Exhibit SLM-3

Testimony of Qwest Communications Corporation Witness Victoria Hunnicutt-Bishara In ICC Docket No. 05-0675

ILLINGIS**ON** COMMERCE COMMISSION

BEFORE THE ILLINOIS COMMERCE FEBRIMISSION²

Docket No. 05-0673HIEF CLERK'S OFFICE

RESPONSE TESTIMONY OF

VICTORIA HUNNICUTT-BISHARA

FOR

QWEST COMMUNICATIONS CORPORATION

QCC Exhibit 1.0 PUBLIC VERSION

FEBRUARY 2, 2006

TABLE OF CONTENTS

I.	INTRODUCTION	. 1
II.	THE SBC PER AMP PROPOSAL WILL NOT BE COST OR REVENUE NEUTRAL	. 3
III.	A BASIC UNDERSTANDING OF POWER REQUIREMENTS EXPLAINS WHY SBC'S PROPOSAL IS NOT REVENUE OR COST NEUTRAL	8
IV.	CONCLUSION	17

I I. INTRODUCTION

2		
3	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
4	A.	My name is Victoria S. Hunnicutt-Bishara. My business address is 1801 California St.
5		#4760, Denver, Colorado.
6		
7	Q.	PLEASE STATE YOUR EMPLOYER AND POSITION.
8	A.	I am employed by Qwest Services Corporation as a senior technical analyst in the Public
9		Policy department.
10		
11 12	Q.	PLEASE DESCRIBE YOUR EDUCATION BACKGROUND AND TELECOMMUNICATIONS EMPLOYMENT EXPERIENCE
13	A.	I have a Bachelor of Science in Electrical Engineering from the University of Virginia. I
14		have taken numerous telecommunications seminars and classes including graduate
15		courses in Telecommunications Management. I have been employed by Qwest (formerly,
16		US West) since 1998. My original position was with the transport modeling team in the
1 7		Pricing and Regulatory Matters department as a Cost Analyst. In 1999, I assumed
18		responsibility for the Collocation Cost Model, programming the model and producing the
19		cost studies for the various Qwest Corporation cost dockets. In 2003, I began working
20		with the loop modeling team working with the loop model and creating documentation
21		for the Qwest Corporation loop program, LoopMod. In 2004, I began work as a technical
22		analyst and developer in the Public Policy department. Presently, my responsibilities

ICC Docket No. 05-0675 QCC Exhibit 1.0 Page 2

- 23 include technical and cost analyses, as well as providing subject matter expert support on
- 24 collocation issues in regulatory proceedings.
- 25

26Q.HAVE YOU EVER FILED TESTIMONY FOR QWEST COMMUNICATIONS27CORPORATION BEFORE?

A. No, I have not previously filed testimony for Qwest Communications Corporation
("QCC").

30

Q. YOU MENTIONED BOTH QWEST CORPORATION AND QCC. PLEASE BRIEFLY DESCRIBE THE RELATIONSHIP BETWEEN THE TWO COMPANIES.

- A. Qwest Corporation is the ILEC in a fourteen state region occupying most of the western
- and northwestern United States. Qwest Corporation has no business operations in
- 36 Illinois, and is not participating in this proceeding. QCC is an interexchange carrier,
- 37 operator services provider and a CLEC. QCC is certificated to provide
- telecommunications services in Illinois. QCC is collocated in [BEGIN]
- 39 CONFIDENTIAL] XX [END CONFIDENTIAL] SBC Illinois ("SBC") central offices,
- 40 and provides both facilities-based and resold services in competition with SBC and others
- 41 in Illinois.

42

- 43 Qwest Corporation and QCC are both direct subsidiaries of Qwest Services Corporation,
- 44 which is a direct subsidiary of the ultimate corporate parent company, Qwest
- 45 Communications International Inc.

46 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

47	А.	The purpose of my testimony is to demonstrate that, contrary to SBC's testimony, the
48		proposed SBC collocation tariff modifications will not be revenue neutral or anywhere
49		near revenue neutral to SBC or cost neutral to CLECs in Illinois. Instead, I would fully
50		expect CLECs to incur far greater collocation power consumption expenses and SBC to
51		obtain far greater revenue. I expect that revenue shift will far exceed the 38% under-
52		billing SBC claims in its testimony. It certainly will for QCC, as I illustrate below.
53		
54		I have organized the main body of my testimony into two sections. The first illustrates
55		the net effect of the SBC proposal on QCC, and demonstrates that the proposal is far from
56		revenue or cost neutral. The second substantive section provides explanation, from a
57		technical perspective, why the simple conversion from kilowatt hours ("kWh") to Amps
58		would not be revenue neutral in this case. In this latter section, I discuss the different
59		types of power loads using, for illustrative purposes, common electrical equipment with
60		which most of us are familiar. In addition, I have included an example using equipment
61		specific to the telecommunications industry.
62		
63	II.	THE SBC PER AMP PROPOSAL WILL NOT BE COST OR REVENUE
64 65		<u>NEUTRAL</u> .
66 67	Q.	DOES SBC ARGUE THAT ITS PER AMP PROPOSAL WILL BE REVENUE NEUTRAL?

