Distribution Integrity Management Program

Puget Sound Energy

Table of Contents

Table of Contents	i
Title 49 CFR Part 192 Subpart P Cross-Reference	iii
Section 1: Scope	1
DIM Plan	1
Continuing Surveillance Annual Report	1
Section 2: Responsibilities	2
Section 3: DIMP Processes	3
Section 4: Definitions	3
Section 5: Knowledge of the Distribution System	4
Existing System Knowledge	4
New Construction Knowledge	5
Future Data Capture to Enhance System Knowledge	5
Section 6: Threat Assessment and Identification	6
Existing Threats	6
Potential Threats	6
Section 7: Risk Evaluation and Prioritization	7
Section 8: Mitigative Measures and Additional and Accelerated Actions to Address Risk	ks 7
Section 9: Measure Performance, Monitor Results, and Evaluate Effectiveness	9
Performance Measures	9
Leak Management Program	9
Section 10: Periodic Evaluation and Improvement	10
DIM Plan	10
DIM Program	11
Section 11: Reporting	11
Section 12: Record Keeping	12
Appendix	13
Appendix A: DIM Program Process Flow Diagrams	A-1
Appendix B: Knowledge of the Distribution System	B-1
Appendix B-1: Summary of System Knowledge	B-1
Appendix B-2: Steel Pipe Specifications	B-3
Appendix B-3: Polyethylene Pipe Material Information	B-4
Appendix B-4: Backfill Practices	B-5
Appendix B-5: Fusion Practices	B-14
Appendix B-6: Anode Installation on Tracer Wire	B-19
Appendix B-7: Coating Types on Wrapped Steel Pipe (Services)	B-22
Appendix B-8: Mechanical Fittings	B-24
Appendix B-9: Celcon Caps and Delrin Service Tap Tees	B-28
Appendix B-10: Gas Quality	B-30
Appendix B-11: Bolt-on Tees	B-32
Appendix B-12: Leak Cause Code I –Non-Exposed	B-33
Appendix B-13: Leak Cause Code Clarification	B-34
Appendix C: Risk Evaluation and Prioritization	C-1
Appendix C-1: Risk Evaluation and Prioritization Plan	C-1

Appendix C-2: Risk Evaluation and Prioritization Results	C-7
Appendix D: Summary of Mitigative Measures	D-1
Appendix E: Additional and Accelerated Actions	E-1
Appendix F: Risk Mitigation Programs	F-1
Appendix F-1: Wrapped Steel Service Assessment Program (WSSAP)	F-1
Appendix F-2: Wrapped Steel Pipe Mitigation Program	F-5
Appendix F-3: Older Vintage PE Pipe Mitigation Program	F-11

Title 49 CFR Part 192 Subpart P Cross-Reference

Part 192: Transportation of Natural Gas and Other Gas by Pipeline: Minimum Federal Safety Standards

SUBPART P GAS DISTRIBUTION PIPELINE INTEGRITY MANAGEMENT

§192.1001	What definitions apply to this subpart? Section 4 Definitions
§192.1005	What must a gas distribution operator (other than a master meter or small LPG operator) do to implement this subpart? Gas Operating Standards 2425.2600 Distribution Integrity Management Program
§192.1007	What are the required elements of an integrity management plan? Section 5 Knowledge of the Distribution System Section 6 Threat Assessment and Identification Section 7 Risk Evaluation and Prioritization Section 8 Mitigative Measures to Address Risks Section 9 Measure Performance, Monitor Results, and Evaluate Effectiveness Section 10 Periodic Evaluation and Improvement Section 11 Reporting
§192.1009	What must an operator report when a mechanical fitting fails? Section 11 Reporting
§192.1011	What records must an operator keep? Section 12 Record Keeping
§192.1013	When may an operator deviate from required periodic inspections under this part? Gas Operating Standards 2425.2600 Distribution Integrity Management Program

Section 1: Scope

This document is the written Distribution Integrity Management Plan (DIM Plan) for Puget Sound Energy (PSE). This DIM Plan in conjunction with the Continuing Surveillance Annual Report comprises PSE's Distribution Integrity Management Program (DIM Program) in accordance with the requirements of 49 CFR Part 192, Subpart P, Distribution Integrity Management Program.

The purpose of PSE's DIM Program is to enhance safety by identifying and reducing gas distribution pipeline integrity risks. PSE's DIM Program integrates reasonably available information about its pipelines, considers the likelihood of failure and the potential consequence of failure, identifies the appropriate mitigative measures, evaluates the effectiveness of these measures, and updates the mitigative measures as appropriate. The implementation of this DIM Plan includes ongoing processes that will continue to drive improvements in the DIM Program to enhance the integrity of PSE's gas distribution system.

DIM Plan

This written DIM Plan specifies procedures for developing and implementing the following elements as required by 49 CFR Part 192, Subpart P, Distribution Integrity Management Program (DIMP):

- Gather System Knowledge
- Identify Threats
- Evaluate and Rank Risks
- Identify and Implement Measures to Address Risks
- Measure Performance, Monitor Results, and Evaluate Effectiveness
- Evaluate and Improve DIM Plan and Program
- Report results

This written plan also documents the relatively static elements of PSE's DIM Program in the Appendices. Relatively static elements include historical system design, construction, operation and maintenance practices as well as mitigative measures that have already been implemented.

Continuing Surveillance Annual Report

The Continuing Surveillance Annual Report documents the more dynamic elements of PSE's DIM Program. It also documents that PSE has performed the procedures and processes required by the DIM Plan. This includes reporting on system performance measures, conducting a broad review of system performance data, and providing a detailed discussion of what this data indicates. This includes validation and confirmation of previously identified trends and the identification of emerging trends; a description of plans to initiate new proactive measures; any plans to continue, modify or add additional and accelerated actions; and provides a format for tracking and reporting on subsequent

progress. If additional or enhanced measures are needed, these plans will be incorporated in the budget process for funding for the following calendar year and integrated into the DIM Plan as appropriate.

PSE's DIM Program approach promotes continuous improvement in pipeline safety. This is accomplished by continually working to improve system and risk knowledge, implementing measures to mitigate risks, and evaluating these measures to validate their effectiveness, and revising these mitigative measures as necessary based on this evaluation.

Section 2: Responsibilities

The *Manager Gas System Integrity* has overall responsibility to assure that processes are implemented by the organization in accordance with this DIM Plan and associated regulatory requirements. The *Manager Gas System Integrity* may delegate some or all of these responsibilities to others within the organization.

Additional responsibilities for implementing specific mitigative measures are documented in the appropriate manual including the Gas Operating Standard, Gas Field Procedure, and Emergency Response Plans.

Some of the specific tasks that the *Manager Gas System Integrity* is responsible for are listed in Table 1, DIM Program Tasks.

Role / Responsibility	Recommended Timeframe for Updates
Overall Program Implementation and Oversight	Ongoing
Update the Continuing Surveillance Annual Report	Annually (by May 1)
Conduct and document review and updates to the DIM Plan	Annually (3rd quarter)
and DIM Program	
Determine DIM Program budget requirements and make	Annually
associated Capital and Operation and Maintenance budget	
requests	
Monitor completion of specific DIM Program projects and	Ongoing
implementation of additional and accelerated actions	
Maintain DIM Program Records and Files	Ongoing

Table 1-1. DIM Program Tasks

Section 3: DIMP Processes

The DIM Program processes are documented in Appendix A. These processes illustrate how PSE implements the requirements of this DIM Plan.

Section 4: Definitions

(CFR 192.1001)

The terminology used in this DIM Plan is defined in Table 4-1. The "*" symbol adjacent to a listed term means the definition is identical to the definition in 49 CFR Part 192, Subpart P, Distribution Integrity Management Program. Any terms and definitions not listed below are defined in PSE's Gas Operating Standard (GOS) 2400.1000 Definitions.

Term	Definition
Additional and	Measures to reduce risks that exceed minimum code requirements.
Accelerated Actions	······································
Distribution Integrity	A written explanation of the mechanisms or procedures used to
Management (DIM)	implement the DIM program and to ensure compliance with 49 CFR Part
Plan	192, Subpart P, Distribution Integrity Management Program.
Distribution Integrity	An overall approach to ansure the integrity of the gas distribution
Management (DIM)	An overall approach to ensure the integrity of the gas distribution
Program	system.
Excavation damage*	Any impact that results in the need to repair or replace an underground
	facility due to a weakening, or the partial or complete destruction, of the
	facility, including, but not limited to, the protective coating, lateral
	support, cathodic protection or the housing for the line device or facility.
Hazardous Leak*	A leak that represents an existing or probable hazard to persons or
	property and requires immediate repair or continuous action until the
	conditions are no longer hazardous.
Mitigative Measures	All measures that reduce risks including those required by the
-	regulations as well as additional and accelerated actions.

Table 4-1. Terms and Definitions

Section 5: Knowledge of the Distribution System

(CFR 192.1007(a)(1), CFR 192.1007(a)(2), CFR 192.007(a)(3), and CFR 192.007(a)(5))

There are many components to system knowledge including the knowledge of the existing system, knowledge and data capture for new construction, and additional data to enhance the knowledge of the existing system. With this system knowledge, characteristics of the pipeline's design and operations and the environmental factors shall be identified as necessary to assess the applicable threats and risks to the gas distribution system.

Existing System Knowledge

This Plan divides existing system knowledge into two categories. These include historical and current design, construction, operation and maintenance practices which are relatively static as well as system statistics that are dynamic and change each year. Examples of dynamic data include the quantities of pipe of different vintages and materials that are in service in the system which is constantly changing.

The more static system knowledge shall be documented in Appendix B of the DIM Plan. This shall include historical and current design, construction, operation, and maintenance practices. This shall be based on information from readily available resources including historical purchase specifications, written standards and procedures, training manuals, DOT reports, and discussions with Subject Matter Experts (SME). This information shall be updated as additional data is found related to past practices and as current practices are updated.

The dynamic system knowledge shall be documented in the Continuing Surveillance Annual Report. This information is different from the data provided in Appendix B as it is updated annually to reflect the changing make-up of the distribution system. This report shall include the following information:

- The relative amounts of pipe by material, vintage, and facility type
- The miles of main operating within different pressure classes
- New and active leak trends
- Leak repair trends
- Failure analysis trends
- System condition report trends
- Federally reportable trends
- Third party damage prevention program trends

New Construction Knowledge

PSE shall capture and retain data on all new pipelines including where it is installed and the material which it is constructed in accordance with the requirements of Gas Operating Standard 2500.1700 As-Builts and Gas Operating Standard 2500.1800 D-4 Cards. PSE shall also capture O&M information in accordance with Gas Operating Standard 2500.0500 Maps and Records Requirements.

Future Data Capture to Enhance System Knowledge

Existing system knowledge and system performance data and trends shall be reviewed annually to determine whether additional information needs to be captured to increase system risk understanding and fill gaps due to missing, inaccurate, or incomplete records. The results of this review shall be documented in the Continuing Surveillance Annual Report.

If it is determined that additional information shall be captured or that improvements in data accuracy/integrity are needed, this requirement shall be documented in the Continuing Surveillance Annual Report. For additional data capture, this shall include documenting the type of additional data that is required, the plan to develop a process for gaining this information over time through normal activities, such as design, construction, operations or maintenance activities, or other targeted activities, the responsible department for developing and implementing the process, and target timeframes for implementing the process. For data accuracy improvements, this shall include documenting the data that needs to be more accurate, the department responsible for developing and implementing a plan to improve the data accuracy, and the target timeframes for implementing the process shall be documented in the Gas Operating Standards, Gas Field Procedures, or other appropriate manual.

Section 6: Threat Assessment and Identification

(CFR 192.1007(b))

This section of the Plan establishes the requirement to assess and identify existing and potential threats while considering reasonably available information.

Existing Threats

The Continuing Surveillance Annual Report shall annually re-assess the threats to PSE's gas distribution system using subject matter experts input as well as incident and leak history, corrosion control records, continuing surveillance records, patrolling records, maintenance history, and excavation damage experience. Based on the current assessment as documented in the Continuing Surveillance Annual Report, PSE has concluded that the following are threats to the distribution system:

- Corrosion
- Natural forces
- Excavation damage
- Other outside force damage
- Material, weld, or joint failure
- Equipment failure
- Incorrect operation

Additional analysis of sub-threats to the primary threats is discussed in the Section 7 Risk Evaluation and Prioritization.

Potential Threats

The Continuing Surveillance Annual Report shall include a review of system performance data and operational metrics to determine whether there are new or emerging threats that have not previously been identified. Any new or emerging threats or trends shall be evaluated and discussed in the Continuing Surveillance Annual Report. This will include an assessment of the likelihood of failure associated with the threat, the potential consequences of such a failure, and any additional or accelerated actions that shall be implemented to mitigate the threat.

In addition to this annual review, timely identification and remediation of individual issues that require immediate action is accomplished through processes established in Gas Operating Standard 2575.2700 Continuing Surveillance, Gas Operating Standard 2575.2800 Examining Buried Pipelines, and Gas Operating Standard 2625.1300 Leakage Action Program.

Section 7: Risk Evaluation and Prioritization

(CFR 192.1007(c))

PSE shall evaluate and prioritize the risks to PSE's distribution system. The results of this assessment are documented in Appendix C.

This risk evaluation and prioritization shall be based on subject matter experts input as well as design and construction information, incident and leak history, corrosion control records, continuing surveillance records, patrolling records, maintenance history, and excavation damage experience. The evaluation and ranking of risk shall consider:

- Each applicable current and potential threat
- The likelihood of failure associated with each threat
- The potential consequences of such a failure
- The relevance of threats in one location to other areas
- Where a combination of threats exist on a pipeline segment that impacts the total risk of the individual segment

Appendix C also documents the detailed methodology for performing the risk evaluation and prioritization. This evaluation and ranking of risks shall be reviewed annually in conjunction with the Continuing Surveillance Annual Report review required by Section 10 Periodic Evaluation and Improvement. The review shall include any new risk knowledge, new or emerging threats, and new knowledge of factors that affect the risk posed by threats to the gas distribution pipeline and where they are relatively more important than other threats.

The risk evaluation shall be validated and shall confirm that the results agree with SME experience and system data. If the results do not agree, the risk evaluation shall be revised as appropriate. The Risk Evaluation and Prioritization Matrix shall be updated as necessary based on this review.

Section 8: Mitigative Measures and Additional and Accelerated Actions to Address Risks

(CFR 192.1007(d))

Based on the Risk Evaluation and Prioritization Matrix, PSE shall identify where additional and accelerated actions are required and shall specify the thresholds that require these additional and accelerated actions. This assessment shall include identifying where risk reduction measures are required to address individual threats as well as where a combination of threats exist and impact the total risk also requiring risk reduction measures. The results of this assessment shall be documented in the Continuing Surveillance Annual Report. The mitigative measures currently implemented by PSE shall be documented in Appendix D Summary of Mitigative Measures. This table shall document each threat the measure is intended to mitigate and reference the document that details the specific requirements of the mitigative measure. Documents that specify additional and accelerated actions shall also specify when these measures are required to be taken.

These measures include those that are mandated by the 49 Code of Federal Regulations (CFR) Part 192 and Washington Administrative Code (WAC) Title 480 Utilities Transportation Commission as well as additional and accelerated actions PSE has identified and implemented to reduce risks and manage the integrity and reliability of the gas distribution system.

In addition to the Summary of Mitigative Measures, Appendix E Additional and Accelerated Actions further highlights critical practices and additional and accelerated actions that are currently reducing risks. These additional and accelerated actions are actions specified in existing manuals including the Gas Operating Standards and Gas Field Procedures and/or are best practices that have been adopted as PSE's company practices. These are listed to emphasize the actions that are beyond those required by the regulations and to facilitate the consideration of the DIM Program when any revisions are made to these existing practices.

Based on the Risk Evaluation and Prioritization Matrix, certain facilities with similar properties that have been identified as requiring additional and accelerated actions shall be risk ranked within its own population. This allows for more appropriate additional and accelerated actions to be identified to effectively mitigate risks within the certain facility. These facilities include bare steel, pre-1972 wrapped steel services, wrapped steel pipe, and older vintage PE pipe. The methodology used to risk rank the segments, the process for determining remedial action based on the risk ranking, and the corresponding additional and accelerated actions are documented in the Bare Steel Settlement Agreement and Appendix F. These risk models include those in the Bare Steel Replacement Program, the Wrapped Steel Service Assessment Program, the Wrapped Steel Pipe Mitigation Program.

Additional and accelerated actions that are being evaluated, are in development, or are in the process of implementation shall be documented in the Additional and Accelerated Actions section of the Continuing Surveillance Annual Report. This documentation shall include a description of the measure, the department responsible for evaluating or implementing the mitigative measure, and the target timeframes for completing the evaluation or implementation. Once the new or revised measure is implemented, the new requirement and associated processes shall be incorporated in future updates to appropriate documents such as the Gas Operating Standards, Gas Field Procedures, Distribution Integrity Management Plan, Design and Construction Manual, or appropriate manuals.

If the evaluation of an additional and accelerated action concludes that the candidate additional and accelerated action shall not be implemented or that other measures shall be taken or evaluated, documentation of the evaluation, the conclusion, and the basis for the conclusion shall be documented in the next update to the Continuing Surveillance Annual Report.

Section 9: Measure Performance, Monitor Results, and Evaluate Effectiveness

(CFR 192.1007(d) and CFR 192.1007(e)(1))

This section establishes the requirement to measure performance, monitor results and evaluate the effectiveness of the DIM Program. This includes evaluation of performance measures that are numerical and can be trended over time as well as a more subjective evaluation of the effectiveness of the Leak Management Program.

Performance Measures

The performance measures used to evaluate the effectiveness of PSE's DIM Program are specified below. The baselines for these measures shall be included in the Continuing Surveillance Report and shall be updated annually as necessary. This annual update shall also include a discussion of the trends these measures show, an assessment of the effectiveness of the measures implemented to address risks, whether any additional performance measures should be added to the DIM Plan, and whether any changes are needed to the mitigative measures. If additional performance measures are identified through this process, they shall be documented in the Continuing Surveillance Annual Report and incorporated in the next update to the DIM Plan.

Performance Measures:

- 1. The number of hazardous leaks either eliminated or repaired, categorized by cause
- 2. The number of excavation damages
- 3. The number of excavation tickets received
- 4. The number of leaks either eliminated or repaired, categorized by cause
- 5. The number of hazardous leaks either eliminated or repaired, categorized by material
- 6. Average response time to emergency odor or leak calls

Leak Management Program

PSE's Gas Operating Standard 2625.1100 Leak Survey Program requires self audits to be performed to evaluate the effectiveness of PSE's leak management program. A summary

of the results of the audit shall be reported in the Continuing Surveillance Annual Report including whether any changes were identified to improve the effectiveness of the leak management program.

Section 10: Periodic Evaluation and Improvement

(CFR 192.1007(e)(1), CFR 192.1007(f), and CFR 192.1007(a)(4))

This section of the Plan requires periodic re-evaluation of both the DIM Plan and the DIM Program.

DIM Plan

This DIM Plan shall be reviewed annually and updated as appropriate based on this review. This review and update shall include:

- Ensuring the Section 2 Responsibilities is up-to-date based on current organizational structure
- Updating additional and accelerated actions that have been implemented since the last DIM Plan update or revisions to existing mitigative measures. This shall include adding the document specifying the requirements of the mitigative measure to the DIM Plan Appendix or referencing the appropriate document if it is incorporated into the Gas Operating Standard manual, Gas Field Procedure manual, or other appropriate manual
- Updating System Knowledge based on changes to current design, construction, operation and maintenance practices
- Updating System Knowledge as additional data is found related to past design, construction, operation and maintenance practices
- Incorporating new or revised risk knowledge based on the most recent Continuing Surveillance Annual Report. This includes but is not limited to any new or emerging threats, revisions to the risk evaluation and prioritization, new or revised mitigative measures, and any new performance measures
- Incorporating any other updates as needed to reflect changes to PSE's DIM Plan.

If there are no updates required, the date the review was completed and the name and signature of the person responsible for completing the review shall be recorded in the DIM Program files.

DIM Program

The effectiveness of the DIM Program shall be reviewed annually and documented in the Periodic Evaluation and Improvement section of the Continuing Surveillance Annual Report. This shall include:

- 1. Reviewing the results of the performance measures, results monitoring, and effectiveness evaluation required by Section 9. Based on this review, PSE shall determine whether or not the existing mitigative measures are effectively mitigating the risks they are intended to address, additional time is required to have sufficient data to make a determination, or different performance measure are required to make a determination.
- 2. Determining whether to continue, discontinue, accelerate, decelerate, modify, or add additional and accelerated actions or mitigative measures. The basis for this determination shall be documented in the Continuing Surveillance Annual Report.
- 3. Evaluating the threats and risks to PSE's entire distribution system, updating the Risk Evaluation and Prioritization Matrix and Risk Ranking/Replacement Programs as necessary, and considering the relevance of threats in one location to other areas.
- 4. Determining whether additional data gathering is required to improve risk knowledge per Section 5 Knowledge of Distribution System.
- 5. Evaluating the effectives of the leakage management program and identify steps to correct any deficiencies if they exist.

Section 11: Reporting

(CFR 192.1007(g), CFR 192.1009(a), and CFR 192.1009(b))

The following shall be reported:

- 1. The performance measures required by CFR 192.1007(e)(1) and the number of excess flow valves installed shall be reported in accordance with Gas Operating Standard 2425.2600 Distribution Integrity Management Program.
- 2. Information related to failure of mechanical fittings shall be reported in accordance with Gas Operating Standard 2425.2600 Distribution Integrity Management Program.
- 3. Additional reporting shall be performed in accordance with the requirements specified in the Risk Ranking/Replacement Programs in the Appendices to this Plan.

- 4. The Continuing Surveillance Annual Report shall be submitted to the WUTC by May 15th each year.
- 5. Updates to this DIM Plan shall be submitted to the WUTC by September 15th each year the Plan is updated.

Section 12: Record Keeping

(CFR 192.1011)

The following records must be maintained in the DIM Program files for ten years:

- Copies of the current and previous written DIM Plans
- Proof of annual review of the DIM Plan if no updates are made to the plan in any calendar year
- Copies of the current and previous Continuing Surveillance Annual Report
- Records of data required to be collected to calculate performance measures
- Mechanical Fitting Failure Reports
- Excavation Damage Prevention Annual Reports
- Material Failure and Construction Defect Reports
- Documentation of Annual DIM Program and DIM Plan Reviews
- Annual Reports to PHMSA (as required by §191.11) and WUTC

Distribution Integrity Management Program

Appendix

Appendix A: DIM Program Process Flow Diagrams

Effective on: 08/02/11 Cancelling: NEW Page A-3

Distribution Integrity Management Program

Distribution Integrity Management Program

Appendix B: Knowledge of the Distribution System

The following appendices contained within Appendix B are documents of specific elements of System Knowledge that are documented and/or were researched to increase risk knowledge.

Appendix B-1: Summary of System Knowledge

This section summarizes the different sources of information that composes System Knowledge. This information is available in many forms and includes historical and current design, construction, and operation and maintenance practices. Table B-1 describes the different formats this information is available in and Table B-2 summarizes the records pertaining to the system and Table B-3 summarizes the general and industry system knowledge.

Table B-1. Document Types and Descriptions

Document Type	Description
Paper (Electronic)	Paper format, hard copy, but available electronically (PDF, .tiff, etc.)
Electronic	Electronic format (MS Excel spreadsheet, MS Word document, etc.)
Database	Database (Access, SQL Server, SAP WMS, etc.)

Table B-2. Summary of Records

Decende	Decument Type	Location of	Kay Department Contest
Kecolus	Document Type	Manager d Desenda and DOE	Key Department Contact
		Maps and Records and PSE	
Operations and Plat Maps	Paper (Electronic)	Network Server	Maps and Records
		Maps and Records and PSE	
Service Records (D4s)	Paper (Electronic)	Network Server	Maps and Records
As-Built Construction Drawings		Maps and Records and PSE	
and Records	Paper (Electronic)	Network Server	Maps and Records
			System Control and Protection
Gas Leak Management System	Database	PSE Network Server	(Maintenance Programs)
			System Control and Protection
Gas Leak Repair Records	Paper and Database	PSE Network Server	(Maintenance Programs)
Cathodic Protection Maintenance	•		
Records (Rectifier Inspections and			System Control and Protection
Test Site Inspections)	Database	SAP Work Management System	(Corrosion Control)
Atmospheric Corrosion Inspection			
Records	Database	SAP Work Management System	Various Departments
		SAP Work Management System	System Control and Protection
Patrol Records	Database	/ PSE Network Server	(Maintenance Programs)
Valve Maintenance Records	Database	SAP Work Management System	Various Departments
Regulator Station Maintenance			System Control and Protection
Records	Database	SAP Work Management System	(Pressure Control)
Requests to Locate Gas Facilities	Electronic	One-Call Center	Contractor Management
Third-party damage Claims	Database	SAP Work Management System	Risk and Claims

		Location of	
Records	Document Type	Document/Database	Key Department Contact
Main and Service Condition			
Reports	Database	SAP Work Management System	Various Departments
Liquid Removal Records	Paper	Environmental Services	Environmental Services
Material Failure Analysis Reports	Database	PSE Network Server	Standards
Mechanical Fitting Failure Reports	Paper	Standards	Standards
Material Failure and Construction			
Defect Reports	Paper (Electronic)	PSE Network Server	Compliance
PHMSA DOT Annual Reports	Paper (Electronic)	PSE Network Server	Compliance
PHMSA DOT Incident Reports	Paper (Electronic)	PSE Network Server	Compliance
WUTC Incident Reports	Paper (Electronic)	PSE Network Server	Compliance
Current Gas Operating Standards			
and Field Procedures	Electronic	PSE Network Server	Standards
Historical Gas Operating Standards			
and Field Procedures	Paper	Standards Library	Standards
Current Purchase Specifications	Database	SAP Work Management System	Purchasing/Standards
Historic Purchase Specifications	Paper	Standards Library	Standards

Table B-3. Summary of General and Industry System Knowledge

		Location of	
System Knowledge	Document Type	Document/Database	Key Department Contact
	General Sy	ystem Knowledge	
Subject Matter Expert Discussions	Electronic	DIM Program Files	Gas System Integrity
		Continuing Surveillance Annual	
Performance Measure Data	Electronic	Report	Gas System Integrity
Backfill Practices	Electronic	DIM Plan Appendix	Gas System Integrity
Fusion Practices	Electronic	DIM Plan Appendix	Gas System Integrity
Installing Anode on Tracer Wire	Electronic	DIM Plan Appendix	Gas System Integrity
Steel Pipe Specifications	Electronic	DIM Plan Appendix	Gas System Integrity
Polyethylene Materials History	Electronic	DIM Plan Appendix	Gas System Integrity
Coating Types on Wrapped Steel			
Pipe (Services)	Electronic	DIM Plan Appendix	Gas System Integrity
Mechanical Fittings	Electronic	DIM Plan Appendix	Gas System Integrity
Celcon Caps	Electronic	DIM Plan Appendix	Gas System Integrity
Delrin Service Tap Tees	Electronic	DIM Plan Appendix	Gas System Integrity
Gas Quality	Paper (Electronic)	DIM Plan Appendix	Gas System Integrity
Bolt-on Tees	Electronic	DIM Plan Appendix	Gas System Integrity
Leak Cause Code I – Non-Exposed	Paper (Electronic)	DIM Plan Appendix	Gas System Integrity
Leak Cause Code Clarification	Paper (Electronic)	DIM Plan Appendix	Gas System Integrity
	Indust	ry Knowledge	
PPDC Manufacturers List	Electronic	DIM Program Files	Gas System Integrity
Advisory Bulletins	Paper (Electronic)	DIM Program Files	Gas System Integrity
Older PE Pipe	Paper (Electronic)	DIM Program Files	Gas System Integrity
Mechanical Fittings	Paper (Electronic)	DIM Program Files	Gas System Integrity
PE Pipe Timeline	Paper (Electronic)	DIM Program Files	Gas System Integrity

Appendix B-2: Steel Pipe Specifications

Historic Pipe Specifications and Design Pressures (CKOO 12302006)

