#### **BEFORE THE WASHINGTON**

#### **UTILITIES & TRANSPORTATION COMMISSION**

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

CASCADIA WATER, LLC

Respondent.

#### DOCKET UW-240151

### CROSS-EXAMINATION EXHIBIT OF MATTHEW J. ROWELL AND CULLEY J. LEHMAN ON BEHALF OF THE WASHINGTON STATE OFFICE OF THE ATTORNEY GENERAL PUBLIC COUNSEL UNIT

#### EXHIBIT MJR-CJL-\_X

Cascadia Discovery Response to WCAW DR No. 36, Attachment 3 [Excerpt], "2009-14CALWSP"

February 6, 2025

UW-240151 Exh. MJR-CJL-\_X Page 1 of 60

CAL WATERWORKS Lehman Enterprises, Inc. PO Box 549 Freeland, WA 98249

WA DOH PWS ID #31040

# 2009 TO 2014 WATER SYSTEM PLAN

George Bratton, P.E. Civil Engineer 1252 S. Farragut Drive Coupeville, WA 98239 (360) 678-4552

February 2009

# **Table of Contents**

| I.    | PURPOSE                                | Page 1  |
|-------|----------------------------------------|---------|
| II.   | BACKGROUND                             | Page 2  |
| III.  | DESCRIPTION OF SYSTEM                  | Page 3  |
| IV.   | 1995 PLAN REVIEW                       | Page 7  |
| V.    | PLANNING                               | Page 8  |
| VI.   | DESIGN CRITERIA                        | Page 11 |
| VII.  | SYSTEM EVALUATION                      | Page 15 |
| VIII. | RECOMMENDED IMPROVEMENTS               | Page 17 |
| IX.   | CAPITAL FACILITIES PLAN                | Page 18 |
| Х.    | FINANCES                               | Page 18 |
| XI.   | OPERATION & MAINTENANCE                | Page 19 |
| XII.  | STANDARD SPECIFICATIONS<br>WATER MAINS | Page 20 |

# Calculations

Summary of System Information & Allowable Number of ERUs Reservoir Sizing Network Hydraulic Analysis Booster pump sizing (with proposed pump curves) Hydropneumatic Tank Sizing Budget Cost Estimate

# Tables

| Table 1 | Wells |        |
|---------|-------|--------|
| Table 2 | Water | Rights |

- Table 2Water RightsTable 2Several Water Or
- Table 3Source Water Quality Summary, IOCs
- Table 4Distribution System Inventory Mains
- Table 5Distribution System Inventory Appurtenances
- Table 6Status of 1995 Twenty-Year Plan
- Table 7Six-Year Capital Improvement Budget
- Table 8Routine Distribution System Maintenance and Inspection

# Appendices

- A. Recent correspondence with WA DOH, WA DOE, County
- B. Water Right Permits
- C. Well site approval
- D. Well pump curves
- E. Well logs
- F. Declaration of covenants/restrictive covenants
- G. Well pump test results
- H. Booster pump curves
- I. County franchise agreement
- J. Easements
- K. County Service Area Agreement
- L. Standard Construction Specifications
- M. Water Conservation Plan
- N. Water Shortage Response Plan
- O. Cross Connection Control Program
- P. Wellhead Protection Plan
- Q. Water Quality Monitoring Plan
- R. Emergency Plan
- S. Financial Viability Assessment
- T. Service Policies
- U. Water Supply and Demand Forecast, Water Right Self-Assessment and WSP Consistency Statement Checklist
- V. Wholesale Service Agreement

## Drawings

- Water Distribution System Comprehensive Map
- Water Distribution System Retail and Wholesale Service Area
- Water Distribution System System Schematic
- Water Distribution System Computer Schematic

With Standard Construction Specifications (see Appendix L)

- W-1 Trench Details
- W-2 Thrust Blocks Details
- W-3 Fire Hydrants Details
- W-4 Gate Valve Details
- W-5 Flushing and Disinfection Details
- W-6 Blow-off Details
- W-7 Residential Service Details
- W-8 Air Release Valve Details
- W-9 Road Casing Pipe Details

2009 - 2014 WATER SYSTEM PLAN

| W-10     | Service Connection - Residential          |
|----------|-------------------------------------------|
| W-11     | Service Connection - Commercial           |
| W-12     | Service Separation Details                |
| W-13     | RPBA Details                              |
| W-14     | DCVA Details                              |
| W-15     | Fire Line DCDA Details                    |
| W-16     | RPBA Details for Construction Water       |
| W-17     | General Cross Connection Control Details  |
| E-1 to 3 | Erosion Control - Water Main Installation |
|          |                                           |

With Wellhead Protection Program (see Appendix P)

| WH-1 | Calculated | fixed | Radius |
|------|------------|-------|--------|
|------|------------|-------|--------|

With Water Quality Monitoring Program (see Appendix Q)

WQ-1 Routine Sample Locations

# **Reference Documents**

Management & Operations Manual (to be updated with new booster pump station)

# CAL WATERWORKS 2009 – 2014 WATER SYSTEM PLAN

### I. PURPOSE

The purposes of this Water System Plan are to provide:

- 1. An inventory of the major water system facilities.
- 2. A summary of the improvements made to the system since the approval of the 1995 *Water System Plan* prepared by Trepanier Engineering.
- 3. An evaluation and capacity analysis of the present system.
- 4. Recommendations for improvements necessary for the system to comply with the Washington Department of Health (WA DOH) guidelines.
- 5. Budget-level cost estimates for recommended system improvements.
- 6. A report on the status of various management and operation programs required by the WA DOH.

This Plan includes the following:

- (1) Standard specifications and construction details for the extension and replacement of water mains.
- (2) Cross Connection Control Program.
- (3) Water Conservation Plan and Water Shortage Response Plan.
- (4) Wellhead Protection Plan.
- (5) Water Quality Monitoring Plan (e.g., Coliform Monitoring Plan).
- (6) Emergency Plan.
- (7) Six-year and twenty-year capital improvement programs.
- (8) Financial Viability Assessment.

The operating programs and plans updated for this *Water System Plan* are also incorporated into the Cal Waterworks *Management and Operations Manual*.

With approval of the Plan, approval is requested to supply 131 ERUs. The limiting factor is the volume of water storage, based on providing the recommended minimum 200 gpd/ERU in standby storage. Approval is also requested for a wholesale intertie to the Goss Lakeridge Acres water system. The approval to supply 131 ERUs will allow the system to supply the 15 current customers in the Goss Lakeridge Acres system plus 17 ERUs for growth until additional storage is provided.

A project report was submitted at the same time as the submittal of this *Water System Plan*. The project report is for the upgrade of the pumping facilities recommended in the six-year capital program. The upgrade of the pumping facilities includes the installation of an emergency generator.

A separate project report will be submitted for the construction of a second storage reservoir. A project report will be submitted by Goss Lakeridge Acres for the improvements need to receive and distribute wholesale water.

#### II. BACKGROUND

The CAL Waterworks system (WA DOH ID #310406) is owned by Lehman Enterprises, Inc., a for-profit corporation incorporated in the State of Washington. The Group A system is located on the south end of Whidbey Island approximately one mile northeast of the community of Freeland, WA. The service area is shown in the accompanying drawing Water Service Area.

CAL Waterworks, hereinafter referred to as the Purveyor, currently supplies or has commitments to supply 99 equivalent single-family residential connections (ERUs). The system currently has 95 active accounts.

The WA DOH currently approves the system for supply of 99 ERUs.

Because Lehman Enterprises, Inc. owns multiple water systems, with a combined number of customers greater than 100, the CAL Waterworks system is regulated by the WA Utilities and Utilities Commission.

The standard plans and specifications for water main installation are common to all Lehman Enterprises, Inc. owned water systems. The operating programs and plans are provided in two parts. Part I is common to all Lehman Enterprises, Inc. owned water systems; Part 2 provides specific information for each water system.

The Goss Lakeridge Acres Water Association has voted to purchase water (wholesale supply) from the CAL Waterworks system as an alternative to installing a reservoir, booster pump station and water treatment to remove arsenic, iron and manganese. The purchase of wholesale water was included in the Association's Drinking Water State Revolving Fun Loan scope of work

The capacity analysis and system design in this *Water System Plan* includes the 27 ultimate ERUs in the Goss Lakeridge Acres retail service area.

The Purveyor's mailing address is:

P. O. Box 549 Tel. (360) 331-7388 Freeland, WA 98249

The water system day-to-day management and operation, as well as system maintenance are assigned to the following contract certified operator:

Terry Lehman B & W Pump Company P. O. Box 55 Freeland, WA 98249 Tel: (360) 331-4016

Certif. No. 004920 BTO, CCS, WDM3

#### **III. DESCRIPTION OF SYSTEM**

The general configuration of the water system is shown in the drawings in the appendices to this Plan. For the purposes of discussion, the facilities have been grouped into areas of supply; water quality and treatment; storage, pumping and pressure reduction; and distribution.

References to documents denoted with an asterisk <sup>[\*]</sup> were previously submitted in the approved 1995 Water System Plan.

#### Sources of Supply

The system has two wells located on the Purveyor's owned lot containing a storage reservoir and a booster pump station. The following table summarizes the well information.

#### Table 1 WELLS

|                   | Casing<br>Diameter | Year<br>Drilled | Depth    | Pump<br>Size | Pumping<br>Rate |
|-------------------|--------------------|-----------------|----------|--------------|-----------------|
| Well No. 1 (SO 1) | 6"                 | 1963            | 178 feet | 3 hp         | 45 gpm          |
| Well No. 2 (SO 2) | 6"                 | 1984            | 179 feet | 3 hp         | 45 gpm          |
|                   |                    |                 |          | Total        | 90 gpm          |

A well field was designated in 1994 for the purpose of water quality monitoring (See Appendix  $E^{[*]}$ ).

The wells have the following water rights:

# Table 2WATER RIGHTS

|            | Certificate [C] or Permit | [P]   | Withdrawal<br>Rate<br>(Qi) | Annual<br>Withdrawal<br>(Qa) |
|------------|---------------------------|-------|----------------------------|------------------------------|
| Well No. 1 | G1-00032C, Dec. 1971      |       | 55 gpm                     | 27.5 acre-feet               |
| Well No. 2 | G1-27478P, June 1994      |       | 35 gpm                     | 26.5 acre-feet               |
|            |                           | Total | 90 gpm                     | 54.0 acre-feet               |

Copies of the WA Department of Ecology's (WA DOE) Water Right Certificates and most recent Report of Examination are included in Appendix B. The water rights are additive.

Bratton

Well No. 1 is located within the building containing the booster pumps for the system. Well No. 2 is located adjacent to the building.

The 100-foot sanitary control radii for both wells extend beyond the well lot.

The Declaration of Covenant and Restrictive Covenants for the sanitary control areas are included in Appendix F. Not all adjacent property owners have signed restrictive Covenants. All adjacent property owners within the sanitary control radii have been requested to sign a Restrictive Covenants.

The well pump curves for the wells are included in Appendix D.

Well pumping test results are included in Appendix G. The WA DOE Report of Examination in Appendix B provides the hydrogeology assessment of the well pumping test.

A Wellhead Protection plan is included in the Appendix P. The WA DOH "Ground Water Susceptibility Assessment Survey" forms for Well Nos. 1 and 2 have been completed and submitted to WA DOH. <sup>[\*]</sup>

A water right self-assessment is included in the Appendix U.

The wells have been assessed as a low risk for seawater intrusion. Confirmation of the risk assessment from the Island County Health Department is included in Appendix A.

#### Water Quality and Treatment

Appendix Q provides the recent results of tests for Inorganic Chemicals, Volatile Organic Chemicals and Radionuclide.

The following is a summary of the major Inorganic Chemicals (2008 report):

| SOURCE WATER QUALITY SUMMARY |
|------------------------------|
| <b>INORGANIC CHEMICALS</b>   |
|                              |

Table 3

| Units       | MCL                                                                     | Results (2005)                                                                                         |
|-------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Mg/L        | 0.01                                                                    | 0.0025                                                                                                 |
| Mg/L        | 0.30                                                                    | ND                                                                                                     |
| Mg/L        | 0.05                                                                    | 0.011                                                                                                  |
| Mg/L        | 10.0                                                                    | 3.54                                                                                                   |
| Mg/L        | 250                                                                     | 25                                                                                                     |
| Mg/L        |                                                                         | 183                                                                                                    |
| umhos/cm    | 700                                                                     | 436                                                                                                    |
| Color Units | 15                                                                      | ND                                                                                                     |
|             | Mg/L<br>Mg/L<br>Mg/L<br>Mg/L<br>Mg/L<br>Mg/L<br>umhos/cm<br>Color Units | Units MCL   Mg/L 0.01   Mg/L 0.30   Mg/L 0.05   Mg/L 10.0   Mg/L 250   Mg/L unhos/cm   700 Color Units |

No treatment is currently provided. The water is not chlorinated to provide a precautionary residual at the ends of the distributions system.

A hypochlorinator is provided (on a stand-by basis) in the pump house for use if a problem is detected from routine coliform monitoring.

Water quality monitoring programs are included in Appendix Q. The monitoring programs include:

- Coliform monitoring plan
- Lead and copper monitoring plan

#### Storage, Pumping and Pressure Reduction Facilities

Storage is provided in one, 40,000 gallon (nominal volume) Everett Brothers octagon concrete reservoir located on the well lot. The reservoir has a combined inlet and outlet. Electrodes in the reservoir control the two wells.

The booster pump station is located on the well lot adjacent to the reservoir. Water is supplied to the entire service area through booster pumps. Twin 5 hp pumps supply the entire system. Twin 1.5 hp pumps supplied from discharge of the 5 hp pumps supply a high elevation pressure zones. Fire flow is not provided.

The twin 5 hp booster pump motors are protected from frequent on-off cycling by three 315 gallon vertical hydropneumatic tanks. The twin 1.5 hp booster pump motors are protected from frequent on-off cycling by two 220 gallon vertical hydropneumatic tanks. Data on ASME certification of the tanks was not found.

The operating pressure range of the booster pumps for Pressure Zone 1 is 45 psi to 65 psi. The operating pressure range of the booster pumps for Pressure Zone 2 is 75 psi to 95 psi.

The booster pump building is of wood frame construction. Piping within the building is primarily galvanized steel. The amount of equipment in the building leaves little working room.

The drawing System Schematic summarizes the above information on supply, storage and pumping. The drawing Comprehensive Map shows the area covered by the two pressure zones.

The booster pump station is not equipped with an auto-dialer/alarm monitor that has the telephone number of the operator in the computer program.

An emergency generator is not provided for the booster pumps.

A security fence is not provided around the building, reservoir and Well No. 2.

#### **Distribution System**

The distribution system is shown in the accompanying drawing Comprehensive Map. The following tables summarizes distribution system inventory:

# Table 4DISTRIBUTION MAINS

|                 |      |           | Length (f | eet) |     |    |       |
|-----------------|------|-----------|-----------|------|-----|----|-------|
|                 | < 2" | 2" & 2.5" | 3"        | 4"   | 6"  | 8" | Total |
| Ductile Iron    | 0    | 0         | 0         | 0    | 0   | 0  | 0     |
| PVC or HDPE     | 0    | 931       | 2,165     | 321  | 161 | 0  | 3,578 |
| Asbestos Cement | 0    | 0         | 0         | 0    | 0   | 0  | 0     |
| Steel           | 0    | 0         | 0         | 0    | 0   | 0  | 0     |
| Galv. Steel     | 0    | 0         | 0         | 0    | 0   | 0  | 0     |
| Cast Iron       | 0    | 0         | 0         | 0    | 0   | 0  | 0     |

total 3,578

# Table 5VALVES, HYDRANTS & METER INVENTORYExcludes Reservoir, Wellheads, & Pump Station

| DESCRIPTION                                 | NUMBER |  |
|---------------------------------------------|--------|--|
| Isolating valves (excluding hydrant valves) | 6      |  |
| Fire hydrants c/w isolating valves          | 0      |  |
| Air release valves                          | 0      |  |
| Blow-off assemblies                         | 4      |  |
| Services c/w meters                         | 76     |  |
| Services w/o meters                         | 23     |  |
| Backflow prevention assemblies              | 0      |  |

The program of installing water meters is scheduled for completion in 2009.

#### IV. REVIEW OF 1995 PLAN

The status of the planned improvements in the 1995 Water System Plan is summarized in the following table:

| Category     | Project                                                          | Status    |
|--------------|------------------------------------------------------------------|-----------|
| Supply       | Replace existing well pumps                                      | Completed |
| Treatment    | None                                                             |           |
| Storage      | Add 37,000 gallon storage tanks                                  | Not done  |
| Pumping      | Emergency generator                                              | Not done  |
|              | Two 5 hp pumps to low pressure zone                              | Completed |
|              | Upgrade pump suction pipe from reservoir                         | Not done  |
|              | Added one 452 gallon hydropneumatic tank<br>to low pressure zone | Not done  |
|              | Add one 436 gallon hydropneumatic tank to high pressure zone     | Not done  |
| PRV Stations | None                                                             |           |
| Distribution | Upgrade 430 feet of main from pump house<br>to East Harbor Road. | Not done  |

# Table 6STATUS OF 1995 TWENTY-YEAR PLAN

#### V. PLANNING

#### Present and Future Service Area

The present service area is shown in the accompanying drawings Comprehensive Map and Water Service Area. Except for the wholesale supply to Goss Lakeridge Acres as noted previously, expansion of the service area is not planned. The service area is bordered to the south and east by other public water systems and to the west by Holmes Harbor. The area to the north and northeast contains large parcels that could request an expansion of the service.

The water rights of 90 gpm are adequate to supply a service area with 216 ERUs, based on meeting a 600 gpd/ERU water conservation goal. Booster pump and storage facilities would need to be expanded for any major expansion of the service area.

The Consistency Statement Checklist signed by the County is included in Appendix S.

#### Service Area Agreement

The signed service area agreement is included Appendix K.

#### **County Franchise**

The Island County franchise agreement is included in Appendix I.

#### System Interties

An emergency intertie to an adjoining system has not been made.

An emergency intertie with the Freeland Water District is feasible. A request to make the intertie has not been made.

#### Water Supply and Demand Forecast

Appendix U

A copy of the Water Supply and Demand Forecast is included in Appendix S. Also included in this appendix is the Water Right Self-Assessment.

#### Water Demand

A record of daily source meter readings is maintained by CAL Waterworks. The record of maximum day demand (MDD) and annual demand is provided in the Calculation section of this Plan and in Appendix S. The highest MDD per connection of 388 gpd/ERU occurred in 2004.

For long-term distribution system design, and water storage requirements the WA DOH recommended maximum day demand of 800 gpd/ERU was assumed.

#### Water Conservation & Water Shortage Response Plan

Consistent with the Island County Coordinated Water System Plan, the Purveyor has adopted a water conservation program and water shortage response plan. Copies of these plans are included in the appendices. The water conservation plan includes the requisite WA DOH "Water Use Data Collection Requirements Checklist" and "Demand Forecast Requirements Checklist".

Although the Municipal Law does not currently apply to CAL Waterworks because it is not a government body, the guidelines are adopted voluntarily. The water use efficiency measures are included in Appendix U.

The short-term water conservation goal for the maximum day demand (MDD) is 600 gpd/ERU. The long-term (20-year) goal is the same (600 gpd/ERU). The current average day demand (ADD) is 258 gpd/ERU. The long-term ADD water conservation goal is 268 gpd/ERU (0.3 acre-feet/year/ERU.

#### **Emergency Plan**

An emergency plan is included in the Appendix R.

#### System Vulnerability

The most vulnerable system component is the failure of a well. The second most vulnerable component of the system that could have a major impact on customer service is a water main break. There are an adequate number of isolating valves to limit the number of customers out of service for repairs.

The wellhead protection plan addresses the potential contamination of a source of supply. There is adequate undeveloped land in the area to secure a replacement well site.

#### Service Policies

A copy of the adopted service policies are provided in Appendix U. The policies were adopted in the format for WA Utility and Transportation Commission approval.

#### **Community Participation**

The record of community participation in the preparation of the Water System Plan is included in Appendix A. As a temporary measure until an additional storage reservoir is constructed, the record of community acceptance of less than the WA DOH recommended standby storage is included in Appendix A.

#### **Review Comments**

A copy of the Water System Plan has been submitted to the Island County Health Department and Goss Lakeridge Acres Association for review and comment. The Freeland Water District and Ridgeview Estates, through their water system operator, were notified of the availability of the plan for their review. A copy of the Water System Plan is available for review by customers.

#### VI. DESIGN CRITERIA

The design criteria utilized for the evaluation and/or design of the Purveyor's system, includes the major design requirements of the Washington Department of Health (WA DOH *Water System Design Manual*, August 2001) and WAC 246-290. The wording of the WA DOH regulations and design criteria may have been abbreviated herein for this summary. An explanation is provided where more stringent design criterion are utilized than the current WA DOH criteria.

#### Distribution

- 1. The system shall provide a minimum of 30 psi (preferably higher) operating pressure to all customers during peak hour demand (PHD) conditions, with the equalizing component of storage depleted. <sup>(1)</sup>{WAC 246-290-230(5), applicable to for new systems or additions to new systems} The calculation of PHD shall be based on WA DOH guidelines. <sup>(2)</sup>
- 2. The system shall provide maximum day demand (MDD) plus fire flow at a minimum of 20 psi at all points throughout the distribution system, with the fire suppression and equalizing storage depleted. {WAC 246-290-230(6)} The calculation of MDD shall be based on WA DOH guidelines.

The 2007 Water Use Efficiency Rule changes to the WA DOH regulations {WAC 246-290-420(3)} states that 20 psi shall be provided at the operating hydrant and at least positive pressure throughout the system. The maintenance of a minimum of 20 psi at all points in the distribution system during fire flow is the safety factor for prevention of backflow due to backsiphonage in the customer's service line. The Purveyor is responsible (and legally liable) for any contaminant that enters the Purveyor's distributions system due to backflow.

The 2007 *Water Use Efficiency Rule* changes {WAC 246-290-420(2)} states that during normal operating conditions, for both average and peak hour demand periods, water pressure at the service meter shall be maintained at the approved design pressure, but in no case less than 20 psi. Customers usually complain about pressures as low as 30 psi.

<sup>&</sup>lt;sup>1</sup> The revision to WAC 246-290 effective April 9, 1999 changed the design criterion for calculating minimum system pressure. Previously, the 30 psi requirement was based on the depletion of standby storage; now it is based on the depletion of equalizing storage.

<sup>&</sup>lt;sup>2</sup> The previous WAC 246-290 referred to PHD as maximum instantaneous demand (MID). The June 1999 WA DOH guideline "Water System Design Manual" changed the distribution system criterion for the flow rate (gpm) used in hydraulic analysis.

- 3. All new or expanding water systems shall provide fire hydrants in residential areas at a maximum spacing of 900 ft., or maximum hose lay of 500 ft., whichever is the lesser, and shall provide a basic fire flow from any one hydrant of 500 gpm. This requirement does not apply to rural lots 2.5 acres or larger, or as otherwise provided through alternate fire protection methods in County Code.
- 4. For new or expanding systems, the minimum water main size shall be 6-inch, except into cul-de-sacs or other locations where further expansion is very improbable, where lines shall not be less than 2-inch.
- 5. The system shall be equipped with adequate isolating valves, air release valves, blow-off assemblies, etc., for proper system operation and maintenance.
- 6. An individual service booster pump is allowed as an interim measure (less than six years) where distribution system pressure is deficient.

#### Supply

- 7. The minimum production capacity shall equal the maximum day demand (MDD).
- 8. The establishment of a water conservation program. The program should follow the latest edition of "Water Conservation Planning Handbook for Public water Systems", and "Guidelines and Requirements for Public Water Systems Regarding Water Use Reporting, Demand Forecasting Methodology, and Conservation Programs".
- 9. A Step-Drawdown Test and a 24 hour Constant-Rate Test conforming to WA DOH guidelines shall be made to support the source's ability to reliably provide a safe yield. Low water demand sources in high production aquifers may continue the Step-Drawdown Test to stabilization, and forego the subsequent 24 hour Constant-Rate Test.

#### Storage

- 10. The minimum standby (i.e., emergency) storage shall be equal to the maximum day demand (MDD). Where multiple sources of supply are available, the standby storage may be reduced by the existing pumping capacity of the wells, assuming the highest capacity well is out of service. A minimum standby storage of 200 gpd/ERU, should be provided regardless of the number of, and/or excess capacity of, the sources available.
- 11. The minimum equalizing storage shall be provided based on the formula: 150 min. x (PHD-Q), where `Q' is the sum of the capacities of the active sources of supply.
- 12. The minimum fire protection storage for single-family residences shall be based on a fire flow of 500 gpm for 30 minutes (15,000 gallons). Standby storage may be used for fire protection storage.

Equalizing storage is defined as the volume of storage needed to supplement supply of consumers when the peak hourly demand exceeds the total source pumping capacity. Standby storage is defined as the volume of stored water available for use during a loss of source capacity, power or similar short-term emergency.

A reduction in the requirement for production capacity and standby storage may be requested if adequate water use data is available to demonstrate that the actual average per customer maximum day demand is lower than that specified in the WA DOH Design Guidelines, and that conservation measures can be relied upon to limit new customers to this average water usage. Daily data collected over a two-year period is usually adequate, provided the summer months are typical of warm weather patterns.

The provision of standby storage is a recommendation (not a requirement) of the Design Guidelines. The amount of standby storage may be reduced below the recommended level in the Design Guidelines if "community expectations are amenable to a lesser standby storage capacity".

#### Pressurization of System

- 13. The operating cycle of any booster pump shall not exceed 6 cycles per hour.
- 14. The booster pumps shall have capacity to supply peak hour demand (PHD), preferably with the highest capacity pump out of service for reliability. The average day demand (ADD) shall be met with the largest capacity pump out of service.
- 15. The booster pumps shall have capacity to supply fire flow plus maximum day demand (MDD).
- 16. Hydropneumatic tanks shall be ASME approved (labeled) and equipped with a ASME relief valve. Small (up to 120 gallons), non-approved ASME tanks may be used if equipped with an ASME relief valve.
- 17. Hydropneumatic tanks shall be sized in accordance with WA DOH guidelines.
- 18. Back-up power shall be provided (i.e., emergency electrical generator) for systems dependent upon booster pumps as the sole source of supply. The electrical generator shall be operated by an automatic transfer switch, except where manual transfer may be completed in a reasonable time.

#### Treatment for Manganese & Iron

- 19. All iron and manganese facilities must be pilot plant tested at the site (or full scale tested after installation).
- 20. The maximum filter unit application rate and minimum backwash application rate shall be 5 gpm/sq.ft. and 12 gpm/sq.ft. unless otherwise approved by the WA Department of Health.

21. Documentation must be provided that the method of waste disposal [backwash] is acceptable to the WA Department of Ecology.

#### Chlorination

22. A WA DOH Hypochlorination Facilities for Small Systems submittal checklist shall be submitted where chlorination is provided.

#### Service Meters

- 23. Meters must be installed on all existing service connections by January 2017.
- 24. Meters must be installed on all new service connections beginning in January 2007.

#### VII. SYSTEM EVALUATION

The system evaluation is based on the design criteria given in Section VI. Calculations to support the evaluation are provided in the appendices. The major points in the system evaluation are summarized below:

#### Sources of Supply

The water right annual withdrawal, water right rate of withdrawal, and well pumping capacity are adequate to supply the maximum day demand (MDD) for ultimate number of customers in the combined retail and wholesale service area.

#### Water Quality and Treatment

The water quality meets current US EPA guidelines.

The Purveyor has not experienced a history of positive coliform test results.

The Purveyor obtains water samples for routine coliform monitoring from residences. It is desirable to obtain routine samples from curb-side water sample station connected to the distribution system.

With extension of the distribution system to supply Goss Lakeridge Acres, it is desirable to provide a free chlorine residual at the end of the distribution system.

#### System Hydraulics

The computer analysis of the distribution system in included in the Calculation section of this Plan. The drawing Computer Schematic shows the assigned node numbers, pipes number and flow distribution used with the computer model.

The distribution system design is based on the following:

- 1. With the extension to Goss Lakeridge Acres, the system will be divided into three pressure zones:
  - a. Zone 1 123 ERUs Along and west of East Harbor Road, plus 5 ERUs supplied direct to Goss Lakeridge Acres low elevation area.
  - b. Zone 2 10 ERUs in east of East Harbor Road.
  - c. Zone 3 22 ERUs supplied by Goss Lakeridge Acres pump station.
- 2. The Peak Hour Demand (PHD) for 155 ERUs, assuming Maximum Day Demand (MDD) of 800 gpd/ERU is 232 gpm.
- 3. When a second reservoir is constructed to provide increased standby storage, and the long-range water conservation goal of 600 gpd/ERU is achieved, the system would be able to supply 208 ERUs. The PHD for 208 ERUs assuming a MDD of 600 gpd/ERU is 223 gpm. To be conservative, the system design was based on a PHD of 232 gpm.

- 4. The fire flow for retail customers is 500 gpm, coincidental with 40% of PHD.
- 5. Fire flow will only be provided to CAL Waterworks Pressure Zone 1. Fire flow will not be supplied to the Goss Lakeridge Acres wholesale service area or CAL Waterworks Pressure Zone 2.
- 6. A meter and double check valve assembly will be installed at the intertie to Goss Lakeridge Acres.

The following is a summary of the analysis results:

| Existing CAL Booster Pumps Zone M                   | inimum                  |
|-----------------------------------------------------|-------------------------|
| New GLA Booster Pumps 1                             | 41.6                    |
| Peak Hour Demand 2                                  | 31.7                    |
| Existing CAL water mains 3                          | 33.1                    |
| [b] Upgraded CAL Distribution System Distribution P | Pressures (psi):        |
| New CAL Booster Pumps Zone M                        | inimum                  |
| New GLA Booster Pumps 1                             | 47.2                    |
| Fire Flow of 500 gpm at Node 12 2                   | 44.6                    |
| (Ravenridge Dirve) 3                                | 39.2                    |
| Upgraded CAL water mains Hydrant Resid              | lual Pressure: 53.7 psi |
| [c] Upgraded CAL Distribution System Distribution P | Pressures (psi):        |
| New CAL Booster Pumps Zone M                        | inimum                  |
| New GLA Booster Pumps 1                             | 51.4                    |
| Peak Hour Demand 2                                  | 44.1                    |
| 3                                                   | 41.9                    |

The above "a" scenario shows that the existing booster pumps and distribution system are adequate to supply the 155 ultimate connections in the combined retail and wholesale service areas. This assessment assumes a MDD for calculation of PHD of 800 gpd/ERU.

The existing pumps are not adequate to supply fire flow. The "b" and "c" scenarios show the adequacy of the proposed booster pumps for fire flow.

Although the existing booster pumps are adequate to supply the ultimate PHD, the hydropneumatic tank storage volume is slightly inadequate (1,023 gallons required versus 945 gallons available). Since new pumping facilities are scheduled for construction in 2009, this slight difference in hydropneumatic storage volume should not result in excessive wear on the pump motors. The CAL Waterworks recorded maximum day demand is significantly less than 800 gpd/ERU.

#### VIII. RECOMMENDED IMPROVEMENTS

The following major system improvements are recommended.

#### Short-term (six-years)

- 1. Replace the booster pump station. The station will provide pumps for fire flow in Pressure Zone 1. The pumps for Pressure Zone 2 will be supplied from the reservoir and not from Pressure Zone 1. The pump station work includes:
  - a. Installing an emergency generator for the pump station.
  - b. Installing a hypochlorinator to provide a precautionary residual to the ends of the distribution system.
  - c. Installing a security fence around the storage tank, pump station, wells and emergency generator.
  - d. Replacing the yard piping to/from the existing storage reservoir to provide dedicated inlet and outlet pipes.
- 2. For fire flow, replace the 4-inch water mains with 8-inch mains from the pump station to and 6-inch mains along East Harbor Road.
- 3. Install curb-side water sample stations.
- 4. Install air-release valves at high points.
- 5. For fire flow, replace the 3-inch water mains on Beachwood Drive and Ravenridge Drive.
- 6. Construct second storage reservoir.

#### Long-range (20 years)

7. Replace glued-joint 2-inch and 3-inch PVC water mains.

The cost for the extension of the system to supply wholesale water to Goss Lakeridge Acres will be borne by the applicant. No improvements to the CAL Waterworks system are scheduled for this extension.

#### Administrative Tasks

Once Goss Lakeridge Acres is supplied with water, make application to the WA Department of Ecology for increased water rights in the amount required to supply the ultimate number of customers (27 ERUs) in Goss Lakeridge Acres.

#### IX. CAPITAL FACILITIES PLAN

The following table summarizes the capital improvements for this *Water System Plan*. All costs are in current-year dollars.

| Pro | oject                                  | Year | Budget Estimate<br>(2008 dollars) |
|-----|----------------------------------------|------|-----------------------------------|
| 1)  | Booster pump station                   | 2009 | \$ 252,700                        |
| 2)  | Water main replacement – E. Harbor Dr. | 2009 | \$ 175,500                        |
| 3)  | Curb-side water sample stations (4)    | 2010 | \$ 6,000                          |
| 4)  | Air release valve assemblies (2)       | 2010 | \$ 4,000                          |
| 5)  | Water main replacement – Brentwood Dr. | 2010 | \$ 158,500                        |
| 6)  | cond storage reservoir                 | 2012 | \$ 91,800                         |

## Table 7 SIX-YEAR CAPITAL FACILITIES PLAN

The total six-year capital program is \$ 688,500. The Calculation section of this Plan includes the details of the cost estimate for each project.

