

# Developing a Commission jurisdictional specific cost-effectiveness test for distributed energy resources incorporating CETA

Workshop #2

**Docket UE-210804** 

Monday, August 1, 2022, at 9:00 a.m.

## Virtual Workshop Reminders



- This a public workshop. The presentation will be recorded and posted.
- MUTE your microphone when you're not speaking
- Use chat to ask questions during the presentation
- Use chat or raise hand to speak during Q & A



# NSPM BCA Process Workshop #2

## **Washington UTC Workshops**

Jennifer Snyder, WA Utilities & Transportation Commission (UTC)
Tim Woolf and Courtney Lane, Synapse Energy Economics
Julie Michals, E4TheFuture

**August 1, 2022** 

## Today's Meeting Agenda



#### **Brief Refresher on BCA Framework (15 min)**

- NSPM BCA framework
- Where/how does energy equity fit into decision making process
- Objectives for today's workshops (and upcoming workshop topics)

#### Consistency in BCA across DERs (30 min)

- Concerns raised in stakeholder comments
- Key concepts on what 'consistency' means
- Example of using a consistent BCA test across DERs

#### **Applicable Washington Policy Goals (30 min)**

- Policy inventory feedback from stakeholders
- Applicability to electric, gas utilities
- Review and discussion on priority policies and relevant impacts

#### **Current BCA Practice in WA (25 min)**

- PSE presentation
- Review/discuss key missing impacts

#### Q&A and Next Steps (20 min)

Review next workshop topics - key issues and challenges



## Today's Speakers/Moderator



Tim Woolf Vice President Synapse Energy Economics Lead Author – NSPM



Courtney Lane Senior Associate Synapse Energy Economics



Julie Michals
Director of Valuation
E4TheFuture
NESP Project Coordinator



## **Refresher on BCA Framework**



### **NSPM BCA Framework**

Fundamental BCA **Principles** 

Multi-Step Process to Develop a **Primary** Cost-effectiveness Test When and How to Use **Secondary** Cost-Effectiveness Tests



### What Do Cost-effectiveness Tests Tell Us?



## Primary Test Answers Question:

Which resources have benefits that exceed costs and therefore may merit utility acquisition or support on behalf of their customers?

#### **Secondary Tests Tell Us:**

How will DERs affect utility system costs (if the Utility Cost test is used as a secondary test)

How much will it cost to achieve certain policy goals

How to treat DERs that are marginally cost-effective





## **NSPM BCA Principles**

- 1. Recognize that DERs can provide energy/power system needs and should be compared with other energy resources and treated consistently for BCA.
- 2. Align primary test with jurisdiction's applicable policy goals.
- 3. Ensure symmetry across costs and benefits.
- 4. Account for all <u>relevant</u>, <u>material impacts</u> (based on applicable policies), even if hard to quantify.
- 5. Conduct a <u>forward-looking</u>, <u>long-term analysis</u> that captures incremental impacts of DER investments.
- 6. Avoid double-counting through clearly defined impacts.
- 7. Ensure transparency in presenting the benefit-cost analysis and results.
- Conduct <u>BCA separate from Rate Impact Analyses</u> because they answer different questions.



## NSPM 5-step Process Defining a Primary Cost-Effectiveness Test

#### **STEP 1** Articulate Applicable Policy Goals

Articulate the jurisdiction's applicable policy goals related to DERs.

#### **STEP 2** Include All Utility System Impacts

Identify and include the full range of utility system impacts in the primary test, and all BCA tests.

#### STEP 3 Decide Which Non-Utility System Impacts to Include

Identify those non-utility system impacts to include in the primary test based on applicable policy goals identified in Step 1:

 Determine whether to include host customer impacts, low-income impacts, other fuel and water impacts, and/or societal impacts.