14. J. J.

Pine Properties of the

	. THE DATE OF LOD ET		Carrier Alasta		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	P	esign Pressi	ires	1999	1949	Purcha	sed P	ipes I	°er Рш	rchas	se Spe	cifica	tions	關係	等所		Stores C	atalog	總	and and strength on a					
Pipe Size (inches)	Pip O.D. (inches)	Wall Thickness (inches)	Pipe Grade	Yield Strength	Longitude Joint Factor (E)	Design Factor (F) of 0.2	Design Factor (F) of 0.4	Design Factor (F) of 1.0	4/9/1956	(JNISSIM) 9961/L/6	2/1/1968 5/9/1969 AMTSSING)	(/20/1971	/1/1972	2/22/1986	0061/CT/	8861/07/	2/15/1989 (MISSING)	/5/1990	/4/1990	9/2/1994		Feb-98	Aug-98	<u></u>						
	0.840	0.109	Gr.A25	25000	0.600	779	1557	3893		Š	1	00				<u>ก ม</u>		6	6/	838					2002	2003	2004	2005	2006	- 2007
1/2	0.840	0.109	Gr.A	30000	1.000	1557	3114	7786				<u>γ</u> -/	4,	V ⁽²⁾ V	2) V.	(2) ₁ (2)		√ ⁽²⁾	√ ⁽²⁾	<u></u>				<u></u>						
	0.840	0.109	Gr.B	35000	1.000	1817	3633	0083												√ ⁽²⁾		B & W	B & W							
	1.050	0.113	Gr. A25	25000	0.600	646	1201	3000	×××		1	8 3383 8								√ ⁽²⁾		B & W	B & W		B & XT	B&XT	B & XT	B & XT	B & XT	B & XT
3/4	1.050	0.113	Gr.A	30000	1.000	1291	2583	6457	V			_√ ⁽²⁾	V ⁽²⁾	$\frac{\sqrt{2}}{\sqrt{2}}\sqrt{2}$	²⁾ √(⁽²⁾ √ ⁽²⁾		√ ⁽²⁾	√ ⁽²⁾					<u></u>						
	1.050	0.113	Gr.B	35000	1.000	1507	3013	7533												√ ⁽²⁾		B &₩	B & W							
	1.315	0.133	Gr. A25	25000	0.600	607	1214	3034			<u>√</u>	88888 	2000 I	<u></u>	88 1990 1990					√ ⁽²⁾		B &₩	B&W		B&XT	B&XT	B & XT	<u>B & XT</u>	B & XT	B & XT
1	1.315	0.133	Gr.A	30000	1.000	1214	2427	6068	Ŷ			√ ⁽²⁾	V ⁽²⁾	V ⁽²⁾ V ⁽	2) √(²⁾ √ ⁽²⁾		√ ⁽²⁾ ⊗≎≎	√ ⁽²⁾		<u></u>									
	1.315	0.133	Gr,B	35000	1.000	1416	2832	7080												√(2)	<u></u>	B &W	B & W							
	1.660	0.140	Gr. A25	25000	0.600	505	1012	2520			1	3								√ ⁽²⁾		B & W	B &W		B&XT	B & XT	B & XT	B & XT	B & XT	B&XT
1-1/4	1.660	0.140	Gr.A	30000	1.000	1012	2024	5060	Ŷ			$\sqrt{2}$	√ ⁽²⁾	$\sqrt{2} \sqrt{2}$	²⁾ √C	²⁾ √ ⁽²⁾		√ ⁽²⁾	√ ⁽²⁾		<u></u>									
	1.660	0.140	Gr.B	35000	1.000	1181	2361	5000												√(2)		B &W	B & W							
	1.900	0.145	Gr. A25	25000	0.600	458	916	27280	2000 (11)											√ ⁽²⁾		B & W	B &W		B & XT	B & XT	B & XT	B & XT	B & XT	B & XT
1-1/2	1.900	0.145	Gr.A	30000	1.000	916	1832	4570	V					V ⁽²⁾ V ⁽²⁾	²⁾ √C	²⁾ √(2)		√ ⁽²⁾	√ ⁽²⁾		<u></u>									
	1.900	0.145	Gr.B	35000	1.000	1068	2137	5342												√ ⁽²⁾		B	B							
	2.375	0.125	Gr.A25	25000	0.600	316	632	1570					() ()							√ ⁽²⁾	•••••	B	В		В	В	В	В	в	В
	2.375	0.125	Gr.A	30000	1.000	632	1263	3158					-V ⁽²⁾ -	V ⁽²⁾ V ⁽²		²⁾ √ ⁽²⁾		√ ⁽²⁾	√ ⁽²⁾			<u></u>								
2	2.375	0.125	Gr.B	35000	1.000	737	1474	3684			+									√ ⁽²⁾										
_	2.375	0.154	Gr. A25	25000	0.600	389	778	1945	<u></u>		v V	. 1(2)		<u></u>		0.2000 N 100		<u></u>		√ ⁽²⁾	<u></u>	<u></u>								
	2.375	0.154	Gr.A	30000	1.000	778	1556	3891	Ì						1	-/ 1(-)		V ⁽²⁾	V ⁽²⁾			<u></u>					-			
	2.375	0.154	Gr.B	35000	1.000	908	1816	4539												V ⁽²⁾		B&W	B & W							
	3.500	0.216	Gr. A25	25000	0.600	370	741	1851	.(1)			1(2)	12		3 107					ν ⁽²⁾ ,		В & W	B&W		B&XT	B & XT	B&XT	B & XT	B&XT	B & XT
3	3.500	0.216	Gr,A	30000	1.000	741	1481	3703	V			14-1		12) V2	144			√ ⁽²⁾ ^	(2) (2)	<u>.</u>	<u></u>									
	3.500	0.216	Gr.B	35000	1.000	864	1728	4320												√ ⁽²⁾	<u></u>	?	?							
	4.500	0.141	Gr. B	35000	1.000	439	877	2193				1(2)	(2) (2)	(2) (2)	488 1 Jan					√ ⁽²⁾ .		7 3338733353	?		В	В	В	в	в	в
	4.500	0.141	X42	42000	1.000	526	1053	2632						1	112	/		<u></u>	<u></u>	<u>.</u> ,	<u></u>									
	4.500	0.188	Gr. B	35000	1.000	585	1170	2924			V	. (2)	<u>.</u> (2)	<u></u>	100	 \		V ⁽²⁾ \		√ ⁽²⁾ .	·····									
4	4.500	0.188	X42	42000	1.000	702	1404	3509							1	/ 2000 // 100		200 10	<u></u>	<u>.</u>										
	4.500	0.237	Gr. A25	25000	0.600	316	632	1580	JU)							V/		V ⁽²⁾ \		√ ⁽²⁾ .		B&W	B&W		B&XT	B & XT	B&XT	B & XT	B & XT	B & XT
	4.500	0.237	Gr. B	35000	1.000	737	1475	3687	√(2)												<u></u>									
	4.500	0.237	X42	42000	1.000	885	1770	4424												<u>.</u>										
ŀ	6.625	0.188	Gr. B	35000	1.000	397	795	1986			1	J(2)	J(2) .1	(2) _1(2)		, <u>(</u>)											В	В	B & FB	B & FB
	6.625	0.188	X42.	42000	1.000	477	953	2384								J(2)		<u>(2)</u>	©] (2)	<u></u>		B&W/								
0	6.625	0.250	Gr.B	35000	1.000	528	1057	2642	/(2)													B	Baw		B&XT	B&FB	B&FB	B&FB	B&FB	B & FB

	0.625	0.280	Gr.B	35000	1,000	592	1183	2958																			02.002.00000	<u></u>	********	000000000
	6.625	0.280	X42	42000	1.000	710	1420	3550																		В	B	В	B	В
	8.625	0.188	Gr, B	35000	1.000	305	610	1526	. ((2)	7		1(2)	10	(2) (2)	~~~~ (2)	n S										FB	FB	FB	FB	FB
	8.625	0.188	X42	42000	1.000	365	732	1831				<u>v - / -</u>		V - V	·/ ν	··· (33)														
8	8.625	0.188	X52	52000	1.000	453	007	2057								\checkmark		- √ ⁽²		$\sqrt{2}$		B&W	B&W		B & XT	B & FB	B & FB	B&FB	B & FB	B&FB
	8.625	0.250	Gr. B	35000	1.000	105	207	2207															W*							
	8,625	0.322	X42	42000	1,000	400	1054	2029											√ ⁽²⁾	√ ⁽²⁾		В	В		В	В	В	В	в	в
10	10.750	0.010	() . D	42000	1.000	027	1254	3136														W	W		хт	FB	FB	B&FB	B & FB	B&FB
10	10.750	0.219	Gr. B	35000	1,000	285	570	1426	√ ⁽²⁾												••••									
	12.750	0.219	Gr, B	35000	1.000	240	481	1202		\checkmark																				
	12.750	0.219	X42	42000	1,000	289	577	1443														В	B		<u> </u>	n		100000000		
	12,750	0.219	X46	46000	1.000	316	632	1580				v ⁽²⁾	J(2) .	J(2) V	(2)	(2) 1	(2)	J(2) _/(2)	J(2)	<u></u>	w	w		D N/m	B	В	В	В	В
12	12.750	0.250	Gr. B	35000	1.000	275	549	1373	√ ⁽²⁾													в	B			FB	FB	FB	FB	FB
	12.750	0.250	X42	42000	1.000	329	659	1647						J(2) J	(2)	(2) _((2)	_/(2				B. CT. XI			<u> </u>	В	B	B	<u> </u>	В
	12.750	0.312	X42	42000	1.000	411	822	2056								s È			1(2)	1(2)					B	B	B	B	B	B
	12.750	0.312	X52	52000	1.000	509	1018	2545														W P VT	W • VT							
	16.000	0.219	X42	42000	1.000	230	460	1150		1												Waxi	VV Q AI		XT	FB	FB	FB	FB	FB
	16.000	0.250	X42	42000	1.000	263	525	1212																<u></u>						
	16.000	0.281	X46	46000	1 000	205	525	1313	γ ⁽²⁾						<u>88</u> 2							W*	W*							
16	16.000	0.344	X56	56000	1 000	323	040	1010				√ ⁽²⁾ , ∷∷	(2), 	⁽²⁾ √	⁽²⁾ √	⁽²⁾ √((2)	√ ⁽²) √ ⁽²⁾	√ ⁽²⁾										
	16.000	0.375	¥56	56000	1.000	404	963	2408														w	W							
	16.000	0.375	X60	60000	1,000	525	1050	2625														XT	ХТ		хт	FB	FB	FB	FB	FB
	20,000	0.212	Xuo	00000	1.000	363	1125	2813																	FB	FB	FB	FB	FB	FB
	20.000	0.312	X42	42000	1,000	262	524	1310	√ ⁽²⁾	1																				
20	20.000	0.312	X52	52000	1.000	324	649	1622			<u>.</u>	(2) ₁	/ ⁽²⁾ -	<i> </i> (2) √	(2)	(2) √((2)	_√ ⁽²) √(2)	√ ⁽²⁾										
	20,000	0.375	X56	56000	1.000	420	840	2100														CT*	CT*							
l	20.000	0.500	?	?	1.000	#########	#VALUE!	#########	1													XT*	XT*							

Notes:

Footnote (1) - Pipe to be used in the distribution system and the supply main system designed for operation pressures not to exceed 200 psig

Footnote (2) - Pipe to be used in supply main system designed for operation pressure not to exceed 300 psig

The above table does not apply to the original construction of the Vashon Island and Gig Harbor crossing which pipes were ordered under special specification (8-5/8" OD, 0.322 wall, Grade X-46)

Design pressures were calculated using the steel pipe formula provided by Part 49 CFR 192.105 -> P=(2St)/DxFxExT, where E = 0.6 for furnace butt welded pipe, E = 1 for non-furnace but welded pipe, T = 1 Footnote (*) implies that those material were listed as "phased out items" on the store catalog

Entries "B" = bare pipe, "W" = wrapped pipe, "XT" = X Thru coated pipe, "CT" coal tar pipe, "FB" = FBE coated pipe.

Historic Pipe Specifications SMYS Calculations

Å

ļ

ſ

، آ

	DATE	Pipe Size (inches)	Pipe Grade	Wall Thickness (inches)	Material Type	150 psig MAOP	190 psig MAOP	250 psig MAOP	280 psig MAOP	Yield Strength	Pressure (psig)	Pressure (psig)	Pressure (psig)	Pressure (psig)	Pipe O.D. (inches)
21	Specifications for pipe (dated 4/9/56)	4	Gr. B	0.237	STW	4.1	5.2	6.8	7.6	35000	150	190	250	280	4.5
		6	Gr. B	0.250	STW	5.7	7.2	9.5	10.6	35000	150	190	250	280	6.625
		8	Gr. B	0.188	STW	9.8	12.5	16.4	18.4	35000	150	190	250	280	8.625
		10	Gr. B	0.219	STW	10.5	13.3	· 17.5	19.6	35000	150	190	250	280	10.75
		12	Gr. B	0.250	STW	10.9	13.8	18.2	2 /20/4/5-	35000	150	190	250	280	12.75
		16	X42	0.250	STW	11.4	14.5	19	1.51.54	42000	150	190	250	280	16
		20	X42	0.312	STW	11.4	14.5	19.1	21,4	42000	150	190	250	280	20
	(missing specification dated 9/7/66)								Carlo an anna an a						·
	Specifications for pipe (dated 2/1/68)	4	Gr. B	0.188	STW	5,1	6.5	8.5	9.6	35000	150	190	250	280	4.5
		[.] 6	Gr. B	0.188	STW	7.6	9.6	12.6	14.1	35000	150	190	250	280	6.625
		8	Gr. B	0.188	STW	9.8	12.5	16.4	18.4	35000	150	190	250	280	8.625
		12	Gr. B	0.219	STW	12.5	15.8	2018	233	35000	150	190	250	280	12.75
		16	X42	0.219	STW	13	16,5	217.5	24.4	42000	150	190	250	280	16
		20	X42	0.312	STW	11.4	14.5	19.1	21.4	42000	150	190	250	280	20
	(missing specification dated 5/9/69)							1.	<u>arederater</u>						20
	Specifications for pipe (dated 8/20/71)	• 4	Gr. B	0.141	STW	6.8	8.7	1 ¹ 1.4	12.8	35000	150	190	250	280	45
		4	Gr. B	0.188	STW	5.1	6,5	8.5	9.6	35000	150	190	250	200	ч.)
)	6	Gr. B	0.188	STW	7.6	9.6	12.6	14.1	35000	150	190	250	200	. 4.5
		8	Gr. B	0.188	STW	9.8	12.5	16.4	18.4	35000	150	190	250	200	0.025
		12	X46	0.219	STW	9.5	12	15.8	17.7	46000	150	190	250	280	8.025
		16	X46	0.281	STW	9,3	11.8	15.5	17.3	46000	150	190	250	280	12.75
		20	X52	0.312	STW	9.2	11.7	15.4	17.3	52000	150	100	250	280	10
-	Specifications for pipe (dated 5/1/72)	4	Gr. B	0,141	STW	6.8	8.7	11.4	12.8	35000	150	190	250	280	20
		4	Gr. B	0.188	STW	5.1	6.5	8.5	9.6	35000	150	190	250	280	4.5
		6	Gr. B	0.188	stw	7.6	9.6	12.6	14.1	35000	150	190	250	280	4.5
		8	Gr. B	0.188	STW	9.8	12.5	16.4	18.4	35000	150	190	250	280	6.625
	-	12	X46	0.219	STW	9.5	12	15.8	17.7	46000	150	190	250	280	8.625
		16	X46	0.281	STW	9.3	11.8	15.5	172	46000	150	190	250	280	12.75
	-	20	X52	0.312	STW	9.2	11.7	15.4	17.3	52000	150	190	250	- 280	16
;	Specifications for pipe (dated 12/22/86)	4	Gr. B	0.141	STW	6.8	87	11.4	12.8	35000	150	190	250	280	- 20
	-	4	Gr. B	0.188	STW	51	6.5	8.5	0.6	35000	150	190	250	280	4.5
	-	6	Gr. B	0.188	STW	7.6	9.6	12.6	9.0	35000	150	190	250	280	4.5
	-	8	Gr B	0.188	STW	0.0	12.5	12.0	14.1	35000	150	190	250	280	6,625
_^,	·	12	×46	0.210	STW	2.0	12.5	10.4	18.4	35000	150	190	250	280	8.625
-	·} 	12	¥42	0.250	CTW CTW	9.5	12	15.8	17,7	46000	150	190	250	280	12.75
	-	16	X46	0.291	STW	9.1	11.5	15.2	17	42000	150	190	250	280	12.75
		20	· ¥52	0.212	OTW	9.3	8,11	15.5	17.3	46000	150	190	250	280	16
	Specifications for pipe (dated 1/15/88)	4	Gr P	0.312	STW STW	y.2		15.4	17.3	52000	150	190	250	280	20
			Gr P	0.141	STW	0.8	8.7	11.4	12.8	35000	150	190	250	280	4.5
			GrD	0.100	DIW OTU		6.5	8.5	9.6	35000	150	. 190	250	280	4.5
	F			0.100	SIW	7.6	9.6	12.6	14.1	35000	150	190	250	280	6.625
	_	0	or, B	881.0	STW	9.8	12.5	16.4	18.4	35000	150	190	250	280	8.625

* DATE	Pipe Size (inches)	Pipe Grade	Wali Thickness (inches)	Material Type	150 psig MAOP	190 psig MAOP	250 psig MAOP	280 psig MAOP	Yield Strength	Pressure (psig)	Pressure (psig)	Pressure (psig)	Pressure (psig)	Pipe O.D. (inches)
	12	X46	0.219	STW	9.5	12	15.8	17.7	46000	150	190	250	280	12.75
· ·	12	X42	0.250	STW	9.1	11.5	15.2	17	42000	150	190	250	280	12.75
) 	16	X46	0.281	STW	9.3	11.8	15,5	17.3	46000	150	190	250	280	16
· ·	20	X52	0.312	STW	9,2	11.7	ľ5.4	17.3	52000	150	190	250	280	20
Specifications for pipe (dated 12/1/88)	4	X42	0.141	STW	5.7	7.2	9.5	10.6	42000	150	190	250	280	4,5
	4	X42	0.188	STW	4.3	5.4	7.1	8	42000	150	190	250	280	4.5
	6	X42	0,188	STW	6.3	8	10.5	11.7	42000	150	190	250	280	6.625
	8	X42	0.188	STW	8.2	10.4	13.7	15.3	42000	150	190	250	280	8.625
	12	X46	0.219	STW	9.5	12	15.8	17.7	46000	150	190	250	280	12.75
	12	X42	0.250	STW	9.1	11.5	15.2	17	42000	150	190	250	280	12.75
	16	X46	0.281	stw	9.3	11.8	15.5	17.3	46000	150	190	250	280	16
	20	X52	0.312	STW	9.2	11.7	15.4	17.3	52000	150	190	250	280	20
(missing specification dated 12/15/89)														
Specifications for pipe (dated 3/5/90)	4	X42	0.141	STW	5.7	7.2	9.5	10.6	42000	150	190	250	280	4.5
	4	X42	0.188	STW	4.3	5.4	7.1	8	42000	150	190	250	280	4.5
	6	X42	0.188	STW	6.3	8	10.5	11.7	42000.	150	190	250	280	6.625
	8	X42	0.188	STW	8.2	10.4	13.7	15.3	42000	150	190	250	280	8.625
	12	X46	0.219	STW	9.5	12	15.8	17.7	46000	150	190	250	280	12 75
$\overline{}$	12	X42	0.250	STW	9.1	11.5	15.2	17	42000	150	190	250	280	12.75
n yan s	16	X46	0.281	STW	9.3	· 11.8	15.5	17,3	46000	150	190	250	280	16
	20	X52	0.312	STW	9.2	11.7	15.4	17.3	52000	150	190	250	280	20
Specifications for pipe (dated 6/4/90)	4	X42	0.188	STW	4.3	5.4	7.1	8	42000	150	190	250	280	20
	4	X42	0.237	STW	3.4	4.3	5.7	6,3	42000	150	190	250	280	· 4.5
	6	X42	0.188	STW	6.3	8	10.5	11.7	42000	150	190	250	280	6 625
	8	X42	0.188	STW	8.2	10,4	13.7	15,3	42000	150	190	250	280.	8 625
· ·	8	Gr. B	0.250	STW	7.4	9.4	12.3	13.8	35000	150	190	250	280	8 625
	12	X46	0.219	STW	9.5	12	15,8	17.7	46000	150	190	250	280	12 75
	12	X42	0.250	STW	9.1	11.5	15.2	17	42000	150	190	250	280	12.75
	12	X42	0.312	STW	7.3	9.2	12.2	13.6	42000	150	190	250	280	12.75
	16	X46	0.281	STW	9.3	11.8	15.5	17.3	46000	150	190	250	280	16
	20	X52	0.312	STW	9.2	11.7	15.4	17.3	52000	150	190	250	280	20

(

*%SMYS is calculated by solving for F in the design formula for steel pipe P=(2St)/DxFxExT (CFR 192.105) where P = 150 psig or 190 psig or 250 psig or 280 psig; S = yield strength (pipe grade); t = wall thickness; D = nominal OD; E = 1 and T = 1.

Appendix B-3: Polyethylene Pipe Material Information

The following table is a summary of the polyethylene pipe material information that has been installed in the gas distribution system. This includes the approximate installation period, pipe manufacturer, brand name of pipe, and material designation. This summary is based on Subject Matter Expert, purchase specifications, fusion qualification documents, Gas Operating Standards, Gas Field Procedures, and previous research completed by the Standards department. For complete version and reference documentation, see DIM Program files.

Installation Period	Manufacturer	Brand Name	Material Designation
Early 1970s - 1977 ¹	Phillips	Driscopipe M7000 ²	HDPE 3306/3406 ³
1977 - 1985	Dupont	Aldyl HD	HDPE 3406
Early 1980s - 1984	Phillips	Driscopipe M7000	HDPE 3406
1984 ¹ - 1988 ²	Phillips	Driscopipe M8000	HDPE 3408
1988 - 2011	Plexco (Performance Pipe)	Yellowstripe	HDPE 3408
1995 - 2008	Plexco (Performance Pipe)	Yellowpipe	MDPE 2406
2008 - 2011	Performance Pipe	Driscoplex 6500	MDPE 2406/2708

Table 1: Summary of Polyethylene Pipe Material
Appendix B-4: Backfill Practices

The following document was researched and compiled by the Standards Department. For the referenced documents, see DIM Program files.

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
	Steel w/rock shield wrap or encased PE				The Steel pipe has an approved rock shield wrap or the Steal or PE pipe is encased or the	Final backfill shall be soil-based select material, native soil, or an approved special backfill. Well graded or poorly graded gravel with a max of 5% fines. Shall not contain rocks larger then 10 inches in diameter except if steel pipe is larger then 8 in then rocks may be the lesser of 12 inches in diameter or 100 lbs. Shall not contain rocks larger then 6 inches diameter when steel carrier pipe is wrapped in	Can only use Controlled Density Fill if 6 inches cover of initial backfill is used. When Municipality requirements for control density fill conflict with PSE Specification 1275.1475, the municipality requirements should be	Yes (95% standard Proctor for paved areas or roadways and 85% for non traffic areas.) For portable hand tamper/ compactors, compact after there is at least 12 in of lift height and 24 in of lift height if using a machine	Support pipe with final backfill material cover pipe with final	Final back fill depth found in 2525.1700. All information taken from 2011 GOS and looked through previous working papers until standard changes affected Acquisition data. See Backfill DIMP Document Binder for printed	2011 through 2009 working papers GOS 2525.1800 and Safety Equipment, Tools, and Materials
2000 2011	or encased	Main and or			pipe is installed with	approved rock shield	followed. (Unknown	mounted	backfill material.	out Affecting	
			Sand meeting PSE Specification 1275.1380. Can use sandbags to support the pipe in conjunction with sand backfill. When backfilling subsequent to maintenance or repair of an existing pipeline, including service riser replacements, and when the location being backfilled is not under a hard surface that is subject to vehicular traffic, initial backfill may be native material that is well- graded or poorly graded native soil that does not contain	Put 4 in of initial backfill under pipe if trench bottom contains any sharp or unusually rough surfaces. When backfilling subsequent to maintenance or repair of an existing pipeline, including service riser replacements, and when the location being backfilled is not under a hard surface that is subject to vehicular traffic, initial backfill may be native material that is well-graded or poorly graded native soil that does not contain fines; angular or sub angular rocks; or rounded or sub rounded rocks larger than 1/2-inch diameter. There must be 6 in of initial backfill covering the pipe line after		Final backfill shall be soil-based select material, native soil, or an approved special backfill. Well graded or poorly graded gravel with a max of 5% fines. Shall not contain rocks larger then 10 inches in diameter except if steel pipe is larger then 8 in then rocks may be the lesser of 12 inches in diameter or 100 lbs.	Controlled Density Fill. When Municipality requirements for control density fill conflict with	Yes (95% standard Proctor for paved areas or roadways and 85% for non traffic areas.) For portable hand tamper/ compactors, compact after there is at least			2011 GOS
2011 and 2011 customer trench and backfill	PE or Steel	Main and or Service	fines; angular or sub angular rocks; or rounded or sub rounded rocks larger than 1/2-inch diameter.	compaction. Initial backfill shall be used for the first 12 inches of cover, after compaction, if the final backfill contains rocks larger than 8 inches in diameter.	N/A	Shall not contain rocks larger then 6 inches diameter when steel carrier pipe is wrapped in approved rock shield material.	PSE Specification 1275.1475, the municipality requirements should be followed. (Unknown possible material)	12 in of lift height and 24 in of lift height if using a machine mounted compactor.	Support pipe, Install initial backfill, and install final backfill material. Compact.	See Backfill DIMP Document Binder for printed out Affecting Documents	2525.1800, 2525.1600 and Safety Equipment, Tools, and Materials Catalog 1275.1475

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
				Put 4 in of initial backfill							
				under pipe if trench bottom							
				contains any sharp or							
				unusually rough surfaces.							
				When backfilling							
				subsequent to maintenance							
				or repair of an existing							
				pipeline, including service							
				riser replacements, and							
				when the location being		Final backfill shall be					
				backfilled is not under a		soil-based select					
				hard surface that is subject		material, native soil, or					
				to vehicular traffic, initial		an approved special		Yes (95%			
				backfill may be native		backfill. Well graded or		standard Proctor			
				material that is well-graded		poorly graded gravel with		for paved areas			
				or poorly graded native soil		a max of 5% fines. Shall		or roadways and			
				that does not contain fines;		not contain rocks larger		85% for non			
				angular or sub angular		then 10 inches in		traffic areas.)			
				rocks; or rounded or sub		diameter except if steel		For portable			
				1/2 inch diameter. There		pipe is larger then 8 in		nand tamper/			
				1/2-Inch diameter. There		then focks may be the		compactors,			
			Sand mosting DSE	must be 6 in 01 initial backlill		disperter or 100 lbs		compact after			
			Sand meeting PSE	covering the pipe line after		Chall pot contain rocks		there is at least	Support pipe		papers GOS
2010 and				compaction. Initial backfill		Shall hot contain focks		12 In 01 IIIt neight	Support pipe,	See Realifill DIMD	2525.1800, 2525.1600 and
2010 and			1275.1360. Call use	inches of cover ofter		diameter when steel		and 24 in or lift	hookfill ond	See Dackill DilviP	2020.1000 and
2010			the pipe in	appropriate if the final				meight ir using a	backilli, and	for printed out	Salety Equipment,
tronch and		Main and or		backfill contains rocks larger		approved rock shield		machine	hockfill motorial	Affecting	Notorials Catalog
backfill	PE or Steel	Service	backfill	than 8 inches in diameter	Ν/Α	approved rock shield	Controlled Density Fill	compactor		Documents	1275 1/75
DACKIII		Service			IN/ <i>F</i> \	เมลเซมส์เ.		compaciór.	Compaci.	Documents	12/0.14/0

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
	-			Put 4 in of initial backfill	-						
				under pipe if trench bottom							
				contains any sharp or							
				unusually rough surfaces.							
				When backfilling							
				subsequent to maintenance							
				or repair of an existing							
				pipeline, including service							
				riser replacements, and							
				when the location being		Final backfill shall be					
				backfilled is not under a		soil-based select					
			Sand meeting PSE	hard surface that is subject		material, native soil, or					
			Specification	to vehicular traffic, initial		an approved special		Yes (95%			
			1275.1380. Can use	backfill may be native		backfill. Well graded or		standard Proctor			
			sandbags to support	material that is well-graded		poorly graded gravel with		for paved areas			
			the pipe in	or poorly graded native soil		a max of 5% fines. Shall		or roadways and			
			conjunction with initial	that does not contain fines;		not contain rocks larger		85% for non			
			backfill. Initial backfill	angular or sub angular		then 10 inches in		traffic areas.)			
			may be native	rocks; or rounded or sub		diameter except if steel		For portable			
			material that is well-	rounded rocks larger than		pipe is larger then 8 in		hand tamper/			
			graded or poorly	1/2-inch diameter. There		then rocks may be the		compactors,			
			graded native soil that	must be 6 in of initial backfill		lesser of 12 inches in		compact after			2009 working
			does not contain	covering the pipe line after		diameter or 100 lbs.		there is at least			papers GOS
0000			fines; angular or sub	compaction. Initial backfill		Shall not contain rocks	Controlled Density Fill	12 in of lift height	Support pipe,		2525.1800,
2009 and			angular rocks; or	shall be used for the first 12		larger then 6 inches	with a minimum of 6	and 24 in of lift	Install initial	See Backfill DIMP	2525.1600 and
2009			rounded or sub	Inches of cover, after		diameter when steel	Inches cover of Initial	neight if using a	backfill, and	Document Binder	Safety Equipment,
customer		Main and ar	then 4/2 inch	compaction, if the linal		carrier pipe is wrapped in	backill over the pipe	machine	Install final	for printed out	Tools, and Meteriale Cataler
trench and	DE or Stool	Main and or	diamatar	backfill contains focks larger	NI/A	approved rock shield	before the special	mounted	Dackilli material.	Allecting	Materials Catalog
Dackilli	PE OF Steel	Service	Sond mosting DSE		IN/A	material.		compactor.	Compact.	Documents	1275.1475
			Sand meeting FSE								
			soil or soil based								
			select material that								
			does not contain			Final backfill shall be					
			sharp rocks or rocks			soil-based select					
			larger than 1/2 inch in			material native soil					
			diameter in			Shall not contain rocks					
			accordance with			larger then 10 inches in					
			1275.1380. Rocks up			diameter except if steel					
			to 1 inch in diameter			pipe is larger then 8					
			may be used on			inches and larger in		Yes, For			
			fusion bonded epoxy-	Put 4 in of initial backfill		diameter may have rocks		portable hand			
			coated pipe 8 inches	under pipe if trench bottom		up to the lesser of 12		tamper/			
			or greater in diameter.	contains any sharp or		inches in diameter or 100		compactors,			
			Can use sandbags or	unusually rough surfaces.		pounds. Final backfill		compact after			2008 working
			wood skids/wedges to	Initial backfill shall be used		shall not contain rocks		there is at least			papers GOS
			support the pipe in	for at least the first 6 inches		larger than 6 in diameter	Controlled Density Fill	12 in of lift height	Support pipe,		2525.1800,
2008 and			conjunction with initial	of cover. Initial backfill shall		when the carrier pipe is	with a minimum of 6	and 24 in of lift	Install initial	See Backfill DIMP	2525.1600 and
2008			backfill. The Wood	be used for the first 12		wrapped in approved	inches cover of initial	height if using a	backfill, and	Document Binder	Safety Equipment,
customer			skids/wedges shall be	inches of cover if the final		rock shield material to	backfill over the pipe	machine	install final	for printed out	Tools, and
trench and		Main and or	removed before	backfill contains rocks larger		prevent damage to	before the special	mounted	backfill material.	Affecting	Materials Catalog
backfill	PE or Steel	Service	backfilling the trench.	than 8 inches in diameter.	N/A	carrier pipe.	mixture is installed.	compactor.	Compact.	Documents	1275.1475

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
2008	Steel w/rock shield wrap or encased PE or encased Steel	Main and or Service	not required	not required	The Steel pipe has an approved rock shield wrap or the Steal or PE pipe is encased or the pipe is installed with plowing	Final backfill shall be soil-based select material, native soil. Shall not contain rocks larger then 10 inches in diameter . Final backfill shall not contain rocks larger than 6 in diameter when the carrier pipe is wrapped in approved rock shield material to prevent damage to carrier pipe.	Controlled Density Fill with a minimum of 6 inches cover of initial backfill over the pipe before the special mixture is installed.	Yes, For portable hand tamper/ compactors, compact after there is at least 12 in of lift height and 24 in of lift height if using a machine mounted compactor.	Support pipe, Install initial backfill, and install final backfill material. Compact.	See Backfill DIMP Document Binder for printed out Affecting Documents	2008 working papers GOS 2525.1800 and Safety Equipment, Tools, and Materials Catalog 1275.1475
2007 to 2006 and 2007 to 2006 customer trench and backfill	PE or Steel	Main and or Service	Sand, native soil, or soil-based select material that does not contain sharp rocks or rocks larger than 1/2 inch in diameter. Rocks up to 1 inch in diameter may be used on fusion bonded epoxy-coated pipe 8 inches or greater in diameter. Can use sandbags or wood skids/wedges to support the pipe in conjunction with initial backfill. The Wood skids/wedges shall be removed before backfilling the trench.	Put 3 in of initial backfill under pipe if trench bottom contains any sharp or unusually rough surfaces. Initial backfill shall be used for at least the first 6 inches of cover. Initial backfill shall be used for the first 12 inches of cover if the native soil contains rocks larger than 6 inches in diameter.	N/A	Final backfill shall be soil-based select material, native soil. Shall not contain rocks larger then 10 inches in diameter. For cross country steel pipeline the final backfill can not contain rocks larger than 12-in. Diameter or rocks exceeding 100 lb	Controlled Density Fill with a minimum of 6 inches cover of initial backfill over the pipe before the special mixture is installed.	Yes, For portable hand tamper/ compactors, compact after there is at least 12 in of lift height and 24 in of lift height if using a machine mounted compactor.	Support pipe, Install initial backfill, and install final backfill material. Compact.	See Backfill DIMP Document Binder for printed out Affecting Documents	2007 and 2006 working papers GOS 2525.1800, 2525.1600 and Safety Equipment, Tools, and Materials Catalog 1275.1475
2007 to 2006	Steel w/rock shield wrap or encased PE or encased Steel	Main and or Service	native soil, or soil- based select material that does not contain sharp rocks or rocks larger than 1/2 inch in diameter. Rocks up to 1 inch in diameter may be used on fusion bonded epoxy- coated pipe 8 inches or greater in diameter. Can use sandbags or wood skids/wedges to support the pipe in conjunction with initial backfill. The Wood skids/wedges shall be removed before backfilling the trench.	Not Required. Put 3 in of initial backfill under pipe if trench bottom contains any sharp or unusually rough surfaces. Initial backfill shall be used for at least the first 6 inches of cover. Initial backfill shall be used for the first 12 inches of cover if the native soil contains rocks larger than 6 inches in diameter.	The Steel pipe has an approved rock shield wrap or the Steal or PE pipe is encased or the pipe is installed with plowing	Final backfill shall be soil-based select material, native soil. Shall not contain rocks larger then 6 inches in diameter.	Controlled Density Fill with a minimum of 6 inches cover of initial backfill over the pipe before the special mixture is installed.	Yes, For portable hand tamper/ compactors, compact after there is at least 12 in of lift height and 24 in of lift height if using a machine mounted compactor.	Support pipe, Install initial backfill, and install final backfill material. Compact.	See Backfill DIMP Document Binder for printed out Affecting Documents	2007 and 2006 working papers OS 2525.1800 and Safety Equipment, Tools, and Materials Catalog 1275.1475

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
			Sand, native soil, or								
			soil-based select								
			material that does not								
			contain sharp rocks or								
			rocks larger than 1/2								
			inch in diameter.								
			Cross-Country steel								
			Pipe must have								
			Fusion Bonded Epoxy								
			Coating and initial					Yes, For			
			backfill must be able	Put 3 in of initial backfill		Final backfill shall be		portable hand			
			to pass through a one	under pipe if trench bottom		soil-based select		tamper/			
			inch screen. Can use	contains any sharp or		material, native soil.		compactors,			
			sandbags or wood	unusually rough surfaces.		Shall not contain rocks		compact after			2005 to 2004
2005 to			skids/wedges to	Initial backfill shall be used		larger then 10 inches in		there is at least			working papers
2004 and			support the pipe in	for at least the first 6 inches		diameter. For cross	Controlled Density Fill	12 in of lift height	Support pipe,		GOS 2525.1800,
2005 to			conjunction with initial	of cover. Initial backfill shall		country steel pipeline the	with a minimum of 6	and 24 in of lift	Install initial	See Backfill DIMP	2525.1600 and
2004			backfill. The Wood	be used for the first 12		final backfill can not	inches cover of initial	height if using a	backfill, and	Document Binder	Safety Equipment,
customer			skids/wedges shall be	inches of cover if the native		contain rocks larger than	backfill over the pipe	machine	install final	for printed out	Tools, and
trench and		Main and or	removed before	soil contains rocks larger		12-in. Diameter or rocks	before the special	mounted	backfill material.	Affecting	Materials Catalog
backfill	PE or Steel	Service	backfilling the trench.	than 6 inches in diameter.	N/A	exceeding 100 lb	mixture is installed.	compactor.	Compact.	Documents	1275.1475
			Not required. Sand,								
			native soil, or soil-								
			based select material								
			that does not contain								
			sharp rocks or rocks								
			larger than 1/2 inch in								
			diameter. Cross-								
			Country steel Pipe								
			must have Fusion								
			Bonded Epoxy								
			Coating and initial	Not Required. Put 3 in of				Yes, For			
			backfill must be able	initial backfill under pipe if				portable hand			
			to pass through a one	trench bottom contains any				tamper/			
			inch screen. Can use	sharp or unusually rough				compactors,			
			sandbags or wood	surfaces. Initial backfill shall				compact after			
			skids/wedges to	be used for at least the first				there is at least			2005 working
			support the pipe in	6 inches of cover. Initial		Final backfill shall be	Controlled Density Fill	12 in of lift height	Support pipe,		papers OS
	Steel w/rock		conjunction with initial	backfill shall be used for the		soil-based select	with a minimum of 6	and 24 in of lift	Install initial	See Backfill DIMP	2525.1800 and
	shield wrap or		backfill. The Wood	first 12 inches of cover if the	The Steel pipe has an	material, native soil.	inches cover of initial	height if using a	backfill, and	Document Binder	Safety Equipment,
	encased PE		skids/wedges shall be	native soil contains rocks	approved rock shield	Shall not contain rocks	backfill over the pipe	machine	install final	for printed out	Tools, and
2005 to	or encased	Main and or	removed before	larger than 6 inches in	wrap or the Steal or PE	larger then 10 inches in	before the special	mounted	backfill material.	Affecting	Materials Catalog
2004	Steel	Service	backfilling the trench.	diameter.	pipe is encased	diameter.	mixture is installed.	compactor.	Compact.	Documents	1275.1475

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
			Sand, native soil, or								
			soil-based select								
			material that does not								
			contain sharp rocks or								
			rocks larger than 1/2								
			diameter Cross								
			Country steel Pipe								
			must have Fusion								
			Bonded Epoxy								
			Coating and initial					Yes, For			
			backfill must be able	Put 3 in of initial backfill		Final backfill shall be	Controlled Density Fill	portable hand			
			to pass through a one	under pipe if trench bottom		soil-based select	or soil stabilization	tamper/			
			inch screen. Can use	contains any sharp or		material, native soil.	chemicals (used for soil	compactors,			2002 to 2003
			sandbags or wood	unusually rough surfaces.		Shall not contain rocks	compaction or	compact after			working papers
2003 to			skids/wedges to	Initial backfill shall be used		larger then 10 inches in	stabilization) with a	there is at least			OS 2525.1800 and
2002 and			support the pipe in	for at least the first 6 inches		diameter. For cross	minimum of 6 inches	12 in of lift height	Support pipe,		2525.1600 / 6.33
2003 to			conjunction with initial	of cover. Initial backfill shall		country steel pipeline the	cover of chemical free	and 24 in of lift	Install initial	See Backfill DIMP	and Safety
2002			backfill. The Wood	be used for the first 12		final backfill can not	backfill material over	height if using a	backfill, and	Document Binder	Equipment, I ools,
customer		Main and ar	skids/wedges shall be	Inches of cover if the hative		contain rocks larger than	the pipe before the	machine	Install final	for printed out	and Materials
hackfill	PE or Steel	Service	hackfilling the trench	than 6 inches in diameter	Ν/Δ	exceeding 100 lb	installed	compactor	Compact	Documents	1275 1/75
backini		OCIVICC	Not required Sand					compactor.	Compact.	Documents	1210.1410
			native soil, or soil-								
			based select material								
			that does not contain								
			sharp rocks or rocks								
			larger than 1/2 inch in								
			diameter. Cross-								
			Country steel Pipe								
			must have Fusion								
			Bonded Epoxy	Not Poquirod, Dut 2 in of				Vac Far			
			backfill must be able	initial backfill under nine if		Final backfill shall be	Controlled Density Fill	res, Fui portable band			
			to pass through a one	trench bottom contains any		soil-based select	or soil stabilization	tamper/			
			inch screen. Can use	sharp or unusually rough		material native soil	chemicals (used for soil	compactors			
			sandbags or wood	surfaces. Initial backfill shall		Shall not contain rocks	compaction or	compact after			
			skids/wedges to	be used for at least the first		larger then 10 inches in	stabilization) with a	there is at least			2002 to 2003
			support the pipe in	6 inches of cover. Initial		diameter. For cross	minimum of 6 inches	12 in of lift height	Support pipe,		working papers
	Steel w/rock		conjunction with initial	backfill shall be used for the		country steel pipeline the	cover of chemical free	and 24 in of lift	Install initial	See Backfill DIMP	OS 2525.1800 and
	shield wrap or		backfill. The Wood	first 12 inches of cover if the	The Steel pipe has an	final backfill can not	backfill material over	height if using a	backfill, and	Document Binder	Safety Equipment,
	encased PE		skids/wedges shall be	native soil contains rocks	approved rock shield	contain rocks larger than	the pipe before the	machine	install final	for printed out	Tools, and
2003 to	or encased	Main and or	removed before	larger than 6 inches in	wrap or the Steal or PE	12-in. Diameter or rocks	special mixture is	mounted	backfill material.	Affecting	Materials Catalog
2002	Steel	Service	backfilling the trench.	diameter.	pipe is encased	exceeding 100 lb	installed.	compactor.	Compact.	Documents	1275.1475
1006						Final Backfill to			Support pipe,		Equad in 1006
1990 Customor				Sand nadding will be		Company Standarda			hackfill	Document Binder	Working papers
Trench				required over rocky areas		Must have trench			Customer installe	for printed out	for GOS 6 33
and		Main and or		(no specification of how		inspected prior to			a backfill	Affectina	Washington
Backfill	PE or Steel	Service	Sand	much)	N/A	backfilling	Not Specified	Not Specified	material.	Documents	Natural Gas Info.

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
1994 Customer Trench and Backfill	PE or Steel	Service	Sand or can have already buried conduit that the contractor could push or pull the pipe through.	Sand padding is required	N/A	not specified	Customers were allowed to install piping with in PVC Conduit.	Not Specified	Support pipe, Install initial backfill, Customer installs a backfill material.	See Backfill DIMP Document Binder for printed out Affecting Documents	Found in 1994 Working papers for GOS 6.33 Washington Natural Gas Info.
1991	Steel and Plastic	Main and service	It must be free of large objects and large clods	If trench bottom is uneven, at least 6 inches of rock free soil shall be used for bedding pipe.	N/A	not specified	not specified	Yes. Backfill shall be tamped at the sides of the pipe. For portable hand tamper/ compactors, compact after there is at least 12 in of lift height and 24 in of lift height if using a machine mounted compactor. Back fill lift should be in 6 inch layers after the initial lift. Water Jetting may be used.	Support pipe, Install initial backfill, and install final backfill material. Compact.	Water Jetting as a form of compacting does not seem like a very good method from what I read on the internet. See Backfill DIMP Document Binder for printed out Affecting Documents.	Fitter Training manual revised 1991 updated September 1992
1985	Does not Specify	"Distribution Main Specifications, construction"	Soft earth or sand	Put 6 in of initial backfill under pipe if trench bottom contains any sharp or unusually rough surfaces.	Does not Specify	Does not Specify	Does not Specify	Does not Specify	Support pipe, Install initial backfill, and install final backfill material. Compact.	See Backfill DIMP Document Binder for printed out Affecting Documents	Washington Natural Gas Company, Operation Standard 6.8 effective date 10- 15-85
1978	Steel	Main and	Material free from rocks, hard clods, soft or unstable dirt, or other unstable	Needs at least 6 inches of cover over pipe. Shall be thoroughly compacted before the final backfill is added	Ν/Α	Shall contain no rocks, broken concrete, or other materials larger than ordinary brick, nor any soft or unstable dirt	N/A	Yes. Compactor machines are restricted to use over the pipe trench only and points of transition from plastic to steel shall be compacted by hand. Water Jetting was also allowed	Support pipe, Install initial backfill, and install final backfill material.	Water Jetting as a form of compacting does not seem like a very good method from what I read on the internet. See Backfill DIMP Document Binder for printed out Affecting Documents	Washington Natural gas Co. Fitters Manual Revised March

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
								Yes. Shall be			
								tamped at the			
								sides of plastic			
								pipe, but shall			
								not be tamped			
								over the pipe			
								until an 18 inch			
								Compactor			
								machines are		Water letting as a	
								restricted to use		form of compacting	
								over the pipe		does not seem like	
				Must provide firm				trench only and		a verv good	
				continuous support under				points of		method from what I	
				and around pipe. Material				transition from		read on the	
				used for support must be				plastic to steel	Support pipe,	internet. See	
			Material free from	well compacted. At least 6		Shall contain no rocks,		shall be	Install initial	Backfill DIMP	Washington
			rocks, hard clods, soft	inches of select rock free		broken concrete, or other		compacted by	backfill, and	Document Binder	Natural gas Co.
			or unstable dirt, or	soil shall be used for		materials larger than		hand. Water	install final	for printed out	Fitters Manual
		Main and	other unstable	bedding pipe if the trench		ordinary brick, nor any		Jetting was also	backfill material.	Affecting	Revised March
1978	Plastic	Service	materials.	bottom is not smooth.	N/A	soft or unstable dirt.	N/A	allowed.	Compact.	Documents.	1978.
								Yes. Initial			
								backfill shall be			
								compacted			
								before final			
								belore final backfill is			
								installed. The			
							Special chemicals are	soil shall be			
							used for soil	compacted with			Washington
							stabilization, "only	air driven or			Natural Gas
							chemicals that have	mechanical	Support pipe,		Company,
			Material free from	Needs at least 6 inches of		Shall contain no rocks,	been approved by the	tampers, except	Install initial		Operation
		"Distribution	rocks, hard clods, soft	cover over pipe. Shall be		broken concrete, or other	engineering	in well drained	backfill, compact,		Standard 6.13
		Main	or unstable dirt, or	thoroughly compacted		materials larger than	Department shall be	soil water	and install final	Water settling may	effective date 7-
	Does not	Specifications,	other unstable	before the final backfill is		ordinary brick, nor any	used for soil	settling is	backfill material.	be the same as	20-77 replaced 12-
1977	Specify	Construction"	materials.	added.	N/A	soft or unstable dirt.	conditioning.	allowed.	Compact.	water jetting.	22-66
											vvashington
									Support pipe		Natural Gas
									Install initial	See Backfill DIMP	Operation
		"Distribution		Put 2 in of initial backfill					hackfill and	Document Rinder	Standard 6.8
		Main		under pipe if trench bottom					install final	for printed out	effective date 2-
	Does not	Specifications		contains any sharp or					backfill material	Affecting	28-69 replaced 2-
1969	Specify	construction"	Soft earth or sand	unusually rough surfaces.	Does not Specify	Does not Specify	Does not Specify	Does not Specify	Compact.	Documents	28-69

Time				How Much Initial Backfill	Initial Backfill Not			Requires	General Backfill		Reference
Period	Pipe Material	Main/Service	Initial Backfill Type	Requirement	Required	Final Backfill Type	Special Backfill Type	Compaction	Practice	Comments	Document Title
1966	Does not Specify	"Distribution Main Specifications, construction"	Material free from rocks, hard clods, soft or unstable dirt, or other unstable materials.	Needs at least 6 inches of cover over pipe. Shall be thoroughly compacted before the final backfill is added.	N/A	Shall contain no rocks, broken concrete, or other materials larger than ordinary brick, nor any soft or unstable dirt.	N/A	Yes. Initial backfill shall be thoroughly compacted before final backfill is installed. The soil shall be compacted with air driven or mechanical tampers, except in well drained soil water settling is allowed.	Support pipe, Install initial backfill, compact, and install final backfill material. Compact.	Water settling may be the same as water ietting.	Washington Natural Gas Company, Operation Standard 6.13 effective date 12- 22-66 replaced 12- 22-66
1300	The Standard only references	"Distribution Main Specification, Construction" This could possibly apply to Main and services b/c I did not find reference to service and the manual referred to mains of 2" or less for the welding	Soft earth or sand, Material that is free from rocks, hard clods, soft or unstable	If installing pipe on sharp or rocky soil place 2 in of sand or soft earth to protect the pipe and then at least 6 in of		Shall contain no rocks, broken concrete or other materials larger than ordinary brick, nor any		Soil shall be compacted with air driven or mechanical	Support pipe, Install initial backfill, and install final backfill material.	See Backfill DIMP Document Binder for printed out Affecting	Washington Natural Gas company Standard Practices 2550.2 page 9. sec 5
<u>19</u> 60	Steel	portion.	dirt.	cover.	N/A	soft or unstable dirt.	N/A	tampers.	Compact.	Documents	issued 6-17-60

Appendix B-5: Fusion Practices

The following is an excerpt of the document that was researched and compiled by the Standards Department. The document summarizes current and past fusion practices. For the complete version of this document and referenced documents, see DIM Program files.

Time	Fusion	Fusion	Pipe	Pipe	Fusion	Temperature	Validating	Pine Propagation Specification	Final Joint Paguiramont	Eusing in Cold Weather	General	Commonto	Reference
Period	Types	wachine	waterial	Size	Pressure	Requirement	Temperature	Pipe Preparation Specification	Final Joint Requirement	Fusing in Cold weather	Procedure must	Comments	Document
											be performed by		
											individuals		
											qualified under		
											PSE's Operator		
											Qualification		
											Program and		
											Operating		
											Standard		
											2700.1600 (2009,		
											2006 and 2007		
											must he		
								All butt fusions shall be at least			performed by		
								three pipe diameters or 12			individuals		
								inches, whichever is greater,			gualified under	Coolina: once	
								away from any new or existing			PSE's Operator	cool to	
								squeeze point. Remove any			Qualification	touchable then	
							Use a	section of pipe that has a cut			Program in the	wait 15	
					Apply enough		Calibrated	gouge or scrape that is deeper		Shield the fusion process	specific task or	additional	
					Pressure to		Pyrometer or	than 10% of wall thickness,	If rollback is not complete the	from wind, blowing snow	procedure.	minutes. There	
					produce a		Infrared Gauge.	Align pipe, using facing tool	fuse must be cut out and	and excessive heat loss	Individuals who	are	
		/ - 11 L			complete,		Tool room	square the pipe ends and	redone, For 1/2-inch CTS to	from wind chill. Maintain	are not qualified	compensations	
		(all by			uniform double	Allow neater to	personnei	fremove a minimum of 1/16 inch	1-Inch CIS fuse Bead must	specified heating tool	may perform this	for drag, see	
		WCEILOY)			the entire	before use The	should check	stopped at approximately 50%	De 1/16-Inch, IOF 1-1/4-Inch	surface temperature. Do	they are	attached	
		#200, #4011	Phillips			adaptor plate	weekly and	of completion and inspected	head must be 1/16-inch to	surface temp. Do not	continually and	Heat shields	
		#21 C #14	HDPE	1/2-	the fusion joint	temperature	fitters should	Remove any remaining small	1/8-inch_and for 3-inch IPS	apply additional pressure	directly observed	are required	2011 2010
		Mini-Mc.	requires	inch	Do not apply	shall be 490° to	check the temp	shavings with a paper towel	to 4-inch IPS the fusion bead	during zero pressure	by a qualified	when fusing	2009 2008
		Use coated	more	CTS	excessive force	510° F. Take a	each time the	Bring the pipe ends together	must be 1/8-inch. Butt fusion	heating steps. Do not	person, as	MDPE to	and 2007
		plates	pressure to	through	or the melt may	reading on both	heater plates	and verify even alignment. If	alignment is visually	increase fusion joining	specified in	HDPE for 1-	GFP
	Butt Fusion	when	make a	4-inch	push out and	sides of the	are plugged in	uneven or mitered, realign and	inspected. If alignment is	pressure. Time required	Operating	1/4 inch	4600.1000,
2011 to	(Manual	performing	complete	IPS PE	produce a cold	adaptor plate in	and prior to	reface for proper alignment of	"High-Low" the joint must be	to obtain proper melt	standard	through 4 inch	and
2007	Unit)	all fusions.	rollback.	pipe	fuse.	the fusion area.	fusing.	ends.	cut out and refused. leak test	may increase.	2425.2100)	IPS.	4600.1010

Time	Fusion	Fusion	Pipe	Pipe	Fusion	Temperature	Validating	Dine Drenenstien Crestification	Final Jaint Daminament		General	Commente	Reference
Period	Types	Machine	Material	Size	Pressure	Requirement	Temperature	Pipe Preparation Specification	Final Joint Requirement	Fusing in Cold Weather	Requirements	Comments	Document
					For McElroy								
					Rolling #28								
					Hydraulic Unit,								
					TracStar #28								
					Hydraulic Unit,								
					Connectra 28EP								
					fusion machine								
					with 6-inch								
					MDPE gauge		Use a	All butt fusions shall be at least					
					pressure should		Calibrated	three pipe diameters or 12					
					be 190± 15psig,		Pyrometer or	inches, whichever is greater,				Cooling: once	
					with 8-inch		Infrared Gauge.	away from any new or existing				cool to	
		McElroy			MDPE gauge		Tool room	squeeze point. Remove any				touchable then	
		Rolling #28			pressure should		personnel	section of pipe that has a cut				wait 15	
		Hydraulic			be 300± 15 psig.		should check	gouge or scrape that is deeper	If rollback is not complete the			additional	
		Fusion			For Connectra		the temp	than 10% of wall thickness,	fuse must be cut out and	Shield the fusion process		minutes. Heat	
		Machine,			28CQ (Hand	Allow heater to	weekly and	Clean the pipe inside and out, in	redone, watch for proper melt	from wind, blowing snow		shields are	
		TracStar			pump) fusion	cycle 4-5 times	fitters should	the area the fusion will be. Place	swell bead around entire	and excessive heat loss	Procedure must	required when	
		#28			machine with 6-	before use. The	check the temp	pipe/fitting/valve ends in	circumference of both ends.	from wind chill. Maintain	be performed by	fusing MDPE	
		Hydraulic			inch MDPE	adaptor plate	each time the	machine and align the ends.	Proper combined fusion bead	specified heating tool	individuals	to HDPE for 1-	
		Fusion			gauge pressure	temperature	heater plates	Using facing tool square the	dimensions for 6-inch IPS	surface temperature. Do	qualified under	1/4-inch	
		Machine,			should be 415±	shall be 490° to	are plugged in	pipe ends and remove a	combined fusion bead width	not increase heating tool	PSE's Operator	through 4-inch	
		Connectra		6-inch	40psig, with 8-	510° F. Take a	and prior to	minimum of 1/16 inch from	should be 1/4-inch to 3/8-	surface temp. DO not	Qualification	IPS. There are	
		28CQ or		and 8-	inch MDPE	reading on both	fusing. Do not	ends. Remove any remaining	inch, for 8-inch IPS the	apply additional pressure	Program and	compensations	
	Butt Fusion	28EP		inch	gauge pressure	sides of the	rely on the dial	small shavings with a paper	combined fusion bead width	for any procedure. Time	Operating	for drag, see	
	(Hydraulic	fusion		diamet	should be 680±	adaptor plate in	gauge on the	towel. Bring pipes together and	should be 3/8-inch to 1/2-	required to obtain proper	Standard	attached	2011 GFP
2011	Unit)	machine.	IPS MDPE	er	40 psig.	the fusion area.	heater plate	verify alignment.	inch. leak test	melt may increase.	2700.1600	documents	4600.1020

Time	Fusion	Fusion	Pipe	Pipe	Fusion	Temperature	Validating				General		Reference
Period	Types	Machine	Material	Size	Pressure	Requirement	Temperature	Pipe Preparation Specification	Final Joint Requirement	Fusing in Cold Weather	Requirements	Comments	Document
											Procedure must		
											be performed by		
											individuals		
											qualified under		
											PSE's Operator		
											Qualification		
											Program and		
											Operating		
											Standard		
											2700.1600 (2009,		
								All side wall fusions shall be at			2008 and 2007		
								least three pipe diameters or 12			said Procedure		
								inches, whichever is greater,			must be		
								away from any new or existing			performed by		
								squeeze point. Check the			individuals		
							Use a	pipe/fitting/valve for cuts			qualified under		
							Calibrated	gouges, scrapes removing any			PSE's Operator		
							Pyrometer or	section that has a cut gouge, or			Qualification		
			All Sidewall				Infrared Gauge.	scrape deeper than 10% of the	Inspect the pipe for proper		Program in the		
			fusions				Tool room	wall thickness. Clean the pipe	bead formation. Check the		specific task or		
			shall be				personnel	inside and out in the area the	melt bead on top of the pipe		procedure.		
			made with		Use enough		should check	fusion will be. Place	and along the side of the		Individuals who		
			fittings that		pressure to form		the temp	pipe/fitting/valve ends in	fitting to verify that the bead	Shield the fusion process	are not qualified		
			are the		a middle bead		weekly and	machine and align the ends.	is not higher than the	from wind, blowing snow	may perform this		
			same		and hold the		fitters should	Roughen the area of the pipe to	shoulder of the fitting. Check	and excessive heat loss	procedure only if		
			density as		pressure		check the temp	be fused with a medium grade	that enough pressure has	from wind chill. Maintain	they are		
			the pipe.		constant. When		each time the	utility cloth until the smooth	been applied to distinguish	specified heating tool	continually and		
		McElroy #2	MDPE		using the side	Allow heater to	heater plates	coating is removed. No bolster	the middle bead from the	surface temperature. Do	directly observed		
		CU	fittings on		winder,	cycle 4-5 times	are plugged in	or inserts are required for 8-inch	bead on the fitting base.	not increase heating tool	by a qualified	Cooling: once	
		(Combinati	MDPE pipe	There	approximately	before use. The	and prior to	IPS. Clean off the heater and	Check for proper alignment	surface temp. DO not	person. as	cool to	2011, 2010,
	Joining	on Unit)	and HDPE	are no	150-200 psig on	adaptor plate	fusing. Take a	the bottom of the adaptor plate.	between the melt patterns.	apply additional pressure	specified in	touchable then	2009, 2008
	Pipe by	and the	fittings on	size	gauge for HDPE	temperature	reading on both	Recommended: use an	The melt must be visible all	for any procedure. Time	Operating	wait 15	and 2007
2011 to	Side	Sidewinder	HDPE	restricti	and 80-100 psig	shall be 490° to	sides of the	uncoated heater with coated	around the pipe and fitting.	required to obtain proper	standard	additional	GFP
2007	Fusion		pipe.	ons	for MDPE.	510° F.	plates.	adapter plates.	leak test	melt may increase.	2425.2100)	minutes.	4600.1030

Time	Fusion	Fusion	Pipe	Pipe	Fusion	Temperature	Validating				General		Reference
Period	Types	Machine	Material	Size	Pressure	Requirement	Temperature	Pipe Preparation Specification	Final Joint Requirement	Fusing in Cold Weather	Requirements	Comments	Document
								All butt fusion coupling shall be					
								at least three pipe diameters, or					
								12 inches, whichever is greater,			Procedure must		
								away from the squeeze point.			be performed by		
								For piping that is from a coil,			individuals		
								pups from straight pipe shall be			qualified under		
								butt fused to each coiled piece			PSE's Operator		
								of pipe, so the electro fusion is			Qualification		
								done on straight pipe. Check the			Program and		
								pipe/fitting/valve for cuts			Operating		
								gouges, scrapes removing any			Standard		
								section that has a cut gouge, or			2700.1600 (2009		
								scrape deeper than 10% of the			and 2008 said		
				All 6-				wall thickness. Cut the pipe			Procedure must		
				inch				ends Square and remove burrs			be performed by		
				and 8-				and shavings. Pipe cuts must be			individuals		
				inch				clean (saw cuts are not			qualified under		
				MDPE-				acceptable). Wipe inside and			PSE's Operator		
				HDPE				out side of pipe ends with a			Qualification		
				joints.				clean paper towel to remove			Program in the		
				Final				debris. Isopropyl alcohol (90 or			specific task or		
				connec				99%) may be used-wipe and dry	While cooling is in progress,		procedure.		
				tion of				the alcohol with a clean towel	check the coupling for molten		Individuals who		
				new				(avoid air drying) (2008 and	material seeping out of ends.		are not qualified		
				mains				2007 does not specify using	Inspect pressure wells for		may perform this		
				and			Inspect the	alcohol). Make a felt pen mark	molten material. If material		procedure only if		
				service			Pressure wells.	on each pipe at a depth of half	has seeped out of ends or is		they are		
				s to			The only check	the coupling length. Use the	not present in the pressure		continually and		
		Electro		existing			you can make	coupling's molded external	wells, the coupling must be		directly observed		
		fusion		2-inch			is for material	centerline as a guide. Use an	cut out and redone. For 2"		by a qualified		
	Joining	Unit/control		to 8-			melt, check for	approved scraping tool to	IPS 10 min cooling, 3" IPS 20		person. as		2011, 2010,
	pipe by	box or		inch			visible molten	scrape the pipe ends that will be	min cooling, 4" IPS 30 min		specified in	Fusion	2009, 2008
	Electro	Innogaz PE	couples	gas			material at end	covered by the Fusion	cooling, 6" IPS 30 min		Operating	Procedures	and 2007
2011 to	fusion	3408/PE	MDPE and	facilitie			of fusion in the	couple/joint. Remove scraping	cooling and for 8" IPS 35 min	Fusion may take longer	standard	changed from	GFP
2007	(Coupling)	7410	HDPE	S.	N/A	N/A	pressure wells.	with a clean towel.	cooling required. Leak test.	in cooler weather.	2425.2100)	2011 to 2010.	4600.1044

Time	Fusion	Fusion	Pipe	Pipe	Fusion	Temperature	Validating				General	0	Reference
Period	Types	Machine	Material	Size	Pressure	Requirement	Temperature	Pipe Preparation Specification	Final Joint Requirement	Fusing in Cold Weather	Requirements	Comments	Document
											Procedure must		
											be performed by		
											individuais		
											qualified under		
											PSES Operator		
											Qualification		
											Program and		
											Operating		
											2700.1600 (2009, 2008 and 2007		
											2000 anu 2007		
											Salu Procedure		
											nust be		
											individuals		
								Clean nine with paper towel	Allow the fusion to cool in the		auglified under		
								check pipe for cuts gouges and	alignment clamps for the time		PSE's Operator		
								scrapes deeper that 10% of the	shown on the bar code				
								wall thickness. Place the	labeled on the fitting. While		Program in the		
								bagged fitting over the pipe to	cooling is in progress check		specific task or		
								mark the pipe on either side of	if molten material is visible at		procedure		
								the fitting to establish the	the base of the fitting, if yes,		Individuals who		
								boundaries of the scraped area.	the chimney must be cut off		are not qualified		
								Place several marks between	of the fitting so that it cannot		may perform this		
							Inspect the	the boundary lines as a way to	be tapped. Another fusion		procedure only if		
							Pressure wells.	determine the pipe has been	must be performed. Allow to		they are		
							The only check	completely scraped. Use an	cool for an additional time.		continually and		
							you can make	approved scraping tool to	The Additional time should		directly observed		
	Joining		sidewall/sa	2-inch			is for material	scrape the area to be fused.	be equal to the time shown		by a qualified		
	Pipe by		ddle fittings	to 8-			melt, check for	Clean loose scrapings off with a	on the bar code label on the		person. as		2011, 2010,
	Sidewall/sa		for 2-inch	inch			visible molten	paper towel. If the scraping area	fitting. (2009 and 2008 just		specified in		2009, 2008
	ddle	Universal	to 8-inch	MDPE			material at end	becomes dirty use Isopropyl	says remove the clamp when		Operating		and 2007
2011 to	Electrofusi	electrofusio	MDPE and	and			of fusion in the	alcohol and a clean rag to clean	the cooling cycle is	Fusion may take longer	standard		GFP
2007	on	n unit	HDPE	HDPE	N/A	N/A	pressure wells.	the area.	complete.)	in cooler weather.	2425.2100)		4600.1045

Appendix B-6: Anode Installation on Tracer Wire

The following document was researched and compiled by the Gas System Integrity Department in 2011.