The replacement cost of the existing distribution system (11,305 feet) is \$ 1,017,500 (in 2008 dollars), assuming average cost of \$90 per foot with service replacement.

#### X. FINANCES

A financial viability assessment, developed in accordance with the Washington Department of Health Financial Viability Manual, March 1995, is provided in the Appendix T. This assessment is provided as a guide for application to the WA Utilities and Transportation Commission for the setting of water rates and charges.

Funding is obtained for the operation of the water system from the WA UTC approved water rates and charges (copy in Appendix T). The connection to the Goss Lakeridge Acres water system to provide a wholesale supply is funded solely by wholesale customers.

The current financial plan assumes that all future major water system improvements will be financed by borrowing.

Any surplus funds from water rates and connection fees are allocated to a capital reserve fund. These funds will be used for capital improvements whenever possible.

#### XI. OPERATION AND MAINTENANCE

Details on the following operation programs and plans are included in appendices and in the M. & O. Manual.

- Cross Connection Control Program
- Water Conservation Plan
- Water Shortage Response Plan
- Wellhead Protection Program
- Water Quality Monitoring Plan (including lead and copper monitoring)
- Corrosion Control Plan
- Emergency Plan

A safety program has not been developed. The Purveyor relies upon contract certified operator (B & W Pump Company) for system maintenance and operation. The contract operator is responsible for the preparation of a safety program, training of personnel, etc.

The following status reports on the implementation and operation of the above noted programs and plans are provided. In addition a summary of the routine distribution system preventative maintenance programs is provided.

#### **Cross Connection Control Program**

All elements for initiation of the program have been competed with the exception of the periodic distribution of the residential survey questionnaire for risk assessment.

#### Water Conservation Plan

The unaccounted-for water cannot be calculated until the last of the residential meters are installed.

#### Water Shortage Response Plan

The water shortage response plan has not been needed. No modifications to the plan were necessary. With the current low recorded maximum day demand, and multiple sources of supply, the likelihood of needing to implement the plan is low.

#### Wellhead Protection Program

The task has not been scheduled to refine the delineation of the wellhead protection areas from the fixed radius method assumed initially. With the land up-gradient (inland) being mostly undeveloped, this task is not needed for the foreseeable future.

#### **Emergency Plan**

It has not been necessary to implement the emergency plan.

Bratton

#### Water Quality Monitoring Plan

The Purveyor is on schedule for sampling for inorganic chemicals, volatile organic compounds and applying for monitoring waivers.

#### **Routine Distribution System Maintenance Program**

The routine preventative maintenance task schedule for the distribution system is summarized in the following table.

| [                               | ~             | ~                                |
|---------------------------------|---------------|----------------------------------|
| Description                     | Schedule      | Status                           |
|                                 |               |                                  |
| a) Hydrant inspection and       | Annual        | None installed at present        |
| exercising                      |               |                                  |
| b) Line valve inspection and    | Annual        | Scheduled annually               |
| exercising                      |               |                                  |
| c) Blow-off inspection and      | Annual        | Periodic, limited number         |
| exercising                      |               | currently in system              |
| d) Air release valve inspection | Annual        | None installed at present        |
|                                 |               | 1                                |
| e) Source meters testing and    | Every 2 years | Approximately every two years    |
| maintenance /calibration        | 5 5           |                                  |
| f) Small customer meter testing |               | Not currently scheduled. Meters  |
| and replacement                 |               | on 15-year replacement           |
|                                 |               | schedule                         |
| g) Water main flushing          | Annually      | Fach fall                        |
| g) water main mushing           | Annuarry      |                                  |
| h) Pump Station                 | Twice weekly  | General inspection               |
|                                 | I wree weekry | General inspection               |
| i) Reservoir                    | Monthly       | General sanitation, e.g., hatch. |
|                                 |               | oveflow                          |
| i) PRV Stations                 | Monthly       | None installed at present        |
| J) I KV Stations                | wonting       | None instance at present         |
| k) Wells                        | Monthly       | Static and numning lavels        |
| K) WCIIS                        | wonting       | Static and pumping levels        |
|                                 |               |                                  |

# Table 8ROUTINE DISTRIBUTION SYSTEM MAINTENANCEAND INSPECTION SCHEDULE

Reservoir cleaning is scheduled when needed. Iron and manganese in the source water is well below the MCL.

#### XII. STANDARD SPECIFICATIONS - WATER MAIN

For any future extension or replacement of water mains, the appendices include standard specifications and construction plans for water mains 2 to 12-inch in diameter.

(

(

Î

·WATER SYSTEM PLAN

# CALCULATIONS

Bratton /

CALCULATIONS

## SUMMARY OF SYSTEM INFORMATION

| WA DOH approved of                    | connections:         | 99         | ERUs                                |                                       |
|---------------------------------------|----------------------|------------|-------------------------------------|---------------------------------------|
| Current number of cu                  | 99                   | ERUs       | With 4 committed water availability |                                       |
| Previous assumed u                    | timate number of lot | 147        | ERUs                                | From previous Water System Plan       |
| Counted number of l                   | ots:                 | 128        | ERUs                                | With current combined lots            |
|                                       |                      |            |                                     |                                       |
| Counted lots with wh                  | olesale customers:   | 155        | ERUs                                | 15 active / 27 ultimate customers     |
|                                       |                      |            |                                     | in Goss Lakeridge Acres               |
|                                       |                      | 000        | 5511                                |                                       |
| Number of lots assur                  | ned for design:      | 208        | ERUS                                | Based on adding 2nd storage tank      |
| Pocordod Movimum                      | 2008                 | 205>       |                                     | Saturday August 23Rd                  |
| Recorded Maximum                      | 2007                 | 218        | ond/EDI                             | minulay conf 3 RD                     |
|                                       | 2007                 | (276       | and/ERU                             | Friday July 7th                       |
|                                       | 2000                 | 280        |                                     | Saturday, Suly Fill                   |
|                                       | 2003                 | 209        | and/ERU                             | Thursday, July 20th                   |
|                                       | 2004                 | 000        | gpurcito                            | musuay, July 2301                     |
| MDD without conserv                   | vation:              | 800        | apd/ERU a                           | assumed without recorded MDD          |
| MDD long-term goal                    | (20-years):          | 600        | apd/ERU                             |                                       |
| Recorded annual pro                   | duction: 2008 -      | #1800950   |                                     |                                       |
| · · · · · · · · · · · · · · · · · · · | 2007                 | 5226.817   | gallons                             |                                       |
|                                       | 2006                 | 6.894.240  | gallons                             | 21.2 acre-feet                        |
|                                       | 2005                 | 7.082.510  | gallons                             |                                       |
|                                       | 2004                 | 8,286,960  | gallons                             | Started meter installation            |
|                                       | 2003                 | 9,645,300  | aallons                             | on services                           |
|                                       | 2002                 | 10,293,400 | gallons                             |                                       |
|                                       |                      |            |                                     |                                       |
| ADD based on WA D                     | OE allowance:        | 268        | gpd/ERU                             | (0.3 acre-ft/year/ERU)                |
| ADD long-term goal                    | (20-years):          | 268        | gpd/ERU                             |                                       |
| ADD based on record                   | d use, 2004 to 2006  | 240        | gpd/ERU                             | 0.27 acre-ft/year/ERU                 |
|                                       |                      |            |                                     |                                       |
| water rights:                         | 04.000000            |            |                                     | 07.5                                  |
|                                       | G1-00032C            | 55         | gpm                                 | 27.5 acre-reet Dec. 1971              |
| Well NO. 2                            | G1-2/4/8P            | 35 -       | _gpm                                | 26.5 acre-reet " Jun. 1994            |
|                                       |                      | 90         | gpm                                 | 54.0 acre-reet                        |
|                                       |                      |            |                                     | ("WR are additive)                    |
| Well production:                      | Well No. 1           | 45         | apm                                 | Flow rates from WA DOF                |
| rron production.                      | Well No. 2           | 45         | anm                                 | Report of Examination for 4-hour test |
|                                       |                      | 90         | _ gpm                               |                                       |
|                                       |                      |            | 34                                  |                                       |
| Well construction:                    | Well No. 1           | 178        | ft of 6"Ø                           | 3 hp pump 1963                        |
|                                       | Well No. 2           | 179        | ft of 6"Ø                           | 3 hp pump 1985                        |
|                                       |                      |            |                                     | ,                                     |
| Well pumps:                           | Well No. 1           | 3 hp       | Flint & Wa                          | illings, 7 stage, 55 gpm @ 165 ft TDH |
|                                       | Well No. 2           | 3 hp       | Flint & Wa                          | illings, 7 stage, 55 gpm @ 165 ft TDH |

Į

Ì

(

#### CALCULATIONS

| mary of S        | ystem Information             | (continued)                 |                      |                      |                                   |                     |                      |
|------------------|-------------------------------|-----------------------------|----------------------|----------------------|-----------------------------------|---------------------|----------------------|
| Water o<br>(comb | uality:<br>pined sources)     | Iron<br>Arsenic<br>Hardness | 0.10<br>0.002<br>171 | mg/L<br>mg/L<br>mg/L | Manganese<br>Chloride<br>Nitrates | 0.013<br>24<br>3.03 | mg/L<br>mg/L<br>mg/L |
| Treatme          | ent plant capacity:           |                             | 0                    | gpm                  | No treatmer                       | nt necessa          | ıry                  |
| Treatme          | ent plant backwash            | 1:                          | 0                    | gpd                  |                                   |                     |                      |
| Hypoch           | lorinators:                   | Well No. 1<br>Well No. 2    |                      | gpd<br>gpd           | Chlorination                      | i not provid        | led                  |
| Storage          | :                             |                             |                      |                      |                                   |                     |                      |
|                  | Existing tank                 |                             | 40,000               | gallons (n           | ominal)                           | Everett Br          | others octagon       |
| Booster          | pumps:<br>elevation service a | rea                         |                      |                      |                                   |                     |                      |
| #1               | Sta-Rite DJH                  | 5                           | hp                   | 140                  | opm at                            | 104                 | feet TDH             |
| #2               | Sta-Rite DJH                  | 5                           | hp                   | 140                  | gpm at                            | 104                 | feet TDH             |
| High             | elevation service a           | irea                        |                      |                      |                                   |                     |                      |
| #3               | Sta-Rite HMSF                 | 1.5                         | hp                   | 30                   | gpm at                            | 132                 | feet TDH             |
| #4               | Sta-Rite HMSF                 | 1.5                         | hp                   | 30                   | gpm at                            | 132                 | feet TDH             |
| Note:            | High elevating se             | rvice area sup              | oplied from lov      | w elevation          | service area, r                   | ot from re          | servoir.             |
| Hydrop           | neumatic tank:                |                             |                      |                      |                                   |                     |                      |
| Low              | elevation service a           | rea                         |                      |                      |                                   |                     |                      |
| 3                | Galv steel tanks              | 315                         | gallon, 36"Ø         | ) x 60" (80"±        | : o.a.) vertical                  | 945                 | total gallons        |
|                  |                               | 45                          | psi to               | 65                   | psi operatin                      | g range             |                      |
| High             | elevation service a           | irea                        |                      |                      |                                   |                     |                      |
| 2                | Steel tanks                   | 220                         | gallon, 30"@         | 0 x 72" verti        | cal                               | 440                 | total gallons        |
|                  |                               | 75                          | psi to               | 95                   | psi operatin                      | g range             |                      |
| Note:            | Make and pressu               | ire rating of ta            | nks are unkno        | own                  |                                   |                     |                      |
| Drogou           | e reducing valve s            | tations:                    | Nono in eve          | tom                  |                                   |                     |                      |

Distribution system inventory:

| Distribution | 1 0 y 0 t 0 11 11 11 t C | 511C01 y . |         |              |       |                           |    |
|--------------|--------------------------|------------|---------|--------------|-------|---------------------------|----|
| 8"Ø          | 0                        | feet 🔿     | ì       |              |       | Service meters (Nov. 07): | 76 |
| 6"Ø          | 1,760                    | feet       | · •     |              |       | Gate valves:              | 6  |
| 4"Ø          | 540                      | feet       |         | 11,305       | feet  | Fire hydrants:            | 0  |
| 3"Ø          | 5,935                    | feet       | $\succ$ | all mains ar | e PVC | Air release valves:       | 0  |
| 2.5"Ø        | 0                        |            |         |              |       | Blow-off assemblies:      | 4  |
| 2"Ø          | 3,070                    | feet       |         |              |       | Backflow assemblies:      | 0. |
| <2"Ø         | 0                        | feet 🦯     | )       |              |       | Curbside sample sta.:     | 0  |
|              |                          |            |         |              |       |                           |    |

ſ

#### CALCULATIONS

#### Summary of System Information (continued)

Static Water Level Elevation for Island County Seawater Intrusion Risk Category Assessment

|   |                                    | ID# AGA928 | ID# AGA927 |       |            |
|---|------------------------------------|------------|------------|-------|------------|
| Т | op of Casing Elevation             | (feet)     | (feet)     |       |            |
|   | NAVD 88 Datum *                    | 161.85     | 163.45     |       |            |
|   | MSL Datum                          | 158.18     | 159.78     | -3.67 | correction |
| S | static Water Depth **              | 147.79     | 148.66     |       | used for   |
| S | static Water Elevation (MSL Datum) | 10.39      | 11.12      |       | MSL datum  |

Well No. 1 Well No. 2

\* Survey by Thatcher & Morrison\*\* From WA DOE Report of Examination

(

#### CALCULATIONS

#### ALLOWABLE NUMBER OF CONNECTIONS (ERUs)

The following is a summary of the calculated number of equivalent single-family residential connections (ERUs) that the system may supply, based on various design criteria.

#### Water Rights:

(

| 162 ERUs Base                                                                                                                             | d on the current water right rate of production, assuming 800 gpd/ERU<br>Maximum Day Demand (no water conservation).                                                                                      |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 180 ERUs Based on the current water right annual withdrawal, assuming WA DOE standard allocation of 0.3 acre-feet/year/ERU (268 gpd/ERU). |                                                                                                                                                                                                           |  |  |  |  |
| 216 ERUs Base                                                                                                                             | d on the current water right rate of production, assuming 600 gpd/ERU<br>Maximum Day Demand (moderate water conservation).                                                                                |  |  |  |  |
| Well Production:                                                                                                                          | See above calculations for water rights; well production equals water right rate of production                                                                                                            |  |  |  |  |
| Water Treatment:                                                                                                                          | Not Required                                                                                                                                                                                              |  |  |  |  |
| Water Storage:                                                                                                                            |                                                                                                                                                                                                           |  |  |  |  |
| 112 ERUs Base                                                                                                                             | d on current storage, assuming 800 gpd/ERU for standby storage and calculation<br>of Peak Hour Demand, reduction for operating and dead storage, current<br>well production, credit for multiple sources. |  |  |  |  |
| 131 ERUs Base                                                                                                                             | d on current storage, assuming 600 gpd/ERU for standby storage and calculation                                                                                                                            |  |  |  |  |

of Peak Hour Demand, reduction for operating and dead storage, current

well production, credit for multiple sources.

Standby storage is a recommendation of the WA DOH Design Guidelines. The community may vote to accept less than the recommended standby storage. Fire storage is a requirement (where hydrants are installed).

