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Legal Notice to Third Parties 

This report was prepared for PacifiCorp Energy by HDR Engineering Inc. (HDR) and is based 
on information not within the control of HDR. HDR has assumed that the information provided 
by others, both verbal and written, is complete and correct. While it is believed that the 
information, data, and opinions contained herein will be reliable under the conditions and subject 
to the limitations set forth herein, HDR does not guarantee the accuracy thereof. Use of this 
report or any information contained therein by any party other than PacifiCorp Energy or its 
affiliates, shall constitute a waiver and release by such third party of HDR from and against all 
claims and liability, including, but not limited to, liability for special, incidental, indirect, or 
consequential damages in connection with such use. In addition, use of this report or any 
information contained herein by any party other than PacifiCorp Energy or its affiliates, shall 
constitute agreement by such third party to defend and indemnify HDR from and against any 
claims and liability, including, but not limited to, liability for special, incidental, indirect, or 
consequential damages in connection with such use. To the fullest extent permitted by law, such 
waiver and release and indemnification shall apply notwithstanding the negligence, strict 
liability, fault, breach of warranty, or breach of contract of HDR. The benefit of such releases, 
waivers, or limitations of liability shall extend to the related companies and subcontractors of 
any tier of HDR, and the directors, officers, partners, employees, and agents of all released or 
indemnified parties. 
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1 EXECUTIVE SUMMARY 
HDR Engineering (HDR) has been retained by PacifiCorp Energy (PacifiCorp) to perform an 
Energy Storage Study to support PacifiCorp’s 2012 Integrated Resource Plan (IRP) intended to 
evaluate a portfolio of generating resources and energy storage options. The scope of this Energy 
Storage Study is to develop a current catalog of commercially available and emerging large, 
utility-scale and distributed scale energy storage technologies as well as define respective 
applications, performance characteristics, and estimated capital and operating costs for each 
technology. 

HDR has reviewed and investigated the following energy storage technologies for this study:   

• Pumped Storage Hydroelectric 

• Battery Energy Storage Systems 

• Compressed air energy storage (CAES) 

• Flywheels 

The information presented in this report has been gathered from public and private 
documentation, studies, reports, and project data of energy storage systems and technologies.  

Pumped storage hydroelectric and Compressed Air facilities are classified as mass energy 
storage projects capable of providing thousands of Megawatt hours (MWh) of dispatchable 
energy based on potential energy, in the form of water, stored in an upper reservoir. Pumped 
storage is ideal for applications such as load shifting, peak shaving, spinning reserve, and 
frequency regulation on a large scale (200 to 1,000+ MW). Interconnection of these facilities 
requires availability of EHV transmission lines. Pumped storage facilities require site-specific 
attributes and resources.  Two reservoirs, or locations suitable for new reservoirs, in close 
proximity with an elevation difference between them are required.  Additionally, the 
development, design, and construction of these facilities require significant capital investment 
and time. 
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Table 1­ Summary of Highlighted Pumped Storage Projects 

Item 
Swan Lake 
North 

Yale‐Merwin  JD Pool  Parker Knoll 

Location  OR  WA  WA  UT 

Approx. static head (ft)  1,300  270  1,880  2,500 

Energy storage (MWh)  11,000  2,550  11,300  10,000 

Assumed  hours of storage 
(hrs) 

10  10  10  10 

Resulting installed capacity 
(MW) 

1,100  255  1,130  1,000 

Estimated Capitol Cost 
$1.7‐$3.3 
billion  

$0.38‐$0.77 
billion 

$1.7‐$3.4 
billion 

$1.5‐$3.0 
billion 

Estimated O&M Costs  $8,500,000  $3,300,000  $8,600,000  $8,000,000 

 

There are currently forty (40) pumped storage hydroelectric projects operating in the United 
States.  In addition, there are currently over sixty (60) projects being considered for development 
under the FERC licensing process.  Four projects have been selected for this report: Yale- 
Merwin Pumped Storage Project, JD Pool Pumped Storage Project, Parker Knoll Pumped 
Storage Project, and Swan Lake North Pumped Storage Project. These proposed sites were 
selected due to existing project features within the PacifiCorp balancing area footprint, 
environmental impacts that are fairly well understood, and the current project development 
status. Please see the summary table below for a summary of their project parameters. 

Battery energy storage systems are considered to be a small scale energy storage option focused 
on applications such as power quality and back up power for independent generating or operating 
facilities. When connected to smaller electrical grids, e.g., islanded systems, batteries can be 
implemented to provide services such as spinning reserve and frequency regulation. In the case 
of renewable integration, batteries primarily function to provide ramp rate control or applications 
focused on complementing the generation profile of the resource in order to lessen the burden of 
required ancillary services. The battery technologies, and their respective manufacturers, 
reviewed for this study include: 

 Sodium sulfur (NAS) – NGK Insulators, Ltd 

 Lithium ion (Li-ion) – A123 Systems 

 Vanadium Redox (VRB) – Prudent Energy 

 Zinc Bromide (ZnBr) – Premium Power 

 Dry Cell – Xtreme Power, Inc. 
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A Compressed Air Energy Storage Plant (CAES) consists of a series of motor driven 
compressors capable of filling a storage cavern with air during off peak, low load hours.  At high 
load, on peak hours the stored compressed air is delivered to a series of combustion turbines 
which are fired with natural gas for power generation.  Utilizing pre-compressed air removes the 
need for a compressor on the combustion turbine, allowing the turbine to operate at high 
efficiency during peak load periods.  Compressed air energy storage is the least implemented and 
developed of the stored energy technologies.  Only a couple of plants are currently in operation, 
including Alabama Electric Cooperative’s (AEC) McIntosh plant which began operation in 1991.   

Flywheels are electromechanical energy storage devices that operate on the principle of 
converting energy between kinetic and electrical states. A massive rotating cylinder, usually 
spinning at very high speeds, connected to a motor stores usable energy in the form of kinetic 
energy. The energy conversion from kinetic to electric and vice versa is achieved through a 
variable frequency motor or drive. The motor accelerates the flywheel to higher velocities to 
store energy, and subsequently slows the flywheel down while drawing electrical energy.  
Generally, flywheels are used for short durations in the application of a supplying backup power 
in a power outage event, regulating voltage and frequency.  

HDR has performed an initial comparison of the energy storage technologies discussed in this 
document.  Table 2 below lists some of the key criteria that were compared when considering 
these technologies. A more detailed comparison is included in Appendix A. Comments on the 
overall commercial development of the technology, the applications that each technology is 
suited to, space requirements for each technology, performance characteristics, project timelines, 
and capital, operating and maintenance costs have been made to aid PacifiCorp in its IRP 
considerations.   

Pumped storage is by far the most mature and widely used energy storage technology used not 
only in the US, but worldwide.  In the U.S., pumped storage accounts for over 20,000 MW of 
capacity.  CAES and pumped storage are considered to be the only functional technologies 
suitable for bulk energy storage as stand-alone applications.  Batteries and flywheels are most 
functional as a paired system with variable generation resources or for distributed energy storage 
on a smaller kW and kWh basis.  Space requirements for energy storage systems vary depending 
upon capacity and power, and pumped storage and CAES are capable of much higher capacities 
and total energy storage and therefore their project footprint is substantially higher.  Project 
timelines vary widely for the various options.  Pumped storage requires 5 years for FERC 
licensing and 5 years for construction, timelines for CAES are on the order of 2 years, and 
batteries and flywheels development times are on the order of 1 year.  

There are a number of challenges associated with comparing cost of the different types of energy 
storage technologies.  Capital cost is one initial indicator of project economics, but long-term 
annual O&M costs may provide a more comprehensive representation of financial feasibility. 
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The operating and maintenance costs associated with batteries are high, but vary depending upon 
the technologies.  As battery technology develops further, and grid scale installations continue, a 
better understanding of the costs associated with operation and maintenance will be achieved. 

 

Table 2­ Energy Storage Technology Summary Table 

  

Pumped Storage 
Hydro 

Compressed 
Air Energy 
Storage 

Batteries  Flywheels 

Range of power 
capacity 

 (MW) for a specific 
site 

(For pumped 
storage, four sites 
were considered 

within the 
PacifiCorp footprint) 

255‐1,130  100+ 1‐32  1‐20 

Range of energy 
capacity  
(MWh) 

(For Pumped 
Storage, four sites 
were considered 

within the 
PacifiCorp footprint) 

2,550‐11,300 800+ 
Variable 
depending 
on DOD 

0.25‐5 

Range of capital cost  
($ per kW )  $1,500‐$3,000 

$1,400‐
$1,700 

$450‐
$4,000 

$2,400/kW or 
$600 per kW 
plus $1,600 
per kWh. 

Year of first 
installation  1929 1978 

1995 
(sodium 
sulfur) 

2007 

 

A variety of complementing technologies will be required to fully address the effects of variable 
renewable energy, including bulk storage, distributed storage, and improvements to the 
interconnecting transmission system, and can extend the argument to bulk storage itself. 
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2 INTRODUCTION 
PacifiCorp, as well as various regions of the United States, faces a major challenge in balancing 
increasing levels of variable energy resources (VER).  As generation from variable energy 
resources and their relative percentage of load grow, there is an increasing need for additional 
system flexibility to assure grid reliability.  Based on both industry and HDR studies, it is evident 
that expanded transmission interconnections, continued modernization of the existing power 
plants, market changes that encourage greater operational flexibility of existing generation assets 
and new energy-storage facilities will be required across the United States over the next decade.   

The 2012 PacifiCorp Integrated Resource Plan (IRP) is expected to include a portfolio of 
generating resources and energy storage options for evaluation. These include both fossil fuel 
options, such as coal and natural gas, and renewable options including wind, geothermal, hydro, 
biomass, and solar.  In order to integrate additional renewable generation into their IRP, it is 
anticipated that energy storage will be required.  For that reason, PacifiCorp has engaged HDR 
Engineering, Inc (HDR) to develop a current catalog of commercially available and emerging 
energy storage technologies with estimates of performance and costs. 

Energy storage permeates our society, manifesting itself in products ranging from small button 
batteries to large-scale pumped-storage projects. Energy storage for utility-scale applications has 
historically utilized pumped-storage hydro and the large reservoirs associated with conventional 
hydropower stations.  In recent years, utilities have also considered and implemented several 
pilot projects utilizing various battery technologies, compressed air energy storage, and 
flywheels.  When installed over a large service area, the totality of these distributed systems 
could provide reserves to the regional grid for limited durations.  Within the electric utility 
industry, there is uncertainty regarding which energy-storage system can provide the optimal 
benefit for a given application.  The following discussion is intended to catalog the energy 
storage technologies available to date, to summarize the current state of development of energy 
storage technologies, to provide a high level comparison of these technologies, and provide 
comments and discussion on their implementation in an effort to assist PacifiCorp with the 
integration of variable energy resources and energy storage into its IRP.   

2.1 Integrating Variable Energy Resources 

It should first be pointed out that variability is not a new phenomenon in power system 
operation.  Demand has fluctuated up and down since the first consumer was connected to the 
first power plant.  The resulting imbalances have always had to be managed, mainly by 
dispatchable power plants.  The evolution of variable energy resources in the system is an 
additional, rather than a new, challenge that presents two elements: variability (now on the 
supply-side as well), and uncertainty. 
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The output from VER plants fluctuates according to the available resource — the wind, the sun 
or the tides. These fluctuations are likely to mean that, in order to maintain the balance between 
demand and supply, other parts of the power system will have to change their output or 
consumption more rapidly and/or more frequently than already required.   At small penetrations 
— a few percent in most systems — the additional effort is likely to be slight, because VER 
fluctuations will be dwarfed by those already seen on the demand side. 

Large shares, in contrast, will exaggerate existing variability, in extent, frequency and rate of 
change.  As is known by system operators, electricity demand follows a regular pattern.  
Deducting the contribution of variable energy resources to the grid in correlation to demand is 
often referred to as the net load. In the review of net load tracking in the Bonneville Power 
Administration balancing area, no regular pattern is evident with the exception of a tendency for 
wind to pick up at night and drop off in the morning – in direct contrast to demand, highlighting 
the greater variability caused by a 30%+ penetration of variable supply to the peak demand.1 

It is the extent of these ramps, the increases or decreases in the net load, as well as the rate and 
frequency with which they occur, that are of principal relevance to the industry. This is where the 
balancing challenge lies — in the ability of the system to react quickly enough to accommodate 
such extensive and rapid changes. Net load ramping is more extreme than demand alone. This is 
not only because VER output can ramp up and down extensively over just a few hours, but also 
because it may do so in a way that clashes with fluctuations in demand. In contrast, VER output 
may complement demand — when both increase or decrease at the same time.  

