Appendix H **Avoided Cost** 2023 WA IRP ### **Appendix H – Introduction** The purpose of this document is to present the inputs into Cascade's avoided cost calculation, as well as the sources for these inputs. The data itself is sourced from a number of processes integral to the 2023 IRP, specifically the resource integration and distribution system planning sections. Once calculated, these figures are sent to Cascade's energy efficiency team, where they are used to generate Cascade's Conservation Potential Assessment (CPA). Beginning on Page 21, Cascade has provided an explanation regarding the upstream emissions calculation, which is used in the avoided cost calculation. Resource Planning appreciates its partnership with the energy efficiency team, as the CPA is a vital element to forecasting energy efficiency savings over the 28-year planning horizon. ## **Avoided Cost Workbook** ### **Summary of tabs** | Name | Description | |-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | FINAL CALCULATION | Aggregator of data from all other tabs. Currently costs past 20 years = 20th year cost | | INCRM FIXED TRANSPORT | Fixed cost of contracts that will be used to solve pre-DSM identified shortfalls | | VARIABLE TRANSPORT | Variable cost of Contracts. Once a shortfall is identified this should only use new contract costs | | FUEL | Average fuel loss across all of Cascade's Contracts | | INCRM FIXED STORAGE | Fixed cost of storage contracts that are selected as cost effective pre-DSM | | VARIABLE STORAGE | Variable cost of storage contracts. Once a shortfall is identified this should only use new contract costs | | COMMODITY COST | Price of gas based on CNGC price forecast. Can be modified for either Peak AC or annual. Need to input weights for each zone, which should be calculated by SENDOUT supply take by zone | | CARBON TAX | Adder to the commodity cost based on the desried carbon scenario | | ENVIRONMENTAL ADDER | Should stay 10% as per NWPCC recommendation unless scenario analysis | | DISTRIBUTION SYSTEM | Weighted average authorized margin, currently for Washington core cust. | | RISK PREMIUM | Theoretical Cost to fully hedge natural gas portfolio | | INFLATION | Estimated rate of inflation, modeled off the CPI. | | | Nominal Avoided Cost (By Zone) - \$/Therm | | | | | | | | |------|-------------------------------------------|----------|----------|----------|----------|-----|---------|----------| | | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Oregon | Was | hington | System | | 2023 | \$ 1.218 | \$ 1.471 | \$ 1.355 | \$ 1.387 | \$ 1.387 | \$ | 1.315 | \$ 1.358 | | 2024 | \$ 0.921 | \$ 1.264 | \$ 1.159 | \$ 1.665 | \$ 1.665 | \$ | 1.250 | \$ 1.460 | | 2025 | \$ 2.393 | \$ 1.220 | \$ 1.063 | \$ 1.068 | \$ 1.068 | \$ | 1.079 | \$ 1.078 | | 2026 | \$ 1.507 | \$ 1.022 | \$ 0.952 | \$ 1.126 | \$ 1.126 | \$ | 0.953 | \$ 1.042 | | 2027 | \$ 2.442 | \$ 1.149 | \$ 1.001 | \$ 1.047 | \$ 1.047 | \$ | 1.030 | \$ 1.040 | | 2028 | \$ 2.385 | \$ 1.100 | \$ 0.986 | \$ 1.012 | \$ 1.012 | \$ | 1.013 | \$ 1.014 | | 2029 | \$ 2.607 | \$ 1.250 | \$ 1.051 | \$ 1.022 | \$ 1.022 | \$ | 1.085 | \$ 1.056 | | 2030 | \$ 0.895 | \$ 3.708 | \$ 1.954 | \$ 1.066 | \$ 1.066 | \$ | 2.690 | \$ 1.887 | | 2031 | \$ 2.672 | \$ 1.239 | \$ 1.074 | \$ 1.133 | \$ 1.133 | \$ | 1.107 | \$ 1.121 | | 2032 | \$ 1.717 | \$ 1.109 | \$ 1.031 | \$ 1.148 | \$ 1.148 | \$ | 1.039 | \$ 1.094 | | 2033 | \$ 2.811 | \$ 1.415 | \$ 1.160 | \$ 1.096 | \$ 1.096 | \$ | 1.197 | \$ 1.148 | | 2034 | \$ 3.073 | \$ 1.327 | \$ 1.114 | \$ 1.063 | \$ 1.063 | \$ | 1.161 | \$ 1.113 | | 2035 | \$ 2.902 | \$ 1.322 | \$ 1.141 | \$ 1.073 | \$ 1.073 | \$ | 1.179 | \$ 1.127 | | 2036 | \$ 0.993 | \$ 1.931 | \$ 1.340 | \$ 1.118 | \$ 1.118 | \$ | 1.577 | \$ 1.350 | | 2037 | \$ 1.859 | \$ 1.230 | \$ 1.126 | \$ 1.168 | \$ 1.168 | \$ | 1.130 | \$ 1.149 | | 2038 | \$ 3.343 | \$ 1.413 | \$ 1.208 | \$ 1.121 | \$ 1.121 | \$ | 1.253 | \$ 1.187 | | 2039 | \$ 3.304 | \$ 1.413 | \$ 1.212 | \$ 1.138 | \$ 1.138 | \$ | 1.257 | \$ 1.198 | | 2040 | \$ 3.662 | \$ 1.386 | \$ 1.214 | \$ 1.126 | \$ 1.126 | \$ | 1.262 | \$ 1.195 | | 2041 | \$ 1.064 | \$ 1.072 | \$ 5.998 | \$ 1.163 | \$ 1.163 | \$ | 11.790 | \$ 6.527 | | 2042 | \$ 4.016 | \$ 1.529 | \$ 1.291 | \$ 1.223 | \$ 1.223 | \$ | 1.352 | \$ 1.289 | | 2043 | \$ 4.117 | \$ 1.567 | \$ 1.323 | \$ 1.253 | \$ 1.253 | \$ | 1.386 | \$ 1.321 | | 2044 | \$ 4.226 | \$ 1.608 | \$ 1.358 | \$ 1.287 | \$ 1.287 | \$ | 1.422 | \$ 1.356 | | 2045 | \$ 4.344 | \$ 1.653 | \$ 1.396 | \$ 1.323 | \$ 1.323 | \$ | 1.462 | \$ 1.394 | | 2046 | \$ 4.472 | \$ 1.702 | \$ 1.437 | \$ 1.362 | \$ 1.362 | \$ | 1.505 | \$ 1.435 | | 2047 | \$ 4.608 | \$ 1.754 | \$ 1.481 | \$ 1.403 | \$ 1.403 | \$ | 1.551 | \$ 1.479 | | 2048 | \$ 4.752 | \$ 1.809 | \$ 1.528 | \$ 1.447 | \$ 1.447 | \$ | 1.599 | \$ 1.525 | | 2049 | \$ 4.905 | \$ 1.867 | \$ 1.577 | \$ 1.494 | \$ 1.494 | \$ | 1.651 | \$ 1.574 | | 2050 | \$ 5.065 | \$ 1.928 | \$ 1.628 | \$ 1.542 | \$ 1.542 | \$ | 1.705 | \$ 1.625 | | 2051 | \$ 5.233 | \$ 1.992 | \$ 1.682 | \$ 1.593 | \$ 1.593 | \$ | 1.761 | \$ 1.679 | | 2052 | \$ 5.407 | \$ 2.058 | \$ 1.738 | \$ 1.646 | \$ 1.646 | \$ | 1.820 | \$ 1.735 | | 2053 | \$ 5.588 | \$ 2.127 | \$ 1.796 | \$ 1.701 | \$ 1.701 | \$ | 1.881 | \$ 1.793 | | 2054 | \$ 5.775 | \$ 2.198 | \$ 1.856 | \$ 1.759 | \$ 1.759 | \$ | 1.944 | \$ 1.853 | | 2055 | \$ 5.970 | \$ 2.272 | \$ 1.919 | \$ 1.818 | \$ 1.818 | \$ | 2.009 | \$ 1.916 | | 2056 | \$ 6.172 | \$ 2.349 | \$ 1.984 | \$ 1.879 | \$ 1.879 | \$ | 2.077 | \$ 1.980 | | 2057 | \$ 6.381 | \$ 2.429 | \$ 2.051 | \$ 1.943 | \$ 1.943 | \$ | 2.148 | \$ 2.048 | | 2058 | \$ 6.598 | \$ 2.511 | \$ 2.121 | \$ 2.009 | \$ 2.009 | \$ | 2.221 | \$ 2.117 | | 2059 | \$ 6.823 | \$ 2.597 | \$ 2.193 | \$ 2.077 | \$ 2.077 | \$ | 2.296 | \$ 2.189 | | 2060 | \$ 7.055 | \$ 2.685 | \$ 2.268 | \$ 2.148 | \$ 2.148 | \$ | 2.375 | \$ 2.264 | | 2061 | \$ 7.296 | \$ 2.777 | \$ 2.345 | \$ 2.222 | \$ 2.222 | \$ | 2.456 | \$ 2.341 | | 2062 | \$ 7.545 | \$ 2.872 | \$ 2.425 | \$ 2.297 | \$ 2.297 | \$ | 2.539 | \$ 2.421 | | 2063 | \$ 7.803 | \$ 2.970 | \$ 2.508 | \$ 2.376 | \$ 2.376 | \$ | 2.626 | \$ 2.504 | | 2064 | \$ 8.070 | \$ 3.072 | \$ 2.594 | \$ 2.457 | \$ 2.457 | \$ | 2.716 | \$ 2.590 | | 2065 | \$ 8.346 | \$ 3.177 | \$ 2.683 | \$ 2.541 | \$ 2.541 | \$ | 2.809 | \$ 2.678 | | 2066 | \$ 8.632 | \$ 3.286 | \$ 2.775 | \$ 2.628 | \$ 2.628 | \$ | 2.905 | \$ 2.770 | | 2067 | \$ 8.928 | \$ 3.398 | \$ 2.870 | \$ 2.718 | \$ 2.718 | \$ | 3.005 | \$ 2.865 | | 2068 | \$ 9.234 | \$ 3.514 | \$ 2.968 | \$ 2.812 | \$ 2.812 | \$ | 3.108 | \$ 2.963 | | | Real 2021\$ Avoided Cost (By Zone) | | | | | | | | | |------|------------------------------------|----------|----------|----------|----------|------|---------|----------|-------------------------------------------------------| | | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Oregon | Wash | nington | System | | | 2023 | \$ 1.218 | \$ 1.471 | \$ 1.355 | \$ 1.387 | \$ 1.387 | \$ | 1.315 | \$ 1.358 | | | 2024 | \$ 0.877 | \$ 1.203 | \$ 1.103 | \$ 1.585 | \$ 1.585 | \$ | 1.190 | \$ 1.390 | Discount Rate | | 2025 | \$ 2.168 | \$ 1.105 | \$ 0.963 | \$ 0.968 | \$ 0.968 | \$ | 0.978 | \$ 0.976 | Discoulit Nate | | 2026 | \$ 1.300 | \$ 0.882 | \$ 0.821 | \$ 0.971 | \$ 0.971 | \$ | 0.822 | \$ 0.898 | <b>5.0</b> 00/ | | 2027 | \$ 2.004 | \$ 0.943 | \$ 0.822 | \$ 0.859 | \$ 0.859 | \$ | 0.845 | \$ 0.854 | 5.06% | | 2028 | \$ 1.863 | \$ 0.860 | \$ 0.771 | \$ 0.791 | \$ 0.791 | \$ | 0.791 | \$ 0.793 | | | 2029 | \$ 1.939 | \$ 0.929 | \$ 0.782 | \$ 0.760 | \$ 0.760 | \$ | 0.807 | \$ 0.785 | Source: https://www.zillow.com/mortgage-rates/30-year | | 2030 | \$ 0.633 | \$ 2.625 | \$ 1.383 | \$ 0.754 | \$ 0.754 | \$ | 1.904 | \$ 1.336 | fixed/ | | 2031 | \$ 1.801 | \$ 0.835 | \$ 0.724 | \$ 0.763 | \$ 0.763 | \$ | 0.746 | \$ 0.755 | | | 2032 | \$ 1.101 | \$ 0.711 | \$ 0.661 | \$ 0.736 | \$ 0.736 | \$ | 0.666 | \$ 0.702 | As of - 6/8/2022 | | 2033 | \$ 1.716 | \$ 0.864 | \$ 0.708 | \$ 0.669 | \$ 0.669 | \$ | 0.731 | \$ 0.701 | | | 2034 | \$ 1.785 | \$ 0.771 | \$ 0.647 | \$ 0.618 | \$ 0.618 | \$ | 0.674 | \$ 0.647 | | | 2035 | \$ 1.605 | \$ 0.731 | \$ 0.631 | \$ 0.593 | \$ 0.593 | \$ | 0.652 | \$ 0.623 | | | 2036 | \$ 0.523 | \$ 1.016 | \$ 0.705 | \$ 0.589 | \$ 0.589 | \$ | 0.830 | \$ 0.711 | | | 2037 | \$ 0.932 | \$ 0.616 | \$ 0.564 | \$ 0.585 | \$ 0.585 | \$ | 0.566 | \$ 0.576 | | | 2038 | \$ 1.594 | \$ 0.674 | \$ 0.576 | \$ 0.535 | \$ 0.535 | \$ | 0.598 | \$ 0.566 | | | 2039 | \$ 1.500 | \$ 0.642 | \$ 0.550 | \$ 0.516 | \$ 0.516 | \$ | 0.571 | \$ 0.544 | | | 2040 | | \$ 0.599 | \$ 0.525 | \$ 0.486 | \$ 0.486 | \$ | 0.545 | \$ 0.516 | | | 2041 | \$ 0.438 | \$ 0.441 | \$ 2.467 | \$ 0.478 | \$ 0.478 | \$ | 4.849 | \$ 2.684 | | | 2042 | \$ 1.572 | \$ 0.598 | \$ 0.505 | \$ 0.479 | \$ 0.479 | \$ | 0.529 | \$ 0.504 | | | 2043 | \$ 1.534 | \$ 0.584 | \$ 0.493 | \$ 0.467 | \$ 0.467 | \$ | 0.516 | \$ 0.492 | | | 2044 | \$ 1.499 | \$ 0.570 | \$ 0.482 | \$ 0.456 | \$ 0.456 | \$ | 0.504 | \$ 0.481 | | | 2045 | | \$ 0.558 | \$ 0.471 | \$ 0.447 | \$ 0.447 | \$ | 0.494 | \$ 0.471 | | | 2046 | \$ 1.437 | \$ 0.547 | \$ 0.462 | \$ 0.437 | \$ 0.437 | \$ | 0.484 | \$ 0.461 | | | 2047 | \$ 1.409 | \$ 0.536 | \$ 0.453 | \$ 0.429 | \$ 0.429 | \$ | 0.474 | \$ 0.452 | | | 2048 | \$ 1.383 | \$ 0.527 | \$ 0.445 | \$ 0.421 | \$ 0.421 | \$ | 0.466 | \$ 0.444 | | | 2049 | \$ 1.359 | \$ 0.517 | \$ 0.437 | \$ 0.414 | \$ 0.414 | \$ | 0.457 | \$ 0.436 | | | 2050 | | \$ 0.508 | \$ 0.429 | \$ 0.407 | \$ 0.407 | \$ | 0.450 | \$ 0.429 | | | 2051 | \$ 1.314 | \$ 0.500 | \$ 0.422 | \$ 0.400 | \$ 0.400 | \$ | 0.442 | \$ 0.422 | | | 2052 | \$ 1.292 | \$ 0.492 | \$ 0.415 | \$ 0.393 | \$ 0.393 | \$ | 0.435 | \$ 0.415 | | | 2053 | \$ 1.271 | \$ 0.484 | \$ 0.408 | \$ 0.387 | \$ 0.387 | \$ | 0.428 | \$ 0.408 | | | 2054 | \$ 1.250 | \$ 0.476 | \$ 0.402 | \$ 0.381 | \$ 0.381 | \$ | 0.421 | \$ 0.401 | | | 2055 | | \$ 0.468 | \$ 0.395 | \$ 0.375 | \$ 0.375 | \$ | 0.414 | \$ 0.395 | | | 2056 | \$ 1.211 | \$ 0.461 | \$ 0.389 | \$ 0.369 | \$ 0.369 | \$ | 0.407 | \$ 0.388 | | | 2057 | | \$ 0.453 | \$ 0.383 | \$ 0.363 | \$ 0.363 | \$ | 0.401 | \$ 0.382 | | | 2058 | \$ 1.173 | \$ 0.446 | \$ 0.377 | \$ 0.357 | \$ 0.357 | \$ | 0.395 | \$ 0.376 | | | 2059 | \$ 1.154 | \$ 0.439 | \$ 0.371 | \$ 0.351 | \$ 0.351 | \$ | 0.388 | \$ 0.370 | | | 2060 | \$ 1.136 | \$ 0.432 | \$ 0.365 | \$ 0.346 | \$ 0.346 | \$ | 0.382 | \$ 0.364 | | | 2061 | \$ 1.118 | \$ 0.426 | \$ 0.359 | \$ 0.340 | \$ 0.340 | \$ | 0.376 | \$ 0.359 | | | 2062 | \$ 1.101 | \$ 0.419 | \$ 0.354 | \$ 0.335 | \$ 0.335 | \$ | 0.370 | \$ 0.353 | | | 2063 | \$ 1.083 | \$ 0.412 | \$ 0.348 | \$ 0.330 | \$ 0.330 | \$ | 0.365 | \$ 0.348 | | | 2064 | \$ 1.066 | \$ 0.406 | \$ 0.343 | \$ 0.325 | \$ 0.325 | \$ | 0.359 | \$ 0.342 | | | 2065 | \$ 1.050 | \$ 0.400 | \$ 0.337 | \$ 0.320 | \$ 0.320 | \$ | 0.353 | \$ 0.337 | | | 2066 | \$ 1.034 | \$ 0.393 | \$ 0.332 | \$ 0.315 | \$ 0.315 | \$ | 0.348 | \$ 0.332 | | | 2067 | \$ 1.017 | \$ 0.387 | \$ 0.327 | \$ 0.310 | \$ 0.310 | \$ | 0.342 | \$ 0.326 | | | 2068 | \$ 1.002 | \$ 0.381 | \$ 0.322 | \$ 0.305 | \$ 0.305 | \$ | 0.337 | \$ 0.321 | | ## **Incremental Fixed Transportation** | | Total Cost - \$/dth | |------|---------------------| | 2023 | 0 | | 2024 | 0 | | 2025 | 0 | | 2026 | 0 | | 2027 | | | 2028 | 0 | | 2029 | 0 | | 2030 | 0 | | 2031 | 0 | | 2032 | | | 2033 | 0 | | 2034 | 0 | | 2035 | 0 | | 2036 | 0 | | 2037 | | | 2038 | | | 2039 | | | 2040 | | | 2041 | | | 2042 | | | Allocated Cost | | | | | |----------------|-------------|---|--|--| | | I-5 Exp GTI | ٧ | | | | 2021 | 0 | 0 | | | | 2022 | 0 | 0 | | | | 2023 | 0 | 0 | | | | 