(

#### CALCULATIONS

# SUMMARY OF SYSTEM INFORMATION, - WHOLESALE SUPPLY TO GOSS LAKERIDGE ACRES

| WA DOH approved connections:  |            | 19           | ERUs         |                    |               |             |    |
|-------------------------------|------------|--------------|--------------|--------------------|---------------|-------------|----|
| Current number of custom      | ers:       | 15           | ERUs         |                    |               |             |    |
| Ultimate number of customers: |            | 27           | ERUs         |                    |               |             |    |
| Water rights:                 |            |              |              |                    |               |             |    |
| Well Nos. 1 & 2               | 8811 P     | 50           | gpm          | 25                 | acre-feet     | Mar. 1966   |    |
| Well production: Well No. 1   |            | 50           | gpm          | Second wel         | l is for redu | Indancy     |    |
|                               | Well No. 2 | 50           | gpm          | in lieu of storage |               |             |    |
| Well construction:            | Weli No. 1 | 210          | ft of 6"Ø    | 1963               |               |             |    |
|                               | Well No. 2 | 210          | ft of 6"Ø    | 1997               |               |             |    |
| Well pumps:                   | Well No: 1 | 5 hp         | Flint & Wa   | allings, 16 stag   | je, 40 gpm    | @ 325 ft TE | н  |
|                               | Well No. 2 | 5 hp         | Flint & Wa   | allings, 16 stag   | ge, 40 gpm    | @ 325 ft TC | ЭН |
| Water quality:                | Iron       | 0.68         | mg/L         | Manganese          | 0.47          | mg/L        |    |
| (combined sources)            | Arsenic    | 0.028        | mg/L         | Chloride           | < 20          | mg/L        |    |
|                               | Hardness   | 148          | mg/L         | Nitrates           | < 0.5         | mg/L        |    |
| Hydropneumatic tank:          | 4          | 119 gallon b | ladder tanks | 5                  |               |             |    |

Bratton {8/6/2008}

l

(

CALCULATIONS

#### [a] RESERVOIR SIZING

Allowable number of connections based on existing reservoirs, no water conservation, (MDD of 800 gpd/ERU), current well production (at water right), no water treatment, credit towards storage requirement for multiple sources of supply, and criteria in the WA DOH August 2001 "Water System Design Guidelines".

| Allowable number of service connections:                                                                   |         |                       | 112                  |                   |
|------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------|-------------------|
| Number of wells:                                                                                           |         |                       | 2                    |                   |
| Well production capacities (current, throttled to match water                                              | rights) | ):                    | 90                   | gpm               |
| Peak Hour Demand (PHD):                                                                                    |         |                       | 184                  | gpm               |
| Maximum Day Demand (MDD) based on 80                                                                       | 0       | gpd/ERU               | 89,600               | gal/day           |
| Required minimum continuous well production                                                                |         |                       | 62                   | gpm (avg)         |
| Minimum standby storage based on MDD<br>800 gal/connection [D.O.H.]                                        |         |                       | 89,600               | gal               |
| Credit for multiple well source<br>55 gpm (each well produces 55 gpm)                                      |         | less                  | 79,200               | gal               |
| Equalizing storage: whenever source pumping capacity cannot meet peak demands [D.O.H.]                     |         |                       | 14,117               | gal               |
| E.S. = (PHD-Q)(150)<br>Q = source production in gpm                                                        |         |                       |                      |                   |
| Added for fire storage (500 gpm for 30 minutes) for single-family residential homes                        |         |                       | 4,600                | gal               |
| Add min. standby storage based on 20                                                                       | 0       | gpd/ERU               | 7,400                | gal               |
| Total required storage<br>Allowance for filter backwash<br>Allowance for operating and dead storage (1 ft) |         | [1+2+3]<br>add<br>add | 36,517<br>0<br>3,333 | gai<br>gai<br>gai |
| ΤΟΤΑΙ                                                                                                      | -       |                       | 39,850               | gal               |
| Existing storage<br>1 Everett Brothers octagon, 12 ft height                                               |         |                       | 40,000               | gal               |

( )

.)

CALCULATIONS

#### [b] RESERVOIR SIZING

Allowable number of connections based on existing reservoirs, water conservation goal (MDD of 600 gpd/ERU), current well production (at water right), no water treatment, credit towards storage requirement for multiple sources of supply, and criteria in the WA DOH August 2001 "Water System Design Guidelines".

| Allowable number of service connections:                                                                   |                | 131                  |                   |
|------------------------------------------------------------------------------------------------------------|----------------|----------------------|-------------------|
| Number of wells:                                                                                           |                | 2                    |                   |
| Well production capacities (current, throttled to match water rights                                       | ):             | 90                   | gpm               |
| Peak Hour Demand (PHD):                                                                                    |                | 158                  | gpm               |
| Maximum Day Demand (MDD) based on 600                                                                      | gpd/ERU        | 78,600               | gal/day           |
| Required minimum continuous well production                                                                |                | 55                   | gpm (avg)         |
| Minimum standby storage based on MDD<br>600 gal/connection [D.O.H.]                                        |                | 78,600               | gal               |
| Credit for multiple well source<br>55 gpm (each well produces 55 gpm)                                      | less           | 78,600               | gal               |
| Equalizing storage: whenever source pumping capacity cannot meet peak demands [D.O.H.]                     |                | 10,263               | gal               |
| E.S. = (PHD-Q)(150)<br>Q = source production in gpm                                                        |                |                      |                   |
| Added for fire storage (500 gpm for 30 minutes)<br>for single-family residential homes                     |                | 15,000               | gal               |
| Add min. standby storage based on 200                                                                      | gpd/ERU        | 11,200               | gal               |
| Total required storage<br>Allowance for filter backwash<br>Allowance for operating and dead storage (1 ft) | <br>add<br>add | 36,463<br>0<br>3,333 | gal<br>gal<br>gal |
| TOTAL                                                                                                      |                | 39,796               | gal               |
| Existing storage<br>1 Everett Brothers octagon, 12 ft height                                               |                | 40,000               | gal               |

CALCULATIONS

#### [c] RESERVOIR SIZING

Required storage for ultimate number of customers in retail and wholesale service area, assumed 800 gpd/ERU MDD (no water conservation), credit from multiple sources of supply and criteria in the WA DOH August 2001 "Water System Design Guidelines".

| Ultimate number of service connections:                                                                    |           |                           | 155                  |                   |
|------------------------------------------------------------------------------------------------------------|-----------|---------------------------|----------------------|-------------------|
| Number of wells:                                                                                           |           |                           | 2                    |                   |
| Well production capacities (current, throttled to match wa                                                 | ter right | s):                       | 90                   | gpm               |
| Peak Hour Demand (PHD):                                                                                    |           |                           | 232                  | gpm               |
| Maximum Day Demand (MDD) based on                                                                          | 800       | gpd/ERU                   | 124,000              | gal/day           |
| Required minimum continuous well production                                                                |           |                           | 86                   | gpm (avg)         |
| Minimum standby storage based on MDD<br>800 gal/connection [D.O.H.]                                        |           |                           | 124,000              | gal               |
| Credit for multiple well source<br>55 gpm (each well produces 55 gpm)                                      |           | less                      | 79,200               | gal               |
| Equalizing storage: whenever source pumping capacity cannot meet peak demands [D.O.H.]                     |           |                           | 21,283               | gal               |
| E.S. = (PHD-Q)(150)<br>Q = source production in gpm                                                        |           |                           |                      |                   |
| Added for fire storage (500 gpm for 30 minutes) for single-family residential homes                        |           |                           | 0                    | gal               |
| Add min. standby storage based on                                                                          | 200       | gpd/ERU                   | 0                    | gal               |
| Total required storage<br>Allowance for filter backwash<br>Allowance for operating and dead storage (1 ft) |           | [1+2+3]<br>. add<br>. add | 66,083<br>0<br>3,333 | gal<br>gal<br>gal |
| тот                                                                                                        | ΓAL       |                           | 69,417               | gal               |
| Existing storage<br>1 Everett Brothers octagon, 12 ft height                                               |           |                           | 40,000               | gal               |
| Required added storage:                                                                                    |           |                           | 29,417               | gal               |

(

( )

CALCULATIONS

#### [d] RESERVOIR SIZING

Required storage for ultimate number of customers in retail and wholesale service area, assumed 800 gpd/ERU MDD (no water conservation), credit towards standby storage from multiple sources of supply and emergency intertie with Freeland Water District, and criteria in the WA DOH August 2001 "Water System Design Guidelines".

| Allowable number of service connections:                                                                   |               |                       | 155                  |                   |
|------------------------------------------------------------------------------------------------------------|---------------|-----------------------|----------------------|-------------------|
| Number of wells:                                                                                           |               |                       | 2                    |                   |
| Well production capacities (current, throttled to mate                                                     | ch water righ | nts):                 | 90                   | gpm               |
| Peak Hour Demand (PHD):                                                                                    |               |                       | 232                  | gpm               |
| Maximum Day Demand (MDD) based on                                                                          | 800           | gpd/ERU               | 124,000              | gal/day           |
| Required minimum continuous well production                                                                |               |                       | 86                   | gpm (avg)         |
| Minimum standby storage based on MDD<br>800 gal/connection [D.O.H.]                                        |               |                       | 124,000              | gal               |
| Credit for multiple well source<br>90 gpm (with emergency intertie)                                        |               | less                  | 124,000              | gal               |
| Equalizing storage: whenever source pumping capacity cannot meet peak demands [D.O.H.]                     |               |                       | 21,283               | gal               |
| E.S. = (PHD-Q)(150)<br>Q = source production in gpm                                                        |               |                       |                      |                   |
| Added for fire storage (500 gpm for 30 minutes) for single-family residential homes                        |               |                       | 15,000               | gal               |
| Add min. standby storage based on                                                                          | 200           | gpd/ERU               | 16,000               | gal               |
| Total required storage<br>Allowance for filter backwash<br>Allowance for operating and dead storage (1 ft) |               | [1+2+3]<br>add<br>add | 52,283<br>0<br>3,333 | gal<br>gal<br>gal |
|                                                                                                            | TOTAL         |                       | 55,617               | gal               |
| Existing storage<br>1 Everett Brothers octagon, 12 ft heig                                                 | ght           |                       | 40,000               | gal               |
| Required added storage:                                                                                    |               |                       | 15,617               | gal               |

)

(

ļ

#### CALCULATIONS

| [a] BOOSTER PUM                                               | P SIZING -                                                                                                         | PROPOSE                                        | D SYSTEN                      | <b>I</b> , CAL + G | LA ZONE 1 | , 145 ERU        | S                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|--------------------|-----------|------------------|------------------|
| Number of ERUs:<br>Recorded MDD:                              | Number of ERUs:145Number of pumps to meet PHD:Recorded MDD:800gpd/ERUPHD based on MDD:[PHD = (MDD/1440)*(C*N+F)+18 |                                                |                               |                    |           |                  | gpm              |
| 1) Required capacity                                          |                                                                                                                    |                                                |                               |                    |           | 110              | gpm              |
| 2) Required pressue a<br>Pump "on"<br>Minus wat<br>Plus equal | t pump hous<br>pressure<br>er level in re<br>izing storag                                                          | se (from netw<br>eservoir (pum<br>e allowance: | vork analysi<br>62<br>p`on'): | s)<br>psi          |           | 143<br>-11<br>9  | ft<br>ft<br>ft   |
| 4) Contingency allowar                                        | nce                                                                                                                |                                                |                               |                    |           | 5                | ft               |
|                                                               |                                                                                                                    | Head requ                                      | ired at ´                     | 110                | gpm :     | <b>146</b><br>63 | ft<br>psi @ pump |
| 6) Pressure range of h<br>Pump "off"                          | ydropneum<br>' minus purr                                                                                          | atic tank<br>ip "on" press                     | u 20                          | psi                |           | 46               | ft               |
| 7) Allowance for positiv                                      | ve pump shi                                                                                                        | ut off                                         |                               |                    |           | 10               | ft               |
|                                                               |                                                                                                                    | Shutoff he                                     | ad                            | 0                  | gpm :     | 202              | ft               |
| Approx. motor size<br>[ hp = (Q x H)/(3960 x                  | eff.)]                                                                                                             |                                                |                               | 6.8                | hp @ 60%  | efficiency       |                  |
| Existing pump:<br>GOULDS                                      | 3656, 10 HF                                                                                                        | P, 6.5" Impell                                 | e Pump on                     | Head<br>175<br>185 | ft<br>ft  | Flow<br>110<br>0 | gpm<br>gpm       |
|                                                               |                                                                                                                    |                                                |                               |                    |           |                  |                  |

Notes:

See attached pump curve and computer analysis results Pump specifications are included in the Project Report accompanying this WSP

#### Performance Curves -- 60 Hz, 3500 RPM Curvas de desempeño -- 60 Hz, 3500 RPM



| Optional Impeller<br>Impulsor optativo |              |  |  |  |  |  |  |
|----------------------------------------|--------------|--|--|--|--|--|--|
| Ordering Code<br>Código de pedido      | Dia.<br>Diá. |  |  |  |  |  |  |
| A                                      | 8¼6"         |  |  |  |  |  |  |
| E                                      | 7¾"          |  |  |  |  |  |  |
| В                                      | 7%           |  |  |  |  |  |  |
| F                                      | 7            |  |  |  |  |  |  |
| С                                      | 6¾           |  |  |  |  |  |  |
| G                                      | 6¼           |  |  |  |  |  |  |
| Н                                      | 61⁄8         |  |  |  |  |  |  |
| D                                      | 5¾           |  |  |  |  |  |  |

NOTE: Pump will pass a sphere to  $\frac{5}{16^{\circ}}$  diameter. NOTA: La bomba dejará pasar una esfera de hasta  $\frac{5}{16}$ de pulgada de diámetro.





NOTE: Pump will pass a sphere to 7/16" diameter. NOTA: La bomba dejará pasar una esfera de hasta 7/16 de pulgada de diámetro.

### **GOULDS PUMPS** Commercial Water

7

ĺ

١

.

(

#### CALCULATIONS

# [b] BOOSTER PUMP SIZING - PROPOSED SYSTEM, CAL ZONE 2, 10 ERUs

| Number of ERUs:<br>Design MDD: | 10<br>800     | gpd/ERU       | Number of<br>PHD based<br>[ PHD = (M | Number of pumps to meet PHD:<br>PHD based on MDD:<br>[PHD = (MDD/1440)*(C*N+F)+18] |            |            | gpm        |
|--------------------------------|---------------|---------------|--------------------------------------|------------------------------------------------------------------------------------|------------|------------|------------|
|                                |               |               |                                      |                                                                                    |            | 05         |            |
| 1) Required capacity           |               |               | ·                                    |                                                                                    |            | 30         | gpm        |
| 2) Required pressue at         | pump hou      | se (from netv | vork analysis                        | )                                                                                  |            |            |            |
| Pump "on"                      | pressure      | •             | 94                                   | psi                                                                                |            | 217        | ft         |
| Minus wate                     | r level in re | eservoir (pum | np `on'):                            |                                                                                    |            | -11        | ft         |
| Plus equali                    | zing storag   | e allowance:  |                                      |                                                                                    |            | 3          | ft         |
| 4) Contingoncy allowan         | <u></u>       |               |                                      |                                                                                    |            | 5          | ft         |
| 4) Contingency allowan         | CC.           |               |                                      |                                                                                    |            |            | _"         |
|                                |               | Head requ     | ired at                              | 35                                                                                 | gpm :      | 214        | ft         |
|                                |               | •             |                                      |                                                                                    |            | 93         | psi @ pump |
| 6) Pressure range of hy        | droppeum      | atic tank     |                                      |                                                                                    |            |            |            |
| Pump "off"                     | minus pur     | np "on" press | su 20                                | psi                                                                                |            | 46         | ft         |
| 7) Allowance for positiv       | e pump sh     | ut off        |                                      |                                                                                    |            | 10         | ft         |
|                                |               | Shutoff he    | ad                                   | 0                                                                                  | gpm :      | 270        | ft         |
| Approx. motor size             |               |               |                                      |                                                                                    |            |            |            |
| [ hp = (Q x H)/(3960 x e       | eff.)]        |               |                                      | 3.1                                                                                | hp @ 60% e | efficiency |            |
| Recommended pump:              |               |               |                                      |                                                                                    |            |            |            |
| · · ·                          |               |               |                                      | Head                                                                               |            | Flow       |            |
| GOULDS 3                       | 3 GB, 13 s    | stage, 3 hp   | Pump on                              | 220                                                                                | ft         | 35         | gpm        |
|                                |               |               |                                      | 400                                                                                | ft         | 0          | gpm        |

Notes: See attached pump curve.

Pump specifications are included in the Project Report accompanying this WSP



# **GOULDS PUMPS** Residential Water Systems

#### 33GB PERFORMANCE CURVES METERS PSI FEET MODEL: GB RPM: 3500 BASED ON ZERO INLET PRESSURE CURVE NO. CN0679R00 RECOMMENDED RANGE TOTAL DYNAMIC HEAD NPSHR FEET 33G820 STAGE 33GB10 - 5 STAGE ٥L Цo ٥L 0 L U.S. GPM í٥ 12 M³/Hr. CAPACITY METERS. PSI, FEET MODEL: GB RPM: 2900 BASED ON ZERO INLET PRESSURE CURVE NO. CNO680R00 RECOMMENDED RANG GPM NPSHR 33G8Z30 - 14 STAG TOTAL DYNAMIC HEAD 6 STAGE 0 L 0 U.S. GPM ٥L 0L 0 5 6 CAPACITY M³/Hr.