So, rather than — how can variable renewables be balanced? — the pertinent question is: how 
can increasingly variable net load be balanced? The point is that variability in VER output 
(supply) should not be viewed in isolation from variability on the demand-side (load); if the VER 
side of the balancing equation is considered separately, a system is likely to be under-endowed 
with balancing resources.2 

Variable energy resources provide a sustainable source of energy that uses no fossil fuel and 
produces zero carbon emissions.  One of the constraints of variable generation is that the energy 
available is non-dispatchable; it tends to vary and is somewhat unpredictable.  The power-system 
load is also variable; power-system reserves are required to match changes in generation and 
demand on a real-time basis.  Variable generation cannot be dispatched specifically when energy 
is needed to meet load demand.  Wind and utility industries have been able to address many of 

                                                             

1  Hydroelectric Pumped Storage for Enabling Variable Energy Resources within the  
Federal Columbia River Power System, Bonneville Power Administration, HDR 2010 
2 Harnessing Variable Renewables A Guide to the Balancing Challenge, 2011 
International Energy Agency 
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the variability issues through improvements in wind forecasting, diversification of wind turbine 
sites, improvements in wind turbine technology, and the creation of larger power-system control 
areas.  At low wind penetration levels, wind output typically can be managed in the regulation 
time-frame by calling upon existing system reserves, curtailing output and/or diversifying the 
locations of wind farms over a broad geographic area. 

As more variable energy is added to the power system, additional reserves are required.  Flexible 
and dispatchable generators, such as hydro, are required to provide system capacity and 
balancing reserves to balance load in the hour-to-hour and sub-hour time-frame.  In addition to 
system reserves, every balancing authority has the need for energy storage to balance excess 
generation at night and shift its use to peak demand hours during the day.  Conventional 
hydropower projects do this by shutting down units and storing energy in the form of water, and 
it is the most common form of energy storage in the world.  As variable energy output and the 
ratio of wind generation to load grows, historical system responses will need to be modified to 
take advantage of the benefits of variable energy resources to the regional grid and to assure 
system reliability. 

3 ENERGY STORAGE SYSTEMS AND TECHNOLOGY 
A review of available energy storage technologies was performed for comparative purposes in 
this study.  The results are discussed throughout this report and include the following storage 
systems:   

 Pumped Storage Hydroelectric 

 Battery Energy Storage Systems 

 Compressed Air Energy Storage (CAES) 

 Flywheels 

Each of these technologies has been employed for grid scale storage or to provide ancillary 
services.  Many of these technologies, such as flywheels, have been proven at the distributed-
energy scale, and there is significant ongoing research to further develop these technologies and 
scale them up for bulk energy storage applications.  This research is expected to continue for the 
foreseeable future, but presently system planners are left with uncertainty as to which 
technologies will be viable for bulk energy-storage applications, particularly for the immediate 
and future need for variable energy resource integration.  
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3.1 Pumped Storage 

Pumped storage hydroelectric projects have been providing storage capacity and transmission 
grid ancillary benefits in the U.S. and Europe since the 1920s.  Today, there are 40 pumped 
storage projects operating in the U.S. that provide more than 20 GW, or nearly 2 percent, of the 
capacity for our nation’s energy supply system (Energy Information Admin, 2007).  Figure 1 
below indicates the distribution of existing pumped storage projects in the U.S.  Pumped storage 
and conventional hydroelectric plants combined account for approximately 77 percent of the 
nation’s renewable energy capacity, with pumped storage alone accounting for an estimated 16 
percent of U.S. renewable capacity (Energy Information Admin., 2007). 

 

Figure 1- Existing Pumped Storage Projects in the United States 

Pumped storage facilities store potential energy in the form of water in an upper reservoir, 
pumped from another reservoir at a lower elevation (Figure 2).  Historically, pumped storage 
projects were operated in a manner that, during periods of high electricity demand, electricity is 
generated by releasing the stored water through pump-turbines in the same manner as a 
conventional hydro station.  In periods of low energy demand or low cost, usually during the 
night or weekends, energy is used to reverse the flow and pump the water back up hill into the 
upper reservoir.  Reversible pump-turbine/generator-motor assemblies can act as both pumps and 
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turbines.  Pumped storage stations are unlike traditional hydro stations in that they are actually a 
net consumer of electricity, due to hydraulic and electrical losses incurred in the cycle of 
pumping back from a lower reservoir to the upper reservoir.   However, these plants have often 
proved very beneficial economically due to peak to off-peak energy price differentials, and as 
well as providing ancillary services to support the overall electric grid. 

 

Figure 2-Typical Pumped Storage Plant/System 

The contributions of pumped storage hydro to our nation’s transmission grid are considerable, 
including providing stability services, energy-balancing, and storage capacity.  Pumped storage 
stations also provide ancillary electrical grid services such as network frequency control and 
reserves.  This is due to the ability of pumped storage plants, like other hydroelectric plants, to 
respond to load changes within seconds.  Pumped storage historically has been used to balance 
load on a system and allow large, thermal generating sources to operate at peak efficiencies.  
Pumped storage is the largest-capacity and one of the most cost-effective forms of grid-scale 
energy storage currently available. 
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3.1.1 Mature Technologies 

3.1.1.1 Fixed Speed Pump­turbines 

Pumped storage is the most mature energy storage technology in today’s market.  The first U.S. 
pumped-storage plant was developed in the 1920s to balance loads from fossil fuel plants.  The 
generating equipment for the majority of the existing pumped storage plants in the U.S. is the 
reversible, single-stage Francis pump-turbine.   See Figure 3 below for a cross section of this 
type of equipment.  The runner-impeller changes the direction of its rotation to operate in either 
the pumping or generating mode.  The generator-motor changes direction with the runner-
impeller to either provide power in the pumping direction or generate electrical power when the 
unit is in the turbine mode.  Most of the major equipment vendors have significant experience 
with this type of unit, and can apply modern designs for runners, wicket gates, and water 
passageway shape modifications to older machines during rehabilitation programs, resulting in 
significant efficiency and capacity improvements.   The technology for single-stage units 
continues to advance, and a broader range of equipment configurations are available depending 
upon the available head, reservoir volume, and desired operation. 

 

 

Figure 3- Reversible Francis Type Pump-turbine (Voith) 
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3.1.1.2 Open­Loop and Closed­Loop Systems 

Both open-loop and closed-loop pumped storage projects are currently operating in the U.S. The 
distinction between closed-loop and open-loop pumped storage projects is often subject to 
interpretation.  The Federal Energy Regulatory Commission (FERC) offers the formal definitions 
for these projects, and it was FERC’s definitions that were followed while categorizing the 
pumped storage sites discussed in this report: Closed-loop pumped storage are projects that are 
not continuously connected to a naturally-flowing water feature; and open-loop pumped storage 
are projects that are continuously connected to a naturally-flowing water feature. 

Closed-loop systems are preferred for new developments, or greenfield projects, as there are 
often significantly less environmental issues, primarily due to the lack of aquatic resource 
impacts.  Projects that are not strictly closed-loop systems can also be desirable, depending upon 
the project configuration, and whether the project uses existing reservoirs.  The Yale-Merwin 
project, one of the highlighted projects within the PacifiCorp area, is not technically a closed-
loop system, but because the project would be constructed as part of an existing conventional 
hydropower project with two existing man made reservoirs, its environmental impacts would be 
less significant and more predictable than for a true open-loop project. 

3.1.2 Emerging Technologies 

3.1.2.1 Variable Speed Pump­turbines 

With the introduction of Renewable Portfolio Standards in many states, there has been renewed 
interest in new pumped storage projects in the United States.  Until recently, the U.S. electric 
grid system requirements did not dictate the need for potentially significant quantities of energy 
storage, and the subsequent increased incremental expense of new advanced pump-turbine 
designs, including variable speed technology.  The markets that could value the new 
technological advancements have yet to be developed in the U.S.; therefore, none of the existing 
pumped storage projects in the U.S. utilize variable speed. Also, the most recent pumped storage 
project constructed in the US was completed in the mid 1990s, and at that time, the technology 
was in its infancy.  Variable speed technology has been significantly improved since that time 
and has been proven in Europe and Asia.  For these reason and because variable speed 
technology is well suited to integration of variable renewable generation, many of the proposed 
new pumped storage projects are considering variable speed machines. 

Variable speed pump-turbines have been used since the early to mid-1990’s in Japan and late 
1990s in Europe.  They are being increasing considered during project development in Europe 
and Asia due to a high percentage of renewable integration in these areas and more developed 
commercial markets that compensate electricity producers for ancillary services.  Although the 
technology has been in place since the 1990’s, major equipment vendors are continuously 
redesigning the equipment to improve performance.  In a conventional, single speed pump-
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turbine, the magnetic field of the stator and the magnetic field of the rotor always rotate with the 
same speed and the two are coupled.  In a variable speed machine, those magnetic fields are 
decoupled.  Either the stator field is be decoupled from the grid frequency using a frequency 
converter between the grid and the stator winding, or the rotor field is decoupled from the rotor 
body by a multi-phase rotor winding fed from a frequency converter which is connected to the 
rotor. 

In California, three large pumped storage projects in development are considering variable speed 
technology almost exclusively due to the growing need for detrimental reserves at night, 
enabling greater penetration of variable renewable energy resources.  A major hurdle these 
projects will face when making their final determination of the turbine technology will be the 
status of the economic markets, which will need to value to the benefits (revenue) of adjustable 
speed pump-turbines to justify the additional costs associated with the advanced equipment. 

3.1.2.2 Underground Storage Reservoirs 

Recently, the concept of locating one or both of the reservoirs for a pumped storage below 
ground has been considered.  These sites have been evaluated due to the perceived lack of 
availability of potential surface reservoirs and the potential for reduced environmental impacts. 
Abandoned mines have been proposed for such a project, and the Elmhurst Quarry Pumped 
Storage Project (EQPS) in the City of Elmhurst, Illinois has been used for the basis of the project 
information in the summary matrix.  It should be noted, however, that while many projects are 
under initial phases of development, there are no operating pumped storage projects worldwide 
that utilize underground reservoir.  The underground excavation or materials costs, construction 
risk, and time required for underground excavation and construction make the economics of such 
a project questionable. 

3.1.3 Potential Projects in PacifiCorp Service Area 

HDR has made an assessment of fifteen potential projects located within the PacifiCorp 
balancing area. Projects were selected based on the preliminary filings with FERC and from the 
Yale Hydroelectric Plant – Plant Upgrade and Expansion Preliminary Engineering Report by 
Black and Veatch. Figure 4 below illustrates where proposed projects in the U.S. that have been 
granted and/or filed for a, FERC Preliminary Permit Application.   
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Figure 4- Preliminary Proposed Pumped Storage Projects 

All projects in PacifiCorp’s region were evaluated based on the selection criteria discussed in the 
following section.     

3.1.3.1 Pumped Storage Evaluation Criteria 

The following is a list of pumped storage evaluation criteria utilized for this study: 

Water conveyance – The tunnel length to head ratio is the single biggest variable cost component 
for a pumped storage project. The higher the head, the higher energy density and, as such, longer 
tunnel lengths are justifiable. Conversely, lower head (less than 300 feet) means that shorter 
tunnel lengths or a unique site configuration are required to be competitive. 

 Capacity- The larger the project is in terms of capacity, the lower the installed cost per 
kilowatt (kW) is for similar civil cost components. 

 Closed or open-loop- Closed-loop or off-stream embankments/dams generally means 
fewer regulatory challenges and a less complex FERC licensing process. Specific sites 
where the lower reservoir already exists may also be advantageous. 
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 Source of water- The source of water can be complicated in extremely dry (e.g. desert 
southwest) or politically charged (Columbia River Basin) areas of the country. 

 Potential environmental/regulatory factors- Environmental and regulatory factors vary 
widely from site to site: these issues can range from minor challenges to a fatal flaws 
depending upon the project’s environmental impacts. 

 Project location- A strong power market where ISO’s are integrating large amounts of 
variable energy will be seeking a project that can provide grid scale ancillary services. 

 Transmission access- Energy evacuation and transmission line permitting is site specific 
and driven by a local project champion. 

 Geological factors- Geological factors, such as active fault lines near the proposed site, 
can be a project fatal flaw if known or suspected. 

 Technical development progress- HDR has evaluated the technical progress thus far of 
each project.  Projects with more than a conceptual layout have been favored. 

 Commercial development progress- HDR has evaluated the commercial analysis of each 
project, as initially performed by others, and has investigated whether the developer has 
explored the revenue streams beyond the traditional energy arbitrage model. 