2024 | 0 | 0 | | | | 2025 | 0 | 0 | | | | 2026 | 0 | 0 | | | | 2027 | 0 | 0 | | | | 2028 | 0 | 0 | | | | 2029 | 0 | 0 | | | | 2030 | 0 | 0 | | | | 2031 | 0 | 0 | | | | 2032 | 0 | 0 | | | | 2033 | 0 | 0 | | | | 2034 | 0 | 0 | | | | 2035 | 0 | 0 | | | | 2036 | 0 | | | | | 2037 | 0 | 0 | | | | 2038 | 0 | 0 | | | | 2039 | 0 | 0 | | | | 2040 | 0 | 0 | | | #### **Variable Transportation** | | Total Cost \$/dth | |------|-------------------| | 2023 | 0.008729844 | | 2024 | 0.008729844 | | 2025 | 0.008729844 | | 2026 | 0.008729844 | | 2027 | 0.008729844 | | 2028 | 0.008729844 | | 2029 | 0.008729844 | | 2030 | 0.008729844 | | 2031 | 0.008729844 | | 2032 | 0.008729844 | | 2033 | 0.008729844 | | 2034 | 0.008729844 | | 2035 | 0.008729844 | | 2036 | 0.008729844 | | 2037 | 0.008729844 | | 2038 | 0.008729844 | | 2039 | 0.008729844 | | 2040 | 0.008729844 | | 2041 | 0.008729844 | | 2042 | 0.008729844 | | New Allocat | ed Cost | | |-------------|---------|-----| | | I-5 Exp | GTN | | 2023 | 0 | 0 | | 2024 | 0 | 0 | | 2025 | 0 | 0 | | 2026 | 0 | 0 | | 2027 | 0 | 0 | | 2028 | 0 | 0 | | 2029 | 0 | 0 | | 2030 | 0 | 0 | | 2031 | 0 | 0 | | 2032 | 0 | 0 | | 2033 | 0 | 0 | | 2034 | 0 | 0 | | 2035 | 0 | 0 | | 2036 | 0 | 0 | | 2037 | 0 | | | 2038 | 0 | 0 | | 2039 | 0 | 0 | | 2040 | 0 | 0 | | 2041 | 0 | 0 | | 2042 | 0 | 0 | #### Contract GTN13687 0.004001515 GTN13688 0.00531888 GTN17019W 0.00173264 GTN17021 0.00434656 GTN17022 0.00452416 GTN17023 0.00656256 GTN17025 0.0068304 GTN17026 0.0070128 GTN17028 0.00727216 GTN17031 0.00750704 GTN17033 0.0077424 GTN17034 0.00801552 GTN17036 0.00831104 GTN17037 0.00979936 NWP100002N 0.03 NWP100064Z20 0.03 0.03 NWP100134N11 NWP100149S 0.03 NWP100150N 0.03 NWP132329Z3W 0.03 NWP135558SS 0.03 NWP139090Z26 0.03 NWP139382 0.03 NWP139383 0.03 NWP139384 0.03 0.03 NWP139630MEO 0.03 NWP139637Z3W 0.03 NWP140047DC NWP140748Z26 0.03 RUBY6103600B 0.01 0.00979936 GTN18507 0.02748746 Average **Contracts** ### Fuel | T | otal Cost - dth | |------|-----------------| | 2023 | 0.012807692 | | 2024 | 0.012807692 | | 2025 | 0.012807692 | | 2026 | 0.012807692 | | 2027 | 0.012807692 | | 2028 | 0.012807692 | | 2029 | 0.012807692 | | 2030 | 0.012807692 | | 2031 | 0.012807692 | | 2032 | 0.012807692 | | 2033 | 0.012807692 | | 2034 | 0.012807692 | | 2035 | 0.012807692 | | 2036 | 0.012807692 | | 2037 | 0.012807692 | | 2038 | 0.012807692 | | 2039 | 0.012807692 | | 2040 | 0.012807692 | | 2041 | 0.012807692 | | 2042 | 0.012807692 | # **Existing Contracts** | Contract | Cost | | |--------------|-------|--| | GTN13687 | 0.005 | | | GTN13688 | 0.005 | | | GTN17019W | 0.005 | | | GTN17021 | 0.005 | | | GTN17022 | 0.005 | | | GTN17023 | 0.005 | | | GTN17025 | 0.005 | | | GTN17026 | 0.005 | | | GTN17028 | 0.005 | | | GTN17031 | 0.005 | | | GTN17033 | 0.005 | | | GTN17034 | 0.005 | | | GTN17036 | 0.005 | | | GTN17037 | 0.005 | | | JPWD-100302 | 1.61 | | | JPWD-100401 | 0.17 | | | JPWD-135365 | 0.17 | | | JPWD-139622 | 0.17 | | | JPWD-139624 | 1.61 | | | JPWD-139626 | 0.17 | | | JPWD-139627 | 1.61 | | | NWP100002S | 1.61 | | | NWP100064MEO | 1.61 | | | NWP100134S3S | 1.61 | | | NWP100149N | 1.61 | | | NWP100150S | 1.61 | | | NWP132329MEO | 1.61 | | | NWP135558P3W | 1.61 | | | NWP139090Z26 | 1.61 | | | NWP139382 | 1.61 | | | NWP139383 | 1.61 | | | NWP139384 | 1.61 | | | NWP139630MEO | 1.61 | | | NWP139637Z3W | 1.61 | | | NWP140047DC | 1.61 | | | NWP140748Z26 | 1.61 | | | PLWD-100304 | 1.61 | | | PLWD-100601 | 0.53 | | | PLWD-140857 | 0.53 | | | PLWD-141193 | 1.61 | | | GTN18057 | 0.005 | | Average 1.195806452 ## **Fixed Storage** | Total Cost \$/dt | h | |------------------|---| | 2021 | 0 | | 2022 | 0 | | 2023 | 0 | | 2024 | 0 | | 2025 | 0 | | 2026 | 0 | | 2027 | 0 | | 2028 | 0 | | 2029 | 0 | | 2030 | 0 | | 2031 | 0 | | 2032 | 0 | | 2033 | 0 | | 2034 | 0 | | 2035 | 0 | | 2036 | 0 | | 2037 | 0 | | 2038 | 0 | | 2039 | 0 | | 2040 | 0 | | Allocated Cost | | |----------------|---| | 2021 | 0 | | 2022 | 0 | | 2023 | 0 | | 2024 | 0 | | 2025 | 0 | | 2026 | 0 | | 2027 | 0 | | 2028 | 0 | | 2029 | 0 | | 2030 | 0 | | 2031 | 0 | | 2032 | 0 | | 2033 | 0 | | 2034 | 0 | | 2035 | 0 | | 2036 | 0 | | 2037 | 0 | | 2038 | 0 | | 2039 | 0 | | 2040 | 0 | ### **Variable Storage** | Tot | al Cost \$/dth | |------|----------------| | 2019 | 0 | | 2020 | 0 | | 2021 | 0 | | 2022 | 0 | | 2023 | 0 | | 2024 | 0 | | 2025 | 0 | | 2026 | 0 | | 2027 | 0 | | 2028 | 0 | | 2029 | 0 | | 2030 | 0 | | 2031 | 0 | | 2032 | 0 | | 2033 | 0 | | 2034 | 0 | | 2035 | 0 | | 2036 | 0 | | 2037 | 0 | | 2038 | 0 | | New Allocated Cost | | |--------------------|---| | 2019 | 0 | | 2020 | 0 | | 2021 | 0 | | 2022 | 0 | | 2023 | 0 | | 2024 | 0 | | 2025 | 0 | | 2026 | 0 | | 2027 | 0 | | 2028 | 0 | | 2029 | 0 | | 2030 | 0 | | 2031 | 0 | | 2032 | 0 | | 2033 | 0 | | 2034 | 0 | | 2035 | 0 | | 2036 | 0 | | 2037 | 0 | | 2038 | 0 | | | | | | | ( | Commo | dity Cost - | - Calcula | |--------|-----|----------|----------|----------|----------|----------|-------------|-----------| | \$/dth | | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Oregon | Washington | System | | 20 | 023 | 5.607068 | 5.774859 | 5.744817 | 6.015492 | 6.015492 | 5.61970042 | 5.879073 | | 20 | 024 | 3.727867 | 3.842855 | 3.822267 | 4.004557 | 4.004557 | 3.7365245 | 3.911539 | | 20 | 025 | 3.142412 | 3.236361 | 3.21954 | 3.37345 | 3.37345 | 3.14948543 | 3.296722 | | 20 | 026 | 2.92139 | 2.999242 | 2.985303 | 3.102232 | 3.102232 | 2.92725144 | 3.040205 | | 20 | 027 | 2.775327 | 2.838771 | 2.827411 | 2.91552 | 2.91552 | 2.78010402 | 2.866025 | | 20 | 028 | 2.789262 | 2.849546 | 2.838752 | 2.920447 | 2.920447 | 2.79380065 | 2.873714 | | 20 | 029 | 2.838937 | 2.902002 | 2.89071 | 2.976336 | 2.976336 | 2.8436851 | 2.927423 | | 20 | 030 | 2.906857 | 2.970625 | 2.959207 | 3.034188 | 3.034188 | 2.9116582 | 2.98643 | | 20 | 031 | 2.905455 | 2.968463 | 2.957182 | 3.023335 | 3.023335 | 2.91019847 | 2.977308 | | 20 | 032 | 2.985695 | 3.047905 | 3.036767 | 3.103184 | 3.103184 | 2.99037866 | 3.057578 | | 20 | 033 | 3.079513 | 3.140227 | 3.129357 | 3.196457 | 3.196457 | 3.08408444 | 3.151614 | | 20 | 034 | 3.077847 | 3.138871 | 3.127945 | 3.190452 | 3.190452 | 3.08244145 | 3.146104 | | 20 | 035 | 3.168583 | 3.233091 | 3.221542 | 3.27716 | 3.27716 | 3.17344 | 3.231812 | | 20 | 036 | 3.198183 | 3.267598 | 3.255169 | 3.302897 | 3.302897 | 3.203409 | 3.255876 | | 20 | 037 | 3.151787 | 3.22734 | 3.213813 | 3.249175 | 3.249175 | 3.15747531 | 3.200427 | | 20 | 038 | 3.222101 | 3.299196 | 3.285392 | 3.320865 | 3.320865 | 3.22790561 | 3.271212 | | 20 | 039 | 3.28396 | 3.359113 | 3.345657 | 3.384805 | 3.384805 | 3.28961797 | 3.335733 | | 20 | 040 | 3.309947 | 3.38208 | 3.369165 | 3.410615 | 3.410615 | 3.31537791 | 3.362948 | | 20 | 041 | 3.383176 | 3.454407 | 3.441653 | 3.486448 | 3.486448 | 3.38853853 | 3.43881 | | 20 | 042 | 3.514565 | 3.577993 | 3.566637 | 3.622865 | 3.622865 | 3.51934016 | 3.578051 | | at | ated From Price Forecast | | | | | | | | | | | |------------|--------------------------|------------------------------|----------|----------|----------|--|--|--|--|--|--| | | | Basin Weights (From SENDOUT) | | | | | | | | | | | 73 | | | Aeco | Rockies | Sumas | | | | | | | | 39 | | Zone 1 | 0 | 0.409083 | 0.590917 | | | | | | | | 22 | | Zone 2 | 0 | 0.502903 | 0.497097 | | | | | | | | )5 | | Zone 3 | 0 | 0.486105 | 0.513895 | | | | | | | | 25 | | Zone 4 | 0.222371 | 0.394663 | 0.382966 | | | | | | | | L <b>4</b> | | Oregon | 0.222371 | 0.394663 | 0.382966 | | | | | | | | 23 | | Washington | 0 | 0.416146 | 0.583854 | | | | | | | | 13 | | System | 0.189784 | 0.353965 | 0.456252 | | | | | | | | 08 | | | | | | | | | | | | | 78 | | Forecast Type? | Annual | | | | | | | | | | | Commodity Cost | | | | | | | | | |------|-------------------------|----------|----------|--|--|--|--|--|--| | | Price Forecast (Annual) | | | | | | | | | | | Aeco | Rockies | Sumas | | | | | | | | 2023 | 6.828098 | 6.663888 | 4.875447 | | | | | | | | 2024 | 4.550234 | 4.452107 | 3.226487 | | | | | | | | 2025 | 3.836675 | 3.734141 | 2.732767 | | | | | | | | 2026 | 3.448984 | 3.411737 | 2.581931 | | | | | | | | 2027 | 3.17299 | 3.174919 | 2.498696 | | | | | | | | 2028 | 3.15801 | 3.168955 | 2.526406 | | | | | | | | 2029 | 3.225425 | 3.236147 | 2.563955 | | | | | | | | 2030 | 3.245493 | 3.308491 | 2.628812 | | | | | | | | 2031 | 3.204372 | 3.302311 | 2.630717 | | | | | | | | 2032 | 3.285782 | 3.377523 | 2.714438 | | | | | | | | 2033 | 3.38264 | 3.461915 | 2.814783 | | | | | | | | 2034 | 3.360327 | 3.4622 | 2.811765 | | | | | | | | 2035 | 3.420161 | 3.574884 | 2.887308 | | | | | | | | 2036 | 3.414388 | 3.635386 | 2.895514 | | | | | | | | 2037 | 3.312523 | 3.627655 | 2.822351 | | | | | | | | 2038 | 3.38337 | 3.707675 | 2.885946 | | | | | | | | 2039 | 3.461714 | 3.757306 | 2.956269 | | | | | | | | 2040 | 3.497987 | 3.764269 | 2.995427 | | | | | | | | 2041 | 3.586236 | 3.83182 | 3.072586 | | | | | | | | 2042 | 3.768865 | 3.914063 | 3.237998 | | | | | | | #### Appendix H Avoided Cost Calculation ### **Carbon Compliance Cost** | Scenario? | SCC 2.5% | SCC 2.5% | | |-----------|------------|----------|----------| | \$/dth | Washington | Oregon | System | | 2023 | 4.57905159 | 4.579052 | 4.579052 | | 2024 | 4.64949854 | 4.649499 | 4.649499 | | 2025 | 4.79039243 | 4.790392 | 4.790392 | | 2026 | 4.86083938 | 4.860839 | 4.860839 | | 2027 | 4.93128633 | 4.931286 | 4.931286 | | 2028 | 5.00173328 | 5.001733 | 5.001733 | | 2029 | 5.07218022 | 5.07218 | 5.07218 | | 2030 | 5.14262717 | 5.142627 | 5.142627 | | 2031 | 5.21307412 | 5.213074 | 5.213074 | | 2032 | 5.28352107 | 5.283521 | 5.283521 | | 2033 | 5.35396801 | 5.353968 | 5.353968 | | 2034 | 5.42441496 | 5.424415 | 5.424415 | | 2035 | 5.49486191 | 5.494862 | 5.494862 | | 2036 | 5.56530886 | 5.565309 | 5.565309 | | 2037 | 5.70620275 | 5.706203 | 5.706203 | | 2038 | 5.7766497 | 5.77665 | 5.77665 | | 2039 | 5.84709665 | 5.847097 | 5.847097 | | 2040 | 5.91754359 | 5.917544 | 5.917544 | | 2041 | 5.98799054 | 5.987991 | 5.987991 | | 2042 | 6.05843749 | 6.058437 | 6.058437 | EPA 40 CFR Part 98 Subpart NN default higher heating value is 1.026 mmbtu/Mscf EPA 40 CFR Part 98 Subpart NN Methodology 2 default CO2 emissions factor - 0.0544 metric tons CO2/Mscf CNGC WA heating values - from EPA Subpart NN reporting | 2012 | 1.032 | mmbtu/Mscf | |---------|------------|------------| | 2013 | 1.035 | mmbtu/Mscf | | 2014 | 1.043 | mmbtu/Mscf | | 2015 | 1.062 | mmbtu/Mscf | | 2016 | 1.073 | mmbtu/Mscf | | 2017 | 1.075 | mmbtu/Mscf | | average | 1.05333333 | mmbtu/Mscf | | | | | | Carbon Forecast | | | | | | | |-----------------|----------|----------|--|--|--|--| | | | SCC 2.5% | | | | | | Year | \$/ton | \$/dth | | | | | | 2023 | 83.12575 | 4.579052 | | | | | | 2024 | 84.40461 | 4.649499 | | | | | | 2025 | 86.96232 | 4.790392 | | | | | | 2026 | 88.24118 | 4.860839 | | | | | | 2027 | 89.52004 | 4.931286 | | | | | | 2028 | 90.79889 | 5.001733 | | | | | | 2029 | 92.07775 | 5.07218 | | | | | | 2030 | 93.35661 | 5.142627 | | | | | | 2031 | 94.63547 | 5.213074 | | | | | | 2032 | 95.91433 | 5.283521 | | | | | | 2033 | 97.19318 | 5.353968 | | | | | | 2034 | 98.47204 | 5.424415 | | | | | | 2035 | 99.7509 | 5.494862 | | | | | | 2036 | 101.0298 | 5.565309 | | | | | | 2037 | 103.5875 | 5.706203 | | | | | | 2038 | 104.8663 | 5.77665 | | | | | | 2039 | 106.1452 | 5.847097 | | | | | | 2040 | 107.424 | 5.917544 | | | | | | 2041 | 108.7029 | 5.987991 | | | | | | 2042 | 109.9818 | 6.058437 | | | | | EPA 40 CFR Part 98 Subpart NN default higher heating value is 1.026 mmbtu/Mscf EPA 40 CFR Part 98 Subpart NN Methodology 2 default CO2 emissions factor - 0.0544 metric tons CO2/Mscf