Gordon Butte Pumped Storage

Colstrip 1&2 Replacement Analysis

Prepared by E3 for Absaroka Energy

December 2016

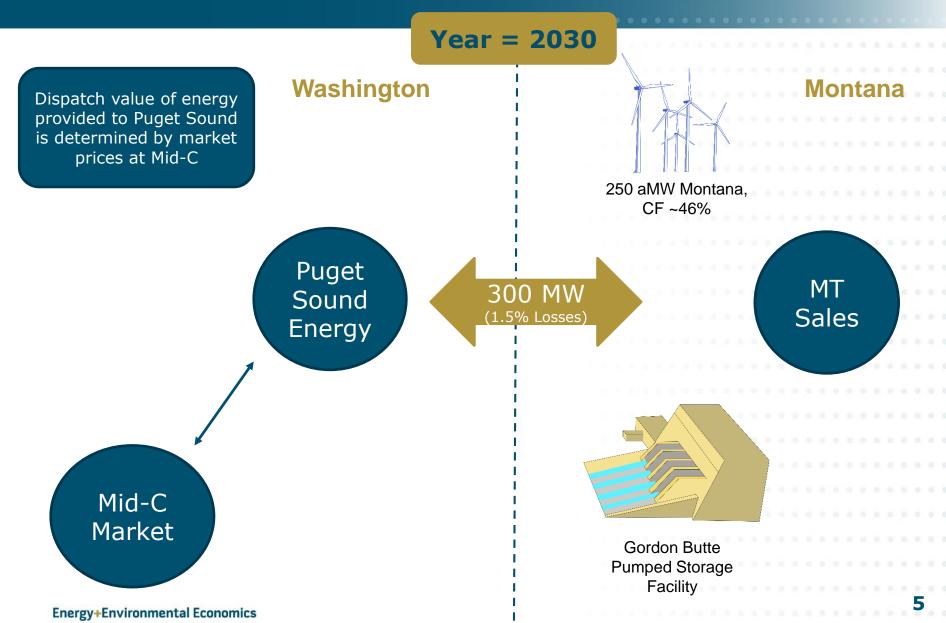
Analysis Overview

- ♣ Absaroka Energy asked E3 to compare the cost of two alternatives for providing energy (250 aMW) and capacity (300 MW) to replace Puget Sound Energy's share of Colstrip 1&2
 - MT Alternative: Gordon Butte Pumped Storage facility paired with 250 aMW of Montana wind (located at Martinsdale, MT) and 300 MW of existing long-term firm transmission rights from Montana to PSE
 - PNW Alternative: An Aeroderivative CT generator (located in Washington state) paired with 250 aMW of Washington wind (located at the Columbia Gorge)

Gordon Butte Overview

+ Gordon Butte Pumped Storage Facility

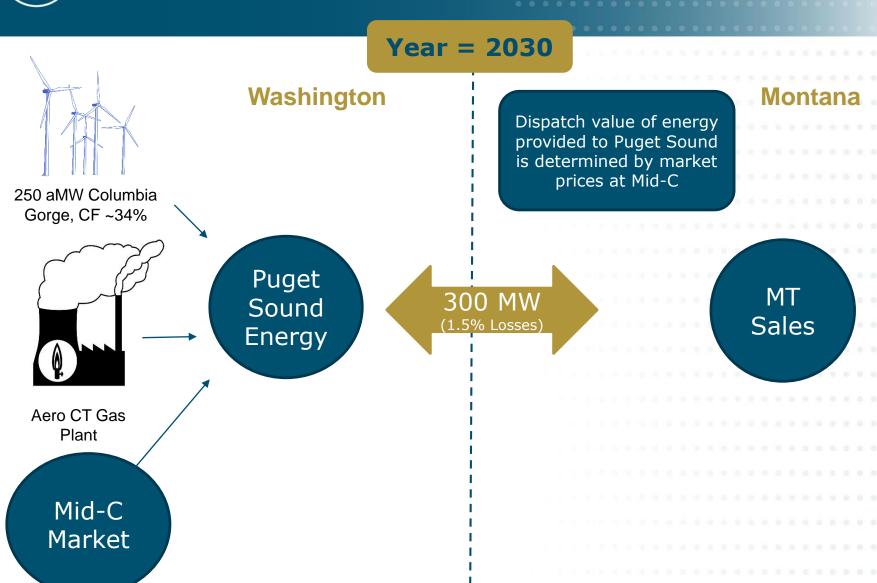
- 400 MW pumping / generating capacity
- Ternary units allow seamless transition between generating and pumping modes
- 8.5 available hours of storage
- 83% efficiency
- Sited to allow access to transmission currently used to deliver power from Colstrip coal plants in Montana. Some of this transmission capacity will become available when Colstrip 1&2 are retired (no later than 2022).
- FERC License issued December 14, 2016.



