Dynamic Pricing for Retail Electric Utility Service

Washington Utilities and Transportation Commission Special Presentation

December 16, 2010

Charlie Black
Charles J. Black Energy Economics
cibenergy@msn.com
(425) 765-3321

Topics

- Types of Dynamic Pricing
- Objectives/Purposes for Dynamic Pricing
- Historical Experience and Current Status
- Considerations for Northwest Utilities
- Business Case Analysis of Cost-Effectiveness
- Systems Approach
- Conclusions

Types of Dynamic Pricing

Real-Time Pricing

- Rate variations are not known in advance
 - Any time (may be subject to limits)
 - Any duration "
 - Any level
- Most complex to implement
 - Infrastructure (metering, communications, billing)
 - Pricing basis (e.g., market index, utility marginal cost)
 - Customer education and relations

Time of Use Rates

- Rate variations are known in advance
 - Predetermined timing (e.g., on-peak, shoulder, off-peak)
 - Predetermined durations
 - Predetermined levels
- Somewhat complex to implement
 - Infrastructure (metering, communications, billing)
 - Pricing basis (e.g., forecasted variation in utility costs)
 - Customer education and relations

Critical Peak Pricing

- Rate variations are occasional
 - Event-driven timing (e.g., cold winter weather)
 - Limited duration
 - Pricing level may be predetermined or event-specific
- Less complex to implement
 - Infrastructure (metering, communications, billing)
 - Pricing basis (e.g., forecasted variation in utility costs)
 - Customer education and relations

Other Forms of Dynamic Pricing

- Seasonal Rates
- Interruptible Rates
- Peak Time Rebates
- Customer demand response
 - Not dynamic pricing per se, but may be similar
 - Can be managed by the utility (e.g., direct load control)
 - Tends to be oriented more toward system reliability

Objectives/Purposes for Dynamic Pricing

Theoretical Objective

- According to neoclassical microeconomic theory, setting prices at marginal costs sends a signal that promotes efficient choices
 - Consumers' purchases and use
 - Producers' investments and operations
- But the underlying theory assumes 'atomistic' competition, including:
 - Numerous competing providers, few barriers to market entry/exit
 - Product substitutability
 - Price transparency
 - Price = MC for everything else

Practical Purposes

- Inform consumers about variations in the cost of providing retail electric service and enable them to adjust their consumption in response
- Encourage consumer investments in energy efficiency
- Reduce frequency and severity of power supply constraints, thereby limiting spikes in market prices and utility costs of service
- Assist in reliable operation of the bulk power system and local distribution systems
- Reduce overall emissions and other negative environmental impacts

Examples

- Temperature-driven increases in loads (e.g., cold winter weather, hot summer weather)
- Variability in hydroelectric generation
- Intermittent generation from renewable resources (e.g., wind power)
- Vehicle electrification (e.g., timing for battery charging, use of batteries to provide system support)
- Exercise Smart Grid capabilities, justify Smart Grid costs

Historical Experience and Current Status

Historical Experience

- Dynamic pricing has been in existence for three decades
- Numerous pilot programs have been conducted in over half of U.S. states, as well as a small number of more permanent programs
- The results to date have been mixed at best
 - Many programs did not perform as expected and were abandoned
 - Prominent example of ongoing success is Georgia Power's real-time pricing program started in 1992

Current Status

- Development of the Smart Grid has significantly increased interest in dynamic pricing
 - Smart Grid capabilities as an enabler for dynamic pricing
 - Dynamic pricing as a justification for Smart Grid costs
- Other recent developments
 - Overall increased focus on energy issues
 - Growing customer interest in managing their consumption
 - Imminent arrival of vehicle electrification and broad support for low electric rates to recharge vehicle batteries
 - Development of new service offerings in states with RTOs/ISOs and consumer ability to choose power supplier

Pacific Northwest Examples

- Puget Sound Energy offered then discontinued time of use rates for 300,000 residential and small commercial customers (2001-2002)
- Portland General Electric offers optional time of use rates to residential and small business customers
- City of Port Angeles offers optional time of use rates to all customer classes
- Klickitat PUD offers time of use rates for irrigation
- Clark PUD offers optional off-peak demand rates that provide a discount to large commercial and industrial customers who shift their peak demand to off-peak hours

Examples of Lessons Learned

- Does the form of dynamic pricing chosen represent the best match for the situation?
- Is the rate design effective (e.g., do the prices reflect actual utility costs and can they vary enough to elicit changes in consumption)?
- Are time and costs to implement realistically estimated?
- Will the technology actually perform as promised/expected?
- Will there be sufficient customer education and service?