CNGC WA heating values - from EPA Subpart NN reporting 2012 1.032 mmbtu/Mscf 2013 1.035 mmbtu/Mscf 2014 1.043 mmbtu/Mscf 2015 1.062 mmbtu/Mscf 2016 1.073 mmbtu/Mscf 2017 1.075 mmbtu/Mscf average 1.053333 CO2 to Therm Conversion 0.005509 #### Appendix H Avoided Cost Calculation ### **Upstream Emissions Calculation** CNGC Emission Factor for Upstream Natural Gas System (assumed % of GHG emitted upstream of natural gas delivered) 1.01% 0.00852248 Upstream Emission Rate, CH4 g/mmbtu 55.086 GHGenius - from Puget Sound Clean Air Agency LCA Worksheet for PSE Tacoma LNG Facility (Canada supply) 2020 EPA Annual GHG Inventory of US GHG Emissions and Sinks (1990-2018) (US Rockles supply) GWP of Methane - 100 yr 0.77% 10 1.43% 28 Source: 2007 IPCC Report therms per mmbtu - conversion CNGC Gas Supply % Sumas (BC Canada) AECO (AB Canada) US Rockies | | <b>Environmental Adder</b> | | | | | | | |------|----------------------------|-----------|--|--|--|--|--| | | System | Adder 10% | | | | | | | 2023 | 110% | | | | | | | | 2024 | 110% | | | | | | | | 2025 | 110% | | | | | | | | 2026 | 110% | | | | | | | | 2027 | 110% | | | | | | | | 2028 | 110% | | | | | | | | 2029 | 110% | | | | | | | | 2030 | 110% | | | | | | | | 2031 | 110% | | | | | | | | 2032 | 110% | | | | | | | | 2033 | 110% | | | | | | | | 2034 | 110% | | | | | | | | 2035 | 110% | | | | | | | | 2036 | 110% | | | | | | | | 2037 | 110% | | | | | | | | 2038 | 110% | | | | | | | | 2039 | 110% | | | | | | | | 2040 | 110% | | | | | | | | 2041 | 110% | | | | | | | | 2042 | 110% | | | | | | | | | Distrib | ution S | System | Costs | in Real | \$2021/dt | :h | |--------|---------|---------|---------|--------|---------|------------|---------| | \$/dth | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Oregon | Washington | System | | 2023 | 0.8850 | 3.0245 | 1.9945 | 2.0168 | 2.0168 | 1.7564 | 1.8853 | | 2024 | 0.0000 | 2.8539 | 1.9685 | 6.1764 | 6.1764 | 2.8367 | 4.4908 | | 2025 | 12.5296 | 2.7822 | 1.5062 | 1.4092 | 1.4092 | 1.7028 | 1.5574 | | 2026 | 5.1078 | 1.2405 | 0.7009 | 1.9659 | 1.9659 | 0.7563 | 1.3554 | | 2027 | 11.8887 | 2.1909 | 1.0950 | 1.3630 | 1.3630 | 1.3451 | 1.3540 | | 2028 | 10.8343 | 1.6646 | 0.8622 | 0.9842 | 0.9842 | 1.0844 | 1.0348 | | 2029 | 11.7034 | 2.4786 | 1.1431 | 0.8813 | 0.8813 | 1.4076 | 1.1469 | | 2030 | 0.0000 | 18.0598 | 6.7790 | 1.0089 | 1.0089 | 11.5481 | 6.3282 | | 2031 | 10.7754 | 1.9518 | 0.9497 | 1.2661 | 1.2661 | 1.1848 | 1.2251 | | 2032 | 4.5505 | 0.9649 | 0.5156 | 1.1550 | 1.1550 | 0.5938 | 0.8718 | | 2033 | 10.3192 | 2.5366 | 1.1301 | 0.7344 | 0.7344 | 1.3608 | 1.0505 | | 2034 | 11.2020 | 1.9447 | 0.8258 | 0.5200 | 0.5200 | 1.0987 | 0.8121 | | 2035 | 9.7257 | 1.7473 | 0.8441 | 0.4677 | 0.4677 | 1.0581 | 0.7657 | | 2036 | 0.0000 | 4.4517 | 1.6285 | 0.5446 | 0.5446 | 2.7896 | 1.6777 | | 2037 | 3.9094 | 1.0024 | 0.5374 | 0.7106 | 0.7106 | 0.5858 | 0.6476 | | 2038 | 10.1174 | 1.7139 | 0.8317 | 0.4383 | 0.4383 | 1.0537 | 0.7489 | | 2039 | 9.3844 | 1.5474 | 0.7209 | 0.3982 | 0.3982 | 0.9340 | 0.6686 | | 2040 | 10.2784 | 1.3077 | 0.6393 | 0.2744 | 0.2744 | 0.8520 | 0.5659 | | 2041 | 0.0000 | 0.0000 | 18.4209 | 0.3252 | 0.3252 | 40.1007 | 20.4007 | | 2042 | 10.4257 | 1.5483 | 0.7070 | 0.4428 | 0.4428 | 0.9418 | 0.6947 | ## **Risk Premium** | | | System | | | | | |------|------------------|--------------|--|--|--|--| | Year | ear Risk Premium | | | | | | | | 2023 | -0.010347855 | | | | | | | 2024 | -0.011026907 | | | | | | | 2025 | -0.017865489 | | | | | | | 2026 | -0.013067388 | | | | | | | 2027 | 0.000761389 | | | | | | | 2028 | 0.013589426 | | | | | | | 2029 | 0.046481654 | | | | | | | 2030 | 0.077069484 | | | | | | | 2031 | 0.174579265 | | | | | | | 2032 | 0.238960111 | | | | | | | 2033 | 0.203911128 | | | | | | | 2034 | 0.145713439 | | | | | | | 2035 | 0.125487339 | | | | | | | 2036 | 0.255842411 | | | | | | | 2037 | 0.23509581 | | | | | | | 2038 | 0.167905463 | | | | | | | 2039 | 0.224764224 | | | | | | | 2040 | 0.26312279 | | | | | | | 2041 | 0.29575784 | | | | | | | 2042 | 0.29575784 | | | | | Appendix H Avoided Cost Calculation | | S 1 | |------|------------------| | Vasu | System | | Year | Inflation Factor | | 2023 | | | 2024 | | | 2025 | | | 2026 | | | 2027 | | | 2028 | | | 2029 | | | 2030 | | | 2031 | | | 2032 | | | 2033 | | | 2034 | | | 2035 | | | 2036 | | | 2037 | | | 2038 | | | 2039 | | | 2040 | | | 2041 | | | 2042 | | | 2043 | | | 2044 | | | 2045 | | | 2046 | | | 2047 | | | 2048 | | | 2049 | | | 2050 | | | 2051 | | | 2052 | | | 2053 | 3.42% | | 2054 | 3.42% | | 2055 | 3.42% | | 2056 | 3.42% | | 2057 | | | 2058 | 3.42% | | 2059 | 3.42% | | 2060 | 3.42% | | 2061 | . 3.42% | | 2062 | 3.42% | | 2063 | 3.42% | | 2064 | 3.42% | | 2065 | 3.42% | | 2066 | 3.42% | | 2067 | 3.42% | | 2068 | 3.42% | #### **Upstream Gas Emissions Calculation Methodology & Assumptions** #### Introduction This section describes the decision points and approach used in updating the upstream natural gas emissions factor used by Cascade Natural Gas Corporation (Cascade) for the 2023 Integrated Resource Plan (IRP) planning cycle. The discussion below lays out the steps taken by Cascade to address the concerns raised by the Commission staff and the findings resulting from the described upstream natural gas emissions research. Cascade developed an upstream methane emissions factor for the state of Washington that was used in the 2020 Integrated Resource Plan for calculating avoided cost and this has been updated for the 2023 IRP through input of UTC directly and the technical advisory group made up of interested parties, the public, and Commission Staff. #### Cascade's 2020 Upstream Emissions Factor Calculation Methodology In this section, Cascade details the 2020 Integrated Resource Plan upstream emissions calculation. The equations and inputs for