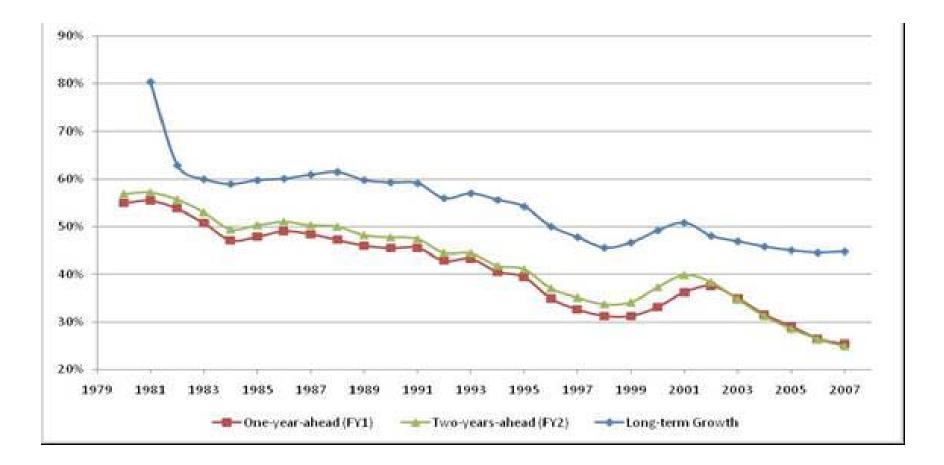
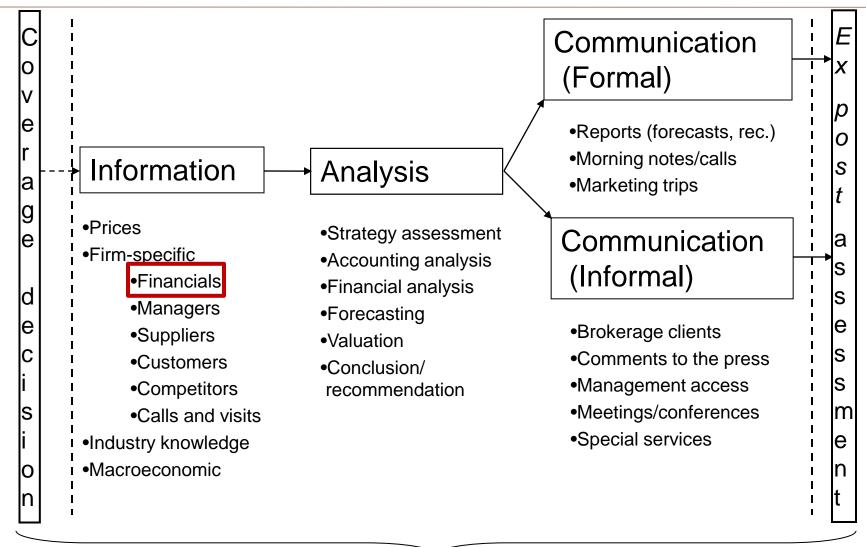
#### A re-examination of analysts' superiority over time-series forecasts

Mark T. Bradshaw Boston College Michael S. Drake The Ohio State University James N. Myers University of Arkansas Linda A. Myers University of Arkansas

CARE Conference April 10, 2010


#### **Summary of slides from the Inaugural CARE Conference**

- #1 "Analysts' forecasts are optimistic"
- #2 "Analysts are better than time-series models"
- #3 We think we know how analysts forecast
- #4 "Analysts' forecasts are inefficient"
- #5 Limited evidence on what analysts do with forecasts
- #6 Most research ignores analysts' multi-tasking
- #7 Analyst data are helpful for capital markets literature
- #8 "Analysts are dominated by conflicts of interest"
- #9 We may be focusing on their least important activities
- #10 Researchers eschew alternative methodologies


## **Summary motivation**

- Analysts >> Time-series models is widely accepted
- However, research supporting this view is characterized by:
  - <u>Tiny samples</u> relative to current research standards (in capital mkts.)
    - e.g., 50 to a few hundred firms
  - Data demands  $\Rightarrow$  **bias towards large, mature firms** 
    - e.g., some studies restrict sample to NYSE, or numerous analysts
    - Analyst following correlated with institutional investment
    - e.g., AF and II interact with firms ⇒ richer information environment (more severe in earlier years)
  - o **<u>Economic significance</u>** of differences seems small
    - Collins & Hopwood (1980): 31.7% vs. 32.9%
    - Fried & Givoly (1982): 16 vs. 19%
- Current-day incorporation of analysts' forecasts into research studies
  - Goes beyond **generalizability** of earlier studies
    - e.g., smaller firms underrepresented in early research, longer forecast horizons underrepresented
    - ala Bamber, Christensen & Gaver (AOS2000)

## Figure 1: Percentage of firms on Compustat/CRSP <u>without</u> analyst coverage



#### Analysts



Ability, incentives, integrity/professionalism, responsiveness, etc.

#### **Research question**

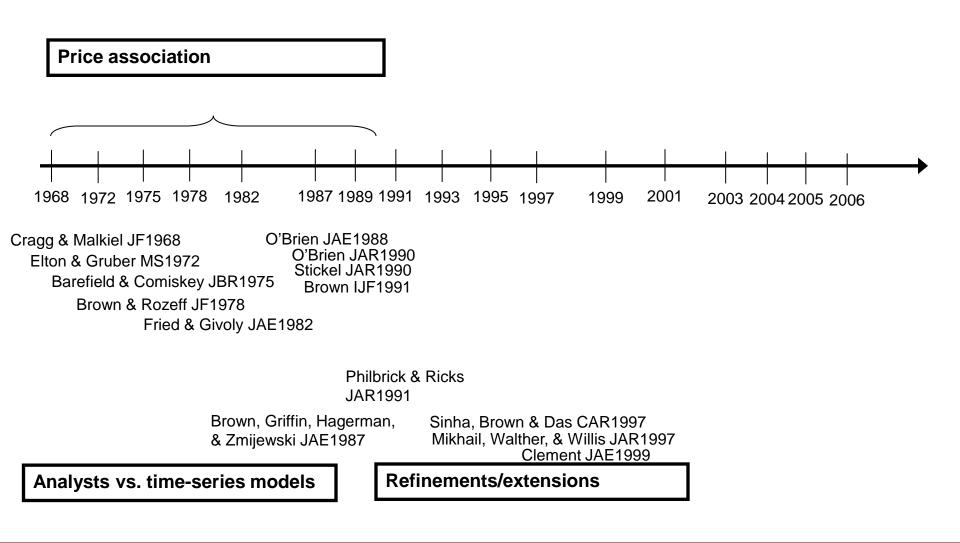
Do analysts' forecasts really dominate time-series forecasts?

