
ons of industrial d as a practical ince,', are highly adard deviation.
urity returns for zwed distribution of regulation, by ;luggishly on the urns, and is more an their cost of lownward biased aregulated firms. er in Chapter 6.
ation ('"CV') is 1 it measures the he CV can be a are expressed in ıppose Company lative to a mean of earnings per that Company A et, both standard the earnings per
re peak to trough able in question. ling the standard ches zero. Also, ıplausible result.
which is already a useful measure ally risky invest:qually attractive andard deviation ctive investment of 10% relative se same at 10%, ompany A's CV

It is interesting to note that beta is a linear function of CV rather than σ, lending further credibility to the use of CV as a valid measure of risk. ${ }^{2}$

Divergence of Opinion as a Risk Measure. One useful indicator of risk is the degree of divergence of opinion among analysts about future earnings. The greater the variation in analysts' earnings or growth forecasts, the greater investor uncertainty on future prospects. Zacks Investment Research compiles individual analysts' earnings forecasts for publicly traded companies, along with long-term earnings growth. ${ }^{3}$ The variation in growth forecasts as measured by the standard deviation of individual forecasts provides yet another interesting measure of risk.

3.2 Beta as a Risk Measure

Most, if not all, college-level finance textbooks discuss the pervasive and positive influence of beta on return when discussing the empirical validity of the Capital Asset Pricing Model. See for example Brealey, Myers, and Allen (2006), Brigham and Ehrhardt (2005), and Ross, Westerfield, and Jaffee (2005). The empirical evidence on the importance of beta as an important determinant of return is considerable, although controversial as discussed later.

Before discussing the practical usefulness of beta, it should be pointed out that the use of beta as a risk measure is not equivalent to unequivocal acceptance of the Capital Asset Pricing Model (CAPM). The CAPM is a formal theory of how beta risk affects security prices, and is treated extensively in Chapter 5. Here, beta is used purely as one of several reasonable measures of risk, and its use is not predicated on any formal asset pricing theory. Thus, any controversy associated with the validity of the CAPM is deferred until Chapter 5.

[^0]FIGURE 3-5
THE RELATIONSHIP BETWEEN SECURITY RETURNS AND MARKET RETURNS

Beta measures a security's volatility in relation to that of the market, and is generally computed from a linear regression analysis based on past realized returns over some past time period, as shown in Figure 3-5.

The dependent variable is the security's realized return over a certain time interval, and the independent variable is the corresponding return on some suitable market index, such as the Standard \& Poor's 500 Index.

An estimate of the beta coefficient of a stock is obtained through an ordinary least-squares (OLS) regression of the monthly rates of return on the stock, R_{it}, on the monthly return of an aggregate market index, R_{Mt}, typically from the previous five years of stock return data. Beta is simply the estimated slope of the OLS regression line, which has the form:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{it}}=\alpha_{1}+\beta_{i} R_{M t}+\varepsilon_{i t} \tag{3-2}
\end{equation*}
$$

Value Line betas are widely available and well-known to investors. Beta estimates are available from several commercial sources including:

1. Value Line Investment Survey
2. Merrill Lynch Security Risk Evaluation
3. Bloomberg
4. Yahoo Finance
\qquad
5. Standard \& Poor's
6. Morningstar
7. BARRA

Value Line is the largest and most widely circulated independent investment advisory service, and influences the expectations of a large number of institutional and individual investors. The Value Line data are commercially available on a timely basis to investors in paper format or electronically. Value Line betas are derived from a least-squares regression analysis between weekly percent changes in the price of a stock and weekly percent changes in the New York Stock Exchange Average over a period of 5 years. In the case of shorter price histories, a smaller time period is used, but 2 years is the minimum. Value Line betas are computed on a theoretically sound basis using a broadly based market index, and they are adjusted for the regression tendency of betas to converge to 1.00 . This necessary adjustment to beta is discussed below.

Practical and Conceptual Difficullies

Computationall lssues. Absolute estimates of beta may vary over a wide range when different computational methods are used. The return data, the time period used, its duration, the choice of market index, and whether annual, monthly, or weekly return figures are used will influence the final result.

Ideally, the returns should be total returns, that is, dividends and capital gains. In practice, beta estimates are relatively unaffected if dividends are excluded. Theoretically, market returns should be expressed in terms of total returns on a portfolio of all risky assets. In practice, a broadly based value-weighted market index is used. For example, Merrill Lynch betas use the Standard \& Poor's 500 market index, while Value Line betas use the New York Stock Exchange Composite market index. In theory, unless the market index used is the true market index, fully diversified to include all securities in their proportion outstanding, the beta estimate obtained is potentially distorted. Failure to include bonds, Treasury bills, real estate, etc., could lead to a biased beta estimate. But if beta is used as a relative risk ranking device, choice of the market index may not alter the relative rankings of security risk significantly.
To enhance statistical significance, beta should be calculated with return data going as far back as possible. But the company's risk may have changed if the historical period is too long. Weighting the data for this tendency is one possible remedy, but this procedure presupposes some knowledge of how risk changed over time. A frequent compromise is to use a 5 -year period with either weekly or monthly returns. Value Line betas are computed based on weekly returns over a 5-year period, whereas Merrill Lynch betas are computed with monthly returns over a 5-year period. In an empirical study of utility
betas, Melicher (1979) found that while the beta estimating process differs between Merrill Lynch and Value Line, the beta estimates are reasonably comparable in absolute magnitude. Statman (1981) found a small but significant difference in these estimates of beta. He estimated the following relationship between the two beta estimates:

$$
\begin{equation*}
\text { M.L. Beta }=0.127+0.879 \text { V.L. Beta } \tag{3-3}
\end{equation*}
$$

The results are not consistent with perfect equality. Both regression coefficients were significant, and the explanatory significance of the relationship, as measured by the R^{2} coefficient, was 0.55 . But for betas close to 1.0 , the differences were very small. Harrington (1983) examined the betas provided by different investment services and found that, in terms of predicting ensuing betas, the Value Line forecasts exhibited the lowest mean square errors for a sample of utility stocks. Reilly and Wright (1988) confirmed the difference in beta found by Statman. The difference was attributed to the alternative time intervals, that is, weekly versus monthly returns. The size and direction of the effect was a function of a security's market value. In other words, the size of the firm is an important consideration when estimating beta or using a published source. For large utility companies, the bias is small, and for practical purposes, far less than any inherent standard error of estimate or measurement error. Using group (industry) estimates palliates the problem.

When the objective of estimating beta is to ascertain the relative values of beta for different companies, it is reasonable to suppose that the relative ranking of the betas is less sensitive to the time period, length of return interval, and duration of time period, than are the absolute values of beta. For example, the risk ranking of stocks based on Value Line betas, which is calculated using weekly returns, may not differ substantially from the risk ranking based on Merrill Lynch betas, which is calculated using monthly returns.

In addition to choice of time period, duration and market index, measurement error is also a concern. Individual company betas are measured with error. To lessen the significance of measurement errors in estimating betas, proxy groups of companies and/or industry estimates can be used. The empirical finance literature shows that the standard error of estimate of betas is considerably smaller for portfolios than for individual company observations. Betas for groups of securities are more stable and more accurate than betas for individual securities.

Raw Beta Versus Adjusted Beta. The regression tendency of betas to converge to 1.0 over time is very well known and widely discussed in the financial literature. Well-known college-level finance textbooks routinely
process differs are reasonably nall but signifiowing relation-
ion coefficients onship, as meathe differences led by different ;uing betas, the s for a sample ference in beta tive time interirection of the nords, the size reta or using a nd for practical r measurement
ative values of at the relative ngth of return ralues of beta. retas, which is from the risk asing monthly
, measurement ed with error. g betas, proxy The empirical as is considervations. Betas han betas for
lency of betas discussed in ooks routinely
discuss the use of adjusted betas. ${ }^{4}$ Several authors have investigated the regression tendency of beta and generally reached similar conclusions. High-beta portfolios have tended to decline over time toward unity, while low-beta portfolios have tended to increase over time toward unity. Blume (1971) examines the stability of beta for all common stocks listed on the NYSE, and finds a tendency for a regression of the betas toward 1.00 . He demonstrates that the Value Line adjustment procedure anticipates differences between past and future betas. Chen (1981) also analyzes the variability of beta and suggests the Bayesian adjustment approach used by beta producers to estimate timevarying betas. ${ }^{5}$ Ibbotson Associates' annual Valuation Yearbook relies on Bayesian betas as well.

A comprehensive study of beta measurement methodology by Kryzanowski and Jalilvand (1983) concludes that raw unadjusted beta (OLS beta) is one of the poorest beta predictors, and is outperformed by the Merrill Lynch-style Bayesian beta approach. Gombola and Kahl (1990) examine the time-series properties of utility betas and find strong support for the application of adjustment procedures such as the Value Line and Merrill Lynch procedures.

The tendency of true betas not only to vary over time but to move back toward average levels is not surprising. A company whose operations or financing make the risk of its stock divergent from other companies is more likely to move back toward the average than away from it. Such changes in beta values are due to real economic phenomena, not simply to an artifact of overly simple statistical procedures.

Because of this observed regressive tendency, a company's raw unadjusted beta is not the appropriate measure of market risk to use. Current stock prices reflect expected risk, that is, expected beta, rather than historical risk or historical beta. Historical betas, whether raw or adjusted, are only surrogates for expected beta. The best of the two surrogates is adjusted beta.

There is an additional economic justification for the use of adjusted betas in the case of regulated utilities. Adjusted betas compensate for the tendency of

[^1]regulated utilities to be extra interest-sensitive relative to industrials. ${ }^{6}$ In the same way that bondholders get compensated for inflation through an inflation premium in the interest rate, utility shareholders receive compensation for inflation through an inflation premium in the allowed rate of return. Thus, utility company returns are sensitive to fluctuations in interest rates. Conventional betas do not capture this extra sensitivity to interest rates. This is because the market index typically used in estimating betas is a stocks-only index, such as the S\&P 500. A focus on stocks alone distorts the betas of regulated companies. The true risk of regulated utilities relative to other companies is understated because when interest rates change, the stocks of regulated companies react in the same way as bonds do. A nominal interest rate on the face value of a bond offers the same pattern of future cash flows as a nominal return applied on a book value rate base. Empirical studies of utility returns confirm that betas are higher when calculated in a way that captures interest rate sensitivity. The use of adjusted betas compensates for the interest sensitivity of regulated companies.

There is a statistical justification for the use of adjusted betas as well. Statistically, betas are estimated with error. High-estimated betas will tend to have positive error (overestimated) and low-estimated betas will tend to have negative error (underestimated). Therefore, it is necessary to squash the estimated betas in toward 1.00. One way to accomplish this is by measuring the extent to which estimated betas tend to regress toward the mean over time. As a result of this beta drift, several commercial beta producers adjust their forecasted betas toward 1.00 in an effort to improve their forecasts. This adjustment, which is commonly performed by investment services such as Value Line, Bloomberg, and Merrill Lynch, uses the formula:

$$
\begin{equation*}
\beta_{\text {adjusted }}=1.0+\mathrm{a}\left(\beta_{\mathrm{raw}}-1.0\right) \tag{3-4}
\end{equation*}
$$

where ' a '" is an estimate of the extent to which estimated betas regress toward the mean based on past data. Value Line, Bloomberg, and Merrill Lynch betas are adjusted for their long-term tendency to regress toward 1.0 by giving approximately 66% weight to the measured beta and approximately 34% weight to the prior value of 1.0 for each stock, that is, $a=0.66$ in the above equation:

$$
\begin{align*}
\beta_{\text {adjusted }} & =1.0+0.66\left(\beta_{\mathrm{raw}}-1.0\right) \\
& =0.33+0.66 \beta_{\mathrm{raw}} \tag{3-5}
\end{align*}
$$

[^2]industrials. ${ }^{6}$ In the rough an inflation compensation for e of return. Thus, est rates. Convenes. This is because tocks-only index, betas of regulated ther companies is regulated compait rate on the face Jws as a nominal ; of utility returns ptures interest rate rest sensitivity of
s as well. Statistiwill tend to have end to have negaash the estimated asuring the extent over time. As a adjust their fore. This adjustment, h as Value Line,
as regress toward errill Lynch betas rd 1.0 by giving roximately 34% $a=0.66$ in the

Vilbert (2004) for a cluding underlying

It has been argued that the empirical studies supporting the use of adjusted betas were not performed exclusively on utility stocks and, therefore, are inapplicable to utility companies. This belief is premised on a study by Gombola and Kahl (1990) who showed that there is indeed a tendency of betas to regress towards their mean value for individual stocks. But based on their analysis of utility stocks, the Gombola and Kahl results suggest a tendency for utility betas to regress toward their grand utility mean and not toward the grand average of 1.0.

The difficulty with this argument is that in the mid 1990s to mid 2000s period, the risks of electric utility stocks escalated substantially well after the period of study used in these studies because of restructuring, deregulation, and rising competition and, therefore, the true electric utility betas have escalated toward 1.0. This hypothesis can be verified by examining the beta risk measure of a large sample of electric utilities over the 1992-1997 period. This time period was selected because it precedes the deregulation of the electric utility industry in the U.S. and covers a period over which electric utilities constituted natural monopolies. The beta trend is shown in Figure 3-6. The inescapable trend from the graph is the ascent in the Value Line beta, rising steadily from 0.60 to 0.70 prior to deregulation. The rise in raw beta instead of adjusted beta would be even more dramatic. It is therefore highly improbable that electric utility betas have regressed to some steady-state historical industry average in light of the profound transformation that occurred in the electric utility's risk in the 1995-2005 decade and the changing risk perceptions of investors with respect to the electric utility industry.

For additional evidence as to whether electric utility raw betas tend toward the market average of 1.00 or toward the industry average, Professor Damodaran's

extensive Web site reports the following Value Line beta estimates for the electric utility industry over the past five years, shown graphically on Figure 3-7.

The betas shown in the graph are adjusted betas in keeping with investment practices and in keeping with the academic literature on the subject. As noted earlier, adjusted betas reported by Value Line give $2 / 3$ weight to the "raw" or calculated beta and $1 / 3$ weight to the market beta of $1.0 .{ }^{7}$ Running the process in reverse, the implied raw betas can be calculated and they are shown in the graph shown on Figure 3-8.