Considerations for Northwest Utilities

Considerations - Traditional

- Hydro-based system (historically energy-constrained)
- Regional loads peak during the winter
- Spot market prices for wholesale power tend to peak in the summer (timing mismatch)
- Rolled-in wholesale power rates for Bonneville Power Administration's publicly-owned utility customers
- Long-standing public service obligation for utilities to plan, acquire and manage electric resources

Considerations - Current

- Increasing reliance on natural gas-fired generation
- Growth in summer peak loads
- Large and expanding quantity of wind power (system integration and balancing challenges)
- Not an 'organized market' (golly, no LMPs)
- BPA implementing tiered wholesale power rates
 October 2011
- Utilities retain public service obligation to plan, acquire and manage electric resources

Business Case Analysis of Cost-Effectiveness

Business Case Analysis

- No one form of dynamic pricing is 'best' for all utilities
- Benefits, costs and cost-effectiveness are also specific to each utility
- Therefore, it is essential for each utility to prepare a rigorous and robust business case analysis before committing to dynamic pricing
 - Evaluate alternative forms of dynamic pricing
 - Develop realistic estimates of benefits & costs to implement
 - Use business case results as basis for regulatory approval, to monitor implementation and evaluate results

Types of Benefits to Include

- Reductions and shifts in consumption of electricity by retail customers, and resulting impacts on overall power supply costs
- Impacts on and benefits from:
 - Integrating intermittent renewable generation
 - Vehicle electrification (battery recharging and system support)
 - Emissions reductions
 - System reliability (bulk power system, local distribution)
 - Customer investments in energy efficiency

Types of Costs to Include

- While a large share of benefits can come from electric resources, the majority of costs are in delivery and customer service
- Components to include and estimate costs for:
 - Advanced metering
 - Two-way communications
 - Data storage and management systems
 - Customer billing systems
 - Market research
 - Customer education and service

Systems Approach

Interconnectedness & Complexity

- Dynamic pricing affects and is affected by a broad range of topics and issues, including:
 - Overall economic efficiency
 - Electric resource portfolio planning and management
 - Integration of intermittent generation
 - Vehicle electrification
 - Smart Grid
 - Customer energy efficiency
 - Environmental impacts

Systems Approach

- Dynamic pricing is not a single-issue topic
 - Dealing with it on a stand-alone basis hasn't been successful
 - Increasing interconnectedness and complexity are making it even more important to consider related topics
- A more effective approach: address dynamic pricing from a broader, systems-based perspective
 - Explicitly recognize linkages and interactions
 - Identify and focus on key drivers, not symptoms
 - Develop integrated approaches that maximize overall system benefits

- Various forms of dynamic pricing have been attempted for over 30 years, with mixed results
- Needs and capabilities to implement dynamic pricing appear to be growing
- Ingredients for success:
 - Clear, realistic purpose
 - Design that matches the situation
 - Capable execution (technical and customer engagement)

- Business case analysis
 - Evaluate alternative forms of dynamic pricing and identify the one that best fits the situation (i.e., result not an input)
 - Address all significant benefits, including impacts on the utility's resource portfolio
 - Develop realistic estimates of requirements, costs and risks
 - Assess benefits and costs on an integrated basis
- Using the business case analysis results
 - Basis for regulatory review and approval
 - Tool for monitoring implementation, evaluating results

- Systems approach can help to avoid pitfalls
 - Recognize increasing interconnectedness and complexity
 - Address dynamic pricing as part of a broader system, including linkages with related topics