Distribution Integrity Management Program

Design and Construction Research Anode Installation on Tracer Wire

The purpose of this research is to confirm when PSE or Washington Natural Gas (WNG) began installing anodes on tracer wire. There is risk of the tracer wire corroding when not cathodically protected. This results in increased improper locates or not being able to locate facilities prior to excavation.

Based on the research conducted as documented in Table 1, it was found that the Washington Natural Gas (WNG) Operating Standard in 1970 required tracer wire on plastic mains and services that were installed by direct burial. This is based on the WNG Operating Standard 14.2 with the effective year of 9/1/1975 which cancelled a standard from 1970 which no revisions were indicated for those specific requirements. Not until 1973 were there specific requirements in the WNG Operating Standard 14.5 for polyethylene pipe mains installations to install locating wire with the main.

Effective 9/1/1989, the WNG Operating Standard 14.5 required a one pound magnesium anode to be installed on locating wire at approximately 1,000 feet intervals. This requirement applied to both polyethylene mains and services that were direct buried. Effective 11/11/1988, WNG Quality Assurance Standards 206.5 required a one pound anode to be installed on every 1,000' of tracer wire.

Based on these findings, it can be concluded that tracer wire was being used as early as 1970 and it was not until late 1988 were one pound anodes required to be installed on tracer wire at 1000' intervals. It is most likely that tracer wire installed prior to 1988 is more susceptible to corrosion as they were not cathodically protected.

Reference Document	Effective Date	Cancelling Date	Requirement (Mains)	Requirement (Services)
	08/30/1974	None Specified	4.1 Locator wire or detector tape shall be installed where plastic mains are installed by direct burial method.	5.1 Location wire #14 insulated shall be installed in conjunction with direct burial services.
	09/01/1975	8/30/1970	4.1 Location wire or detector tape shall be installed where plastic mains are installed by the direct burial method.	5.1 Location wire #14 insulated shall be installed in conjunction with direct burial services.
Washington Natural Gas Operating Standards Index 14.5 Developmental Spacifications	05/20/1977	9/1/1975	4.1 Location wire or detector tape shall be installed where plastic mains are installed by the direct burial method.	5.1 Location wire #14 insulated shall be installed in conjunction with direct burial services.
Locator Wire and Detector Tape	09/01/1989	05/20/1977	4.1 Locator wire shall be installed where polyethylene mains are installed by direct burial. The wire shall be installed in a manner that will facilitate accurate location of gas mains.	5.1 Insulated #14 copper locator wire shall be installed with direct burial services. The locator wire shall be installed in a manner that will facilitate accurate location of gas services.
			4.2 Locator wire shall be cathodically protected by installing a one pound magnesium anode on the wire at approximately 1,000 feet intervals. The anode shall be attached to the locator wire using an approved splice kit.	5.2 On services extending from cast iron or steel mains, the locator wire shall be spirally wrapped around the main with a one pound magnesium anode attached. The locator wire shall terminate aboveground, spirally wrapped and taped to the riser. On services extending from polyethylene mains, the locator wire shall be spliced to the main locator wire using an approved oplice kit

 Table 1. Summary of Tracer Wire and Anode Installation Research

Reference	Effective	Cancelling	Requirement (Mains)	Requirement (Services)		
Document	Date	Date				
	06/26/19/3	None	4.7 Locating tape of	N/A (Standard only for Main)		
		Specified	he installed with all direct			
			burial polyothylopo pipo			
	06/01/1075	06/26/1072	4.7 Logating topo or	N/A (Standard only for Main)		
Washington	00/01/19/5	00/20/19/3	4.7 Localing lape of	N/A (Standard only for Main)		
Natural Gas			be installed with all direct			
Operating			burial polyethylene pipe			
Standards Index			Locating wires shall be			
14.2			installed at pipe depth.			
Developmental			Locating tapes shall be			
Specifications			installed approximately 12"			
Polyethylene Pipe			below ground surface.			
Mains	10/24/1979	06/01/1975	4.7 Insulating locating wire	N/A (Standard only for Main)		
			shall be installed with all			
			direct burial polyethylene			
			pipe. Locating wires shall be			
			installed at depths specified			
			in Operating Standard 14.5.			
Washington	11/11/1988	None	1. Scope			
Natural Gas		Specified	This standard establishes the installation procedure for			
Quality			sacrificial anodes used for the	protection against corrosion		
Assurance			oftracer wire. This procedure	e shall be used whenever this		
Standards Index			assembly is installed on a facil	lity of the Washington Natural		
206.5 Installation			Gas Company.			
Procedure			2.2 The size of anode used sh	all be determined from the		
Sacrificial Anode			following table: I racer wire 1#	f (per 1000 ^{\circ}).		
			2.4 Attach the anode wire to tr	he item to be protected by		
			using a wire splice kit to trac	er wire.		
Washington	1078	None	(Plastic Pipe Installation	N/A (Applicable to mains		
Natural Gas	1370	Specified	under Plastic Main	only)		
Fitter's Manual		Opeemed	Installation)	Sing)		
(1978)			Insulated locating wire shall			
(1010)			be installed with all direct			
			burial polvethylene pipe.			
			Locating wire may be buried			
			at pipe depth or under the			
			pipe. When plastic main is			
			extended from steel main,			
			the locating wire shall be			
			thermally bonded to the steel			
			pipe.			

See DIM Program files for reference documentation. Research completed in 2011 by Gas System Integrity.

Appendix B-7: Coating Types on Wrapped Steel Pipe (Services)

The following document was researched and compiled by the Standards Department.

Year	Service Sizes (inches)	OD (inches)	Wall Thickness (inches)	Schedule	Material	Coating Type	Field Coating Type	Cathodic Protection	Comments
	3/4	1.05	0.113	40		Mill applied Coal Tar Enamel;			
	1	1.315	0.133	40	API 5L or	Hot applied coal tar tape such			
	1 1/4	1.66	0.14	40	ASTM A120	as "Protectowrap"; Pressure			
	1 1/2	1.9	0.145	40	Continuous	polyethylene tape such as			Steel services shall be
1956	2	2.375	0.154	40	Weld,	"Scotchwrap" or "Polyken" or	No Recorded Info	Section missing from manual	wrapped unless
	3	3.5	0.216	40	Electric	equivalent; or Microcrystalline			otherwise specified.
	4	4.5	0.237	40	Weld or	wax such as Dearborn "No-			
	6	6.625	0.25	40	Seamless	Ox-Id GG" and No-Ox-Idized reinforced fabric wrapper			
1960						Removed "Scotchwrap" option of coating	Joints: Bitumastic 50 primer & heated coal tar tape; Fittings and cocks: Hot applied coal tar tape or No Oxide wax; Risers: Plastic tape.	Section missing from manual	
	1/2	0.84	0.109	40			Joints: Bitumastic 70		
	3/4	1.05	0.113	40	API 5L or		primer & heated coal		
	1	1.315	0.133	40	ASTM A120	Mill applied Coal Tar Enamel,	tar tape; Fittings and		Copper tubing or
1066	1 1/4	1.66	0.14	40	Continuous	high density copolymer	valves: Hot applied	Section missing from manual	approved plastic pipe
1900	1 1/2	1.9	0.145	40	Weld	polyethylene compound, or	OX-ID GG 40	Section missing nom manual	to a gas light All pipe
	2	2.375	0.154	40		thermosetting epoxy resin	Roskote 612 XM;		shall be wrapped
					API 5L		Risers: Bitumastic 70		
	4	4.5	0.188		Grade B		primer & plastic tape.		
1971								Service from unprotected bare or coated main: insulate, install 3# anode; Service from main under cathodic protection by impressed current : don't insulate, don't install anode; Service from main under cathodic protection by mag anodes : install 3# anode , don't insulate; Partial replacement of service from bare main: insulate, install 3# anode; Twin service from unprotected bare or coated service: install 17# anode , don't insulate; Twin service from service protected by mag anode: install 3# anode , don't insulate	Removed option for copper tubing or plastic pipe for gas lights, no mention of gas lights in standard. All pipe shall be wrapped
1972	1/2	0.57	0.035		ASTM A539	Mill applied Plastic Coating (X-tru Coat)		Service from unprotected bare or coated main: insulate, install 3# anode; Service from main	1/2 inch coiled steel tubing allowed on IP
	1/2	0.84	0.109	40		Mill applied Coal Tar Enamel		under cathodic protection: don't insulate, don't	services between 10
	3/4	1.05	0.113	40	API 5L or	or Plastic Coating (X-tru Coat)		from bare main insulate install 3# anode: Twin	required to be
	1	1.315	0.133	40	A120			service from unprotected bare or coated	straightened prior to
	1 1/4	1.66	0.14	40	Continuous			service: install 3# anode, insulate; Twin service	installation. All pipe
	1 1/2	1.9	0.145	40	Weld			from service protected by mag anode: don't	shall be wrapped
	2	2.375	0.154	40				install anode, don't insulate	

Year	Service Sizes (inches)	OD (inches)	Wall Thickness (inches)	Schedule	Material	Coating Type	Field Coating Type	Cathodic Protection	Comments
	4	4.5	0.188		API 5L Grade B				
1977						Replaced X-tru Coat with Extruded Polyolefin Coating			1/2 inch coiled steel tubing removed as an option for service
1980								Install plastic pipe from bare steel and cast iron mains, if steel is required insulate from the main and install 3# anode.	
	1/2	0.84	0.109	40					
	3/4	1.05	0.113	40					
	1	1.315	0.133	40	API 5L or		Joints: Cold applied		
1986	1 1/4	1.66	0.14	40	A53	Mill applied Coal Tar Enamel	applied mastic: Risers		
1000	1 1/2	1.9	0.145	40		or Extruded Polyolefin Coating	Plastic tape over a		
	2	2.375	0.154	40			primer		
	4	4.5	0.188		API 5L Grade B				

Attached is a document that I (Linda Johnson – Standards Department) created for the Wrapped Steel Service Assessment Program (WSSAP) upon research and review of PSE's historical specifications and standards regarding the practice of steel service installation and cathodic protection. I thought that your departments may be interested in this info as well if you weren't aware of it already. The time frame that this document spans is from 1956 to 1986 (after 1986 the specification and standard specific to steel service design and construction is replaced with an overall steel pipe specification and standard – the assumption is at this time in history most all new services are plastic). Please note for all the columns where there are blanks is an indication that the standard or specification did not change in that year and was the same as the previous standard or specification.

Appendix B-8: Mechanical Fittings

The following document was researched and compiled by the Standards Department.

MECHANICAL COMPRESSION COUPLING FITTINGS

Abstract:

In the last five years there have been several incidents of mechanical compression coupling failures. Most recently, an incident caused by a failed compression fitting in October 2006 in Texas has prompted PSE to evaluate the types of mechanical compression fittings used in our natural gas distribution system and determine our level of risk of an incident occurring in our system. This document provides a summary of field assembled mechanical compression fittings that were installed in our natural gas distribution system based on knowledge we had at the time.

Background:

In October 2006 and subsequently in May 2007 an explosion occurred from a natural gas leak which resulted in the destruction of two homes, four fatalities, and several others injured. The Railroad Commission of Texas conducted an investigation and prepared a final report which determined the gas leak was due to failure of a prebent riser equipped with a non-restraint compression coupling on the end to connect the polyethylene service line. The polyethylene service line separated or pulled out from the compression coupling. Although the exact cause of failure has not been confirmed, the Railroad Commission of Texas report noted there was recent construction activity in the area of the explosion. The Railroad Commission of Texas has since mandated the removal of prebent risers equipped with a non-restraint compression coupling.

As a result of the incident in Texas and others, PHMSA has issued several advisories recommending that every utility review the types of mechanical compression fittings installed in their system.

Summary:

The fitting that failed was a 1" non-restraint compression coupling manufactured by Rockwell which connected a 1" steel gas carrying riser to a 3/4" plastic service. The steel end of the pipe was welded to the coupling and the plastic end of the pipe was inserted into the compression end of the coupling and past the tip of the gasket. The compression nut on the end of the coupling was tightened to create the seal. The Rockwell coupling was considered a non-restraint type of coupling which was not designed with a stiffener and not tested for pull-out strength.

Based on historical standards and specifications, PSE has not installed Rockwell compression couplings in our distribution system. The types of compression or other mechanical fittings that are or have been installed in PSE's distribution system are listed in Table 1.

Approximate Year Installed	Connection	Type of Fitting	Manufacturer	Size	Application	Fitting Tested for Pull- Out Strength
1972 to current	Steel to Steel	Compression Coupling, Cap, Street Tee	Dresser (Style 90)	¹ / ₂ ", ³ / ₄ ", 1", 1- 1/4", 2"	Join steel service extension to steel service stub	No
1972 to current	Steel to Cast Iron or Steel to Steel	Compression Coupling	Dresser (Style 39, 39-62 (insulated))	4", 6", 8", 12"	Join steel main	No
1972	Steel to Steel	Compression Coupling	Smith-Blair (Rockwell) (insulated)	³ ⁄4", 1", 1-1/4", 1-1/2", 2"		No
	Steel to Plastic	Compression Coupling	Continental	5/8" and 1-1/8"	Join plastic service to: 1. steel gas carrying riser; or 2. to steel service tee w/weld outlet	Yes
Late 1970's to early 1980's	Plastic to Plastic	Mechanical Fittings (coupling, elbow, tee, reducers)	Amp-Fit	5/8",1- 1/8",1- 1/4", 2"	Join plastic extension to plastic stub	Yes
1995-current	Plastic to Plastic	Mechanical Fittings (coupling, elbow, tee, cap, reducer)	RW Lyall	5/8" and 1-1/8"	Join plastic extension to plastic stub	Yes
	Steel to Plastic	Steel Punch- It Service Tee with Compression outlet	Continental	5/8" and 1-1/8"	Main to service tie- in	Yes

Table 1: Compression or Mechanical Fittings used in PSE Distribution System

Approximate Year Installed	Connection	Type of Fitting	Manufacturer	Size	Application	Fitting Tested for Pull- Out Strength
1979 – 1980's	Plastic to Plastic	Repair Coupling	Norton McMurray Manufacturing Company (Normac)	1-1/8", 1-1/4", 2"	Repair to damaged plastic mains	Yes
1970's to early 1980's	Plastic to Plastic	Repair Coupling	Dresser (Posi-Hold)	3",4", 6"	Repair to damaged plastic mains	Yes
1983	Steel to Steel or Steel to Cast Iron	Compression Coupling	Romac (Style 501 (insulated and non- insulated)	Through 12"	Join steel to steel or steel to cast iron pipe	No
1991	Plastic to Plastic	Mechanical Fittings (coupling, tee, reducer, end cap)	Perfection Corporation (Permasert)	5/8", 1- 1/8", 1- 1/4", 2"	M	Yes
Late 1970's to early 1980's	Plastic to Plastic	Mechanical bolt-on service tee	Amp-fit	5/8", 1- 1/8", 1- 1/4", 2"	Main to service tie- in	Yes
1998	Plastic to Plastic	Mechanical bolt-on service tee with Lycofit mechanical coupling outlet	RW Lyall	5/8", 1- 1/8"	Main to service tie- in	Yes

PSE has never used non-restraint compression couplings to join steel to plastic pipe or plastic to plastic pipe. The fittings used by PSE for these applications are designed with a stiffener for pull-out resistance. The plastic pipe is inserted over the stiffener and a gasket is placed over the top of the plastic pipe and a compression nut is tightened to create the seal. Per the manufacturer's literature the fittings were tested for pull-out strength and meet today's DOT 192.283(b) regulations. The only non-restraint compression couplings PSE has used are for steel to steel applications. Steel pipe is less susceptible to pull-out due to the strength of the steel.

According to PSE personnel during the early 1980's for a short period of time, the 5/8" and 1-1/8" Continental compression couplings were used for joining a steel riser to a plastic service during a shortage of service head adapters, which accounts for approximately 1-2% of the services installed today. The preferred method during routine operation for installing a plastic service from a plastic or steel main was to insert the plastic service into a steel riser casing and install a service head adapter; this practice was confirmed through standard drawings and historical purchase specifications. The more common application for these couplings is to tie-in a PE service to a steel service tee with a weld outlet. For 1-1/4" or 2" plastic services with a steel gas carrying riser, a manufactured transition fitting was welded to the steel pipe on one end and heat fused to the plastic pipe on the other end. PSE did not use field assembled compression fittings to join plastic to steel pipe for 1-1/4" or 2" services.

Service tees with a compression outlet are commonly used in our distribution system to tie-in 5/8" or 1-1/8" plastic services to a steel or plastic main. This is done by using either a bolt-on tee for a plastic main or a steel punch-it tee for a steel main. Both styles of service tees are designed with a stiffener, gasket and compression nut on the outlet of the tee and are tested for pull-out strength.

Conclusion:

Based on the results of the investigation PSE did not use the non-restraint Rockwell couplings to connect plastic services to steel gas carrying risers and therefore we are at minimal risk for a similar incident occurring. The Continental compression couplings installed in our system are designed with a stiffener used to prevent pullout of plastic pipe and are tested for pull-out strength. In addition, PSE has not experienced failures from plastic pipe pulling out of a compression outlet end of a coupling.

Resources:

- PSE Historical Gas Operating Standards
- PSE Historical Purchase Specifications
- Gas Fitter's Manual
- PSE Standard Drawings (3D2-211A (1973))
- Discussions with PSE personnel
- Discussion with Atmos Energy

Appendix B-9: Celcon Caps and Delrin Service Tap Tees

The following document was researched and compiled by Gas System Integrity in 2011.

Design and Construction Research Plexco Service Tee Celcon Polyacetal Caps and Delrin Insert Tapping Tees

On September 6, 2007, PHMSA issued an advisory bulletin ADB-07-01 notifying operators that Plexco service tee caps made with Celcon polyacetal and Delrin insert tap tees have been added to the list of materials that are susceptible to premature brittle-like cracking. As indicated in this advisory bulletin, the brittle-like cracking is dependent on the resin, pipe processing, and service conditions.

Plexco Service Tee Celcon Polyacetal Caps

In addition to PHMSA's advisory bulletin, Performance Pipe (Plexco) issued clarification and guidance for the concern with Plexco Celcon polyacetal caps. It states that Plexco yellow tapping tees before 1996 used Celcon caps which were designed to be hand tightened and not tightened with a wrench. Caps that were over tightened by wrench could fail thus the problem was not the material but how it was installed. It was not until after 1996 when Plexco stopped manufacturing service tee caps with Celcon and switched to polyethylene. Celcon caps continued to be manufactured after 1996 through March 2000 at the request of specific customers. Customers who did not specifically request Celcon received polyethylene.

PSE has purchased and installed Plexco service tees. Performance Pipe has indicated that they began using the Celcon material on service tee caps between 1982 and 1983 and began using PE caps in 1996 unless customers specifically requested the Celcon caps. PSE's historic purchase specification polyethylene self tapping service tees does not specify Celcon caps. Purchase order records also did not contain this level of detail. Below is a list of MID's associated to service tees and their purchase order descriptions in 1998. Performance Pipe indicated that the service tees are tracked as a unit inclusive of the cap, so the service tees most likely were treated similarly when PSE received the parts.

MID 7800695

TEE TAPPING 2" IPS X 1/2" CTS BUTT FUSION PE 2406 YELLOW W/ 0.80 CUTTER PER WNG SPEC 257.1

MID 7800693

TEE TAPPING 1-1/4"IPS X 1/2"CTS BUTT FUSION PE 2406 YELLOW W/0.80 CUTTER PER WNG SPEC 257.1

MID 7800699

TEE TAPPING 4"IPS X 1/2"CTS BUTT FUSION PE 2406 YELLOW W/ 0.80 CUTTER PER WNG SPEC 257.1

According to the Washington Natural Gas's (WNG) Quality Assurance Standards Index 257.6 Approved Materials List Polyethylene Fusion Fittings with the effective date 08/19/1993 (cancelling date 01/10/1990), it lists Plexco as the approved manufacturer under Self Tapping Service Tee. The same standard with the effective date 09/08/1995 (cancelling date 08/19/1993) lists the approved manufacturer(s) and material. Under Self Tapping Service Tee, Plexco / PE 2406 / PE3408 is listed.

Delrin Insert Tapping Tees

Based on the information summarized below, PSE has not purchased or installed Delrin Insert Tapping Tees.

Delrin insert polyethylene tapping tees, originally installed in the 1970s, are a tapping tee with a white acetyl material called Delrin inserted as a threaded sleeve to contain a self-tapping steel cutter and a black cap. These tapping tees are prone to leakage due to premature cracking of the Delrin acetyl sleeve.

PSE has confirmed with the American Gas Association (AGA), Performance Pipe, and Gene Palermo (who worked on DuPont Aldyl products) information regarding Delrin tapping tees. The DuPont Company began selling Service Punch Tees with the Delrin insert around 1970 and then changed to a PE overcap design around 1983 for their Service Punch Tee. Only the DuPont Company sold Service Punch Tees made with a Delrin insert. DuPont only made Delrin insert Service Punch Tees for Aldyl "A" pipe and fittings, which was an MDPE or PE 2306/PE 2406 material.

Based on these findings, PSE did not purchase or install Delrin insert tapping tees as PSE has only purchased and installed HDPE pipe including DuPont Aldyl HD (HDPE 3406) products during that timeframe and PSE did not start installing MDPE 2406 until 1996.

See DIM Program files for source documentation.

Appendix B-10: Gas Quality

The following is a copy of Section 3.1 Gas Quality at Receipt Points from the Williams Northwest Pipeline Gas Quality Tariff Provisions as provided on http://www.northwest.williams.com/NWP Portal/.

GENERAL TERMS AND CONDITIONS 3. QUALITY

3.1 Gas Quality at Receipt Points. All Gas delivered by Shipper to Transporter shall conform to the applicable specifications in either Section 3.1(a) or Section 3.1(b). As used in this section, the La Plata Facilities are defined as those facilities commencing at a measurement facility downstream of the discharge side of Northwest's La Plata B compressor station southward to the Blanco Hub, including the La Plata A compressor station and certain plant interconnects, all located in southern Colorado and northern New Mexico. (a) All Gas delivered by Shipper to Transporter at Receipt Points not connected to the La Plata Facilities shall conform to the following specifications:

(1) Hydrocarbon Liquids and Liquefiables: The hydrocarbon dew point of the gas delivered shall not exceed fifteen degrees Fahrenheit at any pressure between 100 psia and 1,000 psia as calculated from the gas composition and shall be free from hydrocarbons in the liquid state. At all times, any and all liquid or liquefiable hydrocarbons, or any other constituent or by-product, recovered from the gas by Transporter, after delivery of gas to Transporter shall be and remain the exclusive property of Transporter, except as specified in Section 20 of the General Terms and Conditions.

(2) Hydrogen Sulfide and Total Sulfur: The gas shall contain not more than one quarter grain of hydrogen sulfide per one hundred cubic feet and not more than five grains total sulfur per one hundred cubic feet.

(3) Carbon Dioxide and Total Nonhydrocarbons: The gas shall contain not more than two percent by volume of carbon dioxide and shall contain not more than three percent by volume of combined nonhydrocarbon gases including, but not limited to, carbon dioxide, nitrogen and oxygen, except as otherwise provided in Section 3.5.

(4) Dust, Gums, etc.: The gas shall be commercially free from objectionable odors (excluding odorant added to natural gas for safety reasons or to comply with federal and/or state regulations), solid matter, dust, gums, and gum forming constituents, or any other substance which interferes with the intended purpose of merchantability of the gas, or causes interference with the proper and safe operation of the lines, meters, regulators, or other appliances through which it may flow.

(5) Heating Value: The total gross heating value of the gas deliverable hereunder shall not be less than 985 Btu.

(6) Oxygen: The gas shall not contain in excess of two-tenths of one percent by volume of oxygen, and the parties agree to exercise every reasonable effort to keep the gas completely free of oxygen.

(7) Temperature: The temperature of the gas at the point of delivery shall not exceed one hundred twenty degrees Fahrenheit.

(8) Water: The gas delivered shall be free from liquid water and shall not contain more than seven pounds of water in vapor phase per million cubic feet.

(9) Mercury: The gas shall be free from any detectable mercury.

(10) Toxic or Hazardous Substance: The gas shall not contain any toxic or hazardous substance in concentrations which, in the normal use of the gas, may be hazardous to health, injurious to pipeline facilities, or be a limit to merchantability or be contrary to applicable government standards.

(11) Bacteria: The gas, including any associated liquids, shall not contain any microbiological organism, active bacteria or bacterial agent capable of causing or contributing to: (i) injury to Transporter's pipelines, meters, regulators, or other facilities and appliances through which such gas flows or (ii) interference with the proper operation of the Transporter's facilities. Microbiological organisms, include, but are not limited to, sulfate reducing bacteria (SRB) and acid producing bacteria (ACB). When bacteria or microbiological organisms are considered a possibility, Shipper(s) desiring to Nominate such gas, upon Transporter's request, shall cause such gas to be tested for bacteria or bacterial agents utilizing the American Petroleum Institute test method API-RP38 or other acceptable test method as determined by both parties.

Appendix B-11: Bolt-on Tees

January 2010

Standards Department

Issue 264

Figure 1: Pipe Surface Where Saddle Makes Contact

Figure 2: Bolt-On Tee Saddle

New Copper Ground Plate (MID 8969401) on Left and Current Model on Right

Bolt-On Tee Failure Analysis

By Nancy Wong. Contact Al Cantey (81-5875).

Mechanical bolt-on service tees are used to run a service and have been installed since the late 1970s. Bolt-on tees are easier to install and take much less time to install than fusion service tees. Through the Materials Failure Analysis Program, Standards has been tracking bolt-on tee failures and has found a number of failures from older vintage bolt-on tees. This has prompted Standards to create an independent failure analysis project to determine the root cause of failure.

Under this evaluation, the 34 bolt-on tees that failed between 2008 and 2009, and that were installed between 1977 and 2003, were visually inspected, leak tested, and disassembled. Visual inspection of the bolt-on tees revealed that external defects were very limited. All the bolt-on tees, however, did leak after performing a pressure test at various locations. Most commonly, the leak was at the saddle and the interface of the two halves of the bolt-on tee. The bolt-on tees were then disassembled for further analysis and significant scratches and gouges were found on the pipe surface where the saddle makes contact with the pipe, including over the O-ring seal (see *Figure 1*).

Based on this detailed analysis, it was concluded that the root cause of failure was due to surface defects in the pipe surface that weakened the integrity and seal of the O-ring over time (see *Figure 2*).

As a result of this analysis, it is very important to remember that when installing bolt-on tees, the pipe surface must be clean, as well as scratch and gouge free. Please refer to *Gas Field Procedure* 4575.1040, "Installing Bolt-On Service Tees," for details.

New Style Copper Pole Ground Plate

By Ryan Wieder (81-3954)

A new copper ground plate design (**MID 8969401**) by Harger Lightning & Grounding has been approved. It has a 1-1/3-inch hole in 3 corners. The ground plate has the required 288 square inches of surface area. It is similar in size and is installed onto the pole butt in the same manner as the existing ground plates, in accordance with *Standard* 6014.1000, "Overhead System Grounds."

