standard Time

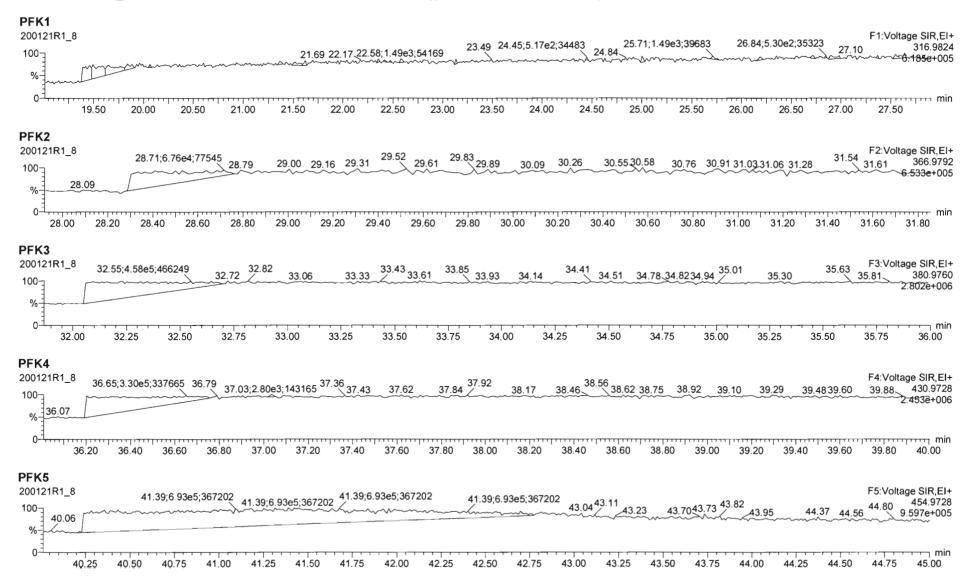

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory Vista Analytical Laboratory

Dataset: Untitled


Last Altered:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time
Printed:	Wednesday, January 22, 2020 09:59:05 Pacific Standard Time


Quantify San Vista Analytica		Page 9 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	


Quantify San Vista Analytica		Page 10 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	


Quantify San Vista Analytic		Page 11 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	

Page 12 of										4.1 SCN815	MassLynx			Quantify San Vista Analytica
													Untitled	Dataset:
										0 09:58:49 F 0 09:59:05 F				Last Altered: Printed:
	19C2207	613 SSS	iption: 1	7, Descri	19C2207	I3 SSS 1	₹1_1 16 1	200121F	2, ID: SS	ne: 19:40:22	an-2020, Ti	te: 21-Ja	IR1_8, Dat	Name: 20012
F5:Voltage SIR,E														DCDF 200121R1_8
441.7 5.396e+0											OCDF 41.20			100-
											2.87e5 5358149			%-
m	· · · · · · · · · · · · · · · · · · ·													0-1
F5:Voltage SIR,E 443.7										OCDF	~			200121R1_8 100- ₃
6.430e+0										41.20 3.44e5 6380463	\wedge			%-
4.25 44.50 44.75 45.00	43.75 44.00 44	43.50	43.25	43.00	42.75	42.50	42.25	42.00	41.75	.25 41.50	41.00 4	40.75	40.50	0- , 40.2
F5:Voltage SIR,E														3C-OCDF 200121R1_8
453.78 1.500e+0										13C-OCDF 41.19	Γ			100 ₇
										8.23e5 14895708	/\			%
		- 								+ + + + + + + + + + + + + + + + + + + +				0
F5:Voltage SIR,E 455.70										13C-OCDF				200121R1_8
1.742e+00										41.19 9.73e5	\int			100 %-

Quantify Sam Vista Analytica		Page 13 of 13
Dataset:	Untitled	
Last Altered: Printed:	Wednesday, January 22, 2020 09:58:49 Pacific Standard Time Wednesday, January 22, 2020 09:59:05 Pacific Standard Time	