Table 3­ Summary of Highlighted Pumped Storage Projects 

Item 
Swan Lake 
North 

Yale‐Merwin  JD Pool  Parker Knoll 

Location  OR  WA  WA  UT 

Approx. static head (ft)  1,300  270  1,880  2,500 

Energy storage (MWh)  11,000  2,550  11,300  10,000 

Assumed  hours of storage 
(hrs) 

10  10  10  10 

Resulting installed capacity 
(MW) 

1,100  255  1,130  1000 

Estimated Capitol Cost 
$1.7‐$3.3 
billion  

$0.38‐$0.77 
billion 

$1.7‐$3.4 
billion 

$1.5‐$3.0 
billion 

Estimated Annual O&M Costs  $8,500,000  $3,300,000  $8,600,000  $8,000,000 

 

Fifteen projects have been evaluated based on the Criteria above and are presented in Appendix 
A.  Four of these sites have been selected to highlight in this report: 

 Yale- Merwin Pumped Storage Project 

 JD Pool Pumped Storage Project 

 Parker Knoll Pumped Storage Project  
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 Swan Lake North Pumped Storage Project 

These proposed sites were selected due to existing project features, environmental impacts that 
are fairly well understood, and the current project development status.  Table 3 above discusses a 
summary of these projects’ characteristics. 

3.1.3.2 Yale­Merwin Pumped Storage Project 

The new Yale-Merwin Pumped Storage Project would be an expansion of the existing Yale 
Hydroelectric Project.  The Yale Hydroelectric Project is a peaking plant located on the Lewis 
River approximately 22 miles east of Woodland, Washington.  The existing project is a 135.7 
megawatt (MW) powerhouse consisting of two vertical Francis units.  PacifiCorp is interested in 
upgrading the existing plant and possibly constructing a new pumped storage plant.  Pumped 
storage could increase the project capacity up to 255 MW.  The project would consist of a new 
powerhouse with 3 new reversible Francis units, a new intake and water conduit that would 
connect to an existing diversion tunnel, and new penstocks.  The project would utilize the 
tailrace for the existing project and only require improvements to the existing structure. See 
Figure 5 below for the site layout. 

 

Figure 5- Yale Merwin Pumped Storage Site Layout (Black and Veatch) 
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Two options for the site are proposed with the minimum Merwin Lake elevation at either 220 
feet (ft) or 235 ft.  The licensing and environmental consideration for the Yale-Merwin Pumped 
Storage Project would be similar to project expansions or a relicensing effort associated with the 
existing Yale-Merwin Project.  Potential issues could include fish impingement, entrainment, 
passage or barriers, upper and lower reservoir thermal effects, upper and lower reservoir water 
quality, and effects on existing generation.  The Yale-Merwin Pumped Storage project is 
attractive due to two existing reservoirs, other existing infrastructure such as roads, transmission, 
and project features, and a good understanding of the potential licensing requirements. 

3.1.3.3 JD Pool 

The preliminary permit application for the JD Pool Pumped Storage Project (FERC No. 13333) 
in southern Washington (in the Columbia Gorge) was filed by the Klickitat Public Utility District 
and Symbiotics LLC on November 20, 2008.  The permit was issued on May 5, 2009.  The 
proposed project would consist of two new reservoirs, a new powerhouse, new water conduit, 
and transmission facilities.  The project is estimated at 1,120 MW in capacity.  The gross head at 
JD Pool would range between 1,815 and 1,930 ft.   

The JD Pool project layout from the FERC Preliminary Permit is shown in Figure 6 below.  The 
upper reservoir would have a surface area of approximately 190 acres with a storage capacity of 
11,445 acre-feet (ac-ft) at a normal maximum surface elevation of 2,445 mean sea level (msl.) 
The earthen embankment would be 208 ft high and 4,330 ft long.  The lower reservoir would 
have an approximate surface area of 160 acres with a storage capacity of 10,580 ac-ft at normal 
maximum surface elevation of 565 msl. The earthen embankment would be 65 ft high and 
16,540 ft long.  The reservoir would is proposed to be filled from off system sources.  The 
reservoirs will be connected by a 24 ft diameter, 8,022 ft long steel penstock.  A new ten unit 
powerhouse will be constructed as part of this project.   
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Figure 6- JD Pool Project Layout (JD Pool Preliminary License Application) 

The project concept suggests a 230 kilovolt (kV) transmission line will interconnect with the 
existing Bonneville Power Administration (BPA) Rock Creek substation.  The Rock Creek 
substation is 9.60 miles to the northeast.  This project would be part of the Western Electricity 
Coordination Council market. 

In the second six month progress report submitted to FERC as required under the Preliminary 
Permit, the permit holders obtained permission from the major landowner to conduct initial 
environmental studies. Preliminary negotiations have been conducted with landowner for 
purchase of the proposed project site. An agreement has been reached with the Washington State 
Department of Ecology for the planned use of water, and discussions with BPA reportedly have 
been conducted regarding the interconnection. 
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3.1.3.4 Parker Knoll 

The Parker Knoll Pumped Storage Project  (FERC No. 13239) is a proposed new development in 
southern Utah.  The Parker Knoll Pumped Storage Hydroelectric Project is located in Piute 
County, Utah, about 31 miles southeast of the town of Richfield. The preliminary permit was 
filed on June 13, 2008 by Parker Knoll Hydro LLC and Symbiotics LLC, and the permit was 
issued on December 8, 2008.  The Draft License Application (DLA) was filed by Symbiotics in 
June of 2011.  The installed capacity of the project is expected to be 1,000 MW, and provide 
2,630 gigawatt hours (GWh) of average annual energy production.  The project as it is 
configured in the draft license application can generate 1000 MW for 10 hours and pump for 14 
hours a day at 1,000 MW.   It is anticipated that the facility will be capable of providing 
incremental and decremental reserves and load following services 24 hours per day.   

A site layout from the DLA is shown in Figure 7.  The upper reservoir will be impounded by two 
dams: a main dam and saddle dam. The upper main dam will be approximately 170 ft high with a 
crest length of approximately 1,650 ft, and the upper saddle dam will be approximately 50 ft high 
with a crest length of approximately 1,050 ft.   The resulting reservoir will have a normal pool 
elevation of 9,600 ft MSL, and a storage capacity of approximately 6,780 ac-ft.  The surface area 
of the reservoir will be approximately 110 acres. 

 

Figure 7- Parker Knoll Site Layout (Parker Knoll DLA) 
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The lower reservoir will be impounded by three dams: a main dam and two saddle dams (smaller 
dams to impound low areas around the rim of the reservoir). The lower main dam will be 
approximately 100 feet high with a crest length of approximately 1,750 ft. The first saddle dam 
will be approximately 80 feet high and have a crest length of approximately 1,150 ft, and the 
second will be approximately 20 feet high with a crest length of approximately 650 ft.  The 
resulting reservoir will have a storage capacity of approximately 6,760 ac-ft and a maximum 
normal pool elevation of 7,650 ft.  The reservoir will have a surface area of approximately 130 
acres.  

The project will have an overall conveyance length of approximately 12,800 ft with a 2,400 ft 
headrace tunnel, a 2,200 ft long vertical shaft, four 1,100 ft long penstock tunnels, and a 7,100 ft 
long tailrace tunnel.  A surge chamber may also be included in the design.    

A 1000 MW underground powerhouse will be constructed with four pump-turbine units.  The 
underground powerhouse would also include isolated phase bus gallery, a transformer gallery, 
and a 7,150-ft-long, 26-ft-diameter access tunnel.  Variable speed Francis type pump-turbines are 
under consideration for this project.  Variable speed is considered to provide regulation 
capability in addition to the traditional ancillary services pumped storage provides during both 
pumping and generating, and to provide a broader operating range and flexibility. 

Approximately 1 mile of new 345-kV transmission line will be built for the project. The 1 mile 
of new transmission line would extend from the proposed Parker Knoll substation to the existing 
230-kV transmission line alignment. About 40 miles of 230-kV transmission line would be 
upgraded within the PacifiCorp system.  Access options for the Parker Knoll site are relatively 
favorable.  Access to the lower portion of the site could be provided from the existing Otter 
Creek Flat Road, near SR-62, and access to the upper portion of the site can be provided from the 
existing Black Point Road, near SR-24.  Improvements to the existing roads will be required.  

Potential environmental impacts were evaluated as part of the DLA.  Unavoidable impacts 
include high summer flows between Otter Creek and the point of diversion during construction, 
permanently displaced vegetation, and the relocation of four individuals due to land inundation.  
The applicants are in the process of developing mitigation plans to combat these and other 
potential environmental impacts. 

3.1.3.5 Swan Lake North  

The proposed Swan Lake North Pumped Storage (FERC No. 13318) is estimated at 1,110 MW 
of installed capacity.  The head is expected to fluctuate between 1,250 and 1,360 ft.  The 
preliminary permit application for the Swan Lake North Pumped Storage Project was filed by 
Symbiotics LLC on December 12, 2008.  The preliminary project was issued on April 28, 2009.  
According to the project website, the capacity of the projects has been increased to 1,380 MW.  
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There is however limited documentation regarding these capacity changes, and as such the data 
represented in this report is from the Swan Lake Preliminary Permit. 

For the upper reservoir, an earth embankment with a clay core would be constructed.  The dam 
would be 70 ft high and approximately 11,850 ft long. The resulting reservoir would be 
approximately 8,300 acre-ft with 260 surface acres.  The lower reservoir would be approximately 
8,820 acre-ft with 215 surface acres 80 ft high 8,000 ft long earthen embankment will be 
constructed.  The proposed project would be filled from off-stream water sources. The proposed 
penstock is a 29-ft diameter, 5,860 ft long steel penstock connecting to a new 10 unit 
powerhouse.  Subsequent to the original concept in the preliminary permit, the powerhouse 
configuration has been revised to a more typical four unit layout. 

 

Figure 8- Swan Lake North Site Layout (Swan Lake Pre-Application Document) 

The proposed 500 kV line would traverse 12.5 miles will connect with a proposed upgrade to an 
existing 500 kV lines owned by PacifiCorp an additional 500 kV line owned by BPA is located 
in the area. The project would inundate US Bureau of Land Management administered lands as 
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well as potentially impacting lands with construction of the powerhouse. Transmission lines 
would also cross US Bureau of Land Management lands. Additionally, there are significant 
archaeological resources in the vicinity.  The economic analysis for this project is ongoing. 

Geotechnical studies have been ongoing, and meetings have been held with the Bureau of Land 
Management to discuss the parallel environmental assessments and preconstruction geotechnical 
work.  Second stage transmission interconnection studies are in process. A public meeting has 
been scheduled to discuss the transmission alternatives. Groundwater studies were completed 
this spring and modeling work is scheduled. In addition, vegetation characterization and weed 
assessment surveys, sensitive plant surveys and sensitive wildlife habitat evaluations have been 
completed. 

3.1.4 Performance Characteristics 

Pumped storage hydro plants can provide load balancing and shifting (often called energy 
arbitrage) and historically have done so by pumping during night time hours and on weekends, 
and then generating during periods of higher demand.  A pumped storage project would typically 
be designed to have between 6 to 20 hours of hydraulic reservoir storage for operation at full 
generating capacity.  By increasing plant capacity in terms of size and number of units, 
hydroelectric pumped storage generation can be concentrated and shaped to match periods of 
highest demand, when it has the greatest value.  Existing pumped storage projects range in 
capacity from 9 to 2700 MW, and in available energy storage from 87 MWh to 370,000 MWh of 
storage. 

Pumped storage projects also provide ancillary benefits such as firming capacity and reserves 
(both incremental and decrimental), reactive power, black start capability, voltage stability and 
frequency support.  In the generating mode, the turbine-generators can respond to frequency 
deviations extremely fast just as conventional hydro generators can, thus adding to the stability 
of the grid.  In both turbine and pump modes, generator-motor excitation can be varied to 
contribute to reactive power load and stabilize voltage.  When neither generating nor pumping, 
the machines can also be operated in synchronous condenser mode, or can be operated to provide 
“spinning reserve”, providing the ability to quickly pick up load or balance excess generation.  
Grid-scale pumped storage can provide this type of load-balancing benefit for time spans ranging 
from seconds to hours with the digitally controlled turbine governors and large water reservoirs 
for bulk energy storage. 

The traditional mode of operation of a pumped storage plant is to begin pumping in the evening 
after the peak load hours of the day, and continue pumping through midnight and into the early 
morning hours when low-cost pumping energy is available from base load units, and then change 
modes to generate power during daytime peak periods when energy values are highest.  The 
pump-turbines are gradually taken off line in the morning hours as load ramps up, and then are 
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usually put on line as generators.  The rest of the generating system (and the transmission system 
operator) sees a balanced and easily followed load curve.  This daily cycle is routinely followed 
during the work week.  On weekends, when the electrical demand is usually less, there is more 
low cost pumping energy available and the units typically operate in the pump mode or are off, 
depending on system load conditions.  In a weekly cycle, the upper reservoir is full at the 
beginning of the work week, at its lowest point at the end of the work week, and returns to full 
upper reservoir conditions during the weekend’s pumping operations. 

Pumped storage can be of great advantage in the shorter balancing authority time frames, within 
the hour, minute, or even real-time, to provide incremental and decrimental reserves.  One 
advantage is the ability of pumped hydro to store energy when surplus energy is being produced 
by wind-powered generators, typically at night when overall energy demand is low.  A 
synchronous-speed (i.e., single-speed) pump-turbine in pumping mode has a fixed relationship of 
power input requirement to net head; therefore, the power input to the pump-turbine cannot 
change while it is on line.  Existing pumped storage projects therefore utilize “blocks” of excess 
energy off the grid for pumping operations.  With the advent of variable speed technology 
pumped storage units, load balancing in the pump mode can be a very significant grid benefit by 
providing critical decrimental and frequency regulation reserves, thus smoothing the supply 
curve.  In off-peak periods where the pumped storage station may be in pumping mode, the level 
of pumping could vary based upon the expected output in wind energy.  The pumps could adjust 
their input power to smooth out the wind output by reducing pump load as wind drops off and 
increasing pump demand when wind output picks up in real time.  In the on-peak periods when 
the pumped storage station is generally in generating mode, the actual output of the pump-
turbines could be adjusted such that the wind plus the pump-turbine output is smoother within 
the minute or hour to minimize load change impacts on other units in the area.  In the generation 
mode, the capabilities of both single and variable speed machines are identical to conventional 
hydropower units.  By varying the wicket gate position to be between 60 to 100 percent, the units 
can provide incremental and detrimental reserves via load-balancing at partial load and provide 
Automatic Generation Control (AGC) services. 

A typical pumped storage plant is designed for more than 50 years of service life, but many 
projects that were constructed in the 1920’s and 1930’s are still operational today.  A generator-
motor rewind or upgrade can be expected after approximately 20 years of service, but the pump-
turbine equipment can last for a longer period of time and may only be elected for an upgrade 
when the efficiency gains of modern equipment justify the expenditure. 

3.1.5 Regulatory Overview 

Some of the most important aspects in the evaluation of siting and development of a potential 
pumped storage project are the environmental and regulatory factors.  All pumped storage 
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project development by non-federal entities will require a FERC licensing process, which is 
expected to take approximately three to five years.  For some projects, the potential issues 
associated with project development may be fatal flaws, for others the mitigation measures are 
minimal and manageable. Many of the most promising new pumped-storage sites identified by 
the hydropower industry are closed-loop pumped-storage.  It is generally accepted within the 
industry that a greenfield closed loop pumped storage project could be licensed in less than five 
years. 

Environmental and licensing concerns may include fisheries issues (e.g. entrainment or passage 
concerns), deforestation, recreation, and land use concerns.  For closed-loop systems, there is no 
water discharged from the station into the main-stem river after the initial tunnel and reservoir 
fill (under controlled conditions), and fish entrainment and impingement is thereby avoided.  
Equipment can be selected to further protect fish, and the techniques for protection of aquatic 
species are generally the same as applied for large hydroelectric projects.  With respect to 
pristine forest environments, new large pumped-storage plants typically consist of an 
underground powerhouse and, thus, mitigate to a large degree the overall footprint of the station. 
But these hydroelectric projects generally require construction of roads, main or saddle dams, 
spillways, etc., and other aspects that may alter the existing landscape. 

3.1.6 Capital, Operating, and Maintenance Cost Data 

3.1.6.1 Capital Cost 

The direct cost to construct a pumped storage facility is highly dependent on a number of 
physical site factors, including but not limited to topography, geology, regulatory constraints, 
environmental resources, project size, existing infrastructure, technology and equipment 
selection, capacity, active storage, operational objectives, etc.  According to the HDR data base, 
one could expect the direct cost of a pumped storage facility utilizing single speed unit 
technology to be in the order of $1,500 to $3,000 per kW. The direct cost for a facility utilizing 
variable speed unit technology is expected to be approximately 10 to 20 percent greater than that 
a facility utilizing single speed technology.  Direct costs include: 

 Cost of materials 

 Construction of project features (tunnels, caverns, dams, roads, etc.) 

 Equipment 

 Labor for construction of structures 

 Supply and installation of permanent equipment 

 Procurement of water rights for reservoir spill and make up water 
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Indirect costs generally run between 15 and 30 percent of direct costs and are largely dependent 
on configuration, environmental/regulatory, and ownership complexities and include cost such 
as: 

 Preliminary engineering and studies (planning studies, environmental impact studies, 
investigations), 

 License and permit applications and processing, 

 Detailed engineering and studies, 

 Construction management, quality assurance, and administration, 

 Bonds, insurances, taxes, and corporate overheads. 

3.1.6.2 Annual Operation and Maintenance (O&M) Costs 

Operation, maintenance, and outage costs vary from site to site dependant on specific site 
conditions, the number of units, and overall operation of the project.  For the purposes of this 
evaluation, a generic four unit, 1,000 MW underground powerhouse has been assumed.  As seen 
from the project examples above, this is a common arrangement selected for a pumped storage 
project.   

Previous Electric Power Research Institute (EPRI) studies provide the following equation for 
estimating the annual operations and maintenance (O&M) costs for a pumped storage project in 
1987 dollars: 

 

O&M Costs ($/yr) = 34,730 x C0.32 x E0.33 

Where: C = Plant Capacity, MW 

E = Annual Energy, GWh 

 

This methodology is considered valid and an escalation factor of 2.0 is recommended going from 
1987 to 2011.  In addition, the following additional annual costs are recommended: 

 Annual general and administration expenses in the order of 35% of site specific 
annual O&M costs, and  

 Annual insurance expenses equal to approximately 0.1% of the plant investment 
costs. 

For a 1,000 MW pumped storage project generating 6 hours per day 365 days per year, and 
annual energy production of 2,190 GWh.  The calculated annual O&M costs are approximately 
$8 million in 2011 USD. 
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3.1.6.3 Bi­Annual Outage Costs 

In addition to annual O&M costs, it is recommended within the industry that bi-annual outages 
be conducted.  Again, the frequency of the inspections and the subsequent repairs following 
inspections can vary depending upon how the units are operated, how many hours per year the 
units will be on-line, how much time has elapsed since the last inspection/repair cycle, the 
technical correctness of the hydraulic design for site specific parameters, and water quality 
issues.    

Conservatively, in a four unit, 1,000 MW powerhouse, two units would be taken out of service 
for approximately a three week outage every two years.  For units of this size, $250,000 for two 
units should be budgeted. 

3.1.6.4 Major Maintenance Costs 

It is recommended within the industry that a pump-turbine overhaul accompanied by a generator 
rewind be scheduled at year 20.  The typical outage duration is approximately six to eight 
months.  Pumped storage units are typically operated twice as many hours or more per year than 
conventional generating units if utilized to full potential.  This increased cycling duty also 
dramatically increases the degradation of the generator components.  This increased duty results 
in the requirement to perform major maintenance on a more frequent basis.  

The work included and the frequency of this outage can vary based on project head, project 
operation, and regular maintenance cycles.  Overhauls typically include restorations of all 
bushings and bearings in the wicket gate operating mechanism, replacement of wicket gate end 
seals, rehabilitation of the wicket gates including non destructive examination (NDE) of high-
stress areas, rehabilitation of the servomotors, replacement of the runner seals, NDE of the head 
cover, restoration of the shaft sleeves and seals, and rehabilitation of the pump-turbine bearing. 
The end result is restoring the pump-turbine to like-new running condition.  Pump-turbine inlet 
isolation valves will likely require refurbishment of the valve seats and seals.  The service life of 
a generator-motor is generally dependent upon the condition of the insulation in the stator and 
rotor.  The need for reinsulation of the stator and rotor, typically of a salient pole design, can 
vary from 20 to 40 years depending upon the duty cycle and insulating materials utilized.   

The costs for these modifications depend on many factors. Due to the complexity of the scope, 
an estimate must be developed for each installation.  For the purposes of this study, 
approximately $6 million was estimated for reversible Francis units at year 20. 
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3.2 Batteries 

3.2.1 Battery Energy Storage Technology Description 

Battery energy storage systems are functionally electrochemical energy storage devices that 
convert energy between electrical and chemical states. Electrode plates consisting of chemically-
reactive materials are situated in an electrolyte which allows the directional movement of ions 
within the battery. Negative electrodes (cathodes) give up electrons (through electrochemical 
oxidation) that flow through electric load connected to said battery and finally return to the 
positive electrodes (anodes) for electrochemical reduction. This basic direct current (DC) 
current, through ancillary power electronics, is inverted into the desired frequency and voltage.  

Certain battery technologies have significant exposure in various markets including telecom, 
end-user appliance, and on a larger scale, utility applications. Batteries are becoming one of the 
faster-growing areas among utility energy storage technologies in frequency regulation 
applications, renewable energy systems integration, and in remote areas and confined grid 
systems where geographical constraints do not fit well with the application of hydroelectric 
storage or CAES. Battery systems were estimated to account for 451 MW or 0.4% of total 
energy storage capacity globally in 2010.3   

Electric utility companies as well as large commercial and industrial facilities typically utilize 
battery systems to provide an uninterruptible supply of electricity to power a load (e.g. 
substation, data center) and to start backup power systems. In the residential and small 
commercial sector, conventional use for battery systems includes serving as backup power 
during power outages.  

Common types of commercialized rechargeable and stationary battery technologies include, but 
are not limited to, the following: 

 Sodium sulfur (NAS)  

 Nickel cadmium (NiCd)  

 Nickel metal hydride (NiMH)  

 Family of lithium ion chemistries (Li-ion)  

 Flow  

o Vanadium redox battery (VRB) 

o Zinc bromide (ZnBr)  

o Polysulfide bromide (PSB)  

                                                             

3 Electricity Advisory Committee (EAC). Energy Storage Activities in the United States Electricity Grid. May 2011. 
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o Hydrogen bromide (HBr)  

In physical form, these battery types are modular, enclosed in a sealed container, with the 
exception of flow batteries.  Their distinguishing characteristic is their independent and isolated 
power and energy components, comprising of cell “stacks” and tanks to hold the electrolyte.  
They operate by flowing the fluid electrolyte through cell stacks to generate electrical current. 

3.2.2  Manufacturers and Commercial Maturity of Technology  

All of these batteries have the technical potential for penetration into specific utility markets and 
applications. Technologies such as PSB and HBr flow batteries have not reached market 
commercialization and are currently in various stages of research and development. Lead acid 
battery technology, although mature and ubiquitous in application, was not studied in this report 
due to its limited life cycle when performing at high depth of discharge levels, heavy weight and 
relatively lower specific energy content.   

The remainder of this section discusses battery technologies that are considered suitable for 
specific utility applications. Due to the limited scope of this study, only information collected 
from manufacturers representing select battery technologies systems is presented. The five 
manufacturers included in this study, based on their involvement in utility-scale energy storage 
systems, are4: 

 5Lithium ion (Li-ion) - A123 Systems, Inc. (A123) 

 Sodium sulfur (NAS) – NGK Insulators, Ltd. (NGK) 

 Vanadium redox battery (VRB) – Prudent Energy Corporation (Prudent) 

 PowerCellsTM – Xtreme Power, Inc. (Xtreme) 

 Zinc bromine (ZnBr) – Premium Power Corporation (Premium) 

                                                             

4 Manufacturers or representatives were directly contacted by HDR through e-mail and telephone. HDR neither 
recommends nor guarantees the products or services of manufacturers listed herein. References made to 
aforementioned manufacturers and their products and services are strictly for analysis purposes only. HDR does not: 
(a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or 
usefulness of the information furnished by these manufacturers or (b) assume any liabilities with respect to the use 
of, or for damages resulting from the use of, any information, method or process disclosed by manufacturers 
captured in this report. 
5 Manufacturers or representatives were directly contacted by HDR through e-mail and telephone. HDR neither 
recommends nor guarantees the products or services of manufacturers listed herein. References made to 
aforementioned manufacturers and their products and services are strictly for analysis purposes only. HDR does not: 
(a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or 
usefulness of the information furnished by these manufacturers or (b) assume any liabilities with respect to the use 
of, or for damages resulting from the use of, any information, method or process disclosed by manufacturers 
captured in this report. 
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The list above is not comprehensive and other potential manufacturers in early stages of 
commercialization include the following: 

 Lithium ion (Li-ion) - Altair Nanotechnologies, Inc. (Altair) 

 Zinc bromine (ZnBr) – RedFlow Limited (RedFlow) 

 Zinc chloride (ZnCl) – Primus Power Corporation (Primus) 

 Zinc Air (ZnFe) – Zinc Air, Inc. 

3.2.2.1 Lithium Ion (Li­ion) – A123 Systems, Inc. (A123) 

Li-ion and lithium polymer-type batteries have been widely used in end-user appliances (e.g. 
consumer electronics) and have become the de facto energy storage system in the electric vehicle 
industry (e.g. hybrids and electric vehicles). Within the battery itself, lithiated metal oxides make 
up the cathode and carbon (graphite) make up the anode. Lithium salts work as the electrolyte. In 
a charged battery, lithium atoms in the cathode become ions and deposits in the anode. An 
example chemical balance can be characterized as: 

LixC + Li1-xCoO2 <-> LiCoO2 + C 

Li-ion batteries are known for having high energy density and low internal resistance, making 
efficiencies upwards of 90% possible very attractive for power quality utility and mobile 
applications. An external heating or cooling source may be required depending on ambient 
conditions and system operation. This technology is classified as commercial because it has been 
implemented in the utility markets. 

   

Figure 9- A123 Li-ion Cells 
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Figure 10- Renewable Integration Deployment in West Virginia 

3.2.2.2 Sodium Sulfur (NaS) – NGK Insulators, Ltd. (NGK) 

In its simplest form, a NaS battery consists of molten sulfur positive electrode and molten 
sodium negative electrode, separated by a solid beta-alumina ceramic electrolyte. In the 
discharge cycle, the positive sodium ions pass through the electrolyte and combines with sulfur 
to form sodium polysulfides. During the charge cycle, the sodium polysulfides in the anode start 
to ionize to allow sodium formation in electrolyte according to: 

2Na + xS <-> Na2Sx 

Among the prevalent technologies, NaS batteries have high energy densities that are only lower 
than that of Li-ion.  The efficiency of NaS varies somewhat dependent on duty cycle due to the 
parasitic load of maintaining the batteries at the higher operating temperature of 330degs.  
However, the battery modules are packaged with sufficient insulation to maintain the battery in 
its hot operating state for periods of several days in a “standby” mode.  This technology is 
mature, given its large number of installations, especially in Japan and the many years of 
research and development targeted for utility energy storage applications.  
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Figure 11- NAS Cell Module 

 

 

 

Figure 12- NGK NAS 8 MW (Japan) 

3.2.2.3 Vanadium Redox Battery (VRB) – Prudent Energy Corporation (Prudent) 

VRB systems use electrodes to generate currents through flowing electrolytes.  The size and 
shape of the electrodes govern power density, whereas the amount of electrolyte governs the 
energy capacity of the system. The cell stacks comprise of two compartments separated by an ion 
exchange membrane. Two separate streams of electrolyte flow in and out of each cell with ion or 
proton exchange through the membrane and electron exchange through the external circuit. Ionic 
equations at the electrodes can be characterized as follows: 

Anode: V5+ + e- <-> V4+ 

Cathode: V2+ <-> V3+ + e- 
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VRB systems are recognized for their long service life as well as its ability to provide system 
sizing flexibility in terms of power and energy. VRB efficiency tends to be in the range of 70-
75%. The separation membrane prevents the mix of electrolyte flow, making recycling possible. 
This battery technology is classified to be in its nascent commercialization stage as there has 
been only a handful of utility-scale implementation, although the technology itself has been in 
development for 20 years.   

  

Figure 13- VRB Cell Stack and Electrolyte Tanks 

 

Figure 14- Standard VRB Plant Design 3 MW 

3.2.2.4 PowerCellTM – Xtreme Power, Inc. (Xtreme) 

PowerCellsTM were first developed over two decades ago and bears the signature characteristic 
of having one cell store 1 kWh worth of energy at ultra-low internal impedance. The cells were 
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developed to maximize nano-scale chemical reactions by providing electrode plates with large 
surface areas.  

These cells are solid state batteries developed from dry cell technology. Dry cells have been 
recognized in the industry for its high energy density and capacity as well as quick recharge 
times. Similar to the li-ion technology, dry cells have found success in the hybrid vehicle market 
and are considered to be a commercial technology in the utility industry. 

 

Figure 15- PowerCellTM Stacks with PCS 
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Figure 16- DPR15-100C Container 

3.2.2.5 Zinc Bromine (ZnBr) – Premium Power Corporation (Premium) 

The fundamental of energy conversion for ZnBr batteries is the same as that of VRBs. Two 
separate streams of electrolyte flow in and out of each cell compartments separated by an ion 
exchange membrane. Ionic equations at the electrodes can be characterized as follows: 

Anode: Br2 + 2e- <-> 2Br 

Cathode: Zn <-> Zn2+ + 2e- 

Like VRBs, ZnBr batteries are also recognized for its long service life and its flexibility system 
sizing based on power and energy needs. The separation membrane prevents the mix of 
electrolyte flow, making recycling possible. ZnBr efficiency is in the 60% range. Like the VRB 
systems, ZnBr battery technology is considered in its early stages of commercialization given its 
numerous  test facilities. At the time of writing, there was no publicly-available information on 
any of its electricity storage plants, the number and size of projects installed to date were 
provided by Premium. Figure 18 shows Premium’s TransFlow2000, a complete ZnBr battery 
system, complete with cell stacks, electrolyte circulation pumps, inverters and thermal 
management system configured into a standard trailer.  
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Figure 17- ZnBr Cell Stacks 

 

 

Figure 18- Premium’s TransFlow2000 Section (ZnBr battery) 
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3.2.3 Summary of Manufacturer Data: 

The following table and chart summarizes applications of battery storage systems that have been 
operating or have been contracted to complete installation in the US provided by the five 
manufacturers. Data sets do not include any sales projections or forecasts, and only include data 
points of projects implemented, or projects breaking ground. This data is proprietary and as such 
is only summarized at a higher level for the purposes of this report.  

Data sets from these five manufacturers may provide an approximate indication of battery 
industry and should not be construed as accurate predictions of industry / market behavior for the 
simple reason that data collected is not all inclusive of a few other commercialized 
manufacturers, and does not include any emerging technologies that are under final stages of 
research and development (e.g. American Recovery and Reinvestment Act (ARRA), Advanced 
Research Projects Agency-Energy (ARPA-E) funding or stealth companies backed by venture 
capital (VC)s)6.    

Table 4­ Projects Breakdown by Type and Capacity 
Application  Number of Projects  Total MW Capacity  Total MWh Capacity

Renewables Integration  19  218.6  337.6 

Power Quality  13  43.1  49.7 

Load Management  14  18.0  84.9 

Totals  46  279.7  472.2 
 

 

Figure 19- Projects Breakdown by Percentage7 

                                                             

6 Acronyms:  
ARRA = American Reinvestment and Recovery Act of 2009, ARPA-E = Advanced Research Projects Agency – 
Energy, VC = Venture Capitalists,  
7 All data points on the number of projects, system sizes and capacities were compiled from manufacturers only for 
projects in the US. Also note that HDR did not locate any publicly-available information on Premium ZnBr’s 
projects, the number of projects and sizes of installations were furnished by manufacturer. 
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A few notable highlights of the data sets include the following: 

 Load management applications are comprised of NGK, Xtreme, Prudent and 
Premium. NGK claims majority share with 78% of MW capacity. 

 Power quality applications are comprised of A123, NGK, Xtreme and Premium. 
A123 claims majority share with 65% of MW capacity. 

 Renewables integration applications are claimed by all five manufacturers. Xtreme 
claims majority share with 76% of MW capacity. 

 A few other observations made include: 

o A123 projects are focused on renewables firming and ramp management, 
frequency regulation, T&D and substation support. Projects in their 
portfolio have less than 1 hour of energy storage with the exception of a 4-
hr wind integration plant. 

o NGK projects are focused on island / peak shaving applications, and solar 
integration. Projects in their portfolio are multiple-hour systems. 

o Prudent projects are focused solar and wind integration, and island / peak 
shaving. Projects in their portfolio are multiple-hour systems. 

o Xtreme has the highest MW capacity of wind integration in the battery 
market and ramp control projects. They also work with solar integration 
and offer peak shaving / load leveling. Projects in their portfolio range 
from sub-hourly to multiple-hour systems. 

o Premium is focused on power quality, island / UPS and on peak shaving / 
load leveling projects. Projects in their portfolio are multiple-hour 
systems. 

o In almost all instances, load management services also offer UPS services, 
and may be coupled with islanded grid operation in tandem with an 
external generator. 

3.2.4 Performance Characteristics  

Key performance metrics for battery systems include:  

 Roundtrip efficiency – alternating current (AC)-to-AC efficiency of complete battery 
system, including auxiliary loads 

 Energy footprint – amount of physical real estate needed to supply certain amounts of 
energy in kWh per square feet 

 Cycle life – estimated effective useful life of operation the battery in operation 

 Storage capacity – sub-hourly or multiple hours of discharge times for systems 

 Discharge times – time response of battery system 
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 Technology risks – general limitations and concerns of battery systems 

Data points collected by manufacturers are summarized in the Technology Matrix in Appendix 
A. 

3.2.4.1 Roundtrip Efficiency 

Not all metrics will remain constant throughout a battery system operation and over its life cycle. 
For almost all technologies, temperature will play a role in performance. Roundtrip efficiencies 
are also not a constant value and are dependent on the battery State-of-Charge (SOC), 
temperature and system operations. Losses that are included in roundtrip efficiency computation 
include the conversion and storage efficiency of each technology (e.g. voltaic, coulombic, 
chemical losses), PCS and transformer losses, and any auxiliary losses of support equipment 
(e.g. pumping, cooling, heaters, etc.).  

It is also important to distinguish the fact that the performance characteristics are generally 
driven by application requirements – li-ion and dry cell systems have significantly higher 
roundtrip efficiencies than that of NaS or flow batteries. These two technologies also compete 
with the flywheel technology in the regulation markets, due to similar support times. However, 
in terms of applications, it is the NaS and flow batteries that are generally recognized to provide 
energy storage in the multiple-hour range (e.g. between 5 to 8 hrs). Roundtrip efficiency is 
affected by the amount of auxiliary loads needed to support the overall battery system and also 
by inherent technology inefficiencies. As an example the flow batteries have chemical 
inefficiencies because they utilize electrolytes as opposed to solid state cells like li-ion. Flow 
battery systems also have additional parasitic loads due to the operation of pumps that circulate 
the electrolyte through the cell stack.    

One other contributing factor to roundtrip efficiency includes standby losses that are 
characterized by self-discharge or by auxiliary loads from support equipment needed to keep 
battery systems on standby mode. Generally flow (especially during idle time), li-ion and dry 
cells have the lowest self-discharge rate.   

3.2.4.2 Energy Footprint 

The energy footprint of battery systems varies considerably, from a few hundred square feet to a 
few thousand square feet depending on technology type and design. Each manufacturer offers 
standard products, or containerized solutions, as well as custom-designed systems to fit system 
loads and, to a certain degree of flexibility, the physical constraints (e.g. placing systems in 
electric utility closet rooms, basements). Solid-state technologies like the li-ion, dry cells and 
NaS will have better energy footprint against flow battery technologies. 

HDR advises to use caution when interpreting energy footprint (square feet per MWh) metrics – 
data points provided by manufacturers range for systems upwards of 1 MW. There will be a 
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fixed amount of real estate needed for every system regardless of MW rating to be dedicated to 
auxiliary and support equipment (i.e. PCS, heating, ventilation and air conditioning (HVAC) 
equipment, transformers), as well as general constraints (i.e. clearances, road access). Premium’s 
TransFlow2000 is currently offered as trailer system and the manufacturer will be offering 
modular 2.3- and 3-MW plant designs.  

It is anticipated that the solid-state battery technology’s energy footprint will scale more linearly 
than of flow batteries for the reason that energy and power characteristics have been decoupled. 
Power is a function of electrode surface area and efficiency whereas energy is a function of 
usable electrolyte. For a flow battery system, a 1 MW plant operating at 1 hour or at 6 hours will 
have very different footprints. Differences are due to size of storage tanks, as the following 
illustrates plant dimensions: 

 Premium VRB System 

o 1 MW at 1 hour = 3,200 square feet (sq. ft.) at 13 ft. tall (volume = 42,000 
cubic ft.) 

o 1 MW at 6 hours = 4,800 sq. ft. at 16 ft. tall (volume = 78,000 cubic ft.) 

Finally, it is anticipated that flow batteries will offer a greater level of flexibility in system sizing 
design considering independent characteristics. Case in point, a 1 MW / 1 MWh system 
requirement will yield very different energy footprints when comparing a NGK NAS system 
versus a Prudent VRB system.  

3.2.4.3 Plant Life 

System plant life is the general expectation of the number of years that the battery plant is 
expected to function with proper operations and maintenance given throughout its service life. 
Plant life can be expressed in number of years, or more typical of the battery industry to be 
expressed and the number of cycles. Generally-speaking, one charge and one discharge (or vice 
versa) make up one cycle. The solid state batteries generally have a relatively shorter expected 
life than flow batteries.  

System operation, aside from the quality of active maintenance, would also play a significant 
role in determining plant life – i.e. a battery system operating at reduced Depth-of-Discharge 
(DOD) will have a longer life. Xtreme DPRTM cell curve is used as an example of 
exponentially-changing number of cycles at various DOD: 
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Figure 20- Typical Battery Life Cycle Curve State of Charge (SOC) 

Note that plant life claimed by manufacturers is a compendium of engineering projections, 
laboratory testing, and some data points are empirical from field service of battery plants. The 
flow battery systems claim an indefinite amount of cycles for its system, but have yet to have a 
battery plant operate for over 20 years – these numbers were instead derived scientifically from 
tests and research in a laboratory setting. Flow battery systems do not suffer from solids 
accumulated from electrochemical reactions as with other battery types thus theoretically having 
a longer life.    

3.2.4.4 Storage Capacity 

Storage capacity, rated by the number of hours, varies by technology type and application. 
Ancillary services focusing on frequency regulation and instantaneous bridging power will have 
sub-hour requirements whereas bulk energy storage and renewables integration will have 
multiple-hour requirements. All manufacturers highly recommend that detailed system load 
modeling and detailed load studies be completed prior to entering design phase to allow each 
manufacturer to offer the best solutions. 

NGK’s NAS has a maximum storage capacity of 7.2 hours although standard practice is to limit 
discharge to 6 hours. Prudent’s and Premium’s flow battery systems have a maximum capacity 
of 5 hours for standard product offerings, although it is not uncommon to design systems beyond 
that storage capacity window. A123’s li-ion system is geared for two applications: high power 
requiring 25 minutes or less storage capacity, or the high energy requiring 4 hours or less storage 
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capacity. Xtreme’s dry cell systems are focused on applications with 40 minutes or less storage 
capacity as well as multiple-hour systems up to 3 hours. 

3.2.4.5 Discharge Time 

Discharge time is a standard measure for a battery energy storage system to reach full output 
from a state of zero output. This may be a critical consideration for time-sensitive, quick-acting, 
applications like frequency regulation.  The fastest discharge time presented is 7 milliseconds for 
the ZnBr system followed by 20 milliseconds for the li-ion system, and finally 40 milliseconds 
for the VRB system. Li-ion systems are generally not suited for quick discharges because it 
results in generation of immense amount of heat.  

3.2.5 System Details and Requirements  

All battery systems use inverters to convert between DC and AC currents. Power electronics 
(e.g. chargers, transducers) are used to monitor battery cell performance and control overall 
system performance in real-time. All of these components, and other ancillary control or 
electronic systems, make up the Power Conversion System (PCS). All five manufacturers 
currently offer PCS design services in-house, and source manufacturing to other reputed 
components manufacturers like Dynapower, Parker Hannifin, ABB, S&C, GE, Satcon etc.  

All battery systems require auxiliary ventilation, road access and some form of 
telecommunication infrastructure (e.g. radio, telephone line or Local Area Network (LAN) 
infrastructure). Prudent’s VRB will require a building structure to house the battery system and 
associated support equipment. Premium’s ZnBr system is currently marketed as a containerized 
trailer system, but it is anticipated that their modular MW-block solutions will also require 
housing structures. 

NGK’s NAS battery system will require an auxiliary heating source to maintain operating 
temperatures at 300 degrees Celsius, or 572 degrees Fahrenheit, when the system has idled for a 
given period of time. The temperature tolerance or deadband could not be ascertained. Auxiliary 
heating is required in to keep the battery chemical in a molten state, to avoid the phase change of 
NaS from liquid to solid. Generally, a 7.2-kW electric resistance heater is used to keep cells in 
temperature only when the battery system is idle. At a system level, parasitic loads can be 
characterized as 50 kW per 1 MW capacity for its Storage Management System (SMS) and 144 
kW (heating) or 56 kW (temperature maintenance mode) per 1 MW capacity for its block heater. 

Conversely, A123’s li-ion system will require auxiliary cooling for its system. Auxiliary cooling 
is needed because of inherent energy extraction inefficiencies of an electrochemical cell. A 
battery plant is typically accompanied by a chiller plant.  Flow battery systems will generally 
require some form of cooling for its system. Premium’s TransFlow2000 trailer system comes 
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equipped with an integrated chiller. Depending on climate zones, Prudent’s VRB plants may 
require an accompanying chiller plant under warm conditions.  

In addition, flow battery systems will have pumps to move electrolytes into each compartment. 
Prudent’s electrolyte supply pumps are controlled by a Variable Frequency Drive (VFD) and 
power draw cycles between 2.5 kW (standby) and 5 kW (full load operation). 

All data points presented by manufacturers on system requirements are summarized in 
Technology Matrix in Appendix A. 

3.2.6 Technology Risks 

Each battery technology shares a certain amount of risks associated with installation and 
operation. NGK’s NAS systems require a heating source when running idle. Its ceramic-
aluminum bonds within the beta alumina cell are susceptible to corrosion gradually over a period 
of 15 years. Leakage of molten sulfur is unlikely and will be prohibited by sands within the 
module case. Xtreme’s battery system is generally limited to 50% DOD. Prudent’s VRB system 
has a relatively larger footprint than other systems and may require additional space to 
accommodate a chiller plant depending on site climate. Both flow battery systems share the same 
life-limiting component in the form of a plastic substrate that lies between the anode and 
cathode, effectively creating two compartments. Premium’s plastic substrate is made out of a 
high porosity polyethylene (PE) that can degrade over time. Power electronics failure was a 
common concern among the manufacturers. 

3.2.7 Capital, Operating and Maintenance Cost Data  

Capital costs were collected at the system level to better reflect actual costs associated with each 
battery system. Cost numbers do not reflect any site civil development costs and does not include 
any permitting or planning study costs. Because flow batteries have greater design flexibility in 
terms of power and energy, cost data is presented on a per kWh basis. System costs, common 
units either in $ per kW or $ per kWh, should only be compared when examining battery systems 
for a particular application. A123’s li-ion battery systems are quoted for High Power (15 
minutes) and High Energy (up to 4 hours).  

Throughout its service life, it is anticipated that every battery plant will undergo standard and 
routine maintenance including general housekeeping, active and preventive maintenance on 
predominantly electrical equipment (e.g. infrared scanning, visual inspection, replacing 
capacitors, fans, thermistors). Systems with mechanical equipment such as auxiliary HVAC 
equipment may require more maintenance (e.g. replacing air filters, pressure transducers, 
valves).  

Battery cells/stacks will need replacement throughout the effective useful life of the battery 
plant. All manufacturers currently offer standard product warranties spanning no more than 2 
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years with an option for extension for a certain period of time, or on an annual basis. Xtreme’s 
dry cells have longer standard warranty than the rest at 5 years, although balance of plant is 
warranted for 2 years.  

Component changeout or system repair under warranty is generally carried out by the 
manufacturer or in some cases, a qualified field service representative. The forced outage rate of 
all battery systems generally ranges from 0.3% to 3%. Although Prudent and Xtreme currently 
do not have in-house, contracted, maintenance service capabilities, they do offer comprehensive 
training services to ensure system owners and operations teams gains an thorough of system 
performance.  

Operating costs can be further defined as follows: 

Fixed O&M: Fixed operations and maintenance costs take into account plant operating and 
maintenance staff as well as costs associated with facility operations such as building and site 
maintenance, insurances, and property taxes.  Also included are general housekeeping, routine 
inspections of equipment performance and general maintenance of systems. For battery systems 
with auxiliary cooling equipment (i.e. chiller plants), additional maintenance costs over other 
battery types will be incurred. General O&M costs will also include standard part, off the shelf, 
component or equipment changout (i.e. inverter fan filters once they get dusty). For all battery 
systems, fixed O&M cost will also include the cost of remote monitoring (i.e. cost of 
telecommunications carrier, secured web hosting / monitoring). 

Variable O&M: Variable costs include the cost of unexpected failures and irregular equipment 
performance. This will likely be, but not limited to, the diagnosing, investigation and testing of 
components, and the subsequent costs for corrective action. As an example, inverter fan filters 
and PCS may fail prematurely.   

All cost and maintenance data provided by manufacturers are summarized in Technology Matrix 
in Appendix A. 
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3.3 Compressed Air Energy Storage (CAES) 

3.3.1 CAES Technology Description 

A Compressed Air Energy Storage Plant (CAES) consists of a series of motor driven 
compressors capable of filling a storage cavern with air during off peak, low load hours.  At high 
load, on peak hours the stored compressed air is delivered to a series of combustion turbines 
which are fired with natural gas for power generation.  Utilizing pre-compressed air removes the 
need for a compressor on the combustion turbine, allowing the turbine to operate at high 
efficiency during peak load periods.   

Compressed air energy storage is the least implemented and developed of the stored energy 
technologies.  Only a couple of plants are currently in operation, including Alabama Electric 
Cooperative’s (AEC) McIntosh plant which began operation in 1991.  The McIntosh plant was 
mostly funded by AEC, but the project was partially subsidized by EPRI and other organizations.  
Dresser Rand supplied the compressors and recuperators and is the only known supplier to offer 
a compressor for the application with a reliable track record.  The other plant in operation, the 
Huntorf facility, is located in Huntorf, Germany which utilizes an Alstom turbine.   The 
equipment utilized in CAES plants, which includes compressors and gas turbines, is well proven 
technology used in other mature systems and applications.  Thus, the technology is considered 
commercially available, but the complete CAES system lacks the maturity of some of the other 
energy storage options as a result of the very limited number of installations in operation.  Other 
CAES plants have been proposed but, as of yet, have never moved forward beyond conceptual 
design.  These proposed projects include the Norton Energy Storage (NES), the Iowa Stored 
Energy Park (ISEP), and the Western Energy Hub Project.  The Western Energy Hub project is 
probably the most advanced CAES project under development in the U.S.    The geology has 
been well characterized, as well as land acquisition and local and state permitting underway.  
The NES Project has been purchased by First Energy.  The proposed project will have an initial 
capacity of 270 MW, and can be expanded to a 2700 MW project.  The project site is located 
above a 600-acre underground cavern that was formerly operated as a limestone mine in Norton, 
Ohio.  The geological conditions of the site have been assessed by Hydrodynamics Group and 
Sandia National Laboratories, and the integrity of the mine has been confirmed as a stable vessel 
for compressed air storage.  The Iowa Stored Energy Park has recently terminated its progress 
due to the recent conclusion that the geology was not favorable to CAES. 

3.3.1.1 Technology Risks 

CAES has performed very well at the AEC McIntosh plant and therefore little risk is perceived 
with this technology from a technical standpoint provided the proper equipment suppliers are 
utilized and design factors are considered.  Dresser Rand provided the majority of the equipment 
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for the AEC McIntosh plant.  The construction of the Huntorf facility in Germany began 
construction in 1976, a time when gas turbines were not commercially implemented so the 
Huntorf turbine is a modified steam turbine.  Alstom does currently offer a gas turbine for 
compressed air applications, but none are currently in operation.  As such, there is limited 
potential to competitively bid the major equipment without exposing risk for utilizing first-of-a-
kind equipment from an unproven supplier.  Another significant risk involves the ability to 
identify an energy storage geological formation with significant integrity and accessibility. 

3.3.2 Performance Characteristics 

During discharge of the compressed air, the AEC McIntosh plant achieves a fuel heat rate of 
roughly 4,550 Btu/kWh (HHV).  Dresser Rand has made improvements to their CAES 
equipment offering since the commissioning of the McIntosh plant.  These improvements 
include a higher overall pressure ratio in the gas turbine, an improved recuperator design, and 
improvements in compressor efficiency.  However, these improvements have not been proven on 
a commercial scale application that is in operation.  The expected turbine heat rate at the 
generator terminals (excluding plant auxiliary loads, mechanical losses and other miscellaneous 
losses) is estimated to be under 4,300 Btu/kWh (HHV) and the turbine design has a gross 
generator output of around 137 MW at ISO conditions when utilizing a 21,500 Btu/lb (LHV) 
natural gas fuel.  Two sets of combustors are utilized in the turbine design.  The high pressure 
combustors require a 935 psia inlet gas pressure and consumes approximately 20 percent of the 
fuel and the low pressure combustors require a 340 psia inlet pressure and combusts 80 percent 
of the fuel.   