Quantified benefits of pumped storage

- Shaping of wind resource to maximize value, avoid curtailment, and increase transmission utilization
- Ability to provide firm capacity on demand (given available capacity)
- Emissions-free flexible resource helps with wind integration
- Time-based market arbitrage opportunities (given available capacity)

+ Potential benefits of pumped storage not considered here


- Ability to provide ancillary services (Load-following, Regulation, Spinning & Non-Spinning Reserves, Frequency Response)
- Sub-hourly energy dispatch savings
- Value derived from participation in the Energy Imbalance Market

Energy+Environmental Economics

PNW Alternative

Wind Capacity Credit

- Absaroka also asked E3 to investigate how geographybased differences in Effective Load Carrying Capability (ELCC) between wind sites might influence the results of the analysis
 - To achieve this, E3 sized both the pumped storage and Aero CT resources so that they provide 300 MW of capacity when paired with the planning capacity assigned to wind resources

Assumption	WA Wind – Installed Capacity	WA Wind – Planning Capacity	Aero CT Size	MT Wind – Installed Capacity	MT Wind – Credited Capacity	Pumped Storage Size
No Capacity Credit for Wind	736 MW	o MW	300 MW	548 MW	0 MW	300 MW
Capacity Credit for Wind	736 MW	37 MW (5%)	263 MW	548 MW	137 MW (25%)	163 MW

Modeling Efforts

- + Fixed costs for the resources were calculated using E3 financial models and publicly available data sources
- Hourly dispatch values were calculated using an adapted version of the E3 REFLEX model
 - REFLEX is a multi-stage production simulation model with integer variables formulated for high renewable penetrations
 - Hourly modeling of energy values and arbitrage opportunities
 - Hourly generation profiles for non-dispatchable (wind) generation
 - Priced-based dispatch of controllable resources
 - 24-hour optimization of storage resources

Data Sources – Wind Resource Characteristics

+ Wind shapes provided by Absaroka Energy

- E3 adjusted to reflect most recent capacity factors
 - Washington (Columbia Gorge): 34% Capacity Factor
 - Montana (Martinsdale, MT): 46% Capacity Factor
- Nameplate capacity sized to output 250 aMW over the course of the year
 - Columbia Gorge: 736 MW
 - Martinsdale: 548 MW

Wind planning capacity based on location of wind resources

- Reasonable estimates based on previous E3 analysis
 - Washington (Columbia Gorge): 5% Capacity Value
 - Montana (Martinsdale, MT): 25% Capacity Value

Data Sources – Other Resource Characteristics

- + Aero CT characteristics based on generators in the TEPPC Common Case
- Pumped storage operational characteristics provided by Absaroka Energy (see previous slide)
- Transmission losses of 1.5% Montana to BPA
 - Based on Colstrip Transmission System losses from Broadview to Garrison

Data Sources - Cost / Pricing Characteristics

- + Wind capital costs based on NREL data
- + Aero CT capital costs taken from Northwest Power and Conservation Council's 7th Power Plan
- + Gordon Butte Pumped Hydro capital costs from Absaroka Energy
- + 2030 gas prices based on Henry Hub forwards and basis spreads
 - 2030 chosen to represent "typical" future gas and power market conditions
- + Cost of existing firm transmission rights treated as a sunk cost

Key Financial Assumptions

Metric	Assumption	Source
MT Wind LCOE	40 \$/MWh	NREL capital costs, 46% CF, 2018 commencement (for PTC)
WA Wind LCOE	65 \$/MWh	NREL capital costs, 34% CF, 2018 commencement (for PTC)
CT Levelized Fixed Cost	192 \$/kW-yr.	NWPCC 7 th power plan, Aero GT East**
Gordon Butte Levelized Fixed Cost	350 \$/kW-yr.	E3 estimate based on GBEP Financial Model
Mid-C Prices	Vary by Hour	E3 projection for 2030 based on historical price patterns, resource mix, and gas price projection
MT Price Discount, Hours with Constrained Tx	6.9 \$/MWh	Discount (buying and selling) during hours when wind exceeds capacity of 300 MW of existing firm transmission to deliver to PSE (approximates cost to wheel from MT to Mid-C on hourly nonfirm transmission)
Discount Rate	10%	Taken from GBEP Financial Model

^{*} http://www.brattle.com/system/publications/pdfs/000/004/827/original/Resource Adequacy in California Calpine Pfeifenberger Spees Newell Oct 2012.pdf?1378772133

