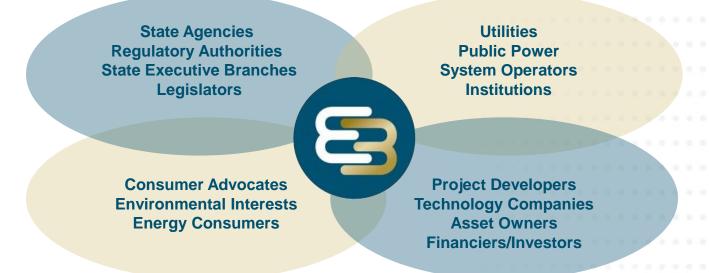


Energy+Environmental Economics


Transportation Electrification Cost-benefit Analysis

Washington Utilities and Transportation Commission Docket UE-160799 Workshop September 13, 2016

Eric Cutter Director, Distributed Energy Resources

- Founded in 1989, E3 is an industry leading consultancy in North America with a growing international presence
- E3 operates at the nexus of energy, environment and economics
- Our team employs a unique combination of economic analysis, modeling acumen and deep institutional insight to solve complex problems for a diverse client base including critical thought leadership

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	9			

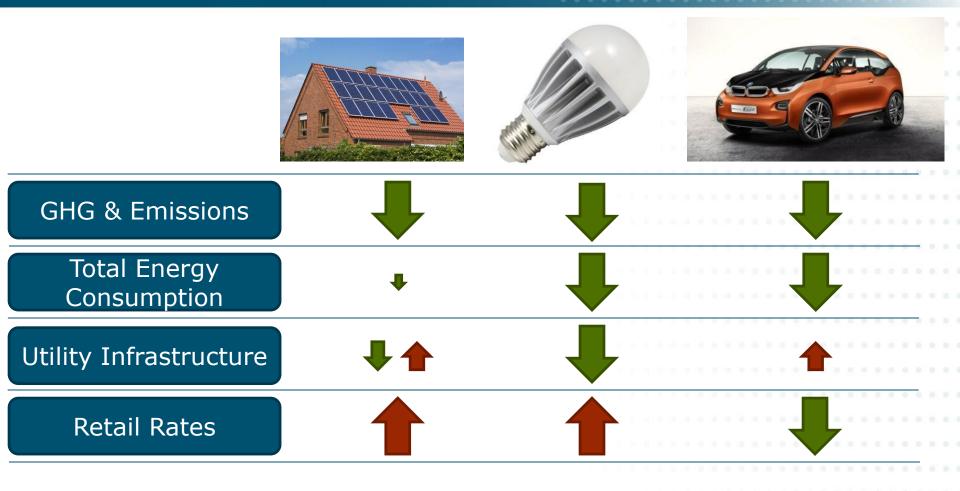
- Several utilities in PNW have retained E3 to study benefits of transportation electrification (TE)
- Here to share pertinent information helpful for policy makers and stakeholders in WA
- Expressing considered opinions of Eric Cutter, not necessarily those of utilities or E3

Starting with distributed energy resources (DER) cost-benefit tests

- + Established methods for calculating 'avoided costs'
- + Established cost-benefit framework
- + Emphasis on transparency and stakeholder process
- + Utility role in bridging market gaps and barriers

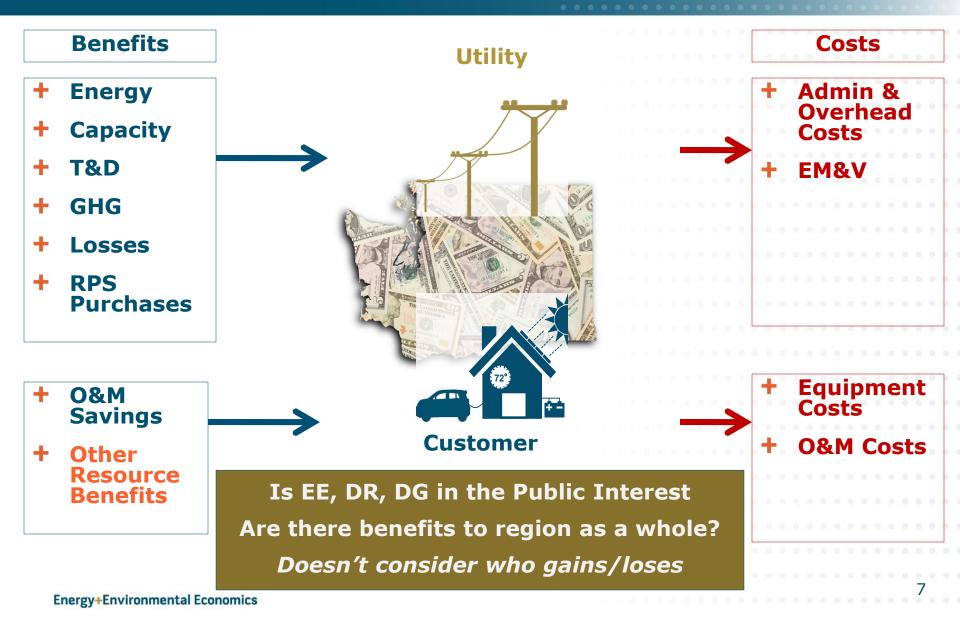
		Gross Annual Energy Savings (kWh)	•
	EE PORTFOLIO	5,215,741	
	Res Lighting	223,977	
Mon, Aug 03 Tue, Aug 04 Wed, Aug 05	Res Pool Pump	341,066	
Losses Ancillary Services Capacity T&D Environment RPS Adder	Refrigeration	267,939	
Avoided Cost	Pro Im	ogram Ipacts	

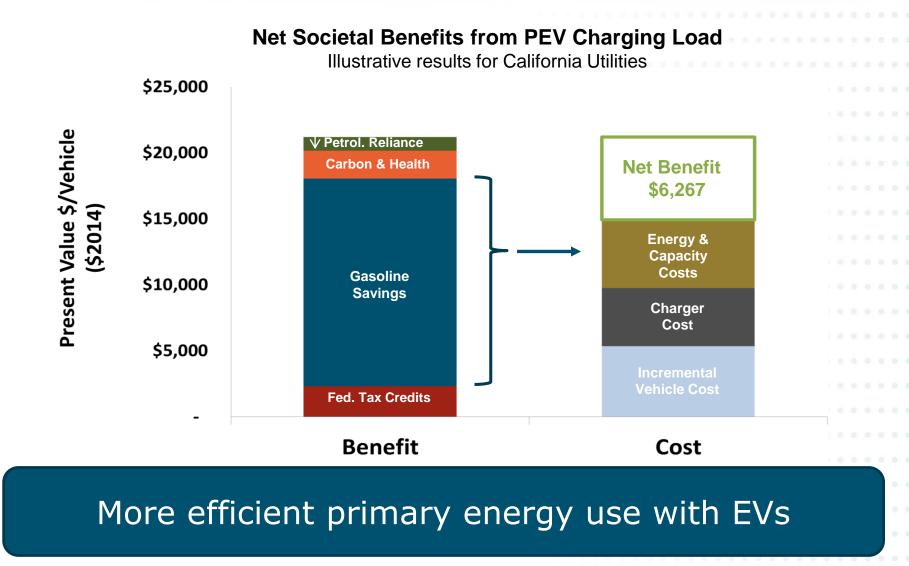
	BIP
Benefit/Cost Ratio	
TRC	3.15
PAC	2.40
RIM	2.39
PCT	1.33
Load Impacts (MW)	233
Energy Savings (MWh)	1,357
Lineigy Gavings (WWWI)	1,557


Costeffectiveness Results

DER Cost-benefit tests

Cost Tes	st	Key Question	Applied to TE
Total Resource Cost	TRC	Will the total costs of energy in the region decrease?	Comparison of total monetized marginal costs and benefits from EV adoption
Societal Cost Test	SCT	Is society (state) better off as a whole?	Comparison of society's costs and benefits from EV adoption, including non- monetized costs and benefits
Ratepayer Impact Measure	RIM	Will utility rates increase?	Comparison of marginal revenues from EV load to marginal utility costs from serving EVs and EV programs
Participant Cost Test	PCT	Will EV owners benefit over the life of the vehicle?	Total equipment and operating cost of an EV vs. equivalent internal combustion engine (ICE) vehicle




+ PV and EE shift costs to other ratepayers

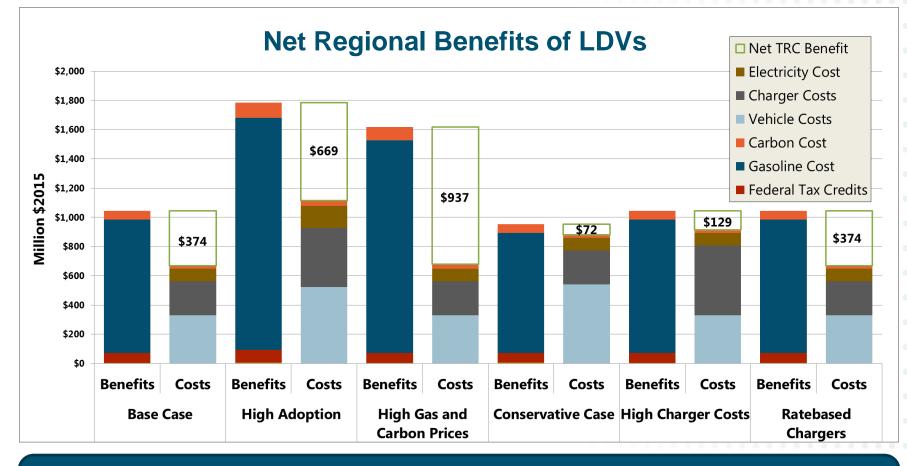
+ EVs can increase asset utilization \rightarrow lower rates