Site elevation does impact the performance characteristics of a CAES plant.  In simple cycle 
combustion turbine plants, the turbine output decreases with increased elevation as a result of the 
lower air density.  Since gas turbines are standardized designs, the compressor and turbine 
sections are not modified or designed for specific site applications.  The compressor size and 
compression ratio is therefore fixed and the flow rate of air through the compressor decreases as 
ambient air pressure decreases (i.e. elevation increases).  The Compression ration is the ratio 
between the discharged air pressure and the inlet air pressure to the compressor.  At higher 
elevations, the compressed air on the turbine side enters the inlet of the gas turbine at a lower 
inlet pressure as a result of the fixed compression ratio. In turn, less fuel is combusted due to 
lower air flow rates.  Thus, power generation decreases by as much as 20 percent when 
comparing a combustion turbine at sea level and one at 6,000 ft in elevation.   

The same fundamentals apply to CAES technology, except that there is more flexibility in the 
compressor design which can be decoupled from the gas turbine if desired.  This allows a 
compressor to be designed to achieve a higher compression ratio for higher elevation 
applications, although the power required to drive the compressor will also increase.  On the gas 
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turbine side, the power output can actually increase slightly at higher elevations as a result of a 
lower turbine exhaust pressure, assuming the inlet pressure is the same as at lower elevations.   

 The CAES performance is depicted in the Technology Summary Matrix at both sea level and at 
6,000 ft elevation assuming identical plant equipment, cavern sizes and dispatch schedule (i.e. 
compression period and power generation periods are identical).   The plant capital cost is 
increased due to larger compressors.  Additionally, the plant output is increased as a result of the 
lower turbine exhaust pressure at higher altitudes.  Overall, the electrical turnaround efficiency is 
lower at altitude, though, as a result of increased compressor sizes and increased losses during 
compression due to a greater compression ratio.  The plant size assumes four approximately 135 
MW gross power blocks.  Alternatively, Alstom has marketed a single 300 MW power block.   

3.3.2.1 Reliability/Availability 

Varying sources over varying time periods report that the AEC McIntosh plant offers availability 
from 86 to 95 percent.  At this facility, every air compressor is mounted to a single shaft that is 
coupled to a combined motor/generator unit via a clutch.  Likewise, every turbine is also 
mounted to a single shaft that is coupled to a combined motor/generator unit via a clutch.  
Depending on the operational mode, compression or power generation, the motor/generator unit 
is either coupled to the air compressors or turbines but not both.  AEC not only recommends 
separating the motor for compression and generator for electrical production, but also 
recommends separating each air compressor and turbine to alleviate maintenance complexities 
and to increase reliability. 

During the design of a CAES plant, careful consideration regarding materials of construction 
must be undertaken such that materials do not fail or need replacement in an unexpected time 
frame due to corrosion and abrasive erosion.  For example, if a salt cavern is utilized, the turbine 
manufacturers’ specifications regarding the quantity of salts in the incoming air must be 
considered.  Additionally, the Huntorf design offers dual storage caverns which have enabled the 
plant to achieve approximately 90 percent plant availability. The Huntorf plant experienced 
corrosion problems with the storage cavern wells; thus, having two storage caverns enabled 
operation of the plant while one storage cavern was inoperable due to a well head repair. 

3.3.2.2 Start Times 

Compressed air energy storage requires initial electrical energy input for air compression and 
utilizes natural gas for combustion in the turbine.  The McIntosh plant offers fast startup times of 
approximately 9 minutes for an emergency startup and 12 minutes under normal conditions.  As 
a comparison, simple cycle peaking plants consisting of gas turbines also typically require 10 
minutes for normal startup. 
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3.3.2.3 Emission Profiles/Rates 

It is expected that CAES will have emissions similar to that of a simple cycle combustion 
turbine, except reduced by approximately 60 to 70 percent due to reduced natural gas 
consumption on a per kWh basis. 

3.3.2.4 Air Quality Control System Design 

Dry low mono-nirogen oxides (NOx) combustion technology can be utilized for control of NOx 
emissions on the combustion turbine for CAES.  If NOx emissions are pushed lower such that 
dry low NOx combustion technology is insufficient, CAES technology permits use of a selective 
catalytic reduction (SCR) module, but in this case it would likely be integrated into the 
recuperator design, permitting close control of the catalyst temperature. 

3.3.3 Geological Considerations 

There are three types of geological formations generally considered for storing compressed air: 
salt domes, aquifers, and rock caverns.  These formations can then be classified as either constant 
volume or constant pressure caverns.  Constant pressure caverns utilize surface water reservoirs 
to maintain a constant cavern pressure as the compressed air displaces the water when it is 
injected into the cavern.  Constant volume caverns have a fixed volume and therefore the air 
pressure in the cavern decreases as compressed air is released from the cavern.  Figure 21 depicts 
the aforementioned geological formations generally considered for compressed air energy 
storage.   

 

Figure 21- CAES Geological Formations 

Figure 22 depicts an overall map of the continental United States with areas that contain 
potential geological formations favorable for CAES.  
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Figure 22-  Potential Geological Formations Favorable for CAES. 

3.3.4 Capital, Operating, and Maintenance Cost Data 

The project schedule for a CAES plant is highly dependent on the manufacturer’s lead times for 
equipment.  For the most part, a project should be able to be implemented in a time frame similar 
to that of a combined cycle combustion turbine plant, if a recuperator is to be implemented, 
provided the compressed air storage geological formation is available.  If a project forgoes a 
recuperator, the project schedule can be reduced by four to six months.  If a cavern must be 
drilled, mined and debrined, such as a salt dome, before implementation, this time frame 
becomes dependent upon the process used to permit and prepare the cavern.  Solution mining the 
cavern may take up to 18 to 24 months, but can be done in conjunction with construction of the 
CAES plant.   

Based on information gathered from similar projects in development, expected project duration 
is summarized in Table 5. 
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Table 5- CAES Typical Project Schedule 

 

CAES options can vary considerably depending upon the specific project.  The power island for 
a CAES option is typically small and similar in size to that of a combined cycle plant.  
Construction of the underground storage formation is a significant contributor to the cost of 
CAES.  Aquifers and depleted gas reservoirs are the least expensive storage formations since 
mining is not necessary.  Salt and rock caverns are the most expensive storage formations since 
mining is necessary before storage.  In general, rock caverns are about 60% more expensive to 
mine than salt caverns, for CAES purposes, due to the excavation of underground solid rock 
versus solution extraction of salt.  Storage formations vary in depth but most formations that can 
currently be utilized range between 2,500 ft to 6,000 ft below the earth’s surface.  Storage 
formations vary naturally in size but storage formations that require mining can be appropriately 
mined to achieve a specific storage capacity. 

3.3.4.1 Capital Costs 

The McIntosh project was commissioned in 1991 and at that time cost $65 million.  Since the 
McIntosh plant offers 110 MW of net power, the plant cost $590/kW.  ISEP was estimated 
previously at approximately $221 million to build at a plant size of approximately 268 MW, 
which correlates to a project cost of approximately $825/kW.  ISEP has not publicly released 
information regarding the quantity of storage it is projecting for ISEP.   

Table 6­ ISEP Project Cost 

 

Due to the limited number of CAES projects completed and vague task descriptions often 
associated with project costs as well as external funding that was provided for McIntosh, HDR 
estimates that CAES project capital costs would be in the range of $1,200/kW to $1,800/kW for 

Task Duration

Test well 10 mo. 

Preliminary  design 3 mo.

Permitting 12 mo.

Final design 6 mo.

Construction 24 mo.

Sum of Tasks 55 mo.

Task Est. Cost

Test well $1.5 million

Preliminary  design $.5 million

Permitting $2 million

Final design $3 million

Construction $214 million

Sum of Tasks $221 million
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a 300 to 500 MW CAES plant with ten hours of storage capacity.  HDR assumes project capital 
costs to include project direct costs associated with equipment procurement, installation labor, 
and commodity procurement as well as construction management, project management, 
engineering, and other project indirects.  Values are presented in 2011 dollars. 

Ideally, the storage cavern utilized for the project would already be available, but in the case that 
it isn’t, then the cavern would require mining.  Costs for solution mining a salt cavern are 
estimated to be $15 to $20 million for a single 135 MW application utilizing the Dresser Rand 
Technology.   

3.3.4.2 Operating Costs 

Operating costs are presented in the Technology Summary Matrix in Appendix A and are broken 
down into fixed O&M and variable O&M further defined as follows: 

Fixed O&M: Fixed operations and maintenance costs take into account plant operating and 
maintenance staff as well as costs associated with facility operations such as building and site 
maintenance, insurances, and property taxes.  Also included are the fixed portion of major parts 
and maintenance costs, spare parts and outsourced labor to perform major maintenance on the 
installed equipment.   

Variable O&M:  Variable costs include the cost of charging the energy storage system.  For 
charging of the CAES system, it has been assumed that off-peak electricity is available at a cost 
of $40/MWH. 
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3.4 Flywheels  

3.4.1 Flywheel Technology Description  

Flywheels are electromechanical energy storage devices that operate on the principle of 
converting energy between kinetic and electrical states. A massive rotating cylinder, usually 
spinning at very high speeds, connected to a motor stores usable energy in the form of kinetic 
energy. The energy conversion from kinetic to electric and vice versa is achieved through a 
variable frequency motor or drive. The motor accelerates the flywheel to higher velocities to 
store energy, and subsequently slows the flywheel down while drawing electrical energy. 
Flywheels also typically operate in a low vacuum environment to reduce inefficiencies. 
Superconductive magnetic bearings may also be used to further reduce inefficiencies.  

Generally, flywheels are used for short durations in the application of supplying backup power in 
a power outage event, regulating voltage and frequency.  

3.4.2 Manufacturers  

A quick market survey of the energy storage industry reveals that there is one flywheel 
technology manufacturer that has achieved utility market commercialization: Beacon Power 
Corporation with their Generation 4 Flywheels. Other prominent flywheel manufacturers – 
Pentadyne Power Corporation, Hitec Power Protection, Inc. and Active Power, Inc. only serve 
the commercial and industrial markets in the back-up power industry.  

Newer technology flywheel systems utilize a carbon fiber, composite flywheel that spins 
between 8,000 and 16,000 revolutions per minute (RPM) in an extremely low friction 
environment, near vacuum, using hybrid magnetic bearings.  Flywheels store energy through its 
mass and velocity. Energy content in a flywheel can be characterized as follows:  

E = 0.5Iw2 

Where E is the amount of kinetic energy stored, I is the moment of inertia (mass-related 
property) and w is the rotational velocity. Conceptually, the moment of inertia can also be 
understood as an object’s resistance to movement in a specific direction – the heavier an object, 
the higher its moment of inertia. Low-speed, high-mass flywheels (relying on I for energy 
storage) are typically made from dense metal such as steel, aluminum, or titanium; high-speed, 
low-mass flywheels (relying on w for energy storage) are constructed from composites such as 
carbon fiber. 

Flywheels are recognized for potentially long service life, fast power response and short recharge 
times. They also tend to have relatively higher turnaround efficiency in the order of 85%. This 
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energy storage technology is classified as commercial in regards to large scale utility 
applications. 

Beacon has been instrumental in the development of the flywheel technology, and has a history 
of pioneering Generations 1 through 3 flywheels in commercial deployment. They are currently 
targeting to deploy Generation 5 flywheels, with improved energy performance, by the second 
half of 2012. Beacon offers its flywheel technology and balance of system plants as the Smart 
Energy 25 product.  In the fourth quarter 2011, the company entered bankruptcy protection. and 
the company offers turn-key solutions in the US and Europe, and also provides in-house 
operating and maintenance services.   

 

  

Figure 23- Smart Energy 25 100 kW / 25 kWh 
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Figure 24- Flywheel Plant New York 

3.4.3 Performance Characteristics  

A few performance characteristics of flywheels include: low lifetime maintenance, operation can 
typically be of high number of cycles, 20-year effective useful life and since kinetic energy is 
used as the storage medium, there are no exotic or hazardous chemicals present.  

Roundtrip AC-to-AC efficiency of the system is in the order of 85% with primary parasitic loads 
being the Power Conversion System (PCS) and internal cooling system, among the mechanical 
and friction losses of the system. Beacon estimates the energy losses through a flywheel plant to 
be in the order of 7% or less of energy throughput of the plant. Primary losses are intrinsic, and 
include friction (between rotor and environment) and energy conversion losses (generator losses 
including windings, copper, induction).  

Energy footprint for flywheels is generally large and comparable to that of pumped hydropower. 
Plant life is expected to be 125,000 cycles (at 100% DOD) over a period of 25 years with no 
change in energy storage capacity resulting in a high amount of energy throughput throughout its 
effective useful life.  

