Exhibit No. (DJR-4) Docket UE-110876/UG-110877 Witness: Deborah J. Reynolds

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

AVISTA CORPORATION d/b/a AVISTA UTILITIES,

Respondent.

DOCKET UE-110876 DOCKET UG-110877

(Consolidated)

EXHIBIT TO RESPONSE TESTIMONY OF

Deborah J. Reynolds

STAFF OF WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

Excerpt from "Revenue Regulation and Decoupling:
A Guide to Theory and Application"
(The Regulatory Assistance Project, June 2011)
(Cover page and pages 4, 5, 36-39)

February 24, 2012

Revenue Regulation and Decoupling:

A Guide to Theory and Application

June 2011

The Regulatory Assistance Project

HOME OFFICE 50 State Street, Suite 3 Montpelier, Vermont 05602 phone: 802-223-8199

www.raponline.org

3.1 Revenue Requirement

A utility's revenue requirement is the amount of revenue a utility will actually collect, only if it experiences the sales volumes assumed for purposes of price-setting. Furthermore, only if the utility incurs exactly the expenses and operates under precisely the financial conditions that were assumed in the rate case will it earn the rate of return on its rate base (i.e., the allowed investment in

Table 1

Traditional Regulation Example: Revenue Requirement Calculation
Expenses 100,000,000
Net Equity Investment 100,000,000
Allowed Rate of Return 10.00%
Allowed Return \$10,000,000
Taxes (35% tax rate) \$5,384,615
Total Return & Taxes \$15,384,615
Total Revenue Requirement \$115,384,615
Price Calculation
Revenue Requirement \$115,384,615
Test Year Sales (kWh) 1,000,000,000
Rate Case Price (\$/kWh) \$0.1154

facilities providing utility service) that the regulators determined was appropriate. While much of the rate-setting process is meticulous and often arcane, the fundamentals do not change: in theory a utility's revenue requirement should be sufficient to cover its cost of service — no more and no less.

3.1.1 Expenses

For purposes of decoupling, expenses come in two varieties: production costs and non-production costs.⁴

3.1.1.1 Production Costs

Production costs are a subset of total power supply costs, and are composed principally of fuel and purchased power expenses with a bit of variable operation and maintenance (O&M) and transmission expenses paid to others included. Production costs as we use the term here are those that vary more or less directly with energy consumption in the short run. The mechanisms approved by regulators generally refer to very specific accounts defined in the utility accounting manuals, including "fuel," "purchased power," and "transmission by others."

⁴ A utility's expenses are often characterized as "fixed" or "variable". However, for purposes of resource planning and other long-run views, all costs are variable and there is no such thing as a fixed cost. Even on the time scale between rate cases, some non-production costs that are often viewed as fixed (e.g., metering and billing) will, in fact, vary directly with the number of customers served. When designing a decoupling mechanism, it is more appropriate to differentiate between "production" and "non-production," since one purpose of the mechanism is to isolate the costs over which the utility actually has control in the short run (i.e., the period between rate cases).

Revenue Regulation and Decoupling

Production costs for most electric utilities are typically recovered through a flow-through account, with a reconciliation process that fully recovers production costs, or an approximation thereof.⁵ This is usually accomplished through a separate fuel and purchased-power rate (fuel adjustment clause, or FAC) on the customer's bill. This may be an "adder" that recovers total production costs, or it may be an up-or-down adjustment that recovers deviations in production costs from the level incorporated in base rates.

In the absence of decoupling, a fully reconciled FAC creates a situation in which any increase in sales results in an increase in profits, and any decrease in sales results in a decrease in profits. This is because even if very high-cost power is used to serve incremental sales, and if 100% of this cost flows through the FAC, the utility receives a "net" addition to income equal to the base rate (retail rate less production costs) for every incremental kilowatt-hour sold.⁶ An FAC is therefore a negative influence on the utility's willingness to embrace energy efficiency programs and other actions that reduce utility sales. Decoupling is an important adjunct to an FAC to remove the disincentive that the FAC creates for the utility to pursue societal cost-effectiveness.⁷

Because they vary with production and because they are separately treated already, production costs are not usually included in a decoupling mechanism. If a utility is allowed to include the investment-related portion of costs for purchased power contracts (i.e., it buys power to serve load growth from an independent power producer, and pays a per-kWh rate for the power received), it may be necessary to address this in the structure of the FAC to ensure that double recovery does not occur. This can also be addressed by using a comprehensive power cost adjustment that includes all power supply costs, not just fuel and purchased power. Unless otherwise noted, we assume that production costs are not included in the decoupling mechanism.