#### STEP 4

#### **Ensure that Benefits and Costs are Properly Addressed**

Ensure that the impacts identified in Steps 2 and 3 are properly addressed, where:

- Benefits and costs are treated symmetrically;
- Relevant and material impacts are included, even if hard to quantify;
- Benefits and costs are not double-counted; and
- Benefits and costs are treated consistently across DER types

#### STEP 5

#### **Establish Comprehensive, Transparent Documentation**

Establish comprehensive, transparent documentation and reporting, whereby:

- The process used to determine the primary test is fully documented; and
- Reporting requirements and/or use of templates for presenting assumptions and results are developed.



## What about Energy Equity?

- Distributional equity requires assessing *which customers* experience the costs and benefits of utility programs and investments.
- BCAs are not designed to address distributional equity.
  - BCAs designed to measure costs and benefits on average across utility system, broad customer categories, host customers, or society. For example:
    - Avoided costs (i.e., benefits) typically a blend of avoided costs experienced by <u>all</u> customers – no distinction made for customer categories/target populations. Not possible to distinguish net benefits to target populations.
  - One exception: DER programs designed to serve target populations (e.g., low-income programs) can be evaluated separately from other programs to show whether those programs will provide net benefits to that population. <u>But</u> this says nothing about how all the other DER programs will affect the target populations.
- BCAs can help address distributional equity issues if they are supplemented with a distributional equity analysis (DEA).



## BCA vs DEA – Complementary Analyses

We will address DEA topic in more depth in later workshop

Together, BCA and DEA provide information on different kinds of program impacts



<sup>\*</sup>Non-utility system impacts can be accounted for in BCAs if consistent with the jurisdiction's policy goals, but inclusion of these impacts in BCA does not provide a measure of equity across target populations.



## **Consistency in BCAs across DERs**



### Stakeholder Feedback

- Alliance for Transportation Electrification
  - EV impacts may include flexible load management techniques, demand response, vehicle-to-grid
  - Societal benefits: LMI mobility, resiliency
  - Nascent industry and lack of data
- NW Energy Coalition
  - DERs that build a utility's load (e.g., transportation electrification) come with different costs and benefits for a utility than a DER that sheds or moves load



## NSPM Principle #1: Consistency in BCA across DERs

#### Importance of Consistency

- Consistent BCA framework reduces risk of either over or under-investing in a resource (or combination thereof)
- Siloed approach to valuing different DERs can be complex and overwhelming for commissions, utilities and stakeholders
- Allows for analysis of multiple-DER initiatives

#### Consistency Still Allows for Unique Characteristics of each DER

- A consistent BCA framework does not require all impacts to apply to all DERs
- The framework accounts for differences in DER technologies and use cases
- Policy framework should be comprehensive, but all policies may not apply to all DERs
- It may not be possible to develop quantitative values for each DER.
  - Impacts may need to be addressed qualitatively due to data limitations
  - The framework can be adopted overtime as industry changes



= typically a

= typically a cost
= either a benefit
or cost depending
on application
= not relevant for
resource type

benefit

## Example 1: Utility System Benefits & Costs

| Туре         | Utility System Impact          | EE | DR | DG | Storage | Electrification |
|--------------|--------------------------------|----|----|----|---------|-----------------|
| Generation   | Energy Generation              | •  | •  | •  | •       | •               |
|              | Capacity                       | •  | •  | •  | •       | •               |
|              | Environmental Compliance       | •  | •  | •  | •       | •               |
|              | RPS/CES Compliance             | •  | •  | •  | •       | •               |
|              | Market Price Effects           | •  | •  | •  | •       | •               |
|              | Ancillary Services             | •  | •  | •  | •       | •               |
| Transmission | Transmission Capacity          | •  | •  | •  | •       | •               |
|              | Transmission System Losses     | •  | •  | •  | •       | •               |
| Distribution | Distribution Capacity          | •  | •  | •  | •       | •               |
|              | Distribution System Losses     | •  | •  | •  | •       | •               |
|              | Distribution O&M               | •  | •  | •  | •       | •               |
|              | Distribution Voltage           | •  | •  | •  | •       | •               |
| General      | Financial Incentives           | •  | •  | •  | •       | •               |
|              | Program Administration Costs   | •  | •  | •  | •       | •               |
|              | Utility Performance Incentives | •  | •  | •  | •       | •               |
|              | Credit and Collection Costs    | •  | •  | •  | •       | •               |
|              | Risk                           | •  | •  | •  | •       | •               |
|              | Reliability                    | •  | •  | •  | •       | •               |
|              | Resilience                     | •  | •  | •  | •       | 0               |