Instead of attaching the ground wire to the split bolt under the pole butt, for the new ground plate design, the ground wire is now attached to the plate on the side of the pole once the plate is bent around the pole butt. The new ground plate design can be packaged more compactly to reduce shipping costs and shelf space.

Appendix B-12: Leak Cause Code I –Non-Exposed

Residential Regulator Loop Assembly (MID 9995954)

New Regulator to be Used with the Residential Regulator Loop Assembly

By Namrata Shrivastava (81-3723). Also contact Matt Eldridge (81-3796).

Please be aware that there is an upcoming change to the Residential Regulator Loop Assembly (**MID 9995954**).

Currently, the following two approved regulators can be used interchangeably for this MID:

- Fisher HSR
- American Meter 1213B2

Standards & Compliance has approved a different American Meter regulator, the 1813C, to replace the 1213B2. The 1813C regulator performs better than the 1213B2 regulator. It is also cost comparable and interchangeable with the American Meter 1213B2.

This change will become effective once the current stock of the 1213B2 regulators is depleted, possibly sometime in April or May.

LEAKS Upgrade Ready for Installation

By Gary Swanson (89-6811)

An upgraded version of LEAKS is ready for installation. You may install the new version by running: X:\#Config\LMS\InstLMS.bat

The upgrade should take about 15 seconds. If you have problems, please contact the Help Desk at 81-2020. See below for features.

Main Project Screen (when creating a new leak):

- "Equipment ID," a required field for leaks reported by PSE or contractor personnel. See *Gas Operating Standard* 2625.1100, "Leakage Survey Program." *Please enter only the number.*
- For the "Job" field, a notification or order number can now be entered for tracking purposes.
- For the "Replacement Planned" field, if the leak is associated with a planned main replacement job, enter "Y." This allows an additional six months for the completion of the replacement.

Work Order Details Screen (when updating a work order):

- "Equipment ID," located next to the responder's name, is a required field on all work orders. See Gas Operating Standard 2625.1300, "Leakage Action Program." *Please enter only the number.*
- New definitions have been added to the leak cause codes to better describe the cause of the leak.
- The "I" leak code has been added. It stands for "nonexposed pipe replacement/retirement when pipe is not exposed."
- Supervisors, please review the new Leak Cause codes with your responders. Leak Work Order (PSE Form 1449) and Leak Codes (PSE Form 2022) have been updated, are available for ordering, and can be viewed online at:

http://pseweb/forms/locator/locator.aspx

Appendix B-13: Leak Cause Code Clarification

Cause Code C: Animal Damage

Cause Code D: Service Tee Cap with Damage from Overtorquing (wrench marks visible)

Cause Code E: Rock Impingement or Crack on DuPont Pipe

Leak Cause Code Clarifications

By Jae Pfeffer (81-3715)

Did you know that the cause code selected on a Leak Work Order is used by other departments? Standards is one of those departments that uses the cause code to decide which failures need to be reported to the Washington Utilities and Transportation Commission and for information during the process of analyzing the failure.

Cause code selection can be challenging. Below is a description of each and some examples.

- B. Excavation is the code used to indicate any sort of damage caused by digging.
 - Dig-ins. Examples: "Broken," "broken and blowing," and "found service bent over and taped."
 - Damage caused by accident when the trench was open. Example: A backhoe that clips a piece of asphalt that flies into an open trench and damages a pipe.
 - Obvious damage caused by someone, belowgrade, that is discovered later, most likely while digging. Example: Finding a homemade repair.

C. Natural Force is the code used to indicate damage because of nature. Generally you will not be able to sue someone for negligence.

- Animal damage. Example: Hole in PE caused by rat.
- Vegetation. Example: Crushed by tree roots.
- Ground settling.
- D. Operations is the code used to indicate an incorrect installation or poor workmanship.
 - Incorrect installation. Example: "EFV installed backwards."
 - Poor workmanship. Example: "Replaced leaking service tee cap that was overtightened and cracked."

E. Material or Welds is the code used to identify a fusion or weld repair/replacement, even if it could be coded as something else. This code also includes any part that fails in the system due to obvious manufacturer defect.

- Fusion. Examples: Cracked fuse, uneven fusion bead, and insufficient rollback.
- Weld. Examples: Girth welds, seam welds, and cracked welds, regardless if they were done at the factory or in the field.
- Material. Examples: Rock impingement or crack on DuPont pipe and part that has a leak because of a manufacturing defect that may not have been obvious when the part was installed.

F. Other is the code that should only be used when a part has exceeded its service life or you really do not know why it failed and it fits in no other category.

- Exceeded service life.
- G. Equipment is the code used when equipment leaks and it is repaired or replaced.
 - Repaired equipment by operating, tightening, and/or greasing. Examples: "Greased valve to zero leak," "tightened cap," and "redoped threads."
 - Replacement of parts that are not aged or not an apparent installation problem. Examples: "Replaced bolt-on tee" and "leaking valve replaced."

H. Outside Force Damage is the code used when there is aboveground damage that has been caused by someone. Typically you could hold someone responsible for the damage.

- Accidental damage. Examples: "Car backed into MSA" and someone sat on manifold and broke it.
- Damage from some other event not related to excavation. Examples: House fire and MSA pulled loose because it was used as a garden hose stand.

I. Non-Exposed Pipe is the code used when the leak is repaired without finding the specific leaking section or component.

- Main replacement jobs that zero leaks.
- Repair by replacing the entire service.

PSE Leak Cause Codes (Reference Sheet with Examples)

By Ron Easley (81-3721)

NRD...

THE

The following table is provided as a reminder of the PSE defined cause codes in the left column and a clarification of the code in the right column with some examples. A cause code is required for every Leak Work Order completed.

Please keep this removable insert as a desk or field reference. If you have any questions or would like to discuss the application of cause codes, please contact Jae Pfeffer at 81-3715 or Ron Easley at 81-3721.

A leak is an unintentional escape of gas through a hole or crack in the pipeline or pipeline component (valve, tee, etc.).

Leak Cause Codes Information (as listed in Form 2022)	Examples
B. Excavation - Damage caused by earth moving equipment, tools or vehicles including leaks from damage by operator's personnel or contractor, or people not associated with the contractor.	Anything trench-related (i.e., even a back-hoe driving by a trench causing an asphalt chunk to fall on a pipe and cause a leak fits in this category). Anything that would be considered third-party damage.
C. Natural Force - Earth movements, earthquakes, landslides, lightning, heavy rains/floods, washouts, flotation, scouring, temperature, frost heave, frozen components and high winds.	Anything that cannot be attributed to any human cause or decision or that has no person or group that could be held legally liable (i.e., damage caused by gnawing voles fits in this category, a poorly placed unstable piece of equipment that tips over on to aboveground piping does not).
D. Operations - Inadequate procedures or safety practices, or failure to follow correct procedures, or other operator error.	Not following proper procedures or standards for pipeline inspection, maintenance, or construction (i.e., leaks caused by improper: meter set change-out, backfill and compaction, service tee tapping, etc.).
E. Materials or Welds - Failed fuses, rock impingement, faulty wrinkle bends, faulty field welds and damage sustained in transportation to the construction or fabrication site, defect in the pipe material, component or the longitudinal weld or seam due to faulty manufacturing procedures.	This includes leaks of any cause types listed to the left, or other similar origins, when all proper procedures and standards were followed (i.e., anything where the cause is linked to a faulty material).
F. Other - Exceeding the service life, material deterioration (other than corrosion), any of the other causes not attributable to the other identified causes.	
G. Equipment - Malfunction of control/relief equipment including valves, regulators or other instrumentation; stripped threads or broken pipe couplings on nipples, valves or mechanical couplings; or seal failures on gaskets, O-rings, seal/pump packing or a similar leak.	Any leak caused by failure of any of the equipment listed to the left, or other similar devices. Any leak that can be repaired by maintenance procedures that do not replace any component, or add any device to the system (i.e., greasing valves, redoping pipe threads, tightening bolts or fittings).
H. Outside Force Damage - Fire, explosion and deliberate or willful acts, such as vandalism.	Intentional as well as unintentional acts (i.e., vehicular accidents, damage by the general public).
I. Non-Exposed Pipe - Replacement/Retirement when pipe is not exposed.	Hole-hogging or direct burying a new gas service as a replacement for a leaking one, main replacement jobs which retire any leaking main or service.
A corrosion leak is one in a pipeline or pipeline facility resulting from galvanic, bacterial, chemical, stray current action, or other corrosive actions. Common indicators of corrosion are pitting on metallic pipe and graphitization of cast iron. J. Corrosion, Disbonded STW - Any leak resulting from corrosion on pipe with disbonded wrap	
K. Corrosion, Low PSP STW - Any leak resulting from	
corrosion on STW pipe with a PSP reading less than85 volts.	
L. Corrosion, Unknown STW - Any leak resulting from corrosion on STW pipe with proper bonding and PSP reads.	
M. Corrosion, Bare Pipe - Any leak resulting from corrosion on uncoated pipe.	

Appendix C: Risk Evaluation and Prioritization

Appendix C-1: Risk Evaluation and Prioritization Plan

1. Scope

This document defines the methodology to be applied for the risk assessment and determination of when appropriate mitigative measures are required for the gas distribution system. This mitigation plan applies to specific assets within facility types and primary threats and sub-threats. Facility types include mains, services, MSAs, valves, farm taps, regulator stations, and propane peak-shaving plant and distribution system.

2. Responsibilities

2.1 The *Manager Gas System Integrity* shall be responsible for:

- 2.1.1 Overall system risk evaluation and prioritization including:
 - 2.1.1.1 Ensuring system risks are evaluated, prioritized, and validated annually as described in Section 4.
 - 2.1.1.2 Ensuring any modifications to the System Risk Evaluation and Prioritization Matrix, mitigation actions or mitigation category thresholds are documented as required in Section 7.

3. General

- 3.1. The System Risk Evaluation and Prioritization Matrix (Matrix) is comprised of a list of assets, primary threats and sub-threats, and relative scores for each asset and sub-threat.
 - 3.1.1. The Matrix evaluates the assets within a facility type by material type, vintage, operating pressure, and specific facility characteristics. Assets that have similar characteristics are evaluated together for which similar mitigative measures would be effective in reducing risk. These characteristics could include physical pipe characteristics and/or environmental factors.
 - 3.1.1.1. These facility types include mains, services, MSAs, valves, farm taps, regulator stations, and propane peak-shaving plant and distribution system.
 - 3.1.1.2. Material types for mains and services include bare steel, wrapped steel, and polyethylene.
 - 3.1.1.3. Vintages include 1971 and older and 1972 and newer for wrapped steel, 1985 and older and 1986 and newer for polyethylene, and older and newer vintages for valves.
 - 3.1.1.4. Operating pressures include low pressure, intermediate pressure, and high pressure.
 - 3.1.1.5. Specific facility characteristics include facilities being installed in casing or in wall-to-wall paving, or unintentionally becoming buried or shallow as well as other characteristics.
 - 3.1.2. The primary threats and corresponding sub-threats that are evaluated are listed in Table 1.

Primary Threat	Sub-Threat
Corrosion	External Corrosion
	Internal Corrosion
	Atmospheric Corrosion
	Stray Current
Natural Forces	Seismic Activity
	Earth Movement/Landslide
	Frost Heave
	Flooding
	Over-pressure due to snow/ice blockage
	Tree Roots
	Animal Damage
	Lightning
Excavation Damage	Failure to Call
	Improper Excavation Practice
	Facility Not Located or Marked
	One-call Notification Center Error
	Locating Error
	Facility Not Platted/Other
Other Outside Force Damage	Vehicle Damage
	Vandalism/Tampering
	Electrical Faults
	Structure Fire
Material, Weld or Joint Failure	Brittle-like Cracking Failure
	Fusion Failure
	Weld Failure
	Mechanical Fitting Failure
Equipment Failure	Celcon Service Tee Caps
	Valves
	Regulator Failure
Incorrect Operations	Operating Error

Table 1. Primary Threats and Sub-Threats
Primary Threat	Sub-Threat
	Pipe Bored Through Sewers
Other	Other

3.2 The Matrix is used to evaluate and rank the risks in the distribution system.

3.3 The evaluation and ranking are based on assigning a relative score for the likelihood of failure and the consequence of failure. The product of the two scores is the total risk score used to determine the risk of the overall asset and threat.

3.4 Assets and/or threats that meet the criteria for additional and accelerated actions are further evaluated to determine if existing mitigative measures are adequately addressing risks or if additional and accelerated actions are needed.

4. Prioritizing System Risks

- 4.1. The Matrix shall be used to perform a system risk assessment in order to prioritize system risks. The first comprehensive risk ranking of identified assets and threats was performed in 2011.
 - 4.1.1. The Matrix calculates a total relative score (TOT) for each asset under each sub-threat based upon the following factors:
 - 4.1.1.1. Likelihood of failure (FOF) and
 - 4.1.1.2. Consequence of failure (COF).
 - 4.1.2. The relative scores are assigned in accordance with Table 2 and Table 3.

Scoring Description	Relative Score
Not Applicable	0.0
Likely to occur almost never	0.5
Likely to occur occasionally	1.0
Likely to occur sometimes	1.5
Likely to occur frequently	2.0
Likely to occur more than frequently	2.5
Likely to occur most frequently	3.0

 Table 2. Relative Score for Likelihood of Failure

Scoring Description	Relative Score
Not Applicable	0.0
Little or no consequence	0.5
Little to moderate consequence	1.0
Moderate consequence	1.5
Moderate to high consequence	2.0
High consequence	2.5
Highest consequence	3.0

Table 3. Relative Score for Consequence of Failure

- 4.1.3. The relative score for the likelihood of failure and consequence of failure are determined using Subject Matter Expert (SME) input and system knowledge.
 - 4.1.3.1. System knowledge consists of design and construction information, incident and leak history, corrosion control records, continuing surveillance records, patrolling records, maintenance history, and excavation damage experience.
 - 4.1.3.2. The relative score for likelihood of failure considers the following:
 - 4.1.3.2.1. Data supporting whether the failure has occurred before;
 - 4.1.3.2.2. Data supporting how frequent failure has occurred;
 - 4.1.3.2.3. SME input of known failures or the potential for failure;
 - 4.1.3.2.4. SME input of how frequently failure occurs or could occur;
 - 4.1.3.2.5. SME input of how existing mitigative measures impact likelihood;

4.1.3.3. The relative score for the consequence of failure considers the following:

- 4.1.3.3.1. Data supporting the leak grade (or severity) of known failures;
- 4.1.3.3.2. Data supporting the operating pressure of the facility of known failures;
- 4.1.3.3.3. Data supporting the proximity to buildings of known failures;
- 4.1.3.3.4. Data supporting the consequence of gas migration;
- 4.1.3.3.5. SME input of the consequence of known failures;
- 4.1.3.3.6. SME input of the potential consequence relative to severity of failure;
- 4.1.3.3.7. SME input of the potential consequence relative to operating pressure;
- 4.1.3.3.8. SME input of potential consequence relative to proximity to buildings;
- 4.1.3.3.9. SME input of the potential for gas migration;
- 4.1.3.3.10. SME input of safe venting;
- 4.2. The total relative score (TOT) for each asset and sub-threat is determined from the relative score of likelihood of failure (FOF) and consequence of failure (COF) in accordance with the following formula:

 $[FOF] \times [COF] = [TOT]$

4.3. The total risk score is determined from the sum of the total relative scores of each asset and subthreat according to the following formula:

 \sum [TOT] = [Total Risk Score]

4.4. An adjusted risk score is used to evaluate the risk only attributed to the physical properties of the facilities and not by external factors. The adjusted risk score is determined from the total risk score, the total relative score from the Excavation Damage primary threat, and the total relative risk score from the Sewer Cross Bore sub-threat according to the following formula:

[Total Risk Score] - ∑[Excavation Damage TOT] - [Sewer Cross bore TOT] = [Adjusted Risk Score]

- 4.5. A system risk assessment utilizing the Matrix shall be performed each calendar year.
- 4.6. The Matrix shall be validated based on SME input and data.
- 4.7. The Matrix shall be updated annually to incorporate new and/or revised data, and newly identified assets and sub-threats.
- 4.8. Prioritization of assets is based on the adjusted risk score within each facility type and may be adjusted based on SME review.

5. System Risk Mitigation Categories

- 5.1 The mitigation categories shall be determined based on the following criteria except where SME review determines an alternate mitigation category is appropriate. Where SME's determine an alternate mitigation category is appropriate, the basis for this determination shall be documented for future reference. The following are the mitigation categories and the mitigation thresholds that prompt specific action to be taken:
 - 5.1.1 Risk Priority 1 Assets based on a combination of threats, assets based on specific threats, and primary threats and sub-threats that meet the following criteria shall require further action to mitigate risk:
 - 5.1.1.1 Assets within a facility type that have an adjusted risk score > the average adjusted risk score of the assets within a facility type.
 - 5.1.1.2 Assets within a facility type where the criteria specified in Section 5.1.1.1 is not met, but any specific threats excluding the primary threat Excavation Damage and sub-threat Sewer Cross Bores that have a TOT relative score of 4.0 or more.
 - 5.1.1.3 Primary threats or sub-threats that have a TOT relative score of 4.0 or more for more than 75% of the assets in any one facility type.
 - 5.1.2 Risk Priority 2 Assets based on a combination of threats, assets based on specific threats, and primary threats and sub-threats that do not meet the criteria in Section 5.1.1 shall not require further action unless SME review determines further action is warranted.

5.2 The mitigation categories and mitigation category thresholds may change as specified in Section 7.

6. Mitigation Plan

- 6.1 Assets and threats shall be mitigated based on their mitigation category as described in Table 4.
- 6.2 The mitigation actions may change as specified in Section 7.

Mitigation Category	Mitigation Plan Description
Risk Priority 1	• Assets and threats shall be mitigated in accordance with Distribution Integrity Management (DIM) Plan Section 8 Mitigative Measures and Additional and Accelerated Actions to Reduce Risk.
Risk Priority 2	• Perform normal operation and maintenance activities unless SME review warrants additional and accelerated actions.

Table 4. Mitigation Plan

7. Measure Performance, Monitor Results, and Evaluate Effectiveness

7.1 PSE will measure the performance in accordance with Section 9 Measure Performance, Monitor Results, and Evaluate Effectiveness in the DIM Plan to evaluate opportunities to refine the Matrix.

8. Records

- 8.1 Records summarizing the results of each annual risk assessment shall be maintained and incorporated into the distribution integrity management program.
- 8.2 Records demonstrating mitigation plans were implemented as required by this Plan shall be maintained.

Appendix C-2: Risk Evaluation and Prioritization Results

	Frequency of Failure (FOF) or Pontential Failure: 0.5 - Occurs Almost Never																									Thre	eats	and	Sub	-Thre	eats
	1.0 - Occurs Occasionally		2014 H			Co	rosi	on								Natura	Forces		19633							Excava	tion Da	mage	2332		
	1.5 - Occurs Sometimes																				1	T		1	1				1	1	
	2.0 - Occurs Frequently								- 1								a)														
	2.5 - Occurs More than Frequently								- 1								(ag														
	3.0 - Occurs Most Frequently																oct														
	Consequence of Egilure (COE) or Potential Consequences																e pl									77					1
	0.5 Little or No Consequence												U		- 1		//ice							ce		kec		L			
	1.0 - Little to Moderate Consequence												slid				NOL							act		Mar		0LI			5
	1.5 - Moderate Consequence							uo	- 1				and		- 1		o sr							ď		or		ш Ъ			othe
	2.0 - Moderate to High Consequence		Ę			c		osi					/ La				etc							tion		eq		ente			d/C
	2.5 - High Consequence		osio			sior		Corr			≥		sut				qn	1		e				ivat		cat		ů –			atte
	3.0 - Highest Consequence		orro			l		ic O	- 1	ent	tivi		ame	U	2		nre			naç			all	xca		٢		off.		5	Ë
			ŏ			ပိ		her	- 1	nrre	Ac		OVE	ABS			SSS	ots		Dar	0		0	Ш Ц		Not		N	Ů	i l	Rot
	Total Relative Score (TOT):		rna			nal		dsc		Ō	mic		Σ	μ		dinç	ud-	R R		all	nin		ret	be		ity		Gal	ti v		ity
	TOT = FOF x COF		xte			Iter		tt	- 1	tray	eisi		art	ros		õ	ver	Lee		nin	ght		ailu	udu		acil		ne-			acil
			ш			-	_	<u>ک</u>		<i>w</i>	<i>o</i>		ш	<u> </u>			0			<				<u> </u>			_	0		1	ш.
	Asset	b.	Ö	ē	Ъ.	ğ		j b	0			5 b	ö 5	B B				b b			b b	01			D D		0 U	b b	LO C		
212.51	Main	L.	0		E.	0	-	-10						L C						-101						- 0					
	Bare Steel (I P - IP)	3.0	15	45	0.5	150	8	1 ² 1 ² 1 ²		101515	10 15 1	5 1 0	15 15	05 1	5 0 8	101010		10151	1.5	2	1020	20	302060	3020	60 20		0 1 0	2020	202	040	102020
	1971 and Older Wrapped Steel (I.P IP)	2.0	1.5	3.0	0.5	1.5 0	8			101515	10 15 1	5 1 0	15 15	0.5 1.	5 0.8	101010		10151	1.5	3 1313 331 2 2 2 2 2 2 2	1.0 2.0	2.0	302060	3020	60 20		0 1 0	2.0 2.0	2.0 2	0 4.0	1.0 2.0 2.0
-	1972 and Newer Wrapped Steel (I.P IP)	1.0	1.5	1.5	0.5	1.5 0	8	12 前式	and and	10 15 15	10 15 1	5 1.0	15 15	0.5 1.	5 0.8		and an an an an an	10151	1.5		1.0 2.0	2.0	302060	3020	60 20		0 1 0	2.0 2.0	2.0 2	0 4.0	1.0 2.0 2.0
	1985 and Older Polvethylene (LP - IP)	1.0	th th	1.0	0.0			花花花	2. 21		10 15 1	5 1 0	15 15	0.5 1.	5 0.8	101010	and an an an ar	10202	20 10	0 20 20	1.0 2.0	2.0	302060	3020	60 20		0 1 0	2020	2.0 2	0 4.0	1.0 2.0 2.0
B	1986 and Newer Polvethylene (LP - IP)		花台	16.26	1.1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0 20	2.5	0.00 0.00 0.00 0.00 0.00	10 15 1	5 1 0	15 15	0.5 1.	5 0 8		at the atended atende	10 15 1	15 10	02020	1.0 2.0	2.0	30 20 60	3020	60 20	120	0 1 0	2020	2.0 2	0 4.0	1.0 2.0 2.0
2	Wrapped Steel (HP)	0.5	2.5	1.3	0.5	2.5 1	.3	$ \begin{matrix} u_{1,1}^{(n)} & u_{1,2}^{(n)} & u_{1,2}^{(n)} \end{matrix} \\ \begin{matrix} u_{1,2}^{(n)} & u_{1,2}^{(n)} & u_{1,2}^{(n)} \end{matrix} \end{matrix}$	St. St.	0.5 2.5 1.3	1.0 2.5 2.	5 1.0	2.5 2.5	0.5 2.	5 1.3	10 10 10	at the attack at a	0.5 2.0 1	1.0		1025	2.5	30 25 75	0.5 2.5	13 1 (2.0	5 1.0	25 25	0.5 2	5 1 3	052513
	Wrapped Steel in Casing	1.0	1.5	1.5	0.5	1.5 0	.8 1.	0 1.5	1.5	1.0 1.5 1.5	1.0 1.5 1.	5 1.0	1.5 1.5	0.5 1.5	5 0.8	1.0 1.0 1.0	10.00 (0.00. (0.0))			1. 1. 1. 1. 1. 1.	1.0 2.0	2.0	3.0 1.0 3.0	3.0 1.0	3.0 2.0		0 1.0	1.0 1.0	2.01	0 2 0	10 10 10
	Shallow		而前	19.00		RER R	$\hat{E}_{ij}=\hat{\eta}_{ij}^{(i)}$		轮船	自行 行行 使有	1.0 1.5 1.	5 1.0	1.5 1.5	0.5 1.5	5 0.8	1.0 1.0 1.0	前期 前前 前前	1.0 1.5 1	1.5 1.0	0 2.0 2.0	1.0 2.0	2.0	3.0 2.5 7.5	3.0 2.5	7.5 2.0	2.5 5	.0 1.0	2.5 2.5	5 2.0 2	5 5.0	1.0 2.5 2.5
	Wall-to-Wall Paving/HOS		金錢	的原始		· · · · · ·		应应型	A. Co	66 66 66	1.0 3.0 3.0	0 1.0	3.0 3.0	0.5 3.0	0 1.5	1.0 1.0 1.0	电电 电子 电的	0.5 3.0 1	1.5 0.	5 3.0 1.5	1.0 3.0	3.0	3.0 3.0 9.0	3.0 3.0	9.0 2.0	3.0 6	.0 1.0	3.0 3.0	2.0 3	0 6.0	1.0 3.0 3.0
il and the	Service												The state		Start-		64 - 54 - 1 mg	1. 1. 1. 15		Martin State			THE AREA	ALC: DOLLAR			and the second			- Carl	
	Bare Steel (LP - IP)	3.0	2.0	6.0	0.5	2.0 1	.0 1.	0 1.0	1.0	1.0 2.0 2.0	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	12 12 12 12 12 12 12 12	1.0 2.0 2	2.0		1.0 2.5	2.5	3.0 2.5 7.5	3.0 2.5	7.5 2.0	0 2.5 5	.0 1.0	2.5 2.5	2.0 2	5 5.0	1.0 2.5 2.5
	1971 and Older Wrapped Steel (LP - IP)	2.0	2.0	4.0	0.5	2.0 1	.0 1.	0 1.0	1.0	1.0 2.0 2.0	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	的核构的的机	1.0 2.0 2	2.0	1 A. C. L. I	1.0 2.5	2.5	3.0 2.5 7.5	3.0 2.5	7.5 2.0	0 2.5	.0 1.0	2.5 2.5	2.0 2	5 5.0	1.0 2.5 2.5
Q	1972 and Newer Wrapped Steel (LP - IP)	1.0	2.0	2.0	0.5	2.0 1	.0 1.	0 1.0	1.0	1.0 2.0 2.0	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	电波 电应 电点	1.0 2.0 2	2.0		1.0 2.5	2.5	3.0 2.5 7.5	3.0 2.5	7.5 2.0	2.5	.0 1.0	2.5 2.5	2.0 2	5 5.0	1.0 2.5 2.5
i	1985 and Older Polyethylene (LP - IP)		$\hat{\boldsymbol{u}}_{\boldsymbol{x}}^{(i)} \hat{\boldsymbol{u}}_{\boldsymbol{x}}^{(i)}$	TATE			1.	.0 1.0	1.0	的复数使用	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	的复数的现在分词	1.0 2.5 2	2.5 1.0	0 2.5 2.5	1.0 2.5	2.5	3.0 2.5 7.5	3.0 2.5	7.5 2.0	2.5	.0 1.0	2.5 2.5	2.0 2	5 5.0	1.0 2.5 2.5
2	1986 and Newer Polyethylene (LP - IP)				$\frac{k}{2} \frac{k}{2}$	腹股 6	0.	5 1.0	0.5		1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	$\hat{u}_{2}^{(i)}(\hat{u}_{2}^{(i)}) = \hat{u}_{2}^{(i)}(\hat{u}_{2}^{(i)}) = \hat{u}_{2}^{(i)}(\hat{u}_{2}^{(i)})$	1.0 2.0 2	2.0 1.0	0 2.5 2.5	1.0 2.5	2.5	3.0 2.5 7.5	5 3.0 2.5	7.5 2.0	2.5	.0 1.0	2.5 2.5	2.0 2	5 5.0	1.0 2.5 2.5
G	Wrapped Steel (HP)	1.0	3.0	3.0	0.5	3.0 1	. <mark>5</mark> 1.	0 2.0	2.0	0.5 3.0 1.5	1.0 3.0 3.0	0 1.0	3.0 3.0	0.5 3.0	0 1.5	1.0 1.0 1.0		0.5 2.5 1	1.3		1.0 3.0	3.0	3.0 3.0 <mark>9.0</mark>	0.5 3.0	1.5 1.0	3.0 3	.0 1.0	3.0 3.0	0.5 3	0 1.5	1.0 3.0 <mark>3.0</mark>
0)	Idle Riser			旗旗		南京	潭 1.	5 1.0	1.5	$ \begin{array}{c} (a_1,b_2) \\ (a_2,b_3) \\ (a_3,b_3) \\ (a_4,b_3) $	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	$ \frac{d^2 r}{dr_{\rm eff}} = \frac{d^2 r}{dr_{\rm eff}$	1.0 2.0 2	2.0 1.0	0 2.5 2.5	1.0 2.5	2.5	3.0 2.5 7.5	5 3.0 2.5	7.5 2.0	0 2.5 🚦	.0 1.0	2.5 2.5	5 2.0 2	5 5.0	1.0 2.5 <mark>2.5</mark>
	Wrapped Steel in Casing	1.0	2.0	2.0	0.5	2.0 1	.0 1.	0 2.0	2.0	1.0 2.0 2.0	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 <mark>1.0</mark>	$ \begin{array}{l} \left\ \hat{\mathbf{u}}_{1}^{(1)} - \hat{\mathbf{u}}_{1}^{(1)} \right\ _{1}^{2} \\ \left\ \hat{\mathbf{u}}_{1}^{(1)} \right\ _{1}^{2} \\ \left\ \hat{\mathbf{u}}_{1}^{(1)} + \hat{\mathbf{u}}_{1}^{(1)} \right\ _{1}^{2} \\ \left\ \hat{\mathbf{u}}_{1}^{(1$	1000 新加速	tott da f		1.0 2.5	2.5	3.0 1.5 4.5	3.0 1.5	4.5 2.0	0 1.5 3	8.0 1.0	1.5 1.5	5 2.0 1	5 3.0	1.0 1.5 1.5
	Shallow		$\frac{d^2 r}{dr_{\rm eff}^2} = \frac{d^2 r}{dr_{\rm eff}^2}$	AR. AF		ng ng ng	0.	5 1.0	0.5		1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	0 1.0	1.0 1.0 1.0	可能 自己 自己	1.0 2.0 2	2.0 1.0	0 2.5 2.5	1.0 2.5	2.5	3.0 3.0 9.0	3.0 3.0	9.0 2.	3.0 6	.0 1.0	3.0 3.0	2.0 3	0 6.0	1.0 3.0 3.0
		Just inst	12.42	The second	12.12	HILL HE H	19	泉 紀原	望察		1.0 3.0 3.0	0 1.0	3.0 3.0	0.5 3.0	0 1.5	1.0 1.0 1.0	教授成功的教徒	0.5 3.0 1	1 <mark>.5</mark> 0.5	5 3.0 1.5	1.0 3.0	3.0	3.0 3.0 <mark>9.0</mark>	3.0 3.0	9.0 2.0	3.0	.0 1.0	3.0 3.0	2.0 3	0 6.0	1.0 3.0 <mark>3.0</mark>
	Residential MSA		2. 2.		0.5	204	0 1	040	10	a a a a a a	10000		2000	0.510		100000	400000				4 0 0 0										
1	Buried MSA	2.0	25	7.5	0.5	2.0 1	0 1	0 1.0	1.0	100000	1.0 2.0 2.0	0 1.0	2.0 2.0	0.5 2.0	1.0	1.0 2.0 2.0	1.0 2.0 2.0		The second		1.0 2.0	2.0			現代 聖月	and the second s		and and and a		Har and the second	
3	Commercial and Industrial MSA	3.0	2.0	1.5	0.5	100	5 1	0 2.0	2.0	1.0 2.0 2.0	1.0 2.0 2.0		2.0 2.0	0.5 2.0	1.0	1.0 2.0 2.0	1.0 2.0 2.0				1.0 2.0	2.0	2.81 원원 원원 2.31 - 2.31 원원			्रम् म्यास्य स् अन्यत्व व		· 문화 문화 : 서비 전		AL ALAS 1	and and a second
Š	Sidewalk and Street Vault Regulators	20	25	50	0.5	201	0 1	5 2.0	3.0	102020	10 2.0 2.0	5 1.0	2.0 2.0	0.5 2.0	5 1 2	1.0 2.0 2.0	1.0 2.0 2.0			F BERF SF	1.0 2.0	2.0	102525	1025	25 1	125	5 1 0	25 24	102	5 2 5	10 25 25
-	Aboveground Regulators	2.0	2.5	5.0	0.5	2.0 1	0 1	0 20	2.0	1.0 2.0 2.0	1.0 2.5 2.	5 1.0	2.5 2.5	0.5 2.0	5 1 3	1.0 2.5 2.5	1.0 2.5 2.5			a da	1.0 2.5	2.5	1.0 2.5 2.5	0 1.0 2.5	2.5 1.0	J 2.5 2	.5 1.0	2.3 2.3	0 1.0 2	5 2.5	1.0 2.5 2.5
	MSA with Insufficient Traffic Protection	2.0	2.0	the fla	0.5	100	5 1	0 2.0	2.0	1.0 2.0 2.0	102020	0 1.0	2020	0.5 2.0	1.0	102020	102020	1000 1000 10 2020 2020 12		en dender hende In dender dende	1.0 2.0	2.0	enter lande Renk Shari andar an a	a landa landa	1848 184 28-28- 28-2		1977 - 1977 -	and and	a anan an	19 19 19 19 19 19 19 19 19 19 19 19 19 1	
(1)	Valves		and the second s	and and a	0.0	1.0 0		2.0	2.0		1.0 2.0 2.0	1.0	2.0 2.0	0.0 2.0	1.0	1.0 2.0 2.0	1.0 2.0 2.0	AND ALCON		and the second second	1.0 2.0	2.0	and the to the	a the second second	All and a second		and the second	Tender de la			
N	Newer Valves (STW and PE)	10	20	20	0.5	201	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sec.	102020	102020	0 1 0	2020	1020	20		12 (A) (A) (A) (A) (A)	10202	2010	12020	1020	20	102020	1020	20 10		0 1 0	2020	102	020	102020
a	Older Valves (STW)	1.0	2.0	2.0	0.5	2.0 1	.0	前前於	10.10	1.0 2.0 2.0	1.0 2.0 20	0 1.0	2020	10 20	20	101010		10202	2010	02020	1020	2.0	102020	1020	20 10	2.02	0 1 0	2020	1.0 2	0 2 0	102020
>	Double IF Valves	2.0	2.0	4.0	0.5	2.0 1	.0	10 (c. 6)	82.62	1.0 2.0 2.0	1.0 2.0 2.0	0 1.0	2.0 2.0	1.0 2.0	2.0	1.0 1.0 1.0	20228	1.0 2.0 2	2.0 1.0	0 2.0 2.0	1.0 2.0	2.0	1.0 2.0 2.0	1.0 2.0	2.0 1.0	2.0 2	0 1.0	2.0 2.0	1.0 2	0 2.0	1.0 2.0 2.0
	Farm Tap	1	1	100						37.0.9																					
	Single Service Farm Tap	1.0	2.5	2.5	0.5	2.5 1	3 1.	5 2.5	3.8	1.0 2.5 2.5	1.0 2.5 2.	5 1.0	2.5 2.5	0.5 2.5	5 1.3	1.0 1.0 1.0	11.111 AT 11. 12 A	建立 前前 1	0.	5 2.5 1.3	1.0 3.0	3.0	3.0 3.0 9.0	1.5 3.0	4.5 1.0	3.0 3	.0 1.0	3.0 3.0	1.0 3	0 3.0	1.0 3.0 3.0
	Modified Farm Tap (Farm Tap on Riser)		$\hat{\mathfrak{g}}_{i,j}^{(1)} \hat{\mathfrak{g}}_{j,j}^{(2)}$		0.5	3.0 1	5 1.	0 3.0	3.0	自由 有利	1.0 3.0 3.0	0 1.0	3.0 3.0	1.0 3.0	3.0	1.0 1.0 1.0	1.0 3.0 3.0	和法律的法	0.	5 3.0 1.5	1.0 3.0	3.0		100 00	200		600			和心命	
	Regulator Stations	345.53												1.11						Stanto A	I CARLES THE REAL	and the second						1000		-	Station of States
S	Gate Station, Town Border Station, Limiting Station	0.5	2.5	1.3	0.5	2.5 1	3 1.	0 2.5	2.5	1.5 2.0 3.0	1.0 3.0 3.0	0 1.0	3.0 3.0	1.0 2.5	5 2.5	1.0 2.5 2.5	1.0 3.0 3.0	· 花花 花花 花	0.	5 2.5 1.3	1.0 2.5	2.5	1.0 2.5 2.5	5 1.0 2.5	2.5 1.0	2.5 2	.5 1.0	2.5 2.5	1.0 2	5 2.5	1.0 2.5 2.5
2	HP-IP District Regulator Station	0.5	2.5	1.3	0.5	2.5 1	.3 1.	0 2.5	2.5	1.0 2.0 2.0	1.0 3.0 3.0	0 1.0	3.0 3.0	1.0 2.5	5 2.5	1.0 2.5 2.5	自动 电位 前途		0.	5 2.5 1.3	1.0 2.5	2.5	1.0 2.5 2.5	5 1.0 2.5	2.5 1.0	2.5 2	.5 1.0	2.5 2.5	5 1.0 2	5 2.5	1.0 2.5 2.5
	IP-LP District Regulator Station	0.5	2.5	1.3	0.5	2.5 1	.3 1.	0 2.5	2.5	1.0 2.0 2.0	1.0 3.0 3.0	0 1.0	3.0 3.0	1.0 2.5	5 2.5	1.0 2.5 2.5	公司 收入 电关		0.	5 2.5 1.3	1.0 2.5	2.5	1.0 2.5 2.5	5 1.0 2.5	2.5 1.0	2.5 2	.5 1.0	2.5 2.5	5 1.0 2	5 2.5	1.0 2.5 2.5
0	Propane Peak-Shaving Plant and Distribution System									Sel number				100	-			Same Prov		100					II.			The second		Store and	
2	Propane Distribution System - Sumner	1.0	2.5	2.5	0.5	2.5 1	.3 0.	5 2.5	1.3	1.0 2.5 2.5	1.0 2.5 2.5	5 0.5	2.5 1.3	0.5 2.5	5 1.3	1.0 1.0 1.0	0.5 2.5 1.3	1.0 2.0 2	2.0 1.0	0 2.0 2.0	1.0 2.5	2.5	3.0 2.5 7.5	5 3.0 2.5	7.5 2.0	2.5	.0 1.0	2.5 2.5	2.0 2	5 5.0	1.0 2.5 2.5
tinine .	Swarr Propane-Air Plant	1.0	1.0	1.0	0.5	1.0 0	5 0.	5 1.0	0.5	1.0 1.0 1.0	1.0 1.0 1.0	0 1.5	1.0 1.5	0.5 1.0	0.5	2.0 0.5 1.0	0.5 1.0 0.5	0.5 1.0 0	0.5 0.8	5 1.0 0.5	1.0 2.0	2.0	的机构的机	0.5 1.0	0.5 0.	5 1.0 0	.5	心心 的	0.5 1	0 0.5	

