Exhibit No. ____ (TLS-1T) Docket No. UT-023003 Witness: Thomas L. Spinks

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

In the Matter of Review of Unbundled Loop and Switching Rates and Review of the Deaveraged Zone Rate Structure. DOCKET NO. UT-023003

DIRECT TESTIMONY OF

THOMAS L. SPINKS

STAFF OF WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

June 26, 2003

1	Q.	Please state your name and business address.
2	А.	My name is Thomas Spinks, my business address is 1300 South Evergreen Park Drive
3		Southwest, P.O. Box 47250, Olympia, Washington 98504. My e-mail address is
4		tspinks@wutc.wa.gov.
5		
6	Q.	By whom are you employed and in what capacity?
7	А.	I am employed by the Washington Utilities and Transportation Commission as a
8		Regulatory Consultant.
9		
10	Q.	What are your education and experience qualifications?
11	А.	My qualifications are provided as Exhibit TLS-2.
12		
13	Q.	What is the purpose of your testimony?
14	А.	I provide updated total element long-run incremental cost (TELRIC) estimates for
15		certain unbundled network element (UNE) rate elements and propose deaveraged zone
16		loop costs consistent with the Commission's purpose for this docket. In opening this
17		docket, the Commission intended to "review UNE rates that may be set too high or too
18		low based on their direct costs." Third Supplemental Order, \P 11. I updated the cost
19		estimates primarily by updating to the current version of the generic cost model, using
20		more current line counts and updated loop length studies. I combined these updates

1		with input values previously determined by the Commission to produce the Staff cost
2		estimates that I present in this testimony.
3		
4	Q.	How is your testimony organized?
5	A.	My testimony consists of three sections. First, I testify regarding cost proxy models and
6		recommend that the Commission adopt cost estimates based on the current version of
7		the HAI model. Second, I review prior Commission decisions regarding cost model
8		inputs and discuss changes I made to certain inputs used by the Commission in prior
9		proceedings. Finally, I present cost results including a proposal for deaveraging certain
10		UNE costs into zones, and for certain wirecenters, a further deaveraging of costs
11		beyond zones to the "core-fringe" level.
12		
13		COST PROXY MODELS
14	Q.	What are cost proxy models?
15	A.	In the Eighth Supplemental Order in Docket UT-960369, the Commission described a
16		cost model as follows:
17 18 19 20		[A]n analytical model is a simplified representation of some aspects of the real world. Analysts use models to organize the complexity of the real world into some orderly form. Models are, by definition, simplifications or abstractions which omit some information. A model can be a very
21 22		powerful analytical tool. It can act as a microscope or a telescope which may enable the analyst to focus in on the key aspects of a situation and

1 2 3		thereby to solve problems that, in the absence of a model, would be hopelessly complex.
4		In the Matter of the Pricing Proceeding for Interconnection, Unbundled Elements, Transport
5		and Termination, and Resale, Docket Nos. UT-960369 et al., Eighth Supplemental Order, \P
6		21 (April 16, 1998) (Generic Cost Order).
7		At a structural level, cost proxy models are sets of mathematical equations that
8		utilize engineering and network design information to estimate required quantities of
9		materials and labor necessary to provide the service or element of service under study.
10		Once the model estimates the required quantities of materials and labor, it combines
11		these quantities with the unit prices of the materials and labor to produce a total
12		investment required for the service or element. Finally, the model applies cost factors to
13		the total investment to develop monthly recurring charges for the service or element.
14		
15	Q.	What did the Commission decide regarding cost models in the generic cost
16		proceeding, Docket Nos. UT-960369 et al?
17	A.	In the Generic Cost Order, the Commission concluded that none of the current versions
18		of the loop cost models submitted in the proceeding should be adopted for future
19		proceedings. Generic Cost Order, \P 35. While the Commission found it could not
20		adopt any of the models, it made plain its continued support for open models,
21		specifically citing the Hatfield and BCPM models. <i>Id.</i> \P 36.

1

2

О.