Flywheel’s largest limitations are its large energy footprint and its relatively short energy storage 
duration of 15 minutes or less per system. System response times are less than 4 seconds and 
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ramp up/down rates can be 5 MW per second. This makes it an ideal candidate to serve in the 
frequency regulation services to the grid operator while maintaining reliability. According to 
Beacon, one technology risk associated with flywheel systems lie in its power electronics 
modules which have statistically failed once every 150,000 hours of operations. The aluminum 
hybrid hubs fatigue, after considerable cyclic mechanical stress, and around year 20 may require 
replacement.  

3.4.4 Manufacturer Pros and Cons  

Beacon is considered in the industry as a pioneer in developing utility scale flywheel energy 
storage systems. To date, the company has five projects in the U.S. with a nameplate capacity of 
26 MW. A significant portion of Beacon’s services are focused on regulation services. Another 
Beacon flywheel energy storage project (20 MW) is currently being constructed in Hazle 
Township, PA. Additionally, Beacon is studying the implication of integrating a 200-MW 
flywheel energy storage system at a wind farm in Ireland. 

Much of the firm’s experience can be linked back to energy research and development while part 
of SatCon Energy Systems Division. Since then, Beacon’s technology has evolved slowly and 
steadily from the energy storage for telecom applications to UPS systems and now for utility grid 
operations.  

3.4.5 Capital, Operating and Maintenance Cost Data  

Capital and operating cost data points from Beacon Power Corporation remains proprietary and 
cannot be disclosed unless a Non-Disclosure Agreement (NDA) has been signed and executed. 
However, data points from publicly-available documents suggest the following: 

 ARRA 2009 (see Appendix B) - The 20 MW Beacon flywheel plant is estimated to 
cost $48,127,957. This yields $2,406 per installed kW.  

 Sandia research paper  – High speed composite flywheel system costs were estimated 
to be the additive of $600 per kW plus $1,600 per kWh.  

Throughout its service life, it is anticipated that the flywheel system will require standard and 
routine maintenance including general housekeeping and preventive maintenance on its electrical 
equipment. The flywheel plant will require telecommunications infrastructure (e.g. radio, 
telephone or local area network (LAN) to allow for remote monitoring. 

Beacon offers in-house, contracted maintenance services as well as product warranties. The term 
for a standard warranty is 12 months from equipment start up and acceptance test. An extended 
warranty is available, recurring annually at 3% of installed capital costs. While under warranty, 
any servicing and component defects will be handled by Beacon’s field team. The forced outage 
rate of its power system is estimated to be 2% of the time, although this also depends on how 
each individual flywheel is sequenced to operate in a flywheel plant.  
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All cost and maintenance data provided by manufacturers are summarized in Technology Matrix 
in Appendix A. 
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4 COMPARISON OF STORAGE TECHNOLOGIES 
HDR has performed an initial comparison of the energy storage technologies discussed in this 
document.  The full comparison can be seen in the energy storage matrix in Appendix A.  Table 
7 below lists some of the key criteria that were compared when considering these technologies.   

 

Table 7­ Energy Storage Comparison Summary 

  

Pumped Storage 
Hydro 

Compressed 
Air Energy 
Storage 

Batteries  Flywheels 

Range of power 
capacity 

 (MW) for a specific 
site 

(For pumped 
storage, four sites 
were considered 

within the 
PacifiCorp 
footprint) 

255‐1130  100+ 1‐32  1‐20 

Range of energy 
capacity  
(MWh) 

(For pumped 
storage, four sites 
were considered 

within the 
PacifiCorp 
footprint) 

2,550‐11,300 800+ 
Variable 
depending 
on DOD 

0.25‐5 

Range of capital 
cost  

($ per kW ) 
$1,500‐$3,000 

$1,400‐
$1,700 

$450‐
$4,000 

$2,400/kW or 
$600 per kW 
plus $1,600 
per kWh. 

Year of first 
installation  1929 1978 

1995 
(sodium 
sulfur) 

2007 
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Comments on the overall commercial development of the technology, the applications that each 
technology is suited to, space requirements for each technology, performance characteristics, 
project timelines, and capital, operating and maintenance costs have been made to aid PacifiCorp in 
its IRP considerations.   

4.1 Technology Development 

Figure 25 below by the California Energy Storage Association (CESA) illustrates the installed 
capacity of various energy storage technologies worldwide. Pumped storage is by far the most 
mature and widely used energy storage technology used not only in the US, but worldwide.  In 
the U.S., pumped storage accounts for over 20,000 MW of capacity.  By comparison, there is 
only one existing CAES facility in the U.S., with a capacity of 110 MW.  Sodium-sulfur (Na-S) 
batteries have been used in Japan with the largest installation supplying approximately 34 MW 
of capacity for 6-7 hours of storage; this technology is gaining popularity in the U.S.  Sixteen 
MW of lithium-ion (Li-ion) batteries have also recently been installed in Chile, and a 2-MW 
pilot project has been executed in the U.S.  CAES systems, batteries, super capacitors, flywheels, 
and pumped storage were compared in a number of reports by Sandia National Laboratories 
(Sandia), Pacific Northwest National Laboratories (PNNL), and by the California Energy 
Storage Association (CESA).   
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Figure 25- Current Worldwide Installed Energy Storage Facility Capacity (Source: CESA) 

4.2 Applications 

CAES and Pumped storage are considered to be the only functional technologies suitable for 
bulk energy storage as stand-alone applications.  Bulk energy storage can be considered multi-
hour, multi-day or multi-week storage events.  Batteries and flywheels are most functional as a 
paired system with variable generation resources or for distributed energy storage on a smaller 
kW and kWh basis.  Each of the technologies is capable of providing ancillary services such as 
frequency regulation and other power quality applications with bulk storage technologies also 
able to provide system load following and ramping capabilities. 

4.3 Space Requirements 

Space requirements for energy storage systems vary depending upon capacity and power, and it 
is often difficult to perform an apples to apples comparison of the space requirements for the four 
technologies discussed above.  Pumped storage and CAES are capable of much higher capacities 
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and total energy storage and therefore their project footprint is substantially higher.  For 
example, Table 8 below indicates the surface space requirements for comparable 20,000 MWh 
facilities: a 1,000-MW, 20-hour pumped storage plant (including upper and lower reservoirs), a 
Li-ion battery field, and a Na-S battery field.  The space required for a pumped storage facility is 
somewhat less in acreage than a Na-S battery field, and far less than that of a Li-ion field, when 
including the area of the reservoirs.  The artist’s rendering in Figure 26 illustrates the number 
and size of the Li-ion batteries necessary to store 20,000 MWh of energy.  The resulting 1,100 
acres would equivalent to approximately 833 football fields.  For scale, a typical pumped storage 
powerhouse is indicated in the foreground.    

Table 8­Space Required for 20,000 MWh of Energy Storage 

Project Type  Approximate Footprint (Acres) 

Sodium Sulfur Batteries  270 

Li‐ion Battery Field  1,100 

Pumped Storage Reservoirs  220 

 

Figure 26 Li-ion Battery Field and a Hydroelectric P/S Plant for 20,000 MWh of Storage (Source:  
HDR) 

4.4 Performance Characteristics 

Project capacity and duration are the most important characteristics for bulk energy storage.   For 
reference, Figures 27 and 28 illustrate the current capability of energy storage technologies.  



PacifiCorp  Energy Storage Screening Study 
 

 
62  December 9, 2011 

 

Included in these figures are pumped storage, CAES, various battery technologies flywheels as 
well as capacitors.  Figure 27 is derived Figure 28 and utilizes the same data, though plotted on a 
linear scale versus a log-log scale to better reflect the real-time MW and MWh capability of the 
different technologies.  Figure 27 allows for a truer comparison of technologies with smaller 
capacities and discharge times to larger, longer duration energy storage systems.  Figure 28 
allows for a closer view of the smaller energy storage technologies. 

 

 

Figure 27- Current Energy Storage Technology Capabilities in Real Time (Source: HDR) 
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Figure 28-Current Energy Storage Technology Capabilities (Log-Log Scale)  (Source:  Electricity 
Storage Association) 

4.5 Project Timeline 

Project timelines vary widely for the various options.  Pumped storage lead times require a 
FERC licensing process which takes on average 5 years.  An additional five years is typically 
required for construction.  Greenfield closed loop systems are expected to be shorter to license.  
There are also efforts within the industry to reduce licensing times and develop more streamlined 
processes.  The timelines for CAES are on the order of 2 years.  For both pumped storage and 
CAES it is assumed that a project location has been identified, and for CAES, the geology of the 
cavern has been verified.  Batteries and flywheels have no licensing requirements and fewer 
restrictions on land use, so their development times are significantly shorter, on the order of 1 
year. 
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4.6 Cost 

There are a number of challenges associated with comparing the different types of energy storage 
technology.  While a conscientious effort was made to discuss the technologies in terms of 
similarly sized capacities and durations, this comparison is somewhat difficult as the maximum 
hours of available storage and maximum capacity vary widely from 1 or 2 MW for a lithium-ion 
battery to over 1,000 MW for a pumped storage project.  As noted earlier, many of these storage 
systems are still undergoing significant product development, and the maximum storage, 
capacity, lifetime, capital costs, and lifecycle costs of these technologies have yet to be 
determined.  Also for pumped storage and CAES, site specific conditions can significantly impact 
the cost and spatial needs for any given project.  These challenges emphasize the idea that a 
combination of many different storage technologies may be needed.  Table 9 and Figure 29 were 
developed by HDR based on the information presented in the matrix in Attachment B.  While 
these plots are helpful in understanding the capital and O&M costs on a $ per kW basis, for some 
technologies, especially batteries, capital costs are better represented with both capacity (kW) 
and storage (kWh) elements.  The capital cost per kW is shown in Table 9 below.   

Table 9­Summary of Cost and Capacity Data 

Beacon Power 
Flywheel 

A123 
Li-Ion 

NGK 
NAS 

Prudent
VRB 

Xtreme 
Dry 
Cell 

Premium 
ZnBr 

Pumped 
Storage 

CAES 
 

System 
Cost 

($/kW 
and/or 
$/kWh) 

$600 per kW 
plus $1,600 per 
kWh (Sandia) 

$900 
(High 

Power)  
$1,100 
(High 

Energy) 

$4,000 
per kW 

$644 
per kWh 

$1,800 - 
2,000 

per kW 

$200 -300 
per kWh 

plus $250 - 
350 per kW 

$1,500- 
$3,000 

per kW) 

$1,400-
$1,700 
per kW 

$2,406 per kW 
(ARRA) 

Rated 
System 
(MW) 

20 

1 (High 
Power) 

89 (High 
Energy) 

1 1 1 0.5 1000 500 

Rated 
Capacity 

(hrs) 
0.25 

0.25 
(High 

Power) 
4(High 
Energy) 

7.2 max 
(standard 
discharge 

is 6) 

1 
0.67 to 

2 
1 8-10 8 

 

Capital cost is one initial indicator of project economics, but long-term annual O&M costs may 
provide a more comprehensive representation of financial feasibility.  Figure 29 compares annual 
costs per kW of various technologies.  Because of the significant difference in capacity of the 
technologies, the figure is shown in a logarithmic scale.  A linear version of the plot is shown in 
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the upper left corner of the figure.  Pumped storage O&M Costs vary from site to site as 
discussed above, but economy of scale keeps the O&M cost per kW low.  The costs represented 
in Figure 29 are for a 1,000 MW project.  CAES’s O&M costs are generally within 4% of the 
overall installed cost.  The operating and maintenance costs associated with batteries are high, 
but vary depending upon the technologies.  As battery technology develops further, and grid 
scale installations continue, a better understanding of the costs associated with operation and 
maintenance will be achieved. 

 

 

Figure 29- Operation and Maintenance Costs for Energy Storage Technologies 
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5 CONCLUSIONS 
A number of technologies would be required to smooth variable energy resources, including bulk 
storage, distributed storage, and transmission system improvements.  While there is much debate 
about the application of new energy storage technologies, for high capacity applications greater 
than 50 MW, the least-cost, grid-scale storage technology is pumped storage which currently 
represents a proven and attractive option in terms of space required, total life cycle costs, and 
proven MW and MWh capacity. Although CAES has the potential to provide relatively similar 
bulk storage capabilities, its limited heritage and requirement for geologic-specific siting makes 
it difficult to implement.  For applications less than 50 MW with the goal  towards improving the 
performance of individual, variable energy sources, or a group of such sources, battery and 
flywheel systems become a feasible alternative.  Additionally, battery and flywheel systems have 
been successfully employed with lower capacities and shorter durations, which make them well 
suited to short-term storage for general grid stabilization and power quality needs on the order of 
minutes to a few hours.  Ultimately, these technologies may be suitable for bulk energy storage, 
but these applications appear to require more research and development.  A variety of 
complementing technologies will be required to fully address the effects of variable renewable 
energy, including bulk storage, distributed storage, consolidated balancing areas, and 
improvements to the interconnecting transmission system. 
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Energy Storage Matrix 
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