	Frequency of Failure (FOF) or Pontential Failure:		SUNTR				1		12 -76									1553		11								1-180									ctic
	0.5 - Occurs Almost Never			Other	Outside	Force	Damae	0		-	Ma	orial	Vold o	loint Ee	lure		1	-	aupime	ont Eail	luro		Incom	oct On	orations	Othor	-	Ente	1.12	1224			(Se	es)			d A
	1.5 - Occurs Sometimes	-		other	outside	Force	Damag	6	al sound	and the second second	Ivia	enal, v	veiu ol	Joint Fa	lure	all the set	a konstra		qupime	int Fall	lare		mcorre	ect Op	erations	Other		A. S. S.		and a	The second		Bore	sore	>		ated
	2.0 - Occurs Frequently	1				1											1				1						ALC: N	1		1.00	and the		ats ss E	SS E	NO	nly	lera
	2.5 - Occurs More than Frequently	1				1															1						1000	1			U		hre Cros	Cros	ge	0	cce
	3.0 - Occurs Most Frequently	1		1	a				×												1						and the	Contraction of the		EX.	nag		er 0	ts er (ma	Bore	A B
	Consequence of Failure (COF) or Potential Consequence: 0.5 - Little or No Consequence 1.0 - Little to Moderate Consequence 1.5 - Moderate Consequence 2.0 - Moderate to High Consequence 2.5 - High Consequence 3.0 - Highest Consequence		amage		n/Tampering/Unintentior		rauits	Fire		e cracking failure		llure		e		al fitting failure	3	ervice Lee Caps			- Eoiluro	railure	i Error		oss Bore		Ē	m Excavation Damage	m Sewer Crossbore	Score	e from Excavation Dar		ased on Combination c	ased on Specific Threa vation Damage and Sew	ased on Excavation Da	ased on Sewer Cross E	ment for Additional an
	Total Relative Score (TOT):		cle D		age		uicai	sture		e-like		on fa		l failt		Janic		n N		So		liator	ating		er Cr	L	Sco	e fro	e fro	Risk	Scor		ity b Exca	ity b Exca	ity b	ity b	luire
	TOT = FOF x COF		/ehi		/anc Jam		liec	struc		Britt		usic		Velo		flect	1	Selo		'alve		fegr	ber		ewe	othe	lisk	cor	cor	ed F	isk	Ð	rior es l	rior les l	rior	rior	Red
	Accot	5	<u>~</u> とし	بر ال		ц н		5 5		비	E	비방	5	<u>></u> 농 농 ·	<u>ل</u>	≥ <u> </u>	<u>ب</u>		<u>ا</u> بر	> 5			8 방방	<u>ل</u>	S S S S S	5 5	otal R	sk S	sk S	just	of Ri	ankin	sk Pl xclud	sk Pi xclud	sk Pi	sk Pi	eets
	ASSEL	Ш	Ö F	- Ľ	Ŭ F	Щ. Ш	ö <mark>F</mark>			Щ О	Ĕ		F			V		Ö F				S F		P				Ĩ.	1 R	¥	%	Ĕ	N O	₩ ⊕		Ξ.	ž
	Bare Steel (LP - IP)	STE STE				102	020	ab ab ab	-	an an an an		1.12 1.12 .12	-	0 1 5 2	0 1 0	202				1	al Internet Tax		1020	200	5 2 0 1 5	10101	0 51	24		25.0	400/	2	22.8	4.0	4.0	4.0	V
	1971 and Older Wrapped Steel (LP - IP)	100000			nene Aele	1.0 2	0 2.0	an a		teste deste Rome deste		and heads	4		0 1.0	2.0 2.				entre l'esté constantes de la	V Assister Die	and the set	1.0 2.0	2.0 0	5 30 1.5		0 52	24	5	23.0	48%	3	1	N/A	1	2	Y V
-	1972 and Newer Wrapped Steel (LP - IP)				ni ni ni ni	1.0 2	.0 2.0	ここ (1)		1999 - 1999 1997 - 1997	化花 1	and the state	1	.0 1.5 1	5 1.0	2.0 2		ut ut i	ti stati a	tali iliai	and and an	and affinite	1.0 2.0	2.0 1	5 3.0 4.5	1.0 1.0 1	0 49	24	5	20.5	49%	7	2	2		$\frac{1}{1}$	÷
ir	1985 and Older Polyethylene (LP - IP)	iteda -	向你们的	2 22.02		1.0 2	.0 2.0	6.6 C.		2.0 2.5	5.0	.0 2.5	5.0	all dis dis dis	1.0	2.0 2.		di di d				前前	1.0 2.0	2.0 1	.5 3.0 4.5	1.0 1.0 1	0 56	24	5	27.8	43%	1	1	N/A	1	1	Ŷ
N	1986 and Newer Polyethylene (LP - IP)	1010 ·	原度 惊,的		重度 电波	1.0 2	.0 2.0	度度 (g)	夏 復渡	0.5 2.5	1.3 (.5 2.5	1.3	1.0 Q.Q. Q	0.5	2.0 1.			(花殿)		1 位的 拉	没有定	0.5 2.0	1.0 1	.5 3.0 4.5	1.0 1.0 1	0 46	24	5	17.8	52%	9	2	2	1	1	Y
-	Wrapped Steel (HP)				$\hat{\boldsymbol{y}}_{i}^{(i)} \hat{\boldsymbol{y}}_{j}^{(i)} = \hat{\boldsymbol{y}}_{i+1}^{(i)} \hat{\boldsymbol{y}}_{i}$	1.0 2	.5 2.5	$\hat{\theta}_{\theta,z}^{(1)} \hat{\xi}_{\theta,z}^{(1)} = \hat{\theta}_{\theta,z}^{(1)}$				100 ka 10	1000 1	.0 2.5 2	.5		j njeko k	1.61. (61.)	\$ 80.80 g	and the state	1000		1.0 2.5	2.5 0	.5 3.0 1.5	1.0 1.0 1.	.0 41	16.25	5 2	23.0	40%	5	1	N/A	1	2	Y
	Wrapped Steel in Casing	意味い			$\ \hat{\boldsymbol{\theta}}_{1,2}^{(n)} \ \hat{\boldsymbol{\theta}}_{1,2}^{(n)} - \ \hat{\boldsymbol{\theta}}_{1,2}^{(n)} \ \hat{\boldsymbol{\theta}}_{1,2}^{($	1.0 2	.0 2.0	$\ \widehat{\boldsymbol{u}}_{(\mathcal{T}_{n})}^{(k)} \ _{\mathcal{T}_{n}}^{(k)} = \ \widehat{\boldsymbol{u}}_{(\mathcal{T}_{n})}^{(k)} \ _{\mathcal{T}_{n}}^{(k)}$		$ \begin{array}{c} \lambda_{1,1} \\ \lambda_{1,2} \\ \mu_{1,2} $	$\ \boldsymbol{g}_{\boldsymbol{\gamma}_{n}}^{(1)} \boldsymbol{g}_{\boldsymbol{\gamma}_{n}}^{(2)} \ _{\boldsymbol{\gamma}_{n}} = \boldsymbol{g}_{\boldsymbol{\gamma}_{n}}^{(1)} \ _{\boldsymbol{\gamma}_{n}}$	id d.d	1. 1. 2	.0 1.5 3	.0 1.0	2.0 2.0				$\sum_{i=1}^{N} \frac{e_{i}^{2}}{e_{i}^{2}} = e_{i}^{2} \sum_{i=1}^{N} \frac{e_{i}^{2}}{e_{$	的 的 的 帮		1.0 2.0	2.0	· 花.杜.	1.0 1.0 1.	.0 34	12	0	22.0	35%	6	2	2	2	2	Ν
	Shallow	\$2.40 ·	ig na na na	0.5	2.5 1.3	3 1.0 2	.0 2.0	たた た)		0.5 2.5	1.3 (.5 2.5	1.3		0.5	2.0 1.			1. 花花 月	动物, 机水	1 和 和 和	前 危险	0.5 2.0	1.0 1	.5 3.0 4.5	1.0 1.0 1.	0 54	30	5	19.0	56%	8	2	2	1	1	Y
-	Service		19.19 HEA	an Maler	ATTAT ATTAT	1.0 3	.0 3.0	Agenta Mar	10.00	0.5 3.0	1.5	.5 3.0	1.5		0.5	3.0 1.	5		1 12 12 1		1010 10	心 吃吃	0.5 3.0	1.5 1	.5 3.0 4.5	1.0 3.0 3.	.0 67	36	5	26.5	54%	2	1	N/A	1	1	Y
	Bare Steel (I.P IP)	10	25 25	10	25 25	102	5 25	102		an an barat				0204	0 1 0	25 2	5			tradit and a	2 30.02	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1025	25 0	5 3 0 1 5	10101	0 72	30	2	40.0	12%	2	30.1	4.0	4.0	2	V
	1971 and Older Wrapped Steel (LP - IP)	1.0	25 25	5 1 0	25 25	1.02	5 2.5	1.0 2.	0 2.0	ALTER ALTER	and an a	an and	4	0 2 0 4	0 1 0	2.5 2.	5 6 6 6					and the first	1.0 2.5	2.5 0	5 30 45	10101	0 73	30	5	38.0	42%	3	1	N/A	1	1	Y
0	1972 and Newer Wrapped Steel (LP - IP)	1.0	2.5 2.5	5 1.0	2.5 2.5	5 1.0 2	.5 2.5	1.0 2.	0 2.0	0.0 0.0	· 你,你 ?	前旗的	· 1 · 1	.0 2.0 2	0 1.0	2.5 2.	5 1010 1	10 (Q)		1.12 112.2		· ·	1.0 2.5	2.5 1	.5 3.0 4.5	1.0 1.0 1	0 69	30	5	34.0	44%	6	2	2	1	1	Ý
i	1985 and Older Polyethylene (LP - IP)	1.0	2.5 2.5	5 1.0	2.5 2.5	5 1.0 2	.5 2.5	1.0 2.	0 2.0	2.0 2.5	5.0	.5 2.5	3.8	ing hand in	2.0	2.5 5.	0 1.0 2	2.5 2.	5 0.0	1 i - i - i	42.62 62	$\ \hat{\eta}_{1}^{*}-\hat{\eta}_{2}^{*}\ _{C}^{2}$	1.0 2.5	2.5 1	.5 3.0 4.5	1.0 1.0 1.	.0 78	30	5	43.8	38%	1	1	N/A	1	1	Y
2	1986 and Newer Polyethylene (LP - IP)	1.0	2.5 2.5	5 1.0	2.5 2.5	5 1.0 2	.5 2.5	1.0 2.	0 2.0	0.5 2.5	1.3 (.5 2.5	1.3		0.5	2.5 1.	3 1.0 2	2.5 2.	5 2.00	$\widehat{\psi}_{ij} \widehat{\psi}_{ij}^{(1)} = \widehat{\psi}_{ij}^{(1)} \widehat{\psi}_{ij}^{(2)} \widehat{\psi}_{ij}^{(2)}$	the state of the		0.5 2.5	1.3 1	.5 3.0 4.5	1.0 1.0 1.	.0 66	30	5	31.5	45%	9	2	2	1	1	Y
Se	Wrapped Steel (HP)	0.5	3.0 1.5	5 1.0	3.0 3.0	0 1.0 3	.0 3.0	1.0 3.	0 3.0				the first of	.0 3.0 3	.0	依定的	1 no sta i	t fill afficia	報告	可能 南美	前前前		0.5 3.0	1.5 0	.5 3.0 1.5	1.0 1.0 1	.0 59	21	2	36.8	35%	5	1	N/A	1	2	Y
0,	Idle Riser	1.0	2.5 2.5	5 1.0	3.0 3.0	1.0 2	.5 2.5	1.0 2.	0 2.0	0.5 2.5	1.3 (.5 2.5	1.3		0.5	2.5 1.	3 1.0 2	2.5 2.	5 9.9	1. G.K.	1 磁会 旋	· · · · ·	0.5 2.5	1.3 1	.5 3.0 4.5	1.0 1.0 1	.0 68	30	5	33.0	44%	8	2	2	1	1	Y
	Shallow	1.0	2.5 2.5	1.0	2.5 2.5		5 2.5	1.0 2.	0 2.0	05 05	1.2	EDE	10	.5 2.0 3	0 1.0	2.5 2.		5 0	- 10.00 (1949. H.D.K. 1994. H.D.K.	1 12 12 12 12 12 12 12 12 12 12 12 12 12		1.0 2.5	2.5	5 2 0 4 5	1.0 1.0 1	0 52	18	0	34.0	35%	6	2	2	1	2	Y
Viet.	Wall-to-Wall Paving/HOS	1.0	2.5 2.5	1.0	2.5 2.5	1.02	5 2.5	1.0 2.	0 2.0	0.5 2.5	1.3	5 3 0	1.5		0.5	2.5 1.	5 1 0 2	.5 2.		tille Park		All Profession	0.5 2.5	1.3 1	5 3.0 4.5	10 10 1	0 72	36	5	31.5	50%	3	2	Z N/A	1	1	-Y V
	MSA	1.0	0.0 0.0	1.0	0.0 0.0	1.0 2	.0 2.0	1.0 3.	0 <mark> 0.0</mark>	0.5 3.0	1.5	.5 5.0	1.5		0.0	3.0 1.	1.0	5.0 5.0					0.5 5.0	1.5	.5 5.0 4.5	1.0 3.0 3.	.0 79	30	5	30.0	40 %		34.8	4.0	4.0	4.0	
	Residential MSA	1.0	2.5 2.5	5 1.0	2.5 2.5	5 1.0 2	.0 2.0	1.0 2.	0 2.0	6.0 6.0	and a		6.6	6 66 6	6 6.6	6.6 6.		. ia 16.	5 16.16 A	ili Kadi	1.0 2	.0 2.0	1.0 1.0	1.0	A 66 66	1.0 1.0 1	0 26	0	0	26.0	0%	6	2	2	2	2	Ň
4	Buried MSA	1.0	2.5 2.5	5 1.0	2.5 2.5	5 1.0 2	.0 2.0	1.0 2.	0 2.0	Q.Q. Q.Q	10.12	$ \hat{u} = \hat{v}_{ij} \hat{v}_{ij} $	વેદાં છે.		12 123	10010 100	1 截差 1	194	(). (.)		1.0 2	.0 2.0	1.0 1.0	1.0	$\hat{\boldsymbol{u}}_{i,i}^{(1)} = \hat{\boldsymbol{u}}_{i,i}^{(1)} \hat{\boldsymbol{u}}_{i,i}^{(1)} = \hat{\boldsymbol{u}}_{i,i}^{(1)} \hat{\boldsymbol{u}}_{i,i}^{(1)} \hat{\boldsymbol{u}}_{i,i}^{(1)}$	1.0 1.0 1	.0 36	0	0	35.5	0%	3	1	N/A	2	2	Y
S	Commercial and Industrial MSA	1.0	2.5 2.5	5 1.0	2.5 2.5	1.0 2	.0 2.0	1.0 2.	0 2.0	$\ \hat{u}_{1,p}^{(1)} \ _{L^{2}(\mathbb{R}^{2})}^{(1)} = \ \hat{u}_{1,p}^{(1)} \ _{L^{2}(\mathbb{R}^{2})}^{(1)} \ \hat{u}_{1,p}^{(1)} \ _{L^{2}(\mathbb{R}^{2})}^{(1)}$			1.1.1.1.1.1 1.1.1.1.1.1.1 1.1.1.1.1.1.1	.0 2.0 2	0 1.0	2.0 2.					1.0 2	.0 2.0	1.0 1.0	1.0	$\ \hat{u}_{\mu}^{(1)} - \hat{u}_{\mu}^{(1)} \ \hat{u}_{\mu}^{(1)} - \hat{u}_{\mu}^{(1)} - \hat{u}_{\mu}^{(1)} \ \hat{u}_{\mu}^{(1)} - \hat{u}_{\mu}^{(1)} \ $	1.0 1.0 1	.0 31	0	0	30.5	0%	5	2	2	2	2	Ν
2	Sidewalk and Street Vault Regulators	1.0	2.5 2.5	1.0	2.5 2.5	1.0 2	.5 2.5	1.0 2.	0 2.0	的趋势的			截於 1	.0 2.5 2	5 1.0	2.5 2.	5 Keyle I	(1) (t)	"花衣"	的意志	1.5 2	.0 3.0	1.0 1.0	1.0		1.0 1.0 1	0 59	15	0	44.3	25%	1	1	N/A	2	2	Y
	Aboveground Regulators	1.0	2.5 2.5	1.0	2.5 2.5	1.0 2	.5 2.5	1.0 2.	0 2.0	夏夏 夏夏	夏夏 (1)		12.6	.0 2.5 2	5	「花り」を引	2 夜夜 1		13 13 1	設定で成	1.0 2	.0 2.0	1.0 1.0	1.0	建造造量	1.0 1.0 1	.0 40	0	0	39.8	0%	2	1	N/A	2	2	Y
		1.5	3.0 4.5	1.0	2.5 2.5	1.0 2	.0 2.0	1.0 2.0	0 2.0		में इ.में.इ. में		12 12	.0 2.0 2	0 1.0	2.0 2.0	D REAL	CAD HON	自机的中	alter Marx	1.0 2	.0 2.0	1.0 1.0	1.0		1.0 1.0 1	.0 33	0	0	32.5	0%	4	2	1	2	2	Y
Ve	Valves	194 (194)	an an an an		an at long at	100	0 20	and the state		a a a a		0 20	20	0 20 0	0				10/				1040	10		1011011	0 44	40	-	20.0	200/		30.0	4.0	4.0	4.0	N
a	Older Valves (STW)	前前		1前前	·····································	1.0 2	0 20	the state of the state	e seles E inclin	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	の部・	0 3 0	3.0 1	0 2 0 2	0	and an a			202	20 40			1.0 1.0	1.0	and an an an an	10 10 1	0 43	12	0	31.0	28%	1	1	Z N/A	2	2	Y
>	Double IF Valves	AL AL	iloite (c. i)	i i chia	动脉动	1.0 2	.0 2.0	100 61	6 60	h h h	n All I		1	.0 2.0 2	0	11.11 HL 1		n n n	2.0 2	2.0 4.0		的花花	1.0 1.0	1.0	An Andre Marke	1.0 1.0 1	0 42	12	0	30.0	29%	2	2	1	2	2	Y
	Farm Tap	N.C. CT.						14 (A)								S. States									Service Service						Chilling of the		42.0	4.0	4.0	4.0	No.
F	Single Service Farm Tap	1.0	2.5 2.5	5 1.0	2.5 2.5	5 1.0 2	.5 2.5	1.0 2.	5 2.5	他的现在	$\hat{\eta}_{\mu\nu}^{(1)}\hat{\eta}_{\mu\nu}^{(2)}=\hat{\eta}$	1. 1. 19	1 m	.0 2.5 2	5	1010 403		10 100	- 10 in 1	1.10 M. 1	1.0 2	.5 2.5	1.0 2.5	2.5	10 10 10 10 10 10	1.0 1.0 1	.0 66	25.5	0	40.0	39%	2	2	2	1	2	Y
	Modified Farm Tap (Farm Tap on Riser)	1.0	3.0 <mark>3.</mark> 0	1.0	3.0 3.0	1.0 3	.0 3.0	1.0 3.0	0 3.0	的原始	$\hat{h}_{\mu\nu}\hat{\eta} = \hat{\eta}$	14 10 V	AL AL	.0 3.0 3	0	前前前的	a handa h	i i i i i	i da ta di	i di se di	1.0 3	.0 3.0	1.0 3.0	3.0	to the test	1.0 1.0 1	.0 44	0	0	44.0	0%	1	1	N/A	2	2	Y
	Regulator Stations						and a					- Calling of	and the second		1							Rides.						No. Lan					42.1	4.0	4.0	4.0	
SS	Gate Station, Town Border Station, Limiting Station	1.0	3.0 3.0	1.0	2.5 2.5	1.0 2	.5 2.5	1.0 2.	5 2.5	0.0 0.0	ing in	14 - C.C.	2.6 1	.0 2.5 2	5 0.0	12.00			G Barris		1.0 2	.5 2.5	1.0 2.5	2.5	通道 化合	1.0 1.0 1	0 60	15	0	44.8	25%	1	1	N/A	2	2	Y
L	HP-IP District Regulator Station	1.0	3.0 3.0	1.0	2.5 2.5	1.0 2	.5 2.5	1.0 2.	5 2.5	1010 R. 1.	1.1.1.1		1	.0 2.5 2	5	90.90	n n	141 101	C ALLA A	CAD HOR	1.0 2	.5 2.5	1.0 2.5	2.5	NO THE REAL	1.0 1.0 1	0 56	15	0	40.8	27%	2	2	2	2	2	N
-	IF-LF DISTICT Regulator Station	1.0	3.0 3.0	1.0	2.5 2.5	1.0 2	.5 2.5	1.0 2.	2.5	ntinti stati		AL ALL	1	.0 2.5 2	5	at at a	and a second		RE ALL A		1.0 2	.5 2.5	1.0 2.5	2.5	(R) 印度 乾松	1.0 1.0 1	.0 56	15	0	40.8	27%	2	2	2	2	2	N
2	Propage Peak-Straving Flam and Distribution System	OF	25 4 0		25 4 0	100	5 2 5	0.5	5 4 0	1000	2 5	0.05	25	0 0 5 0	5 0 5	0.014					100	E O E	1000	o el a	5 2 2 4 5	05400	E 04	0.0		10.5	070/		32.5	4.0	4.0	4.0	
2	Swarr Propane-Air Plant	0.5	2.0 1.3	0.5	2.0 1.3	1.0 2	0 1 0	0.5 2.	0 1.3	1.0 2.5	2.5	.0 2.5	2.5 1	.0 2.5 2	0.5	2.0 1.0	1.0 2	.5 2.		2.0 2.5	1.0 2	.5 2.5	1.0 2.5	2.5 1	.5 3.0 4.5	0.5 1.0 0	5 20	30	5	46.5	3/%	1	1	N/A	1	1	Y
-	enan i ropano / ii i iant	0.5	1.0 0.0	0.0	1.0 0.0	1.011	.0 1.0	0.0 1.0	0.5	WARNER BUILD	The state	The Mark	Dist. Gar	.0 2.0 2	0.5	11.0 0.		and the state	1.0	1.0 1.0	1.01	.0 1.0	0.5 1.0	0.5	CAR REPART	0.011.010		1.5	U	10.5	0%	2	2	2	2	2	IN

Facilities Requiring Additional and Accelerated Actions Based on a Combination of Threats or Specific Threats (Excludes Excavation Damage and Sewer Cross Bores)

 \checkmark

✓

✓ ✓

 \checkmark

X Vehicle Damage

X Corrosion and Valves

	Legend
Addi are r ✓	itional and accelerated actions not required. Existing mitigative measures are adequate.
Add are r	itional and accelerated actions required.
	Existing mitigative measures are adequately reducing risks and additional and accelerated actions have been implemented to reduce risk.
	Existing mitigative measures have been implemented, but additional and accelerated actions need to be developed to further reduce risk.
	Existing mitigative measures are inadequate and/or no additional and accelerated actions are currently implemented, but are in development to reduce risks.
x	Additional and accelerated actions are required only for the specific threats as listed.