The strong upward escalating trend is clear from the graph, showing a steady uninterrupted ascent of raw betas, rather than convergence toward some industry level. Hence the need to employ adjusted betas, as does the majority of commercial beta services and presumably the majority of investors.

Implied Regulatory Beta

The betas implicit in regulatory ROE decisions are consistent with adjusted betas as well. The CAPM framework can be used to quantify the beta implicit

[^3]
in the allowed risk premiums for regulated utilities. According to the CAPM, the risk premium is equal to beta times the market risk premium:
$$
\text { Risk Premium }=\beta\left(R_{M}-R_{F}\right)
$$

Solving for beta, we obtain:

$$
\beta=\text { Risk Premium } /\left(R_{M}-R_{F}\right)
$$

The betas implied in hundreds of regulatory decisions for electric utilities in the United States over the period 1996-2005 were examined. Inserting the allowed average risk premium of 5.4% in several hundred ROE decisions over that last decade and a market risk premium of 7.0% in the above equation, the implied beta is 0.77 . Using a market risk premium of 6.5%, the implied beta is 0.83 . The implied regulatory betas are virtually identical to the adjusted beta estimates reported by Value Line for electric utilities and are clearly inconsistent with raw beta estimates.

To further confirm the desirability of using adjusted betas, one can turn to another measure of risk, namely, relative standard deviations of market returns, which measures total market risk (both diversifiable and non-diversifiable) rather than just non-diversifiable market risk. The upper panel of Table 3-1 reports the standard deviation of returns for the overall U.S. equity market, the electric utility industry overall, a sample of high-quality electric utilities, and all energy utilities (natural gas and electric). The lower panel of the table

Exh. LDK- \qquad

TABLE 3-1 RELATIVE STANDARD DEVIATION RISK OF ENERGY UTILITIES Standard Deviation Measure of Risk			
		Median	Mean
1	S \& P 500	33.8	39.5
2	Moody's Electric Utilities	28.9	27.3
3	All U.S. Electric Utilities	26.8	28.7
4	Hi-Quality U.S. Electric Utilities	24.3	24.1
5	All U.S. Energy Utilities	26.3	30.8
Standard Deviation Measure of Risk Relative to Aggregate Equity Market			
		Median	Mean
6	Moody's Electric Utilities	0.85	0.81
7	All U.S. Electric Utilities	0.79	0.85
8	Hi-Quality U.S. Electric Utilities	0.72	0.71
9	All U.S. Energy Utilities	0.78	0.91
	AVERAGE	0.79	0.82

Source: Value Line Investment Analyzer 2005
reports the standard deviation of returns of the utility groups relative to the standard deviation of the overall aggregate market. The median is 0.79 , suggesting that electric utilities are approximately 0.80 as risky as the overall equity market, confirming the reasonableness of adjusted beta estimates of 0.80 for the electric utility industry in that period.

Beta Stabillity. Several empirical studies of beta coefficients, notably by Blume (1975) and Levy (1971), have revealed the marked instability of betas over time. Both authors noted a pronounced tendency of betas to regress toward unity, that is for high betas to decline over time and for low betas to increase. Even with the aforementioned beta adjustment procedure, betas may still exhibit substantial instability. If betas are going to be applied to determine the cost of capital through the CAPM, stability of beta is crucial. If betas are not stable, any assessment of cost of capital based on historical beta estimates may not hold true for the future period during which the new allowed rates of return will be in effect. But if beta is going to be used to provide an estimate of the relative risk of various securities, the relative relationships between the betas are likely to be less sensitive to instability than are the absolute values of beta. Grouping utilities (industry estimates) palliates the problem, as the beta of a portfolio exhibits far more stability than the beta of an individual security.

UTILITIES
Mean
39.5
27.3
28.7
24.1
30.8

oups relative to median is 0.79 , ky as the overall yeta estimates of
fficients, notably sed instability of ff betas to regress for low betas to edure, betas may lied to determine acial. If betas are zal beta estimates ew allowed rates ed to provide an tive relationships ility than are the tes) palliates the lity than the beta

Historicall versus True Beta. The true beta of a security can never be observed. Historically estimated betas serve only as proxies for the true beta. The future may well differ from the past. Current changes in the fundamentals of a company's operations and risk posture may not be fully reflected in the historically estimated beta. By construction, backward-looking betas are sluggish in detecting fundamental changes in a company's risk. For example, if a utility increased its debt to equity ratio, one would expect an increase in beta. However, if 60 months of return data are used to estimate beta, only one of the 60 data points reflects the new information, one month after the utility increased its leverage. Thus, the change in leverage has only a minor effect on the historical beta. Even one year later, only 12 of the 60 return points reflect the event.

Another example is shown graphically in Figure 3-9 where the true underlying beta of a utility is gradually increasing because of recently added risk factors, such as vast increases in plant construction costs, and increasing levels of competition. Yet, the historical beta measured over a 5-year estimation period lies midway between the true beginning-of-period beta and the current end-of-period beta, seriously underestimating the current beta.

This type of bias certainly applied to electric utilities from the mid 1990s to mid 2000s. The business risks faced by the electric utility industry as a whole intensified during that period. Disintegrating entry barriers, intensifying rivalry

among the rising number of competitors, more substitute products, and powerful buyers with many energy alternatives result in a highly competitive energy market. The fundamental risks of electric utilities fluctuated markedly during that period. Environmental problems, the California energy crisis, the deregulation of the industry, demand uncertainties, inflation-related problems, deterioration in the quality of earnings, and nuclear uncertainties contributed in raising the risk level of utilities in that era. This type of bias applied to water utilities in the 1990s as well, with their fundamental risks changing as a result of environmental problems, demand-supply uncertainties, stringent water quality regulations, and the uncertainties of environmental compliance costs. At that time, water utilities were experiencing structural and fundamental shifts in risk that were not fully reflected in historically measured betas.

Such structural shifts in risk are not fully reflected in the measured beta and standard deviation, since such estimates are calculated using 5 years of past data using pre- and poststructural shift observations. So, any measured risk difference between utility stocks and stocks in general can be misleading, and likely to be lower than that implied by a simple comparison of beta and standard deviation alone. The converse is also true, of course. For utilities with listed call options, Section 3.5 proposes a tool designed to track shortrun risk changes and to detect possible directional changes in historical beta.

Brigham and Crum (1977) analyzed the effects of risk non-stationarity in measured betas, hence on cost of capital, and concluded that a random shock that changes the true beta cannot be immediately measured by an estimated beta. For example, they contend that rising investor risk perceptions cause a decline in stock prices, which in turn produces low betas. The Brigham and Crum article generated voluminous discussion and controversy, which was reported in a special issue of Financial Management (Autumn 1978) devoted to the use of beta in utility regulation. The various comments offered by several noted financial scholars in that issue generally supported the view that betas could be biased, and that projecting beta from historical data could be dangerous.

While beta is a sensible and objective risk measure, firmly anchored in modern portfolio theory, it should be used cautiously. Backward-looking statistical analysis runs the danger of providing misleading evidence that the risk and the cost of capital have changed. To illustrate, in the late 1990s and early 2000s, electric utility stocks had become increasingly driven by industryspecific factors, including corporate restructurings, mergers, asset divestitures, and regulatory change while the overall equity market remained volatile and was largely driven by technology stocks. The net result of this "distancing" between the electric utility industry and the overall equity market was a
ucts, and powermpetitive energy markedly during sis, the deregulaooblems, deterios contributed in applied to water ging as a result of ent water quality ice costs. At that mental shifts in stas.
easured beta and y 5 years of past ly measured risk : misleading, and son of beta and rrse. For utilities d to track shortn historical beta.
m-stationarity in a random shock by an estimated ceptions cause a The Brigham and ersy, which was in 1978) devoted nents offered by sported the view orical data could
chored in modern ooking statistical that the risk and 1990s and early ven by industryasset divestitures, ined volatile and his "distancing" ty market was a
downward effect on utility betas, as utility stocks increasingly reflected factors unique to the industry during the transition to a competitive environment. ${ }^{8}$

Rellevance of Beta. According to both financial theory and empirical evidence, betas are critical and sufficient measures of risk. Financial theory has shown that beta is a sufficient risk measure for diversified investors and the empirical literature has confirmed its importance in determining expected return. But the relevance of beta as the only measure of risk remains controversial. Several studies have found that investors receive incremental return for incurring risk that could be diversified. ${ }^{9}$ Both beta risk and standard deviation risk appear relevant to investors, based on the evidence cited in Section 3.1. Rosenberg (1986), for example, concluded that while beta may be important to diversified investors, the use of additional measures of risk and return in ratemaking is justified.

As discussed extensively in Chapter 6, throughout its tumultuous history, the death of beta has been periodically announced over the years, but has inevitably been followed by its rebirth. The Fama and French $(1992,1993,1997)$ studies are a case in point. Fama and French found that differences in beta failed to explain the return performance of different stocks. But here again the autopsy of beta was premature, and reports of beta's death were greatly exaggerated. For one thing, financial theory is concerned with the relationship between expected returns and beta, whereas Fama and French employed realized returns. Moreover, in a subsequent research paper, Kothari, Shanken, and Sloan (1993) found significant return compensation for beta risk with little relation to market-to-book (M/B) ratios, unlike Fama and French. They also found that market risk premiums are much larger when betas are estimated using annual rather than monthly data. Other prominent financial economists have tackled the Fama and French findings head on and rehabilitated beta by finding that beta did in fact explain differences in share returns. ${ }^{10}$

Beta and Thin Trading. For securities for which there is only periodic trading, beta estimates are downward biased. This is because observed returns contain stale information about past period returns rather than current period

[^4]returns. Intuitively, if the stock market index surges forward but an individual company stock price remains unchanged due to lack of trading, the estimated beta is imparted a downward bias. The stock is unable to catch up to marketwide movements and appears to be a lower beta stock.

Two approaches that consider the impact of thin trading are available, named after their founders: the Dimson (1979) adjustment and the Scholes and Williams (1977) adjustment. The Dimson beta is estimated by running a multiple OLS regression of stock returns on both the contemporaneous market return, R_{Mt}, and the lagged market return, $\mathrm{R}_{\mathrm{Mt}-1}$, and then adding up the two slope coefficients, $\beta_{i 1}$ and $\beta_{i 2}$:

$$
\begin{gather*}
\mathrm{R}_{\mathrm{it}}=\alpha_{i}+\beta_{\mathrm{n}} R_{M t}+\beta_{\mathrm{R}} R_{M t-1}+\varepsilon_{\mathrm{t}} \tag{3-6}\\
\beta=\beta_{i t}+\beta_{n} \tag{3-7}
\end{gather*}
$$

In the Scholes and Williams approach, three separate OLS regressions are run between the stock returns and contemporaneous market return, R_{Mt}, the lagged market return, $\mathrm{R}_{\mathrm{Mt}-1}$, and the lead market return, $\mathrm{R}_{\mathrm{Mt}+1}$, respectively. The corrected beta is obtained by adding up the three separate slope coefficients and dividing it by $(1+2 \rho)$ where ρ is the autocorrelation coefficient of the market returns over the time period:

$$
\begin{align*}
\mathrm{R}_{\mathrm{it}} & =\alpha_{i}+\beta_{i 1} R_{M t}+\varepsilon_{i t} \tag{3-8}\\
\mathrm{R}_{\mathrm{it}} & =\alpha_{i}+\beta_{i 2} R_{M t-1}+\varepsilon_{i t} \tag{3-9}\\
\mathrm{R}_{\mathrm{it}} & =\alpha_{i}+\beta_{i 3} R_{M t-1}+\varepsilon_{i t} \tag{3-10}\\
\beta & =\frac{\beta_{i 1}+\beta_{i 2}+\beta_{i 3}}{(1+2 \rho)} \tag{3-11}
\end{align*}
$$

Albsence of Market Data. There are situations where beta cannot be computed. For example, the utility's stock is not publicly traded, as in the case of wholly owned subsidiaries of holding companies, or no market data are available. Several alternate measures of beta risk based on company fundamentals and accounting data can be used in such situations. The next section elaborates on the use of company fundamental data for risk estimation.

3.3 Risk and Company Fundamentalls

Earmings Beta

One attempt to circumvent the absence of market data problem is to compute an "earnings beta." Since beta is a measure of the interrelationship between the returns of an individual company and those of the overall market, and since such interrelationship is to a large extent determined by the interrelationship of
but an individual ing, the estimated ttch up to market-
available, named the Scholes and ed by running a poraneous market dding up the two

S regressions are t return, R_{Mi}, the ${ }_{\mathrm{A}+1}$, respectively. slope coefficients coefficient of the
e beta cannot be traded, as in the t no market data ed on company ations. The next r risk estimation.

Is

m is to compute ionship between arket, and since errelationship of
a company's earnings and corporate earnings in the overall economy, an 'earnings beta'" can be computed. A time series of a company's, subsidiary's, or division's quarterly earnings can be regressed on the corresponding index of aggregate quarterly corporate earnings published by the Commerce Department over the last five or ten years, and the slope coefficient from such a relationship is the "earnings beta." Since stock prices respond to earnings, the earnings beta and the usual stock beta should be highly correlated. The earnings beta is basically a measure of earnings cyclicality, that is, a measure of the extent to which fluctuations in a company's earnings mirror the fluctuations in aggregate earnings of all firms, and is well-correlated with market beta. A similar measure of covariability risk can be constructed using accounting returns (ROEs) instead of earnings.

One could certainly estimate the beta of a company division by assuming that the unobservable beta of the division is highly correlated with the slope coefficient from a regression of changes in divisional earnings on changes in total U.S. corporate profits. Growth in earnings per share and growth in aftertax cash flow per share are likely to be related to market return as well, and could be used instead of divisional earnings.