Total Resource Cost Test is primary test for DER

E Transportation electrification is fundamentally energy efficiency

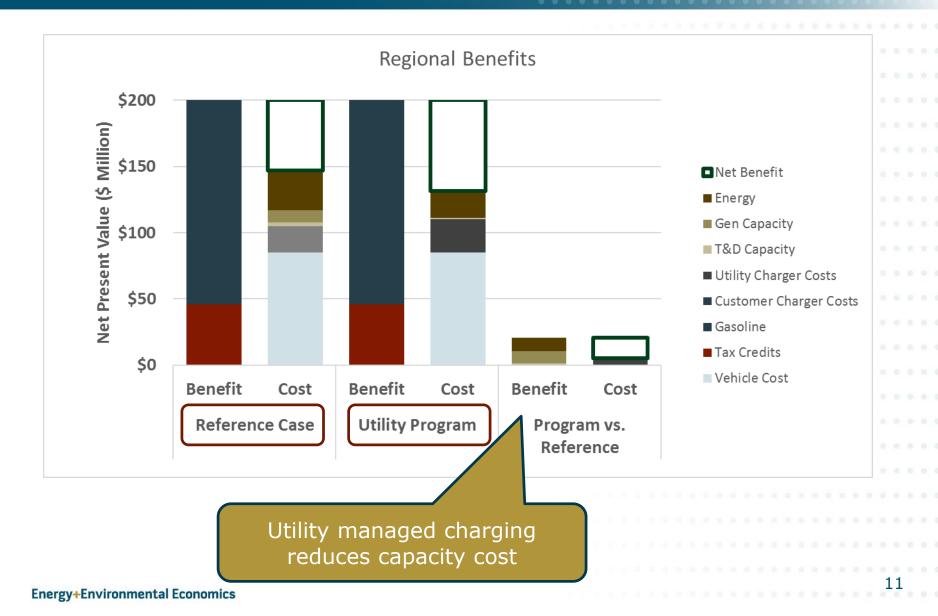
Expanding TRC to include gasoline and diesel

 Natural extension of the TRC to include fuel savings in transportation sector


- TRC often expanded to include other resources like natural gas for electric only utilities or water in energy-water nexus
- Combined perspective of Utilities and Transportation Commission and Department of Ecology

+ Who is the first purchaser of fuel that benefits from reduced consumption?

- Historically the utility for power generation
- For transportation, it is the driver


Is energy budget for region reduced?

Net regional benefits persistent across a range of scenarios

Benefits of electrification vs. benefits of utility program

A few thoughts on ratepayer impacts

- + Energy efficiency, distributed generation and demand response tend to increase rates
- Upfront investment for TE may increase rates in near-term, but decrease rates in long-term
- Inherent trade-off between ratepayer benefits and EV driver (participant) benefits
- + Fundamentally two ways utility engagement increases ratepayer benefits:
 - Reduce costs or increase adoption

Ratepayer impacts should be evaluated over longterm and in context of goals for EV adoption

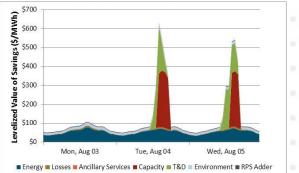
Energy+Environmental Economics

KEY CHALLENGES FOR UTILITY SECTOR

Key policy challen engagement	ges for utility
engagement	

- + Requires coordination across utility and transportation sectors
- + Nascent market with many unknowns outside energy sector
- + Risk of stranded assets if EV adoption is low or technology changes
- Hard to `attribute' increase in adoption to specific actions

"Each additional charging station will lead to 10 new EV sales"

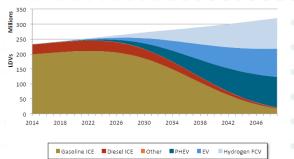

- Is transportation electrification in the public interest?
- + What will be the impact on utility rates?
- + What are the key levers to minimize grid and customer costs?
- + How much public and/or ratepayer funding needed to achieve EV adoption goals?
- + What is best done by utilities vs. left to the competitive market?
- + How to balance risk vs. reward?

+ Reduce cost and emissions required to meet <u>forecasted</u> <u>electricity demand</u> with distributed <u>energy</u> resources

+ Compare <u>cost of delivered electricity</u> to <u>conventional</u> resource plan (\$/kWh, \$/kW-Yr.)