- When and when not?
  - Covariate 1: Forecast horizon (timing advantage)
  - Covariate 2: Firm age (information advantage)
  - Covariate 3: Firm size
     "
  - Covariate 4: Analyst following "
  - Covariate 5: Magnitude of changes (when analysts stand to add most value)
- Implicit Null: We should see NO significant results
- Conditional on differences in forecast accuracy (in favor of time-series models), do market returns reinforce the primary results?

11

#### **Observation: Other Evidence re: Experts vs. Time-Series**

- Interest rates (Belongia 1987)
- GDP (Loungani 2000)
- Recessions (Fintzen and Stekler 1999)
- Turning points of business cycles (Zarnowitz 1991)


#### Landscape – 1970s

- Much capital markets research was aimed at understanding the timeseries properties of earnings.
  - Ball and Watts 1972, Brooks and Buckmaster 1976, Albrecht et al. 1977, Salamon and Smith 1977, and Watts and Leftwich 1977.
- General Conclusion: <u>Earnings approximate a random walk</u>.
   Sophisticated time-series models rarely provide an economically significant improvement, and even when they do it comes at high cost.
- "The ability of random walk models to "outpredict" the identified Box-Jenkins models suggests that the random walk is still a good description of the process generating annual earnings in general, and for individual firms." Watts and Leftwich (1977, 269)
- Brown (1993, 295) declares the issue of whether annual earnings follow a random walk as "pretty much resolved by the late 1970s."

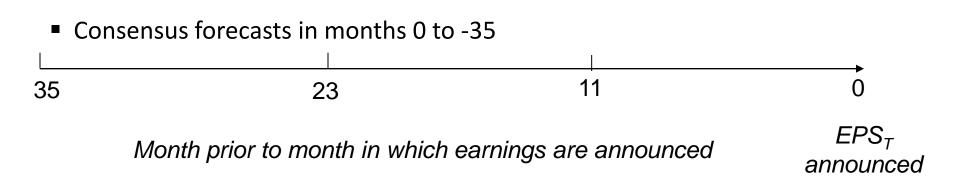
#### Landscape – 1980s

- Newly available analyst data becomes available (i.e., Value-Line, I/B/E/S).
- "Horse-race studies" comparing time-series and analyst forecasts.
- Brown and Rozeff 1978, Fried and Givoly 1982, and Brown et al. 1987a, b
- General Conclusion: Analyst forecasts generally dominate time-series forecasts of earnings. Analyst superiority is attributed to:
  - o Information Advantage
    - They know all information in TS and more
  - o **<u>Timing Advantage</u>** 
    - They issue forecasts after the end of the lagged TS

#### **Timeline of Analysts vs. Time-Series Research**



#### Landscape – Today


- Researchers generally regard this literature as having conclusively shown that analysts' forecasts are a superior proxy for earnings expectations.
- Kothari (JAE2001) concludes that
  - The time-series properties of earnings literature is fast becoming extinct because of "the easy availability of a better substitute" which is "available at a low cost in machine-readable form for a large fraction of publicly traded firms." (p. 145)
  - "[C]onflicting evidence notwithstanding, in recent years it is common practice to (implicitly) assume that analysts' forecasts are a better surrogate for market's expectations than time-series forecasts." (p. 153)

#### Landscape – Today (cont.)

- Random Walk
  - o Still descriptive (Lorek, Willinger & Bathke RQFA2008)
- Valuation and cost of capital literature:
  - Researchers use analyst forecasts over some short horizon and then extrapolate to value a perpetuity.
  - o Example: Dhaliwal et al. (JAE 2007), Frankel & Lee (JAE1998), etc.
    - One-year-ahead: FY1 (I/B/E/S Consensus forecast)
    - Two-years-ahead: FY2
    - Three-years-ahead: FY3 = FY2 x (1+LTG)
    - Four-years-ahead: FY4 = FY3 x (1+LTG)
    - Five-years-ahead: FY5 = FY4 x (1+LTG)
  - Exceptions: Allee (2009); Hou, Van Dijk and Zhang (2010)

#### Data

- 1983-2007 (25 years)
- Minimal constraints on data
  - Biggest constraint is presence on *I/B/E/S* 
    - EPS forecast, actual EPS, stock price
  - Sales on *Compustat* in year t-1
  - $\circ$  Earnings in year t-1 > 0
    - Hayn (1995): losses less persistent than profits
      - $\Rightarrow$  bias results in favor of random walk (but not really)
  - o CRSP returns for last analysis



#### **Forecast errors**

- Random Walk
  - o Minimizes data demands
  - Performs as well or better than higher order models (consistent w/ Lorek, Willinger & Bathke RQFA2008)
  - We aim to do nothing to "help" RW forecasts
- Forecast of EPS for year T as of t months prior to the month EPS<sub>T</sub> announced

| 0 | Analysts:    | $ (FEPS_{T,t} - EPS_T)  / Price_t$ |
|---|--------------|------------------------------------|
| 0 | Time-series: | $ (EPS_{T-1} - EPS_T)  / Price_t$  |

|        | <u>#Forecasts</u> | <u>#Firm-years</u> | <u>#Firms</u> |
|--------|-------------------|--------------------|---------------|
| ■ FY1: | 740,070           | 69,483             | 10,140        |
| ■ FY2: | 611,132           | 60,170             | 9,037         |
| ■ FY3: | 468,777           | 46,226             | 7,070         |

- Analyst superiority = RWFE AFE
  - $\circ$  >0  $\Rightarrow$  analysts more accurate than random walk
  - $\circ$  <0  $\Rightarrow$  random walk more accurate than analysts

|            | Mean | Q1   | Median | Q3    |
|------------|------|------|--------|-------|
| Sales      | >374 | 110  | 374    | 1,384 |
| BTM        | 0.58 | 0.31 | 0.50   | 0.75  |
| Age        | 8.2  | 4    | 7      | 12    |
| # Analysts | 7.6  | 2    | 5      | 10    |

\* A hypothetical data requirement of 10 years (as in Fried and Givoly 1982) would eliminate 70% of the observations in our sample).

$$Error = \frac{|(Actual - Predicted)|}{|Actual|}$$

#### % > 1.00

| Months Prior to RDQE   | Analysts Forecasts Errors | Random Walk Errors |
|------------------------|---------------------------|--------------------|
| 1 Month (Mature Firms) | 2.90%                     | 10.50%             |
|                        |                           |                    |
| 1 Month                | 5.20%                     | 14.20%             |
| 11 Months              | 16.50%                    | 14.60%             |
| 23 Months              | 22.60%                    | 19.70%             |
| 35 Months              | 29.50%                    | 26.20%             |

\*\*The 1.00 cut-off was reasonable in earlier studies. Fried and Givoly (1982) report that only 0.5% of their observations have scaled forecast errors that are greater than 1.00.

#### **Panel C: Signed Forecast Errors**

|                    | Mean                      | Median  | Q1      | Q3     |  |  |  |  |  |
|--------------------|---------------------------|---------|---------|--------|--|--|--|--|--|
| Signed Random We   | Signed Random Walk Errors |         |         |        |  |  |  |  |  |
| 11 Months          | 0.0086                    | -0.0055 | -0.0153 | 0.0108 |  |  |  |  |  |
| 23 Months          | 0.0033                    | -0.0091 | -0.0260 | 0.0150 |  |  |  |  |  |
| 35 Months          | -0.0038                   | -0.0124 | -0.0363 | 0.0166 |  |  |  |  |  |
| Signed Analysts' F | orecasts Errors           |         |         |        |  |  |  |  |  |
| 11 Months          | 0.0194                    | 0.0028  | -0.0041 | 0.0209 |  |  |  |  |  |
| 23 Months          | 0.0272                    | 0.0090  | -0.0049 | 0.0391 |  |  |  |  |  |
| 35 Months          | 0.0332                    | 0.0162  | -0.0047 | 0.0541 |  |  |  |  |  |

## Table 3 – Main Results Analysts' forecast superiority, Full sample

| FY1                                                  |                |                        |                 | FY2            |                        |                          | FY3            |                        |    |
|------------------------------------------------------|----------------|------------------------|-----------------|----------------|------------------------|--------------------------|----------------|------------------------|----|
| Months<br>Prior                                      | Firm-<br>years | Analyst<br>Superiority | Months<br>Prior | Firm-<br>years | Analyst<br>Superiority | Months<br>Prior          | Firm-<br>years | Analyst<br>Superiority |    |
| 0                                                    | 32,723         | 0.0245                 | 12              | 29,072         | 0.0120                 | 24                       | 21,944         | 0.0072                 |    |
| 1                                                    | 66,224         | 0.0236                 | 13              | 55,447         | 0.0106                 | 25                       | 41,766         | 0.0055                 |    |
| 2                                                    | 66,104         | 0.0227                 | 14              | 56,659         | 0.0095                 | 26                       | 42,827         | 0.0044                 |    |
| 3                                                    | 65,794         | 0.0212                 | 15              | 56,575         | 0.0081                 | 27                       | 42,941         | 0.0033                 |    |
| 4                                                    | 65,458         | 0.0182                 | 16              | 56,023         | 0.0063                 | 28                       | 42,588         | 0.0019                 |    |
| 5                                                    | 65,158         | 0.0155                 | 17              | 55,360         | 0.0049                 | 29                       | 42,272         | 0.0007                 |    |
| 6                                                    | 64,787         | 0.0131                 | 18              | 54,458         | 0.0037                 | 30                       | 41,753         | (0.0000)               | NS |
| 7                                                    | 64,361         | 0.0102                 | 19              | 53,195         | 0.0022                 | 31                       | 40,952         | (0.0012)               |    |
| 8                                                    | 63,869         | 0.0081                 | 20              | 51,832         | 0.0012                 | 32                       | 40,137         | (0.0020)               |    |
| 9                                                    | 63,200         | 0.0064                 | 21              | 49,745         | 0.0004                 | 33                       | 38,925         | (0.0027)               |    |
| 10                                                   | 62,103         | 0.0041                 | 22              | 46,501         | (0.0006)               | 34                       | 36,836         | (0.0035)               |    |
| 11                                                   | 60,289         | 0.0025 🥿               | 23              | 42,124         | (0.0011)               | 35                       | 33,789         | (0.0040)               |    |
| Analyst are more accurate than RW<br>by 25 basis-pts |                |                        |                 |                | -                      | ore accura<br>s by 40 ba |                |                        |    |

#### Table 4 – Analysts' forecast superiority and firm age

#### Panel A: FY1 – 11 months prior to RDQE

| Firm Age | Firm-years | Analysts'Superiority | <b>RW</b> Forecast Error | Analysts' Forecast Error |
|----------|------------|----------------------|--------------------------|--------------------------|
| 1        | 2,534      | 0.0007               | 0.0534                   | 0.0527                   |
| 2        | 6,321      | 0.0015               | 0.0405                   | 0.0391                   |
| 3        | 5,867      | 0.0005               | 0.0382                   | 0.0378                   |
| 4        | 5,109      | 0.0005               | 0.0379                   | 0.0374                   |
| 5+       | 40,335     | 0.0033               | 0.0301                   | 0.0268                   |

Panel B: FY2 – 23 months prior to RDQE

| Firm Age | Firm Years | Analysts' Superiority | <b>RW</b> Forecast Error | Analysts' Forecast Error |
|----------|------------|-----------------------|--------------------------|--------------------------|
| 1        | 1,413      | (0.0102)              | 0.0628                   | 0.0730                   |
| 2        | 3,969      | (0.0072)              | 0.0528                   | 0.0599                   |
| 3        | 3,810      | (0.0048)              | 0.0511                   | 0.0559                   |
| 4        | 3,404      | (0.0028)              | 0.0472                   | 0.0500                   |
| 5+       | 29,447     | 0.0008                | 0.0396                   | 0.0388                   |

Panel C: FY3 – 35 months prior to RDQE

| Firm Age | Firm Years | Analysts' Superiority | <b>RW</b> Forecast Error | Analysts' Forecast Error |
|----------|------------|-----------------------|--------------------------|--------------------------|
| 1        | 1,119      | (0.0186)              | 0.0735                   | 0.0871                   |
| 2        | 2,954      | (0.0147)              | 0.0647                   | 0.0785                   |
| 3        | 3,011      | (0.0084)              | 0.0604                   | 0.0670                   |
| 4        | 2,794      | (0.0060)              | 0.0584                   | 0.0618                   |
| 5+       | 23,868     | (0.0012)              | 0.0498                   | 0.0488                   |

#### **Table 5: Partitions for size and analyst following**

#### Panel A: Small Firms

|                 | FY1            |                          | <b>FY2</b>      |                |                          |    | <b>FY3</b>      |                |                          |  |
|-----------------|----------------|--------------------------|-----------------|----------------|--------------------------|----|-----------------|----------------|--------------------------|--|
| Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority | Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority |    | Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority |  |
| 0               | 6,897          | 0.0256                   | 12              | 5,786          | 0.0085                   |    | 24              | 3,067          | 0.0007                   |  |
| 1               | 13,845         | 0.0252                   | 13              | 10,871         | 0.0074                   |    | 25              | 6,006          | (0.0023)                 |  |
| 2               | 13,737         | 0.0242                   | 14              | 11,087         | 0.0060                   |    | 26              | 6,192          | (0.0040)                 |  |
| 3               | 13,535         | 0.0225                   | 15              | 10,885         | 0.0045                   |    | 27              | 6,114          | (0.0054)                 |  |
| 4               | 13,396         | 0.0191                   | 16              | 10,574         | 0.0020                   |    | 28              | 5,968          | (0.0074)                 |  |
| 5               | 13,175         | 0.0162                   | 17              | 10,204         | 0.0004                   | NS | 29              | 5,836          | (0.0086)                 |  |
| 6               | 13,009         | 0.0132                   | 18              | 9,799          | (0.0012)                 |    | 30              | 5,626          | (0.0096)                 |  |
| 7               | 12,815         | 0.0098                   | 19              | 9,299          | (0.0026)                 |    | 31              | 5,366          | (0.0106)                 |  |
| 8               | 12,607         | 0.0071                   | 20              | 8,759          | (0.0040)                 |    | 32              | 5,055          | (0.0119)                 |  |
| 9               | 12,341         | 0.0052                   | 21              | 8,023          | (0.0055)                 |    | 33              | 4,707          | (0.0131)                 |  |
| 10              | 11,906         | 0.0023                   | 22              | 6,987          | (0.0066)                 |    | 34              | 4,152          | (0.0151)                 |  |
| 11              | 11,314         | (0.0003)                 | 23              | 5,804          | (0.0078)                 |    | 35              | 3,521          | (0.0167)                 |  |