calculating upstream emissions rate and the total emissions rate (ERT) used in the avoided cost calculation are shown and explained below: $$ER_{T} = \frac{1 \, dekatherm}{10 \, therm} * \frac{1 \, mmbtu}{1 \, dekatherm} * (UER_{CO2e} + CER_{CO2e})$$ $$UER_{CO2e} = UER_{CH4} * GWP_{Methane}$$ $$CER_{CO2e} = \frac{EF_{EPA \, Subpart \, NN}}{Heating \, Value}$$ $$UER_{CH4} = \rho \, methane * \frac{\% \, methane \, in \, natural \, gas}{Heating \, Value} * \, ULF_{Weighted \, \%}$$ $$ULF_{Weighted \, \%} = (ULF_{US \, Rockies \, \%} * \% \, Cascade \, U.S. \, Rockies \, Supply) + (ULF_{Canada \, \%} * \% \, Cascade \, Canada \, Supply)$$ #### Where: - $ER_T$ = Total emissions rate in CO2e metric tons per therm of natural gas delivered, the sum of the upstream emissions rate and the customer end-use emissions rate. - *UER<sub>CO2e</sub>* = Upstream Emissions Rate (emissions estimated to occur upstream of customer receipt) in CO2e metric tons per MMBtu of natural gas delivered. - *UER<sub>CH4</sub>* = Upstream Emissions Rate (emissions estimated to occur upstream of customer receipt) in CH4 metric tons per MMBtu of methane delivered. - CER<sub>CO2e</sub> = the customer emissions rate, from customer end-use combustion of natural gas delivered, in CO2e metric tons per MMBtu. - GWP<sub>Methane</sub>= 25, The global warming potential (GWP) of methane at 100 years. This GWP value is from Chapter 2, Table 2.14, of IPCC 4th Assessment Report AR4 Climate Change 2007: The Physical Science Basis). - $EF_{EPA\,Subpart\,NN}$ = **0.0544** metric tons of CO2 emitted per the combustion of 1 Mcf of natural gas, an EPA emissions factor from 40 CFR Part 98 Subpart NN.<sup>1</sup> - Heating Value = 1.07904, This is the 2019 average of the heating value of gas supplied to Cascade's distribution system in Washington. This is taken from Cascade's annual GHG emissions report to EPA. - ρ methane = 0.0192 metric tons of methane per 1 Mcf of methane, the density of methane as provided in 40 CFR Part 98 Subpart W.<sup>2</sup> - % methane in natural gas = 93.4%. This value represents an average percentage of methane in natural gas from EPA GHG inventory data and is discussed on page 14 of AGA's June 2020 Energy Analysis Report.<sup>3</sup> Cascade reviewed data from September and October 2020 on Williams' (Northwest Pipeline) website<sup>4</sup>, analyses posted for public review, and confirmed that locations where Cascade receives natural gas were in the range of 93.4%. - ULF<sub>Weighted %</sub> = the upstream loss factor expressed in percent methane emitted upstream per total methane delivered and is a weighted average of the different methane emissions loss factors representing the estimated natural gas that is supplied to Cascade from the U.S. Rockies or Canada. - $ULF_{US\,Rockies\,\%}$ = 1.0%, This upstream loss factor represents an estimate of the percent of methane lost from infrastructure supplying natural gas from the U.S. Rockies. - $ULF_{Canada\%}$ = 0.77%, This upstream loss factor represents an estimate of the percent methane lost from infrastructure supplying natural gas from Canada. - % Cascade U.S. Rockies Supply = 35.8%, Percent for Cascade's Washington customers, estimated using Cascade gas supply data. - % Cascade Canada Supply = 64.2%, Percent for Cascade's Washington customers, estimated using Cascade gas supply data. Further background on this calculation and spreadsheet used to detail this calculation was discussed in a supplemental TAG meeting on October 15, 2020. <sup>&</sup>lt;sup>1</sup> e-CFR 40 CFR Part 98 Mandatory Greenhouse Gas Reporting, Subpart NN - Suppliers of Natural Gas and Natural Gas Liquids <sup>&</sup>lt;sup>2</sup> e-CFR 40 CFR Part 98 Mandatory Greenhouse Gas Reporting, Subpart W - Petroleum and Natural Gas Systems <sup>3</sup> Ihid 6-18 <sup>&</sup>lt;sup>4</sup> Williams Northwest Pipeline Daily Gas Quality Values Website Below is a flow chart representing the 2020 IRP Upstream Emissions Factor Calculation Methodology including the 2020 IRP assumptions: Assumption for Canadian and US Rockies CA: 0 77% x 64 2% % Methane in X supply based on CNGC supply % CH<sub>4</sub> per unit of natural gas natural gas US: 1.00% x 35.8% percentages Upstream emission loss factor x CH₄ per 142 CH<sub>4</sub> unit natural gas resulting in emitted Rate (UER<sub>CH4</sub>) g/mmbtu methane per unit of natural gas Convert upstream emission rate for CH<sub>4</sub> 3.541 CO<sub>2</sub>e to CO2e using global warming potential Rate (UER<sub>CO2e</sub>) g/mmbtu (GWP) of methane (25) Convert end use emission rate for natural **Customer Emission** 50,415 CO<sub>2</sub>e gas from CFR Mandatory GHG Reporting Rate (CER<sub>CO2e</sub>) g/mmbtu to g/mmbtu **Total Emission** Add Upstream and End Use emission 53,956 CO<sub>2</sub>e rates to get the total emission rate CO2e g/mmbtu Rate (ER<sub>T</sub>) Figure H-1: 2020 IRP Upstream Emissions Factor Calculation Methodology #### **Approach Used in Updating the Calculations** The Washington Utilities and Transportation Commission Staff provided feedback on the findings and forecasts for the new resource acquisitions in Cascade's 2020 IRP. In the feedback, the staff commented on the methodology assumptions applied in the upstream emissions factor calculation, requesting clarity on certain aspects and additional rigor on others. In response to the feedback and as part of the in-progress 2023 IRP planning cycle, Cascade reviewed this calculation and associated assumptions against industry standards to determine changes to the assumptions to better align it with current best practices. The first step of the review process was to identify alternative examples of upstream gas emissions calculation—particularly those within a similar geographic region—as these entities source their natural