+ Evaluate <u>marginal</u> <u>changes</u> in energy sector

Compare cost of marginal changes in energy sector against conventional resource plan



+ Minimize costs to achieve GHG emission <u>targets</u> across <u>energy</u>, <u>transportation</u> and <u>industrial</u> sectors

+ Compare <u>cost of carbon reduction</u> in <u>transformational</u> resource plans

• (Hint: not just \$/ton)

+ Evaluate <u>systemic changes</u> across multiple sectors

Compare cost of transformational changes across multiple sectors to reduce GHG emissions

- + DER Cost-benefit tests are a good starting point to answer some key questions and inform others
- + Cost-benefit tests are naturally extended to include transportation sector
- + Key differences for TE:
 - Uncertainty in vehicle adoption and technology development
 - Difficult to attribute benefits to individual measures
- TE benefits will (eventually) be best evaluated in utility integrated resource plans
 - Including linkages to transportation sector and GHG pathways

Energy+Environmental Economics

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Eric Cutter (eric@ethree.com) Nancy Ryan (nancy@ethree.com) Lucy McKenzie (lucy@ethree.com)

Electricity system factors

Electricity Supply Costs			
Electric Energy Generation	-	-	-
Electric Energy Losses	-	-	-
Generation Capacity	-	-	-
T&D Capacity	-	-	-
Ancillary Services	-	-	-
RPS Compliance	-	-	-
Emissions Compliance	-	-	-
Societal Impacts			
Air Pollution Health Impact		-	
Electricity GHG Societal Impact		-	

Cost		Be	en	efi	t		0	
			-	-	-		۰.	
_			+				0	
		2	÷	2	9	0	9	

Cost test definition: Transportation system factors

	,	mpact	strest	Test
	atepa	er Intestie Nessire Partici	pantost Test Sold	era cost rest
		\$3.		40
PEV Ownership Costs and Benefits				
Incremental Vehicle Cost		-		
Federal EV Incentives		+		+
State EV Incentives				
Transportation Fuel				+
Vehicle O&M				
Charging Costs				
Personal Charging Equipment		-	-	-
Vehicle Charging Utility Bills	+			
Public Charging Infrastructure			-	-
Societal Impacts				
Reduced Oil Imports (Energy Independence Value)			+	
Gasoline GHG Societal Impact			+	
Air Pollution Health Impact			+	
Administrative Costs				
EV Program Administration	-		-	

Cost	Benefit	0	
-	+	0	

B How cost-effectiveness helps answer threshold questions

Covered by Cost-effectiveness

Net Benefits of transportation electrification across multiple scenarios

Incremental Benefits: of increasing EV adoption and managed charging

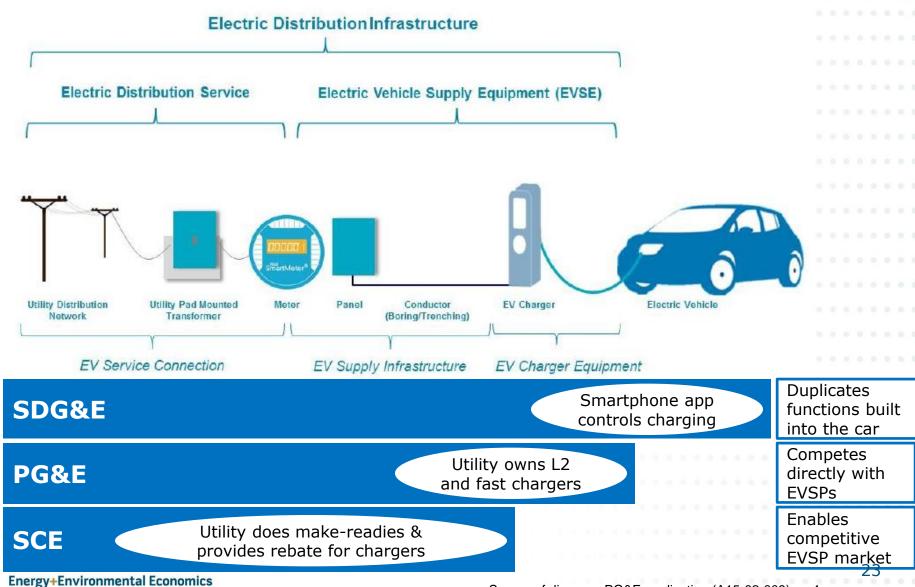
Key Drivers: Illustrate key drivers of EV benefits

Upside/Downside Risk: Cost to ratepayers if EV adoption is lower than expected

Headroom: How much can utility spend without shifting costs to other ratepayers

Gap Analysis: How much funding is needed to make EVs economic for customers

Beyond Cost-effectiveness


Attribution: How much will utility investment increase EV adoption

Business Models: what is best business model for deploying charging infrastructure

Rate Design: Rate design or rate level that will maximize EV adoption or customer response for smart charging

												-		
												22		

California utilities envision different roles to support electrification

Source of diagram: PG&E application (A15-02-009), p. 4.