(

#### CALCULATIONS

# PEAK HOUR DEMAND AND AVERAGE MAXIMUM DAY DEMAND FOR SYSTEM DESIGN

(a) ERUs 128 CAL Waterworks current number of counted lots, considering combined lots. MDD 800 Assumed MDD

|                               | PHD =       | (MDD/1     | 440)*(C*N+F)+                | 18 =               | 201.9             | gpm                 |                                 |                              |                |
|-------------------------------|-------------|------------|------------------------------|--------------------|-------------------|---------------------|---------------------------------|------------------------------|----------------|
| Range of ERUs (N) C F         |             |            |                              | F                  | С                 | F                   |                                 |                              |                |
|                               | 15 to 50    |            | 3.0                          | 0                  | 0.0               | 0                   |                                 |                              |                |
|                               | 51 to 100   |            | 2.5                          | 25                 | 0.0               | 0                   |                                 |                              |                |
|                               | 101 to 250  |            | 2.0                          | 75                 | 2.0               | 75                  |                                 |                              |                |
|                               | 251 to 500  |            | 1.8                          | 125                | 1.8               | 0                   |                                 |                              |                |
|                               | > 500       |            | 1.6                          | 225                | 0.0               | 0                   |                                 |                              |                |
|                               |             |            | for calc>                    |                    | 2.0               | 75                  |                                 |                              |                |
|                               | Average     | e MDD =    | = MDD*ERUs/14                | 440 =              | 71                | gpm                 | 35%                             | of PHD                       | Say 40%        |
| (b)                           | ERUs<br>MDD | 128<br>388 | CAL Waterwo<br>Recorded MD   | orks cur           | rent nur          | nber of             | counted lots,                   | considering                  | combined lots. |
|                               | PHD =       | (MDD/1     | 440)*(C*N+F)+                | 18 =               | 107.2             | gpm                 |                                 |                              |                |
| ,                             | Averag      | e MDD =    | = MDD*ERUs/1                 | 440 =              | 34                | gpm                 | 32%                             | of PHD                       |                |
| (c)                           | ERUs<br>MDD | 155<br>800 | Ultimate num<br>Assumed MD   | ber of lo<br>D     | ots in C <i>i</i> | AL Wat              | erworks (128)                   | plus GLA (:                  | 27)            |
|                               | PHD =       | (MDD/1     | 440)*(C*N+F)+                | 18 =               | 231.9             | gpm                 |                                 |                              |                |
|                               | Averag      | e MDD =    | = MDD*ERUs/1                 | 440 =              | 86                | gpm                 | 37%                             | of PHD                       |                |
| (d)                           | ERUs<br>MDD | 155<br>600 | Ultimate num<br>Assumed MD   | ber of lo<br>D     | ots in C/         | AL Wat              | erworks (128)                   | plus GLA (                   | 27) ·          |
|                               | PHD =       | (MDD/1     | 440)*(C*N+F)+                | 18 =               | 178.4             | gpm                 |                                 |                              |                |
|                               | Averag      | e MDD =    | = MDD*ERUs/1                 | 440 =              | 65                | gpm                 | 36%                             | of PHD                       | ·              |
| (e)                           | ERUs<br>MDD | 208<br>600 | Number of co<br>conservation | nnectio<br>reducin | ns for d<br>g MDD | esign w<br>to long- | vith CAL Wate<br>-range conserv | r Rights of s<br>/ation goal | 90 gpm and     |
| PHD = (MDD/1440)*(C*N+F)+18 = |             |            |                              |                    | 222.6             | gpm                 |                                 |                              |                |
|                               | Averag      | e MDD =    | = MDD*ERUs/14                | 440 =              | 87                | gpm                 | 39%                             | of PHD                       |                |

Bratton {7/29/2008}

1

#### CALCULATIONS -

#### DISTRIBUTION OF DEMAND

#### CAL Waterworks with wholesale supply to Goss Lakeridge Acres

| Platted lots 128 CAL Waterworks Current count with combined lots<br>27 Goss Lakeridge Acres |         |            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|---------|------------|--|--|--|--|--|
| Peak Hour De                                                                                | mand fo | r 155 ERUs |  |  |  |  |  |

| {i}<br>{ii} | 231.9<br>178.4 | gpm for an assumed Maximum Day Demand of gpm for an assumed Maximum Day Demand of | 800<br>600 | gpm/ERU<br>gpm/ERU | 100% of {i}<br>77% |
|-------------|----------------|-----------------------------------------------------------------------------------|------------|--------------------|--------------------|
| Peak Hour   | Demand fo      | r 208 ERUs (for possible future expansion of servic                               | e area)    | anm/EDI I          | 06%                |
| {111}       | 222.0          | gpm for an assumed Maximum Day Demand of                                          | 000        | ghin/EKO           | 90 %               |

#### DEMAND DISTRIBUTION 155 ERUs, 232 gpm PHD

|      | Node  | ERUs | Demand |             |                 |     |      |
|------|-------|------|--------|-------------|-----------------|-----|------|
|      |       |      | (gpm)  | _           |                 |     |      |
|      | 1     | 0    | 0      | - F         | Pressure Zone 1 | 123 | ERUs |
|      | 2     | 0    | . 0    | F           | Pressure Zone 2 | 10  | ERUs |
|      | 3     | 0    | 0      | F           | Pressure Zone 3 | 22  | ERUs |
|      | 4     | 0    | 0      |             |                 |     |      |
| · `} | 5     | 0    | 0      |             |                 |     |      |
| (    | 6     | 9    | 14     |             |                 |     |      |
|      | 7     | 0    | 0      |             |                 |     |      |
|      | 8     | 0    | 0      |             |                 |     |      |
|      | 9     | 12   | 19     |             |                 |     |      |
|      | 10    | 23   | 36     |             |                 |     |      |
|      | 11    | 6    | 9      | ·           |                 |     |      |
|      | 12    | 39   | 62     |             |                 |     |      |
|      | 13    | 0    | 0      |             |                 |     |      |
|      | 14    | 0    | 0      |             |                 |     |      |
|      | 15    | 20   | 31     |             |                 |     |      |
|      | 16    | 5    | 8      |             |                 |     |      |
|      | 17    | 4    | 6      |             |                 |     |      |
|      | 51    | 0    | 0      |             |                 |     |      |
|      | 52    | 0    | 0      |             |                 |     |      |
|      | 53    | 3    | 5      |             |                 |     |      |
|      | 54    | 6    | 9      |             |                 |     |      |
|      | 55    | 1    | 3      |             |                 |     |      |
|      | 72    | 5    | 5      | <u>)</u>    |                 |     |      |
|      | 75    | 7    | 7      | GLA 27 lots |                 |     |      |
|      | 76    | 5    | 5      | ſ           |                 |     |      |
|      | 77    | 10   | 13     | J           |                 |     |      |
|      | Total | 155  | 232    |             |                 |     |      |
| ( 2  |       |      |        |             |                 |     |      |

Bratton {7/31/2008}

# UW-240151 Exh. M98-CAL-<u>388</u> Page 41 of 60

#### CAL WATERWORKS

Ĺ

ĺ

ĺ

#### CALCULATIONS

| NETWORK ANALYSIS - COMPUTER PROGRAM DATA<br>Initial Input - November 2007 System |           |       |        |          |             |                                 |  |  |  |  |
|----------------------------------------------------------------------------------|-----------|-------|--------|----------|-------------|---------------------------------|--|--|--|--|
| Program Inpu                                                                     | it Codes: |       |        |          |             |                                 |  |  |  |  |
| 0                                                                                | 1         | 0.001 | 1      | 1        | 1           | 1                               |  |  |  |  |
| 2<br>24                                                                          | 1<br>22   | 5     | 1      |          |             |                                 |  |  |  |  |
| Pipe Data:                                                                       |           |       |        |          |             |                                 |  |  |  |  |
| Pipe                                                                             | Between   |       | Length | Diameter | H-W         |                                 |  |  |  |  |
| No.                                                                              | Nodes     |       | (feet) | (inches) | Coefficient |                                 |  |  |  |  |
| 1                                                                                | 1         | 2     | 20     | 4        | 140         | 8"Ø replacement size            |  |  |  |  |
| 2                                                                                | 2         | 3     | 20     | 4        | 140         | 8"Ø replacement size            |  |  |  |  |
| 3                                                                                | 3         | 4     | 10     | 3        | 140         | Booster pump (Zone 1)           |  |  |  |  |
| . 4                                                                              | 4.        | 5     | 20     | 4        | 140         | 8"Ø replacement size            |  |  |  |  |
| 5                                                                                | 5         | 6     | 600    | 2        | 140         |                                 |  |  |  |  |
| 6                                                                                | 5         | 7     | 360    | 4        | 140         | 8"Ø replacement size            |  |  |  |  |
| 7                                                                                | 7         | 8     | 1760   | 6        | 140         |                                 |  |  |  |  |
| 8                                                                                | 8         | 9     | 160    | 4        | 140         | 6"Ø replacement size            |  |  |  |  |
| 9                                                                                | 9         | 13    | 1550   | 3        | 140         | 6"Ø replacement size            |  |  |  |  |
| 10                                                                               | 9         | 10    | 570    | 3        | 140         | 6"Ø replacement size            |  |  |  |  |
| 11                                                                               | 10        | 11    | 125    | 3        | 140         |                                 |  |  |  |  |
| 12                                                                               | 10        | 12    | 180    | 3        | 140         | 6"Ø replacement size            |  |  |  |  |
| 13                                                                               | 13        | 12    | 1500   | 3        | 140         |                                 |  |  |  |  |
| 14                                                                               | 13        | 14    | 200    | 3        | 140         | 6"Ø replacement size            |  |  |  |  |
| 15                                                                               | 14        | 15    | 1450   | 3        | 140         | ·                               |  |  |  |  |
| 16                                                                               | 12        | 15    | 200    | 3        | 140         |                                 |  |  |  |  |
| 17                                                                               | 15        | 16    | 160    | 3        | 140         |                                 |  |  |  |  |
| 18                                                                               | 14        | 17    | 420    | 2        | 140         |                                 |  |  |  |  |
| 51                                                                               | 4         | 51    | 10     | 2        | 140         |                                 |  |  |  |  |
| 52                                                                               | 51        | 52    | 10     | 2        | 140         | Booster pump (Zone 2;           |  |  |  |  |
| 53                                                                               | 52        | 53    | 840    | 2        | 140         | now supplied from Zone 1)       |  |  |  |  |
| 54                                                                               | 53        | 54    | 820    | · 2      | 140         |                                 |  |  |  |  |
| 55                                                                               | 53        | 55    | 390    | 2        | 140         |                                 |  |  |  |  |
| 70                                                                               | 14        | 70    | 3050   | 6        | 140.1       | Proposed extension for intertie |  |  |  |  |
| 71                                                                               | 70        | 71    | 10     | 2        | 99.1        | ∫ Meter & DCVA                  |  |  |  |  |
| 72                                                                               | 71        | 72    | 565    | 4        | 140.1       | Proposed supply to pump station |  |  |  |  |
| 73                                                                               | 72        | 73    | 685    | 4        | 140.1       |                                 |  |  |  |  |
| 74                                                                               | 73        | 74    | 10     | 2        | 140.1       | Proposed pump station (Zone 3)  |  |  |  |  |
| 75                                                                               | 74        | 75    | 980    | 4        | 140         | )                               |  |  |  |  |
| 76                                                                               | 75        | 76    | 635    | 4        | 140         | ≻ Existing water mains          |  |  |  |  |
| 77                                                                               | 75        | 77    | 970    | 3        | 140         | J                               |  |  |  |  |
| 99                                                                               | 52        | 54    | 9999   | 0.5      | 99          | Pseudo pipe                     |  |  |  |  |

UW-240151 Exh. M98-CHL-<u>388</u> Page 42 of 60

#### CAL WATERWORKS

Input Data (continued)

ĺ

CALCULATIONS

|       |        |           | <b>`</b> .      |                               |
|-------|--------|-----------|-----------------|-------------------------------|
| Node  | Demand | Elevation | Notes:          | Note:                         |
| No.   | (gpm)  | (feet)    |                 | H-W Coefficient ending in 0.1 |
| 1 .   | 0      | 150       | Reservoir       | indicates new water main      |
| 2     | 0      | 150       |                 |                               |
| 3     | 0      | 150       |                 | Assumed H-W Coefficients      |
| 4     | 0      | 150       |                 | 140 PVC & Lined DI pipe       |
| 5     | 0      | 150       |                 | 120 Asbestos cement pipe      |
| 6     | 14     | 145       |                 | 100 Unlined CI, Galv Stl or   |
| 7     | 0      | 135       |                 | unknown                       |
| 8     | 0      | 140       |                 | 99 Pseudo pipe                |
| 9     | 19     | 140       |                 | 140.1 New water mains         |
| 10    | 36     | 120       |                 | 140.2 Replacement water mains |
| 11    | 9      | 120       |                 |                               |
| 12    | 62     | 120       |                 |                               |
| 13    | 0      | 145       |                 |                               |
| 14    | 0      | 145       |                 |                               |
| 15    | 31     | 120       |                 |                               |
| 16    | 8      | 120       |                 |                               |
| 17    | 6      | 130       |                 |                               |
| 51    | 0      | 150       |                 | · · ·                         |
| 52    | 0      | 150       |                 |                               |
| 53    | 5      | 155       | Pressure zone 2 |                               |
| 54    | 9      | 250       |                 |                               |
| 55    | 3      | 170       | )               |                               |
| 70    | 0      | 145       |                 |                               |
| 71    | 0      | 145       |                 |                               |
| 72    | 0      | 165       |                 | 5                             |
| 73    | 0      | 205       |                 | 0                             |
| 74    | 0      | 205       | J               | 0 Goss Lakeridge Acres        |
| 75    | 0      | 215       | Pressure zone 3 | 7 (                           |
| 76    | 0      | 165       | ſ               | 5                             |
| 77    | 0      | 320       | J               | 13 )                          |
| Total | 202    | -         | Total           | 30                            |

Bratton {7/31/2008}

# UW-240151 Exh. MAR - CAL of 388 Page 43 of 60

#### CAL WATERWORKS

í

#### CALCULATIONS

| Input Data (continued)                 |          |  |  |  |  |  |  |  |  |  |
|----------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| Program Input Codes:<br>1 2 0 0 0<br>3 |          |  |  |  |  |  |  |  |  |  |
| Source Pun                             | np Data: |  |  |  |  |  |  |  |  |  |

| 1  | 1   | Reservoir   |                 | Node No.; No. of Pump (Operating as reservoir)       |
|----|-----|-------------|-----------------|------------------------------------------------------|
|    | 0   | 100         | 1000            | Flow (gpm)                                           |
|    | 11  | 、 11        | 11              | Head (feet), height of water in 12 ft high reservoir |
| 3  | 1   | Ex. Booster | pump to Zone 1  | Pipe No.; No. of Pumps operating                     |
|    | 0   | 100         | 140             | Flow (gpm) Ex. STA-RITE DHJ 5 HP                     |
|    | 162 | 135         | 105             | Head (feet)                                          |
| 52 | 1   | Ex. Booster | pump to Zone 2  | Pipe No.; No. of Pumps operating                     |
|    | 0   | 20          | 40              | Flow (gpm) STA-RITE HMS 1.5 HP                       |
|    | 170 | 150         | 110             | Head (feet)                                          |
| 74 | . 1 | Proposed G  | LA pump station | Pipe No.; No. of Pumps operating                     |
|    | 0   | 50          | 100             | Flow (gpm)                                           |
|    | 160 | 160         | 160             | Head (feet), assumed pump "on" pressure              |
|    |     |             |                 |                                                      |

Note: Ex. Pump to Zone 2 is supplied from discharge of pump to Zone 1.