Main
Bare Steel (LP - IP)
1971 and Older Wrapped Steel (LP - IP)
1972 and Newer Wrapped Steel (LP - IP)
1985 and Older Polyethylene (LP - IP)
1986 and Newer Polyethylene (LP - IP)
Wrapped Steel (HP)
Wrapped Steel Main in Casing
Shallow Main
Main in Wall-to-Wall Paving/HOS
Service
Bare Steel (LP - IP)
1971 and Older Wrapped Steel (LP - IP)
1972 and Newer Wrapped Steel (LP - IP)
1985 and Older Polyethylene (LP - IP)
1986 and Newer Polyethylene (LP - IP)
Wrapped Steel (HP)
Service with Idle Riser
Wrapped Steel Service in Casing
Shallow Service
Service in Wall-to-Wall Paving/HOS
MSA
Residential MSA
Buried MSA
Commercial and Industrial MSA
Sidewalk and Street Vault Regulators
Aboveground Regulators
MSA with Insufficient Traffic Protection
Valves
Newer Valves (STW and PE)
Older Valves (STW)
Double Insulated Flanged Valves
Farm Tap
Modified Farm Tap (Farm Tap on Riser)
Regulator Stations
HP-IP District Regulator Station
IP-LP District Regulator Station
Propage Peak-Shaving Plant and Distribution System
Propane Distribution System - Sumner
Swarr Propane-Air Plant

1	

Threats (Sub-Threat)
Corrosion
Natural Forces
Excavation Damage
Other Outside Force Damage
Material, Weld or Joint Failure
Equipment Failure
Incorrect Operations (Sewer Cross Bores)
Other

Appendix D: Summary of Mitigative Measures

					THR	EAT			
Mitigative Measures	Reference to Supporting Documentation	Corrosion	Natural Forces	Excavation Damage	Other Outside Force Damage	Material, Weld or Joint Failure	Equipment Failure	Incorrect Operations	Other
Leak Management Program	 GOS 2425.1400 Investigating Emergency Calls and Reports GOS 2450.1600 Instrument Calibration GOS 2475.1100 Prioritizing Service Orders GOS 2575.1900 Investigating Failures of Pipeline Facilities GOS 2625.1100 Leakage Survey Program* GOS 2625.1200 Conducting Leakage Surveys GOS 2625.1300 Leakage Action Program GOS 2675.1200 Propane Leakage Program Quality Assurance Program Plan 	~	~	~	~	~	~	~	¥
Odorization	 GOS 2450.1600 Instrument Calibration GOS 2650.1000 Odorization Requirements and Odor Level Testing GOS 2650.1100 Odorizing Station Design GOS 2650.1200 Odorizing Station Inspection and Adjustment GOS 2650.1300 Storing and Handling Odorant and Filling Odorizers 	~	✓	✓	~	~	✓	~	~

Table D-1: Summary of Mitigative Measures

		THREAT												
Mitigative Measures	Reference to Supporting Documentation	Corrosion	Natural Forces	Excavation Damage	Other Outside Force Damage	Material, Weld or Joint Failure	Equipment Failure	Incorrect Operations	Other					
Public Awareness Program	GOS 2425.1500 Public Awareness Program Public Awareness Program Plan	✓	<i>√</i>	✓	√	√	✓ ×	✓	✓					
Design and Construction Practices	Gas Operating Standards Gas Field Procedures Design and Construction Manual	~	√	~	~	✓	~	~	✓					
Increase leak survey frequency	DIM Plan Appendix F-1 – Wrapped Steel Service Assessment Program	V	~	V	~	\checkmark	V	V	~					
Replacement and Mitigation Programs • Bare Steel • WSSAP • Wrapped Steel Pipe • Older Vintage PE Pipe	Bare Steel Settlement Agreement DIM Plan Appendix F – Risk Mitigation Programs	~	~	1	¥	✓	1	~	✓					
Monitor trends and system performance and identify appropriate additional/accelerated actions	GOS 2475.2700 Continuing Surveillance	~	~	~	~	✓	~	~	~					
Operations and Maintenance Practices (e.g. valves, regulator stations, pipeline markers)	Gas Operating Standards	~	~	~	~		~	~						
Continuing Surveillance Program	GOS 2475.2700 Continuing Surveillance GOS 2575.3100 Patrolling Program	~	V	V	V	✓								
Patrolling	GOS 2575.3100 Patrolling Program		~	~	~									
Installation of excess flow valves	GOS 2550.1600 Service Components GOS 2550.2200 Excess Flow Valves		~	~	~									

		THREAT							
Mitigative Measures	Reference to Supporting Documentation	Corrosion	Natural Forces	Excavation Damage	Other Outside Force Damage	Material, Weld or Joint Failure	Equipment Failure	Incorrect Operations	Other
Corrosion Control	 GOS 2600.1000 Cathodic Protection Requirements GOS 2600.1100 Coatings for Pipe and Fittings GOS 2600.1200 Test Station Requirements GOS 2600.1300 Designing and Installing Cathodic Protection Systems GOS 2600.1400 Electrical Isolation and Grounding Requirements GOS 2600.1500 Monitoring Cathodic Protection GOS 2600.1600 Unprotected Facilities GOS 2600.1700 Monitoring and Remedial Measures for Internal Corrosion GOS 2600.1800 Monitoring Facilities for Atmospheric Corrosion GOS 2600.1900 Remedial Measures for Corrosion Control GOS 2600.2000 Galvanic Anode Installation Requirements 	*							
Emergency Response Plan	Gas Operating Standards PSE Corporate Emergency Response Plan Emergency Action Plans for Gig Harbor Emergency Action Plans for Swarr		¥						
Damage Prevention Program	GOS 2425.1600 Damage Prevention Program Damage Prevention Program Plan			~					
Operator Qualification Program	GOS 2425.2100 Operator Qualification Operator Qualification Plan							~	

					THR	EAT			
Mitigative Measures	Reference to Supporting Documentation	Corrosion	Natural Forces	Excavation Damage	Other Outside Force Damage	Material, Weld or Joint Failure	Equipment Failure	Incorrect Operations	Other
 Gas Maintenance Programs Isolated Facilities Program Regulator Station Remediation Converted Single Service Farm Tap Program Regulator Pipe Support Mitigation Regulator Station Over Pressure Protection Industrial Meter Set Remediation Buried MSA Remediation Traffic Protection Enhancements Rock and Debris on Buried Pipe Shallow Main and Service Remediation Mobile Home Community (MHC) Encroachment Surveys Bridge and Slide Remediation Atmospheric Corrosion at Hard-to- Reach Bridges Aging High-Pressure Valve Mitigation Houble Insulated Flange Valve Mitigation High Voltage Alternating Current (HVAC) Mitigation Program Transmission Integrity Management Program 	Continuing Surveillance Annual Report	~	~	~	~	~	~	~	~

Appendix E: Additional and Accelerated Actions

Reference	Торіс	Requirement
GOS 2525.1100 Pipeline	Design Factor	This specifies that a design factor of 0.2 shall be used for all
Design		piping with the exception of the inlet to gate stations.
GOS 2525.3300 Test	Test Factor	This requires that all steel pipelines operating above 100 psig
Requirements		be tested to 1.5 times the proposed pipeline MAOP.
GOS 2525.1100 Welder	Welding	Requires Arc welding on all pipelines operating above 60 psig
Qualification		except pipe $1\frac{1}{2}$ or less in diameter.
Requirements		
GOS 2425.1600 Damage Prevention Program	Construction Monitoring	For excavations in the vicinity of mains operating above 60 psig, anode beds, rectifier stations, or pressure regulating stations, this requires PSE contact the excavator to confirm excavation details.
		Requires excavations in the vicinity of mains operating above
		60 psig to be monitored as frequently as necessary during and
		after excavation activities to verify the integrity of the pipeline
		and for the inspector to be onsite when excavation begins.
GOS 2625.1100 Leakage	Survey frequency	Mains operating at or above 250 psig are leak surveyed
Survey Program		annually.
		Mains operating above 60 psig and below 250 psig are leak
Company Practice	Look survey	All mains are surveyed at least every three years not to exceed
Company Plactice	Leak Survey	39 months.
Subject Matter Experts	Weld inspection	Close to 100% inspection of all welds on pipelines operating above 60 psig.
GOS 2525.1700	Cover	Most mains are installed 30 inches and most services are
Excavation, Underground		installed at least 18 inches deep.
Clearance, Cover, and		
Restoration		
Bare Steel Settlement	Replacement and Risk	Risk rank and replace or perform increased leak survey on
Agreement	Mitigation Programs	higher ranking facilities including bare steel, wrapped steel
DIM Plan Appendix F		services, older wrapped steel pipe, older PE pipe.

Table E-1: Summary of Additional and Accelerated Actions¹

¹This summary is not comprehensive and will continue to be updated.

Appendix F: Risk Mitigation Programs

Appendix F-1: Wrapped Steel Service Assessment Program (WSSAP)

1. Scope

This document defines the methodology to be applied for the risk assessment and determination of appropriate mitigative measure for pre-1972 wrapped steel services. This program includes services installed between 1956 and 1972. Services installed prior to 1956 are assumed to be bare steel services and will be replaced under the Bare Steel Replacement program.

2. Responsibilities

- 2.1 The Manager of Gas System Integrity shall be responsible for:
 - 2.1.1 Overall program management including:
 - 2.1.1.1 Ensuring the risk model is run annually and validated as described in Section 4.
 - 2.1.1.2 Ensuring a quality assurance plan is developed and implemented.
 - 2.1.1.3 Ensuring any modifications to the risk model, mitigation actions, or mitigation category thresholds are approved as required in Section 4.4 and 7.3.
 - 2.1.1.4 Ensuring any approved modifications are documented in a format similar to the WSSAP final report.
 - 2.1.2 Creating work orders for service replacements in accordance with Section 6.1.
 - 2.1.3 Monitoring completion of the work orders.
- 2.3 The *Manager Contract Management* shall be responsible for ensuring that work orders for replacements are completed in accordance with this program plan and as specified on the work order.
- 2.4 The *Manager System Control and Protection* shall be responsible for ensuring leakage surveys are carried out in accordance with this program plan.
- 2.5 The *Manager Compliance and Regulatory Audits* shall be responsible for obtaining WUTC approval for any changes to the program including modifications to the risk model, mitigation actions, or mitigation category thresholds as required in Section 4.4 and 7.3.
- 2.5 The *Manager Data and Applications Services* shall be responsible for supporting the WSSAP risk model including importing data from SAP, LMS, and other applicable data sources as necessary to rerun the risk model and provide status updates.
- 2.6 The Manager Maps and Records shall be responsible for:
 - 2.6.1 Updating service records in the WSSAP database as new service records are processed.
 - 2.6.2 Researching and updating service records in the WSSAP database as additional review is performed of existing data.

2.6.3 Performing service record review (D-4) as necessary prior to replacement of WSSAP services.

3. General

- 3.1 The wrapped steel service mitigation program uses a risk model to categorize services into four mitigation categories. These categories specify what mitigation is required as detailed in section 6, Table 1 of this program plan.
- 3.2 The four mitigation categories are Priority Replacement, Scheduled Replacement, Increased Leak Survey, and Standard Mitigation.

4. WSSAP Risk Model

- 4.1 The risk model calculates a risk score for each service based upon multiple variables. A summary of the variables and the functionality of the risk model are provided in the Wrapped Steel Service Assessment Program Final Report Revision 4.0, dated October 6, 2006 (WSSAP Final Report).
- 4.2 The risk model shall continue to be populated with new and additional data.
- 4.3 The risk model shall be run annually to provide a new risk assessment of all pre-1972 wrapped steel services.
- 4.4 PSE shall consult with WUTC Staff and obtain agreement on any revisions to the risk model and/or mitigation action thresholds.

5. Service Mitigation Categories

- 5.1 In accordance with the methodology outlined in the WSSAP Final Report, the mitigation categories shall be determined based on the following criteria, i.e. mitigation category thresholds:
 - 5.2.1 Priority Replacement Services with probability of failure (POF) scores \geq 56% or a report of coating disbondment.
 - 5.2.2 Scheduled Replacement Services with POF scores \geq 41% and < 56% and no cathodic protection (no cp alert).
 - 5.2.3 Increased Leak Survey The top 25% of all services with a POF score <41%.
 - 5.2.4 Standard Mitigation Services that are not in the first three categories.

6. Mitigation Plan

6.1 Services shall be mitigated based on their mitigation category as described in Table 1.

Table 1. Mitigation Plan

Mitigation Category	Mitigation Plan Description
Priority Replacement	 Replace in the calendar year following when they are identified as a priority replacement except where customer issues, permits, or other unusual circumstances prevent replacement. Leak survey service twice per calendar year until replaced. Leak surveys shall be at a frequency not less than 4 months and not greater than 8 months.
Scheduled Replacement	 Schedule for replacement within 4 calendar years of being identified as a scheduled replacement except where customer issues, permits, or other unusual circumstances prevent replacement. Leak survey service twice per calendar year until replaced. Leak surveys shall be at a frequency not less than 4 months and not greater than 8 months.
Increased Leak Survey	 Leak survey annually not to exceed 15 months.
Standard Mitigation	 Perform normal operation and maintenance activities.

- 6.2 Prior to replacement, adjacent services and mains shall be evaluated to determine whether additional facilities in the vicinity should be replaced.
 - 6.2.1 If several services in an area have been replaced due to similar indications, adjacent services of similar vintage or subject to the same threats shall also be replaced.
 - 6.2.2 Adjacent mains shall be investigated for evidence of corrosion. This may include review of construction, O&M records, performing electrical surveys, or excavating and performing direct examination.

7. Measure Performance, Monitor Results, and Evaluate Effectiveness

- 7.1 PSE will measure the performance of WSSAP services in each mitigation category to evaluate opportunities to refine the WSSAP risk model. This shall include tracking the following information and evaluating the trends:
 - 7.1.1 The number of leaks discovered each year by mitigation category including both active leaks and repaired leaks by leak cause.
 - 7.1.2 The percent of services with a leak discovered in each mitigation category.
 - 7.1.3 The number of services mitigated during the previous calendar year by mitigation category. If any priority services where not mitigated, PSE shall track these services and ensure they are mitigated in a timely manner.
 - 7.1.4 The number of services targeted for replacement for the current calendar year.
- 7.2 The data required by 7/1 shall be reported in the Continuing Surveillance Annual Report and shall include a discussion of the trends and the evaluation of the effectiveness of the WSSAP risk model.
 - 7.2.1 If any annual status report indicates the number of leaks in the standard mitigation category exceed 2.76% of the services, the model shall be recalibrated to more accurately reflect the risk of failure of services within such category.
- 7.3 If revisions to the WSSAP risk model are required, a plan for how PSE will proceed with making the revisions shall also be included in the Continuing Surveillance Annual Report. This plan shall include the process for obtaining WUTC Staff's approval of any revisions to the WSSAP risk model.

8. Quality Assurance

8.1 PSE shall develop and implement a quality assurance program for each component of this program.

9. Records

9.1 Records summarizing the results of each annual risk assessment shall be maintained for 10 years.

Appendix F-2: Wrapped Steel Pipe Mitigation Program

1. Scope

This document defines the methodology to be applied for the risk assessment and determination of appropriate mitigative measures for wrapped steel pipelines. This mitigation plan applies to wrapped steel pipelines of all installation years and intermediate pressure and below.

2. Responsibilities

2.2 The Manager Gas System Integrity shall be responsible for:

- 2.2.1 Overall program management including:
 - 2.2.1.1 Ensuring the risk model is run annually and validated as described in Section 4.
 - 2.2.1.2 Ensuring any modifications to the risk model, mitigation actions or mitigation category thresholds are documented as required in Section 7.
- 2.2.2 Creating work orders for main and service replacements in accordance with Section 6.1.
- 2.2.3 Monitoring completion of the work orders.
- 2.3 The *Manager Contract Management* shall be responsible for ensuring that work orders for replacements are completed in accordance with this program plan and as specified on the work order.

3. General

- 3.2. Wrapped steel pipeline segments are prioritized when identified where there are more than 3 active leaks or a combination of more than 4 active or repaired leaks or pipe condition concerns within 500' of main.
- 3.2 These segments are identified through plat reviews, field personnel, and normal work activities.
- 3.3 The wrapped steel pipeline mitigation plan uses a risk model to categorize pipeline segments into five mitigation categories. These categories specify what mitigation is required as detailed in Section 6 Table 1 of this plan.
 - 3.3.1 The four mitigation categories are Scheduled Replacement, Phased Program Replacement, Suitable for Monitoring, and Standard Mitigation.
- 3.4 Segments are prioritized accordingly when replacement work coincides with other planned work under different programs and if replacement of segment mitigates multiple risks.

4. Prioritizing Pipeline Replacements

- 4.1. A comprehensive risk model shall be used to perform a system risk assessment in order to prioritize replacement segments. The first comprehensive risk ranking of identified wrapped steel pipeline segments was performed in 2010.
 - 4.1.1. The risk model calculates the risk score based upon the following factors:
 - 4.1.1.1. Leak history active and repaired leaks;
 - 4.1.1.1.1. Leak grade;
 - 4.1.1.1.2. Leak cause;
 - 4.1.1.1.3. Leak frequency;
 - 4.1.1.2. Condition of pipe from exposed pipe condition reports; and,
 - 4.1.1.3. Proximity to high occupancy structures (HOS).
 - 4.1.2. The risk factors are assigned a relative weighting in accordance with Table 1.
 - 4.1.3. Each segment has two risk scores which are calculated by the concerned main footage and the proposed main footage. The concerned main footage is the footage in which the concerns are limited to and proposed main footage is the footage in which is most practical to replace.
 - 4.1.4. The risk scores are determined using the Relative Weighting value, number of occurrences of an event, and main footage in accordance with the following formula:

([Relative Weighting] x [# of occurrences]) ÷ [Concerned Main footage] = [Concerned Risk Score] ([Relative Weighting] x [# of occurrences]) ÷ [Proposed Main footage] = [Proposed Risk Score]

- 4.2. A system risk assessment utilizing the risk model shall be performed each calendar year.
- 4.3. The risk model shall be validated based on Subject Matter Expert (SME) input and data.
- 4.4. Prioritization of replacement and mitigation footage may be adjusted based upon the following three categories:
 - 4.4.1. Public Improvement
 - 4.4.1.1. Coincident public improvement projects;
 - 4.4.1.2. Right-of-way use restrictions or paving cut moratoriums;
 - 4.4.2. Field Identified
 - 4.4.3. Coordination with other Gas System Integrity replacement projects or coordination with replacing segments with the least impact to the cathodic protection system.
- 4.5. The risk model shall be updated annually to incorporate new data and newly identified segments.

			RELATIVE
	FACTOR	CONSEQUENCE	WEIGHTING
	Grada P1	HOS	0.13266
	Oldde D1	NO HOS	0.06633
	Grada P2	HOS	0.02316
Active Leek	Oldde B2	NO HOS	0.01158
Active Leak	Grade C	HOS	0.00434
	Glade C	NO HOS	0.00217
	Grade ()	HOS	0.00064
	Grade 0	NO HOS	0.00032
	Crada A DA	HOS	0.05668*
	Olade A, DA	NO HOS	0.02834*
	Crada D1	HOS	0.02720*
Historia Look	Glade B1	NO HOS	0.01360*
Historic Leak	Grada P2	HOS	0.01176*
		NO HOS	0.00588*
	Crede C	HOS	0.00388*
	Glade C	NO HOS	0.00194*
	Deep/Frequent	HOS	0.03588
	(General Corrosion, Multiple Pits Requiring Remediation)	NO HOS	0.01794
	Deep/Isolated	HOS	0.00230
EDCD	(Isolated Pit Requiring Remediation)	NO HOS	0.00115
EPCR	Shallow/Frequent	HOS	0.00122
Condition	(Multiple Pit Not Requiring Remediation)	NO HOS	0.00061
	Shallow/Isolated	HOS	0.00016
	(Isolated Pit Not Requiring Remediation)	NO HOS	0.00008
	Disbonded Costing	HOS	0.00696
	Disconded Coating	NO HOS	0.00348

 Table 1. Wrapped Steel Pipeline Replacement Risk Ranking Matrix

- 4.5 Relative weightings with asterisks are maximum weightings for that specific factor. The relative weightings vary depending the following criteria:
 - 4.5.1 Leak cause of historic leak;
 - 4.5.2 No leak information, but leak repair is platted on plat map; or
 - 4.5.3 Leak repair resulting in a main replacement.
- 4.6 The following table, Table 2, shows how each leak repair criteria is relatively scored (leak cause code is listed in parenthesis when applicable).

Leak Repair Criteria	Factor x Relative Weighting
Leak Cause - Corrosion (A, J, K, L, M)	1.00
Leak Cause - Excavation Damage (B)	0.75
Leak Cause - Natural Forces (C)	0.75
Leak Cause - Operations (D)	0.75
Leak Cause - Material or Welds (E)	1.00
Leak Cause - Other (F)	1.00
Leak Cause - Equipment (G)	0.75
Leak Cause - Other Outside Force Damage (H)	0.75
Leak Cause - Non-exposed (I)	1.00
Platted Leak Clamps and Reinforcing Sleeves	1.00
Main Replacement (A, F, J, K, L, M)	2.00

Table 2. Risk Factor Relative Weighting

- 4.7 The following table, Table 3, shows how each leak repair or indication is relatively scored based on the facility type:
 - 4.7.1 An existing service is defined by the original service as currently still existing and was not completely replaced at the time of the leak repair.
 - 4.7.2 A repaired service is defined by the original service as being completely replaced from meter to main at the time of the leak repair.

Facility	Factor x Relative Weighting
Main	1.00
Existing Service	1.00
Repaired Service	1.00

Table 3. Facility Risk Factor Relative Weighting

5. Wrapped Steel Pipeline Mitigation Categories

- 5.1 The mitigation categories shall be determined based on the following criteria except where SME review determines an alternate mitigation category is appropriate. Where SME's determine an alternate mitigation category is appropriate, the basis for this determination shall be documented for future reference. The following are the mitigation categories and the mitigation thresholds that prompt specific action to be taken:
 - 5.1.1 Scheduled Replacement Pipeline segments with a concerned score of ≥ 1.00 are considered for scheduled replacement and requires SME review when the concerned main footage is < 500', disbonded coating accounts for 50% or more of risk score, proposed risk score is < 0.80, services account for 50% or more of risk score or other concerns are present.
 - 5.1.2 Phased Program Replacement Pipeline segments that meet the requirements of scheduled replacement, but require a large scale replacement to be completed over a number of years.
 - 5.1.3 Suitable for Monitoring Pipeline segments that are not in the first three categories, but based on SME review should be monitored on an annual basis.
 - 5.1.4 Standard Mitigation Pipeline segments that are not in the other categories and require no action other than normal operation and maintenance activities.
- 5.2 The mitigation categories and mitigation category thresholds may change as specified in Section 7.

6. Mitigation Plan

- 6.1 Wrapped steel pipelines shall be mitigated based on their mitigation category as described in Table 4.
- 6.2 The mitigation actions may change as specified in Section 7.

Mitigation Category	Mitigation Plan Description
Scheduled Replacement	• Replace segment within 4 calendar years after identified as Scheduled Replacement except where customer issues, permits or other unusual circumstances prevent replacement, or unless additional data indicates the segment should be re- evaluated.
Phased Program Replacement	• Develop a phased plan to replace the larger segment considering the data. Document the plan and replace in accordance with the plan.
Suitable for Monitoring	• Re-evaluate segment on annual basis. Perform normal operation and maintenance activities.
Standard Mitigation	• Perform normal operation and maintenance activities.

Table 4. Mitigation Plan

7. Measure Performance, Monitor Results, and Evaluate Effectiveness

- 7.1 PSE will measure the performance of wrapped steel pipeline in each mitigation category to evaluate opportunities to refine the wrapped steel pipeline risk model. This shall include tracking the following information and evaluating the trends:
 - 7.1.1 The number of corrosion leaks on wrapped steel mains and services each year.
 - 7.1.3 The footage of wrapped steel pipelines replaced during the previous calendar year and wrapped steel pipelines not replaced on-time.
 - 7.1.4 The footage of wrapped steel pipelines targeted for replacement for the current calendar year.
- 7.2 This data shall be reported in the Continuing Surveillance Annual Report and shall include a discussion of the trends and evaluation of the effectiveness of the wrapped steel pipeline risk model.
- 7.3 If revisions to the wrapped steel pipeline risk model and/or mitigation thresholds and actions are required, a plan for how PSE will proceed with making the revisions shall be included in the Continuing Surveillance Annual Report.

8. Records

- 8.1 Records summarizing the results of each annual risk assessment shall be maintained and incorporated into the distribution integrity management program.
- 8.2 Records demonstrating mitigation plans were implemented as required by this Plan shall be maintained.

Appendix F-3: Older Vintage PE Pipe Mitigation Program

1. Scope

This document defines the methodology to be applied for the risk assessment and determination of appropriate mitigative measure for older polyethylene (PE) mains and services. This program includes PE mains and services installed prior to 1986.

2. Responsibilities

- 2.1 The Manager of Gas System Integrity shall be responsible for:
 - 2.1.1 Overall program management including:
 - 2.1.1.1 Ensuring the risk model is run annually and validated as described in Section 4.
 - 2.1.1.2 Ensuring any modifications are documented.
 - 2.1.2 Creating work orders for main and service replacements in accordance with Section 6.1.
 - 2.1.3 Monitoring completion of the work orders.
- 2.2 The *Manager Contract Management* shall be responsible for ensuring that work orders for replacements are completed as specified on the work order.

3. General

- 3.1 Older PE pipeline segments are risk ranked when one or more instances of brittle cracking or fusion failure are found on Aldyl HD pipe.
 - 3.2.1 Segments are defined as concurrently installed facilities. For main this includes all main installed on the same job number. For services it includes the entire service or portion of service installed with the portion found defective.
 - 3.2.2 The segment boundaries may be adjusted if appropriate based on subject matter expert knowledge to achieve the greatest reduction in overall system risk.
- 3.2 These locations are identified through material failure analysis, leak management system records and field personnel.
- 3.3 The older PE pipeline mitigation plan uses a risk model to categorize pipeline segments into four mitigation categories. These categories specify what mitigation is required as detailed in Section 6 of this plan.
 - 3.2.1 The mitigation categories are Priority Replacement, Scheduled Replacement, Phased Program Replacement, and Suitable for Monitoring.

4. Prioritizing Pipeline Replacements

4.1. A comprehensive risk model shall be used to perform a system risk assessment in order to determine appropriate mitigation for pipe segments.

- 4.1.1. The risk model calculates the risk score based upon the following factors:
 - 4.1.1.1. The likelihood of Leak frequency the number of leaks caused by brittle cracking or fusion failure in conjunction with the vintage of the leak;
 - 4.1.1.1.1. Leak severity the leak grade;
 - 4.1.1.1.2. Leak cause confidence the confidence level that a leak was caused by brittle cracking or fusion failure;
 - 4.1.1.1.3. The reported condition of pipe bedding from Form 3704; and,
 - 4.1.1.1.4. Proximity to high occupancy structures (HOS).
- 4.1.2. The risk factors are assigned a relative weighting in accordance with Table 1.
- 4.1.3. The risk scores are determined using the Relative Weighting value, number of occurrences of each event, and main footage in accordance with the following formula:

([Relative Weighting] x [# of occurrences]) ÷ [Proposed Main footage] = [Risk Score]

- 4.2. A system risk assessment utilizing the risk model shall be performed each calendar year.
- 4.3. The risk model shall be validated based on Subject Matter Expert (SME) input and data.
- 4.4. Prioritization of replacement and mitigation footage may be adjusted based upon the following three categories:
 - 4.4.1. Public Improvement
 - 4.4.1.1. Coincident public improvement projects;
 - 4.4.1.2. Right-of-way use restrictions or paving cut moratoriums;
 - 4.4.2. Field Identified
 - 4.4.3. Coordination with other Gas System Integrity replacement projects or coordination with replacing segments with the least impact to the cathodic protection system.
- 4.5. Re-evaluation of selected segments will occur on an on-going basis to incorporate new data.