## Example 2: Sample Impacts and DER Use Cases

| Category(                             | Туре       | Impact                                  | EE                           | DR                                                        | EV                                                              |
|---------------------------------------|------------|-----------------------------------------|------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| Electric Utility<br>System<br>Impacts | Generation | Energy Generation                       | Benefit                      | Will depend if DR only shifts load or impacts consumption | Cost                                                            |
|                                       |            | Capacity                                | Benefit                      | Benefit                                                   | Cost or Benefit if paired with demand flexiblity, TOU rates     |
|                                       |            | RPS/CES Compliance                      | Benefit                      | N/A if no change in sales                                 | Cost (increased electricity sales)                              |
|                                       |            | Market Price Effects                    | Benefit                      | Benefit                                                   | Energy = cost Capacity = benefit if paired with demand shifting |
|                                       |            | Ancillary Services                      | N/A                          | Benefit                                                   | Cost or benefit if V2G enabled                                  |
|                                       | General    | Risk                                    | Benefit                      | Benefit                                                   | Cost due to increased electricity consumption                   |
|                                       |            | Reliability                             | Benefit                      | Benefit                                                   | Cost without DR/time shifting. V2G could great benefit.         |
|                                       |            | Resilience                              | N/A                          | Benefit                                                   | N/A except for V2G mode that creates a benefit                  |
| Societal<br>Impacts                   | Societal   | Greenhouse Gas Emissions                | Yes                          | N/A or could be cost depending on timing                  | Yes                                                             |
|                                       |            | Public Health (critical air pollutants) | Yes                          | N/A or could be cost depending on timing                  | Yes                                                             |
|                                       |            | Economic Development and Jobs           | Yes                          | N/A                                                       | Yes                                                             |
|                                       |            | Energy Security                         | Yes (for other fuels)        | N/A                                                       | Yes                                                             |
|                                       | General    | Measure Costs (Host)                    | Cost                         | N/A                                                       | Yes                                                             |
| Host<br>Customer<br>Impacts           |            | Interconnection Fees                    | N/A                          | N/A                                                       | Yes                                                             |
|                                       |            | Other Fuel (oil, propane, gasoline)     | Yes (for other fuels)        | N/A                                                       | Yes                                                             |
|                                       |            | Tax Incentives                          | Depends on meausure          | N/A                                                       | Yes (depends on vehicle type)                                   |
|                                       |            | Asset value (property value)            | Benefit (ex. weatherization) | N/A                                                       | Yes                                                             |
|                                       |            | Productivity (includes O&M)             | Yes                          | Potential Cost                                            | Yes                                                             |
|                                       | Low-income | Comfort                                 | Yes                          | N/A                                                       | No                                                              |
|                                       |            | Health & safety                         | Yes                          | N/A                                                       | No                                                              |
|                                       |            | Mobility                                | N/A                          | N/A                                                       | Yes (depends on type of program)                                |



# Applicable WA Energy Policies (and relevant impacts)



## **Applicable Policy Goals**

#### Thanks to stakeholders who filled in inventory spreadsheet!

- There was significant overlap in policies identified in stakeholder inventory.
- All categories of impacts are covered under two umbrella policies:
  - Clean Energy Transformations Act
  - Climate Commitment Act.
- While CETA only applies to electric utilities, the CCA policy goals similarly cover the broad suite of relevant impact categories.