3 proceeding, Docket No. UT-980311(a)? 4 Α. In the Tenth Supplemental Order in Docket UT-980311(a) the Commission stated that it considered both the BCPM 3.1 and HAI 5.0a models to be much better cost models than 5 6 their predecessors. In the Matter of Determining Costs for Universal Service, Docket No. 7 UT-980311(a), Tenth Supplemental Order, ¶ 36. However, the Commission concluded 8 that both models were still flawed and neither provided accurate estimates of the costs 9 of providing telecommunications services in Washington. *Id.* ¶ 331. The Commission identified one area of particular concern-the failure of both models to pass the 10 Minimum Spanning Tree (MST) test in the least dense zone. Id. ¶¶ 124-42. 11 12 13 О. Which cost model will Staff use to develop revised loop cost estimates? 14 Α. Staff continues to believe that the HAI model best meets the Commission's criteria that 15 cost models be transparent, rational, stable, consistent, and have an understandable 16 approach. See, e.g., Washington Utils. & Transp. Comm'n v. US West Communications, Inc., 17 Docket No. UT-950200, Ninth Supplemental Order at 80-86 (April 11, 1996); Washington Utils. & Transp. Comm'n v. US West Communications, Inc., Docket Nos. UT-941464, et al., 18 19 Fourth Supplemental Order Rejecting Tariff Filings and Ordering Refiling; Granting

What did the Commission decide regarding cost models in the universal service

20 Complaints, In Part, at 88-91 (Oct. 31, 1995).

DIRECT TESTIMONY OF THOMAS L. SPINKS Docket No. UT-023003

1		At the beginning of this docket, in early 2002, the current version of the model
2		was HAI 5.2a. HAI 5.2a included several important modifications from the HAI 5.0a
3		version that Staff had used in the universal service cost proceeding, which are discussed
4		below. In March 2003, a new version of HAI was released for Washington, the HAI 5.3.
5		I will provide loop cost estimates using the new 5.3 version of the HAI model. ¹ I also
6		recommend that the Commission adopt this model for use in this docket.
7		
8	Q.	How did the HAI 5.2a address the Commission's concerns about the cost models used
9		in prior proceedings?
10	А.	The HAI model documentation describes the changes between the HAI 5.0 and the HAI
11		5.2(a) in section 2 of the documentation. One of the changes to the distribution module
12		includes an option to ensure that the model produces enough distribution route
13		distance to reach the corners of cluster rectangles where customers may be located.
14		This change addresses the MST issue. In addition, Staff has modified the distribution
15		module to adjust automatically distance-sensitive investments for differences between
16		the average loop length produced by the model and the average loop lengths reported
17		by each ILEC. The HAI model documentation also states that the switching module has
18		been modified to incorporate host and remote wirecenters automatically, and to

¹ In accordance with the HAI model license agreement, Staff will not assert that the resulting cost estimates are a product of the HAI model because we have modified the model's programming.

1		incorporate the investment values for Bell Operating Companies and ICO switches
2		adopted by the FCC in the USF inputs order. Finally, the expense module has been
3		revised to incorporate the effect of deferred taxes on cost, which the Commission had
4		found appropriate in the Tenth Supplemental Order in Docket UT-960369 et al. as well
5		as Equal Life Group depreciation procedure.
6		
7	Q.	Are there other differences between the HAI 5.2(a) and HAI 5.3 models?
8		In addition to retaining the changes made in 5.2(a) previously discussed, the HAI 5.3
9		explicitly models high capacity loops in the network.
10		
11	Q.	Are there any other issues that need to be addressed regarding the HAI 5.3?
12	А.	Yes. One of the remaining problems with cost estimates produced by the model is the
13		accuracy of the TNS geo-coded data. In Minnesota, the public service commission staff
14		consultants checked the accuracy of the cluster data with respect to assignment and
15		location. The results of that study found that out of some 8,700 clusters, over 1,000 had
16		inaccuracies of some sort that required correction. As discussed later in this testimony,
17		I have checked cluster assignments in certain locations in Washington and found a
18		similar error rate in Washington data. Staff commits to undertake the work to identify
19		and correct any deficiencies in the Washington cluster data if the Commission decides
20		the model is otherwise acceptable. A second concern is that the HAI 5.3 version does
	DIRE	ECT TESTIMONY OF THOMAS L. SPINKS Exhibit T (TLS-T)