EXAMPLE 3-1

Let us say that based on a large sample of publicly traded companies, the stock market beta is statistically related to the earnings per share (EPS) beta as follows:

$$
\text { Stock Market Beta }=0.56+0.25 \text { EPS Beta }
$$

If the earnings beta of a utility subsidiary is 0.90 based on a historical correlation of its earnings with the aggregate earnings on the Standard \& Poor's 500 Index over the past 10 years, then its stock market beta is given by:

$$
\text { Stock Market Beta }=0.56+0.25 \times 0.90=0.79
$$

Pure-Play Beta

Another approach to develop a beta for a non-publicly traded firm is the "pure-play" beta. This method attempts to identify firms with publicly traded securities whose operations are as similar as possible to the division or subsidiary in question. Once a sample of pure-play firms is identified, the average beta of the sample is used as a surrogate for the non-traded company's beta. Methods of specifying risk-comparable groups of companies are discussed in Chapter 14. The issue of determining the cost of capital for non-publicly traded subsidiaries is discussed further in Chapters 7 and 14.

One difficulty with the pure-play approach is that although the reference companies may have the same business risk, they may have different capital structures. Observed betas reflect both business risk and financial risk. Hence, when a group of companies is considered comparable in every way except for financial structure, their betas are not directly comparable. Fortunately, there is a technique for adjusting betas for capital structure differences based on CAP'M theory. This technique is discussed and illustrated in Chapter 7, devoted to divisional cost of capital issues.

Accounting Beta

Given that accounting data capture the same events and information that influence market prices, and given that accounting data constitute an important source of information to investors in setting security prices, it stands to reason that accounting variables and market risk are related. Beaver, Kettler, and Scholes (1970) were among the first to examine the relationship between accounting measures of risk and beta. They examined the statistical relationship between beta and seven "financial statement" variables: dividend payout, asset growth, leverage, liquidity, asset size, earnings variability, and earnings beta. Their results were consistent with what one would expect from financial theory. Large, highly liquid firms with high dividend payout, low growth rates, low leverage, and stable earnings streams have lower risks, and conversely.

The effects of company fundamentals on betas are estimated by relating beta to several fundamental variables using multiple regression techniques. An equation of the following form is typically estimated:

$$
\begin{equation*}
\beta=a_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+\cdots+a_{n} X_{n}+\varepsilon \tag{3-12}
\end{equation*}
$$

where each X variable is one of the variables assumed to influence beta, and epsilon (ε) is the residual error term. The estimated historical relationship between accounting variables and beta can then be used to forecast the beta of a company. Following the pioneering Beaver, Kettler, and Scholes study, several studies summarized in Myers (1977) attempted to identify the accounting variables that are highly correlated with beta. These studies found that four accounting variables contribute most significantly to betas:

1. Earnings Cyclicality: beta depends on the interrelationship between swings in the firm's earnings and swings in earnings in the economy generally.
2. Earnings Variability: beta is strongly related to the volatility of earnings.
3. Financial Leverage: beta is highly related to financial risk.
4. Growth: beta is positively related to growth, given the traditional association between rapid growth and high business risk.
sh the reference different capital ıcial risk. Hence, very way except ble. Fortunately, lifferences based 3d in Chapter 7,
information that ute an important stands to reason 'er, Kettler, and onship between tical relationship ividend payout, ty, and earnings it from financial Jw growth rates, and conversely.
by relating beta techniques. An

$$
\begin{equation*}
-\varepsilon \tag{3-12}
\end{equation*}
$$

uence beta, and cal relationship rrecast the beta Scholes study, ify the accountdies found that as:
mship between e economy gen-
lity of earnings. risk. ditional associ-

The advantage of the accounting beta is that it responds more quickly to a change in a company's fundamentals compared to market beta. However, the weakness of the methodology is that the accounting betas are computed under the assumption that all companies respond in a similar manner to a change in fundamentals, that is, the regression coefficients in Equation 3-12 are equally applicable to all companies. Example 3-2 conveys the main idea of the approach, which is to relate beta to an appropriate set of fundamental accounting variables.

Accounting-based approaches are useful tools to estimate the risks of a company for which no market data exist. An excellent example of using accounting data to infer the beta of companies without traded stock is contained in Pogue (1979). To infer the beta of unlisted oil pipeline companies, Pogue estimated the standard deviation in book rates of return for oil pipelines and for 18 reference industries for which market data were available. A beta prediction equation was developed from the 18 benchmark industry betas by relating the standard deviations of book returns for the 18 industries to their respective betas using simple linear regression. By inserting the standard deviations for oil pipelines into the fitted beta estimation equation, he obtained beta estimates of oil pipelines. Pogue was careful in accounting for different debt ratios among the reference companies by working with unlevered betas. ${ }^{11}$ Using the derived betas, Pogue estimated the cost of equity capital for the oil pipelines with the Capital Asset Pricing Model.

Fundamental Beta

The fundamental beta, pioneered by Barr Rosenberg, ${ }^{12}$ combines the techniques of historical betas and accounting betas into one system and is more accurate in predicting future beta than either historically derived estimates or account-ing-based estimates alone.

Fundamental betas are developed through "relative response coefficients," defined as the ratio of the expected response of a security to the expected response of the market if both the security and the market are affected by the same event, for example, inflation or changes in energy costs. Those securities that react to an economic event in the same manner as the market will have high response coefficients, and vice-versa. The security's fundamental beta

[^5]is determined by the relative response of security returns to economic events and by the relative contributions of various types of economic events to market variance. The fundamental beta of a security is the weighted average of its relative response coefficients, each weighted by the proportion of total variance in market returns due to that specific event. To compute fundamental beta, it is necessary to consider the sources of economic events, to project the reaction of the security to such moves, and to assign probabilities to the likelihood of each possible type of economic event.

To forecast fundamental betas, Rosenberg uses a multiple regression equation similar to Equation 3-12, but with considerably more variables. A vast array of variables on market variability, earnings variability, financial risk, size, growth, and a multitude of company and industry characteristics is used to capture differences between the betas of various companies and industries. Fundamental betas, which are commercially available from the firm of BARRA, are of the form:

$$
\begin{equation*}
\beta=a_{0}+a_{1} \text { Factor }_{1}+a_{2} \text { Factor }_{2}+a_{3} \text { Factor }_{3}+\ldots \text { etc. } \tag{3-13}
\end{equation*}
$$

The weightings are based on historical estimates. The advantage of the approach is that it uses fundamental company data that are related to risk. The disadvantage is that the final regression equation 3-13 is arbitrary.

Rather than rely on historical measures, a model linking beta to its fundamental economic determinants can be derived and employed to quantify the impact of risk factors on beta and therefore on cost of capital. The beta risk measure is mainly a function of volatility and growth. Cyclical and high growth companies have high betas, while more stable and moderate growth companies typically experience lower betas. As a company moves through the various stages of the product life-cycle, its beta changes accordingly. For example, as growth decelerates and a company exhausts its investment opportunities, highbeta companies see their betas decline toward one. As a matter of fact, this is one of the reasons for the preferred use of adjusted betas rather than raw betas.

Chapter 7 fully discusses this approach, where it is shown that utilities are exposed to a number of significant risks that are likely to have an impact on their beta and, hence, on their cost of equity capital. Formally, these risks can be conveniently catalogued under the following headings:

Beta $=$ Demand Risk \times Operating Leverage \times Financial Leverage

1. Demand risk: unanticipated variability in demand and prices, caused by macroeconomic conditions, regulation, competition, and supply imbalances.
2. Cost risk: unanticipated variability in operating and financing costs caused by macroeconomic conditions, regulation, competition, and technological change.
conomic events events to market 1 average of its of total variance idamental beta, to project the rabilities to the
ession equation s. A vast array acial risk, size, stics is used to and industries. ,m the firm of
.. etc. (3-13)
vantage of the related to risk. arbitrary.
its fundamental tify the impact ta risk measure growth compav th companies gh the various 'or example, as irtunities, higher of fact, this than raw betas.

1at utilities are \geq an impact on ly, these risks

I Leverage
ces, caused by ply imbalances. inancing costs ition, and tech-
3. Leverage: the extent to which these demand and cost uncertainties are magnified by the operating cost and financial cost structures of the company.

EXAMPLE 3-2

A predicted value for a regulated utility's beta is developed based upon a detailed analysis of a predictive model that takes into account a number of market and accounting variables. The specifics of this "back to the future" approach are as follows: ${ }^{13}$

First, the 5-year betas of each sample firm over the 2002-2006 "future period" are calculated. Second, the relationship between these betas and a set of accounting variables calculated using data from the 1997-2001 period is estimated by multiple regression techniques, as in Equation 312. Third, the estimated relationship and the corresponding accounting variables for the utility calculated using data for the 2002-2006 period are used to predict the company's beta for the future.

Based on the empirical finance literature cited above, the accounting variables selected as having an impact on the firm's future beta are: earnings beta X_{1}, growth in total assets X_{2}, book value to market price X_{3}, debt ratio X_{4}, historical beta X_{5}, historical standard deviation X_{6}, variation in cash flow X_{7}, and current dividend yield X_{8}, and a dummy variable X_{9} for dividend cuts in the previous 5 years. The estimated relationship between future betas in the 2002-2006 period and the accounting variables over the 1997-2001 period is:

$$
\begin{aligned}
\text { Future Beta }= & 0.326-0.015\left(X_{1}\right)+0.357\left(X_{2}\right) \\
& +0.125\left(X_{3}\right)-0.329\left(X_{4}\right)+0.334\left(X_{5}\right) \\
& +3.69\left(X_{6}\right)+0.04\left(X_{7}\right)+0.201\left(X_{8}\right)
\end{aligned}
$$

Inserting the following current values of the accounting variables for the company in the above equation:

$$
\begin{array}{lll}
X_{1}=0.57980 & X_{2}=0.08771 & X_{3}=1.21700 \\
X_{4}=0.3657 & X_{5}=0.4632 & X_{6}=0.02509 \\
X_{7}=0.18050 & X_{8}=0.09394 & X_{9}=0
\end{array}
$$

The predicted future beta for that company is 0.65 .

[^6]nould be corresents. Moreover, ; different from common stock. to 90-day Treanium embedded ind consistency, ${ }^{\prime}$ with expected ills typically do generally have
widely, and are ates, leading to are also largely Federal Reserve : money supply, rals as a tempo-
iterest rate risk, bonds are sold cipants, usually inds, insurance \geqslant are not subject
nselves against own as a zeroon and holding) cash flows to
fund are invested e computed. The ents on debt, can se pension assets is way, changing similar fashion, s matched to the
nds differs from 1 has a higher or iction of investor , that is, at what vhen considering
reinvest and there is no price risk if the bond is held to maturity. Holding a zero coupon bond eliminates reinvestment risk and interest rate risk as well if held to maturity. In the case of coupon bonds, this simple strategy has to be refined. It is still true that price risk is avoided if the bonds are held to maturity, but there remains reinvestment-rate risk since the coupons need to be reinvested at some unknown rate. Immunization is achieved by purchasing a coupon bond whose weighted maturity ("duration'') is equal to the investment horizon. This works regardless of interest rate movements. If rates decrease, the investor is forced to reinvest coupons at a lower rate but also makes a capital gain on the sale of the bonds at the end of the investment horizon. If rates increase, the capital loss on the sale at the horizon date is offset by the extra cash flow generated from investing the coupon payments at the new higher rate.

In short, institutional bondholders neutralize the impact of interest rate changes by matching the maturity of a bond portfolio with the investment planning period, or by engaging in hedging transactions in the financial futures markets. The merits and mechanics of such immunization strategies are well-documented by academicians and practitioners.

While the spot yield on long-term Treasury bonds provides a reasonable proxy for the risk-free rate, the CAPM specifically requires the expected spot yield. Market forecasts of rates on Treasury bonds are available in the form of interest rate futures contract yields, and can be employed as proxies for the expected yields on Treasury securities. Appendix 5-B discusses the use of interest rate forecasts as proxies for the risk-free rate.

5.5 CAPM Application: Beta Estimate

In Chapter 3, it was shown that beta is a useful, simple, objective measure of risk when used to gauge the relative risks of securities. The relative risk ranking of securities is somewhat immune to the beta estimation method. The situation is different when the objective of estimating beta is to obtain an absolute estimate of the cost of equity for an individual security. In this case, the reliability of the beta estimation technique has a direct effect on the confidence in the CAPM estimate of equity cost.

[^7]A useful starting point is the utility's historical beta available from several commercial sources ${ }^{8}$ such as Value Line, Bloomberg, Morningstar, BARRA, and Merrill Lynch. ${ }^{9}$ Published betas from these sources have the advantage of already being adjusted for their natural tendencies to revert to 1.00 . Recall from Chapter 3 that only adjusted betas are appropriate, not raw betas. If the utility's past market risk seems likely to continue, based on an examination of company fundamentals, historical beta calculations can be used to estimate the cost of equity. In the case of a non-publicly traded regulated entity, Chapter 7 will offer several techniques designed to estimate the beta of separate divisions and regulated operating subsidiaries.

Historically estimated betas for individual securities are frequently unstable and sensitive to the estimation technique. The CAPM was initially developed in the context of portfolio theory and was aimed at portfolio management practices, and not at utility cost of equity estimation. When portfolios of securities are considered, the statistical estimation errors for each individual security's beta cancel out, so that historically estimated betas for portfolios are reliable and constitute reliable predictors of the portfolio's future beta. But when using the CAPM to estimate a utility's cost of capital, only one security is considered, accentuating the statistical estimation problem. One remedy is to rely on an industry beta instead of a one-security sample, or on the average beta for a portfolio of comparable risk securities.

The perils and biases of relying on historical beta as a proxy for the true fundamental future beta were discussed in Chapter 3, and several remedies were offered. Since betas change over time as both company fundamentals and capital structures change, examination of possible future changes in company fundamentals can reveal the future likely trend and value of beta. Clues to such changes can be obtained by studying the behavior of key accounting variables, such as payout ratios, capital structure ratios, and earnings stability trends. Comparison of historical betas with "fundamental betas', and 'accounting betas" can reveal changes in the utility's risk fundamentals.

Recall from Appendix 3-A of Chapter 3 that if listed call options are traded on the utility's stock, a time series of the standard deviation implied in daily

[^8]e from several gstar, BARRA, the advantage to 1.00 . Recall iw betas. If the in examination sed to estimate entity, Chapter sta of separate
dently unstable ally developed o management a portfolios of sach individual ; for portfolios 's future beta. pital, only one problem. One sample, or on
cy for the true veral remedies idamentals and ;es in company beta. Clues to tey accounting rnings stability al betas'" and ndamentals.
ions are traded nplied in daily
can be estimated to the market.
tatistical regresedure is suspect. d commerciallyose provided by y unknown esti-

FIGURE 5-4
CAPM ESTIMATES WITH DIFFERENT BETA ESTIMATES

call option premiums can reveal on a timely basis whether investor risk perceptions are changing and whether beta is changing in some predictable manner.

The final CAPM estimate of equity cost can be sensitized over a range of beta estimates to produce a range of estimates of the cost of equity. A 95\% confidence interval, based on the standard error of estimate, around the best estimate of the beta coefficient, can be derived. For example, for a risk-free rate of 5% and a market return of 12%, the CAPM estimate of equity cost for a utility with a beta of 0.75 is 10.3%; if the standard error of estimate of beta is 0.10 , beta estimates range from 0.65 to 0.85 , with a corresponding range of equity cost of 9.6% to 11.0%. This is shown in Figure 5-4.

5.6 CAPM Application: Market Risk Premium

The last required input to the CAPM is the expected market risk premium return $\left(R_{M}-R_{F}\right)$, which is the difference between the market return and the risk-free rate. There are essentially two methods of estimating the market risk premium: historical and prospective.

Historical Market Risk Premium

The principal approach to assessing the expected market risk premium ('MRP') in the finance literature has been to examine the historical data of

New Regulatory Finance

Appendix 8-C
 The Cost of Equity and the Allowed Return on Book Equity

This appendix derives an equation that transforms the investor's required turn on equity into the firm's allowed return on book equity. From Equation K in Appendix 8-B

$$
P=\frac{D_{1}}{K-b r-s v}
$$

but $D_{1}=E_{1}(1-b)$ and $E_{1}=r B_{0}$, where $E_{1}=$ Earnings per share expected ext year, $\mathrm{B}=$ current book value of equity, and $\mathrm{b}=$ earnings retention ratio. Substituting and dividing both sides by B

$$
P / B=\frac{(1-b) r}{K-b r-s V}
$$

$$
P / B(K-b r)-P / B s v=(1-b) r
$$

Defining G as the growth rate in total book equity, then $\mathrm{G}=\mathrm{br}+\mathrm{s}$ by definition, so substituting for G in the previous equation

$$
P / B(K-G)+s=(1-b) r=r-b r
$$

solving for r :

$$
r=b r+P / B(K-G)+s
$$

$$
r=G+P / B(K-G)
$$

$$
\begin{aligned}
& \text { ut } \mathrm{v}=(1-\mathrm{B} / \mathrm{P}) \text {; substituting and rearranging: } \\
& P / B(K-b r)-P / B s v=(1-b) r \\
& P / B(K-b r-s)+s=(1-b) r
\end{aligned}
$$

Chapter 9

Discounted Cash Flow Application

The purpose of the DCF model is to estimate the opportunity cost of sharehold ers, or cost of equity capital. From the standard DCF model, the cost of equity is the sum of the expected dividend yield, $\mathrm{D}_{1} / \mathrm{P}_{0}$ and the expected growth, g . It would be a relatively simple matter to calculate a company's cost of equity capital if investor expectations were readily observable. Projections of dividends and growth for that company would be looked up, its stock pric ossed pluged io the equaion, and so cost iquily cale he purpose of this chapter is to analyze the practical problems involved applying the DCF model, describe the difficulties encountered, and offer potential tools and solutions to circumvent those difficulties.

Section 9.1 briefly describes readily available online sources of investmen information useful in the implementation of the DCF approach. In Section 9.2, the issues of the appropriate dividend yield and stock price to employ are discussed. In Sections 9.3 through 9.5 , methods of estimating expected growth are outlined, including historical growth, analysts forecasts, and sus ost alowance and alternte functional versions of the DCF model Chapter 14 stresses the need to broaden the sample to include other investment alterna ives, and discuses the design of comparable risk groups of companies throug he use of risk filters.

9.1 Data Sources

Several techniques described in this and subsequent chapters rely on the availability of historical and forecast information. The most widely used and availability of historical and forecast information. The most widely used and comprehensive data bases in the determination of the cost of capital are briefly
reviewed in this section. ${ }^{1}$ A wealth of investment information is available in the publications of major investment advisory services, including the Value Line Investment Survey, Moody's Investor Services Inc., Standard \& Poor's Corporation, Yahoo Finance, AUS Utility Reports, and Regulatory Research Associates, to name some. Yahoo Finance, Value Line Investment Analyze and MSN Investor offer online access to comprehensive financial information

[^9] Mascus (2005) and Reilly \& Brown (2003).

A comprehensive and abundant flow of bulletins and reports emerges daily, weekly, and monthly from these services, compiled in reference volumes each year for various industry groups and individual companies, including public utilities. Of particular interest are the on-line data bases, investment reports, and capital market data offered by the major services to investors. Standard \& Poor's Compustat Services ("PCPlus Research Insight Database") ${ }^{2}$ provides a wealth of online historical capital market information. With Research Insight, access to a wide family of financial and market databases is available, including the Compustat database with more than 20,000 companies, market index data, economic data, online stock prices, and sector data including te uily Insight based on various selected financial criteria and a multitude of financial ratios cial ratios.

Value Line is an independent financial advisory service, is not engaged in the securities brokerage/investment banking business, is relatively inexpensive, and is easily accessible on-line and/or in business libraries. The Value Line Investment Survey covers over 1,600 stocks in 90 industries, and provides a reference and current valuation service. Each stock in the list is reviewed in detail quarterly. Each week a new edition of the Value Line Survey covers approximately 125 individual companies in 4 to 8 different industries on a is repeated A plethora of investment information and historical information is made available for each of these 1,600 companies, including growth rates, is made available for each of these 1,600 companies, including growth rates, ratios. Comprehensive financial statements, pre-calculated financial ratios, rate of return rates, per share data, measures of risk and earnings predictability, dividends and eamings forecasts, and countless other investment data are easily accessed. Value Line provides online in real-time and/or on monthly CDROMs a computerized version of its data base updated monthly under the "Value Line Investment Analyzer" brand name. An expanded version of the Value Line data that includes some 7000 stocks is also commercially available.

9.2 Dividend Yield Estimation

According to the standard DCF formulation, the cost of equity is estimated by the formula:

$$
\begin{equation*}
\mathrm{K}=\mathrm{D}_{1} / \mathrm{P}_{0}+\mathrm{g} \tag{9-1}
\end{equation*}
$$

The measurement of K can be broken down into two components: measurement of the expected dividend yield, D_{1} / P_{0}, and the measurement of expected
growth, g. The next two sections will consider each in turn. This section focuses on the dividend yield component.
Two major issues are involved in the determination of the dividend yield. First, the appropriate stock price to employ, and second, the relative merits of using a spot dividend yield versus an expected dividend yield.

Stock Price

Conceptually, the stock price to employ is the current price of the security at the time of estimating the cost of equity, rather than some historical highlow or weighted average stock price over an arbitrary historical time period. The reason is that the analyst is attempting to determine a utility's cost of
equity in the future, and since current stock prices provide a better indication of expected future prices than any other price according to the basic tenets of the Efficient Market Hypothesis, ${ }^{3}$ the most relevant stock price is the most recent one. In other words, current stock prices reflect the most recent information. Use of any other price violates market efficiency

Market Efficiency

The purpose of the equity market is to allow risk bearing in the economy in an efficient manner. An efficient market is one in which, at any time, security prices fully reflect all the relevant information available at that time. An efficient market implies that prices adjust instantaneously to the arrival of new information, and that therefore prices reflect the intrinsic fundamental economic value of a security. The market is efficient with respect to a given set of information if there is no way for investors to use that information set to select stocks and reap abnormal risk-adjusted returns. A considerable body of empirical evidence indicates that U.S. capital markets are efficient with respect to a broad set of information, including historical and publicly available information. ${ }^{4}$

The efficiency of the stock market has several implications. First, it indicates that observed prices at any time represent the true fundamental equilibrium value of a security, and that a cost of capital estimate should be based on current prices rather than on an average of past prices. Conceptually, there
${ }^{3}$ The Efficient Market Hypothesis, pioneered by Fama (1970), is the comerstone of
modern investment hteory, and is described in most college-level investment text-
books. For an excellent treatment, see Reilly and Brown (2003), Bodie, Kane, and
An excellent summary of the empirical evidence can be found in Reilly and Brown (2003). Some well-documented market inefficiencies remain, such as the size effect, the January effect, and market-to-book anomalies.

New Regulatory Finance
is no validity to smoothing stock price series over some past historical period. The measurement of K rests on the assumption that a utility's stock is accurately priced relative to other equivalent-risk investments. The Efficient Market Hypothesis validates that assumption. Second, the assumption of perfect markets that is embodied in DCF valuation models is validated by the existence of efficient markets. And third, under ideal circumstances, market efficiency suggests that the estimated K reflects returns in investments of similar risks, since observed stock prices reflect information about possible alternative
investments with different risks and returns.

There is yet another justification for using current stock prices. In measuring K as the sum of dividend yield and growth, the period used in measuring the is paired with it. Since the current stock price P_{0} is caused by the growth
dien foreseen by investors at the present time and not at any other time, it is clear that the use of spot prices is preferable.
A frequent objection to the use of current stock prices is that they may reflect abnormal conditions, making it more useful to use average prices over a period of time for purposes of estimating the cost of capital. Average stock ence large random fluctuations. Visual inspection of a chart of daily closing prices over the last few weeks should reveal whether the current stock price prices over the last few weeks should reveal whether the current stock price
is representative or is an outlier. If the current stock price is not an outlier, is representative or is an outier. If the current stock price is not an outlier,
the use of the current stock price is corroborated. If the current stock price the use of the current stock price is corroborated. If the current stock price
is indeed an outlier, there is some justification for averaging over several trading days to smooth out market aberrations, as would be the case after a stock goes ex-dividend or after a large block sale of stock held by a financial institution, for example. But the longer the past period over which stock prices are averaged, the more severe the violation of market efficiency. A stock price dating back to the previous year, as some analysts advocate, reflects stale information and is not representative of current market conditions.
An analogy with interest rates will clarify this point. If, for example, interest rates have climbed from 5% to 7% over the past 6 months, it would be incorrect to state that the current interest rate is in the range of 5% to 7% incorrect to state that the current interest rate is in the range of 5% to 7%
just because this is the interest rate range for the past 6 months. Analogously, just because this is the interest rate range for the past 6 months. Analogously,
it is incorrect to state that the cost of equity, which also has risen along with it is incorrect to state that the cost of equity, which also has risen along with
interest rates, is in some given 6 -month range. Just as the current interest rate is 7%, the cost of equity is currently that which is obtained from the standard DCF using current spot prices.
To guard against the possibility that the current stock price reflects abnormal conditions or constitutes a temporary aberration, while at the same time retaining the spinit of market efficiency, averaging stock prices over several
recent trading days is a reasonable compromise. When estimating a current or near-term cost of equity, averaging stock prices over a short period i appropriate. The average closing stock price calculated over the most recent 10 trading days period at the time of estimating the cost of equity is a reasonable procedure. A similar average computed over a one-month period rather than a 10-day period would not be unreasonable. Averaging the high and low stock prices for the most recent month is also a reasonable procedure. Closing stock prices can be obtained online from the Yahoo Finance Web site.

In the special case of certain utility stocks traded over the counter, an estimate of current price may be obtained by averaging the most recent bid and ask prices. If the stock is thinly traded, there is some justification for averaging over several trading days, at the expense of market efficiency. It should be pointed out that averaging stock prices in periods when stock prices are rising will understate the stock price and overstate the current cost of common equity, and conversely.
One compromise approach that eliminates the bias caused by averaging stock prices and yet is consistent with market efficiency principles is the randomobservable price. The variability of stock price as measured by the standard deviation of the residuals from the model, measures the stability of the stock rice. The random-walk model takes the following fom:

$$
\begin{equation*}
P_{t}=P_{t-1}+\varepsilon \tag{9-2}
\end{equation*}
$$

Where: $\quad P_{t}=$ stock price in period t

$$
\begin{aligned}
& P_{t}=\text { stock price in period } t \\
& P_{t-1}=\text { stock price in period } t-1
\end{aligned}
$$

$$
\begin{aligned}
& P_{t-1}=\text { stock price in } p \\
& \varepsilon=\text { forecast error }
\end{aligned}
$$

In words, the random-walk model asserts that the best forecast of today's stock price is yesterday's stock price, along with some forecasting error, and not some combination of previous stock prices. In practice, the analyst observes the current stock price, along with its volatility over the past year, as measured by the standard deviation. The standard deviation around the current stock price provides a 95% confidence interval. For example, if the current stock price is $\$ 50$ and the standard deviation measured over the last year is $\$ 3.00$ the random-walk model would employ a stock price ranging from $\$ 47$ to $\$ 53$.

Dividend Yield

The DCF model, and the discipline of finance in general, is forward-looking in nature and based on expected future cash flows. Therefore, the appropriate dividend to use in a DCF model is the prospective dividend rather than the current dividend because an investor expects it to grow over the next year In implementing the standard DCF model, it is the dividend that an investor
who purchases the stock today expects a company to pay during the next 12 months that should be used, and not the dividend that was paid last year DCF theory states very clearly that the expected rate of return on a stock is equal to the expected dividend for the next period divided by the current stock price, plus the expected growth rate. The dividend for the next period is just equal to the current dividend times the growth rate, that is:

$$
\begin{equation*}
D_{1}=D_{0}(1+g) \tag{9-3}
\end{equation*}
$$

If dividends are paid once a year and increased each year in response to the growth in earnings, as is assumed in the standard DCF model, then the appropriate adjustment is to multiply the spot dividend yield, $\mathrm{D}_{0} / \mathrm{P}_{0}$ by $(1+\mathrm{g})$ The spot dividend yield is obtained by dividing the dividends paid over th year ending on the purchase date by the stock price on that date

Ihe spot dividend yield is used instead of the expected dividend yield, it creates a downward bias in the dividend yield component, and underestimates the cost of equity. For example, for a spot dividend yield of 5% and a growth rate of 5%, the cost of equity equals 10% unadjusted for the expected dividend yield. The correct dividend yield to employ is $5.00 \%(1+0.05)=5.25 \%$, yielding a cost of equity of 10.25% instead of 10.00%.
Comprehensive dividend information for stocks is available from the Value Line, Yahoo Finance, and MSN Investor Web sites, and from the Wall Street Journal.

One of the assumptions of the standard DCF model is that dividend payment are made at the end of each year, whereas, in fact, most utilities pay dividend on a quarterly basis. ${ }^{5}$ Chapter 11 provides a full discussion, derivation, and implementation of the quarterly DCF model in regulatory hearings. Clearly quarterly dividends are preferred by investors rather than a lump sum payment at the end of the year that is equal to the sum of the quarterly payments. Tuis until the end of the year are worth more to the investor As will be discussed at length in Chapter 11, the exact nature of the adjustment to the dividen yield becomes more complex and exceeds $(1+g)$ if the quarterly timing of dividends and the interval between dividend payments are recognized.

Finally, if the conventional method of flotation cost adjustment is used by Finaly, if the conventional method of flotation cost adjustment is used by
the regulator as discussed in the following chapter, the expected dividend

[^10]yield must be adjusted for the flotation cost allowance by dividing it by (1 - f), where f is the flotation cost factor. ${ }^{6}$
$$
K=D_{1} / P_{0}(1-f)+g
$$
$$
(9-4)
$$
9.3 Growth Estimates: Historical Growth

The principal difficulty in calculating the required return by the DCF approach is in ascertaining the growth rate that investors are currently expecting. While there is no infallible method for assessing what the growth rate is precisely an explicit assumption about its magnitude cannot be avoided. Estimating the growth component is the most difficult and controversial step in implementing eneral approaches to estimating expected growh bed id general approaches to estimating expected growth can be used, each with its own strengths and blemishes

1. historical growth rates
2. analysts' forecasts
3. sustainable growth rates

This section describes the historical growth approach while the next two sections address the other two approaches.
Historical growth rates in dividends, earnings, and book value are often used as proxies for investor expectations in DCF analysis. Investors are certainly influenced to some extent by historical growth rates in formulating their future growth expectations. In addition, these historical indicators are widely used by analysts, investors, and expert winesses in reguatory proceedings, at least nalysts are also well-versed in the use of historical growth indicators. To wit the calculation of historical growth rates is normally one of the first steps wit, the calculation of historical growth rates is normally one of the first steps research. There exists a vast literature in empirical finance designed to evaluate the use of historical financial information as surrogates for expected values. This literature is discussed in the next section.
When using historical growth rates in a regulatory environment, a convenient tarting point is to focus on the utility in question, and to assume that its ability it is reasonble to examine past growth trends in earnins, dividend

[^11]and book values as proxies for investor expectations. The fundamental assumption is made that investors arrive at their expected growth forecast by simply extrapolating past history. In other words, historical growth rates influence investor anticipations of long-run growth rates.

In using historical growth rates, three decisions must be made: (1) which historical data series is most relevant; (2) over what past period; and (3) which computational method is most appropriate

Historical Series

DCF proponents have variously based their historical computations on earnings DCF proponents have variously based their historical computations on earnings
per share, dividends per share, and book value per share. Of the three possible growth rate measures, growth in dividends per share is likely to be preferable at least conceptually. DCF theory states clearly that it is expected future cash flows in the form of dividends that constitute investment value

However, since the ability to pay dividends stems from a company's ability to generate earnings, growth in earnings per share can be expected to strongly influence the market's dividend growth expectations. After all, dividend growth can only be sustained if there is growth in earnings. It is the expectation of earnings growth that is the principal driver of stock prices. On the down side, using earnings growth as a surrogate for expected dividend growth can be problematic since historical earnings per share are frequently more volatile than dividends per share. Past growth rates of earnings per share tend to be very volatile and can sometimes lead to unreasonable results, such as negative growth rates. For example, in the 1990s and early 2000s, electric and gas company earnings growth rates were unstable and volatile, and such growth rates could not reasonably be expected to continue. Historically based DCF estimates of the cost of equity were downward-biased by the anemic historical
 passage from a regulated monopoly to a competitive industry.

The relative stability of earnings and dividends is displayed in Figure 9-1 for The Southern Company. Under normal circumstances, dividend growth rates are not nearly as affected by year-to-year inconsistencies in accounting proceare not nearly as affected by year-to-year inconsistencies in accounting proce-
dures as are earnings growth rates, and they are not as likely to be distorted by an unusually poor or bad year. Dividend growth is more stable than earnings growth because dividends reflect normalized long-term earnings rather than transitory earnings, because investors value stable dividends, and because companies are reluctant to cut dividends because of the information effect of dividend payments.

One drawback of using dividends rather than earnings, however, is the discretionary aspect of dividends. Frequently, dividend increases are made in discrete, sometimes large steps, at management's discretion, and historical dividend growth may not be an adequate surrogate of average expected growth over some future time period. Historical growth rates derived over specific periods can be biased by short-run changes in the dividend payout of a firm or through abnormal earnings that are unsustainable. A change in dividend policy would create growth in dividends that is more fictitious than real. If no change in long-run payout policy is anticipated, the expected averag

Sustainable Versus Unsustainable Historical Growth
Past growth rates in earnings/dividends may be misleading if the past growth Pates reflect an increase or a decrease in earned ROEs that is unsustainable or cannot be reasonably expected to continue in the distant future.

If historical ROEs have not been constant over the past 5 years, the mechanical extrapolation of historical earnings/dividends growth implies that a similar pattern is expected to prevail over the next 5 years. In such a case, historical growth would not be an adequate proxy for expected growth to the extent that the trend in past ROEs is unsustainable or is not expected to continue by investors. Under such circumstances, caution must be exercised in extrapolating past trends into the distant future. A more prudent procedure is to rely

TABLE GROWTH COMPUTATIONS FOR SOUTHERN			
Year COMPANY 1996-2005			

Smoothed Compound Growth

Because the compound growth method of calculating growth only considers the end points and does not consider any values between the beginning and the end points and does not consider any values between the begining and terminal values are unrepresentative because they are unusually high or low, the resulting growth rate will not truly reflect the developments during the period. For example, if the terminal year happens to be one of severely depressed earnings due to inflation or acute regulatory lag, and the initial year one of boom, the indicated growth rate will be unrealistically low. The reverse also may be true. This potential distortion can be avoided in one of two ways. Either select initial and terminal end points that have similar economic
characteristics, or do not use a single year's data, but rather the averages of
the first few and last few years' data as end points. The latter method is referble because it involves less subjective judgment. The historical 5 -year preferber compound growth rates available in Value Line for earnings, dividends, book value, revenues, and cash flows are computed in this manner. Base periods used by Value Line are 3 -year averages in order to temper cyclicality and to mitigate any potential distortion due to sensitivity to end points in the calculation.
To compute the smoothed compound growth rates, base periods used are 3year averages in order to temper cyclicality and reduce sensitivity to end points. For example, base periods for the 5 -year and 10-year growth rate
calculations through the end of 2005 are 2003-2005 versus 1999-2001 and 1994-1996, respectively.

Exponential Growth

A more sophisticated method of calculating a growth rate is to fit a "least squares line" to the logarithms of all the data in the series. This method known under various names, such as log-linear growth, trended growth line og-linear trend line, log-linear regression, or least-squares exponental on analysis. To implement the method, the expected dividend is expressed as the current dividend compounded over t years

$$
D_{t}=D_{0}(1+g)^{t}
$$

Taking natural logarithms on both sides, hence the name log-linear trend line, we get:

$$
\begin{aligned}
& \ln D_{1}=\ln D_{0}(1+g)^{1} \\
& \ln D_{1}=\ln D_{0}+t \ln (1+g)
\end{aligned}
$$

$$
\begin{equation*}
\ln D_{1}-\ln D_{0}=t \ln (1+g) \tag{9-6}
\end{equation*}
$$

The reason for employing the logarithm of dividends rather than raw dividend is because the slope of a line fitted through the raw data points represents percentage increase, or growth rate per year, instead of merely a fixed dolar increase per period. A constant dollar increase per period imples a derproch growth rate. The average growth rate computed using the listorted by changes is more useful because log-linear growth rates are not distorted by ccange" in the dollar level. In essence, the log-linear approach solves problem, and is therefore preferable to the raw linear approach.

Letting $\mathrm{y}=\ln \mathrm{D}_{1}-\ln \mathrm{D}_{0}$ and letting $\mathrm{b}=\ln (1+\mathrm{g})^{l}$ in the above equation, we have the simple expression:

The y is the historical dividends and t the time periods. Since both y and t are known, the term b can easily be estimated by performing a simple regressio using an electronic spreadsheet such as Excel the beasily inferred from The historical go follow

$$
\begin{aligned}
b & =\ln (1+g) \\
e^{b} & =e^{\ln (1+g)}=1+g \\
g & =e^{b}-1
\end{aligned}
$$

The exponential growth rates are obtained from Equation 9-8 through leastsquares regression techniques. Using equation 9-8, Table 9-1 displays the exponential growth rates in earnings and dividend growth rates for Southern Company over the 1996-2005 period.
The exponential growth method is theoretically more precise than the compound growth rate method in that it weighs each observation equally rather than including just the end points. In normal circumstances, however, the added precision is not worth the substantial extra calculation effort. To wit, Value Line takes a compromise position. To diminish the sensitivity of the compound growth method to the choice of end points, and at the same time Value Line uses three-year base periods as its end points to compute compound Gau Le In extres cases, the usefulness of the growth proxy may be improved if one or more abnormal years are omitted or adjusted.

Hazards of Historical Growth Rates

Past growth rates in earnings or dividends may be misleading, since past growth rates may reflect changes in the underlying relevant variables that cannot reasonably be expected to continue in the future, or may fail to capture known future changes.
The future need not be like the past. For example, assets may grow at a different rate, or utilities may be more or less profitable. Since investors take such factors into account in assessing future earnings and dividends, historical growth rates could provide a misleading proxy for future growth
The standard DCF model assumes, among other things, that a company will have a stable dividend payout policy and a stable earned return on book equity, and thus that earnings, dividends, and book value per share will in the future grow at the same rate. The DCF model also assumes that the financing mix, that is the proportions used of retained eagrowth rates will change and the past growth rates will not reflect future growth rates. While

IMPACT OF A CHANGE IN RATE OF RETURN ON EARNINGS GROWTH

Year	Book Value (1)	Earnings per Share (2)	Dividends per Share (3)	Retained Earnings (4)	Growth Rate of Earnings (5)
1	\$10.00	\$1.00	\$0.60	\$0.40	
2	\$10.40	\$1.04	\$0.62	\$0.42	4\%
3	\$10.82	\$1.08	\$0.65	\$0.43	4\%
4	\$11.25	\$1.69	\$1.01	\$0.67	56\%
5	\$11.92	\$1.79	\$1.07	\$0.72	6\%
6	\$12.64	\$1.90	\$1.14	\$0.76	6\%
Column (1): Value for previous year plus retained earnings in previous year Column (2): 10% of book value in first three years, and 15% of book value in last three years Column (3): 60% of earnings Column (4): 40% of earnings					

a transitory change in payout, projection of a declining or rising retention ratio is inconsistent with the use of a single growth rate DCF model. A changing retention ratio implies changing growth rates. A two-growth rate change. Forecast changes in payout ratios are inconsistent with use of the single growth rate DCF model. The only way to produce a change in the forecast payout ratio is by introducing an intermediate growth rate which is different from the long-term growth rate.
It is also unreasonable to postulate a growth in earnings which exceeds growth in book value forever, because earnings would eventually exceed book value a which such earnings are based. That is to say, it is unreasonable to expect change in earned return, projection of a declining or rising earned ROE is inconsistent with the use of a single growth rate DCF model. A changing ROE implies changing growth rates. A two-growth rate DCF model is more appropriate whenever the growth rate is expected to change. The only way o produce a change in earned returns is by introducing an intermediate growth ate which is different from the long-term growth rate.
Another potential problem with the use of historical growth rates is that there is no convenient method to adjust the results if the company's risk change For example, the stock price of an electric utility that diversifies into oil exploration or solar conservation reflects both the risk of electric generation and of peripheral energy activities. The converse is true for a utility divesting itself of above-average risk activities. Historical growth rates may be quite different from those expected in the future. To wit, to the extent that restructur-
expectations relative to history, historical growth rates become suspect as a measure of investor expectations.
Yet another issue associated with historical growth is that reliance on history to measure investor expectations renders the replication of that growth a self-fulfilling prophecy. Reliance on forecast growth rates avoids this inherent circularity.
The major point of all this is that it is perilous to apply historical growth when a utility is in a transition between growth paths. When payout ratios growth is hazardous. Such transitions can occur under variable inflation environments, and under fundamental structural shifts, such as deregulation.
Given the choice of variables, length of historical period, and the choice of statistical methodologies, the number of permutations and combinations of growth must be explore Historical growth restitute a useful starting point and provide useful information as long as the necessary conditions and assumptions outlined in this section are not dramatically violated. Although historical information provides a primary foundation for expectations, investors use additional information to supplement past growth rates. Extrapolauing past history alone without consideration of historical trends and anticipated economic events would assume either that past rates will persist over time or that investors' expectations are based entirely on history

9.4 Growth Estimates: Analysts' Forecasts

Since investor growth expectations are the quantities desired in the DCF model, the use of forecast growth published by investment services merits srious consideration. The growth rates assumed by investors can be determined by a study of the analyses of future eamings and projected long-run growth rates made by the investment community. The anticipated long-run growth rates actually used by institutional investors to determine the desirability of investing in different securities influence investors' growth anticipations.
Typically, growth forecasts are in the form of earnings per share over periods ranging from to 5 yars and are suppoted by extensive financial analysis ${ }^{10}$

[^12]The average growth rate estimate from all the analysts that follow the company measures the consensus expectation of the investment community for that company. In most cases, it is necessary to use earnings forecasts rather than dividend forecasts due to the extreme scarcity of dividend forecasts compared to the widespread availability of earnings forecasts. Given the paucity and variability of dividend forecasts, using the latter would produce unreliable constant growth in both earnings and dividends. Moreover as discussed below there is an abundance of empirical research that shows the validity and superio ty of earnings forecasts relative to historical estimes wis cost of capital.

The uniformity of growth projections is a test of whether they are typical of the market as a whole. If, for example, 10 out of 15 analysts forecast growth in the $7 \%-9 \%$ range, the probability is high that their analysis reflects degree of consensus in the market as a whole. As a side note, the lack of uniformity in growth projections is a reasonable indicator of higher risk Chapter 3 alluded to divergence of opinion amongst analysts as a valid risk indicator.

Because of the dominance of institutional investors and their influence on individual investors, analysts' forecasts of long-run growth rates provide sound basis for estimating required returns. Financial analysts exert a strong influence on the expectations of many investors who do not possess the resources to make their own forecasts, that is, they are a cause of g . Th accuracy of these forecasts in the sense of whether they turn out to be correct not at issue here, as long as they reflect widely held expectations. As long as the forecasts are typical and/or influential in that they are consistent with current stock price levels, they are relevant. The use of analysts' forecasts in forecast earnings and dividends for only one year, let alone for longer time periods. This objection is unfounded, however, because it is present investor expectations that are being priced; it is the consensus forecast that is embedded in price and therefore in required return, and not the future as it will turn out to be.

Empirical Literature on Earnings Forecasts

Published studies in the academic literature demonstrate that growth forecasts made by security analysts represent an appropriate source of DCF growth rates, are reasonable indicators of investor expectations and are more accurate than forecasts based on historical growth. These studies show that investors rely on analysts' forecasts to a greater extent than on historic data only.
Academic research confirms the superiority of analysts' earnings forecasts over univariate time-series forecasts that rely on history. This latter category
includes many ad hoc forecasts from statistical models, ranging from the naive methods of simple averages, moving averages, etc. to the sophisticated time-series techniques such as the Box-Jenkins modeling techniques. The literature suggests that analysts' earnings forecasts incorporate all the public information available to the analysts and the public at the time the forecasts are released. This finding implies that analysts have already factored historical growth rates somewhat redundant and at worst, potentially double counting growth rates which are irrelevant to future expectations. Furthermore thes forecasts are statistically more accurate than forecasts based solely on historical earnings, dividends, book value equity, and the like.

Summary of Empirical Research

Important papers include Brown and Rozeff (1978), Cragg and Malkiel (1968, 1982), Harris (1986), Vander Weide and Carleton (1988), Lys and Sohn (1990), and Easterwood and Nutt (1999).

The study by Brown and Rozeff (1978) shows that analysts, as proxied by Value Line analysts, make better forecasts than could be obtained using only historical data, because analysts have available not only past data but also a knowledge of such crucial factors as rate case decisions, construction programs, new products, cost data, and so on. Brown and Rozeff test the accuracy of their evidence of versus forecasts based on past data only, and conclore used in studies of cost of capital. Their evidence supports the hypothesis that Value Line analysts consistently make better predictions than historical timeseries models.
Using the IBES consensus earnings forecasts as proxies for investor expectation, Harris (1986) estimates the cost of equity using expected rather than tion, Harris (1986) estimates the cost of equity using expected rather than historical earnings growth rates. In his review of the literature on financial
analysts' forecasts, Harris concludes that a growing body of knowledge shows analysts forecasts, Harris concludes that a growing body of knowledge shows
that analysts' earnings forecasts are indeed reflected in stock prices. Elton, that analysts' earnings forecasts are indeed reflected in stock prices. Elon,
Gruber, and Gultekin (1981) show that stock prices react more to changes in analysts' forecasts of earnings than they do to changes in earnings themselves, suggesting the usefulness of analysts' forecasts as surrogates for market expectations. In an extensive National Bureau of Economic Research study using analysts' earnings forecasts, Cragg and Malkiel (1982) present detailed empirical evidence that the average analyst's expectation is more similar to expectations being reflected in the marketplace than historical growth rates, and that it is the best possible source of DCF growth rates. The authors show that historical growth rates do not contain any information that is not already formed by Wall Street professionals get quickly and thoroughly impounded
into the prices of securities and that the company valuations made by analysts
are reflected in security prices.
Vander Weide and Carleton (1988) update the Cragg and Malkiel study and find overwhelming evidence that the consensus analysts' forecasts of future growth is superior to historically oriented growth measures in predicting the firm's stock price. Their results also are consistent with the hypothesis that
investors use analysts' forecasts, rather than historically oriented growth calcuinvestors use analysts' forecasts, rather than historically oriented growth calculations, in making stock buy-and-sell decisions. A study by Timme and Eise-
man (1989) produced similar results. man (1989) pro
Using virtually all publicly available analyst earnings forecasts for a large sample of companies (over 23,000 individual forecasts by 100 analyst firms), Lys and Sohn (1990) show that stock returns respond to individual analyst earnings forecasts, even when they are closely preceded by earnings forecasts made by other analysts or by corporate accounting disclosures. Using actual and IBES data from 1982-1995, Easterwood and Nutt (1999) regress the orecasting errors in the prior years. Results show that earnings changes or analysts react to negative earnings information, but overreact to positive to underinformation.
The more recent studies provide evidence that analysts make biased forecasts and misinterpret the impact of new information. ${ }^{1}$ For example, several studies in the early 1990s suggest that analysts either systematically underreact or
overreact to new information Easterw between these different reactions and reported that analysts underreact to negative information, but overreact to positive information. The recent studies do not necessarily contradict the earlier literature. The earlier research focused on whether analysts' earnings forecasts are better at forecasting future earnings than historical averages, whereas the recent literature investigates whether the analysts' earnings forecasts are unbiased estimates of future earnings. It is possible that even if the analysts' forecasts are biased, they are still closer to
future earnings than the historical been tested in the recent studies. One way to assess the concern that has not forecasts may be biased upward is to incorporate into the ancern that analysts' forecasts of independent research firms, such as Value Line in addionth the analyst consensus forecast. Unlike investment banking firms and stock brokerage firms, independent research firms such as Value Line have no incentive to distort earnings growth estimates in order to bolster interest in common stocks.
"Other relevant papers corroborating the superiority of analysts' forecasts as predict Moyer, Chatfield and Kelley (1985), and Gordon, Gordon Fried and Givoly (1982)

Chapter 9: Discounted Cash Flow Application
Some argue that analysts tend to forecast earnings growth rates that exceed those actually achieved and that this optimism biases the DCF results upward. The magnitude of the optimism bias for large rate-regulated companies in stable segments of an industry is likely to be very small. Empirically, the severity of the optimism problem is unclear for regulated utilities, if a problem exists at all. It is interesting to note that Value Line forecasts for utility companies made by independent analysts with no incentive for over- or by analysts in security firms with incentives not based from those published by analysts in security firms with incentives not based on forecast accuracy,
and may in fact be more robust. If the optimism problem exists and may in fact be more robust. If the optimism problem exists at all, it can long-term economic growth for analysts' growth forecasts in the second and or third stages of the model.
Empirical studies have also been conducted showing that investors who rely primarily on data obtained from several large reputable investment research Thus, both empirical research and common sense indicate that who do not. primarily on analysts' growth rate forecasts rather than on historical growth rates alone.
Ideally, one could decide which analysts make the most reliable forecasts an then confine the analysis to those forecasts. This would be impractical since reliable data on past forecasts are generally not available. Moreover, analyst poor forecasting record by a particular firm is not necessarily indicative of poor future forecasts. In any event, analysts working for large brokerage firms typically have a following, and investors who heed a particular analyst's recommendations do exert an influence on the market. So, an average of all the available forecasts from large reputable investment houses is likely to produce the best DCF growth rate.
Growth rate forecasts are available online from several sources. For example, taue Line Investment Analyzer, IBES (Institutional Brokers' Estimate System), Zacks Investment Research, Reuters, First Call, Yahoo Finance, and Multex Web sites provide analysts' earnings forecasts on a regular basis by reporting on the results of periodic (usually monthly) surveys of the earnings growth forecasts of a large number of investment advisors, brokerage houses, and other firms that engage in fundamental research on U.S. corporations. banks, and insurance companies. Representative of such as pension funds, Zacks Investment Research Web site is a central

[^13]are able to research the different analyst estimates for any given stock without necessarily searching for each individual analyst. Zacks gathers and compiles
the different estimates made by stock analysts on the future earnings for the the different estimates made by stock analysts on the future earnings for the
majority of U.S. publicly traded companies. Estimates of earnings per share for the upcoming 2 fiscal years, and a projected 5 -year growth rate in such eamings per share are available at monthly intervals. The forecast 5 -year growth rates are normalized in order to remove short-term distortions. Forecasts are updated when analysts formally change their stated predictions.
Exclusive reliance on a single analyst's growth forecast runs the risk of being unrepresentative of investors' consensus forecast. One would expect that averages of analysts' growth forecasts, such as those contained in IBES or Zacks, are more reliable estimates of investors' consensus expectations likely to be impounded in stock prices. ${ }^{13}$ Averages of analysts' growth forecasts rather than a single analyst's growth forecasts are more reliable estimates of
investors' consensus expectations. investors' consensus expectations.
One problem with the use of published analysts' forecasts is that some forecasts cover only the next one or two years. If these are abnormal years, they may not be indicative of longer-run average growth expectations. Another problem is that forecasts may not be available in sufficient quantities or may not be
available at all for certain utilities, for example water utilities, in which case available at all for certain utilities, for example water utilities, in which cas alternate methods of growth estimation must be employed.
Some financial economists are uncomfortable with the assumption that the DCF growth rates are perpetual growth rates, and argue that above average growth can be expected to prevail for a fixed number of years and then the growth rate will settle down to a steady-state, long-run level, consistent with that of the economy. The converse also can be true whereby below-average growth can be expected to prevail for a fixed number of years and then the growth rate will resume a higher steady-state, long-run level. Extended DCF models are available to accommodate such assumptions, and were discusse in Chapter 8.

Earnings versus Dividend Forecasts

Casual inspection of the Zacks Investment Research, First Call Thompson, and Multex Web sites reveals that earnings per share forecasts dominate the Value Line provides comprehensive long-term dividend growth foresasts. Only wide availability of earnings forecasts is not surprising. There is an abundance of evidence attesting to the importance of earnings in assessing investors'
${ }^{13}$ The earnings growth rates published by Zacks, First Call, Reuters, Value Line, and
IBES contain significant overlap since all rely on virtually the same population of
institutional institutional analysts who provide such forecasts.
expectations. The sheer volume of earnings forecasts available from the invest ment community relative to the scarcity of dividend forecasts attests to their importance. The fact that these investment information providers focus on growth in earnings rather than growth in dividends indicates that the investment community regards earmings growth as a superior indicator of future longterm growth. Surveys of analytical techniques actually used by analysts reveal the dominance of earnings and conclude that earnings are considered far more important than dividends. Finally, Value Line's principal investment rating assigned to individual stocks, Timeliness Rank, is based primarily on earnings, accounting for 65% of the ranking.

Historical Growth Rates Versus Analysts' Forecasts

Obviously, historical growth rates as well as analysts' forecasts provide relevant information to the investor with regard to growth expectations. Each proxy for expected growth brings information to the judgment process from a different light. Neither proxy is without blemish; each has advantages and shortcomings. Historical growth rates are available and easily verifiable, but may no longer be applicable if structural shifts have occurred. Analysts' growth forecasts may be more relevant since they encompass both history and current changes, but are nevertheless imperfect proxies.

9.5 Growth Estimates: Sustainable Growth

Method

The third method of estimating the growth component in the DCF model alternately referred to as the "sustainable growth" or "retention ratio" method, can be used by investment analysts to predict future growth in earning and dividends. In this method, the fraction of earnings expected to be retained by the company, b, is multiplied by the expected return on book equity, r, to produce the growth forecast. That is,

$$
\mathrm{g}=\mathrm{b} \times \mathrm{r}
$$

The conceptual premise of the method, enunciated in Chapter 8, Section 8.4 is that future growth in dividends for existing equity can only occur if a portion of the overall return to investors is reinvested into the firm instead of being distributed as dividends.

For example, if a company earns 12% on equity, and pays all the earnings out in dividends, the retention factor, b, is zero and earnings per share will not grow for the simple reason that there are no increments to the asset base (rate base). Conversely, if the company retains all its earnings and pays no dividends, it would grow at an annual rate of 12%. Or again, if the company earns 12% on equity and pays out 60% of the earnings in dividends, the
retention factor is 40%, and earnings growth will be $40 \% \times 12 \%=4.8 \%$ per year
In implementing the method, both ' b ' and ' r ' should be the rate that the market expects to prevail in the future. If no explicit forecast of ' b ' is available, it is reasonable to assume that the utility's future retention ratio will, on average, remain unchanged from its present level. Or, it can be estimated by taking a weighted average of past retention ratios as a proxy for the future on the grounds that utilities' target retention ratios are usually, although not
always, stable ${ }^{14}$

Both historical and forecast values of ' r ' can be used to estimate g , although forecast values are superior. The use of historical realized book returns on equity rather than the expected return on equity is questionable since reliance
on achieved results involves circular reasoning Realized retums are the results on achieved results involves circular reasoning. Realized returns are the results of the regulatory process itself, and are also subject to tests of fairness and reasonableness. As a gauge of the expected return on book equity, either or authorized rates of return in recent the long-run expected return on equity, or authorized rates of return in recent regulatory cases can be used as a guide. As a floor estimate, it seems reasonable for investors to expect allowed equity of debt to the utility in question.
nother way of
determinay of obtaining the expected ' r ' is to examine its fundamental determinants. Since earnings per share, E, can be stated as dividends per share, D, divided by the payout ratio $(1-b)$, the earnings per share capitalized by investors can be inferred by dividing the current dividend by an expected
payout ratio. Provided that a utility company follows a policy, the possibility of error is less when estimating the payout than when estimating the expected retum on equity or the expected growth thate when this approach, and denoting book value per share by B, the expected return on equity is:

$$
r=E / B=(D /(1-b)) / B
$$

Estimates of the expected payout ratio can be inferred from historical 10-year average payout ratio data for utilities, assuming a stable dividend policy has been pursued. Since individual averages frequently tend to regress toward the grand mean, the historical payout ratio needs to be adjusted for this tendency, using statistical techniques for predicting future values based on this tendency
of individual values to regress of individual values to regress toward the grand mean over time.
An application of the sustainable growth method is shown in example 9-1.

[^14]EXAMPLE 9-1
Southeastern Electric's sustainable growth rate is required for upcoming rate case testimony. As a gauge of the expected return on equity utilities as reported by Value Line decisions for eastern U.S. electric with a standard deviation of 1%. In other words, the majority of utilities were authorized to earn 11%, with the allowed return on equity ranging from 10% to 12%. As a gauge of the expected retention ratio, the average 2006 payout ratio of 34 eastern electric utilities as compiled by Value Line was 60%, which indicates an average retention ratio of 40%, with a standard devion or 5%. This was consistent with the long Electric. It is therefore reasonable to postulate that investors retention ratio ranging from 35% to 45% for the company with a likely value of 40%. In Table $9-4$ below, expected retention ratios of 35% to 45% and assumed returns on equity from 10% to 12% are multiplied to produce sustainable growth rates ranging from 3.8% to 5.4% with
a likely value of 4.6%.

TABLE 9-4 SUSTAINABLE SROWTH METHOD ILLUSTRATION			
Expected Return on Book Equity (r)			
Expected	10%	11%	12%
Retention Ratio (b)	3.5%	3.9%	4.2%
35%	4.0%	4.4%	4.8%
40%	45%	5.0%	5.4%
4%			

It should be pointed out that published forecasts of the expected return on equity by analysts such as Value Line are sometimes based on end-of-period book equity rather than on average book equity. The following formula ${ }^{1.5}$

[^15]adjusts the reported end-of-year values so that they are based on average common equity, which is the common regulatory practice
$$
r_{a}=r_{t} \frac{2 B_{t}}{B_{t}+B_{t-1}}
$$

The sustainable growth method can also be extended to include external financing. From Chapter 8, the expanded growth estimate is given by:

$$
\mathrm{g}=\mathrm{br}+\mathrm{sv}
$$

where b and r are defined as previously, s is the expected percent growth in number of shares to finance investment, and v is the profitability of the equity investment. The variable s measures the long-run expected stock financing that the utility will undertake. If the utility's investments are growing at a stable rate and if the earnings retention rate is also stable, then s will grow at a stable rate. The variable s can be estimated by taking a weighted average of past percentage increases in the number of shares. This measurement is difficult, however, owing to the sporadic and episodic nature of stock financing, and smoothing techniques must be employed. The variable v is the profitability of the equity investment and can be measured as the difference of market price and book value per share divided by the latter, as discussed in Chapter 8.

There are three problems in the practical application of the sustainable growth method. The first is that it may be even more difficult to estimate what b, r, s , and v investors have in mind than it is to estimate what g they envisage. It would appear far more economical and expeditious to use available growth forecasts and obtain g directly instead of relying on four individual forecasts of the determinants of such growth. It seems only logical that the measurement and forecasting errors inherent in using four different variables to predict growth far exceed the forecasting error inherent in a direct forecast of growth itself.

Second, there is a potential element of circularity in estimating g by a forecast of b and ROE for the utility being regulated, since ROE is determined in large part by regulation. To estimate what ROE resides in the minds of investors is equivalent to estimating the market's assessment of the outcome of regulatory hearings. Expected ROE is exactly what regulatory commissions set in determining an allowed rate of return. In other words, the method requires an estimate of return on equity before it can even be implemented. Common sense would dictate the inconsistency of a retum on equity recom-
mendation that is different than the expected ROE that the method assumes the utility will earn forever. For example, using an expected return on equity of 11% to determine the growth rate and using the growth rate to recommend a return on equity of 9% is inconsistent. It is not reasonable to assume that his regulated utility company is expected to earn 11% forever, but recommend 9% return on equity. The only way this utility can earn 11% is that rates be set by the regulator so that the utility will in fact earn 11%. One is assuming, in effect, that the company will earn a return rate exceeding the recommended cost of equity forever, but then one is recommending that a different rate be granted by the regulator. In essence, using an ROE in the sustainable growth ormula that differs from the final estimated cost of equity is asking the regulator to adopt two different returns.

The circularity problem is somewhat dampened by the self-correcting nature of the DCF model. If a high equity return is granted, the stock price will increase in response to the unanticipated favorable return allowance, lowering the dividend yield component of market return in compensation for the high g induced by the high allowed return. At the next regulatory hearing, more conservative forecasts of r would prevail. The impact on the dual components of the DCF formula, yield and growth, are at least partially offsetting.

Third, the empirical finance literature discussed earlier demonstrates that the sustainable growth method of determining growth is not as significantly correlated to measures of value, such as stock price and price/earnings ratios, correlated to measures of value, such as stock price and price/earnings ratios,
as other historical growth measures or analysts' growth forecasts. Other proxies for growth, such as historical growth rates and analysts' growth forecasts, utperform retention growth estimates. See for example Timme and Eiseman (1989).

In summary, there are three proxies for the expected growth component of , form the the of heowth mothod Criteria in choosing among the three proxies should include growth method. Criteria in choosing among the three proxies should include nd empirical validation. The latter two are crucial. The method should be nd empirical valiaion. The later wo are cracia. The method should be ogically valid and consistent, and should possess an adequate track record in predicting and explaining security value. The retention growth method is he weakest of the three proxies on both conceptual and empirical grounds The research in this area has shown that the first two growth proxies do a ener job of explaining variations in market valuation (M/B and P/E ratios) and are more

DCF Growth Rate Check

As a reasonableness check on the DCF growth rate, the growth rate in dividends can be verified using the following relationship: ${ }^{16}$

Dividend Growth $=$ Risk-free Return + Risk Premium - Dividend Yield
For example, let us say that the yield on Treasury bonds as a proxy for the risk-free return is 5%, the utility risk premium is 5.5% derived from a Capital Asset Pricing Model (CAPM) analysis discussed in earlier chapters, and the expected diviend yield for the ulity industry is 4.5%. Substituting these 6.0% as follows:

Dividend Growth $=5.0 \%+5.5 \%-4.5 \%=6.0 \%$

9.6 Growth in the Non-Constant DCF Model

Although the constant growth DCF model does have a long history, analysts, practitioners, and academics have come to recognize that it is not applicable in many situations. A multiple-stage DCF model that better mirrors the pattern of future dividend growth is preferable. There is a growing consensus and ample empirical support that the best place to start is with security analysts' forecasts, that is, assume that dividend policy is relatively constant and use analyst forecasts of earnings growth as a proxy for dividend forecasts. The problem is that from the standpoint of the DCF model that extends into perpetuity, analysts' horizons are too short, typically five years. It is often unrealistic for such growth to continue into perpetuity. A transition must occur and the company's long-term sustainable growth rate Accordingly multiplestage DCF models of this transition are available and were described in Chapter 8. It is useful to remember that eventually all company growth rates, especially utility services growth rates, converge to a level consistent with the growth rate of the aggregate economy.
A reasonable alternative to the constant growth DCF model is to use a multiplestage DCF model that more appropriately captures the path of future dividend
${ }^{16}$ Equating the expected return from the standard DCF equation and the required return from the CAPM equation
$K=D_{/} / P+g=R_{f}+R_{i s k}$ Premium
$K=D_{l} / \mathbf{P}+g=R_{f}+\beta\left(R_{m}-R_{f}\right)$ from the CAPM
Solving for g :
that a plain vanilla DCF analysis would produce an estimate of 13.26%, obtained by adding the average expected dividend yield of 2.83% to the average growth rate of 10.43%.

A long-term forecast of nominal growth in GDP can be obtained from commercial sources such as Standard \& Poor's DRI and Blue Chip Forecast or can be formulated by combining a long-term inflation estimate with a long-term real growth rate forecast as follows:

GDP Nominal growth = GDP Real Growth + Expected Inflation
The growth rate in U.S. real GDP has been reasonably stable over time. Therefore, its historical performance is a reasonable estimate of expected long-term future performance. The growth in real GDP for the 1929-2005 period was approximately 3.5%. The long-terme expected inflation rate can be obtained by comparing the yield on long-term U.S. Treasury bonds with the yield on inflation-adjusted bonds of the same maturity. For example, if the yield ""T 20-year Treasury bonds is $\%$ while he yie ""TIPS") for-ajusted bonds ('Treasury Inflation Protected Securities," or "TIPS') for the same maturity is 2%, one can surmise that investors expect a 3% inflation rate, that is, $5 \%-2 \%=3 \%$. Long-term expected GDP nominal growh is hen 3.S rowt rate of 6.8% growth rate of 68% for the U S. economy from 1929 to 2004

Three-Stage DCF Approach

Another variation of the Non-Constant Growth DCF Model assumes that a transition must occur between the growth rate forecasts by analysts for the first five years and the company's long-term sustainable growth rate. The methodology works as follows. For the first five years (Stage 1), dividends are assumed to grow at the analyst consensus long-term earnings growth forecast. From year 25 onward (Stage 3), dividends are assumed to grow at the same nominal rate as the national economy, using either the long-term economic forecast and/or the long-term historical growth rate of the U. S. economy, as above. During the intervening 20 -year transition (Stage 2), the growth rate is assumed to converge linearly from the analyst forecast to the long-term forecast. The procedure can easily be adjusted by altering the convergence assumption. Other convergence patterns may be assumed, as long as the notion that eventually all company growth rates settle to a level consistent with the growth of the macroeconomy is maintained. An estimate of the cost of equity using the convergence assumption described above is presented in Example 9-2.

EXAMPLE 9-2

Consolidated Energy common stock is trading at $\$ 50$. The current quarterly dividend rate is $\$ 0.40$ and is expected to prevail for two quarters and increase to $\$ 0.45$ for the next two quarters for a total dividend of $\$ 1.70$ for from analysts is 8%. The long-term project ged gelow.

The dividend yield is obtained by dividing the annual dividend by the stock price: $\$ 1.70 / \$ 50.00=3.4 \%$. Applying the orthodox DCF model produces a cost of equity estimate of 11.7%, that is, $3.4 \%(1+.08)$ $+8.0 \%=11.7 \%$. Application of the three-stage DCF model is shown in the table below. For the first five years, dividends grow at 8%. From year 25 onward, dividends grow at the same rate as the national economy, 6.5%. For the intervening years, dividends converge to the long-term growth rate in a linear fashion, as shown on the table. The last column shows the present value of the dividend each year. In year 30 , the present value of an infinite stream of dividends extending from year 30 to infinity is obtained by using the constant growth formula of the standard DCF model:

$$
\begin{aligned}
\text { Present Value in Year } 30 & =D_{31} /(\mathrm{K}-\mathrm{g}) \\
& =D_{30}(1+g) /(\mathrm{K}-\mathrm{g})
\end{aligned}
$$

and discounting that value to the present. The discount rate that "explains" the stock price of $\$ 50$ is the cost of equity estimate, here $\mathrm{K}=10.7 \%$, obtained by using the backsolver function of an electronic spreadsheet.

CONSOLIDATED ENERGY MAFKET DATA	
Average stock price	$\$ 50.00$
Quarterly dividends first quarrter	$\$ 0.0$
\quad second quarter	$\$ 0.40$
\quad third quarter	$\$ 0.45$
	fourth quarter
Annual Dividend	$\$ 1.05$
Dividend Yield	$\$.70$
Analyst Growth Forecast	8.4%
Constant-Growth DCF Cost of Equity	11.7%
Non-Const. Growth DCF Cost of Equity	10.7%

\left.| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| CONSOLIDATED ENERGY | | | | |
| | Dividend | | | |
| Growth Pattern | | | | |$\right]$

9.7 DCF Market Return

You are not restricted to analyzing expected returns for particular companies. You can also us You can also use the DCF formula to estimate the expected return for an
industry or for the market index as a whole can provide a reasonably precise estimate of the
expected return for the overall equity market as well as for a given industry. Recall from Chapter 5 that an estimate of the market risk premium (MRP) is required in order to implement the CAPM. One way to estimate the MRP is to perform a DCF analysis on an aggregate equity market index and subtract the contemporaneous risk-free rate to obtain the MRP. For example, Harris and Marston (2001) use analysts' growth forecasts to produce DCF estimates of the average cost of equity for companies in the Standard \& Poor's Index. The following two examples illustrate the application of the DCF methodology to determine the return on the overall equity market

One potential problem in this approach is that historical growth may not be reflective of expected growth. Instead, the average 5 -year earnings growth forecast of analysts reported by IBES for a large number of publicly traded stocks can be used as a reasonable proxy for the expected growth on the overall market.

EXAMPLE 9-3

The aggregate expected market return is computed each year for a 10 year period, using data on Value Line's Composite Market Index by applying the DCF model to the index. From the DCF model, the expected return on the aggregate market can be obtained by summing the dividend yields ($\mathrm{D}_{0} \mathrm{P}_{0}$) and the expected growth (g) each year, as follows:

$=$ Spot Dividend Yield $(1+g)+$ Growth $_{1}$

$$
=\frac{D_{0}(1+g)}{P_{0}}+g
$$

In this example, expected growth on the market index is proxied by the historical 5 -year growth in earnings per share on the composite index. ${ }^{17}$ The Value Line Investment Analyzer software provides the necessary data on the index. The year-by-year analysis of expected equity market returns and bond yields over a 10 -year period is shown 10 -year period averaged 6.7%, an estimate quite consistent with the empirical literature described in Chapter 5. If, for example, long-term Treasury bonds are yielding 5%, the implied market return is $6.7 \%+$
$5.0 \%=11.7 \%$. $5.0 \%=11.7 \%$.

[^16]TABLE 9-6
CF RISK PREMIUM ANALYSIS
Aggregate Market Return

$\begin{array}{r} \text { Year } \\ \text { (1) } \end{array}$	Average Spot Dividend Yield (2)	Five-Year Growth Earnings Per Share (3)	Expected Dividend Yield (4)	Expected Equity Market Return (5)	30-Year Treasury Bond Yield (6)	$\begin{gathered} \text { Market } \\ \text { Risk } \\ \text { Premmum } \\ (7) \\ \hline \end{gathered}$
1	4.1\%	11.0\%	4.6\%	15.6\%	9.5\%	6.1\%
2	4.9\%	12.0\%	5.5\%	17.5\%	13.9\%	3.6\%
3	4.4\%	12.5\%	5.0\%	17.5\%	11.2\%	6.3\%
4	4.7\%	11.5\%	5.2\%	16.7\%	8.4\%	8.3\%
5	4.6\%	11.5\%	5.1\%	16.6\%	7.2\%	9.4\%
6	4.1\%	12.0\%	4.6\%	16.6\%	6.4\%	10.2\%
7	3.4\%	11.5\%	3.8\%	15.3\%	6.8\%	8.5\%
8	3.6\%	10.0\%	4.0\%	14.0\%	7.8\%	6.2\%
9	3.7\%	9.0\%	4.0\%	13.0\%	7.5\%	5.5\%
10	2.6\%	6.5\%	2.8\%	9.3\%	5.9\%	3.4\%

EXAMPLE 9-4

To derive a prospective estimate of the market risk premium, a DCF analysis can be applied to the dividend-paying stocks that make up the analysis can be applied to the dividend-paying stocks that make up the aggregate equity market (Standard and Poor's 500 Index) using the
Value Line Investment Analyzer software. Let us say that dividend Value Line Investment Analyzer software. Let us say that dividend
yield on the aggregate market is 1.9% at the time, and the projected long-term dividend growth for the dividend-paying stocks that make up the S\&P 500 Index is 10.7%. Adding the dividend yield to the growth component produces an expected return on the aggregate equity market of 12.8%. Following the tenets of the DCF model, the spot dividend yield must be converted into an expected dividend yield by multiplying it by one plus the growth rate, which brings this estimate to 12.6%. As will be discussed in the next chapter, recognition of the quarterly timing of dividend payments rather than the annual timing of dividends assumed in the annual DCF model brings this estimate to approximately 13.0%. If long-term U.S. Treasury bonds are yielding 5.0%, the implied risk premium is therefore 7.5%.

[^17] in order to derive a historical and/or prospective utility-specific risk premium

New Regulatory Finance
An excellent example of a DCF-based industry-specific prospective risk premium approach is provided by Vander Weide (2005). His prospective risk premium methodology is based on studies of the DCF expected return on proxy groups of electric and natural gas utility companies compared to the interest rate on A-rated utility bonds. For each monn the equation:
Vander Weide calculates the risk premium usi
RP = DCF - y

Where: \quad RP $=$ required risk premium for the proxy group of companies $D C F=$ average DCF cost of equity of the proxy companies y $=$ A-rated utility bond yield
The DCF model is applied each month to each dividend-paying company in The DCF' St erplicity Index, wing malysts growth forecasts and the the Moody's Electric Utility Index, using analysts' growth forecasts and the quarterly version of the DCF. The yield to maturity on an investment in A rated utility bonds is subtracted from the average DCF estimate of e-3 displays the DCF cost of equity estimates and the yield on A-rated utility bonds for the DCF cost of equity estimes month in the 1999-2005 period. The distance between the two lines is
each the electric utility risk premium.
As documented in Chapter 4, the risk premium varies inversely with the level of interest rates. Vander Weide's results confirm this finding. A regression

analysis between the required risk premium and the yield on A-rated bonds, adjusted for serial correlation, produced the following results: ${ }^{18}$

$$
R P=6.52-0.308 i
$$

Vander Weide then inserts the forecast yield on A-rated utility bonds from the Blue Chip forecast in the above regression to obtain his final estimate of the prospective risk premium cost of equity for the eled to the companies that over A-rated bonds. A similar procedure is appled risk premium of 4.7% make up Moody's Natural Gas Index with a resulting risk premium of 4.7\% over A-rated bonds.

References

Bodie Z, Kane, A., and Marcus, A. J. Investments, $6^{\text {th }}$ ed., New York: Bodie, Z., Kill Lwin, 2005
realey, R, Myers, S., and Allen, F. Principles of Corporate Finance, 8 th ed., New York: McGraw-Hill, 2006.
ham, EF Penclvania Electric Company, Rebuttal Testimony, Pennsylrigham, E.F. Pennsylvania Elecric Docket No. ER79-88, 1983.
Brigham E. F. and Ehrhardt, M. Financial Management: Theory and Practice, $8^{\text {h }}$ ed Hinddale, IL: Dryden Press, 2005.
no Rozeff, M.S. "The Superiority of Analyst Forecasts as Brown, L.D. and Rozeff, M.S. "Neasures of Expectations: Evidence from Earnings." Joumal of Finance, March 1978, 1-16.
Cragg, J.G and Malkiel, B.G. "Expectations and the Structure of Share Prices," National Bureau of Economic Research. Chicago: University of Chicago Press, 1982.
Cragg J.G. and Malkiel, B.G. "The Consensus and Accuracy of Some PredicCragg, J.G. and Malkiel, B.G.
tions of the Growth of Corporate Earnings." Journal of Finance, March 1968, 67-84.

[^18]Easterwood, J.C. and Nutt, S.R. "Inefficiency in Analysts' Eamings Forecasts: Systematic Misreaction or Systematic Optimism?"'Journal of Finance, Vol LIV, No. 5, 1999, pp. 1777-1797.
Elton, E.J., Gruber, M.J., and Gultekin, J. 'Expectations and Share Prices." Management Science, September 1981, 975-981,
Fama, E.F. "Efficient Capital Markets: A Review of Theory and Empirical Work."' Journal of Finance, May 1970, 383-417.
Fried, D. and Givoly, D. "Financial Analysts Forecasts of Earnings, A Better Surrogate for Market Expectations.' Journal of Accounting and Economics,
Vol. 4, 1982 .

Gordon, D., Gordon, M., and Gould, L. "Choice Among Methods of Estimating Share Yield." Journal of Portfolio Management, Spring 1989.
Harris, R.S. 'Using Analysts' Growth Forecasts to Estimate Shareholder Required Rates of Return." Financial Management, Spring 1986, pp. 58-67.
Harris, R.S., and Marston, F.C. '"The Market Risk Premium: Expectational Estimates Using Analysts' Forecasts." Journal of Applied Finance, 11:6-16, 2001.
Lys, T. and Sohn, S. "The Association between Revisions of Financial Analysts' Earnings Forecasts and Security-Price Changes.' Journal of Accounting and Economics, Vol. 13, 1990, pp. 341-363
Moyer, R.C., Chatfield, R.E., and Kelley, G.D. "The Accuracy of Long-Term Earnings Forecasts in the Electric Utility Industry." International Journal of Forecasting Vol. I, 1985.
Parcell, D.C. "The Cost of Capital-A Practitioner's Guide," Prepared for the Society of Utility and Regulatory Financial Analysts, 1997.
Reilly, F.K., and Brown, K. Investment Analysis and Portfolio Management. Hinsdale, IL: Dryden Press, 2003.
Siegel, J.J. "The Application of the DCF Methodology for Determining the Co $\underset{\mathrm{s}}{\mathrm{t}}$ of Equity Capital." Financial Management, Spring 1985, 46-53.
Stanley, L., Lewellen, W., and Schlarbaum, G. "Further Evidence on the Value of Professional Investment Research." Journal of Financial Research, Spring 1981, 1-9.
Timme, S.G. and Eiseman, P.C. "On the Use of Consensus Forecast of Finanth in the Constant Growth Model: The $\mathrm{Ca} \mathrm{e}_{\mathrm{s}}$ of Electric Utilities." Financial Management, Winter 1989, 23-35.

[^0]: ${ }^{2}$ Beta is defined as the covariance between a security's cash flows and that of the aggregate market:

 $$
 \begin{equation*}
 \beta=\frac{\mathrm{S}_{\mathrm{m}} \sigma\left(\mathrm{x}_{\mathrm{i}}\right) \rho_{\mathrm{im}}}{\mathrm{~S}_{\mathrm{i}} \sigma\left(\mathrm{x}_{\mathrm{m}}\right)} \tag{3-1}
 \end{equation*}
 $$

 where S_{m} refers to the market value of the aggregate index, S_{i} refers to the company's market value, $\sigma\left(\mathrm{x}_{\mathrm{m}}\right)$ refers to the standard deviation of aggregate cash flows, and $\sigma\left(\mathrm{x}_{\mathrm{i}}\right)$ refers to the standard deviation of company cash flows. The above expression is a scaled measure of $\sigma\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{S}_{\mathrm{i}}$, the coefficient of variation, with the price-earnings ratio $\mathrm{S}_{\mathrm{m}} / \mathrm{X}_{\mathrm{m}}$ as the scalar. This is shown in Patterson (1989).
 ${ }^{3}$ Analysts' forecasts are also available on the Yahoo Finance, Reuters, First Call, and Value Line Web sites.

[^1]: ${ }^{4}$ The recommended use of adjusted betas is widespread in mainstream investment and corporate finance textbooks. See for example: Brigham and Ehrhardt (2005) Chapter 5, page 193-4. Damodaran (2002) pages 186-7. See also the well-known investment textbook by Sharpe and Alexander (1995), Chapter 15, Section 8.1.
 ${ }^{5}$ From a Bayesian statistical framework, and without any information at all on true beta, one would presume a stock's beta in relation to the market to be 1.00 . Given a chance to see how the stock moved in relation to the market over some historical period, a modification of this "prior" estimate would seem appropriate. But a sensible "posterior" estimate would likely lie between the two values.

[^2]: ${ }^{6}$ See Myers, Kolbe, and Tye (1985), Kolbe and Read (1984), and Vilbert (2004) for a full discussion of the sensitivity of utility stocks to interest rates including underlying theory and empirical evidence.

[^3]: ${ }^{7}$ The standard definition of Adjusted Beta used by Value Line is as follows:
 Adjusted Beta $=0.3333+0.6666 \times$ Raw Beta

[^4]: ${ }^{8}$ The rising risk of the electric utility industry is corroborated by the steadily rising trend in the traditional measures of risk in the past decade, such as beta and the standard deviation of returns (See Testimony of Dr. R. A. Morin before the California Public Utilities Commission on behalf of Southern California Edison, App. 98-05-024).
 ${ }^{9}$ See Sharpe and Cooper (1972), Levy (1980), Friend, Westerfield, and Granito (1978), and Morin (1980).
 ${ }^{10}$ See, for example, Roll and Ross (1993), and Chan and Lakonishok (1993).

[^5]: ${ }^{11}$ See Chapters 7 and 14 for the technique and examples for purging the estimated beta of its financial risk component. The resulting unlevered beta can then be relevered by applying the desired capital structure.
 ${ }^{12}$ For an analytical description of fundamental betas, see Rosenberg and McKibben (1973), and Rosenberg and Guy (1976). Elton, Gruber, Brown, and Goetzman (2003) provide a summaryof fundamental betas.

[^6]: ${ }^{13}$ The data in this example are purely illustrative.

[^7]: bonds with interim cash flows over the investment horizon, the total return is no longer a sure thing. Changing interest rates can cause the reinvested value of these interim payments to change. In the case of a zero-coupon bond, this problem can be avoided entirely, as no interim cash flows have to be reinvested, and the total return from holding a zero-coupon bond is a sure thing assuming the U.S. government makes the principal payment at maturity.

[^8]: ${ }^{8}$ Using a software package that performs statistical regression, betas can be estimated by examining the past variability of the utility's stock in relation to the market.
 ${ }^{9}$ Some analysts manufacture their own beta estimates by running statistical regressions between historical stock returns and market returns. This procedure is suspect. A rational investor is much more likely to rely on widely disseminated commerciallyavailable beta estimates in making investment decisions such as those provided by Value Line and Bloomberg rather than rely on homemade or relatively unknown estimates.

[^9]: To
 in most of the best-selling corporate finance and investment college-level textbook such as Brealy, Myers, \& Allen (2006), Brigham \& Ehrhardt (2005), Bodie, Kane,

[^10]: D_{1} can be interpreted as either the dividends paid during the next period or as the
 dividend rate at the end of the next period. Although the former is more within the spirit of the DCF model, in practice, the two interpretations differ by a very small
 amount so that the issue is not problematic.

[^11]: The conceptual and empirical support for the flotation cost adjustment is fully
 discussed in Chapter 10 .

[^12]: ${ }^{0}$ Analysts do not generally disseminate their methods of forecasting and do not generally recommend the purchase or sale of a security based on any single growth variable or growth estimating technique. A professional financial analyst is reluctant to reveal the premises and methods of his professional judgment and recommendations. Moreover, analysts' buy/sell recommendations result trom complex juagments models. Several methods and algorithms, involving both quantitative and qualitative actors, are likely to be used in arriving at a final growth forecast, including historical indicators.

[^13]: Examples of these studies include Stanley, Lewellen and Schlarbaum (1981) and
 Touche Ross Co. (1982).

[^14]: ${ }^{14}$ Statistically superior predictions of future averages are made by weighting individual past averages with the grand mean, with the variance within the individual averages
 and the variance across individual and the variance across individual averages serving as weights.

[^15]: ${ }^{5}$ The return on year-end common equity, r , is defined as $\mathrm{r}=\mathrm{E} / \mathrm{B}_{\mathrm{s}}$, where E is earnings per share, and B_{1} is the year-end book value per share. The return on value per share. The later is by definition: $B_{s}=E / B_{a}$ where $B_{a}=$ average book year-end book equity per share and B_{t-1} is the beginning-of-year book equity per yeareend Dook equity per share and $B_{t}-1$
 share. Dividing r by r_{a} and substituting:

 $$
 \frac{r}{r_{a}}=\frac{E / B_{t}}{E / B_{a}}=\frac{B_{a}}{B_{t}}+\frac{B_{t}+B_{t-1}}{2 B_{t}}
 $$

 Solving for r_{a}, a formula for translating the return on year-end equity into the retur on average equity is obtained using repoted beging-of-the year and end-of year common equity figures:

 $$
 r_{a}=r \frac{2 B_{1}}{B_{1}+B_{t-1}}
 $$

[^16]: ${ }^{17}$ The growth in eamings is used instead of the growth in dividends because several stocks that make up the Value Line Composite Index do not pay dividends. In any
 event, for an index made up of a large number of companies, dividend growth and earnings growth are likely to coincide over the long run, since in the aggregate,
 dividend policies are stable.

[^17]: The same procedures can be applied to a utility industry-specific index such as Moody's Electric Utility Index or Moody's Natural Gas Distribution Inde

[^18]: ${ }^{18}$ To the extent that the regression residuals are serially correlated, the regression ${ }^{8}$ To the extent that the regression residuals are serially coreated, inpers in the
 coefficients must be estimated using the transformed variables as regression equation. The original variables are transformed into new variables whose serial correlation is zero by using the serial correlation coefficient obtaine
 multiple regression analysis used to estimate that correlation coefficient.

