

## Washington Cost of Service Collaborative Production and Transmission Classification Scenarios February 21, 2019

















- Load Factor Peak Credit (Peak & Average)
- EIM Price Allocation
- Renewable Future Peak Credit
- 4. Thermal Peak Credit
- Renewable Future Peak Credit w NPC Allocated on Energy
- Renewable Future Peak Credit w NPC Allocated on EIM Prices



- Method Pacific Power currently uses
- Uses customers' load factor to define the component of production and transmission costs which are energy-related
- 43% demand 57% energy used for production and transmission split from last GRC
- Demand allocation to rate classes based on each class' percentage of the top 100 summer and top 100 winter hours for the western states
- Energy allocation to rate classes based on each class' percentage of annual MWH usage



- 8,760 average hourly EIM prices from CY 2017
- 8,760 Historic usage CY 2013
- EIM percentage allocation calculated by applying EIM hourly average rates to historical hourly usage for each rate class
- No consideration of demand



- Based upon a hypothetical scenario where marginal load is served with batteries and wind
- Capacity need met with battery
- Energy need met with wind
- Wind cost reduced for its anticipated capacity contribution multiplied by the fixed cost of a battery
- Produces a classification of 71% demand and 29% energy



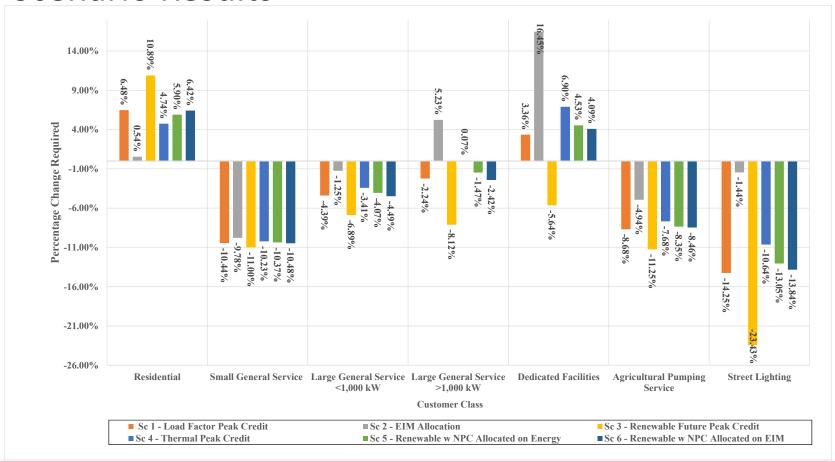
|                                                     | PacifiCorp                                        | )             |                                 |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------|---------------|---------------------------------|--|--|--|--|--|
|                                                     | State of Washi                                    | ngton         |                                 |  |  |  |  |  |
| Classification of Production and Transmission Costs |                                                   |               |                                 |  |  |  |  |  |
|                                                     |                                                   |               |                                 |  |  |  |  |  |
|                                                     | Lithium Ion Battery Storage (7.2 MWh/day)         |               |                                 |  |  |  |  |  |
| 1                                                   | Fixed Cost per KW                                 | \$345.21      |                                 |  |  |  |  |  |
| 2                                                   | Cost per MWH to Charge                            | \$22.02       |                                 |  |  |  |  |  |
| 3                                                   | Hours of Operation                                | 200           |                                 |  |  |  |  |  |
| 4                                                   | Storage Efficiency                                | 85%           |                                 |  |  |  |  |  |
| 5                                                   | Total Cost of Charging                            | \$5.18        | Line 2 / 1000 / Line 4 X Line 3 |  |  |  |  |  |
| 6                                                   | Total Cost 1 KW, 200 Hours                        | \$350.39      | Line 1 + Line 5                 |  |  |  |  |  |
|                                                     | 2.0 MW Turbine 38% CF V                           | VA, 2022 (80% | PTC)                            |  |  |  |  |  |
| 7                                                   | Fixed Cost per kW                                 | \$141.70      |                                 |  |  |  |  |  |
| 8                                                   | Average Output Requirement @ 53.6% Load Factor    | 4,695         | 8,760 X 53.6%                   |  |  |  |  |  |
| 9                                                   | Output @ 38% Capacity Factor                      | 3,329         | 8,760 X 38%                     |  |  |  |  |  |
| 10                                                  | Total kW Capacity Required                        | 1.41          | Line 8 / Line 9                 |  |  |  |  |  |
| 11                                                  | Total Fixed Costs                                 | \$199.87      | Line 7 X Line 10                |  |  |  |  |  |
| 12                                                  | Demand Related Cost @ 11.8% Capacity Contribution | \$57.46       | Line 10 X 11.8% X Line 1        |  |  |  |  |  |
| 13                                                  | Total Energy Related Cost                         | \$142.41      | Line 11 - Line 12               |  |  |  |  |  |
| 14                                                  | Demand Component                                  | 71%           | Line 6 / (Line 6 + Line 13)     |  |  |  |  |  |
| 15                                                  | Energy Component                                  | 29%           | 100% - Line 14                  |  |  |  |  |  |



- Compares the costs for a simple cycle combustion turbine (SCCT) to a combined cycle combustion turbine (CCCT)
- Capacity defined as ½ SCCT fixed cost plus fuel cost to operate for 200 hours
- Energy defined as fixed and fuel costs for CCCT
- Produces a classification of 32% demand and 68% energy



|    | PacifiCorp                                |                 |                                           |  |
|----|-------------------------------------------|-----------------|-------------------------------------------|--|
|    | State of Washir                           |                 |                                           |  |
|    | Classification of Generation and          | d Transmission  | Costs                                     |  |
|    |                                           |                 |                                           |  |
|    | Simple Cycle Combus                       | stion Turbine   |                                           |  |
| 1  | Fixed Cost per kW @ 2.28% Capacity Factor | \$132.96        |                                           |  |
| 2  | One-half of SCCT Fixed Costs              | \$66.48         | Line 1 X 50%                              |  |
| 3  | Fuel Cost per MWh                         | \$21.37         |                                           |  |
| 4  | Hours of Operation                        | 200             |                                           |  |
| 5  | Total Fuel Costs                          | \$4,274         | Line 3 X Line 4                           |  |
| 6  | Total Cost 1 MW, 200 Hours                | \$70,754        | Line 2 X 1000 + Line 5                    |  |
|    | Combined Cycle Comb                       | oustion Turbine |                                           |  |
| 7  | Fixed Cost per kW @ 72.1% Capacity Factor | \$121.69        |                                           |  |
| 8  | Fuel Cost per MWh                         | \$15.74         |                                           |  |
| 9  | Hours of Operation                        | 6,316           | Fixed Cost per kW @ 72.1% Capacity Factor |  |
| 10 | Total Fuel Costs                          | \$99,396        | Line 8 X Line 9                           |  |
| 11 | Fixed Cost per kW @ 72.1% Capacity Factor | \$221,086       | Line 7 X 1000 + Line 10                   |  |
| 12 | Demand Component                          | 32%             | Line 6 / Line 11                          |  |
| 13 | Energy Component                          | 68%             | 100% - Line 12                            |  |


## Scenario 5 - Renewable Future Peak Credit w NPC Allocated on Energy

- Same as Scenario 3 except NPC accounts are allocated on energy
- This includes
  - Account 447 Sales for Resale
  - Account 501 and 547 Fuel
  - Account 503 Steam from Other Sources
  - Account 555 Purchased Power
  - Account 565 Transmission of Electricity by Others

## Scenario 6 - Renewable Future Peak Credit w NPC Allocated on EIM

 Same as Scenario 5 except energy allocation is based upon average hourly EIM prices applied to class energy usage

## Scenario Results



11 POWERING YOUR GREATNESS