Docket No. UT-023003

1		not support the cluster level cost module from prior versions. I was able to work
2		around this problem by producing cluster level costs using the HAI 5.2(a) for purposes
3		of this testimony. The HAI cluster cost module needs to be updated to support future
4		work that requires cluster level data.
5		
6		HAI COST MODEL INPUTS
7	Q.	What issues have been identified with the HAI model inputs in past proceedings?
8	А.	In Docket UT-960369 et al. where the parties presented the Hatfield Model 3.1, the
9		Commission identified issues with the methods used by the Hatfield team to collect
10		data from outside plant contractors, drop costs and lengths, the fiber/copper
11		breakpoint, special access loops, customer location accuracy and resulting loop lengths,
12		switching costs, and a number of other user-adjustable input choices. In Docket UT-
13		980311(a), the universal service cost docket, Commission identified input issues with
14		the HAI 5.0(a) including structure mix, structure sharing, failure to meet minimum
15		spanning tree lengths, and switching investment levels.
16		
17	Q.	What changes did you make to the default inputs in the HAI 5.3?
18	А.	I adopted the input choices that the Commission found appropriate in Dockets Nos.
19		UT-960369 and UT-980311(a), with certain exceptions discussed below. Exhibit

2 in developing the updated UNE costs for Qwest and Verizon in this docket. 3 4 **Q**. Please describe the changes you made to input values that varied from inputs used in 5 prior Commission decisions. 6 A. In the Qwest run, I corrected two depreciation lives and two future net salvage value 7 errors to reflect the lives and salvage values authorized by the Commission in Docket 8 UT-951425. In the Verizon run, depreciation lives and salvage values were updated to 9 reflect lives and salvage values authorized by the Commission in Docket UT-992009. In 10 this docket, I did not make input adjustments for Special Access lines that the 11 Commission had made in prior cases because HAI 5.3 now explicitly models high 12 capacity services. I did not make input adjustments for switching costs that the 13 Commission had made in prior cases because the HAI uses more recent switch cost data 14 from a FCC study. I also did not adjust inputs for hard/soft rock placement multipliers 15 as the Commission had done in Docket UT-980311(a) because the HAI placement 16 multipliers have been increased and cannot be input on a density zone basis. Finally, I 17 did not make the same adjustments for cable costs that the Staff had proposed and the Commission had accepted in prior cases, because the HAI cable cost inputs reflect more 18 19 current cable cost information.

(TLS-4) shows the differences between the HAI 5.3 default inputs and the inputs I used

20

1

1		COST MODEL RESULTS AND DEAVERAGING PROPOSALS
2	Q.	What network element costs did you estimate using the HAI model?
3	А.	I estimated the costs for the following network elements, which are set forth in
4		Attachment A of the Third Supplemental Order in this docket:
5 6 7 8 9 10		2 and 4-wire analog loops 2-wire non-loaded loops Sub-loops NID Analog Port w/local switching
11	Q.	How does Staff propose that wirecenter costs be deaveraged into zones?
12	А.	Staff proposes to continue using the five zone scheme that the Commission adopted in
13		Phase 3 of Docket UT-960369. Since that time, AT&T has developed a zone optimizer
14		program that creates three zones having minimum variance within each zone. Staff's
15		understanding is that the optimizer program has been vetted and found acceptable in
16		other Qwest states. Staff has taken the three zone optimizer and expanded it to create
17		five zones for use in Washington. The zone optimizer program and output is included
18		in the Staff Workpapers CD-ROM. <i>See</i> Ex (TLS-3).
19		
20	Q.	What are the proposed statewide average and zone rates for 2-wire analog loops?
21	А.	The deaveraged zone loop rates for Qwest and Verizon, are as follows:

1			Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
2		Qwest	\$10.78	\$11.64	\$13.82	\$21.24	\$36.49
3		Verizon	\$11.13	\$12.84	\$15.80	\$21.29	\$55.49
4		Exhibit	(TLS-4) show	ws the wirecer	nter assignm	ents to each	zone. The statewide
5		average 2-v	vire analog lo	pop costs are S	\$13.73 and \$1	16.99 for Qw	vest and Verizon
6		respectivel	y. The suppo	orting calculat	ions are four	nd in files Q	w_calculations.xls and
7		Vz_calculat	tions.xls und	ler tabs "ave.l	oop cost" an	d "5_zones'	' in the staff workpapers
8		CD-ROM.					
9							
10	Q.	What are y	our propose	d zone rates f	or 4-wire and	alog loops?	
11	А.	I developed	d the 4-wire l	oop rates usir	ng the 1.85 ar	nd 1.50 facto	rs for Qwest and Verizon
12		respectivel	y that were o	rdered by the	Commissior	n in Docket	UT-960369 and are as
13		follows:					
14			Zone 1	Zone 2	Zone 3	Zone 4	<u>Zone 5</u>
15		Qwest	\$19.94	\$21.53	\$25.57	\$39.29	\$67.51
16		Verizon	\$16.70	\$19.25	\$23.70	\$31.94	\$83.24
17							

1	Q.	What rates do you propose for non-loaded loops?							
2	A.	The non-loaded loop rates are shown as follows:							
3			Zone 1	Zone 2	Zone 3	Zone 4	Zone 5		
4		Qwest	\$5.87	\$6.97	\$8.90	\$16.54	\$29.10		
5		Verizon	\$6.24	\$7.74	\$10.69	\$15.43	\$44.76		
6		The support	ting calculation	ons are found	in files Qw_c	alculations.	xls and		
7		Vz_calculati	ions.xls unde	r tab "NL_looj	ps" in the sta	ff workpape	ers CD-ROM.		
8									
9	Q.	What ratios	do you prop	ose for sub-lo	op elements	?			
10	A.	The Qwest and Verizon feeder and distribution ratios are shown below. The							
11		supporting calculations are found in files Qw_calculations.xls and Vz_calculations.xls							
12		under tab "s	subloops" in	the Staff work	papers CD-R	OM.			
13				Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	
14		Qwest Feed	er	.382	.368	.316	.272	.296	
15		Qwest Distr	ibution	.618	.632	.684	.728	.704	
16		Verizon Fee	der	.403	.379	.317	.322	.482	
17		Verizon Dis	tribution	.597	.621	.683	.678	.518	

1	Q.	What rates do you propose for ports with local switching?						
2	А.	The proposed rates for ports including flat-rated local switching are as follows:						
3			Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	
4		Qwest	\$2.70	\$2.41	\$2.65	\$2.70	\$5.03	
5		Verizon	\$2.65	\$2.84	\$2.84	\$3.54	\$7.83	
6								
7		The tariffe	d port rate is	currently \$1.3	4 for both Q	west and V	erizon. The reason	
8		for the inc	rease in the p	ort rate betwe	en this stud	y and prior	studies is that flat-	
9		rated usag	e is now inclu	ided in the po	ort rate in the	e HAI 5.3 m	odel. This change to	
10		the model is consistent with prior Staff testimony in the pricing phase of the						
11		earlier gen	eric proceedi	ng and is cons	sistent with	the Commis	ssion's Seventeenth	
12		Suppleme	ntal Order in	Docket UT-96	0369 et al., v	where the C	ommission stated:	
13		"The Com	mission prefe	ers a capacity-	charge conc	ept because	it better reflects the	
14		cost struct	ure of the tele	ecommunicatio	ons network	k." In the M	atter of the Pricing	
15		Proceeding	for Interconne	ction, Unbund	led Elements,	Transport a	nd Termination, and	
16		Resale, Doo	cket Nos. UT-	960369 et al., S	Seventeenth	Supplemer	ntal Order, at 5	
17		(Aug. 30, 1	.999). Staff re	commends th	e Commissi	on adopt th	e port charges that	
18		include a f	lat-rated usag	ge charge. In a	addition, as	can be seen	from the rate	
19		spread bet	ween zones, t	there are mate	erial differen	ices in costs	between zones.	
20		Therefore,	I also propos	e that the com	bined port	and switchi	ng rate element be	
	ואוט	CT TESTIM	ONV OF TH		NIKS		Eyhihit T- (TI 9	

1		deaveraged into five zones. The supporting calculations are found in files
2		Qw_calculations.xls and Vz_calculations.xls under tab "port_sw_cost" in the
3		staff workpapers CD-ROM.
4		
5	Q.	What rates do you propose for the NID?
6	А.	The monthly rate for the NID is \$.45 for both Qwest and Verizon. The
7		supporting calculations are found in files Qw_calculations.xls and
8		Vz_calculations.xls under tab "NID" in the staff workpapers CD-ROM.
9		
10	Q.	Is Staff also proposing additional wirecenter deaveraging?
11	А.	Yes, Staff is proposing that certain wirecenters exhibiting a strong core-fringe
12		cost relationship be further deaveraged into a core and fringe zone scheme rather
13		than the entire wirecenter being assigned to a single zone. The genesis for this
14		proposal is a Petition that was filed with the WUTC by Fairpoint
15		Communications on September 4, 2001 (UT-011220-P), asking the Commission to
16		change the zone classifications for certain wirecenters. The petition identified
17		nine Qwest wirecenters that were characterized as large, exceeding 100 square
18		miles, with dense urban cores having sufficient access lines to qualify for
19		inclusion in a less costly density zone. The wirecenters identified in the petition
20		are Aberdeen, Bellingham, Lacey, Moses Lake, Olympia, Pasco, Port Angeles,
	DIRE	ECT TESTIMONY OF THOMAS L. SPINKS Exhibit T (TL

Docket No. UT-023003

1		Walla Walla, and Yakima. While Fairpoint withdrew its petition shortly after
2		filing, and has since ceased doing business in Washington, the issue raised in the
3		petition is important for competition in Washington and the Commission should
4		consider it in this proceeding.
5		
6	Q.	What was the issue raised by Fairpoint's petition?
7	А.	CLECs that operate in areas outside the high-density Seattle-Tacoma
8		metropolitan area pay higher unbundled loop rates because the wirecenters are
9		classified in higher cost density zones. There are a number of wirecenters
10		serving mid-size cities like Olympia, Pasco, and Port Angeles where the
11		population size and density are such that loop costs should be low enough to
12		allow the CLEC to compete in the city. However, the service area of the
13		wirecenters serving these cities also serves a large rural area such that the
14		average loop cost in the wirecenter results in a zone 4 or 5 classification, which
15		are the two highest cost zones in the state. This makes it uneconomic for the
16		CLEC to operate in the lower cost, denser areas in the cities. Staff is concerned
17		with the inability of CLECs to compete in areas where population size and
18		density should allow them to operate economically because meaningful
19		competition will not occur in these areas of the state where market entry is

1		justified economically. In order to address this concern, Staff is proposes that
2		certain wirecenters be disaggregated into core and fringe zones.
3		
4	Q.	How do you propose the Commission determine the core and fringe zone
5		boundaries?
6	А.	The Commission should determine the core area as the area defined by the city
7		limits of the city contained in the wirecenter and the fringe area as the area
8		outside the city limits but within the wirecenter serving area.
9		
10	Q.	How did you separate wirecenter costs into the core and fringe zones?
10 11	Q. A.	How did you separate wirecenter costs into the core and fringe zones? The HAI model produces cost output disaggregated to the cluster level. The
	-	
11	-	The HAI model produces cost output disaggregated to the cluster level. The
11 12	-	The HAI model produces cost output disaggregated to the cluster level. The cluster data represent serving areas for groups of customer locations. The
11 12 13	-	The HAI model produces cost output disaggregated to the cluster level. The cluster data represent serving areas for groups of customer locations. The clusters are identified by the census block groups (CBGs) in which they are
11 12 13 14	-	The HAI model produces cost output disaggregated to the cluster level. The cluster data represent serving areas for groups of customer locations. The clusters are identified by the census block groups (CBGs) in which they are located. The loop cost outputs by clusters are first identified from the HAI 5.2(a) ²
 11 12 13 14 15 	-	The HAI model produces cost output disaggregated to the cluster level. The cluster data represent serving areas for groups of customer locations. The clusters are identified by the census block groups (CBGs) in which they are located. The loop cost outputs by clusters are first identified from the HAI 5.2(a) ² model workfile. The cluster loop cost data are then separated between clusters

