EXH. CD-1T DOCKETS UE-240004/UG-240005 2024 PSE GENERAL RATE CASE WITNESS: DR. CHHANDITA DAS

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

Docket UE-240004 Docket UG-240005

PUGET SOUND ENERGY,

Respondent.

PREFILED DIRECT TESTIMONY (NONCONFIDENTIAL) OF

DR. CHHANDITA DAS

ON BEHALF OF PUGET SOUND ENERGY

FEBRUARY 15, 2024

PUGET SOUND ENERGY

PREFILED DIRECT TESTIMONY (NONCONFIDENTIAL) OF DR. CHHANDITA DAS

CONTENTS

I. INT	RODUCTION	1
II. EL	ECTRIC LOAD RESEARCH	2
	A. Electric Load Research	2
	B. Net Meter Load Profile	9
	C. Clean Energy Transformation Act ("CETA") and Customer Load Profiles	12
III.	CONCLUSION	13

PUGET SOUND ENERGY

PREFILED DIRECT TESTIMONY (NONCONFIDENTIAL) OF DR. CHHANDITA DAS

LIST OF EXHIBITS

- Exh. CD-2 Professional Qualifications of Dr. Chhandita Das
- Exh. CD-3 Load Research Report
- Exh. CD-4 Net Meter Class Loads

1		PUGET SOUND ENERGY
2 3		PREFILED DIRECT TESTIMONY (NONCONFIDENTIAL) OF DR. CHHANDITA DAS
4		I. INTRODUCTION
5	Q.	Please state your name, business address, and position with Puget Sound
6		Energy.
7	А.	My name is Dr. Chhandita Das and my business address is Puget Sound Energy,
8		P.O. Box 97034, Bellevue, Washington 98009-9734. I am employed by Puget
9		Sound Energy ("PSE") as Senior Economic Analyst in the Pricing and Cost of
10		Service Team since March 2019.
11	Q.	Have you prepared an exhibit describing your education, relevant
12		employment experience, and other professional qualifications?
13	A.	Yes. Exh. CD-2 describes my education, relevant employment experience, and
14		other professional qualifications.
15	Q.	What are your duties as Senior Economic Analyst for PSE?
16		As the Sourier Frequencie Analyst for the Driving and Cost of Souries toors. I
16	А.	As the Senior Economic Analyst for the Pricing and Cost of Service team, I
17		primarily support the load research effort within the group, which includes
18		conducting load research studies for general rate case ("GRC") fillings. I also
19		work towards improving the load research methodology and process by using new
20		tools, new sources of data (such as Advanced Metering Infrastructure), and

Prefiled Direct Testimony (Nonconfidential) of Dr. Chhandita Das

Q. What topics are you covering in your testimony?

A. My testimony presents the results of PSE's 2024 general rate case Class Load
 Research used to perform its electric cost of service study and rate design. PSE's
 2024 Load Research Report is provided as Exh. CD-3.

II. ELECTRIC LOAD RESEARCH

A. Electric Load Research

1

2

3

4

5

6

7

8

9

Q. How does PSE perform its electric load research?

10 A. PSE performs its electric load research to support its electric cost of service study 11 and rate design for a test year period. The method includes (i) developing hourly 12 load profiles for each rate class, (ii) calculating monthly load estimates (total and 13 average), and (iii) calculating peak demand estimates (non-coincident and 14 coincident). Hourly data, which were aggregated from 15-minutes interval load 15 data, were used for class load profiles for residential, large and medium-size rate 16 classes, and for some small rate classes and transportation customers. The load 17 research analysis includes processing the interval data, validating data quality, 18 adjusting for gaps when the full population data are not available or cannot be 19 used, developing load profiles, and calculating summary statistics.

Q. Did PSE use the same load research methodology in this case as in its last general rate case?

A. The core methodology used to develop load profiles remains the same. However, the process used in this rate case differs from the one used in the last rate case.
The major difference is the use of population data for developing load profiles instead of using data from a sample of approximately 1,500 meters.

WAC 480-85-050 (cost of service study inputs) requires that usage data for a 7 8 cost-of-service study must come from the best available source, such as advanced 9 metering infrastructure ("AMI") or automated meter reading ("AMR"). PSE 10 started mass implementation of AMI meters in mid-March 2018, and the study 11 includes data from July 2022 through June 2023, while AMI deployment was 12 underway. In this rate case, PSE attempted to develop class load profiles using the 13 full spectrum of interval data that is currently available and usable. At the time of 14 this study, the number of meters that had a full year's worth of hourly interval 15 data (and hence were eligible to be included in the analyses) yielded a coverage 16 rate range of 32% (irrigation) to 99% (residential) across different rates. The 17 coverage rate measures the percentage of a customer class that has AMI meters 18 providing PSE with data it can use in its load research.