A. Yes, SBC does claim this. Specifically, at page 7 of her Direct Testimony, SBC witness
Stephanie Brissenden describes the proposal as doing "nothing to alter the level of the

70		approved per KWH cost; it merely converts an existing approved cost (per KWH) to a
71		different unit of measure (per amp)." She then states, "[t]here is no increased SBC
72		Illinois cost being attributed to CLECs' power usage with this simple conversion
73		proposal[which] will result in a neutral net effect, from a cost perspective, to both the
74		CLECs and SBC Illinois."
75		
76 77	Q.	DO YOU AGREE WITH MS. BRISSENDEN THAT THIS "SIMPLE CONVERSION" WILL BE REVENUE AND COST NEUTRAL?
78	A.	No, I do not agree. SBC's conversion proposal will be far from revenue or cost neutral to
79		the CLECs or SBC Illinois, and will significantly advantage SBC to the detriment of, not
80		only QCC, but, presumably, all CLECs relying on SBC collocation in Illinois. In fact,
81		SBC claims that the power metering units ("PMUs") it designed and installed currently
82		under-measure DC power consumption by 36% or 38% on average. ¹ Yet, SBC's
83		conversion proposal would increase QCC's DC power costs over 8900% if QCC makes
84		no changes to its current power requests and <i>approximately 2700%</i> , even if QCC takes
85		advantage of SBC's power fuse reduction offer. ² The calculations associated with these

86 increases are discussed in greater detail below.

¹ See Direct Testimony of Jeanne Muellner, SBC Illinois Exhibit 4.0, at 15 ("Leakage current is present in CLEC collocation arrangements. The leakage ranged as high as 90% and averaged 38%"); SBC Revised Response to QCC Data Request 2.19 ("As stated in the direct testimony of Mr. Parker [citation omitted], AT&T Illinois relies on the 2002 Superior central office study (36%) when estimating its revenue shortfall.").

² Proposed Tariff Ill. CC. No. 20, Part 23, Section 4.1.C.18-C.20 (Original Sheet 31.6).

Q. CAN YOU QUANTIFY THE COST IMPACT ON QCC OF SBC'S PER AMP PROPOSAL?

90	A.	Yes, I can. The SBC rate conversion proposal would result in QCC's power consumption
91		charges increasing by anywhere from 2700% to 8900%. These calculations are broken
92		down more specifically in Schedule VHB-1, attached.
93		
94		The wide range of the increase (2700% to 8900%) will depend upon to what extent QCC
95		is able to alter its power request from SBC in the various central offices. As Schedule
96		VHB-1 illustrates, QCC currently has ordered DC power ranging from [BEGIN
97		CONFIDENTIALJ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
98		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
99		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
100		
101		*****
102		*****
103		*****
104		XXXXXXXXXXXXXXXX

105

107

³ The Commission should bear in mind that QCC invested significant sums to obtain and build out its collocation spaces. Decommissioning involves significant expense, as can fuse reductions and subsequent fuse expansions. Prematurely decommissioning or downsizing sites, when QCC has no firm business plans to abandon service in a particular wire center, is not economically reasonable, especially given the cost QCC will have to incur to subsequently increase its power order should it choose to expand service from that wire center.

114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
113	******
112	
111	******
110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
109	*****
108	*****

115

Q. WON'T THE INCREASED RECURRING CHARGES YOU PREDICT FOR QCC SIMPLY COVER THE AMOUNT SBC STATES ITS PMUS ARE UNDERMEASURING TODAY?

119	А.	No, QCC's increased cost will far exceed the amount SBC claims it is losing as a result
120		of current leakage. As noted above, SBC claims (based on the study conducted by Ms.
121		Muellner and the earlier Telcordia study SBC commissioned) the PMUs are under-
122		measuring, thus, SBC is under-billing, DC power consumption by 38%. Actually, SBC's
123		own evidence seems to cut that percentage dramatically. In its conclusion, the Telcordia
124		study describes the DC leakage issue as follows, [BEGIN CONFIDENTIAL] XXXXX
125		***************************************
126		***************************************
127		XXXX ⁴ [END CONFIDENTIAL] Completely leaving aside how indefinite, imprecise,
128		and equivocal Telcordia's leakage findings appear to be, SBC's own evidence suggests
129		(even if the Commission agrees that a leakage problem exists and leads to 36% or 38%

⁴ See Direct Testimony of Marvin Nevels, Schedule MN-6, at 26.

130		under-measurement where leakage occurs), the average under-billing should be found to
131		be no more than [BEGIN CONFIDENTIAL] XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
132		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
133		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
134		SBC's proposal on QCC will obviously dwarf SBC's alleged measure of under-billing, to
135		the extent the Commission believes SBC has supported its claim of DC leakage.
136		
137 138 139	Q.	DID SBC SUGGEST OR EVEN EXPLORE ANY ALTERNATIVE SOLUTIONS TO THE ALLEGED LEAKAGE PROBLEM PRIOR TO FILING ITS PER AMP PROPOSAL?
140	A.	Apparently, SBC did not explore, nor consider, alternative solutions. No alternatives
141		were identified in SBC's testimony and, in discovery, SBC failed to identify whether it
142		even considered any alternative fixes to the leakage issue on which this proceeding is
143		based. ⁵ SBC seems to have ignored the simplest, least disruptive and most obvious fix,
144		specifically, the addition of a factor to the monthly recurring charge for power
145		consumption. If, for example, the Commission finds that SBC has proven the PMUs
146		under-measure DC power consumption by 36%, SBC could eliminate the problem
147		entirely, without any undue increased cost for CLECs or SBC, by increasing the recurring
148		charge for power consumption from \$.28 per kWh by 36% to \$.38 per kWh. As
149		mentioned above, it appears, from SBC's own direct case, there is at most a [BEGIN
150		CONFIDENTIAL] XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
151		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ICC Docket No. 05-0675 QCC Exhibit 1.0 Page 8