1		wirecenters, and Staff selected wirecenters that exhibited a strong difference
2		between core and fringe area costs for disaggregation. For Qwest, 15 wirecenters
3		covering 13 cities qualified for inclusion while Verizon had none. The Qwest
4		wirecenters that qualified for further deaveraging were placed into the
5		appropriate zones by separately including the core and fringe costs and lines in
6		the zone optimizer program. The output from the zone optimizer includes the
7		core and fringe pieces of the wirecenter in the zone appropriate for its cost.
8		Ex (TLS-4). The wirecenter assignments to zones shows, for instance, that
9		the city of Aberdeen (ABRDWA_C) is assigned to zone 1 while the Aberdeen
10		rural area (ABRDWA_F) is in zone 3.
11		
12	Q.	How did you identify the location of the loop cost cluster data relative to the
13		city limits?
14	A.	Staff used the ArcView 3.2a GIS software program along with Bureau of Census
15		data for census block groups and Washington State Department of
16		Transportation data on city boundaries and roads to accurately locate city limits,
17		census block groups and cluster data relative to one another. The CBG data layer
18		is overlaid with the city boundary data layer to identify CBGs relative to the city

 $^{^{2}}$ The HAI 5.3 does not include an updated cluster module for determining cluster loop costs so cluster investment values were calculated using HAI 5.2 cluster module. The calculations are shown in

1		limits. The cluster data centroids and cluster areas are projected and overlaid on
2		the city and CBG data to determine whether they are correctly located and to
3		visually determine whether clusters are contained wholly or partially within city
4		limits. The software, files and data used for the analysis are provided on the
5		Staff Workpapers CD-ROM. Maps showing the city limits, CBGs, and cluster
6		centroids for the selected wirecenters are shown in the file "MAPS.pdf" in the
7		Staff workpapers.
8		
9	Q.	Were any of the cluster data you examined found to be incorrectly located?
10	А.	Yes. Each data cluster position is located by its bearing and distance from the
11		wirecenter. After determining the necessary adjustments to properly project the
12		clusters, the location of the cluster centroid was checked to see if it was located in
13		the CBG it is assigned to. For each wirecenter where core-fringe deaveraging is
14		being proposed, I checked the cluster locations to see if they were located within
15		its assigned CBG. I found two kinds of location errors associated with data
16		clusters that were not correctly located. The first is rotation error. Rotation
17		errors are noted when a cluster is not correctly located but it can be moved to its
18		proper location by changing only the bearing angle. This type of error does not
19		cause any change in cost if it is corrected. The second type of error occurs when

Exhibit TLS-3, the Staff Workpapers.

1		the cluster cannot be properly located unless the radial distance between the
2		wirecenter and the cluster is changed. If the radial distance of a cluster needs to
3		be changed to properly locate the cluster, the cost of the cluster will also be
4		higher or lower depending on whether the correct radial distance is closer or
5		farther from the wirecenter. With the exception of the Aberdeen wirecenter,
6		there were very few errors in the clusters involving changes to radial distance.
7		The Aberdeen wirecenter had 16 clusters that were incorrectly located such that
8		the radial distance had to be adjusted. In order to correct the radial distance
9		measurement, I used the software program measuring tool to measure the
10		correct distance between the wirecenter and the CBG associated with the cluster.
11		The cluster data base file was then updated with the revised radial distances to
12		calculate corrected cost estimates.
13		
14	Q.	Do you have any further testimony at this time?

15 A. No.