#### **Table 5: Partitions for size and analyst following**

Panel B: Low Analyst Following

| <b>FY1</b>                  |        |                          |                  | FY2            |                          |    |                 | FY3            |                          |    |
|-----------------------------|--------|--------------------------|------------------|----------------|--------------------------|----|-----------------|----------------|--------------------------|----|
| Months Firm-<br>Prior years |        | Analysts'<br>Superiority | Months<br>Prior  | Firm-<br>years | Analysts'<br>Superiority |    | Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority |    |
| 0                           | 9,089  | 0.0314                   | 12               | 8,001          | 0.0110                   |    | 24              | 8,634          | 0.0063                   |    |
| 1                           | 18,744 | 0.0311                   | 13               | 14,945         | 0.0102                   |    | 25              | 16,197         | 0.0036                   |    |
| 2                           | 18,704 | 0.0289                   | 14               | 15,648         | 0.0085                   |    | 26              | 16,784         | 0.0022                   |    |
| 3                           | 18,557 | 0.0267                   | 15               | 15,890         | 0.0066                   |    | 27              | 16,848         | 0.0005                   | NS |
| 4                           | 18,422 | 0.0224                   | 16               | 16,055         | 0.0043                   |    | 28              | 16,672         | (0.0014)                 |    |
| 5                           | 18,265 | 0.0185                   | 17               | 16,138         | 0.0027                   |    | 29              | 16,489         | (0.0030)                 |    |
| 6                           | 18,104 | 0.0151                   | 18               | 16,319         | 0.0008                   | NS | 30              | 16,180         | (0.0035)                 |    |
| 7                           | 18,062 | 0.0109                   | 19               | 16,646         | (0.0009)                 |    | 31              | 15,556         | (0.0051)                 |    |
| 8                           | 17,880 | 0.0080                   | 20               | 16,901         | (0.0022)                 |    | 32              | 14,941         | (0.0063)                 |    |
| 9                           | 17,636 | 0.0058                   | 21               | 17,310         | (0.0032)                 |    | 33              | 13,992         | (0.0074)                 |    |
| 10                          | 17,113 | 0.0026                   | 22               | 17,924         | (0.0041)                 |    | 34              | 12,501         | (0.0087)                 |    |
| 11                          | 16,264 | 0.0000                   | <sup>NS</sup> 23 | 18,185         | (0.0045)                 |    | 35              | 10,544         | (0.0099)                 |    |

#### Table 6: Partitions by magnitude of change in EPS

Panel A: The 33% of Forecasts with the Least Extreme Forecasted Change in EPS

|                 | FY1            |                          |                 | FY2            |                          |                 | FY3            |                          |
|-----------------|----------------|--------------------------|-----------------|----------------|--------------------------|-----------------|----------------|--------------------------|
| Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority | Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority | Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority |
| 0               | 10,915         | 0.0025                   | 12              | 9,679          | 0.0174                   | 24              | 7,305          | 0.0140                   |
| 1               | 22,093         | 0.0026                   | 13              | 18,472         | 0.0156                   | 25              | 13,910         | 0.0124                   |
| 2               | 22,053         | 0.0025                   | 14              | 18,881         | 0.0143                   | 26              | 14,268         | 0.0115                   |
| 3               | 21,954         | 0.0023                   | 15              | 18,845         | 0.0125                   | 27              | 14,300         | 0.0106                   |
| 4               | 21,842         | 0.0020                   | 16              | 18,654         | 0.0106                   | 28              | 14,185         | 0.0097                   |
| 5               | 21,743         | 0.0018                   | 17              | 18,439         | 0.0087                   | 29              | 14,075         | 0.0085                   |
| 6               | 21,620         | 0.0016                   | 18              | 18,139         | 0.0074                   | 30              | 13,907         | 0.0078                   |
| 7               | 21,481         | 0.0014                   | 19              | 17,721         | 0.0058                   | 31              | 13,645         | 0.0071                   |
| 8               | 21,324         | 0.0013                   | 20              | 17,260         | 0.0051                   | 32              | 13,382         | 0.0065                   |
| 9               | 21,110         | 0.0012                   | 21              | 16,561         | 0.0041                   | 33              | 12,968         | 0.0061                   |
| 10              | 20,731         | 0.0012                   | 22              | 15,488         | 0.0034                   | 34              | 12,277         | 0.0057                   |
| 11              | 20,117         | 0.0012                   | 23              | 14,023         | 0.0029                   | 35              | 11,263         | 0.0053                   |

#### Table 6: Partitions by magnitude of change in EPS

#### Panel B: The 33% of Forecasts with the Most Extreme Forecasted Change in EPS

|                 | FY1            |                          |                 | FY2            |                          | FY3              |                |                          |    |  |
|-----------------|----------------|--------------------------|-----------------|----------------|--------------------------|------------------|----------------|--------------------------|----|--|
| Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority | Months<br>Prior | Firm-<br>years | Analysts'<br>Superiority | Months<br>Prior  | Firm-<br>years | Analysts'<br>Superiority |    |  |
| 0               | 20,131         | 0.0025                   | 12              | 9,695          | 0.0090                   | 24               | 7,319          | 0.0018                   |    |  |
| 1               | 10,881         | 0.0616                   | 13              | 18,483         | 0.0077                   | 25               | 13,924         | 0.0005                   | NS |  |
| 2               | 22,029         | 0.0591                   | 14              | 18,885         | 0.0067                   | 26               | 14,272         | (0.0007)                 | NS |  |
| 3               | 21,988         | 0.0566                   | 15              | 18,865         | 0.0057                   | 27               | 14,316         | (0.0021)                 |    |  |
| 4               | 21,881         | 0.0530                   | 16              | 18,684         | 0.0042                   | 28               | 14,196         | (0.0037)                 |    |  |
| 5               | 21,761         | 0.0453                   | 17              | 18,463         | 0.0028                   | 29               | 14,088         | (0.0049)                 |    |  |
| 6               | 21,657         | 0.0381                   | 18              | 18,157         | 0.0014                   | 30               | 13,908         | (0.0058)                 |    |  |
| 7               | 21,530         | 0.0320                   | 19              | 17,728         | 0.0000                   | <sup>NS</sup> 31 | 13,639         | (0.0076)                 |    |  |
| 8               | 21,385         | 0.0244                   | 20              | 17,276         | (0.0012)                 | 32               | 13,360         | (0.0087)                 |    |  |
| 9               | 21,217         | 0.0190                   | 21              | 16,584         | (0.0025)                 | 33               | 12,964         | (0.0095)                 |    |  |
| 10              | 20,993         | 0.0143                   | 22              | 15,498         | (0.0035)                 | 34               | 12,267         | (0.0109)                 |    |  |
| 11              | 20,635         | 0.0083                   | 23              | 14,042         | (0.0040)                 | 35               | 11,256         | (0.0115)                 |    |  |

#### **Market expectation tests**

We estimate:

Return =  $\alpha + \beta$  RWFE +  $\epsilon_{it}$ Return = a + b AFE +  $e_{it}$ 

where the return accumulation period is equaled to forecast horizon.

• Market Expectation Proxy Ratio =  $\beta / b$ 

#### **Table 7: Associations with market returns**

 $Return_{T,M} = \alpha + \beta (EPS_{T-1} - EPS_T) + \varepsilon_T$ 

Return<sub>T,M</sub> =  $\alpha + b (Forecasted EPS_{T,M} - EPS_T) + e_T$ 

|        | FY1    |           |        | FY2    |           |     |     | FY3    |           |    |
|--------|--------|-----------|--------|--------|-----------|-----|-----|--------|-----------|----|
| Months | Firm-  |           | Months | Firm-  |           | Mon | ths | Firm-  |           |    |
| Prior  | years  | $\beta/b$ | Prior  | years  | $\beta/b$ | Pri | or  | years  | $\beta/b$ |    |
| 0      | 30,411 | 0.345     | 12     | 28,003 | 0.602     |     | 24  | 21,097 | 0.784     |    |
| 1      | 62,355 | 0.395     | 13     | 53,654 | 0.678     |     | 25  | 40,377 | 0.831     |    |
| 2      | 63,455 | 0.342     | 14     | 54,664 | 0.707     |     | 26  | 41,336 | 0.843     |    |
| 3      | 63,419 | 0.396     | 15     | 54,473 | 0.742     |     | 27  | 41,369 | 0.874     |    |
| 4      | 63,101 | 0.540     | 16     | 53,882 | 0.798     |     | 28  | 40,992 | 0.908     |    |
| 5      | 62,790 | 0.632     | 17     | 53,196 | 0.833     |     | 29  | 40,674 | 0.928     |    |
| 6      | 62,441 | 0.685     | 18     | 52,319 | 0.888     |     | 30  | 40,151 | 0.962     |    |
| 7      | 62,016 | 0.735     | 19     | 51,113 | 0.912     |     | 31  | 39,409 | 1.001     |    |
| 8      | 61,540 | 0.795     | 20     | 49,789 | 0.953     |     | 32  | 38,624 | 1.017     | NS |
| 9      | 60,915 | 0.838     | 21     | 47,783 | 1.007     | NS  | 33  | 37,455 | 1.057     | NS |
| 10     | 59,936 | 0.905     | 22     | 44,672 | 1.008     | NS  | 34  | 35,435 | 1.081     |    |
| 11     | 58,261 | 0.939     | 23     | 40,500 | 1.032     |     | 35  | 32,530 | 1.099     |    |

The association between returns and RW is 94% of the association between returns and analyst forecast errors.

 $Return_{T,M} = \alpha + \beta (EPS_{T-1} - EPS_T) + \varepsilon_T$ 

Return<sub>T,M</sub> =  $\alpha$  + b (Forecasted EPS<sub>T,M</sub> - EPS<sub>T</sub>) +  $e_T$ 

Panel A: Small Firms

|        | FY1    |           |                  | FY2    |           |    |        | FY3   |           |    |
|--------|--------|-----------|------------------|--------|-----------|----|--------|-------|-----------|----|
| Months | Firm-  |           | Months           | Firm-  |           | -  | Months | Firm- |           |    |
| Prior  | years  | $\beta/b$ | Prior            | years  | $\beta/b$ |    | Prior  | years | $\beta/b$ |    |
| 0      | 6,558  | 0.1813    | 12               | 7,275  | 0.6957    |    | 24     | 3,396 | 0.9083    |    |
| 1      | 13,382 | 0.3422    | 13               | 13,711 | 0.7238    |    | 25     | 6,575 | 0.8822    |    |
| 2      | 13,474 | 0.4286    | 14               | 14,068 | 0.7550    |    | 26     | 6,814 | 0.9084    |    |
| 3      | 13,364 | 0.4433    | 15               | 13,887 | 0.7793    |    | 27     | 6,757 | 0.9330    |    |
| 4      | 13,227 | 0.5309    | 16               | 13,468 | 0.8111    |    | 28     | 6,552 | 0.9392    | NS |
| 5      | 13,001 | 0.6186    | 17               | 12,974 | 0.8496    |    | 29     | 6,422 | 0.9495    | NS |
| 6      | 12,838 | 0.6610    | 18               | 12,424 | 0.9076    |    | 30     | 6,173 | 0.9550    | NS |
| 7      | 12,643 | 0.7170    | 19               | 11,713 | 0.8973    |    | 31     | 5,844 | 0.9762    | NS |
| 8      | 12,431 | 0.8323    | 20               | 10,906 | 0.9676    | NS | 32     | 5,491 | 1.0016    | NS |
| 9      | 12,176 | 0.8551    | 21               | 9,808  | 1.0151    | NS | 33     | 5,028 | 1.0965    |    |
| 10     | 11,750 | 0.9273    | <sup>NS</sup> 22 | 8,168  | 1.0043    | NS | 34     | 4,258 | 1.1229    |    |
| 11     | 11,167 | 0.9431    | <sup>NS</sup> 23 | 6,392  | 1.0277    | NS | 35     | 3,431 | 1.1230    |    |

#### Table 8: Market returns, by size & analyst following

| Panel B | Low an | Low analyst following |    |       |        |           |    |        |       |           |    |
|---------|--------|-----------------------|----|-------|--------|-----------|----|--------|-------|-----------|----|
|         | FY1    |                       |    |       | FY2    |           |    |        | FY3   |           |    |
| Months  | Firm-  |                       | Mo | onths | Firm-  |           | -  | Months | Firm- |           |    |
| Prior   | years  | $\beta/b$             | P  | rior  | years  | $\beta/b$ |    | Prior  | years | $\beta/b$ |    |
| 0       | 8,522  | 0.4728                |    | 12    | 5,691  | 0.6681    |    | 24     | 3,010 | 0.9507    | NS |
| 1       | 17,567 | 0.5084                |    | 13    | 10,710 | 0.6871    |    | 25     | 5,901 | 0.9674    | NS |
| 2       | 17,746 | 0.4986                |    | 14    | 10,912 | 0.7337    |    | 26     | 6,077 | 0.9682    | NS |
| 3       | 17,688 | 0.5739                |    | 15    | 10,706 | 0.7421    |    | 27     | 5,993 | 0.9786    | NS |
| 4       | 17,582 | 0.6328                |    | 16    | 10,395 | 0.8069    |    | 28     | 5,842 | 1.0100    | NS |
| 5       | 17,437 | 0.7040                |    | 17    | 10,026 | 0.8506    |    | 29     | 5,706 | 1.0230    | NS |
| 6       | 17,289 | 0.7165                |    | 18    | 9,631  | 0.9414    | NS | 30     | 5,502 | 1.0464    | NS |
| 7       | 17,220 | 0.7617                |    | 19    | 9,140  | 0.9273    | NS | 31     | 5,247 | 1.0736    | NS |
| 8       | 17,039 | 0.8377                |    | 20    | 8,606  | 0.9721    | NS | 32     | 4,941 | 1.0892    | NS |
| 9       | 16,825 | 0.9025                |    | 21    | 7,878  | 1.0209    | NS | 33     | 4,596 | 1.1288    |    |
| 10      | 16,383 | 0.9530                | NS | 22    | 6,849  | 1.0100    | NS | 34     | 4,045 | 1.2025    |    |
| 11      | 15,615 | 0.9823                | NS | 23    | 5,687  | 1.0570    | NS | 35     | 3,426 | 1.1849    |    |

#### Table 9: Market returns, by magnitude of change in EPS

 $Return_{T,M} = \alpha + \beta (EPS_{T-1} - EPS_T) + \varepsilon_T$ 

Return<sub>T,M</sub> =  $\alpha$  + b (Forecasted EPS<sub>T,M</sub> - EPS<sub>T</sub>) +  $e_T$ 

|                 | FY1            |        |    |                 | FY2            |        |    |                 | FY3            |        |  |
|-----------------|----------------|--------|----|-----------------|----------------|--------|----|-----------------|----------------|--------|--|
| Months<br>Prior | Firm-<br>Years | β/b    |    | Months<br>Prior | Firm-<br>years | β/b    | _  | Months<br>Prior | Firm-<br>years | β/b    |  |
| 0               | 9,023          | 0.9388 | NS | 12              | 7,763          | 0.6330 |    | 24              | 5,840          | 0.7597 |  |
| 1               | 18,254         | 0.9280 | NS | 13              | 14,935         | 0.7053 |    | 25              | 11,227         | 0.7974 |  |
| 2               | 18,188         | 0.9300 | NS | 14              | 15,145         | 0.7316 |    | 26              | 11,462         | 0.8336 |  |
| 3               | 18,083         | 0.9620 | NS | 15              | 15,057         | 0.7808 |    | 27              | 11,466         | 0.8514 |  |
| 4               | 18,018         | 0.9882 | NS | 16              | 14,865         | 0.8222 |    | 28              | 11,356         | 0.8433 |  |
| 5               | 17,921         | 0.9764 | NS | 17              | 14,697         | 0.8603 |    | 29              | 11,264         | 0.8631 |  |
| 6               | 17,807         | 0.9807 | NS | 18              | 14,479         | 0.8661 |    | 30              | 11,101         | 0.9067 |  |
| 7               | 17,710         | 0.9866 | NS | 19              | 14,147         | 0.9241 |    | 31              | 10,891         | 0.9716 |  |
| 8               | 17,566         | 0.9767 | NS | 20              | 13,783         | 0.9412 |    | 32              | 10,696         | 0.9870 |  |
| 9               | 17,398         | 0.9794 | NS | 21              | 13,218         | 0.9643 | NS | 33              | 10,337         | 1.0165 |  |
| 10              | 17,143         | 0.9772 | NS | 22              | 12,365         | 0.9747 | NS | 34              | 9,777          | 1.0334 |  |
| 11              | 16,646         | 0.9791 | NS | 23              | 11,269         | 0.9930 | NS | 35              | 9,034          | 1.0473 |  |

#### Panel B: The 33% of Forecasts with the Most Extreme Forecasted Change in EPS

|                 | FY1            |        |                 | FY2            |        |                 | FY3            |        |    |
|-----------------|----------------|--------|-----------------|----------------|--------|-----------------|----------------|--------|----|
| Months<br>Prior | Firm-<br>Years | β/b    | Months<br>Prior | Firm-<br>years | β/b    | Months<br>Prior | Firm-<br>years | β/b    |    |
| 0               | 8,795          | 0.2981 | 12              | 7,575          | 0.5937 | 24              | 5,566          | 0.8875 |    |
| 1               | 17,647         | 0.3710 | 13              | 14,701         | 0.6814 | 25              | 10,831         | 0.8781 |    |
| 2               | 17,619         | 0.3270 | 14              | 14,892         | 0.7739 | 26              | 10,975         | 0.8875 |    |
| 3               | 17,498         | 0.3560 | 15              | 14,823         | 0.7831 | 27              | 10,950         | 0.9032 |    |
| 4               | 17,319         | 0.5213 | 16              | 14,617         | 0.7384 | 28              | 10,811         | 0.9513 | NS |
| 5               | 17,210         | 0.6093 | 17              | 14,426         | 0.8124 | 29              | 10,741         | 0.9741 | NS |
| 6               | 17,103         | 0.6808 | 18              | 14,171         | 0.9003 | 30              | 10,587         | 0.9953 | NS |
| 7               | 16,903         | 0.7110 | 19              | 13,800         | 0.9175 | 31              | 10,376         | 1.0477 |    |
| 8               | 16,709         | 0.7550 | 20              | 13,433         | 1.0186 | 32              | 10,130         | 1.0967 |    |
| 9               | 16,438         | 0.7822 | 21              | 12,856         | 1.0476 | 33              | 9,823          | 1.0626 |    |
| 10              | 16,084         | 0.8471 | 22              | 11,983         | 1.0304 | 34              | 9,269          | 1.1096 |    |
| 11              | 15,650         | 0.8717 | 23              | 10,852         | 1.0735 | 35              | 8,493          | 1.1257 |    |

#### **Table 10: Panel multivariate regression**

 $\begin{array}{l} Analysts'Superiority_{T,M} = \gamma_0 + \gamma_1 \, \# Analysts_T + \gamma_2 \, STD_{T,M} + \gamma_3 \, BTM_{T-1} \\ + \gamma_4 \, Sales_{T-1} + \gamma_5 \, Forecast \Delta_{T,M} + \varepsilon_T \end{array}$ 

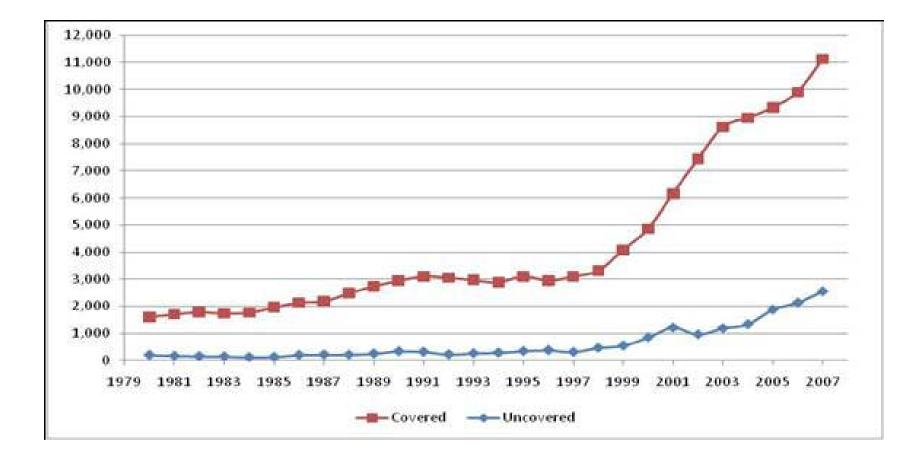
| Months<br>Prior | Intercep | #Analyst      |     |         |     |        |         |          | Forecaste<br>d |
|-----------------|----------|---------------|-----|---------|-----|--------|---------|----------|----------------|
| RDQE            | t        | #Anaryst<br>S |     | STD     |     | втм    | Sales   |          | Δ              |
| 0               | -0.0083  | -0.0021       |     | 0.0055  |     | 0.0035 | 0.0015  | NS       | 0.0279         |
| 1               | -0.0072  | -0.0022       |     | 0.0052  |     | 0.0028 | 0.0017  |          | 0.0262         |
| 2               | -0.0079  | -0.0013       |     | 0.0043  |     | 0.0030 | 0.0017  |          | 0.0253         |
| 3               | -0.0079  | -0.0013       |     | 0.0047  |     | 0.0029 | 0.0012  |          | 0.0238         |
| 4               | -0.0071  | -0.0005       |     | 0.0039  |     | 0.0024 | 0.0005  | NS       | 0.0206         |
| 5               | -0.0055  | 0.0003        | NS  | 0.0027  |     | 0.0025 | -0.0002 | NS       | 0.0175         |
| 6               | -0.0054  | 0.0006        |     | 0.0025  |     | 0.0022 | 0.0001  | NS       | 0.0148         |
| 7               | -0.0050  | 0.0011        |     | 0.0015  |     | 0.0019 | 0.0004  | NS<br>NS | 0.0115         |
| 8               | -0.0047  | 0.0015        |     | 0.0009  |     | 0.0017 | 0.0007  | INS      | 0.0092         |
| 9               | -0.0041  | 0.0016        |     | 0.0004  |     | 0.0015 | 0.0010  |          | 0.0069         |
| 10              | -0.0026  | 0.0015        |     | -0.0003 |     | 0.0010 | 0.0012  |          | 0.0043         |
| 11              | -0.0017  | 0.0018        | NS  | -0.0011 |     | 0.0008 | 0.0012  |          | 0.0025         |
| 12              | 0.0076   | -0.0002       | NS  | 0.0050  |     | 0.0045 | 0.0058  |          | -0.0064        |
| 13              | 0.0070   | 0.0003        | 145 | 0.0031  |     | 0.0041 | 0.0055  |          | -0.0057        |
| 14              | 0.0056   | 0.0008        |     | 0.0031  |     | 0.0042 | 0.0053  |          | -0.0057        |
| 15              | 0.0046   | 0.0011        |     | 0.0020  |     | 0.0042 | 0.0049  |          | -0.0050        |
| 16              | 0.0028   | 0.0017        |     | 0.0010  | NS  | 0.0037 | 0.0052  |          | -0.0048        |
| 17              | 0.0012   | 0.0022        |     | 0.0000  | 115 | 0.0036 | 0.0054  |          | -0.0043        |
| 18              | 0.0005   | 0.0028        |     | -0.0007 |     | 0.0036 | 0.0048  |          | -0.0043        |
| 19              | -0.0015  | 0.0031        |     | -0.0014 |     | 0.0033 | 0.0049  |          | -0.0037        |
| 20              | -0.0023  | 0.0037        |     | -0.0019 |     | 0.0030 | 0.0048  |          | -0.0035        |
| 21              | -0.0029  | 0.0038        |     | -0.0023 |     | 0.0026 | 0.0054  |          | -0.0036        |
| 22              | -0.0036  | 0.0038        |     | -0.0028 |     | 0.0024 | 0.0057  |          | -0.0035        |
| 23              | -0.0079  | 0.0057        |     | -0.0027 | NS  | 0.0019 | 0.0062  |          | -0.0035        |
| 24              | 0.0048   | 0.0009        |     | -0.0005 |     | 0.0051 | 0.0094  |          | -0.0074        |
| 25              | 0.0026   | 0.0023        |     | -0.0016 |     | 0.0059 | 0.0090  |          | -0.0074        |
| 26              | 0.0026   | 0.0025        |     | -0.0023 |     | 0.0056 | 0.0093  |          | -0.0078        |
| 27              | 0.0019   | 0.0029<br>NS  |     | -0.0026 |     | 0.0053 | 0.0094  |          | -0.0083        |
| 28              | 0.0007   | 0.0035<br>NS  |     | -0.0028 |     | 0.0052 | 0.0096  |          | -0.0089        |
| 29              | -0.0007  | 0.0039        |     | -0.0028 |     | 0.0047 | 0.0096  |          | -0.0090        |
| 30              | -0.0020  | 0.0042        |     | -0.0033 |     | 0.0046 | 0.0106  |          | -0.0093        |
| 31              | -0.0027  | 0.0046        |     | -0.0035 |     | 0.0042 | 0.0104  |          | -0.0097        |
| 32              | -0.0036  | 0.0049        |     | -0.0038 |     | 0.0038 | 0.0108  |          | -0.0099        |
| 33              | -0.0040  | 0.0051        |     | -0.0040 |     | 0.0035 | 0.0111  |          | -0.0103        |
| 34              | -0.0060  | 0.0054        |     | -0.0044 |     | 0.0030 | 0.0133  |          | -0.0108        |
| 35              | -0.0062  | 0.0058        |     | -0.0048 |     | 0.0019 | 0.0127  |          | -0.0108        |

## Conclusion

- DISCLAIMER: Prior research was appropriately deliberate in its sample selection and other research design choices, and the conclusions drawn are warranted.
  - However, as is common in our field, it is the subsequent researcher who over-generalizes findings from prior studies.
- Analysts only appear persistently superior to a simple earnings extrapolation for short horizons for large firms.
- Equivalently, time-series forecasts perform as well or better than analysts over moderate-to-long forecast horizons, and especially for smaller, younger firms.

TYPICAL 1. Data from 1960 and 1970.

- STUDY: 2. Sample size ranges from fifty to a few hundred.
  - Models require a minimum of 10 years of data, and some require as many as 20 years of data. 3.
  - Forecast horizons range from 1 quarter-ahead to 18 months-ahead. 4.