152		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
153		solution would permit SBC to recover all future lost revenue without fundamentally
154		shifting the power billing methodology in Illinois from a usage-based system to a
155		capacity-based system.
156		
157 158 159	III.	<u>A BASIC UNDERSTANDING OF POWER REQUIREMENTS EXPLAINS WHY</u> SBC'S PROPOSAL IS NOT REVENUE OR COST NEUTRAL.
160 161 162 163 164	Q.	IN THE SECTION ABOVE, YOU INDICATED THAT QCC'S POWER COSTS WOULD DRAMATICALLY INCREASE, EVEN IF QCC TAKES ADVANTAGE OF SBC'S POWER FUSE REDUCTION PROPOSAL. HOW IS THAT POSSIBLE IF SBC IS SIMPLY SUGGESTING A CONVERSION FROM ONE UNIT OF MEASURE TO ANOTHER?
165	A.	Understanding the answer to this question is really the key to understanding why SBC's
166		"simple conversion" from per-kWh to per-Amp measurement is anything but a simple
167		conversion without revenue and cost impacts. Underlying SBC's incorrect assertion that
168		its proposal will be revenue and cost neutral is the false assumption that
169		telecommunications equipment draws power at the maximum load required twenty-four
170		hours a day, seven days a week. This assumption of a maximum and linear power load is
171		erroneous, as I will explain below.

172

5

SBC's response to QCC Data Request 1.16.

173 Q. AS BACKGROUND, PLEASE BRIEFLY EXPLAIN THE BASIC CONCEPTS 174 PERTAINING TO TELECOMMUNICATIONS EQUIPMENT POWER.

175	A.	The power purchased from the electric utility is Alternating Current (AC). After the AC
176		power reaches the telephone company's central office, it is converted to Direct Current
177		(DC). It is DC power that is delivered to the collocation sites in the central offices to
178		power CLECs' telecommunications equipment. Power, measured in Watts, is comprised
1 79		of Voltage and Current. Power is equal to Voltage times Current. Voltage is measured in
180		Volts (V). If the voltage is Direct Current (DC), as with the batteries and
181		telecommunications equipment, the unit of measurement is VDC. Telecommunications
182		equipment generally requires (nominally) -48 VDC. Current is measured in amperes
183		(Amps). The measure of power consumed over time is Watt-hours. Since the
184		measurement is taken over time, a large number of Watts can be consumed. To keep the
185		numbers manageable, wattage is typically divided by 1000 and "kilo" is added to the unit
186		of measure: 1000-Watt-hour, or kilowatt-hour, or kWh. The kWh is equivalent to one
187		kilowatt (1 kW) of power expended for one hour of time.
188		
189		Equipment power specifications generally list recommendations for the power, the
190		voltage, and the amperage. Below is an example of how a power specifications list might
191		look:
192		• Recommended Input Voltage: -48 VDC
193		• Acceptable Input Voltage Range: -40 to -56.7 VDC
194		 Maximum Power Consumption: 1060 W

195

0

Recommended Amperage: 30 A

196

197 Q. DOES ALL ELECTRICAL EQUIPMENT CONSUME POWER AT A 198 CONSTANT RATE?

No, all electrical equipment does not draw power at a constant rate, although some does. 199 A. Devices such as incandescent light bulbs, toasters, and heating devices are classified as 200 resistive loads, or constant loads. A "load", as used here, is a device that consumes 201 power. Generally speaking, these loads will consume power at a constant rate. The rated 202 power of a resistive device, in Watts, is the amount of power the device will typically 203 consume. For example, a 60 Watt light bulb will draw the rated power of 60 Watts at a 204 constant rate while lit. 205 206 Other electrical equipment, such as household appliances, computers and 207

208 telecommunications equipment are <u>reactive</u> loads.⁶ These power loads are non-linear,

209 meaning they do not consume power at a constant rate. For these types of electrical

equipment, the running loads may be small compared to the starting load (i.e., the load

when the equipment is initially started up). The required starting power of reactive loads

212 can be many times higher than the running load.

213

6

See, for example, <u>www.simplexdirect.com/LoadBank/types.html</u>.

Q. PLEASE CLARIFY THE DIFFERENCE BETWEEN A REACTIVE LOAD AND A RESISTIVE LOAD.

For ease of reference, I will use common, household examples. The light bulb, a resistive Α. 216 load mentioned above, requires no additional wattage (power) for lighting. The running 217 wattage requirements are as indicated on the bulb. With the exception of a dimmer, the 218 intensity of the light remains constant as does the power the light bulb consumes. For the 219 light bulb, the startup load and the running load are the same. So, if one were to order 220 power for this light bulb, the rated wattage on the bulb could be ordered. 221 222 On the other hand, a refrigerator is an example of a reactive load. Its running power 223 requirement is approximately 700 Watts with an additional starting wattage requirement 224 of 2200 Watts. The power load of the refrigerator will vary after startup depending on 225 226 such variables as the outside temperature, how full the refrigerator is and how many times the refrigerator door is opened. If you stand by the refrigerator long enough, you will hear 227 when the variations in the power load occur as it kicks on and off to maintain the preset 228 internal temperature. As the outside temperature rises, more power is required to 229 230 maintain the preset internal temperature.

231

Q. IS THERE A DIFFERENCE BETWEEN THE MANUFACTURER'S RECOMMENDED AMPERAGE, THE MAXIMUM POWER CONSUMPTION AND THE POWER ACTUALLY CONSUMED BY ELECTRICAL EQUIPMENT?

A. Yes, there is. Since reactive loads do not consume power at a constant rate over time,

there can be a significant difference among the recommended amperage, maximum power

ICC Docket No. 05-0675 QCC Exhibit 1.0 Page 12

237	requirements for the equipment, and the actual power consumed during normal
238	operations. Today, CLECs pay SBC Illinois for actual power consumed. Under SBC's
239	proposal, CLECs would pay SBC for the combined recommended amperage of all the
240	equipment installed in its collocation space. Let me explain the differences among
241	recommended amperage, maximum power requirements and actual power consumed.
242	
243	The recommended amperage is the manufacturer's recommended power level the power
244	plant must be provisioned to deliver to the equipment for proper operation of the
245	equipment. In other words, the recommended amperage is the power level QCC must
246	order to operate the equipment properly. The recommended amperage is a higher number
247	than the maximum power consumption to provide a necessary buffer at startup or at very
248	low voltage during a long battery discharge.
249	
250	The maximum power consumption, a lesser number than the recommended amperage,
251	represents the expected maximum amount of power the equipment would draw when
252	operating fully provisioned and experiencing its maximum usage under normal operating
253	conditions. For example, in the case of a multiplexer, maximum power consumption
254	would be expected to occur when all card slots are filled and the traffic through each card
255	is operating at its maximum.
256	

257		The actual power consumed, a lesser amperage than the maximum power consumption,
258		would vary over time with the configuration of the equipment, as well as the usage, or
259		traffic as in the case of the multiplexer mentioned above.
260		
261		SBC's own technical publication (Tech Pub: SBC-TP-76400: Detail Engineering
262		Requirements, dated November 10, 2005) recognizes the need to provision and fuse
263		power for SBC's own telecommunications equipment at a power level higher than the
264		equipment actually consumes during normal operating use. An excerpt of that technical
265		publication (Section 12, page 12-11, section 6.3.1) is attached as Schedule VHB-2. The
266		List 2 current drain, which is synonymous with recommended amperage, is the level of
267		fusing required by the equipment manufacturer to take into consideration the worst
268		case current drain. The power distribution cables must be fused at this level
269		for overcurrent protection.
270		
271		
272 273 274	Q.	USING TELECOMMUNICATIONS EQUIPMENT, CAN YOU STEP THROUGH THE POWER SPECIFICATIONS MENTIONED ABOVE AND HOW THEY RELATE TO THE POWER CONSUMED AND THE POWER ORDERED?
275	A.	Yes, with the background provided above, I will return the example of the multiplexer. A
276		multiplexer is a device commonly used in telecommunications applications. The
277		multiplexer enables a number of communications signals to be combined into a single
278		broadband signal and transmitted over a single circuit. When the single broadband signal

279 reaches its destination, it can be dissected into the original signals, preserving the280 integrity of each separate signal.

281

282	One example of a multiplexer is the Cisco ONS 15454 (formerly known as Cerent 454)
283	platform. The Cisco ONS 15454 combines Internet Protocol (IP) over Synchronous
284	Optical Network/Synchronous Digital Hierarchy (SONET/SDH) with Asynchronous
285	Transfer Mode (ATM), Frame Relay and Time Division Multiplexing (TDM). The unit
286	contains a 240 Gbps (gigabits per second) shelf with multiple, general-purpose card slots
287	for interfaces from DS1 to OC-192. Stated another way, the Cisco ONS 154545 is a fast,
288	multipurpose piece of telecommunications equipment with multiplexing capabilities.
289	
290	According to the technical specifications for the ONS 15454, the manufacturer's
291	recommended power requirements (referred to as the Recommended Amperage) for
292	proper operation of the device is 30 Amps. To order the required power accurately
293	commensurate with the power requirements of QCC's collocated equipment, QCC would
294	have to order power at a minimum of 30 Amps for this single piece of equipment. The
295	Maximum Power Consumption for the same system is 1060 Watts. The 1060 Watts of
296	power equates to 20 Amps at a normal central office operating voltage of -52.8 VDC. ⁷
297	Please note, the Recommended Amperage (30 Amps) is a 50% increase over the
298	Maximum Power Consumption (20 Amps), even assuming the equipment is running at
299	maximum operating power consumption twenty-four hours a day, seven days a week.

Amps (20) = Watts (1060) / Volts (52.8).

300

USING THE ONS 15454 EXAMPLE ABOVE, PLEASE DISCUSS HOW THE Q. 301 POWER ORDERED COMPARES TO THE POWER ACTUALLY CONSUMED. 302

303	A.	The ONS 15454 can be configured in a number of different ways depending on the cards
304		installed. The operating power load will vary with the cards installed in the shelf and the
305		traffic on the cards. The ONS 15454 would be operating at its Maximum Power
306		Consumption (20 Amps) when the shelf is fully carded and usage is at its maximum.
307		Based on QCC's experience with this equipment, traffic variations through the shelf can
308		result in a 20% swing in power consumption, thus reducing the operating power load
309		from the 20 Amp Maximum Power Consumption to around 16 Amps.
310		
311		To summarize, based on the technical specifications of the ONS 15454 and the usage of
312		the shelf, the operating semi-continuous power load operates around 16 Amps for
313		extended periods of time. This does not take into account the lesser loads that would be
314		consumed when the shelf is not fully carded and utilized. Yet, QCC would be required,
315		under SBC's proposal, to order and pay for power for this equipment at a minimum of 30
316		Amps. The provisioned amperage (30 Amps) required to operate the equipment properly,
317		as recommended by the manufacturer, is nearly twice the amperage of the average
318		operating power load (16 Amps) when fully carded and utilized.
319		
320		This disparity is even more dramatic in the event QCC is using equipment in a given
321		collocation site at less than its full capacity. If, for instance, QCC is serving fewer

ICC Docket No. 05-0675 QCC Exhibit 1.0 Page 16

322	customers than it has in the past (or hopes to in the future) from a particular central office,
323	its average power draw will be less than 16 Amps. Nevertheless, because SBC's proposal
324	will require collocators to pay for all recommended amperage and will not in any way
325	discount the per-Amp charge to reflect the reality that telecommunications equipment
326	does not constantly draw power at that recommended amperage, the proposal will result
327	in QCC paying as if the equipment were drawing 30 Amps twenty-four hours a day, seven
328	days a week. It is for this reason that SBC's "simple conversion" proposal is not revenue
329	neutral for SBC and not cost neutral for CLECs.
330	
331	The disparity among recommended amperage, maximum power consumption and actual
332	power consumed is not limited to the Cisco multiplexer. I have attached as Schedule
333	VHB-3 a case study performed by Convergence IP Technology (a systems integrator and
334	managed services provider) describing the technical specifications of two Fujitsu
335	multiplexers. On pages 3 and 5 of Schedule VHB-3, under the heading "Power
336	Consumption," Convergence distinguishes between the "maximum" power consumption
337	and the significantly lower "typical" power consumption. This case study indicates that,
338	during Convergence's testing, one Fujitsu multiplexer typically ran 21% below its
339	maximum power consumption, while the other Fujitsu multiplexer typically ran 73%
340	below its maximum power consumption.
341	

342

344 IV. <u>CONCLUSION</u>

345 346

Q. WILL YOU PLEASE SUMMARIZE YOUR TESTIMONY?

347	A.	Yes, I will. My testimony establishes that, contrary to Ms. Brissenden's testimony for
348		SBC, the SBC proposal will not be revenue neutral or anywhere near revenue neutral to
349		SBC or cost neutral to CLECs in Illinois. Instead, CLECs will incur far greater
350		collocation power consumption expenses and SBC will obtain far greater revenue. This
351		significant shift will occur because, while SBC characterizes its proposal as a simple
352		conversion from one unit of measure (kWh) to another (Amp), the per-Amp methodology
353		will greatly benefit SBC by allowing it to bill CLECs for power not actually consumed.
354		This will lead to a dramatic increase in expense for CLECs and a dramatic increase in
355		revenue for SBC in Illinois. If SBC is truly concerned its PMUs are under-measuring DC
356		power consumed by CLECs by 36%, it could have simply recommended that the monthly
357		recurring charge of \$.28 per kWh be increased by 36%. Instead, SBC proposed a change
358		in methodology that will increase CLEC costs, in QCC's case, between 2700% and
359		8900%.

360

361 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

362 A. Yes, it does.

BEFORE THE ILLINOIS COMMERCE COMMISSION

Docket No. 05-0675

SURREBUTTAL TESTIMONY OF VICTORIA HUNNICUTT-BISHARA FOR QWEST COMMUNICATIONS CORPORATION

QCC Exhibit 1.1

March 29, 2006

1 I. INTRODUCTION

3 Q. PLEASE STATE YOUR NAME.

4 A. My name is Victoria Hunnicutt-Bishara.

Q. ARE YOU THE SAME VICTORIA HUNNICUTT-BISHARA WHO SUBMITTED 7 RESPONSE TESTIMONY IN THIS DOCKET ON FEBRUARY 2, 2006?

8 A. Yes, I am.

10 Q. WHAT IS THE PURPOSE OF YOUR SURREBUTTAL TESTIMONY?

- 11 A. My testimony responds primarily to the testimony of SBC witness Roman Smith.
- 12 Specifically, I will address SBC's new fusing proposal.
- 14 II. <u>SBC'S NEW FUSING PROPOSAL</u>

15

20

13

2

5

9

1617Q.IS MR. SMITH'S REBUTTAL TESTIMONY REGARDING FUSING18CONSISTENT WITH HIS DIRECT TESTIMONY ON FUSING?

19 A. No, it is not consistent. It appears SBC has revised its original fusing proposal.

21Q.HOW DOES MR. SMITH'S REBUTTAL TESTIMONY MODIFY SBC'S FUSING22PROPOSAL?

- A. In his direct testimony, Mr. Smith stated, "Pursuant to its internal engineering practices,
- 24 SBC Illinois plans to fuse the power leads at least **125% of the requested amount** in
- 25 order to build in a margin for growth. This is an internal practice; it is not a requirement."
- 26 [emphasis added] (Page 12, lines 256-258)
- 27

35 36	Q.	IS SBC'S MODIFIED FUSING PROPOSAL FOR CLECS CONSISTENT WITH SBC'S OWN ENGINEERING REQUIREMENTS WITH RESPECT TO FUSING
34		
33		the fuse size is limited by "actual usage."
32		size the fuse for the power leads at 125% of the request amount. In the revised proposal,
31		CLEC." [emphasis added] (Page 11, lines 196-198) Originally, SBC was proposing to
30		provided that the fuse size is not more than 200% of actual usage specified by the
29		fuses provided they are no greater than 100% of the capacity of the power cable and
28		In his rebuttal testimony, Mr. Smith states, "AT&T Illinois is willing to maintain existing

FOR ITS OWN EQUIPMENT?