gas from similar gas suppliers. Cascade identified the following regional and national sources to compare upstream gas emissions calculation methodologies: #### Peer/Regional Sources - Puget Sound Energy 2020 GHG Inventory<sup>5</sup> - Avista 2021 Natural Gas IRP<sup>6</sup> <sup>&</sup>lt;sup>5</sup> Puget Sound Energy 2020 GHG Inventory <sup>&</sup>lt;sup>6</sup> Avista 2021 Natural Gas IRP NW Power and Conservation Council – Upstream Methane Emissions Workbook<sup>7</sup> #### National Sources - Natural Gas Sustainability Initiative Methane Emissions Intensity Protocol<sup>8</sup> - IPIECA Estimating Petroleum Industry Value Chain (Scope 3) Greenhouse Gas Emissions<sup>9</sup> - American Petroleum Institute Compendium of Greenhouse Gas Emissions Methodologies for the Natural Gas and Oil Industries 2021<sup>10</sup> The Commission Staff feedback to the 2020 IRP specifically identified the upstream emissions loss rate for the Rocky Mountain Region and the GWP of methane as the main assumptions to reevaluate in the 2020 Cascade calculation methodology. Commission staff was concerned that the original 1.0% upstream emissions loss rate assumption—based on analysis from the American Gas Association—was too low. The Commission recommended an update to 2.47%, a figure calculated by the Environmental Defense Fund. Commission staff also flagged the GWP value of 25 from the 2014 IPCC AR4 as too low and recommended an update to the AR5 value, ranging from 28 to 34. Based on this feedback, Cascade identified the following independent variable assumptions for comparison while reviewing the alternative calculation methodologies and associated assumptions: Upstream Emissions Loss Rate for both US and Canadian supply, the GWP of methane, and the percent of methane in delivered natural gas. #### **Findings** The review resulted in a comparison of assumptions—provided in Figures H-2 and H-3 below—for updates to the 2020 IRP calculation. Figure H-2: Peer Assumptions | Assumption | Cascade | Puget Sound | Avista | NW<br>Council<br>Workbook | |----------------------------------------------|---------|-------------|--------|---------------------------| | Upstream Loss Factor (ULF) - Canadian Supply | 0.77% | 0.77% | 0.77% | 0.77% | <sup>&</sup>lt;sup>7</sup> NW Power and Conservation Council - Upstream Methane Emission Workbook <sup>&</sup>lt;sup>8</sup> Natural Gas Sustainability Initiative – Methane Emissions Intensity Protocol <sup>&</sup>lt;sup>9</sup> IPIECA Estimating Petroleum Industry Value Chain (Scope 3) Greenhouse Gas Emissions 2016 <sup>&</sup>lt;sup>10</sup> American Petroleum Institute – Compendium of Greenhouse Gas Emissions Methodologies for the Natural Gas and Oil Industries 2021 | Upstream<br>Loss Factor<br>(ULF) – US<br>Supply | 1.00% | NA | 1.00% | 2.47% | |-------------------------------------------------|-------|-------|-------|-------| | Upstream<br>Loss Factor<br>(ULF weighted<br>%) | 0.85% | 1.25% | 0.79% | 1.37% | | GWP<br>Methane –<br>100 Years | 25 | 25 | 34 | 34 | | % Methane in natural gas | 93.4% | NA | NA | 97% | Figure H-3: National Assumptions | Variable | Cascade | Alternative Values & Sources | |----------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Upstream<br>Loss<br>Factor -<br>Canadian<br>Supply | 0.77% | NA | | Upstream<br>Loss<br>Factor –<br>US<br>Supply | 1.00% | <ul> <li>2.84% (Range: 2.47-3.29%) - Environmental Defense Fund Coordinated Studies 2018</li> <li>1.82% (Range: 1.49-2.18%) - EPA Natural Gas and Oil 2017 Emission Year</li> <li>1.43% (Range: 1.20-1.68%) - EPA Natural Gas System Only 2017 Emission Year</li> <li>1.51% - IEA Natural Gas Only 2019 Emission Year</li> </ul> | | GWP<br>Methane<br>– 100<br>Years | 25 | <ul> <li>25 – IPCC Fourth Assessment Report 2007</li> <li>28 – IPCC Fifth Assessment Report 2014</li> <li>28-34 – United Nations Economic Commission for Europe</li> </ul> | | %<br>Methane<br>in natural<br>gas | 93.4% | <ul> <li>95-98% - EPA Pipeline Quality Estimate</li> <li>94.9% - NAESB Natural Gas Spec Sheet (2002)</li> <li>70-90% - Yale Climate Change Communication (2020)</li> <li>85-90% - Britannica Composition and Properties of<br/>Natural Gas</li> </ul> | While a review of peer and National sources did provide examples that matched Cascade's 2020 assumptions, Cascade also recognizes upward pressure on upstream loss factors as new evaluation methods arise. Therefore, Cascade will be updating the Upstream Loss Factor for US gas supply to 1.43% based on the EPA 2017 Emission Year, provided in the NW Power and Conservation Council – Upstream Methane Emission Workbook. The 2020 assumption of 1.00% upstream loss factor is lower than EDF, IEA, NETL, and EPA GHG Inventory 2017 Emission Year estimates according to methodology applied by the NW Power & Conservation Council. The 1.43% upstream loss factor is within the range of the NETL Life Cycle Model Study and 0.08% below the IEA 2019 Natural Gas System Only Rate estimate as laid out in Figure H-4. Figure H-4: Upstream Loss Factor Emission Comparison - US Supply The Commission-recommended emissions rate of 2.47% determined by the EDF highlights new approaches and challenges to tracking methane emissions in the natural gas supply chain. In addition to Cascade has updating its upstream U.S. Rockies emissions rate to 1.43%, Cascade is utilizing the 2.47% rate as a *high* emissions scenario for the avoided cost calculation. Cascade will also update the GWP of methane to 28 from 25. While international reporting standards under the United Nations Framework Convention on Climate Change currently require the use of the GWP values from IPCC's AR4 (25), the GWP estimates presented by the most recent IPCC scientific assessment reflect the current state of science. In the IPCC AR5 Synthesis Report, this value is 