CAL Waterworks, Existing Distribution System Inventory:

|                 | Length of Mains (feet) |           |       |     |       |    |        |
|-----------------|------------------------|-----------|-------|-----|-------|----|--------|
|                 | < 2"                   | 2" & 2.5" | 3"    | 4"  | 6"    | 8" | total  |
| Ductile Iron    | 0                      | 0         | 0     | 0   | 0     | 0  | 0      |
| PVC or HDPE     | 0                      | 3,070     | 5,935 | 540 | 1,760 | 0  | 11,305 |
| Asbestos Cement | 0                      | 0         | 0     | 0   | 0     | 0  | 0      |
| Steel           | 0                      | 0         | 0     | 0   | 0     | 0  | 0      |
| Galv. Steel     | 0                      | 0         | 0     | 0   | 0     | 0  | 0      |
| Cast Iron       | 0                      | 0         | 0     | 0   | 0     | 0  | 0      |
| Sub-total       | 0                      | 3,070     | 5,935 | 540 | 1,760 | 0  |        |

total 11,305

UW-240151 Exh. MR. Chl of 388 Page 44 of 60

#### CALCULATIONS

File: J601ay

CAL WATERWORKS

(

1

ĺ

#### NETWORK ANALYSIS 7/29/2008

#### [a] PHD for 155 ERUS, EX. CAL BOOSTER PUMPS, NEW GLA BOOSTER PUMPS EX. CAL DISTRIBUTION SYSTEM, NEW WHOLESALE INTERTIE TO GLA EX. GLA DISTRIBUTION SYSTEM DOWNSTREAM OF BOOSTER PUMPS

Source Reservoir: Pumps Flows and Related Heads Node No. of Elev. of (height of water in reservoir) Pumps No. Pumps 100 1000 Reservoir 0 11 Height of water (full) 11 11 150 1 1 **Booster Pumps:** Pumps Flows and Related Heads Pipe No. of (pump curve) No. Pumps Booster Pump, Pressure Zone 1 0 100 140 105 STA-RITE DHJ 5 HP 162 135 3 2 Booster Pump, Pressure Zone 2 40 0 20 STA-RITE HMS 1.5 HP 150 110 52 1 170 0 50 100 Booster Pump, Pressure Zone 3 GLA Required "pump on" TDH 175 175 74 1 175 Pressure Reducing Valves: K-value CV Ref. Downstream PRV Pipe feature Node HGL No. No. none Pipe Flows: Upstrm. Pipe Dia. Upstrm. Dnstrm. Pipe Flow Head loss Velocity (fps) HGL (feet) Node No. (gpm) (feet) Node (inches) 161.0 232.0 0.6 5.9 4 2 1 1 0.6 5.9 160.4 3 2 232.0 4 2 Pump -121.7 10.5 159.8 232.0 3 4 3 3 281.5 (Zone 1) 5 4 215.0 0.5 5.5 4 4 1.4 280.9 2 5 6 5 14.0 3.0 5 7 6 201.0 8.6 5.1 280.9 4 7 5.9 2.3 272.3 6 7 8 201.0 5.1 266.4 8 201.0 3.8 9 4 8 262.6 3.1 3 13 9 67.7 20.1 9 262.6 114.3 19.5 5.2 3 9 10 10 243.1 3 10 11 11 9.0 0.0 0.4 12 12 69.3 2.4 3.2 243.1 3 10 242.5 12 13 18.9 1.8 0.9 3 13

#### CALCULATIONS

[a] PHD for 155 ERUs, EX. CAL BOOSTER PUMPS, NEW GLA BOOSTER PUMPS

Pipe Flows:

(

4

| Pipe Dia. | Upstrm. | Dnstrm. | Pipe | Flow  | Head loss | Velocity | Upstrm.    |            |
|-----------|---------|---------|------|-------|-----------|----------|------------|------------|
| (inches)  | Node    | Node    | No.  | (gpm) | (feet)    | (fps)    | HGL (feet) |            |
| 3         | 13      | 14      | 14   | 48.8  | 1.4       | 2.2      | 242.5      |            |
| 3         | 14      | 15      | 15   | 12.8  | 0.9       | 0.6      | 241.1      |            |
| 3         | 12      | 15      | 16   | 26.2  | 0.5       | 1.2      | 240.7      |            |
| 3         | 15      | 16      | 17   | 8.0   | 0.0       | 0.4      | 240.2      |            |
| 2         | 14      | 17      | 18   | 6.0   | 0.4       | 0.6      | 241.1      |            |
| 2         | 4       | 51      | 51   | 17.0  | 0.1       | 1.7      | 281.5      |            |
| 2         | 51      | 52      | 52   | 17.0  | -152.9    | 1.7      | 281.4      | Pump       |
| 2         | 52      | 53      | 53   | 16.9  | 6.0       | 1.7      | 434.3      | (Zone 2)   |
| 2         | 53      | 54      | 54   | 8.9   | 1.8       | 0.9      | 428.3      |            |
| 2         | 53      | 55      | 55   | 3.0   | 0.1       | 0.3      | 428.3      |            |
| 6         | 14      | 70      | 70   | 30.0  | 0.3       | 0.3      | 241.1      |            |
| 2         | 70      | 71      | 71   | 30.0  | 19.6      | 3.1      | 240.8      | Meter/DCVA |
| 4         | 71      | 72      | 72   | 30.0  | 0.4       | 0.8      | 221.1      |            |
| 4         | 72      | 73      | 73   | 25.0  | 0.4       | 0.6      | 220.7      |            |
| 2         | 73      | 74      | 74   | 25.0  | -174.9    | 2.6      | 220.4      | Pump       |
| 4         | 74      | 75      | 75   | 25.0  | 0.5       | 0.6      | 395.2      | (Zone 3)   |
| 4         | 75      | 76      | 76   | 5.0   | 0.0       | 0.1      | 394.8      |            |
| 3         | 75      | 77      | 77   | 13.0  | 0.6       | 0.6      | 394.8      |            |
| 0.5       | 52      | 54      | 99   | 0.1   | 8.0       | 0.2      | 434.3      |            |

| Node Pres | sures:    |        |        |          |              | Static I | Pressure |
|-----------|-----------|--------|--------|----------|--------------|----------|----------|
| Node      | Elevation | Demand | HGL    | Pressure |              | Pump on  | Pump off |
| No.       | (feet)    | (gpm)  | (feet) | (psi)    |              | (psi)    | (psi)    |
| 1         | 150       | -232.0 | 161.0  | 4.8      | Reservoir    | NA       | NA       |
| 2         | 150       | 0.0    | 160.4  | 4.5      |              | NA       | NA       |
| 3         | 150       | 0.0    | 159.8  | 4.2      |              | NA       | NA       |
| 4         | 150       | 0.0    | 281.5  | 56.9     | Booster Pump | 45.0     | 65.0     |
| 5         | 150       | 0.0    | 280.9  | 56.7     |              | 45.0     | 65.0     |
| 6         | 145       | 14.0   | 277.9  | 57.5     |              | 47.2     | 67.2     |
| 7         | 135       | 0.0    | 272.3  | 59.4     |              | 51.5     | 71.5     |
| 8         | 140       | 0.0    | 266.4  | 54.7     |              | 49.3     | 69.3     |
| 9         | 140       | 19.0   | 262.6  | 53.1     |              | 49.3     | 69.3     |
| 10        | 120       | 36.0   | 243.1  | 53.3     |              | 58.0     | 78.0     |
| 11        | 120       | 9.0    | 243.1  | 53.3     |              | 58.0     | 78.0     |
| 12        | 120       | 62.0   | 240.7  | 52.2     |              | 58.0     | 78.0     |
| 13        | 145       | 0.0    | 242.5  | 42.2     |              | 47.2     | 67.2     |
| 14        | 145       | 0.0    | 241.1  | 41.6     |              | 47.2     | 67.2     |
| 15        | 120       | 31.0   | 240.2  | 52.0     |              | 58.0     | 78.0     |
| 16        | 120       | 8.0    | 240.2  | 52.0     |              | 58.0     | 78.0     |
| 17        | 130       | 6,0    | 240.6  | 47.9     |              | 53.7     | 73.7     |

Bratton {7/31/2008}

(

ĺ

(

1

#### CALCULATIONS

| Node Pre | ssures:   |        |        |          |                    | Static I | Pressure |
|----------|-----------|--------|--------|----------|--------------------|----------|----------|
| Node     | Elevation | Demand | HGL    | Pressure |                    | Pump on  | Pump off |
| No.      | (feet)    | (gpm)  | (feet) | (psi)    |                    | (psi)    | (psi)    |
| 51       | 150       | 0.0    | 281.4  | 56.9     | -                  | 45.0     | 65.0     |
| 52       | 150       | 0.0    | 434.3  | 123.1    | Booster Pump       | 75.0     | 95.0 🏒   |
| 53       | 155       | 5.0    | 428.3  | 118.3    | ) see pump "on" &  | 72.8     | 92.8     |
| 54       | 250       | 9.0    | 426.4  | 76.3     | > "off" pressure   | 31.7     | 51.7     |
| 55       | 170       | 3.0    | 428.2  | 111.8    | settings           | 66.3     | 86,3     |
| 70       | 145       | 0.0    | 240.8  | 41.5     |                    | 47.2     | 67.2     |
| 71       | 145       | 0.0    | 221.1  | 33.0     | Meter & DCVA       | 47.2     | 67.2     |
| 72       | 165       | 5.0    | 220.7  | 24.1     |                    | 38.5     | 58.5     |
| 73       | 205       | 0.0    | 220.4  | 6.7      | GLA pump suction   | 21.2     | 41.2     |
| 74       | 205       | 0.0    | 395.2  | 82.4     | Required discharge | 83.0     | 103.0    |
| 75       | 215       | 7.0    | 394.8  | 77.8     |                    | 78.7     | 98.7     |
| 76       | 165       | 5.0    | 394.7  | 99.5     |                    | 100.3    | 120.3    |
| 77       | 320       | 13.0   | 394.2  | 32.1     |                    | 33.2     | 53.2     |

[a] PHD for 155 ERUs, EX. CAL BOOSTER PUMPS, NEW GLA BOOSTER PUMPS

Maximum unbalanced head in any loop

0.1762 In loop # 1

UW-240151 Exh. M98-CAL-<sup>6</sup>388 Page 47 of 60

CALCULATIONS

#### CAL WATERWORKS

ł

#### NETWORK ANALYSIS 7/31/2008

## [b] 500 GPM FIRE FLOW AT NODE 12, UPGRADED CAL BOOSTER PUMPS, NEW GLA File: J601bx BOOSTER PUMPS, UPGRADED CAL DISTRIBUTION SYSTEM, NEW WHOLESALE INTERTIE TO GLA, EX. GLA DISTRIBUTION SYSTEM DOWNSTREAM OF BOOSTER PUMPS

| Source Rese  | ervoir:     |          |            |            |            |             |                 |                |
|--------------|-------------|----------|------------|------------|------------|-------------|-----------------|----------------|
| Node         | No. of      | Elev. of | Pumps Flow | s and Rel  | ated Heads |             |                 |                |
| No.          | Pumps       | Pumps    | (height of | water in r | eservoir)  |             |                 |                |
|              |             |          | 0          | 100        | 1000       | Reservoir   |                 |                |
| 1            | 1           | 150      | 5          | 5          | 5          | Height of w | ater (1/2 full  | )              |
|              |             |          |            |            |            |             |                 |                |
| Booster Purr | nps:        |          |            |            |            |             |                 |                |
| Pipe         | No. of      |          | Pumps Flow | s and Rel  | ated Heads |             |                 |                |
| No.          | Pumps       |          | (p         | oump_curv  | /e)        | ·           | _               | _ · ·          |
|              |             |          | 0          | 150        | 200        | Booster Pu  | mp, Pressur     | re ∠one 1      |
| 3            | 4           |          | 185        | 155        | 112        | Goulds 365  | 6 10 HP, 6.     | 5" Impeller    |
|              |             |          |            |            |            |             | 5               | 7              |
|              |             |          | 0          | 20         | 40         | Booster Pu  | mp, Pressur     |                |
| 52           | 1           |          | 200        | 200        | 200        | Assumed p   | ump on pres     | ssure (90 psi) |
|              |             |          |            | 50         | 400        | Deceler Du  |                 |                |
|              |             |          | 0          | 50         | 100        | Booster Pu  | mp, Pressui     |                |
| 74           | 1           |          | 175        | 175        | 175        | Required p  | Sump on TL      |                |
|              |             |          |            |            |            |             |                 |                |
| Pressure Re  | aucing vaiv | es:      | Downatroom |            | Kvoluo     | CV          |                 |                |
| PRV          | Pipe        | Rei.     |            |            | N-Value    | feature     |                 |                |
| <u>INO.</u>  | 110.        | Noue     |            | <u> </u>   |            | Teature     | -               |                |
| none         |             |          |            |            |            |             |                 |                |
| Pine Flowe   |             |          |            |            |            |             |                 |                |
| Pine Dia     | Unstrm      | Dnstrm   | Pipe       | Flow       | Head loss  | Velocity    | Upstrm.         |                |
| (inches)     | Node        | Node     | No         | (apm)      | (feet)     | (fps)       | ,<br>HGL (feet) |                |
| 8            | 1           | 2        | 1          | 592.8      | 0.1        | 3.8         | 155.0           | -              |
| 8            | 2           | 3        | 2          | 586.0      | 0.1        | 3.7         | 154.9           |                |
| 3            | 3           | 4        | 3          | 586.0      | -148.6     | 26.6        | 154.8           | Pump           |
| 8            | 4           | 5        | 4          | 586.0      | 0.1        | 3.7         | 303.4           | (Zone 1)       |
| 2            | 5           | 6        | 5          | 5.6        | 0.6        | 0.6         | 303.3           |                |
| 8            | 5           | 7        | 6          | 580.4      | 2.1        | 3.7         | 303.3           |                |
| 6            | 7           | 8        | 7          | 580.4      | 41.7       | 6.6         | 301.2           |                |
| 6            | 8           | 9        | 8          | 580.4      | 3.8        | 6.6         | 259.4           |                |
| 6            | 9           | 13       | 9          | 107.7      | 1.6        | 1.2         | 255.7           |                |
| 6            | 9           | 10       | 10         | 465.1      | 9.0        | 5.3         | 255.7           |                |
| 3            | 10          | 11       | 11         | 3.6        | 0.0        | 0.2         | 246.7           |                |
| 6            | 10          | 12       | 12         | 447.1      | 2.6        | 5.1         | 246.7           |                |
| 3            | 13          | 12       | 13         | 47.1       | 10.0       | 2.1         | 254.0           |                |

Bratton {7/31/2008}

#### CALCULATIONS

| [b] 500 GPM FIRE FLOW AT NODE 12, U | JPGRADED CAL | BOOSTER PUMPS, | NEW GLA |
|-------------------------------------|--------------|----------------|---------|
|                                     |              |                |         |

Pipe Flows:

\_

(

(

(

| Pipe Dia. | Upstrm. | Dnstrm. | Pipe | Flow  | Head loss | Velocity | Upstrm.    |            |
|-----------|---------|---------|------|-------|-----------|----------|------------|------------|
| (inches)  | Node    | Node    | No.  | (gpm) | (feet)    | (fps)    | HGL (feet) |            |
| 6         | 13      | 14      | 14   | 60.6  | 0.1       | 0.7      | 254.0      |            |
| 3         | 14      | 15      | 15   | 46.2  | 9.3       | 2.1      | 254.0      |            |
| 3         | 12      | 15      | 16   | -30.6 | -0.6      | -1.4     | 244.1      |            |
| 3         | 15      | 16      | 17   | 3.2   | 0.0       | 0.2      | 244.7      |            |
| 2         | 14      | 17      | 18   | 2.4   | 0.1       | 0.3      | 254.0      |            |
| 2         | 2       | 51      | 51   | 6.8   | 0.0       | 0.7      | 154.9      |            |
| 2         | 51      | 52      | 52   | 6.8   | -200.0    | 0.7      | 154.9      | Pump       |
| 2         | 52      | 53      | 53   | 6.8   | 1.1       | 0.7      | 354.9      | (Zone 2)   |
| 2         | 53      | 54      | 54   | 3.6   | 0.3       | 0.4      | 353.8      |            |
| 2         | 53      | 55      | 55   | 1.2   | 0.0       | 0.1      | 353.8      |            |
| 6         | 14      | 70      | 70   | 12.0  | 0.1       | 0.1      | 254.0      |            |
| 2         | 70      | 71      | 71   | 12.0  | 18.0      | 1.2      | 253.9      | Meter/DCVA |
| 4         | 71      | 72      | 72   | 12.0  | 0.1       | 0.3      | 235.9      |            |
| 4         | 72      | 73      | 73   | 10.0  | 0.1       | 0.3      | 235.8      |            |
| 2         | 73      | 74      | 74   | 10.0  | -175.0    | 1.0      | 235.8      | Pump       |
| . 4       | 74      | 75      | 75   | 10.0  | 0.1       | 0.3      | 410.8      | (Zone 3)   |
| 4         | 75      | 76      | 76   | 2.0   | 0.0       | 0.1      | 410.7      |            |
| 3         | 75      | 77      | 77   | 5.2   | 0.1       | 0.2      | 410.7      |            |
| 0.5       | 52      | 54      | 99   | 0.0   | 2.0       | 0.1      | 354.9      |            |
|           |         |         |      |       |           |          |            |            |

| Node Press      | sures:    |        |        |          |            |      |
|-----------------|-----------|--------|--------|----------|------------|------|
| Node            | Elevation | Demand | HGL    | Pressure |            |      |
| No.             | (feet)    | (gpm)  | (feet) | (psi)    | _          |      |
| 1               | 150       | -592.8 | 155.0  | 2.2      | Reservoir  | -    |
| 2               | 150       | 0.0    | 154.9  | 2.1      |            |      |
| 3               | 150       | 0.0    | 154.8  | 2.1      |            |      |
| 4               | 150       | 0.0    | 303.4  | 66.4     | Booster Pr | ump  |
| 5               | 150       | 0.0    | 303.3  | 66.4     |            |      |
| 6               | 145       | 5.6    | 302.7  | 68.3     |            |      |
| 7               | 135       | 0.0    | 301.2  | 71.9     |            |      |
| 8               | 140       | 0.0    | 259.4  | 51.7     |            |      |
| 9               | · 140     | 7.6    | 255.7  | 50.1     |            |      |
| 10              | 120       | 14.4   | 246.7  | 54.9     |            |      |
| 11              | 120       | 3.6    | 246.7  | 54.9     |            |      |
| 12              | 120       | 524.8  | 244.1  | 53.7     |            | Fire |
| 13              | 145       | 0.0    | 254.0  | 47.2     |            |      |
| <sup>.</sup> 14 | 145       | 0.0    | 254.0  | 47.2     |            |      |
| 15              | 120       | 12.4   | 244.7  | 54.0     |            |      |
| 16              | 120       | 3.2    | 244.7  | 54.0     |            |      |
| 17              | 130       | 2.4    | 253.9  | 53.6     |            |      |