38	A.	No, it is not. SBC's internal engineering requirements, as set out in SBC's own technical
39		publication (SBC-TP-76400, dated November 11, 2005) ¹ direct SBC personnel to
40		determine the minimum fuse size based on the List 2 Drain, not usage. Specifically,
41		"Overcurrent ² protection (fuses or circuit breakers) and secondary distribution cables are
42		sized using List 2 current drain. List 2 current drain represents the peak current for a
43		circuit under worst-case operating conditions." (Section 6.3.1, page 12-11).
44 45 46	Q.	IS SBC'S MODIFIED FUSING PROPOSAL FOR CLECS CONSISTENT WITH NATIONAL FIRE SAFETY STANDARDS?
47	A.	No, SBC's fusing proposal is not consistent with National Fire Protection Agency

48 ("NFPA") Code 70:National Electrical Code ("NEC"). Section 215.3, Overcurrent

¹ An excerpt from SBC-TP-76400 is attached to my surrebuttal testimony as Schedule VHB-4.

² Overcurrent is a condition which exists on an electrical circuit when the normal load current is exceeded. Overcurrents take on two separate characteristics - overloads and short circuits.

49	Protection (page 99), of the NEC 2005 Handbook (NFPA 70:National Electrical Code) ³
50	states, "Where a feeder supplies continuous loads or any combination of continuous and
51	noncontinuous loads, the rating of the overcurrent device shall not be less than the
52	noncontinuous load plus 125 percent of the continuous load." [emphasis added] A
53	continuous load is defined by the Institute of Electrical and Electronics Engineers (IEEE)
54	The Authoritative Dictionary of IEEE Standards Terms (IEEE 100), Seventh Edition, to
55	be "A load where the current continues for 3 h[ours] or more." A noncontinuous load is
56	a load not classified as continuous and is the difference, in amps, between the List 1 drain
57	(continuous load) and the List 2 drain. More specifically, continuous and noncontinuous
58	loads are ranges. The amperage limit for the continuous load is the rated List 1 current
59	drain of the equipment. The amperage range for the noncontinuous load is the amperage
60	between the List 1 current drain and the List 2 current drain.
61	
62	SBC's revised fusing proposal for CLECs bases the fuse size on actual usage at any
63	moment in time (regardless of whether the collocated equipment is being under-utilized,

64 is not fully carded or is serving few customers), not the peak current of the load (List 2

drain) as specified by the NFPA and network element manufacturers.

65

66

6768 Q. WHAT ARE LIST 1 AND LIST 2 CURRENT DRAINS?

A. List 1 and List 2 current drains, sometimes referred to simply as List 1 and List 2 drains,
 are equipment specifications determined by the equipment manufacturer providing the

³ Excerpts from the 2005 and 1990 NEC Handbooks (NFPA 70) are attached to my surrebuttal testimony as Schedule VHB-5.

71	maximum power usages for two usage scenarios. The List 1 current drain, in amperes, is
72	the average "busy-hour" current draw during normal plant operation, assuming maximum
73	configuration of the equipment. The List 2 current drain, in amperes, is the peak current
74	under worst case conditions of voltage, traffic, and equipment configuration.

75

Q. WHAT IS THE PURPOSE OF THE LIST 1 AND LIST 2 DRAIN SPECIFICATIONS?

A. In the telecommunications industry, List 1 and List 2 drains are the designations of the

79 load current drains. These are used to size various elements of the battery plant.

- 80 Generally speaking, the List 1 current drain is used to size batteries and rectifiers in the
- 81 plant. The List 2 current drain is used to size the DC load feeder cables and the circuit
- 82 protection device (fuse) for the DC power arrangement. The fuse size is also dependent
- ⁸³ upon the ampacity of the smallest conductor comprising the protected feeder. Protectors
- should be rated as high as allowable to avoid nuisance tripping due to high load

85 conditions or inrush current during startup.

86 87

Q. CAN YOU GIVE AN EXAMPLE OF A FUSE SIZE CALCULATION USING LIST 1 DRAIN (CONTINUOUS LOAD), LIST 2 DRAIN, AND NONCONTINUOUS LOAD?

A. Yes, I can. Qwest Communications Corporation's (QCC) collocation arrangements
generally consist of multiple, separately-fused bays of equipment in series. Consider, as
an example, within one of those bays is a circuit that feeds equipment with a List 1
current drain (continuous load) of 20 amps and a List 2 current drain of 30 amps. The
noncontinuous load would be the difference between the List 2 current drain and the List
1 current drain, or 10 amps (30 amps – 20 amps). Using these specifications and the

96		NFPA code requirements (stated above), the minimum allowable fuse size for this
97		hypothetical QCC DC power arrangement is calculated as follows:
98		= noncontinuous load + (1.25 x continuous load)
99		= (List 2 Drain – List 1 Drain) + (1.25 x List 1 Drain)
100		$= (30 - 20) + (1.25 \times 20)$
101		= 10 + 25
102		= 35 amps.
103		
104		Under SBC's fusing proposal, however, this QCC arrangement would not necessarily be
105		fused at or above 35 amps. If, for example, the equipment in this arrangement were not
106		maximally configured with respect to cards and shelves, but only partially-configured, ⁴
107		and the actual usage was not measured at "busy-hour," that equipment may only be
108		measured at 5 amps. Under SBC's proposal – which focuses only on actual usage at any
109		moment in time – the fuse could be no larger than 10 amps, far below the minimum
110		acceptable fuse size under the NFPA code.
111		
112 113	Q.	WHAT ARE YOUR CONCERNS WITH SBC'S MOST RECENT FUSING PROPOSAL?
114	A.	I have three major concerns, among others, with SBC's most recent fusing proposal.
115		These concerns are legal, financial and operational. First, if the DC power arrangements
116		are fused based upon the usage at any point in time, and not the List 2 drain of the load, it

⁴ ⁴ The minimal configuration could be due to a smaller number of customers being served during a particular period of time.

117	is probable that the fusing would not be in compliance with NFPA 70-2005, Article
118	215.3. As a result, the fusing would violate Administrative Code Part 785.20(b)(1),
119	which obligates companies to abide by NFPA 70. 5 In other words, collocators will be
120	forced to either ignore SBC's fusing limitations or ignore the Commission's electrical
121	and fire safety requirements.
122	
123	Second, on a financial level, changes in a collocator's power draw (for instance, because
124	it adds cards to an existing, but under-utilized, multiplexer) will require the collocator to
125	pay SBC to re-fuse the collocator's collocation power arrangement. For each power
126	delivery arrangement (a single collocation arrangement may include multiple power
127	delivery arrangements), SBC would charge the collocator an Order Charge of \$300.50
128	(physical caged and shared) or \$115.26 (cageless and virtual) and a Power Delivery
129	charge of \$1,802.03. ⁶ Regular or periodic re-fusing – which is unnecessary from a safety
130	perspective and, in fact, inconsistent with national fire protection standards and the
131	Commission's rules – will obviously prove quite expensive for collocators.
132	
133	Third, on an operational level, the low fusing amperage will make unnecessary and
134	harmful overloads more likely and more common. An overload is an overcurrent that is

⁵ Section 785.20(b)(1) of Title 83 of the Administrative Code states that "[t]he Agencies adopt as their rules the following portions of the NFPA Fire Codes (1991) edition:...Code 70, National Electric Code (effective Feb. 21, 1991)." Section 785.5 defines the "Agencies" as "the Illinois Commerce Commission, the Office of the State Fire Marshal, and the Illinois Emergency Management Agency." Article 215.3 of the NFPA 70-2005 is substantively identical to Article 220-10(b) of the NFPA 70-1990. See Schedule VHB-5.

⁶ See Ill. C.C. No. 20, Part 23, Section 4. SBC confirmed the applicability of these charges in its response to QCC Data Request 3.14.

135		confined to normal current paths and could occur when a single high amperage device is
136		on a circuit that is marginally sized for the demand. The purpose of overcurrent
137		protection devices is to prevent conductor insulation failure caused by overloads or short
138		circuits. An overload condition would be the result of a marginally fused power feed
139		during a power outage.
140 141 142	Q.	WHAT ARE THE IMPACTS OF A BLOWN FUSE TO QWEST COMMUNICATIONS CORPORATION ("QCC")?
143	A.	The impacts of power outages due to a blown fuse are numerous, including but not
144		limited to equipment damage, economic loss due to lost production, and irreparable
145		damage to the reputation of QCC with respect to service reliability.
146 147 148	Q.	COULD A BLOWN FUSE REALLY DO DAMAGE TO DIGITAL TELECOMMUNICATIONS EQUIPMENT?
149	A.	Absolutely. Years ago, equipment was not as susceptible to power outages as is the
150		sensitive digital equipment of today. Any equipment containing microprocessors, such as
151		computers and telecommunications equipment, is especially vulnerable to power down

- via a blown fuse. The May 24, 1999 article in Telephony Magazine Online "CIRCUIT
- 153 PROTECTION RUNS DEEP" by Dan O'Shea⁷ speaks to this issue specifically:
- "The telecom industry's migration to digital networking has taken several
 years but is now nearly worldwide. The shift to digital networks triggers
 numerous benefits that affect network efficiency, performance, capacity and
 reliability. However, one side effect of this trend is the fact that distributed
 electronics are more sensitive to fuse outages.

[/] Mr. O'Shea's article can be reviewed in its entirety at <u>http://telephonyonline.com/mag/</u> <u>telecom_circuit_protection_runs/index.html</u>.

159 160 161 162		Also, the migration to new network architectures and equipment means that different network elements are constantly being replaced or installed, brought on-line or taken off-line. This type of situation is conducive to fuse overloads and other potential problems."
163 164 165	Q.	DOES BELLCORE HAVE ANY DOCUMENTATION RELATING TO THE FUSING OF TELECOMMUNICATIONS EQUIPMENT?
166	A.	Yes, in its definition of List 2 drain, Bellcore (previously known as Bell Communications
167		Research, now known as Telcordia) states ⁸ :
168 169 170 171		"These drains are used to size feeder cables and fuses. These drains represent the peak current for a circuit or group of circuits under worst case operating conditions. For example, a constant power load requires maximum current at minimum operating voltage."
172 173 174	Q.	WHAT IS MEANT BY "MAXIMUM CURRENT AT MINIMUM OPERATING VOLTAGE" IN BELLCORE'S DEFINITION, ABOVE?
175	A.	During the power outages, the power to the telecommunication equipment is supplied by
176		batteries. For a time, a diesel engine would be supplying additional backup power for the
177		batteries. Once the power backup plant is running solely off battery power, the batteries
178		begin to discharge. The voltage begins to drop from about -52.8 VDC , past the nominal
179		-48 VDC, down to equipment failure at -42.75 VDC. Since power (Watts) is voltage
180		(volts) times current (amps) (W=V x A), as the voltage drops, the current (amperes)
181		increases to maintain the power level. In other words, as the voltage approaches a
182		minimum, the current approaches a maximum. That maximum current for any piece of
183		equipment, again, is referred to as the List 2 drain of the equipment.
184		

⁸ An excerpt from Bellcore Practice BR 790-100-656 is attached to my surrebuttal testimony as Schedule VHB-6.