19

1

2

3

4

5

6

Q. Did a consultant help PSE prepare its electric load research?

A. Yes. PSE is not currently capable of processing hourly interval data from nearly
one million customers and applying multiple data validation mythologies to clean

and validate the data. PSE engaged DNV Energy Insights ("DNV") to assist with the analyses because of its expertise in the field of load research and its ability to process a large volume of interval data.

DNV is a respected consulting company specializing in load research analysis with over 40 years of experience. DNV supported PSE's gas load research in the 2022 rate case. PSE leveraged DNV's expertise in processing a large volume of AMI data and developing load profiles in this rate case. The class load profiles produced by DNV were then supplemented with the analyses done in-house which consisted of processing multiple sources of supplemental data and producing summary statistics.

11

12

13

14

15

16

17

18

19

20

21

22

1

2

3

4

5

6

7

8

9

10

Q. What methodology did DNV use in this analysis?

DNV used standard load research practices in its review and analysis of the electric load data. At the time of the analysis, hourly data were not available for all its electric customers for the entire test period. This analysis takes advantage of as much data as possible and in cases when full population data are not available, it uses standard statistical techniques (like stratified ratio estimation) to expand the available daily data to the full populations of interest. Under stratified ratio estimation, PSE leverages data available for the various rate class samples (i.e., the hourly electric usage data) with information known for the full population of customers (such as the annual billed energy). In our analysis, the population of sample data are mapped back into the populations of interest. This allows us to create "case weights" that are used to weight the available sample data to the populations of interest. A case weight is simply the number of customers in the population of interest represented by each available sample point. Exh. CD-3 explains in detail the data coverage by rate.

- Q. Please describe the statistical methodologies and the historical interval load data, energy sales, and customer data used for PSE's Load Research Report.
- A. PSE's Load Research Report, Exh. CD-3, contains detailed descriptions of the statistical methodologies and validation tests performed and the historical data analyzed.

10Table 1 shows the rate classes studied, the total number of accounts, total annual11sales in kWh, and the average annual kWh sales per account for each rate class.12The Residential class (Schedule 7) contains 1,071,481 accounts (88% of all13accounts) with a total annual energy use of 11,732 GWh (54.2% of the total14system energy use).

1

2

3

4

5

6

7

8

9

		No. of	Total Annual kWh	Avg. kWh Use	% of Total kW
Rate Class	Description	Accounts	Use	per Account	Sales
7	Residential	1,071,481	11,731,755,849	10,949	54.24%
5	Sales for Resale	8	6,950,360	868,795	0.03%
8 & 24	Small General Services <50 kW	125,774	2,796,488,007	22,234	12.93%
11 & 25	Medium General Services 50-350 kW	8,158	3,026,718,350	371,016	13.99%
12 & 26	Large General Service >350 kW	854	1,823,650,286	2,136,464	8.43%
29	Seasonal Irrigation	626	13,571,856	21,672	0.06%
10 & 31	Primary Voltage General Service	501	1,389,392,591	2,771,856	6.42%
35	Primary Voltage Seasonal Irrigation	2	5,272,770	2,636,385	0.02%
	Primary Voltage Interruptible Service	140	100 100 001	070.004	0.50%
43	For Total Electric School	143	126,106,861	879,304	0.58%
46	High Voltage Interruptible Service	6	96,359,415	16,059,903	0.45%
49	High Voltage General Service	17	545,881,806	32,110,694	2.52%
50 - 59	Street & Area Lighting	9,096	66,745,093	7,338	0.31%
system Total		1,216,667	21,628,893,244	17,777	100.00%
Non System Loads	5				
449HV	Retail Wheeling - High Voltage	11	1,646,935,329	149,721,394	72.65%
449PV	Retail Wheeling - Primary Voltage	1	11,830,913	11,830,913	0.52%
459	Back-up Generation	3	291,535,781	97,178,594	12.86%
Special Contract	Retail Wheeling & Distribution Service	89	316,656,904	3,557,943	13.97%
Ion System Total	5	104	2,266,958,928	21,797,682	100.00%

Table 1: Population Count and Consumption Data

Q. Please summarize the results of PSE's load research results.

A. PSE's load research results are summarized and illustrated in charts and summary tables in Exh. CD-3. For the test year ending June 30, 2023, the load research results include class hourly load shapes for the year, class hourly loads during the system peak week, monthly non-coincident peak demand by class and monthly coincident demand by class (class contributions to system peak), monthly load factors, and coincidence factors by class. In addition, statistical summary tables in the report also show class monthly non-coincident peak and system coincident peak demand values averaged for twelve months and for the mid-winter months.