	YEARS SINCE	Leak Grade	Consequence	
	LEAK			
БАСТОВ	REPORTED			RELATIVE
FACIUR Leak Caused	DATE	Grade A	HOS	0.2664
Leak Causeu		Uldue A	NO HOS	0.1332
Brittle	·	Grade BA	HOS	0.1332
Cracking		Olduc DA	NO HOS	0.1998
or Fusion		Grade B1	HOS	0.1332
Failure	0 - 3	Glude D1	NO HOS	0.0666
		Grade B2	HOS	0.05328
		Glude D2	NO HOS	0.02664
		Grade C	HOS	0.01332
		Giude C	NO HOS	0.00666
		Grade A	HOS	0.24
			NO HOS	0.12
		Grada DA		0.12
		Glade DA	NOUOS	0.18
		Grada D1		0.09
	>3-4	Ulade DI	NO HOS	0.12
		Grada D2		0.00
		Glade B2	NO HOS	0.048
		Crada C		0.024
		Utade C	NO HOS	0.012
		Grade A	HOS	0.000
		Ulaue A	NO HOS	0.2128
		Grade BA	HOS	0.1596
			NO HOS	0.1390
	·	Grade B1	HOS	0.1064
	>4-5	Older DI	NO HOS	0.0532
	·	Grade B2	HOS	0.0352
		Glude D2	NO HOS	0.02128
		Grade C	HOS	0.01064
		Giude C	NO HOS	0.00532
		Grade A	HOS	0.1864
		Giude II	NO HOS	0.0932
		Grade BA	HOS	0.1398
			NO HOS	0.0699
		Grade B1	HOS	0.0932
	>5-6		NO HOS	0.0466
		Grade B2	HOS	0.03728
			NO HOS	0.01864
		Grade C	HOS	0.00932
			NO HOS	0.00466
	>6-7	Grade A	HOS	0.16
		Grade A	NO HOS	0.08
		Grade BA	HOS	0.12
		Giude Di I	NO HOS	0.06
		Grade B1	HOS	0.08
			NO HOS	0.04

 Table 1. Older PE Pipeline Leak Frequency

FACTOR LEAK REPORTED DATE Grade B2 HOS 0.032 FACTOR Grade C HOS 0.032 NO HOS 0.008 0.008 Grade C HOS 0.008 NO HOS 0.004 0.008 Grade A HOS 0.004 NO HOS 0.004 0.004 Grade BA HOS 0.01528 Grade BA HOS 0.0498 Grade B1 HOS 0.0498 Grade B2 HOS 0.02656 NO HOS 0.01328 0.01328 Grade C HOS 0.00644 Uncertain Grade A HOS 0.00352 Cause Grade B2 HOS 0.02656 Cause NO HOS 0.0328 0.0464 Craking Grade B2 HOS 0.02656 Grade B2 HOS 0.02656 0.0332 Grade B2 HOS 0.00664 0.01328 Grade B2 HOS 0.00664 0.012 <th></th> <th>YEARS SINCE</th> <th>Leak Grade</th> <th>Consequence</th> <th></th>		YEARS SINCE	Leak Grade	Consequence	
FACTOR DATE Grade B2 HOS 0.032 $Grade B2$ HOS 0.016 0.016 0.016 Grade C HOS 0.008 0.004 0.004 Grade C HOS 0.0166 0.004 0.004 0.004 Grade A HOS 0.0123 0.00664 0.0044 0.00664 0.00664 0.01323 0.00664 0.0168 0.002566 0.00332 Grade B1 HOS 0.02656 0.00332 Grade C HOS 0.00664 0.00332 Grade C HOS 0.00664 0.00332 Grade C HOS 0.00664 Grade A HOS 0.00332 Grade B1 HOS 0.00664 Grade BA HOS 0.00664 Grade BA HOS 0.00332 Grade BA Grade BA Grade BA HOS 0.00664 Grade BA HOS 0.0066 Grade BA HOS		LEAK			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	БАСТОР	REPORTED			RELATIVE
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FACTOR	DAIE	Grade B2	HOS	0.032
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Glade D2	NO HOS	0.032
S = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		·	Grade C	HOS	0.010
S = -4 = -5 = -4 = -5 = -4 = -5 = -4 = -5 = -5			Grade C	NO HOS	0.008
			Grade A	HOS	0.1328
>7 =			Olduc A	NO HOS	0.0664
Since BA HOS 0.0498 0.0498 0.0498 0.02656 0.02656 0.0000 0.00332 0.0000 0.00032 0.0000 0.00032 0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000			Grade BA	HOS	0.0004
$ >7 \qquad \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Oldde DA	NO HOS	0.0790
Since Bit NO HOS 0.0332 Grade B2 HOS 0.0332 Grade B2 HOS 0.01328 Grade C HOS 0.0064 NO HOS 0.000332 Grade C HOS 0.00664 NO HOS 0.00664 NO HOS 0.00664 Society Society Grade BA HOS 0.00664 NO HOS 0.00664 Grade B1 HOS 0.00664 Society Grade B1 HOS 0.00664 Society Grade B1 HOS 0.00664 Grade B1 HOS 0.00664 Society Grade B2 HOS 0.002656 Society Grade B2 HOS 0.00664 Society Grade B1 HOS 0.006 Grade BA HOS 0.003 Grade B1 HOS 0.006 Society Grade B1 HOS 0.006 Grade B1 HOS 0.003 Grade B1 HOS 0.003 Grade A HOS 0.003 Grade A HOS 0.003 Grade B1 HOS 0.00532 Grade BA HOS 0.00532 Grade BA HOS 0.00532 Grade B1 NO HOS 0.0012 Grade C HOS 0.00532 Grade B1 NO HOS 0.0012 Grade C HOS 0.00532 Grade B1 NO HOS 0.0012 Grade C HOS 0.00532 Grade B1 NO HOS 0.0012 Grade C HOS 0.00532 Grade B1 NO HOS 0.0012 Grade C HOS 0.0012 Grade C HOS 0.00532 Grade B1 NO HOS 0.0012 Grade C HOS 0.0012 Grade B1 NO HOS 0.0012 Grade C HOS 0.00266 Society Grade B1 NO HOS 0.0012 Grade B1 NO HOS 0.0012 Grade B1 NO HOS 0.0012 Grade B1 NO HOS 0.00164 Grade A HOS 0.00266 Grade B1 NO HOS 0.00266 Grade B1 NO HOS 0.00266 Society Society Grade B1 HOS 0.00464 Grade B1			Grade B1	HOS	0.0664
S = -4		>7	Glude D1	NO HOS	0.0332
$ \begin{vmatrix} -3 - 4 \\ -5 - 6 \\ \end{vmatrix} $		·	Grade B2	HOS	0.0552
$ \begin{vmatrix} & & & & & & & & & &$			Glude D2	NO HOS	0.01328
$ \begin{vmatrix} \text{Grade C} & \text{IOC} & \text{OO332} \\ \hline \text{Icertain} \\ \text{Cause, Having} \\ \text{Cause Codes} \\ \text{Consistent} \\ \text{with Brittle} \\ \text{Cracking} \\ \text{or Fusion} \\ \text{Failure} \end{vmatrix} 0 - 3 \\ \begin{pmatrix} \text{Grade BA} & \text{HOS} & 0.00364 \\ \hline \text{Grade BA} & \text{HOS} & 0.0096 \\ \hline \text{Grade BA} & \text{HOS} & 0.0096 \\ \hline \text{Grade B1} & \text{HOS} & 0.0096 \\ \hline \text{HOS} & 0.00332 \\ \hline \text{HOS} & 0.00332 \\ \hline \text{Grade B1} & \text{HOS} & 0.00664 \\ \hline \text{NO HOS} & 0.01328 \\ \hline \text{Grade B2} & \text{HOS} & 0.00664 \\ \hline \text{Grade C} & \text{HOS} & 0.00664 \\ \hline \text{Grade C} & \text{HOS} & 0.000664 \\ \hline \text{Grade C} & \text{HOS} & 0.000664 \\ \hline \text{Grade C} & \text{HOS} & 0.000664 \\ \hline \text{OO HOS} & 0.00332 \\ \hline \text{Grade BA} & \text{HOS} & 0.00664 \\ \hline \text{NO HOS} & 0.006 \\ \hline \text{Grade BA} & \text{HOS} & 0.006 \\ \hline \text{Grade BA} & \text{HOS} & 0.006 \\ \hline \text{Grade BA} & \text{HOS} & 0.006 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade BA} & \text{HOS} & 0.006 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade BA} & \text{HOS} & 0.006 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade B2} & \text{HOS} & 0.006 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade B2} & \text{HOS} & 0.0024 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade B2} & \text{HOS} & 0.0024 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade B2} & \text{HOS} & 0.0024 \\ \hline \text{NO HOS} & 0.003 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{Grade B4} & \text{HOS} & 0.0266 \\ \hline \text{Grade B4} & \text{HOS} & 0.0226 \\ \hline \text{Grade B4} & \text{HOS} & 0.0226 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{Grade B4} & \text{HOS} & 0.00266 \\ \hline \text{Grade B4} & \text{HOS} & 0.00266 \\ \hline \text{Grade B4} & \text{HOS} & 0.00266 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{NO HOS} & 0.00266 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{NO HOS} & 0.00266 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{NO HOS} & 0.00266 \\ \hline \text{Grade B4} & \text{HOS} & 0.0028 \\ \hline \text{NO HOS} & 0.00464 \\ \hline \text{Grade B4} & \text{HOS} & 0.00464 \\ \hline $			Grade C	HOS	0.00664
Leaks of Uncertain Cause, Having Cause Codes Consistent with Brittle Tracking or Fusion Failure 0 - 3 Grade A Grade B1 HOS NO HOS 0.01328 0.00664 $0-3$ Grade B1 HOS 0.00498 Grade B1 HOS 0.00664 NO HOS 0.01322 Grade B1 HOS 0.02656 NO HOS 0.01328 Grade B2 HOS 0.002656 NO HOS 0.01328 Grade C HOS 0.00332 Grade C HOS 0.00664 NO HOS 0.00332 Grade A Grade A HOS 0.006 Grade BA HOS 0.0045 NO HOS 0.0045 0.004 Grade BA HOS 0.004 NO HOS 0.012 NO HOS 0.012 Grade BA HOS 0.024 NO HOS 0.024 NO HOS 0.0012 Grade C HOS 0.0012 Grade C HOS 0.00332 Grade A HOS 0.00332 S-4			Grade C	NO HOS	0.00332
Uncertain Cause, Having Cause Codes Consistent with Brittle Cracking or Fusion Failure 0 - 3 Grade BA Grade BA Grade BA HOS HOS 0.0996 0.0996 $Grade BA$ HOS 0.0498 $Grade BI$ HOS 0.0664 Consistent with Brittle Cracking or Fusion Failure Grade B1 HOS 0.02656 $Grade C$ HOS 0.00664 0.000664 $Grade C$ HOS 0.000664 $NO HOS$ 0.01328 0.006 $Grade A$ HOS 0.00664 $NO HOS$ 0.01328 0.006 $Grade A$ HOS 0.00664 $NO HOS$ 0.0122 0.006 $Grade BA$ HOS 0.0045 $NO HOS$ 0.024 0.06 $S^3 - 4$ Grade B1 HOS 0.0024 $NO HOS$ 0.012 Grade C HOS 0.003 $S^4 - 5$ Grade A HOS 0.003 $S^4 - 5$ Grade BA HOS 0.0266 $Grade BA$ HOS 0.02128 NO HOS	Leaks of		Grade A	HOS	0.1328
$ \begin{array}{c c} Cause \\ Codes \\ Codes \\ Consistent \\ with Brittle \\ Cracking \\ or Fusion \\ Failure \\ \end{array} \left(\begin{array}{c c} 0-3 \end{array} \right) \left(\begin{array}{c c} Grade BA \\ \hline Grade B1 \\ \hline HOS \\ Grade B1 \\ \hline HOS \\ \hline \hline HOS \\ \hline H$	Uncertain		Glude II	NO HOS	0.0664
$ \begin{array}{c ccccc} \hline Cause Codes \\ Consistent \\ with Brittle \\ Cracking or Fusion \\ Failure \end{array} 0 - 3 \\ 0 - 3 \\ 0 - 3 \\ \hline 0$	Cause, Having		Grade BA	HOS	0.0996
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cause		Glude Di l	NO HOS	0.0498
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Codes		Grade B1	HOS	0.0664
with Brittle Cracking or Fusion Failure Grade B2 HOS 0.02656 Grade B2 HOS 0.02656 NO HOS 0.01328 Grade C HOS 0.00664 NO HOS 0.00332 Grade A HOS 0.00332 Grade BA HOS 0.003 MO HOS 0.006 0.09 Solution Grade BA HOS 0.00132 Solution Grade BA HOS 0.003 Grade BA HOS 0.0045 0.0045 Grade B1 HOS 0.024 0.006 NO HOS 0.0012 0.006 0.0012 Grade C HOS 0.003 0.0012 Grade A HOS 0.003 0.006 NO HOS 0.003 0.006 0.003 Grade BA HOS 0.00332 0.006 Solution 0.00532 0.00532 0.00532 Grade B1 NO HOS 0.00266 0.00532 <td rowspan="5">Consistent with Brittle Cracking or Fusion Failure</td> <td rowspan="14">0-3</td> <td>Glude B1</td> <td>NO HOS</td> <td>0.0332</td>	Consistent with Brittle Cracking or Fusion Failure	0-3	Glude B1	NO HOS	0.0332
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Grade B2	HOS	0.02656
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				NO HOS	0.01328
Failure NO HOS 0.00332 $Grade A$ HOS 0.00332 $Grade A$ HOS 0.06 $NO HOS$ 0.06 $Grade BA$ HOS 0.09 $NO HOS$ 0.045 $Grade BA$ HOS 0.06 $NO HOS$ 0.045 $Grade B1$ HOS 0.06 $NO HOS$ 0.024 $Grade B2$ HOS 0.006 $NO HOS$ 0.012 $Grade C$ HOS 0.006 $NO HOS$ 0.003 $Grade A$ HOS 0.006 $NO HOS$ 0.012 $Grade A$ HOS 0.00164 $Grade A$ HOS 0.0798 $NO HOS$ 0.0399 HOS 0.02128 $Grade B1$ NO HOS 0.0266 Grade B2 HOS 0.000532 NO HOS 0.000532 $Grade C$ HOS 0.000532 NO HOS 0.000532 $NO HOS$ 0.00266 N			Grade C	HOS	0.00664
>3-4 $Grade A = HOS = 0.12$ NO HOS = 0.06 $O(12)$ NO HOS = 0.06 $O(12)$ NO HOS = 0.06 $O(12)$ NO HOS = 0.09 NO HOS = 0.045 $O(12)$ NO HOS = 0.09 NO HOS = 0.045 O(12)				NO HOS	0.00332
$>3-4$ $\begin{array}{ c c c c c c } \hline NO HOS & 0.06 \\\hline \hline NO HOS & 0.09 \\\hline \hline NO HOS & 0.045 \\\hline \hline NO HOS & 0.045 \\\hline \hline NO HOS & 0.03 \\\hline \hline Grade B1 & HOS & 0.024 \\\hline \hline NO HOS & 0.012 \\\hline \hline Oracle B2 & HOS & 0.024 \\\hline \hline NO HOS & 0.012 \\\hline \hline Grade C & HOS & 0.006 \\\hline \hline NO HOS & 0.003 \\\hline \hline Grade A & HOS & 0.006 \\\hline \hline NO HOS & 0.003 \\\hline \hline Oracle BA & HOS & 0.003 \\\hline \hline Oracle BA & HOS & 0.0032 \\\hline \hline Oracle BA & HOS & 0.00532 \\\hline \hline Grade BA & HOS & 0.0242 \\\hline \hline Oracle B1 & NO HOS & 0.02128 \\\hline \hline NO HOS & 0.02128 \\\hline \hline NO HOS & 0.00532 \\\hline \hline Oracle B1 & NO HOS & 0.0066 \\\hline\hline \hline Oracle B2 & HOS & 0.01064 \\\hline \hline Oracle B2 & HOS & 0.02128 \\\hline \hline NO HOS & 0.002128 \\\hline \hline NO HOS & 0.00266 \\\hline\hline \hline Oracle B2 & HOS & 0.0028 \\\hline\hline \hline NO HOS & 0.00266 \\\hline\hline \hline Oracle B1 & NO HOS & 0.00266 \\\hline\hline\hline \hline Oracle B1 & HOS & 0.00266 \\\hline\hline \hline Oracle B1 & HOS & 0.00266 \\\hline\hline\hline \hline \hline \hline NO HOS & 0.00266 \\\hline\hline\hline \hline $			Grade A	HOS	0.12
>3-4 $Grade BA HOS 0.09$ NO HOS 0.045 $Grade B1 HOS 0.06$ NO HOS 0.03 $Grade B2 HOS 0.024$ NO HOS 0.012 $Grade C HOS 0.006$ NO HOS 0.006 $NO HOS 0.006$ $RO HOS 0.006$ $RO HOS 0.006$ $RO HOS 0.006$ $RO HOS 0.003$ $Grade A HOS 0.1064$ $Grade A HOS 0.0798$ $RO HOS 0.0399$ $HOS 0.0399$ $HOS 0.0266$ $Grade B1 NO HOS 0.0266$ $Grade B2 HOS 0.02128$ $RO HOS 0.01064$ $Grade C HOS 0.0266$ $RO HOS 0.00532$ $RO HOS 0.00164$ $RO HOS 0.00266$ $Ro HOS 0.00266$ $Ro HOS 0.00064$ $RO HOS 0.00066$ $RO HOS 0.00064$ $RO HOS 0.00066$ $RO HOS 0.00064$ $RO HOS 0.00066$ $RO HOS 0.00$				NO HOS	0.06
$>3-4$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Grade BA	HOS	0.09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				NO HOS	0.045
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Grade B1	HOS	0.06
$\begin{tabular}{ c c c c c c } \hline Grade B2 & HOS & 0.024 \\ \hline NO HOS & 0.012 \\ \hline Grade C & HOS & 0.006 \\ \hline NO HOS & 0.003 \\ \hline Grade A & HOS & 0.1064 \\ \hline Grade A & NO HOS & 0.0532 \\ \hline Grade BA & HOS & 0.0798 \\ \hline NO HOS & 0.0399 \\ \hline HOS & 0.0266 \\ \hline Grade B1 & NO HOS & 0.0266 \\ \hline Grade B2 & HOS & 0.02128 \\ \hline NO HOS & 0.01064 \\ \hline Grade C & HOS & 0.00532 \\ \hline NO HOS & 0.00266 \\ \hline S5-6 & Grade A & HOS & 0.00266 \\ \hline Grade BA & HOS & 0.00266 \\ \hline Grade BA & HOS & 0.00266 \\ \hline On HOS & 0.00266 \\ \hline NO HOS & 0.00266 \\ \hline NO HOS & 0.00266 \\ \hline NO HOS & 0.00266 \\ \hline On HOS & 0.00266 \\ \hline On HOS & 0.00266 \\ \hline On HOS & 0.0028 \\ \hline NO HOS & 0.00464 \\ \hline Or ade BA & HOS & 0.0348 \\ \hline Or ade BA & HOS & 0.0348 \\ \hline Or ade BA & HOS & 0.0348 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0348 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline On HOS & 0.0348 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0348 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline Or ade B1 & HOS & 0.0464 \\ \hline \hline Or ade B1 & HOS & 0.0464 \\ \hline \hline Or ade B1 & HOS & 0.0464 \\ \hline \hline Or ade B1 & HOS & 0.0464 \\ \hline \hline \hline Or ade B1 & HOS & 0.0464 \\ \hline \hline \hline \hline Or ade B1 & HOS & 0.0464 \\ \hline \hline \hline \hline \hline Or ade B1 & HOS & 0.0464 \\ \hline $				NO HOS	0.03
$\begin{array}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$			Grade B2	HOS	0.024
$ \begin{array}{ c c c c c c c } \hline Grade C & HOS & 0.006 \\ \hline & NO HOS & 0.003 \\ \hline & Of ade A & HOS & 0.1064 \\ \hline & Grade A & NO HOS & 0.0532 \\ \hline & Grade BA & HOS & 0.0798 \\ \hline & NO HOS & 0.0399 \\ \hline & NO HOS & 0.0399 \\ \hline & HOS & 0.0266 \\ \hline & Grade B1 & NO HOS & 0.0266 \\ \hline & Grade B2 & HOS & 0.02128 \\ \hline & NO HOS & 0.01064 \\ \hline & Grade C & HOS & 0.00532 \\ \hline & NO HOS & 0.00266 \\ \hline & S5-6 & Grade A & HOS & 0.00266 \\ \hline & S5-6 & Grade BA & HOS & 0.00464 \\ \hline & Grade BA & HOS & 0.00464 \\ \hline & Grade BA & HOS & 0.00464 \\ \hline & Grade BA & HOS & 0.0348 \\ \hline & Grade B1 & HOS & 0.0464 \\ \hline \end{array} $				NO HOS	0.012
$>4-5$ $\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$			Grade C	HOS	0.006
$>4-5$ $\begin{array}{ c c c c c c }\hline & Grade A & HOS & 0.1064 \\ \hline & Grade A & NO HOS & 0.0532 \\ \hline & Grade BA & HOS & 0.0798 \\ \hline & NO HOS & 0.0399 \\ \hline & NO HOS & 0.0399 \\ \hline & HOS & 0.0532 \\ \hline & Grade B1 & NO HOS & 0.0266 \\ \hline & Grade B2 & HOS & 0.02128 \\ \hline & NO HOS & 0.01064 \\ \hline & Grade C & HOS & 0.00532 \\ \hline & NO HOS & 0.00266 \\ \hline & S5-6 & Grade A & HOS & 0.00266 \\ \hline & S5-6 & Grade A & HOS & 0.00266 \\ \hline & O HOS & 0.00266 \\ \hline & NO HOS & 0.00464 \\ \hline & Grade BA & HOS & 0.00464 \\ \hline & O HOS & 0.0348 \\ \hline & O HOS & 0.0348 \\ \hline \end{array}$				NO HOS	0.003
$>4-5$ $\begin{array}{ c c c c c c } \hline & Grade A & NO HOS & 0.0532 \\ \hline & Grade BA & HOS & 0.0798 \\ \hline & NO HOS & 0.0399 \\ \hline & HOS & 0.0532 \\ \hline & HOS & 0.0266 \\ \hline & Grade B1 & NO HOS & 0.0266 \\ \hline & Grade B2 & HOS & 0.02128 \\ \hline & NO HOS & 0.01064 \\ \hline & Grade C & HOS & 0.00532 \\ \hline & NO HOS & 0.00266 \\ \hline & S5-6 & Grade A & HOS & 0.0928 \\ \hline & NO HOS & 0.0464 \\ \hline & Grade BA & HOS & 0.0464 \\ \hline & NO HOS & 0.0348 \\ \hline & NO HOS & 0.0464 \\ \hline \end{array}$			Grade A	HOS	0.1064
Second State Grade BA HOS 0.0798 NO HOS 0.0399 NO HOS 0.0399 HOS 0.0532 HOS 0.0266 Grade B1 NO HOS 0.02128 NO HOS 0.01064 Grade C HOS 0.00532 NO HOS 0.00532 Second C HOS 0.001064 NO HOS 0.00266 Second C HOS 0.00266 NO HOS 0.00464 Grade A HOS 0.00464 NO HOS 0.0348 Grade B1 HOS 0.0464 NO HOS 0.0464		> 1 5	Grade A	NO HOS	0.0532
NO HOS 0.0399 HOS 0.0532 Grade B1 NO HOS 0.0266 Grade B2 HOS 0.02128 NO HOS 0.01064 Grade C HOS 0.00532 NO HOS 0.00532 Orade C HOS 0.00266 >5 - 6 Grade A HOS 0.00266 Source NO HOS 0.00266 0.00266 NO HOS 0.00266 0.00266 0.00266 Source Grade A HOS 0.00266 NO HOS 0.00464 0.00464 0.00464 Grade BA HOS 0.0348 0.0464		>4 - 5	Grade BA	HOS	0.0798
$\begin{tabular}{ c c c c c c c c c c } \hline & HOS & 0.0532 \\ \hline & Grade B1 & NO HOS & 0.0266 \\ \hline & Grade B2 & HOS & 0.02128 \\ \hline & NO HOS & 0.01064 \\ \hline & Grade C & HOS & 0.00532 \\ \hline & NO HOS & 0.00266 \\ \hline & NO HOS & 0.00266 \\ \hline & NO HOS & 0.0464 \\ \hline & Grade BA & HOS & 0.0696 \\ \hline & NO HOS & 0.0348 \\ \hline & Grade B1 & HOS & 0.0464 \\ \hline \end{tabular}$				NO HOS	0.0399
Grade B1 NO HOS 0.0266 Grade B2 HOS 0.02128 NO HOS 0.01064 Grade C HOS 0.00532 NO HOS 0.00266 >5 - 6 Grade A HOS 0.00266 Grade BA HOS 0.00266 NO HOS 0.00464 0.0464 Grade BA HOS 0.0348 Grade B1 HOS 0.0464				HOS	0.0532
Grade B2 HOS 0.02128 NO HOS 0.01064 Grade C HOS 0.00532 NO HOS 0.00266 >5 - 6 Grade A HOS 0.00266 NO HOS 0.00266 0.00266 0.00266 Grade BA HOS 0.00464 0.0464 Grade BA HOS 0.0348 0.0464			Grade B1	NO HOS	0.0266
NO HOS 0.01064 Grade C HOS 0.00532 NO HOS 0.00266 >5 - 6 Grade A HOS 0.0928 NO HOS 0.0464 Grade BA HOS 0.0696 NO HOS 0.0348 Grade B1 HOS 0.0464			Grade B2	HOS	0.02128
Grade C HOS 0.00532 NO HOS 0.00266 >5 - 6 Grade A HOS 0.0928 NO HOS 0.0464 0.0464 Grade BA HOS 0.0348 Grade B1 HOS 0.0464				NO HOS	0.01064
NO HOS 0.00266 >5-6 Grade A HOS 0.0928 NO HOS 0.0464 0.0464 Grade BA HOS 0.0348 Grade B1 HOS 0.0464			Grade C	HOS	0.00532
>5-6 Grade A HOS 0.0928 NO HOS 0.0464 Grade BA HOS 0.0696 NO HOS 0.0348 Grade B1 HOS 0.0464				NO HOS	0.00266
NO HOS 0.0464 Grade BA HOS 0.0696 NO HOS 0.0348 Grade B1 HOS 0.0464		>5-6	Grade A	HOS	0.0928
Grade BA HOS 0.0696 NO HOS 0.0348		- •		NO HOS	0.0464
NO HOS 0.0348 Grade B1 HOS 0.0464			Grade BA	HOS	0.0696
Grade B1 HOS 0.0464				NO HOS	0.0348
			Grade B1	HOS	0.0464

	YEARS SINCE	Leak Grade	Consequence	
	LEAK			
FACTOR	REPORTED			RELATIVE
FACTOR	DATE		NO HOS	WEIGHTING
		C 1 D2	NO HOS	0.0232
		Grade B2	HUS	0.01856
		0 1 0	NO HOS	0.00928
		Grade C	HOS	0.00464
		0 1 4	NO HOS	0.00232
		Grade A	HOS	0.08
		G 1 D 4	NO HOS	0.04
		Grade BA	HOS	0.06
		G 1 54	NO HOS	0.03
	>6-7	Grade B1	HOS	0.04
		G 1 54	NO HOS	0.02
		Grade B2	HOS	0.016
		~ ~	NO HOS	0.008
		Grade C	HOS	0.004
			NO HOS	0.002
		Grade A	HOS	0.0664
			NO HOS	0.0332
		Grade BA	HOS	0.0498
			NO HOS	0.0249
	>7	Grade B1	HOS	0.0332
	- /		NO HOS	0.0166
		Grade B2	HOS	0.01328
			NO HOS	0.00664
		Grade C	HOS	0.00332
			NO HOS	0.00166
			HOS	
Reports of				
Large or		NA		0.00528
Sharp Rocks	NA		NO HOS	0.00020
Pipe Bedding				
				0.00264

5. Older PE Pipeline Mitigation Categories

- 5.1 The mitigation categories shall be determined based on the following criteria except where SME review determines an alternate mitigation category is appropriate. Where SME's determine an alternate mitigation category is appropriate, the basis for this determination shall be documented for future reference.
 - 5.1.5 Priority Replacement Services that have had a brittle-like crack or fusion failure.
 - 5.1.6 Scheduled Replacement Pipeline segments with a risk/footage score of \geq 0.0002.

- 5.1.7 Phased Program Replacement Pipeline segments where one or more section has meet the Scheduled Replacement criteria and the data indicates a larger section should be replaced but does not meet the Scheduled Replacement criteria.
- 5.1.8 Suitable for Monitoring Pipeline segments that are not in the first three categories but have experienced a fusion failure or brittle like cracking.
- 5.2 The mitigation categories and mitigation category thresholds may change as specified in Section 7.

6. Mitigation Plan

Mitigation Category	Mitigation Plan Description
Calegory	
Priority	Penlace as soon as possible following identification
Replacement	Replace as soon as possible following identification.
Scheduled Replacement	Replace segment in the calendar year following identification as
	a Scheduled Replacement except where customer issues,
	permits, or other unusual circumstances prevent replacement.
Phased	Develop a phased plan to replace the larger segment considering
Program	the data. Document the plan and replace in accordance with the
Replacement	plan.
Suitable for	Re-evaluate segment on annual basis. Perform normal operation
Monitoring	and maintenance activities.

Table 2. Mitigation Plan

7. Measure Performance, Monitor Results, and Evaluate Effectiveness

- 7.1 PSE will measure the performance of older PE pipeline in each mitigation category to evaluate opportunities to refine the older PE pipeline risk model. This shall include tracking the following information and evaluating the trends:
 - 7.1.1 The number of brittle like cracking and fusion failures on Older PE each year.
 - 7.1.2 The footage of older PE pipelines replaced during the previous calendar year compared to the target footage.
 - 7.1.3 The footage of older PE pipelines targeted for replacement for the current calendar year.
- 7.2 This data shall be reported in the Continuing Surveillance Annual Report and shall include a discussion of the trends and evaluation of the effectiveness of the older PE pipeline risk model.
- 7.3 If revisions to the older PE pipeline risk model and/or mitigation thresholds and actions are required, a plan for how PSE will proceed with making the revisions shall be included in the Continuing Surveillance Annual Report.

8 Records

8.1 Records summarizing the results of each annual risk assessment shall be maintained for 10 years.