## **Applicable Policy Goals – Umbrella Policies**

| Impact type    | Impact category                                     | Electric policy, statute, or decision                                | Gas policy, statute, or decision  |
|----------------|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|
| Utility System | Electric Utility System (or Gas<br>Utility) Impacts | Clean Energy Transformation Act,<br>Climate Commitment Act- all DERs | Climate Commitment Act - all DERs |
| Other Fuels    | Other Fuels (gas, oil, propane)                     | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | Resilience                                          | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | Energy Security                                     | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | GHG Emissions                                       | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
| Societal       | Other Environmental                                 | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | Public Health                                       | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | Economic Development/ Jobs                          | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | Energy Burden/Equity                                | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
| Host Customer  | Host Customer (non-low Income)                      | CETA, CCA - all DERs                                                 | CCA - all DERs                    |
|                | Host Customer Low-Income                            | CETA, CCA - all DERs                                                 | CCA - all DERs                    |



## **Draft Regulatory Goals Identified by Commission in Docket U-210590**

- Resilient, reliable, and customer-focused distribution grid
- Customer affordability
- Advancing equity in utility operations
- Environmental improvements



### **Applicable Policy Goals Identified by Public Counsel**

- Reduce natural gas use
- Prioritize the maximization of family-wage job creation
- Ensure that all customers are benefiting from the transition to a clean energy economy
- Equitable distribution of energy benefits and reduction of burdens to vulnerable populations and highly impacted communities
- Long-term and short-term public health, economic, and environmental benefits
- Reduction of costs and risks
- Energy security and resiliency

- Encourage the development of new safe, clean, and reliable energy resources to meet demand in Washington for affordable and reliable electricity
- Value of combined heat and power (CHP)
- Coordinated and strategic planning of non-wires alternatives (NWA)
- Cybersecurity and data privacy
- Reduce motor vehicle air pollution and GHG emissions
- Reduce statewide GHG emissions
- Data transparency and standardization
- Reduce building GHG emissions



## **Applicable Policy Goals cont.**

#### and Relevant Impacts

#### Discussion:

- Focus today is on 'what's relevant and should be accounted for, one way or another' i.e., value is not zero
- Some impacts may be more relevant to some DERs vs others, or will depend on use case
- Some impacts may be hard to quantify we will review methodological options in future workshop, not today



# Methodologies and Inputs to Account for All Relevant Impacts (Including Hard-to-Quantify Impacts)

| Approach                         | Application                                                                                                               |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Jurisdiction-specific studies    | Best approach for estimating and monetizing relevant impacts.                                                             |
| Studies from other jurisdictions | Often reasonable to extrapolate from other jurisdiction studies when local studies not available.                         |
| Proxies                          | If no relevant studies of monetized impacts, proxies can be used.                                                         |
| Alternative thresholds           | Benefit-cost thresholds different from 1.0 can be used to account for relevant impacts that are not monetized.            |
| Other considerations             | Relevant quantitative and qualitative information can be used to consider impacts that cannot or should not be monetized. |

Future workshop to refer to Methods Tools & Resources (MTR) Handbook to help inform accounting for impacts: <a href="https://www.nationalenergyscreeningproject.org/resources/quantifying-impacts/">https://www.nationalenergyscreeningproject.org/resources/quantifying-impacts/</a>



## **Current BCA Practice PSE Presentation**

## PSE DER BCA Practice Review

August 1, 2022



## Energy Efficiency BCA Model (Simplified)





## Energy Efficiency BCA Model (Expanded)

#### **Integrated Resource Planning**

#### **Avoided Costs:**

- Market Energy Prices
- T&D Losses
- Social Cost of Carbon
- Renewable (0-carbon) Premium
- Capacity Price (peaker plant)
- Capacity O&M
- Discount Rate