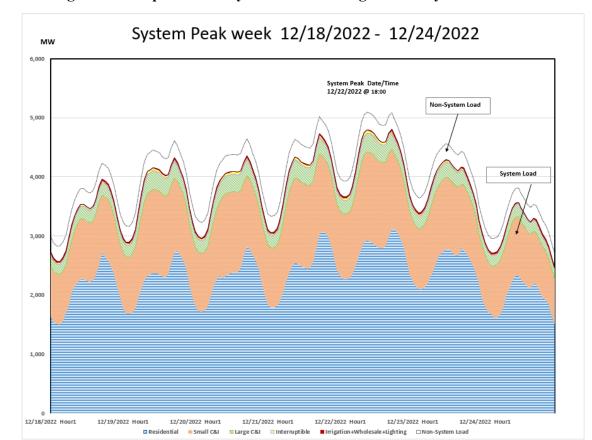


Figure 1: Composition of System Load during Annual System Peak Week

2

1

Figure 1 shows how the total PSE system loads are composed of the class loads during the annual system peak demand week. During the test year, PSE system peak occurred on December 22, 2022, at 6 PM with a total load at 4,807 MW. As shown in the graph, the Residential class contributes to the largest share of the system peak demand and the Small C&I class is the second largest contributor to the system peak. Figure 1 also superimposes non-system loads on top of the system loads to illustrate the total loads transmitted by PSE during its system peak week.

Rate Class	Peak Demand	Coincidence
Rate Class	(kW)	Factor
System Peak	4,807,263	-
Syste	m Rate Classes	
7	3,130,090	97.5%
8 & 24	551,140	84.9%
11 & 25	526,314	78.8%
12 & 26	283,530	79.8%
29	276	4.8%
10 & 31	189,810	80.5%
43	31,409	55.0%
5	2,598	78.7%
35	1	0.2%
46	8,780	44.7%
49	66,068	82.0%
50 - 59	17,246	41.8%
Non Sys	tem Rate Classes	
449HV	186,392	93.4%
449PV	2,021	84.7%
459	35,681	67.5%
Special Contract	55,697	90.8%

Table 2: Coincident Peak Load and Factor by Rate Class

Table 2 shows the class coincident peak loads and the coincidence factors by rate class. The data shows residential being the largest rate schedule, accounts for 65% of the peak system load with a coincident peak load of 3,130 MW. The small and medium general service classes, each of them accounts for about 11% of the system peak load. In addition, residential class has the highest coincidence factor of 97.5% and schedule 29 and 35 have the lowest (<5%). Because of the seasonality of schedules 29 and 35, these low co-incident factors are justified. For details on class peaks by months, load factors and other detail summary results please see Exh. CD-3.

B. Net Meter Load Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Q. How did you develop the net meter load profiles?

A. The net meter load profiles are developed using the same methodology as described above along with the other non-net meter load profiles. The net meter load profiles were estimated for the residential (schedule 7), small general service (schedules 8 & 24), and medium general service (schedules 11 & 25) commercial rate classes as these were the only classes with sufficient interval data for sufficient sample. Table 3 shows the population and sample size for the all the rate classes with net meters during the test year.

Table 3: Population and Sample Count by Rate Class for Net Meter Customers

	Population	
	(Device	Sample (Device
Rate Class	Location Count)	Location Count)
8 & 24 (C & I)	923	798
7	18,639	17,710
11 & 25 C	164	52
25 (1)	2	-
26 C	20	-
31 (C & I)	22	-
43	6	-
29	1	-
Total	19,777	18,560

In order to estimate separate net meter profiles for customers classes 7, 8 & 24, and 11 & 25 (C-commercial), different meter types were treated separately. At the final stage of the analysis, the net meter and non-net meter customer load profiles were added up to produce class level load profiles before calculating class summary statistics. The details of the method and treatment of these customers and the final result summaries are explained in Exh. CD-4.

Q. Please summarize the net meter load profile study results.

1

2

3

4

5

6

7

8

9

10

11

12

A. A brief summary of the findings from the net meter load profile study is presented here, with greater detail provided in Exh. CD-4.

 Table 4: Population Count and Consumption Data for Net Meter Classes

Rate Class		No. of Accounts	Total Annual	Avg. kWh use per	% of Total kWh
		NO. OF ACCOUNTS	kWh Use	account	Sales
	7 - NM	17,710	92,135,650	5,202	0.53%
	7 - Non NM	1,072,410	11,639,620,199	10,854	66.84%
	8 & 24 (C & I) - NM	798	16,630,323	20,840	0.10%
	8 & 24 (C & I) - Non-NM	125,899	2,779,857,684	22,080	15.96%
	11 & 25 (C) - NM	52	8,910,197	171,350	0.05%
	11 & 25 (C) - Non-NM	7,846	2,878,044,378	366,817	16.53%
	Total	1,224,715	17,415,198,431	14,220	100%

Note: For net meters, the net kWh is reported in the table.