^{**}https://www.nwcouncil.org/media/7149910/7thplanfinal appdixh gresources.pdf

Results – With Wind Capacity Value

- **+ MT Alternative provides substantial benefits to PSE ratepayers:**
 - \$300 million reduction in capital costs
 - \$53 million reduction in levelized annual costs
 - **\$481 million** NPV over 25 years
 - \$24/MWh reduction in levelized energy costs (250 aMW)

Results – Wind Provides Planning Capacity

	P-PNW	P-MT
GENERATION SUMMARY		
Wind Energy (aMW)	250	250
Wind Capacity (Nameplate MW)	736	548
Wind Planning Capacity (MW)	37	137
Aero CT Capacity (ME)	263	-
Pumped Hydro Capacity (MW)	-	163

	P-PNW	P-MT	MT BENEFITS
CAPITAL COSTS (\$MILLIONS)			
Wind	\$ 1,472	\$ 1,096	
Aero CT	\$ 290		
Pumped Hydro		\$ 367	
Total	\$ 1,762	\$ 1,463	\$ 299
	P-PNW	P-MT	MT BENEFITS
_EVELIZED FIXED COSTS (\$millions)			
250 avg. MW Wind	\$ 208	\$ 153	
300 MW CT Capacity	\$ 50	-	
300 MW Pumped Storage Capacity	-	\$ 57	
Total	\$ 258	\$ 210	\$ 48
ANNUAL DISPATCH VALUE (\$millions)	\$ 44	\$ 49	\$ 5
TOTAL ANNUAL BENEFITS (\$millions)			\$ 53
25-YEAR NPV BENEFITS (\$millions)			\$ 481
ENERGY COST BENEFIT (\$/MWh)			\$24/MWh

Results - Without Wind Capacity Value

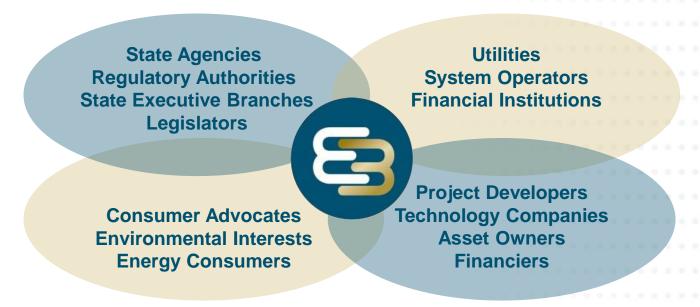
- + Even ignoring the superior capacity value of MT wind, the MT Alternative provides significant benefits to PSE ratepayers:
 - \$31 million reduction in capital costs

- \$18 million reduction in levelized annual costs
 - **\$163 million** NPV over 25 years
- \$8/MWh reduction in levelized energy costs (250 aMW)

Results - No Wind Planning Capacity

	P-PNW	P-MT
GENERATION SUMMARY		
Wind Energy (aMW)	250	250
Wind Capacity (Nameplate MW)	736	548
Wind Planning Capacity (MW)	0	0
Aero CT Capacity (ME)	300	-
Pumped Hydro Capacity (MW)	-	300

	P-PNW	P-MT	MT BENEFITS
CAPITAL COSTS (\$MILLIONS)			
Wind	\$ 1,472	\$ 1,096	
Aero CT	\$ 330		
Pumped Hydro		\$ 675	
Total	\$ 1,802	\$ 1,771	\$ 31
	P-PNW	P-MT	MT BENEFITS
EVELIZED FIXED COSTS (\$millions)			
250 avg. MW Wind	\$ 208	\$ 153	
300 MW CT Capacity	\$ 57	-	
300 MW Pumped Storage Capacity	-	\$ 105	
Total	\$ 265	\$ 258	\$ 7
ANNUAL DISPATCH VALUE (\$millions)	\$ 44	\$ 55	\$ 11
TOTAL ANNUAL BENEFITS (\$millions)			\$ 18
25-YEAR NPV BENEFITS (\$millions)			\$ 163
ENERGY COST BENEFIT (\$/MWh)			\$8/MWh


Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web

Doug Allen, Managing Consultant (doug@ethree.com)
Gerrit de Moor, Senior Consultant (gerrit@ethree.com)
Arne Olson, Partner (arne@ethree.com)

About E3

- Founded in 1989, E3 is an industry leading consultancy in North America with a growing international presence
- E3 operates at the nexus of energy, environment, and economics
- Our team employs a unique combination of economic analysis, modeling acumen, and deep institutional insight to solve complex problems for a diverse client base

Asset Valuation Overview

 E3 relies on the following key strengths to provide industry-leading consulting for asset valuation services

Reputation for high quality

Objectivity and transparency

Experience and integrity

Industry leading knowledge

 The Asset Valuation Group focuses on short and longer-term valuation analysis that provides unique insights for the following:

