Appendix E Revised Bank Assessment of Non-Point Source Consequences of Sediment at Siltronic Corporation Memorandum (January 27, 2022)

To:	File	Date:	January 27, 2022
From:	Michael R. Murray, RG, PE	Project:	8128.02.04
	Jesse Hall, GIT		

RE: Revised Bank Assessment of Non-point Source Consequences of Sediment at Siltronic Corporation

This memorandum presents the results of an erosion potential assessment, conducted by Maul Foster & Alongi, Inc. (MFA), of the Willamette River bank adjacent to the Siltronic Corporation (Siltronic) property in Portland, Oregon. MFA used the Bank Assessment for Non-point Source Consequences of Sediment (BANCS) model to predict the erosion potential and channel stability of the riverbank. The BANCS model uses the quantitative assessment of the Bank Erosion Hazard Index (BEHI), developed by David L. Rosgen of Wildland Hydrology, Inc. (Rosgen, 2001). The BEHI is a procedure for assessing streambank erosion condition and potential. The U.S. Fish and Wildlife Service and the Oregon Department of Environmental Quality use the BEHI in the Portland Harbor to evaluate bank erosion potential. This assessment was originally finalized on August 29, 2016 and has been revised based on feedback provided by CDM Smith on behalf of the United States Environmental Protection Agency via electronic mail (CDM Smith, 2021). The results of this revised BANCS assessment are essentially the same as the results of the 2016 BANCS assessment both of which determined BEHI erosion potential adjective ratings of "very low" or "low" for all transects along the Siltronic riverbank.

ASSESSMENT METHODS

On May 5, 2016, personnel from MFA conducted a survey of the riverbank along the Siltronic property adjacent to the Willamette River to obtain the site-specific data of the current bank conditions necessary for completing the erosion assessment. The riverbank survey was conducted both on foot along the top of riverbank and in other accessible areas, as well as by boat to access the riverbank from the Willamette River.

The BEHI was assessed along 12 transects spaced at 200-foot intervals along the riverbank. Figure 1 shows the location of the 12 transects. The elevation profiles of transects 1 through 4, 5 through 8, and 9 through 12 are presented in Figures 2, 3, and 4, respectively. Representative photographs of the bank conditions are provided in Attachment 1.

To evaluate the BEHI, MFA conducted a visual inspection of the riverbank transects at high and low tide by boat to measure the following characteristics:

- Bank height
- Bankfull height
- Root density and depth
- Type of surface protection (e.g., boulders, cobbles, sand, gravel, silt/clay)
- Vegetation
- Bank angle
- Condition of bank materials

A complete BEHI field sheet with ratings for each transect is provided in Attachment 2. The measured stream bank characteristics were converted to a risk rating system, to find the applied BEHI value for each bank characteristic (Rosgen, 2014). The assessment of the BEHI assigns point values to the following six characteristics:

- 1. Ratio of bank height to bankfull height
- 2. Ratio of root depth to bank height
- 3. Weighted root density
- 4. Bank angle
- 5. Surface protection
- 6. Bank material composition

The methods for determining each of these characteristics are described in the following subsections.

Ratio of Study Bank Height to Bankfull Height

The ratio of study bank height to bankfull height requires the identification of the top of bank elevation, toe of slope elevation, bankfull stage elevation, and mean high water (MHW) level. Study bank height is defined as the top of bank elevation minus the toe of slope elevation. Bankfull height is defined as the bankfull stage elevation minus the toe of slope elevation. The toe of slope is defined as the first significant change in slope below the OHW but above the MHW level. If there is no geomorphic feature demonstrating a change in slope below the OHW but above the MHW, then the MHW from the Portland, Oregon Morrison Street Bridge gage was used as the toe of the slope for the BANCS model evaluation. Bankfull stage is defined as 'an established gage height at a given location along a river or stream, above which a rise in water surface will cause the river or stream to overflow the lowest natural stream bank somewhere in the corresponding reach'¹. The opposite

¹ National Weather Service Manual 10-950, Definitions and General Terminology. November 26, 2019. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. https://www.nws.noaa.gov/directives/

R:\8128.02 Siltronic Corp\Documents\04_2022.01.27 BANCs Assessment Memo\Mf BANCs.docx

river bank from the BANCS transect area is a large bluff of greater elevation, and as such this evaluation will use top of bank elevation as the bankfull stage at each transect location.

Root Depth Ratio and Weighted Root Density

Root depth is the ratio of average plant root depth to the bank height, expressed as a percent (e.g., roots extending 10 feet into a 20-foot-tall bank = 0.50). Because of a lack of exposed roots, the root depth was estimated based on reference values for the rooting depth of the plant species present along the bank.

Root density is the proportion of the streambank surface covered by plant roots, expressed as a percent. Rooting density was estimated with the percentage of vegetation on bank. Weighted root density was found by multiplying root depth ratio and root density.

Bank Angle

Bank angle is the angle of the bank from the top of bank elevation to the toe of slope elevation. Bank angle was calculated at each transect using the elevation profile of the bank (Figures 2 through 4).

Surface Protection

Surface protection is the amount of stream bank covered by plant roots, logs, branches, rocks, etc. expressed as a percent. This was visually estimated for each transect.

Bank Material Composition

Elements of the bank material composition assessed in the field included the grain size distribution of the bank material and the presence of stratification. The bank along the entire shoreline of the Siltronic property is covered with riprap; no stratified materials are exposed in the bank. Due to the relatively uniform coverage of riprap along the bank, grain size distribution for the bank materials was measured by choosing an area (about 1 meter square) representative of the 200-foot-long bank segments between transects.

The following Bank Material Adjustment was applied in the BEHI calculation:

- Bedrock (overall very low BEHI)
- Boulders: >10 inches (overall very low BEHI)
- Cobble: 2.5 inches to 10.1 inches (subtract 10 points of uniform medium to large cobble)
- Gravel or Composite Matrix (add 5 to 10 points, depending on percentage of bank material that is composed of sand)
- Sand: 0.04 inch to 0.2 inch (add 10 points)
- Silt/Clay: 0.0002 inch to 0.04 inch (no adjustment)

BEHI RATING METHODS

The sum of the six bank characteristics (ratio of bank height to bankfull height, ratio of root depth to bank height, weighted root density, bank angle, surface protection, and bank material composition adjustment) was applied to the BEHI scale (Attachment 2) to determine the rating for each transect. All transects and corresponding BEHI ratings are summarized in Table 1.

The total BEHI value of each transect can be correlated with the BEHI adjective ratings on the following table:

Total BEHI	BEHI adjective rating
5–9.5	Very Low
10–19.5	Low
20–29.5	Moderate
30–39.5	High
40–45	Very High
46–50	Extreme

CHANNEL STABILITY

The channel stability characteristics were also recorded at each transect and used to assign a channel stability rating for each transect (Rosgen, 2001). The channel stability assessment categories and criteria for assigning channel stability ratings are shown in Table 2. The channel stability ratings for each transect are summarized in Table 3.

The following 15 channel stability characteristics were assessed at each transect:

- 1. Landform slope
- 2. Mass erosion
- 3. Debris jam potential
- 4. Vegetative bank protection
- 5. Channel capacity
- 6. Bank rock content
- 7. Obstructions to flow
- 8. Cutting
- 9. Deposition
- 10. Rock angularity
- 11. Brightness
- 12. Consolidation of particles
- 13. Bottom size distribution
- 14. Scouring and deposition
- 15. Aquatic vegetation

RESULTS

BEHI Ratings

Overall, the physical characteristics (bank material, surface protection, slope, root density, bankfull ratios, etc.) of the Siltronic bank were generally uniform at all 12 transects. BEHI results from each transect are provided in Table 1 and summarized below:

- The study bank height to bankfull height ratio was uniform with a corresponding risk rating of "very low" (1.0 BEHI).
- Root depth to study bank height ratio BEHI risk ratings were "moderate" to "high," depending on placement of mature trees along the top of bank (4.2 to 7.0 BEHI).
- Because of lack of vegetation along the bank, weighted root density was rated as "moderate/high" to "extreme" (5.9 to 9.5 BEHI).
- The bank angles (slopes) of all transects ranged between 22 and 25.7 degrees as measured from the top of bank to toe of slope, and scored a BEHI risk rating of "low."
- Surface protection was uniform along the entire bank, with approximately 95 percent coverage and a BEHI risk rating of "very low." The approximate 5 percent of unprotected surface consists of localized sediment deposits along the OLW.
- Bank material along all transects was found to be cobbles to boulders. The presence of uniform cobbles and boulders along the entire bank resulted in a bank material adjustment of -10 points for the total BEHI score for each transect.

The total BEHI model scores for all transects ranged between 3.8 and 10.2 with adjective ratings of "very low" to "low". See Table 1 for BEHI transect summary.

Channel Stability

The channel stability characteristics were found to be generally uniform in all transects surveyed and resulted in overall channel stability scores of 42 to 48, corresponding to an overall channel stability rating of "good and stable" for all transects. See Table 3 for the channel stability summary.

REFERENCES

CDM Smith. 2021. Electronic mail (re: Request for Clarification - EPA Comment #36 on Gasco Sediments Site Combined BOD-PDR) from L. Peterson, CDM Smith to R. Barth, Anchor QEA. December 21.

National Weather Service Manual 10-950, Definitions and General Terminology. November 26, 2019. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. Available at: <u>https://www.nws.noaa.gov/directives/</u>

Rosgen, D. L. 2001. A practical method of computing streambank erosion rate. Vol. 2, pp. 9-15. Proceedings of the 7th Federal Interagency Sedimentation Conference, March 25, Reno, Nevada.

Rosgen, D. L. 2014. River stability field guide. 2d ed. Wildland Hydrology.

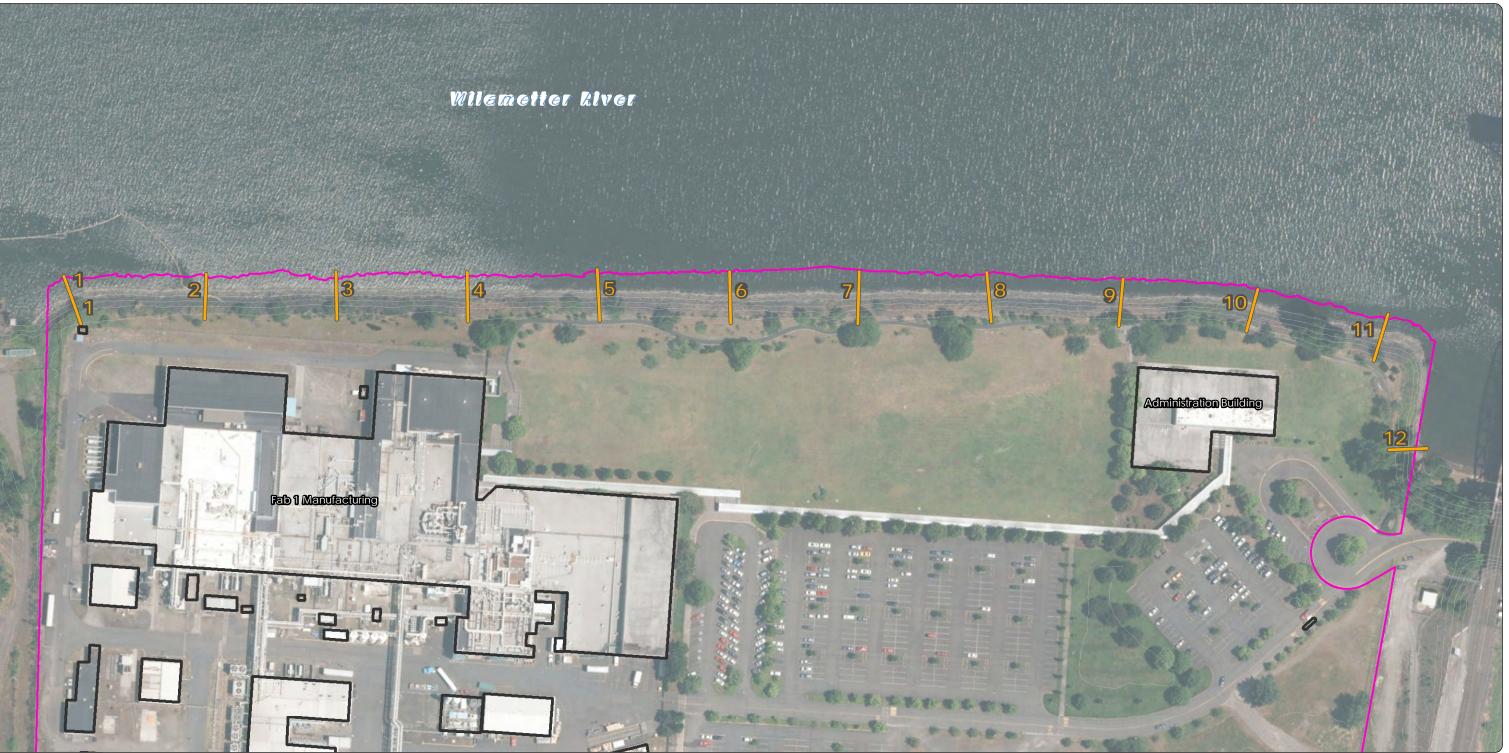
ATTACHMENTS

Figures

- 1 Riverbank Transect Locations
- 2 Riverbank Transects 1–4
- 3 Riverbank Transects 5–8
- 4 Riverbank Transects 9–12

Tables

- 1 BEHI Transect Summary
- 2 Channel Stability Ratings
- 3 Channel Stability Summary


Attachment 1 Photographs

Attachment 2 BEHI Field Data Sheets

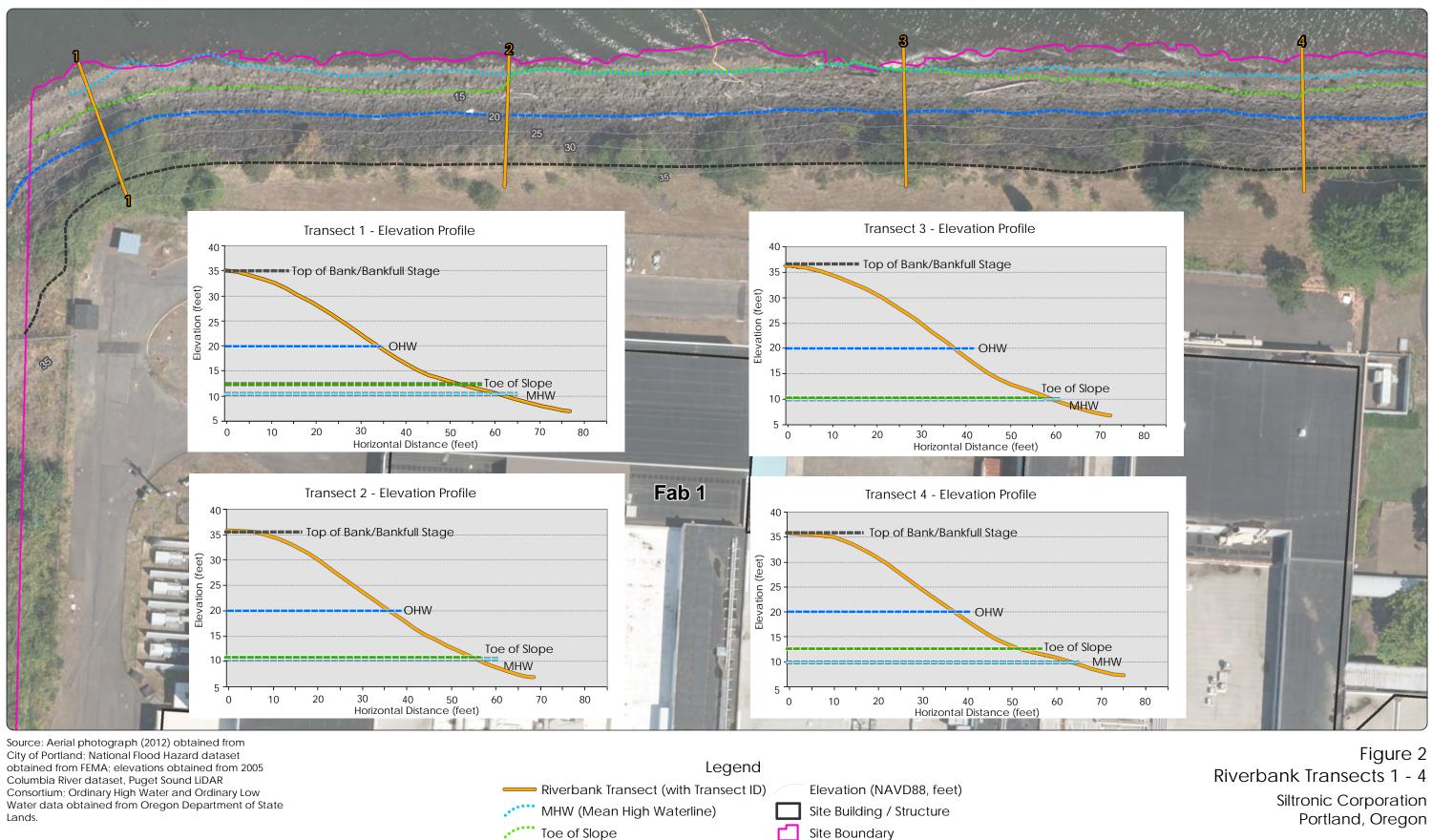
Attachment 3 NOAA Datums for 9439221 (Portland, Oregon, Morrison St. Bridge)

FIGURES

NOTE: NAVD88 = North Americal Vertical Datum of 1988.

Source: Aerial photograph (2012) obtained from City of Portland; elevations obtained from 2005 Columbia River dataset, Puget Sound LiDAR Consortium.

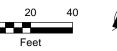
This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.


Legend —— Riverbank Transect (with Transect ID) Elevation (NAVD88, feet)

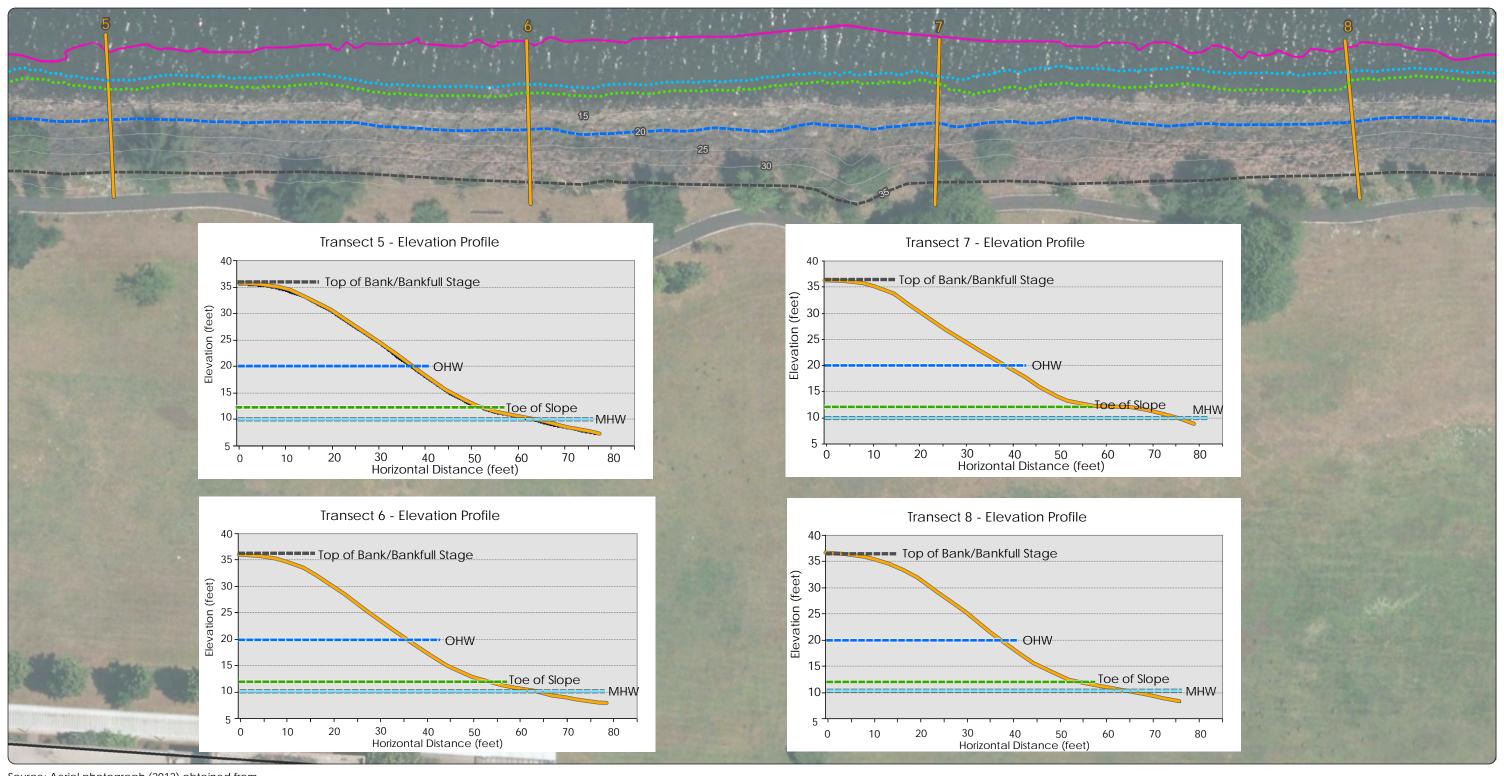
Site Boundary

Figure 1 Riverbank Transect Locations

Siltronic Corporation Portland, Oregon


This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or data and information sources to ascertain the usability of the information.

Note: NAVD88 = North American Vertical Datum of 1988.

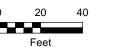

Toe of Slope

Top of Bank

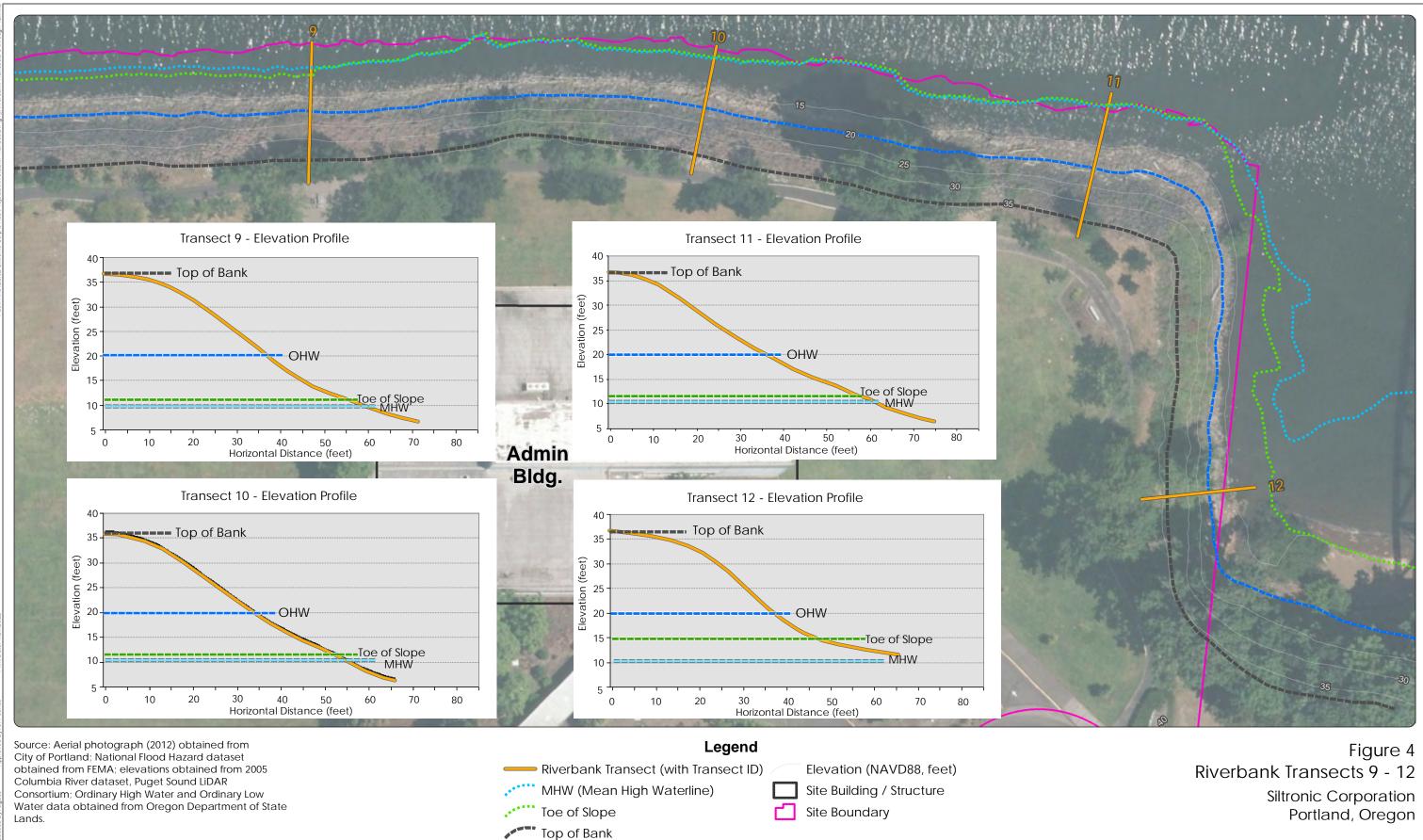
Ordinary High Water

Source: Aerial photograph (2012) obtained from City of Portland; National Flood Hazard dataset obtained from FEMA; elevations obtained from 2005 Columbia River dataset, Puget Sound LiDAR Consortium; Ordinary High Water and Ordinary Low Water data obtained from Oregon Department of State Lands.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.


Note: NAVD88 = North American Vertical Datum of 1988.

Legend


Ordinary High Water

- Riverbank Transect (with Transect ID)
 Elevation (NAVD88, feet)
 MHW (Mean High Waterline)
 Toe of Slope
 Site Building / Structure
 Site Boundary
 - undary

Figure 3 Riverbank Transects 5 - 8 Siltronic Corporation Portland, Oregon

Ordinary High Water

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or ult the primary data and information sources to ascertain the usability of the information.

Note: NAVD88 = North American Vertical Datum of 1988.

TABLES

Table 1 BEHI Transect Summary Siltronic Portland, Oregon

	Transect 1	Transect 2	Transect 3	Transect 4	Transect 5	Transect 6	Transect 7	Transect 8	Transect 9	Transect 10	Transect 11	Transect 12
Study bank height to bankfull height ratio	1	1	1	1	1	1	1	1	1	1	1	1
BEHI	1	1	1	1	1	1	1	1	1	1	1	1
Root depth to study bank height ratio	0.22	0.19	0.19	0.21	0.21	0.19	0.42	0.2	0.37	0.19	0.19	0.45
BEHI	6.9	7	7	7	7	7	4.2	7	5	7	7	4.2
Weighted root density	10.94	4.83	9.48	5.32	10.42	4.84	20.83	10	18.62	4.66	9.31	31.82
BEHI	9	9.5	8.8	9.3	8.5	9.5	7	8.6	7.8	9.5	8.5	5.9
Bank angle	24.5	25.2	24.7	25.2	23.9	22	22.8	25.7	24.9	25.6	24.1	25.1
BEHI	2.1	2.2	2.1	2.2	2.2	2.1	2.1	2.1	2.2	2.2	2.2	2.2
Surface protection	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%
BEHI	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total BEHI Score	19.5	20.2	19.4	20	19.2	20.1	14.8	19.2	16.5	20.2	19.2	13.8
Bank material adjustment (Cobbles -10)	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
Total BEHI with adjustment	9.5	10.2	9.4	10	9.2	10.1	4.8	9.2	6.5	10.2	9.2	3.8
BEHI adjective rating	Very Low	Low	Very Low	Low	Very Low	Low	Very Low	Very Low	Very Low	Low	Very Low	Very Low
NOTE:	•		•		•				•		•	
BEHI = bank erosion hazard ind	ex.											

Table 2 Channel Stability Ratings Siltronic Portland, Oregon

Stream:	Willam	ette R	iver				Loc	ation:	Portla	and, O	regon			Valley	Type:			Obse	ervers:	Justi	n Pour	ds			Date:	
Loca-tion	Key	Cate	gory	Excellent					Good				Fair					Poor								
Loca-tion	Rey	Cale	gory		[Descriptio	n		Rating		[Descriptic	on		Rating		I	Descriptio	n		Rating			Desc	ription	Rati
	1	Landfor slope	m	Bank sl	ope grad	dient <30)%.		2	Bank sl	ope grad	dient 30-	-40%.		4	Bank sl	ope gra	dient 40-	-60%.		6	Bank slo	pe gra	dient >	60%.	8
banks	2	Mass e	rosion	No evid erosion		past or f	uture ma	ass	3	Infrequent. Mostly healed over. Low future potential.			_ow	6		nt or larg rearlong	ge, causi	ng sedir	ment	9	Frequent or large, causi yearlong OR imminent o				/ 12	
Upper	3	Debris potentia		Essenti channe		ent from	immedia	ate	2	Present limbs.	t, but mc	ostly sma	all twigs a	and	4	Modera larger s		avy amo	unts, m	ostly	6	Moderate larger siz		avy am	ounts, predominant	y 8
'n	4	Vegeta bank pr				nsity. Vig , dense,			3				species e or dee		6		from a	/. Lower shallow,			9	vigor ind shallow r	icating root ma	poor, d ass.	er species and less liscontinuous, and	12
	5	Channe capacit		Width/dep	oth ratio de	ent to conta parture fro I.0. Bank-H	m referenc	e	1	Width/dep	oth ratio de th ratio = 1	ntained with eparture fro 1.0–1.2. Ba	hin banks. om referenc unk-Height f	e Ratio	2	departure	from refer	contained rence width nt Ratio (Bl	/depth rat	io =	3	common w	ith flows rom refe	less than rence wid	d; over-bank flows are bankfull. Width/depth rat lth/depth ratio > 1.4. Bank	
Jks	6	Bank ro content		> 65% \ commo		e angula	r boulde	rs. 12"+	2	40–65% cobbles		y boulde	rs and sr	nall	4	20–40% class.	6. Most i	n the 3–	6" diam	eter	6	<20% ro less.	ck frag	ments o	of gravel sizes, 1–3	or 8
-ower banks	7	Obstrue flow	ctions to			firmly in ing or de			2	currents		or pool fill	sive cross ing. Obsti		4		th high flo	ent, unsta ows caus			6		sion ye	earlong.	and deflectors cause Sediment traps full, urring.	
Гом	8	Cutting		Little or	none. Ir	nfrequent	t raw bar	nks <6".	4				outcurves s may be		6			s 12–24' sloughir			12	Almost c Failure o			ts, some over 24" high. frequent.	
	9	Deposi	ion	Little or point ba		rgement	of chanr	nel or	4	Some new bar increase, mostly from coarse gravel.			8	Moderate depostion of new gravel and coarse sand on old and some new bars.			12	Extensive deposit of prece particles. Accelerated ba			,	16				
	10	Rock a	ngularity	Sharp e surface		nd corner	rs. Plane	•	1	Rounded corners and edges. Surfaces smooth and flat.			2	Corners and edges well-rounded in two dimensions.			3	Well-rou smooth.	nded ir	nensions, surfaces	4					
	11	Brightn	ess		es dull, d Ily not bi	ark, or si right.	tained.		1	Mostly dull, but may have <35% bright surfaces.			2	Mixture mixture		l bright, i	.e., 35–	65%	3	Predomi scoured			> 65%, exposed or	4		
Ę	12	Consolio particle		Assorte overlap		tightly pa	acked or		2	Moderately packed with some overlapping.					4	Mostly loose assortment with no apparent overlap. 6			6	No packing evident. Loose assortment, easily moved.				sily 8		
Bottom	13	Bottom distribu		No size 80–100		evident.	. Stable r	material	4	Distribution shift light. Stable material 50–80%.					8	Moderate change in sizes. Stable 12 materials 20–50%. 12 30–50% affected. Deposits and scour 12				12	Marked distribution change. Stable n 0–20%.				als 16	
	14	Scourin deposit		<5% of depositi		affected	by scour	ror	6	and wh		les steep	at constr pen. Som		12	at obstr	uctions,		tions, ar		18	More tha or chang			bottom in a state of ong.	flux 24
	15	Aquatic vegetat									e or absent. Yellow- m may be present.	4														
						Exc	ellent 1	Fotal =					Good 1	Fotal =					Fair	Total =					Poor Tota	1 =
Stream type)	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6]	Grand Total	- 1
Good (Stable)		38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98		Grand Total	-
air (Mod. uns	stable)	44-47	44-47	91-129	96-132	96-142	81-110	46-58	46-58	61-78	65-84	69-88	61-78	51-61	51-61	86-105	91-110	91-110	86-105	108-132	108-132		99-125		Existing	
Poor (Unstable		48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+]	Stream Type	=
Stream type)	DA3	DA4	DA5	DA6	E3	E4	E5	E6	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6				*Potential	
Good (Stable)		40-63	40-63	40-63	40-63	40-63	50-75	50-75	40-63	60-85	60-85	85-110	85-110	90-115	80-95	40-60	40-60	85-107	85-107	90-112	85-107				Stream Type	
air (Mod. uns	,	64-86	64-86	64-86	64-86	64-86	76-96	76-96	64-86	86-105	86-105	111-125		116-130	96-110	61-78	61-78	108-120		113-125	108-120				Modified c	
Poor (Unstable	e)	87+ 87+ 87+ 87+ 97+ 97+ 87+ 106+ 126+ 131+ 111+ 79+ 79+ 121+																								
														*Rati	ng is a	djusted	l to po	tential	stream	n type,	not exi	sting str	ream t	ype		

Copyright © 2014 Wildland Hydrology

Worksheet 3-10. Pfankuch (1975) channel stability rating procedure, as modified by Rosgen (1996, 2006b). River Stability Field Guide pages 3-46 to 3-47

Table 3 Channel Stability Summary Siltronic Portland, Oregon

		Up	per Banks		Lower Banks]					
Transect No.	Landform slope	Mass erosion	Debris jam potential	Vegetative bank protection	Channel capacity	Bank rock content	Obstructions to flow	Cutting	Deposition	Rock angularity	Brightness	Consolidation of particles	Bottom size distribution	Scouring and deposition	Aquatic vegetation	Total	Channel Stability Rating
1	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
2	2	3	2	12	1	2	2	4	4	1	1	2	4	6	2	48	Good (Stable)
3	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
4	2	3	2	12	1	2	2	4	4	1	1	2	4	6	2	48	Good (Stable)
5	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
6	2	3	2	12	1	2	2	4	4	1	1	2	4	6	2	48	Good (Stable)
7	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
8	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
9	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
10	2	3	2	12	1	2	2	4	4	1	1	2	4	6	2	48	Good (Stable)
11	2	3	2	9	1	2	2	4	4	1	1	2	4	6	2	45	Good (Stable)
12	2	3	2	6	1	2	2	4	4	1	1	2	4	6	2	42	Good (Stable)

Page 2 of 2

ATTACHMENT 1 PHOTOGRAPHS

<u>Photo No.</u> 1

Description

Looking southeast on top of bank near Transect #9.

Photo No.

2

Description Looking northeast on top of bank near Transect #4.

PHOTOGRAPHS

Project Name:Siltronic BaProject Number:8128.02.03Location:7200 NorthDeath1.00

Siltronic Bank Survey 8128.02.03 7200 Northwest Front Avenue Portland, Oregon

R:\8128.02 Siltronic Corp\Documents\04_2022.01.27 BANCs Assessment Memo\Attachment 1\Att 1 - Photo Log - Siltronic BANC assessment.doc

Photo No. 3

Description Looking northwest from water of Transect #10.

PHOTOGRAPHS

Project Name:Siltronic BaProject Number:8128.02.03Location:7200 North

Siltronic Bank Survey 8128.02.03 7200 Northwest Front Avenue Portland, Oregon

Photo No. 4

Description

Trees on top of bank, looking west at Transect #10 from water.

Project Name: Project Number: 8128.02.03 Location:

Siltronic Bank Survey 7200 Northwest Front Avenue Portland, Oregon

Photo No. 5

Description

Panoramic view of bank.

Project Name: Project Number: 8128.02.03 Location:

Siltronic Bank Survey 7200 Northwest Front Avenue Portland, Oregon

<u>Photo No.</u>

6

Description

Looking west at Transect #3 from water.

Photo No. 7

Description

Looking west at Transect #5 from water.

Project Name:Siltronic BaProject Number:8128.02.03Location:7200 North

Siltronic Bank Survey 8128.02.03 7200 Northwest Front Avenue Portland, Oregon

<u>Photo No.</u> 8

Description Looking west at Transect #9 from water.

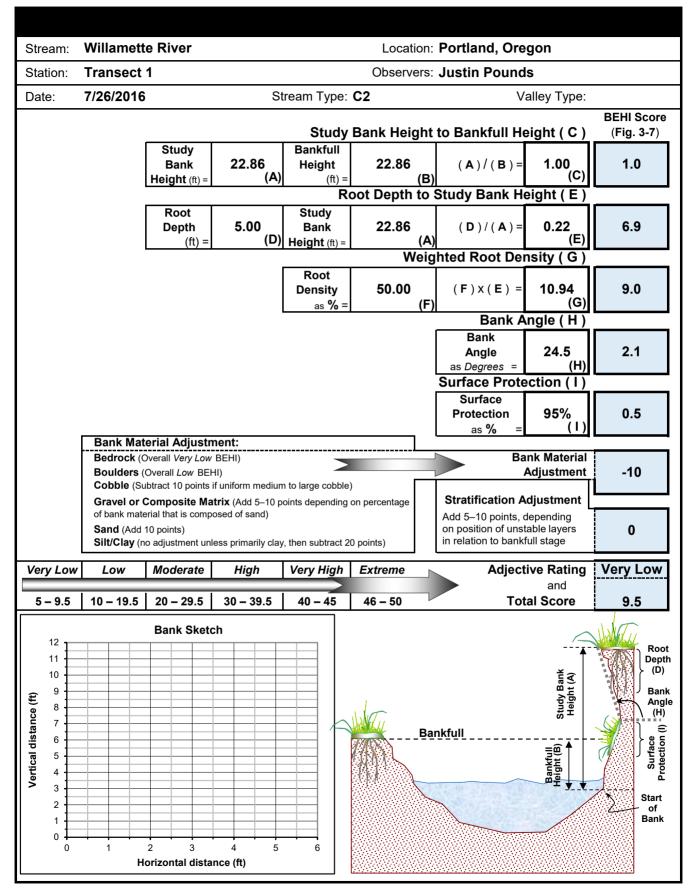
<u>Photo No.</u> 9

Description Looking west at Transect #11 from water.

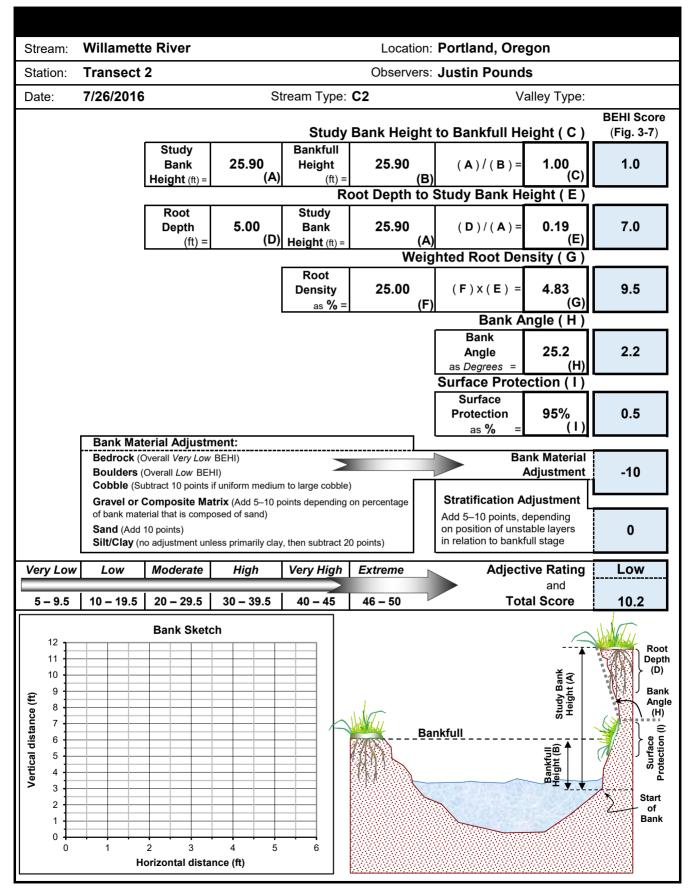
Project Name:Siltronic BaProject Number:8128.02.03Location:7200 North

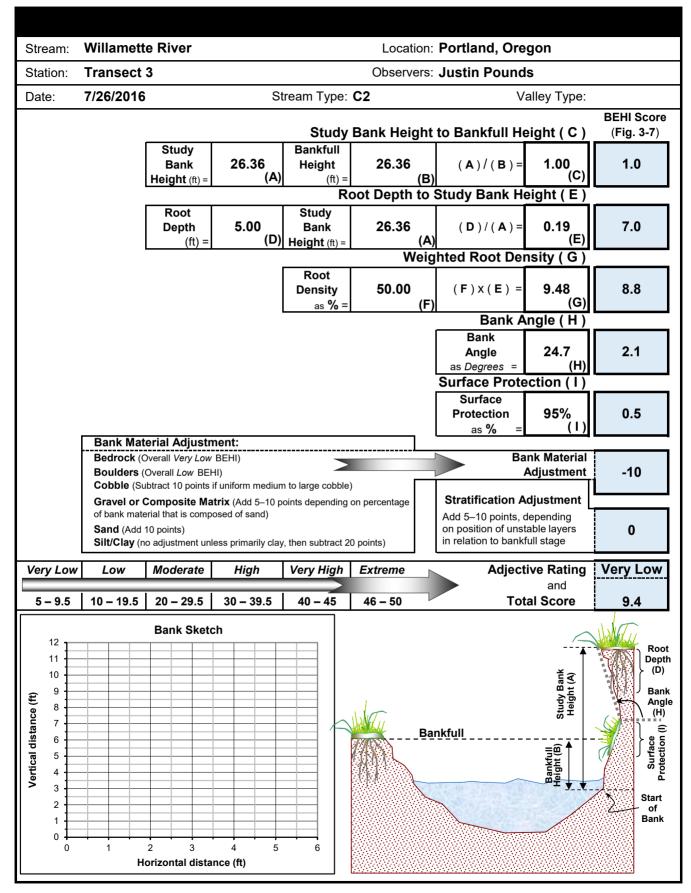
Siltronic Bank Survey 8128.02.03 7200 Northwest Front Avenue Portland, Oregon

<u>Photo No.</u> 10

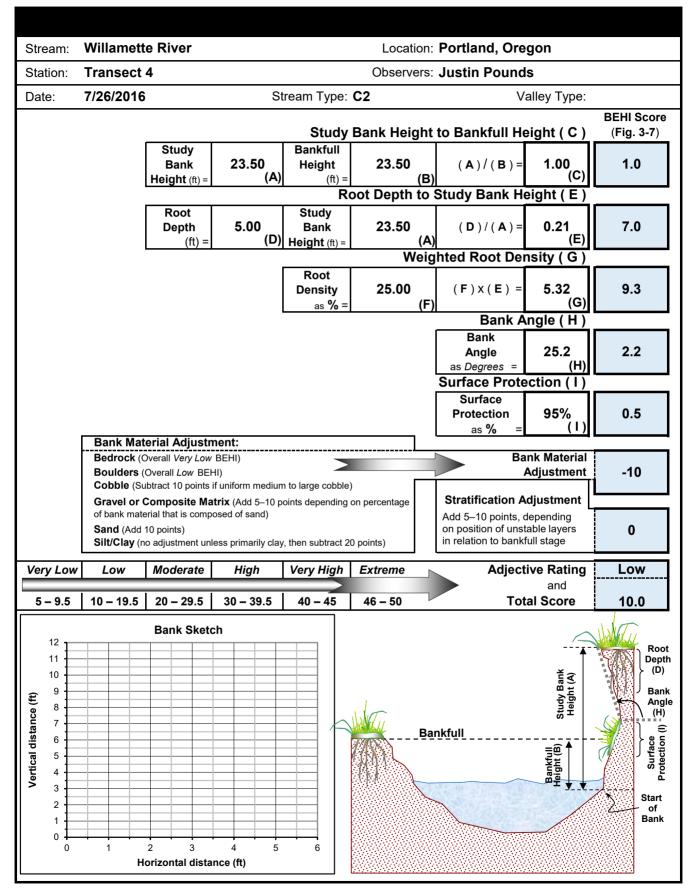

Description

Looking west at Transect #12 from water.

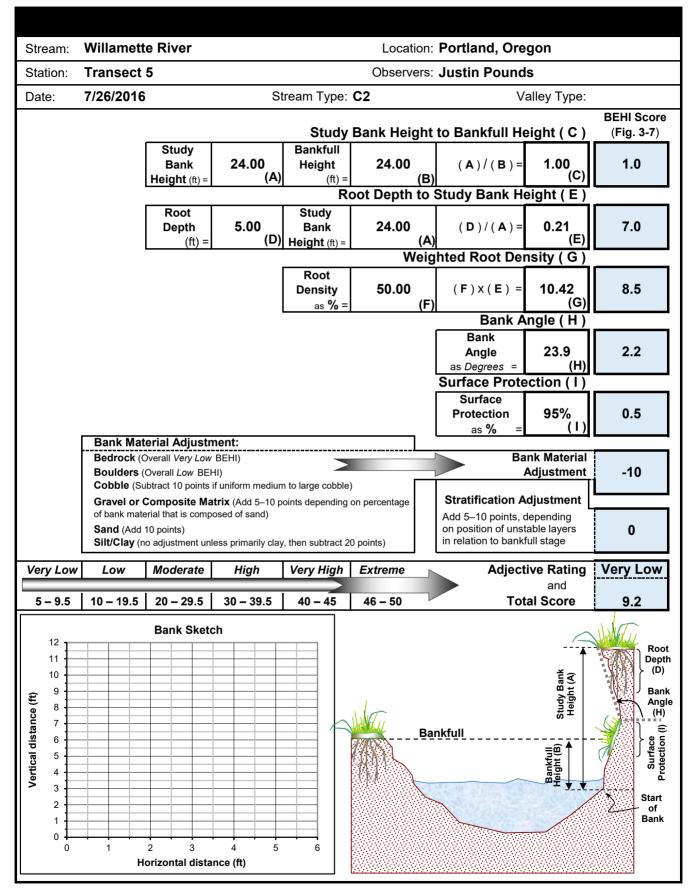

ATTACHMENT 2 BEHI FIELD DATA SHEETS


Copyright © 2014 Wildland Hydrology

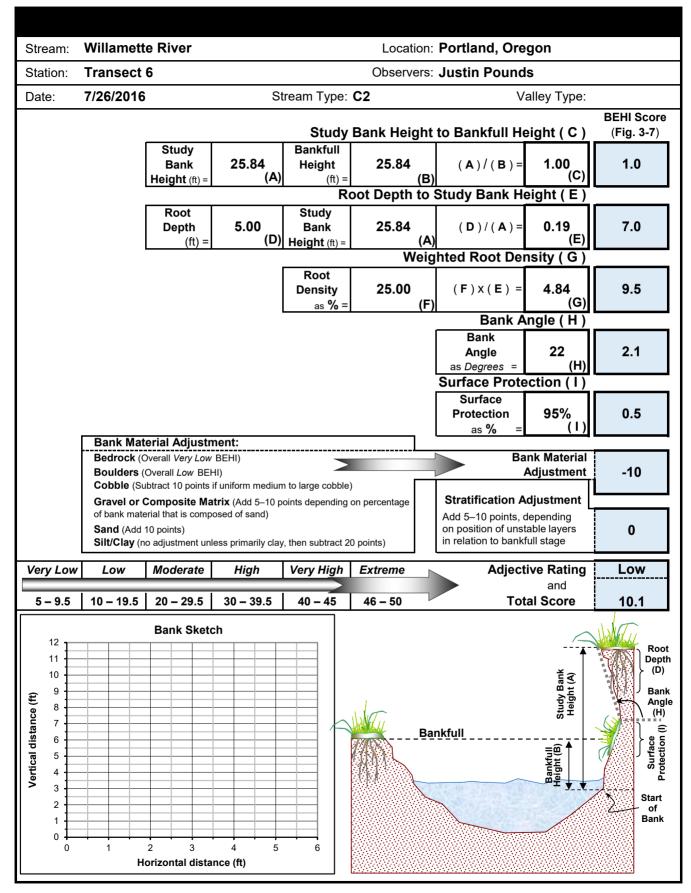
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

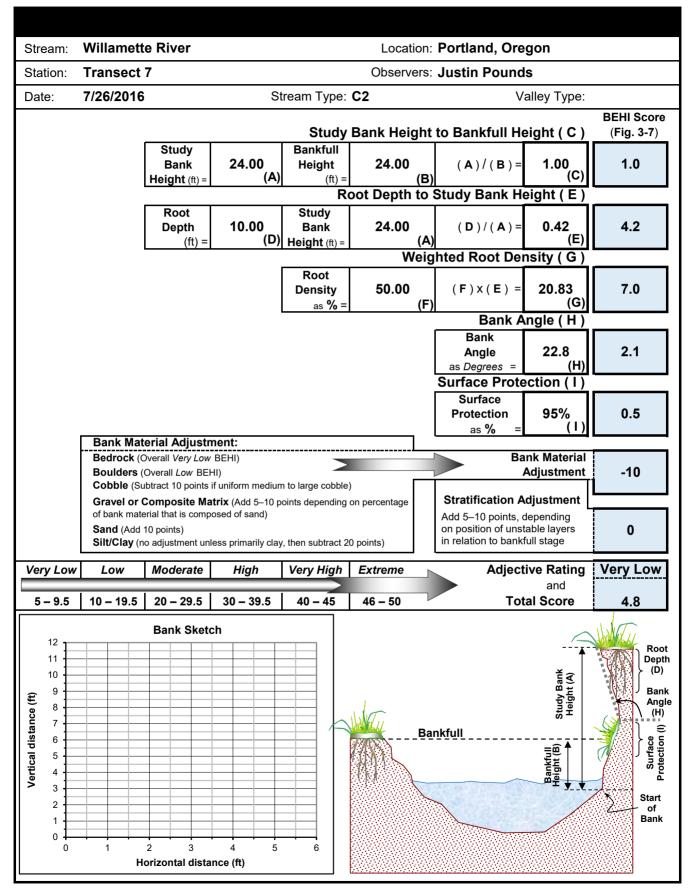
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

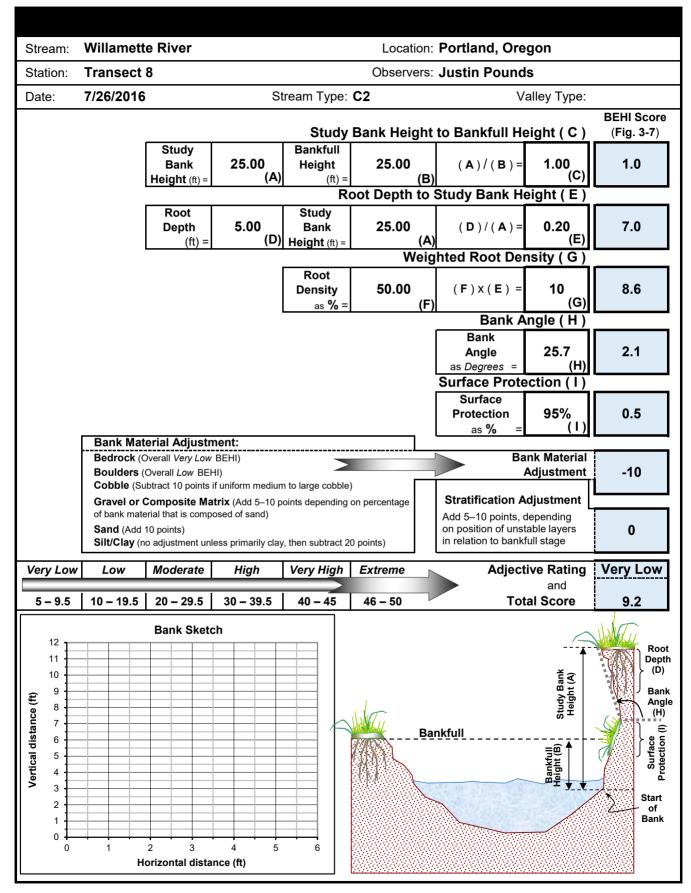
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

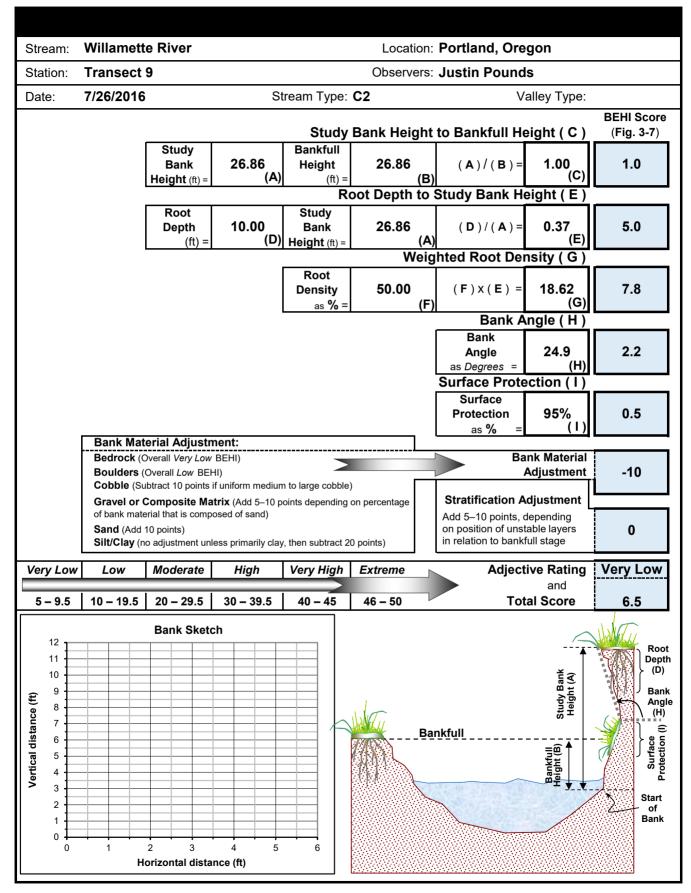
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

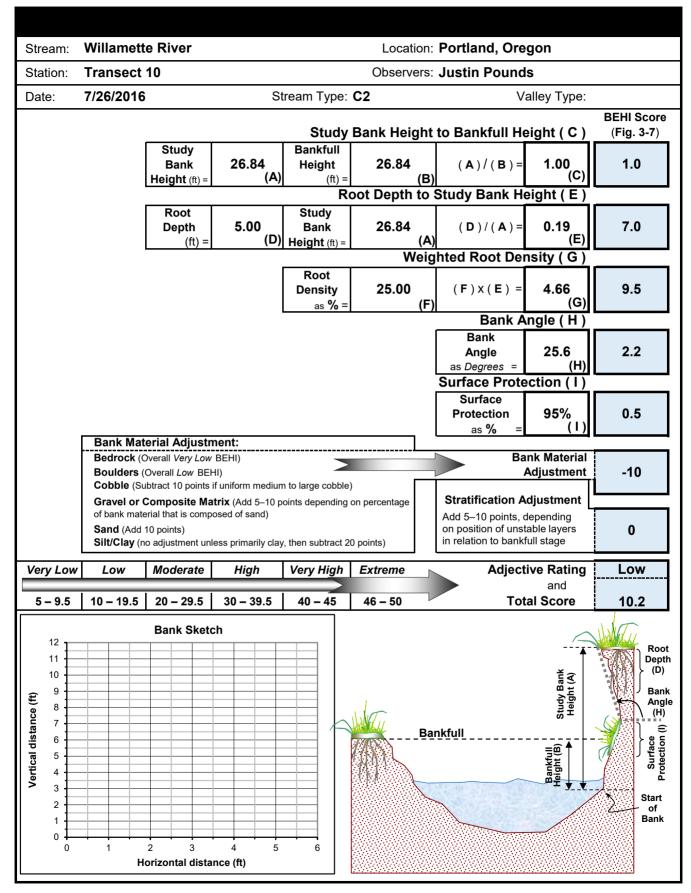
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

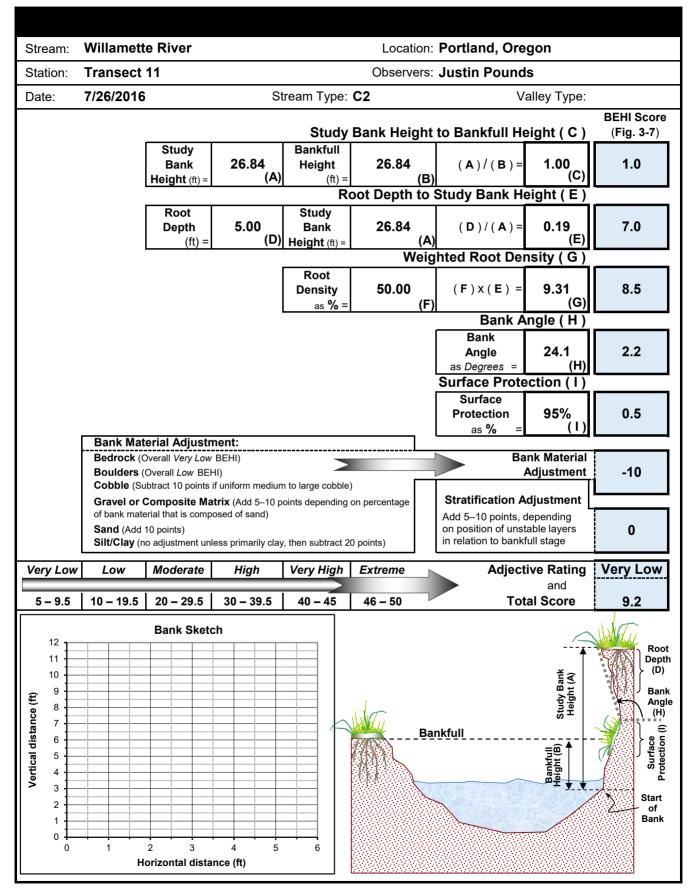
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

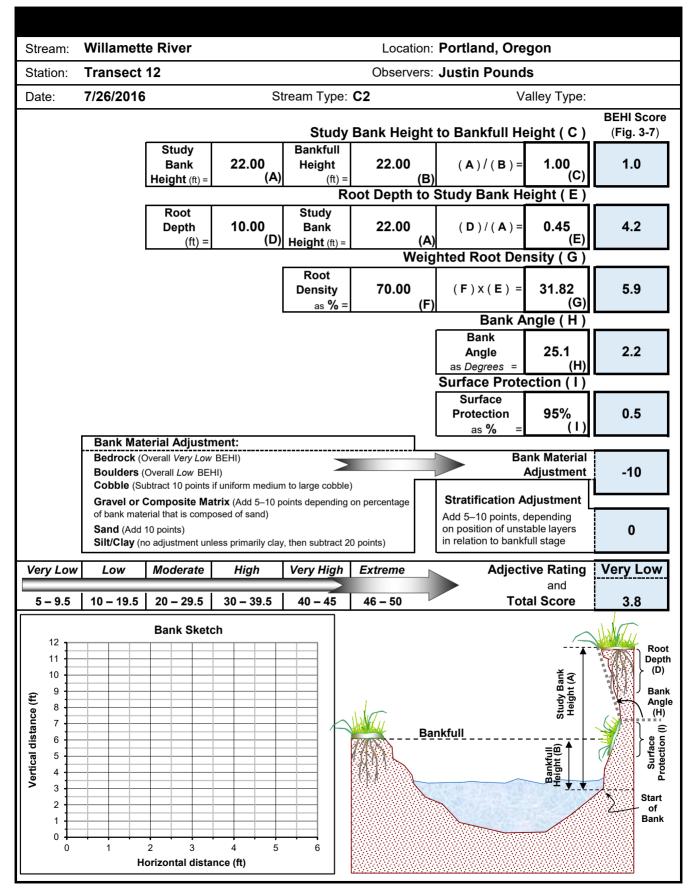
River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

River Stability Field Guide page 3-54


Copyright © 2014 Wildland Hydrology

River Stability Field Guide page 3-54

Copyright © 2014 Wildland Hydrology

River Stability Field Guide page 3-54

Copyright © 2014 Wildland Hydrology

River Stability Field Guide page 3-54

ATTACHMENT 3

NOAA DATUMS FOR 9439221 (PORTLAND, OREGON MORRISON ST. BRIDGE)

Home (/) / Products (products.html) / Datums (stations.html?type=Datums) / 9439221 Portland Morrison Street Bridge, OR Favorite Stations

Station Info

Tides/Water Levels

Meteorological Obs.

Phys. Oceanography

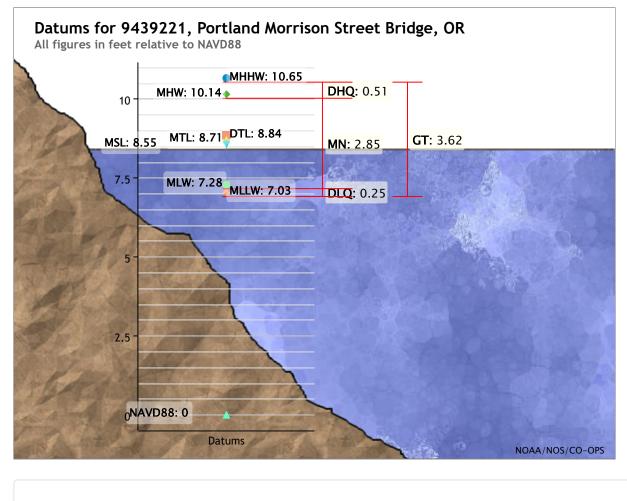
OFS (/ofs/ofs_station.html?stname=Portland Morrison Street Bridge&ofs=cre&stnid=9439221&subdomain=up)

Datums for 9439221, Portland Morrison Street Bridge OR

NOTICE: All data values are relative to the NAVD88.

Elevations on NAVD88

Station: 9439221, Portland Morrison Street Bridge, OR Status: Accepted (Feb 2 2012) Units: Feet Control Station: 9439040 Astoria, OR T.M.: 120 Epoch: (/datum_options.html#NTDE) 1983-2001 Datum: NAVD88


Datum	Value	Description
MHHW (/datum_options.html#MHHW)	10.65	Mean Higher-High Water
MHW (/datum_options.html#MHW)	10.14	Mean High Water
MTL (/datum_options.html#MTL)	8.71	Mean Tide Level
MSL (/datum_options.html#MSL)	8.55	Mean Sea Level
DTL (/datum_options.html#DTL)	8.84	Mean Diurnal Tide Level
MLW (/datum_options.html#MLW)	7.28	Mean Low Water
MLLW (/datum_options.html#MLLW)	7.03	Mean Lower-Low Water
NAVD88 (/datum_options.html)	0.00	North American Vertical Datum of 1988
STND (/datum_options.html#STND)	5.38	Station Datum
GT (/datum_options.html#GT)	3.62	Great Diurnal Range
MN (/datum_options.html#MN)	2.85	Mean Range of Tide
DHQ (/datum_options.html#DHQ)	0.51	Mean Diurnal High Water Inequality

Datum	Value	Description
DLQ (/datum_options.html#DLQ)	0.25	Mean Diurnal Low Water Inequality
HWI (/datum_options.html#HWI)	1.10	Greenwich High Water Interval (in hours)
LWI (/datum_options.html#LWI)	9.51	Greenwich Low Water Interval (in hours)
Max Tide (/datum_options.html#MAXTIDE)		Highest Observed Tide
Max Tide Date & Time (/datum_options.html#MAXTIDEDT)		Highest Observed Tide Date & Time
Min Tide (/datum_options.html#MINTIDE)		Lowest Observed Tide
Min Tide Date & Time (/datum_options.html#MINTIDEDT)		Lowest Observed Tide Date & Time
HAT (/datum_options.html#HAT)	13.63	Highest Astronomical Tide
HAT Date & Time	05/25/1994 12:18	HAT Date and Time
LAT (/datum_options.html#LAT)	4.94	Lowest Astronomical Tide
LAT Date & Time	09/09/2000 18:24	LAT Date and Time

Tidal Datum Analysis Periods

09/01/2002 - 10/31/2002

08/01/2005 - 10/31/2005

Showing datur	ns for
9439221 Portl	and Morrison S…
Datum	
NAVD88	~
Data Units	Feet
	⊖ Meters
Epoch	Present (1983-2001)
	─ Superseded (1960-1978)
	Submit

Show nearby stations

Products available at 9439221 Portland Morrison Street Bridge, OR

TIDES/WATER LEVELS Water Levels NOAA Tide Predictions (/noaatidepredictions.html?id=9439221) Harmonic Constituents (/harcon.html?id=9439221) Sea Level Trends Datums (/datums.html?id=9439221) Bench Mark Sheets (/benchmarks.html?id=9439221) Extreme Water Levels (/est/est station.shtml?stnid=9439221) Reports (/reports.html?id=9439221) **METEOROLOGICAL/OTHER** Meteorological Observations Water Temp/Conductivity PORTS® This station is not a member of PORTS® **OPERATIONAL FORECAST SYSTEMS** Columbia River Estuary (/ofs/creofs/creofs.html) OFS product page for Portland Morrison Street Bridge INFORMATION Station Home Page (/stationhome.html?id=9439221) Data Inventory (/inventory.html?id=9439221) Measurement Specifications (/measure.html)

Website Owner: Center for Operational Oceanographic Products and Services

National Oceanic and Atmospheric Administration (http://www.noaa.gov) National Ocean Service (http://oceanservice.noaa.gov) Privacy Policy (/privacy.html) Disclaimer (/disclaimers.html) Take Our Survey (/survey.html) Freedom of Information Act (https://www.noaa.gov/foia-freedom-of-information-act) Contact Us (/contact.html)