Load Shapes = Peak Coincidence Factor (for capacity)



10% **NWPA** Credit

#### **Energy Efficiency**

#### Applicable Non-Energy Impacts (NEIs)

- 0&M
- Noise Reduction
- Improved Home Comfort
- **Local Avoided Costs**
- Avoided Shutoffs/Collections
- **Property Values**
- Water Savings
- **Productivity/Product Improvements**
- Indoor Air Quality
- Health and Safety
- **Lighting Quality**

#### Costs:

- **PSE Incentives to Customers**
- Marketing, Labor, Overhead
- Measure Cost (Full or Incremental)
- EM&V
- Data & Outreach Tools
- **Customer Market Research**



### CEIP DER BCA Model





#### **EVSE Investment Benefit-Cost Considerations**

- 1. Calculate Net benefit for entire EV population in electric service area (see table).
- 2. Calculate EVSE Investment recovery for EVSE products & services
- 3. Net #2 from #1, result is benefit in excess of program cost. If positive, then investments do not unfairly burden non-EV drivers.

Cost-Benefit Valuation detailed in Docket UE-220066-67-PSE-Exh-WTE-1CT-1-31-22 beginning Page 51, lines 7.

| Costs                                              | Benefits                               |
|----------------------------------------------------|----------------------------------------|
| Marginal Energy Costs                              | Revenues from Electric Transportation  |
| Marginal Generation Capacity<br>Costs              | Vehicle Operation & Maintenance Saving |
| Transmission & Distribution Costs                  | Avoided Direct Carbon Costs            |
| Ancillary Services or<br>Other Energy Supply Costs | Avoided Gasoline Costs                 |
| Incremental Vehicle Costs                          | Federal Tax Credits                    |
| Electric Vehicle Supply<br>Equipment Costs         |                                        |



### Considerations for future modeling

- EVSE requires flexibility
  - Resource as a DER is developing
  - Perhaps not ready for standard cost test models
  - Alternatives available PSE multi-year rate plan
- Aggregated DER participation in regional markets; FERC 2222
- Electrification and decarbonization: Added electric load costs offsets gas savings; makes CE difficult
- Existing and contemplated regulations for utility incentives to support DER development
  - EE: WAC 480- 109-100 (9)
  - EVSE: RCW 80.28.360
  - Performance Based Regulation Docket U-210590





## **Q&A and Next Steps**



## Follow-Up Workshops

**Workshop #1** (May 10 – NSPM overview)

#### Workshop #2 (August 1 - today)

- Step 1: Identify and confirm Washington's applicable policy goals
- Discuss current DER BCA practices in Washington

#### Workshop #3 (September 20)

- Step 2: Identify all utility system impacts to include in BCA tests
- Step 3: Confirm non-utility system impacts to include in primary test
- Step 4: Ensure costs and benefits are properly addressed

After Workshop #3, Staff will prepare Straw Proposal for stakeholder comment and discussion at next workshop

#### Workshop #4 (late October)

- Discuss Straw Proposal comments on proposed primary BCA test
- Address methods for quantifying key impacts
- Discuss additional topics, e.g., secondary tests, discount rates

#### Workshop #5 (November)

- Accounting for Energy Equity, complementary analysis to BCA
- Step 5: Ensure transparency (BCA inputs, results, decision framework)

## Homework Assignments

Review NSPM Part II: DER Benefits and Costs.

Be prepared to comment on and discuss:

- utility system impacts identify all
- non-utility system impacts specific impacts to include in a primary test

Contact Staff: <u>Jennifer.Snyder@utc.wa.gov</u>



#### **Contact Information**

Julie Michals, Director of Valuation – E4TheFuture jmichals@e4thefuture.org

Tim Woolf, Sr. Vice President - Synapse Energy Economics twoolf@synapse-energy.com

Courtney Lane, Senior Associate – Synapse Energy Economics <u>clane@synapse-energy.com</u>