28. Regarding the methane composition of commercial natural gas, Cascade believes that the 93.4% methane in natural gas—based on the GTN & Williams Northwest Pipeline<sup>11</sup> <sup>&</sup>lt;sup>11</sup> Williams Northwest Pipeline Daily Gas Quality Values Website – Kemmerer Compression Station methane percent data for US Rockies' city gates—is a reliable representation of average methane in the gas system. This value within 2% of the EPA estimates of 95-98% and therefore should be maintained. By comparison, there are several sources listing the methane composition of commercial natural gas: Yale Climate Communication<sup>12</sup> lists the range as 70-90%, Britannica<sup>13</sup> lists it at 85-90%, and the EPA Pipeline Quality Estimate<sup>14</sup> lists 95-98%. Cascade will continue to review this value in future IRPs considering the most recent gas supply methane percent data available; if the value trends differently in future years, Cascade can adjust accordingly. #### Result - Cascade 2023 Upstream Emissions Factor Calculation Methodology In this section, Cascade details the 2023 Integrated Resource Plan upstream emissions calculation and assumptions. The equations in the 2023 calculation are maintained from the equation structure in the 2020 IRP calculation methodology. The equations and inputs for calculating upstream emissions rate and the total emissions rate (ERT) used in the avoided cost calculation are shown and explained below: $$ER_{T} = \frac{1 \ dekatherm}{10 \ therm} * \frac{1 \ mmbtu}{1 \ dekatherm} * (UER_{CO2e} + CER_{CO2e})$$ $$UER_{CO2e} = UER_{CH4} * GWP_{Methane}$$ $$CER_{CO2e} = \frac{EF_{EPA \ Subpart \ NN}}{Heating \ Value}$$ $$UER_{CH4} = \rho \ methane * \frac{\% \ methane \ in \ natural \ gas}{Heating \ Value} * ULF_{Weighted \%}$$ $$ULF_{Weighted \%} = (ULF_{US \ Rockies \%} * \% \ Cascade \ U.S. \ Rockies \ Supply) + (ULF_{Canada \%} * \% \ Cascade \ Canada \ Supply)$$ ### Where: - $\bullet$ $ER_T$ = Total emissions rate in CO2e metric tons per therm of natural gas delivered, the sum of the upstream emissions rate and the customer end-use emissions rate. - *UER<sub>CO2e</sub>* = Upstream Emissions Rate (emissions estimated to occur upstream of customer receipt) in CO2e metric tons per MMBtu of natural gas delivered. - UER<sub>CH4</sub> = Upstream Emissions Rate (emissions estimated to occur upstream of customer receipt) in CH4 metric tons per MMBtu of methane delivered. <sup>&</sup>lt;sup>12</sup> Yale Climate Communication - Should it be called natural gas or methane <sup>&</sup>lt;sup>13</sup> Composition and Properties of Natural Gas <sup>&</sup>lt;sup>14</sup> EPA - Overview Oil and Natural Gas Industry - $CER_{CO2e}$ = the customer emissions rate, from customer end-use combustion of natural gas delivered, in CO2e metric tons per MMBtu. - *GWP*<sub>Methane</sub> = 28, The global warming potential (GWP) of methane at 100 years. - $EF_{EPA\,Subpart\,NN}$ = **0.0544** metric tons of CO2 emitted per the combustion of 1 Mcf of natural gas, an EPA emissions factor from 40 CFR Part 98 Subpart NN.<sup>15</sup> - **Heating Value = 1.07925**, This is the 2021 average of the heating value of gas supplied to Cascade's distribution system in Washington. This is taken from Cascade's annual NN GHG emissions report to EPA. - *ρ methane* = **0.0192** metric tons of methane per 1 Mcf of methane, the density of methane as provided in 40 CFR Part 98 Subpart W.<sup>16</sup> - % methane in natural gas = 93.4%. This value represents an average percentage of methane in natural gas from EPA GHG inventory data and is discussed on page 14 of AGA's June 2020 Energy Analysis Report.<sup>17</sup> Cascade reviewed 2022 data on Williams' (Northwest Pipeline) website<sup>18</sup>, analyses posted for public review, and confirmed that locations where Cascade receives natural gas were in the range of 93.4% (the average of methane % data received from GTN for July- September 2022). - *ULF*<sub>Weighted</sub>% = the upstream loss factor expressed in percent methane emitted upstream per total methane delivered and is a weighted average of the different methane emissions loss factors representing the estimated natural gas that is supplied to Cascade from the U.S. Rockies or Canada. - ULF<sub>US Rockies %</sub> = 1.43%, This upstream loss factor represents an estimate of the percent of methane lost from infrastructure supplying natural gas from the U.S. Rockies. - $ULF_{Canada\%}$ = 0.77%, This upstream loss factor represents an estimate of the percent methane lost from infrastructure supplying natural gas from Canada. - **% Cascade U.S. Rockies Supply = 35.8%,** Percent for Cascade's Washington customers, estimated using Cascade gas supply data. - % Cascade Canada Supply = 64.2%, Percent for Cascade's Washington customers, estimated using Cascade gas supply data. <sup>&</sup>lt;sup>15</sup> e-CFR 40 CFR Part 98 Mandatory Greenhouse Gas Reporting, Subpart NN - Suppliers of Natural Gas and Natural Gas Liquids <sup>&</sup>lt;sup>16</sup> e-CFR 40 CFR Part 98 Mandatory Greenhouse Gas Reporting, Subpart W - Petroleum and Natural Gas Systems <sup>17</sup> Ihid 6-18 <sup>&</sup>lt;sup>18</sup> Williams Northwest Pipeline Daily Gas Quality Values Website A flow chart displaying the 2023 calculation methodology, updated assumptions, and resulting emissions rate impact is displayed in Figure H-5. Figure H-5: 2023 calculation methodology With the updated assumptions, the upstream emissions rate increases to a value of 4,680 CO<sub>2</sub>e g/MMbtu from a value of 3,541 CO<sub>2</sub>e g/MMbtu in the 2020 IRP, or a 32% increase. Cascade will continue to evaluate upstream emissions rate assumptions and new methane emissions tracking methodology as it is released to support methodology development in future IRP processes.