185 Q. HOW DOES SBC'S FUSING PROPOSAL, BASED ON ACTUAL USAGE, 186 IMPACT THE EFFICACY OF THE POWER BACKUP?

- 187 A. The power backup system could be rendered useless. As mentioned above, during a
- power drain due to a power outage, the current (in amps) increases as the voltage
- decreases. If QCC is not able to fuse its DC power arrangements based on List 2 drain,
- as required by NFPA, Commission rule (Section 785.20(b)(1)), SBC's internal
- 191 requirements and manufacturer's specifications, during an extended power outage, the
- 192 elevated amperage would blow the fuse resulting in QCC's collocated equipment being
- 193 powered down in a matter of minutes, not hours. SBC's own equipment used to serve
- *its* own retail customers will likely remain unaffected given that SBC fuses based on
- 195 List 2 drain, according to SBC's own technical publication. See Schedule VHB-4.
- 196

197 Q. DOES BELLCORE SPEAK TO ANY OTHER INSTANCES WHERE THE 198 NONCONTINUOUS LOAD IS GENERATED?

- A. Yes. In the same definition of List 2 drain, mentioned above, Bellcore states:
- "List 2 current may also be generated by circuit operating variability (traffic, test condition, etc.) while at normal float voltage⁹."
- In the definition above, Bellcore acknowledges the power load of the equipment varies
- 204 enough to generate noncontinuous (List 2) current while at normal, non-emergency,
- 205 operating conditions. As with the battery discharge mentioned above, the reduced fusing
- 206 proposed by SBC could result in a blown fuse even during normal operating conditions.
- 207

⁹ In backup applications, the batteries are kept at a constant state of maximum potential in order to ensure maximum power reserve. This state of maximum potential is called *float voltage*.

Q. CAN YOU GIVE AN EXAMPLE OF AN INSTANCE WHERE NONCONTINUOUS LOAD (LIST 2 DRAIN) COULD BE GENERATED UNDER NORMAL OPERATING CONDITIONS?

211	A.	Absolutely. An electric motor is a good example. Many electronic components, like
212		computers and telecommunications equipment, generate heat. In order to protect
213		equipment from overheating, the equipment contains fans to maintain the appropriate
214		operating temperature. Most fans are operated by a thermostat. Because of the
215		thermostat, the fans will turn on and of as needed generating noncontinuous (List 2)
216		current. Fans are operated by electric motors. When most motors start, they draw current
217		in excess of the motor's full-load current rating. This current draw is for a very short
218		interval, relative to the equipment, but the duration could be long enough to blow the fuse
219		if the DC power feed is marginally fused as SBC's revised fusing proposal requires.
220		
221		In addition to the extra current (List 2 current or noncontinuous load) required to start the
222		motors running the fans, there are other inrush currents associated with the equipment.
223		On startup, electronics require a small instance in time to charge the capacitors. Again,
224		this initial charge generates the List 2 current drain.
225 226 227	Q.	IS THERE NOT A SECOND, REDUNDANT, POWER FEED TO THE COLLOCATORS' COLLOCATION ARRANGEMENTS?

A. Yes. As I understand it, redundant power feeds serving telecommunications equipment
 are an industry standard. In SBC's "Common Systems Equipment Interconnection

230		Standards for the SBC Local Exchange Companies" (SBC-TP-76450, Section 2.1.2, page
231		7), 10 it states:
232		"Redundant power feeders are required for all equipment serving network
233		elements. The term network element refers to all switching, transport, data,
234		operator services equipment, and any adjuncts for those elements." [emphasis
235		added]
236		
237		As indicated in the footnote in Schedule VHB-6, the redundant power feeds are to ensure
238		uninterrupted power to either the A or B side to maintain power to the
239		telecommunications equipment in the event of a power loss of either power feeds.
240		
241	Q.	WOULD THIS REDUNDANT POWER FEED TO THE COLLOCATORS'
242	-	COLLOCATION ARRANGEMENTS HANDLE ANY INCREASE IN CURRENT?
243	A.	Not necessarily. During normal operating conditions, it is possible for the second feed to
244		cover the inrush current. But, the redundant feed is provisioned to ensure uninterrupted
245		power during abnormal operating conditions. The footnote in Schedule VHB-6 (SBC's
246		technical publication) states, "The maximum List 2 current supported at the BDFB
247		cannot exceed 50% of the supply fuse rating regardless of the size. This will insure
248		uninterrupted power to either the A or B side in the event of a power loss of either power
249		feeds."
250		
251		Further, by relying solely on the redundant power feed to handle any increased current,
252		collocators cannot realize the full backup protection of both the backup power plant and
253		the power feed redundancy.

¹⁰ An excerpt from the SBC-TP-76450 is attached to my surrebuttal testimony as Schedule VHB-6.

ICC Docket No. 05-0675 QCC Exhibit 1.1 Page 12

254 **III. CONCLUSION**

- Q. **DOES THIS CONCLUDE YOUR TESTIMONY?** 256
- Yes, it does. 257 A.