Flow

#### CALCULATIONS

# [b] 500 GPM FIRE FLOW AT NODE 12, UPGRADED CAL BOOSTER PUMPS, NEW GLA

#### Node Pressures:

ĺ

(

(

| Node | Elevation | Demand | HGL    | Pressure |                    |
|------|-----------|--------|--------|----------|--------------------|
| No.  | (feet)    | (gpm)  | (feet) | (psi)    | _                  |
| 51   | 150       | 0.0    | 154.9  | 2.1      |                    |
| 52   | 150       | 0.0    | 354.9  | 88.7     | Booster Pump       |
| 53   | 155       | 2.0    | 353.8  | 86.0     |                    |
| 54   | 250       | 3.6    | 352.9  | 44.6     |                    |
| 55   | 170       | 1.2    | 353.7  | 79.5     |                    |
| 70   | 145       | 0.0    | 253.9  | 47.1     |                    |
| 71   | 145       | 0.0    | 235.9  | 39.4     | Meter & DCVA       |
| 72   | 165       | 2.0    | 235.8  | 30.7     |                    |
| 73   | 205       | 0.0    | 235.8  | 13.3     | GLA pump suction   |
| 74   | 205       | 0.0    | 410.8  | 89.1     | Required discharge |
| 75   | 215       | 2.8    | 410.7  | 84.7     |                    |
| 76   | 165       | 2.0    | 410.7  | 106.3    |                    |
| 77   | 320       | 5.2    | 410.6  | 39.2     |                    |
|      |           |        |        |          |                    |

Maximum unbalanced head in any loop

0.5246 In loop # 1

(

1

#### CALCULATIONS

#### NETWORK ANALYSIS 7/31/2008

#### [c] PHD FOR 155 ERUS, UPGRADED CAL BOOSTER PUMPS (1 of 4 pumping), NEW GLA File: J601cz BOOSTER PUMPS, UPGRADED CAL DISTRIBUTION SYSTEM, NEW WHOLESALE INTERTIE TO GLA, EX. GLA DISTRIBUTION SYSTEM DOWNSTREAM OF BOOSTER PUMPS

| Source Res  | ervoir:     |          |             |            |             |                 |                          |
|-------------|-------------|----------|-------------|------------|-------------|-----------------|--------------------------|
| Node        | No. of      | Elev. of | Pumps Flow  | s and Re   | lated Heads |                 |                          |
| No.         | Pumps       | Pumps    | (height of  | water in I | reservoir)  | _               |                          |
|             |             |          | 0           | 100        | 1000        | Reservoir       |                          |
| 1           | 1           | 150      | 10          | 10         | 10          | Height of w     | vater (full)             |
| Roostor Dur | nne:        |          |             |            |             |                 |                          |
| Duoster Ful | No of       |          | Pumpe Flow  | is and Po  | sheel hotel |                 |                          |
| No          | Dumpe       |          | i unips now |            |             |                 |                          |
| NO.         | T umps      |          | <u> </u>    | 150        | 200         | -<br>Booster Pu | imp. Pressure Zone 1     |
| 3           | 1           |          | 185         | 155        | 112         | Goulds 36       | 56 10 HP 6 5" Impeller   |
| 0           | · ·         |          | 100         | 100        | 112         |                 |                          |
|             |             |          | 0           | 20         | 40          | Booster Pu      | mp, Pressure Zone 2      |
| 52          | 1           |          | 200         | 200        | 200         | Assumed p       | oump on pressure (90 psi |
|             |             |          |             | 50         | 400         | Deseter Du      |                          |
| 74          |             |          | - U<br>     | 50         | 100         | Booster Pu      | Imp, Pressure Zone 3 GL  |
| 74          | 1           |          | 175         | 175        | 175         | Required "      | pump on TDH              |
| Pressure Re | educing Val | ves:     |             |            |             |                 |                          |
| PRV         | Pipe        | Ref.     | Downstream  |            | K-value     | CV              |                          |
| No.         | No.         | Node     | HGL         |            |             | feature         |                          |
| none        |             |          | · · · · ·   |            |             |                 |                          |
|             |             |          |             |            |             |                 |                          |
| Pipe Flows: |             |          |             |            |             |                 |                          |
| Pipe Dia.   | Upstrm.     | Dnstrm.  | Pipe        | Flow       | Head loss   | Velocity        | Upstrm.                  |
| (inches)    | Node        | Node     | No.         | (gpm)      | (feet)      | (fps)           | HGL (feet)               |
| 8           | 1           | 2        | 1           | 232.0      | 0.0         | 1.5             | 160.0                    |
| 8           | 2           | 3        | 2           | 215.0      | 0.0         | 1.4             | 160.0                    |
| 3           | 3           | 4        | 3           | 215.0      | -110.9      | 9.8             | 160.0 Pump               |
| 8           | 4           | 5        | 4           | 215.0      | 0.0         | 1.4             | 270.9 (Zone 1)           |
| 2           | 5           | - 6      | 5           | 14.0       | 3.0         | 1.4             | 270.8                    |
| 8           | 5           | 7        | 6           | 201.0      | 0.3         | 1.3             | 270.8                    |
| 6           | 7           | 8        | - 7         | 201.0      | 5.9         | 2.3             | 270.5                    |
| 6           | 8           | 9        | 8           | 201.0      | 0.5         | 2.3             | 264.7                    |
| 6           | 9           | 13       | 9           | 56.8       | 0.5         | 0.6             | 264.2                    |
| 6           | 9           | 10       | 10          | 125.2      | 0.8         | 1.4             | 264.2                    |
| 3           | 10          | 11       | 11          | 9.0        | 0.0         | 0.4             | 263.4                    |
| 6           | 10          | 12       | 12          | 80.2       | 0.1         | 0.9             | 263.4                    |
| 3           | 13          | 12       | 13          | 8.3        | 0.4         | 0.4             | 263.7                    |

#### CALCULATIONS

[c] PHD FOR 155 ERUs, UPGRADED CAL BOOSTER PUMPS (1 of 4 pumping), NEW GLA

Pipe Flows:

(

| Pipe Dia. | Upstrm. | Dnstrm. | Pipe | Flow  | Head loss | Velocity | Upstrm.    |            |
|-----------|---------|---------|------|-------|-----------|----------|------------|------------|
| (inches)  | Node    | Node    | No.  | (gpm) | (feet)    | (fps)    | HGL (feet) |            |
| 6         | 13      | 14      | 14   | 48.4  | 0.1       | 0.6      | 263.7      | -          |
| 3         | 14      | 15      | 15   | 12.4  | 0.8       | 0.6      | 263.6      |            |
| 3         | 12      | 15      | 16   | 26.6  | 0.5       | 1.2      | 263.3      |            |
| 3         | 15      | 16      | 17   | 8.0   | 0.0       | 0.4      | 262.8      |            |
| 2         | 14      | 17      | 18   | 6.0   | 0.4       | 0.6      | 263.6      | •          |
| 2         | 2       | 51      | 51   | 17.0  | 0.1       | 1.7      | 160.0      |            |
| 2         | 51      | 52      | 52   | 17.0  | -199.9    | 1.7      | 159.9      | Pump       |
| 2         | 52      | 53      | 53   | 16.9  | 6.0       | 1.7      | 359.8      | (Zone 2)   |
| 2         | 53      | 54      | 54   | 8.9   | 1.8       | 0.9      | 353.8      |            |
| 2         | 53      | 55      | 55   | 3.0   | 0.1       | 0.3      | 353.8      |            |
| 6         | 14      | 70      | 70   | 30.0  | 0.3       | 0.3      | 263.6      |            |
| 2         | 70      | 71      | 71   | 30.0  | 19.6      | 3.1      | 263.3      | Meter/DCVA |
| 4         | 71      | 72      | 72   | 30.0  | 0.4       | 0.8      | 243.7      |            |
| 4         | 72      | 73      | 73   | 25.0  | 0.4       | 0.6      | 243.3      |            |
| 2         | 73      | 74      | 74   | 25.0  | -174.9    | 2.6      | 242.9      | Pump       |
| 4         | 74      | 75      | 75   | 25.0  | 0.5       | 0.6      | 417.8      | (Zone 3)   |
| 4         | 75      | 76      | 76   | 5.0   | 0.0       | 0.1      | 417.3      |            |
| 3         | 75      | 77      | 77   | 13.0  | 0.6       | 0.6      | 417.3      |            |
| 0.5       | 52      | 54      | 99   | 0.1   | 8.0       | 0.2      | 359.8      |            |

| Node Press | sures:    |        |        |          |              |
|------------|-----------|--------|--------|----------|--------------|
| Node       | Elevation | Demand | HGL    | Pressure |              |
| No.        | (feet)    | (gpm)  | (feet) | (psi)    | _            |
| 1          | 150       | -232.0 | 160,0  | 4.3      | Reservoir    |
| 2          | 150       | 0.0    | 160.0  | 4.3      |              |
| 3          | 150       | 0.0    | 160.0  | 4.3      |              |
| 4          | 150       | 0.0    | 270.9  | 52.3     | Booster Pump |
| 5          | 150       | 0.0    | 270.8  | 52.3     |              |
| 6          | 145       | 14.0   | 267.8  | 53.2     |              |
| 7          | 135       | 0.0    | 270.5  | 58.7     |              |
| 8          | 140       | 0.0    | 264.7  | 54.0     |              |
| 9          | 140       | 19.0   | 264.2  | 53.8     |              |
| 10         | 120       | 36.0   | 263.4  | 62.1     |              |
| 11         | 120       | 9.0    | 263.3  | 62.1     |              |
| 12         | 120       | 62.0   | 263.3  | 62.0     |              |
| 13         | 145       | 0.0    | 263.7  | 51.4     |              |
| 14         | 145       | 0.0    | 263.6  | 51.4     |              |
| 15         | 120       | 31.0   | 262.8  | 61.8     |              |
| 16         | 120       | 8.0    | 262.8  | 61.8     |              |
| 17         | 130       | 6.0    | 263.2  | 57.7     |              |

(

#### CALCULATIONS

#### [c] PHD FOR 155 ERUs, UPGRADED CAL BOOSTER PUMPS (1 of 4 pumping), NEW GLA

Node Pressures:

(

| Node | Elevation | Demand | HGL    | Pressure |                  |
|------|-----------|--------|--------|----------|------------------|
| No.  | (feet)    | (gpm)  | (feet) | (psi)    |                  |
| 51   | 150       | 0.0    | 159.9  | 4.3      | -                |
| 52   | 150       | 0.0    | 359.8  | 90.8     | Booster Pump     |
| 53   | 155       | 5.0    | 353.8  | 86.1     |                  |
| 54   | 250       | 9.0    | 351.9  | 44.1     |                  |
| 55   | 170       | 3.0    | 353.7  | 79.5     |                  |
| 70   | 145       | 0.0    | 263.3  | 51.2     |                  |
| 71   | 145       | 0.0    | 243.7  | 42.7     |                  |
| 72   | 165       | 5.0    | 243.3  | 33.9     | Meter & DCVA     |
| 73   | 205       | 0.0    | 242.9  | 16.4     | GLA pump suction |
| · 74 | 205       | 0.0    | 417.8  | 92.1     |                  |
| 75   | 215       | 7.0    | 417.3  | 87.6     |                  |
| 76   | 165       | 5.0    | 417.3  | 109.2    |                  |
| 77   | 320       | 13.0   | 416.7  | 41.9     |                  |
|      |           |        |        |          |                  |

Maximum unbalanced head in any loop

0.1762 In loop # 1

( )

(

( ,

#### CALCULATIONS

| [c] BOOST                | TER PUMP S                                                         | ZING C                                        | CHECK - EX                                     | XISTING SYS                         | TEM, CA    | AL 99 ERUs |                  |                  |
|--------------------------|--------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------|------------|------------|------------------|------------------|
| Number of<br>Recorded N  | ERUs:<br>MDD:                                                      | 99<br>388                                     | gpd/ERU                                        | eet PHD:<br>C*N+F)+18 ]             | 1<br>91    | gpm        |                  |                  |
| 1) Require               | d capacity                                                         |                                               |                                                |                                     |            |            | 91               | gpm              |
| 2) Require               | d pressue at pu<br>Pump "on" pr<br>Minus water l<br>Plus equalizir | ump hous<br>essure<br>evel in re<br>ng storag | se (from netv<br>eservoir (pum<br>e allowance: | vork analysis)<br>45 p<br>ıp `on'): | si         |            | 104<br>-11<br>3  | ft<br>ft<br>ft   |
| 4) Conting               | ency allowance                                                     | )                                             |                                                |                                     |            |            | 5                | _ft              |
|                          |                                                                    |                                               | Head requ                                      | uired at                            | 91         | gpm :      | <b>101</b><br>44 | ft<br>psi @ pump |
| 6) Pressur               | e range of hyd<br>Pump "off" m                                     | ropneum<br>iinus pun                          | atic tank<br>np "on" press                     | su 20 p                             | osi        |            | 46               | ft               |
| 7) Allowan               | nce for positive                                                   | pump sh                                       | ut off                                         |                                     |            |            | 10               | ft               |
|                          |                                                                    |                                               | Shutoff he                                     | ead                                 | 0          | gpm :      | 157              | ft               |
| Approx. m<br>[ hp = (Q ) | notor size<br>k H)/(3960 x ef                                      | f.)]                                          |                                                |                                     | 3.9        | hp @ 60%   | efficiency       |                  |
| Existing p               | ump:                                                               |                                               |                                                |                                     | Head       |            | Flow             |                  |
|                          | STA-RITE M                                                         | lodel DJI                                     | H 5 hp                                         | Pump on                             | 101<br>162 | ft<br>ft   | 145<br>0         | gpm<br>gpm       |

Notes: See pump curve in Appendix H

.

#### CALCULATIONS

•

# [d] BOOSTER PUMP SIZING CHECK - EXISTING SYSTEM, CAL + GLA 114 ERUs

| Number of ERUs:<br>Design MDD:               | 114<br>600 gpd/ER                            | Number of<br>J PHD based<br>[ PHD = (M | Number of pumps to meet PHD:<br>PHD based on MDD:<br>[ PHD = (MDD/1440)*(C*N+F)+18 ] |            |            | gpm        |
|----------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|------------|------------|------------|
|                                              |                                              |                                        |                                                                                      |            |            | · •        |
| 1) Required capacity                         |                                              |                                        |                                                                                      |            | 144        | gpm        |
| 2) Required pressue a                        | at pump house (from n                        | etwork analysis                        | )                                                                                    |            |            |            |
| Pump "on                                     | " pressure                                   | 45                                     | psi                                                                                  |            | 104        | ft         |
| Minus wa                                     | ter level in reservoir (p                    | ump `on'):                             |                                                                                      |            | -11        | ft         |
| Plus equa                                    | lizing storage allowand                      | ce:                                    |                                                                                      |            | 3          | ft         |
| 4) Contingency allowa                        | ince                                         |                                        |                                                                                      | •          | 5          | ft         |
|                                              | Head re                                      | equired at                             | 144                                                                                  | gpm :      | 101        | ft         |
|                                              |                                              | · 42 •                                 |                                                                                      | 01         | 44         | psi @ pump |
| 6) Pressure range of<br>Pump "of             | nydropneumatic tank<br>" minus pump "on" pre | essu 20                                | psi                                                                                  |            | 46         | ft         |
| 7) Allowance for posit                       | ive pump shut off                            |                                        |                                                                                      |            | 10         | ft         |
|                                              | Shutoff                                      | head                                   | 0                                                                                    | gpm :      | 157        | ft         |
| Approx. motor size<br>[ hp = (Q x H)/(3960 > | ceff.)]                                      |                                        | 6.1                                                                                  | hp @ 60% ( | efficiency |            |
| Existing pump:                               |                                              |                                        |                                                                                      |            |            |            |
|                                              |                                              |                                        | Head                                                                                 | _          | Flow       |            |
| STA-RIT                                      | E Model DJH 5 hp                             | Pump on                                | 101                                                                                  | ft         | 145        | gpm        |
|                                              |                                              |                                        | 162                                                                                  | ft         | 0          | gpm        |

Notes: The Goss Lakeridge Acres 2001 record of daily summer source meter meter readings showed a MDD of 756 gpd/ERU (See submittal of December 10, 2001 to WA DOH). The weighted average of the CAL Waterworks MDD (388 gpd/ERU for 96 ERUs) and Goss Lakeridge Acres MDD, would be 426 gpd/ERU. To be conservative, a MDD of 600 gpd/ERU was assumed.