⁷ If a utility does not have an FAC at all, or acquires power from independent power producers on an ongoing basis to meet load growth, the framework for decoupling may need to be slightly different. In those circumstances, revenues from the sale of surplus power or avoided purchased power expense resulting from sales reductions flows to the utility, not to the consumers, through the FAC. In this situation, the definition of "production costs" may need to include both power supply investment-related costs and production-related operating expenses for decoupling to produce equitable results for consumers and investors.

Many commissions use incentive mechanisms in their fuel and purchased-power mechanisms, to provide utilities with a profit motive to minimize fuel and purchased-power costs and to maximize net off-system sales revenues. For our purposes, these are deemed to fully recover production costs. Some regulators include both fixed and variable power supply costs in their power supply cost recovery mechanism, in which case all of those would be classified as "production" costs and deemed to be fully recovered through the power supply mechanism.

⁶ See Profits and Progress Through Least Cost Planning, NARUC, page 4, at: http://www.raponline.org/Pubs/General/Pandplcp.pdf

10 Earnings Volatility Risks and Impacts on the Cost of Capital

tility earnings can be volatile because of the way weather and other factors influence sales volumes and revenues in the short run, without corresponding short-run impacts on costs. They can also be volatile because of the way weather and other factors influence costs in the short run, without corresponding short-run impacts on revenue (such as a drought has on a hydro-dependent utility). As a result of this volatility, utilities typically retain a relatively higher level of equity in their capital structure, so that a combination of adverse circumstances (adverse weather, economic cycle, cost pressures, and customer attrition) does not render them unable to service their debt. In addition, utilities also try to pay their dividends with current income or from retained earnings. In fact, most bond covenants prohibit paying dividends if retained earnings decline below a certain point. A utility that is forced to suspend its dividend is viewed as a higher-risk venture.

Decoupling can significantly reduce earnings volatility due to weather and other factors, and can eliminate earnings attrition when sales decline, regardless of the cause (e.g., appliance standards, energy codes, customer- or utility-financed conservation, self-curtailment due to price elasticity). This in turn lowers the financial risk for the utility, and that is reflected in the company's cost of capital.

The reduction in the cost of capital resulting from decoupling could, if the utility's bond rating improves, result in lower costs of debt and equity; but this generally requires many years to play out, and the consequent benefits for customers are therefore slow to materialize. New debt issues will carry lower interest rates, but utility bonds carry long maturities, and it can take 30 years or more to roll over all of the debt in a portfolio.

Alternatively, a lower equity ratio may be sufficient to maintain the same bond rating for the decoupled utility as for the non-decoupled utility. This would allow the benefits associated with the lower risk profile of the decoupled company to flow through to customers in the first few years after the mechanism is put in place. However, for this to be justified, the investors must have confidence that the decoupling mechanism will remain in effect for many years; a typical three-year approval period may not provide that confidence.

10.1 Rating Agencies Recognize Decoupling

The bond rating agencies have come to recognize that decoupling mechanisms, weather adjustment mechanisms, fuel and purchased-gas adjustment mechanisms, and other outside-the-rate-case adjustment mechanisms all reduce net earnings volatility and risk, and therefore contribute to a lower cost of capital for the utility. It is important when selecting "comparable" utilities for cost of capital studies to use only utilities with similar risk-mitigation tools in place, so that an apples-to-apples comparison is possible.

Standard and Poor's has explicitly recognized risk mitigation measures by rating the "business risk profile" of utility sector companies on a scale of 1 to 10. The distribution utilities without supply responsibility and with risk mitigation measures are mostly rated 1 to 3, whereas the independent power producers without stable customer bases or any risk mitigation measures are 7 to 10. The vertically integrated utilities with some risk mitigation measures are in between.³⁰

The risk mitigation of decoupling can be reflected in either of two ways. First, it can be directly applied to reduce the equity capitalization ratio of the utility in a rate case. This has the effect of reducing the overall cost of capital and revenue requirement, without changing either the cost of debt or the allowed return on equity. This approach recognizes that a utility with more stable earnings does not require as much equity in its capital structure, because there is less likelihood of the utility depleting its retained earnings.

Table 12 summarizes how a change in the equity capitalization ratio reduces the revenue requirement.

Table 12

Element	Allowed Return	Ratio w/o Decoupling	Ratio with Decoupling
Equity	· 11%	45%	42%
Debt	8%	55%	58%
Overall Return with Taxes		10.48%	10.13%
Revenue Requirement (\$ millions)		\$104.80	\$101.30
Difference			-\$3.50

³⁰ See Standard and Poor's New Business Profile Scores Assigned for US Utility and Power Companies: Financial Guidelines, revised 2 June 2004. See also Moody's Investor Services, Local Gas Distribution Companies: Update on Revenue Decoupling And Implications for Credit Ratings, 2006, and Standard and Poor's, Industry Report Card: U.S. Electric Utilities Well Positioned For 2011 Challenges, December 10, 2010.

Revenue Regulation and Decoupling

The overall impact is on the order of a 3% reduction in the equity capitalization rate, which in turn can produce about a 3% decrease in revenue required for the return on rate base, or about a 1% decrease in the total cost of service to consumers (including power supply or natural gas supply). This is not a large impact — but it is on the same order of magnitude as many utility energy

Cost savings from implementation of decoupling can fully fund a modest energy conservation program at no incremental cost to consumers.

conservation budgets, meaning that cost savings from implementation of decoupling can fully fund a modest energy conservation program at no incremental cost to consumers.

It is important to recognize that this type of change involves neither a reduction in the return on equity, nor a reduction in the allowed cost of debt. It simply reflects a realignment of the amount of each type of capital required.

A utility could adapt its actual capital structure to reflect this change, either by issuing debt rather than equity for a period of months or years, or by paying a special dividend (reducing equity) and issuing debt to replace that capital.

The second approach to reflecting the risk reduction afforded by decoupling is simply to reduce the utility's allowed return on equity, discounting by some number of basis points what would otherwise have been approved. This has been done in a number of jurisdictions. There are, however, several points that regulators should consider when weighing this option against the first.

10.2 Some Impacts May Not Be Immediate, Others Can Be

If rating agencies perceive that a risk mitigation measure will be in place for an extended period, they may be willing to recognize the benefit of risk mitigation immediately upon implementation. If the risk mitigation measure is put in place only for a limited period, or the regulatory commission has a record of changing its regulatory principles frequently, the rating agency may not recognize the measure.

If the regulator does not change the allowed equity capitalization ratio when a new risk mitigation measure is implemented, the rating agency will eventually realize that the mitigation is occurring, and that earnings are more stable; and eventually a bond rating upgrade is possible. Once that occurs, the cost of debt will eventually decline, and consumers will realize the benefit of lower costs of debt in the conventional ratemaking process.

In theory, the total cost savings from a bond rating upgrade should be about the same as the savings from an equity capitalization reduction. The

Revenue Regulation and Decoupling

principal reason for preferring the equity capitalization option is that it can be implemented concurrently with the imposition of the risk mitigation measure, so that consumers receive an immediate economic benefit when the measure is implemented. The lag to a bond rating upgrade can be years, or as much as a decade; and the cost savings will phase in very slowly as new bonds are issued.

10.3 Risk Reduction: Reflected in ROE or Capital Structure?

Some ratepayer advocates have proposed an immediate reduction in the allowed return on common equity as a condition of implementing decoupling. This may create controversy in the ratemaking process, with the risk that utilities then become resistant to implementation of decoupling. Utilities have pointed to rate cases in other jurisdictions, where many of the "comparable" utilities used to estimate the required return on equity already have risk mitigation measures in place.

Economic theory supports the notion that risk mitigation is valuable to investors and that that value will (eventually) be revealed in some way in the market — through a lower cost of equity, a lower cost of debt, or a lower required equity capitalization ratio. Any of these will eventually produce lower rates for consumers, in return for the risk mitigation measure. Regardless of the theory, however, utilities may tend to view a reduction in the return on equity as a penalty associated with decoupling. In contrast, a restructuring of the capitalization ratio does not necessarily alter the required return on equity, and it is more directly reflective of the risk mitigation that decoupling actually provides — that is, stabilization of earnings with respect to factors beyond the utility's control. By reducing volatility, the utility needs less equity to provide the same assurance that bond coverage ratios and other financial requirements will be met.

Rating agencies have recognized the linkage between risk mitigation and the required equity ratio to support a given bond rating, rather than to the required return on equity. For this reason, there may be advantages to focusing on the utility's capital structure, rather than on its allowed return on equity or the cost of debt, when regulators consider how to flow through the risk-mitigation benefits of decoupling to consumers when a mechanism is put into place.³¹

³¹ One recent paper concluded that decoupling did not result in a decrease in the cost of equity capital in the short run. The study focused on only one approach to measure the cost of capital, the discounted cash flow method. It did not consider the reduction in systematic risk (the change in earnings relative to the change in the overall market earnings in the same period) that is measured by the Capital Asset Pricing Model. Decoupling will reduce systematic risk (reducing earnings volatility due to economic cycles) because sales variations in business cycles do not affect earnings under decoupling. The study also did not