Table 1 5. Reported differences are typically statistically significant in favor of analysts, only modest magnitudes .

|                                                   | 1                                                           |                                                                                                   |                                            |                                           | 1                                                                                                                                                                                                                |                                                                            |
|---------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                   | Sample and                                                  | Time-Series<br>(TS) Models                                                                        |                                            |                                           |                                                                                                                                                                                                                  |                                                                            |
|                                                   | Time                                                        | and Data                                                                                          |                                            | Forecast                                  | Difference in Forecast                                                                                                                                                                                           | Analysts' Superiority                                                      |
| Paper                                             | Period                                                      | Requirements                                                                                      | Outliers                                   | Horizon                                   | Accuracy                                                                                                                                                                                                         | Determinants                                                               |
| Brown and Rozeff (1978)                           | 50 firms from<br>1972 through<br>1975.                      | Three TS models<br>using quarterly<br>data, requiring<br>complete data for<br>20 years.           | Winsorized<br>forecast<br>errors at<br>1.0 | One to five<br>quarters ahead.            | Median difference in forecast<br>errors between all univariate<br>forecasts and the analysts' forecast<br>is significantly greater than zero.                                                                    |                                                                            |
| Collins and Hopwood<br>(1980)                     | 50 firms from<br>1951 through<br>1974.                      | Four TS models,<br>requiring a<br>minimum of 76<br>quarters of data.                              | Winsorized<br>forecast<br>errors at<br>3.0 | One to four<br>quarters ahead.            | Four quarters out, analysts'<br>forecast errors are 31.7%<br>compared to the best TS error of<br>32.9%. One quarter out, mean<br>analysts' forecast error are 9.7%<br>compared to the best TS error of<br>10.9%. |                                                                            |
| Fried and Givoly (1982)                           | 424 firms from<br>1969 through<br>1979.                     | Modified<br>submartingale<br>models, requiring a<br>minimum of 10<br>years of past data.          | Winsorized<br>forecast<br>errors at<br>1.0 | 8 months prior<br>to the fiscal<br>end.   | Analysts' forecast errors are 16.4% of realized EPS compared to 19.3% for the best TS model.                                                                                                                     |                                                                            |
| Hopwood and McKeown<br>(1982)                     | 258 firms from<br>1974 through<br>1978.                     | Random walk and 7<br>other TS models,<br>requiring at least 12<br>years (48 quarters)<br>of data. |                                            | One to four quarters ahead.               | Four quarters out (annual),<br>absolute analysts' forecasts errors<br>are 22.5% compared to absolute<br>forecast errors of 26.1% for<br>random walk.                                                             | Number of days separating<br>TS and analysts' forecast –<br>positive       |
| Brown, Hagerman, Griffin,<br>and Zmijewski (1987) | 233 firms from<br>the 1975<br>through 1980.                 | 3 TS models,<br>requiring a<br>minimum of 60<br>quarters of data.                                 | Winsorized<br>forecast<br>errors at<br>1.0 | One, two, and<br>three quarters<br>ahead. | Three-quarters-ahead, analysts' forecast errors are 28.7% and TS forecast errors are 33%.                                                                                                                        | Forecast horizon – negative                                                |
| Brown, Richardson, and<br>Schwager (1987)         | Sample 1: 168<br>firms from Q1-<br>1977 through<br>Q4-1979. | Quarterly random-<br>walk model.                                                                  |                                            | One, two, and<br>three quarters<br>ahead. | For the one month horizon, the log<br>of the squared ratio of TS to<br>analysts' forecast errors is 0.56.                                                                                                        | Firm size – positive; Prior<br>analysts' forecast dispersion<br>– negative |

## Table 1 (cont.)

| Brown, Richardson, and<br>Schwager (1987) | Sample 2: 168<br>firms from<br>1977 through<br>1979. | Annual random-<br>walk model.                                      |                                                                  | Horizons of 1,<br>6, and 18<br>months prior to<br>the fiscal year-<br>end date.                                 | For the one month horizon, the log<br>of the squared ratio of TS to<br>analysts' forecast errors is 1.08.                                                    | Firm size – positive; Prior<br>analysts' forecast dispersion<br>– negative                                                                                        |
|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brown, Richardson, and<br>Schwager (1987) | Sample 3: 702<br>firms from<br>1977 through<br>1982. | Annual random-<br>walk model.                                      |                                                                  | Horizons of 1,<br>6, and 18<br>months prior to<br>the fiscal year-<br>end date.                                 | Log of the squared ratio of TS to<br>analysts' forecast errors is 1.01 for<br>the one month horizon.                                                         | Firm size – positive; Prior<br>analysts' forecast dispersion<br>– negative                                                                                        |
| O'Brien (1988)                            | 184 firms from<br>1975 through<br>1982.              | Two TS models,<br>requiring 30<br>consecutive<br>quarters of data. | Deleted<br>absolute<br>forecast<br>errors<br>larger<br>than \$10 | Horizons of 5,<br>60, 120, 180,<br>and 240<br>trading days<br>prior to the<br>earnings<br>announcement<br>date. | At 240 trading days (one year),<br>analysts' forecast errors are \$0.74<br>compared to TS forecast errors of<br>\$0.96.                                      | Forecast horizon – positive                                                                                                                                       |
| Kross, Ro, and Schroeder<br>(1990)        | 279 firms from<br>1980 through<br>1981.              | Box-Jenkins model,<br>requiring 28<br>quarters of data.            |                                                                  | Last available<br>one-quarter-<br>ahead forecast.                                                               | Natural log of 1 + absolute TS<br>error - absolute analysts' error is<br>positive across all industries<br>(ranging from (0.043 to 0.385)).                  | Earnings variability –<br>positive; <i>Wall Street</i><br><i>Journal</i> coverage – positive;<br># of days separating TS and<br>analysts' forecasts –<br>positive |
| Lys and Soo (1995)                        | 62 firms from<br>1980 through<br>1986.               | Box-Jenkins model,<br>requiring 20 years<br>of data.               | Removed<br>one firm                                              | Up to 8<br>quarters ahead.                                                                                      | Across all horizons, the mean<br>(median) absolute analysts'<br>forecast error is 4.4% (2.8%) and<br>the mean (median) absolute TS<br>error is 26.8% (1.4%). | Forecast horizon – negative                                                                                                                                       |
| Branson, Lorek, and<br>Pagach (1995)      | 223 firms from<br>1988 through<br>1989.              | ARIMA model,<br>requiring 11 years<br>of complete data.            |                                                                  | One quarter<br>ahead.                                                                                           | The median absolute percentage<br>forecast error (Actual -<br>predicted)/actual)) from TS minus<br>analysts' forecasts is 7.22%.                             | Conditional on the firm<br>being small: earnings<br>variability – positive; firm<br>size – negative                                                               |

# Figure 3: Mean assets for firms <u>with</u> (in maroon) and <u>without</u> (in <u>blue</u>) earnings forecasts on I/B/E/S





### ...so here's a bunny with a pancake on its head.