See pump curve in Appendix H

ĺ

#### CALCULATIONS

# [a] HYDROPNEUMATIC TANK SIZING, CHECK FOR EXISTING PUMP Twin STA-RITE DHJ 5 hp

Horizontal Tank Formula:

Vertical Tank (non-bladder) Formula:

$$Vt = \frac{[P1 + 14.7]}{[P1 - P2]} + \frac{15}{N} + \frac{2}{P1 - P2} + \frac{15}{N} + \frac{2}{P1 - P2} + \frac{15}{P1 - P2} + \frac{2}{P1 - P2} + \frac{2}$$

Bladder Tank Formula:

| Vt | total volume of tank (gallons)                       |
|----|------------------------------------------------------|
| P1 | pump off setting (psi)                               |
| P2 | pump on setting (psi)                                |
| N  | pump operating cycle of 6 per hour per pump          |
| Qp | pump delivery capacity at midpoint of pressure range |
| Mf | multiplying factor related to tank size              |
| D  | tank diameter (inches)                               |
| Vb | volume of individual bladder tank (gallons)          |
| Ts | number of bladder tanks of size Vb                   |

**Design Parameters:** 

| P1 = | 65<br>150                  | psi<br>ft | P2 = | 45<br>104 | psi Qp =<br>ft       | 200<br>100 | gpm<br>gpm each pump |
|------|----------------------------|-----------|------|-----------|----------------------|------------|----------------------|
| N =  | <b>12</b><br>(alternating) | )         | Mf = | 1.13      | for tank<br>diameter | 36         | inches               |

(gpm)

#### **Required Capacity:**

| Hor            | Horizontal<br>Vt : <b>1,126</b> gallons |       | gallons        | Vertical<br>Vt :                    | 1,023                     | gallons    |
|----------------|-----------------------------------------|-------|----------------|-------------------------------------|---------------------------|------------|
| Blac<br>Ts     | dder<br>*Vb :                           | 1,087 | gallons        | Individual bladd<br>not to exceed 1 | ler tank vo<br>20 gallon: | blume<br>s |
| Existng tanks: | tl                                      | nree  | 315 gallon 36' | 'Ø x 60" (80" o.a.)                 | 945                       | gallons    |

(

#### CALCULATIONS

#### [b] HYDROPNEUMATIC TANK SIZING, PRESSURE ZONE 1, REPLACEMENT PUMPS For four Goulds, 3656 10 hp, twin pumps alternating with twin pumps

Horizontal Tank Formula:

Vertical Tank (non-bladder) Formula:

Bladder Tank Formula:

$$\Gamma s^*Vb = \frac{15^*(P1+14.7)^*(P2+14.7)}{(P1-P2)^*(P2+9.7)} \frac{Qp}{N}$$

| Vt | total volume of tank (galions) |  |
|----|--------------------------------|--|
| P1 | pump off setting (psi)         |  |

P2 pump on setting (psi)

N pump operating cycle of 6 per hour per pump

Qp pump delivery capacity at midpoint of pressure range (gpm)

Mf multiplying factor related to tank size

D tank diameter (inches)

Vb volume of individual bladder tank (gallons)

Ts number of bladder tanks of size Vb

#### **Design Parameters:**

| P1 = | 82                         | 82 psi P2 = 6 |      | 62   | psi Qp =             | 300 | gpm    |  |
|------|----------------------------|---------------|------|------|----------------------|-----|--------|--|
| N =  | <b>12</b><br>(alternating) |               | Mf = | 1.07 | for tank<br>diameter | 54  | inches |  |

#### **Required Capacity:**

| Horizont           | tal     |                                  |                                |                                |            |        |
|--------------------|---------|----------------------------------|--------------------------------|--------------------------------|------------|--------|
| Vt                 | : 1,940 | gallons                          | Vt :                           | 1,873                          | gallons    |        |
| Bladder<br>Ts*Vb   | : 1,940 | gallons                          | Individual bla<br>not to excee | idder tank vo<br>d 120 gallon: | blume<br>s |        |
| Recommended tanks: |         | 1 Roy E. Hanson, 1<br>Horizontal | 25 ps 54"Ø                     | 181" o.a.                      | 2,050      | gallon |

#### UW-240151 Exh. M98-24Lof 388 Page 57 of 60

#### CAL WATERWORKS

#### CALCULATIONS

# [c] HYDROPNEUMATIC TANK SIZING, PRESSURE ZONE 2 For twin Goulds 33 GB 3 hp, alternating

Horizontal Tank Formula:

Vertical Tank (non-bladder) Formula:

Bladder Tank Formula:

| Vt | total volume of tank (gallons)                             |
|----|------------------------------------------------------------|
| P1 | pump off setting (psi)                                     |
| P2 | pump on setting (psi)                                      |
| Ν  | pump operating cycle of 6 per hour per pump                |
| Qp | pump delivery capacity at midpoint of pressure range (gpm) |
| Mf | multiplying factor related to tank size                    |
| D  | tank diameter (inches)                                     |
| Vb | volume of individual bladder tank (gallons)                |
| Ts | number of bladder tanks of size Vb                         |

**Design Parameters:** 

| P1 = | 113                       | psi | P2 = | 93   | psi Qp =             | 35 | gpm    |
|------|---------------------------|-----|------|------|----------------------|----|--------|
| N =  | <b>12</b><br>(alternating | )   | Mf = | 1.24 | for tank<br>diameter | 24 | inches |

#### **Required Capacity:**

|            | Horizontal         |     |                                    | Vertical                            |                        |             |  |
|------------|--------------------|-----|------------------------------------|-------------------------------------|------------------------|-------------|--|
|            | Vt :               | 346 | gallons                            | Vt :                                | 291                    | gallons     |  |
|            | Bladder<br>Ts*Vb : | 293 | gallons                            | Individual bladd<br>not to exceed 1 | er tank v<br>20 gallon | olume<br>Is |  |
| Recommende | ed tanks:          |     | 3 Well-X-Trol W<br>125 psi vertica | X 350, 119 gallon<br>I              | 357                    | gallons     |  |

Bratton {8/6/2008}

(

#### CAMANO HILLS WATER COMPANY

(

#### BUDGET COST ESTIMATE

#### **REPLACEMENT BOOSTER PUMP STATION**

Two pumped zones, 500 gpm fire flow in zone 1

| ITEM     |                                          |            | QUANT      | TY        | UN          | IIT COST |         | COST    |
|----------|------------------------------------------|------------|------------|-----------|-------------|----------|---------|---------|
| 1        | Mobilization, demolization               |            | 1          | ea        | \$<br>¢     | 55,000   | \$<br>¢ | 55,000  |
| 2        | Dising within buildings, 22 II X 20 II   | [0]        | 440        | ioh       | φ<br>¢      | 2 600    | Ψ<br>S  | 2 600   |
| 3        | Fiping within building                   | [a]<br>[b] | 1          | JUU<br>63 | Ψ<br>¢      | 2,000    | Ψ<br>S  | 11 400  |
| 4<br>E   | 3 hp Pumps for Zone 1                    | [U]<br>[b] | -+         | 60        | ¢           | 2,000    | ¢<br>¢  | 5,000   |
| 5<br>6   | 3 NP Pumps for Zone Z                    | [n]        | 1          | 60        | ¢           | 12,000   | ¢<br>¢  | 12 000  |
| 0        | 110 gellen bladder tenks (Zono 2)        |            | 3          | 62        | ŝ           | 960      | \$      | 2 880   |
| /<br>Q   | Miscollanoous valvos & gauges            | [2]        | 1          | ioh       | ŝ           | 3 100    | \$      | 3 100   |
| 0        | Installation 3 to 8                      | ٢٩         | 1          | ioh       | ŝ           | 10,100   | \$      | 10,000  |
| 10       | Electrical within building               |            | 1          | iob       | ŝ           | 7 000    | ŝ       | 7 000   |
| 11       | Electrical within building               |            | 1          | ioh       | ŝ           | 31,000   | Ŝ       | 31,000  |
| 12       | New PSE power supply from E. Harbor Rd   |            | 1          | iob       | ŝ           | 5.000    | \$      | 5.000   |
| 12       | Yard nining materials & installation     |            | 1          | iob       | ŝ           | 8,000    | \$      | 8.000   |
| 14       | New Lifety Vault well enclosure Well # 1 |            | 1          | ea        | ŝ           | 2,400    | \$      | 2,400   |
| 15       | New source meters in nump house          | [b]        | 2          | ea        | ŝ           | 650      | \$      | 1,300   |
| 16       | New bypochlorinator                      | [~]<br>[b] | 1          | ea        | \$          | 900      | \$      | 900     |
| 17       | Yard security fence                      | [~]        | 370        | ft        | Ŝ           | 18       | \$      | 6.660   |
| 18       | County WA DOH & WA I &I fees             |            | allowanc   | e         | ľ           |          | \$      | 2,000   |
| 10       |                                          |            |            | -         | ļ ,         |          |         | ,       |
| Notes    |                                          | :          |            |           | <b>L</b> _~ |          |         |         |
| [a]      | From 2007 Skagit Co. W.D. No. 1 project  |            | Sub-total  |           |             |          | \$      | 201,440 |
| [b]      | From Camano Hills Water Co 2008 project  |            | Tax        |           |             | 8.3%     | \$      | 16,720  |
| []<br>[] | H. D. Fowler, August 2008                |            | Contingen  | CV        |             | 15%      | \$      | 30,216  |
| [-]      |                                          |            | Inspection |           |             |          | \$      | 1,000   |
|          |                                          |            | Project Re | eport     |             |          | \$      | 3,500   |
|          |                                          |            | -          | -         |             |          |         |         |
|          |                                          |            |            |           |             |          | \$      | 252,876 |

#### CAMANO HILLS WATER COMPANY

(

#### BUDGET COST ESTIMATE

# WATER MAIN REPLACEMENT, TO & ALONG E. HARBOR ROAD

| ITEM                                         |                                                     | QUANTITY  |         | UNIT COST |       |    | COST    |
|----------------------------------------------|-----------------------------------------------------|-----------|---------|-----------|-------|----|---------|
|                                              |                                                     |           |         |           |       |    |         |
| 1                                            | Mobilization, demolization                          | 1         | job     | \$        | 6,000 | \$ | 6,000   |
| 2                                            | Traffic control and trench safety                   | 1         | job     | \$        | 3,200 | \$ | 3,200   |
| 3                                            | 8" PVC pipe c/w sand bedding, native backfill       | 360       | ft      | \$        | 54    | \$ | 19,440  |
| 4                                            | 6" PVC pipe c/w sand bedding, native backfill       | 1,980     | ft      | \$        | 45    | \$ | 89,100  |
| 5                                            | Granular backfill (allow 10% of length in fog line) | 43.3      | су      | \$        | 9     | \$ | 390     |
| 6                                            | 8" gate valve c/w valve box                         | 1         | ea      | \$        | 1,500 |    |         |
| 7                                            | 6" gate valve c/w valve box                         | 2         | ea      | \$        | 1,200 | \$ | 2,400   |
| 8                                            | 6 & 8" DI fittings                                  | 383       | lbs     | \$        | - 3   | \$ | 1,149   |
| 9                                            | Air release valve assemblies                        | 1         | ea      | \$        | 1,250 | \$ | 1,250   |
| 10                                           | Blow-off assemblies                                 | 0         | ea      | \$        | 1,250 | \$ | -       |
| 11                                           | Fire hydrant                                        | 2         | ea      | \$        | 3,500 | \$ | 7,000   |
| 12                                           | Pavement cut & replacement (road X-ings)            | 72        | sf      | \$        | 15    | \$ | 1,080   |
| 13                                           | Road X-ing casing pipe c/w spacers                  | 24        | ft      | \$        | 80    | \$ | 1,920   |
| 14                                           | CDF for casing pipe road crossings                  | 4.4       | су      | \$        | 85    | \$ | 378     |
| 15                                           | Service replacement to existing meter               | 0         | ea      | \$        | 550   | \$ | -       |
| 16                                           | Pressure test and disinfection                      | 1         | job     | \$        | 2,500 | \$ | 2,500   |
|                                              |                                                     |           |         |           |       |    |         |
| Notes:                                       |                                                     | Sub-total |         |           |       | \$ | 135,807 |
|                                              | Unit costs from low bid to Del Mar. 2007 with       | Tax       |         |           | 8.3%  | \$ | 11.272  |
|                                              | adjustment for 8" PVC pipe at \$11,19/ft vs         | Continger | ncv     |           | 15%   | \$ | 20.371  |
| 8" DI at \$24.22/ft; prices from H.D. Fowler |                                                     | Survevor  | (for ba | ise plan) |       | \$ | 4,000   |

Aug-08

cost per foot \$

Construction plans

Inspection

74.98

2,000

2,000 **175,450** 

\$

\$

\$

#### UW-240151 Exh. MJR-CJL-\_\_X Page 60 of 60

#### CAMANO HILLS WATER COMPANY

(

#### BUDGET COST ESTIMATE

### WATER MAIN REPLACEMENT, BEACHWOOD DRIVE & RAVENRIDGE DRIVE

| ;      |                                                                    |                    |     |           |       |       |         |
|--------|--------------------------------------------------------------------|--------------------|-----|-----------|-------|-------|---------|
| ITEM   |                                                                    | QUANTITY           |     | UNIT COST |       | COST  |         |
|        |                                                                    |                    |     |           |       |       |         |
| 1      | Mobilization, demolization                                         | 1                  | job | \$        | 6,000 | \$    | 6,000   |
| 2      | Traffic control and trench safety                                  | 1                  | job | \$        | 3,200 | \$    | 3,200   |
| 3      | 8" PVC pipe c/w sand bedding, native backfill                      | 0                  | ft  | \$        | 54    | \$    | - /     |
| 4      | 6" PVC pipe c/w sand bedding, native backfill                      | 1,730              | ft  | \$        | 45    | \$    | 77,850  |
| 5      | Granular backfill (allow 10% of length in fog line)                | 32.0               | су  | \$        | 9     | \$    | 288     |
| 6      | 8" gate valve c/w valve box                                        | . 0                | ea  | \$        | 1,500 |       |         |
| 7      | 6" gate valve c/w valve box                                        | 3                  | ea  | \$        | 1,200 | \$    | 3,600   |
| 8      | 6 & 8" DI fittings                                                 | 218                | lbs | \$        | 3     | \$    | 654     |
| 9      | Air release valve assemblies                                       | ·1                 | ea  | \$        | 1,250 | \$    | 1,250   |
| 10     | Blow-off assemblies                                                | 0                  | ea  | \$        | 1,250 | \$    | -       |
| 11     | Fire hydrant                                                       | 1                  | ea  | \$        | 3,500 | \$    | 3,500   |
| 12     | Pavement cut & replacement (road X-ings)                           | 72                 | sf  | \$        | 15    | \$    | 1,080   |
| 13     | Road X-ing casing pipe c/w spacers                                 | 24                 | ft  | \$        | .80   | \$    | 1,920   |
| 14     | CDF for casing pipe road crossings                                 | 4.4                | су  | \$        | 85    | \$    | 378     |
| 15     | Service replacement to existing meter                              | 39                 | ea  | \$        | 550   | \$    | 21,450  |
| 16     | Pressure test and disinfection                                     | 1                  | job | \$        | 2,500 | \$    | 2,500   |
|        |                                                                    |                    |     |           |       |       |         |
|        |                                                                    | L                  |     | 1         |       |       |         |
| Notes: |                                                                    | Sub-total          |     |           |       | \$    | 123,670 |
|        | Unit costs from low bid to Del Mar, 2007 with                      | Tax                |     |           | 8.3%  | .\$   | 10,265  |
|        | adjustment for 8" PVC pipe at \$11.19/ft vs                        | Continger          | ю   |           | 15%   | \$    | 18,551  |
|        | DI at \$24.22/ft: prices from H.D. Fowler Surveyor (for base plan) |                    |     |           | \$    | 2,000 |         |
|        | Aug-08                                                             | Construction plans |     |           | \$    | 2,000 |         |

Inspection

cost per foot \$

\$

\$

91.61

2,000 158,485