Table 4 shows the breakdown of annual sales by customer types for schedules 7, 8 & 24, and 11 & 25 (commercial). For each rate class studied here, the net meter customers account for less than 1% of total class sales. For details on hourly load profiles for net meter and non-net meter customers, monthly coincidence peak, coincidence factors, class peaks and load factors, please see Exh. CD-4.

Rate Class	Coincident Peak Demand (kW)	Coincidence Factor	Class Peak Demand (kW)
System Peak	4,807,000	-	
Net Meter Ra	te Schedules		
7 - Non-net meter	3,069,916	100.0%	3,069,916
7 - Net meter	60,174	100.0%	60,174
8 & 24 Non-net meter	544,413	89.3%	609,907
8 & 24 Net meter	6,727	93.6%	7,185
11 & 25 (C)- Non-net meter	505,166	88.4%	571,635
11 & 25 (C)- Net meter	2,179	95%	2,292

Table 5: Net Meter Customers	' Coincident Peak and Coincident Factor
------------------------------	---

Table 5 shows the net meter and non-net meter customers' coincident peaks and coincident factors. Since a majority of class 7 customers are non-net meter, their coincident peaks and coincidence factor are the same as the full class coincidence factor. The net meter residential customers' coincidence peak was 60.1 MW, about 1% of the system peak load. The net meter class peak was on the same day as the total class and the system peak date and time. Further, it was observed that peak demand per net meter customer was 3.90 kW, higher than 2.98 kW for non-net meter customer. In addition, the minimum load, or the maximum return to the grid for residential net meter customers, occurred on June 5, 2023, at 2 PM with – 99.3 MW of net load (returned load 101.4 MW).

The 8 & 24 class's non net meter coincidence peak and coincidence factor are
similar to the full class coincidence peak. The net meter coincidence peak was
6,727 kW, which is only 0.1% of the system peak load. The class peak for 8 & 24
class net meter customer was 7.2 MW on December 22, 2022, at 9 AM.
Comparing peak demand per customer, net meter customers again had a higher

Prefiled Direct Testimony (Nonconfidential) of Dr. Chhandita Das

1		average peak demand (8.83 kW) than non-net meters customers (4.74 kW). The
2		minimum load for schedule 8 & 24 (commercial) net meter customers was on
3		June 4, 2023, at 2 PM with -7.1 MW load (returned load 8 MW).
4		Table 5 also shows the schedule 11 & 25 (C) class's non-net meter coincidence
5		peak and coincidence factor are similar to the full class coincidence peak. The net
6		meter coincidence peak was 2,179 kW which is only 0.05% of the system peak
7		load. The class peak for schedule 11 & 25 (C) class net meter customers was
8		2,292 kW on December 22, 2022, at 5 PM. Comparing peak demand per
9		customer, net meter customers average peak demand (54.72 kW) was lower than
10		non-net meters customers (74.70 kW). The minimum load for schedule 11 & 25
11		(C) net meter customers was on June 3, 2023, at 1 PM with -113 kW load
12		(returned load 546 kW).
13 14		C. Clean Energy Transformation Act ("CETA") and Customer Load Profiles
15	Q.	How does PSE foresee the load research to evolve to align with CETA?
16	A.	PSE recognizes that in order to achieve an equitable distribution of the costs and
17		benefits associated with CETA, there is a need to rethink the load research and
18		how it can best inform the cost of service rate makings. Load profiles for different
19		customer groups (by income, energy burden and vulnerability index) would
20		reflect better information regarding customer usage, which could help the cost-of-
21		service studies for a fair and equitable rate making. PSE intends to explore the

feasibility of this effort, which would require identifying interested groups and investigating data coverage and data quality for these groups.

III. CONCLUSION

Q. What do you recommend based on the 2024 load research performed by PSE?

The load research results presented in Exh. CD-3 and Exh. CD-4 are based on a A. thorough analysis of the hourly load data by class, system hourly load data, monthly and annual class sales, and customer data. For this rate case, PSE conducted load research based on all customers who had hourly load data available instead of 1,500 customers' interval load data. Allowing a large sample size could potentially improve the load profiles estimates and reduce sampling errors. They were statistically validated for accuracy and reasonableness. The distinction of net meter and non-net meter customers further improves the results. PSE is continuously striving to improve data and methodologies. The current load research analysis was conducted using the best available data sources and technology at hand, and I recommend that the Commission approve the load research results provided in Exh. CD-3 as a basis for PSE's electric cost of service study and rate design in this proceeding.

Q. Does that conclude your prefiled direct testimony?

Yes, it does. A.