APPENDIX A

Cascade serves the regions shaded in red.

APPENDIX B

STATE OF WASHINGTON WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

CERTMIEIED MAIIL

April 11, 2013
Mr: Eric Martuscelli
Vice President-Operations
Cascade Natural Gas Corporation
8113 W. Grandridge Blvd.
Kennewick, WA 99336
Dear Mr. Martuscelli:

RE: 2013 Natural Gas Standard Inspection - Cascade Natural Gas (CNG) - Longview District

Staff from the Washington Utilities and Transportation Commission (staff) conducted a standard inspection from March 25-28, 2013, of Cascade Natural Gas Corporation's (CNG) Longview District gas system. The inspection included a review of district records and inspection of selected pipeline facilities.

Our inspection indicates two probable violations as noted in the enclosed report. We also noted four areas of concern, which unless corrected, could potentially lead to future violation of state and/or federal pipeline safety rules.

Your response needed

Please review the attached report and respond in writing by May 13, 2013. The response should include how and when you plan to bring the probable violations into full compliance. We also request your response to our areas of concern.

What happens after you respond to this letter?

The attached report presents staff's decision on probable violations and does not constitute a finding of violation by the commission at this time.

After you respond in writing to this letter, there are several possible actions the commission, in its discretion, may take with respect to this matter. For example, the commission may:

- Issue an administrative penalty under RCW 81.88.040, or
- Institute a complaint, seeking monetary penalties, changes in the company's practices, or other relief authorized by law, and justified by the circumstances, or
- Consider the matter resolved without further commission action.

Cascade Natural Gas
2013 Natural Gas Standard Inspection - Longview District
April 11, 2013
Page 2
If you have any questions, or if we may be of any assistance, please contact Dennis Ritter at (360) 664-1159. Please refer to the subject matter described above in any future correspondence pertaining to this inspection.

Sincerely,

David D. Lykken
Pipeline Safety Director
Enclosure
cc: Steve Kessie, Manager-Operations Services, CNG
Tina Beach, Manager of Standards \& Compliance, CNG
Patti Chartrey, Pipeline Safety Specialist, CNG
Enclosure

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION
 2013 Natural Gas Pipeline Safety Inspection Cascade Natural Gas Corporation-Longview District

The following probable violations and areas of concern of Title 49 CFR Part 192 and WAC 48093 were noted as a result of the 2013 inspection of the Cascade Natural Gas Corporation Longview District. The inspection included a random selection of records (operation and maintenance, emergency response, damage prevention) and field inspection of the pipeline facilities.

PROBABLE VIOLATIONS

1. 49 CFR $\S 192.619$ Maximum allowable operating pressure (MAOP) - Steel or plastic pipelines
(a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph (c) or (d) of this section, or the lowest of the following:
(1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part.

Finding(s):

During the records review to confirm MAOP of HP lines, the 6" Kalama HP replacement project constructed in 1995 was evaluated. As part of the record review, as-builts, invoices, bills of lading and other information from the job file were reviewed. The pipe used in this project was FBE coated, 6 -inch steel. What strength pipe was actually put in the ground is unclear. CNG procures their own materials for construction. They order materials based on CNG part numbers identified in their CNG Parts Catalogue. For the Kalama project, one record, "Cost Analysis Sheet for Expenditure Requisition", identified the pipe as part No. PXW-650X42. According to the CNG Part Numbering system, this would be X42 (42000 psi yield strength) pipe. However on all "Material Transfer Records" and as-built records it's listed as PXW-650, without the X42 designation. This is significant as CNG has several pipe specifications listed in their part numbering system, each with different designations for pipe strength. For example, if listed as PXW-650, its class B pipe, with 35,000 for yield strength. If listed as PXW650 X 42 , then pipe strength is 42,000 . The actual construction related documents-Material Transfer Records and as-builts do not have the X42 designation shown. CNG is searching their records for any additional information on this project, however, the records available during this inspection are inconsistent and do not allow confirmation of MAOP according to this subpart.

Whether the pipe is X42 or Class B, CNG's current MAOP would be satisfactory. However, CNG is not sure what pipe specification is in the ground in Kalama, and therefore, not sure of what the MAOP should be. Records (and their management), especially of MAOP confirming documents, must be complete, accurate and readily available. CNG must confirm the MAOP of the 6 " Kalama HP line. If pipe material cannot be ascertained, then 49 CFR 192.105 requires using 24,000 as the pipe strength in the design pressure formula to calculate MAOP.

2. WAC 480-93-188 Gas Leak Surveys

(3) Each gas pipeline company must conduct gas leak surveys according to the following minimum frequencies:
(a) Business districts - at least once annually, but not to exceed fifteen months between surveys. All mains in the right of way adjoining a business district must be included in the survey;
(b) High occupancy structures or areas - at least once annually, but not to exceed fifteen months between surveys;

Finding(s):

CNG CP 716 has the following definition: High Occupancy Structure or Area (HOS/A)- A building or an outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by twenty or more persons on at least five days a week for ten weeks in any twelve-month period. (The days and weeks need not be consecutive.). Additionally, CNG CP 715 defines the following: Public Building or Area (PB/A)-Washington - A building or an outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by twenty or more persons on at least five days a week for ten weeks in any twelve-month period. (The days and weeks need not be consecutive.). WAC, 480-93-005(14) also uses this same language to define "High occupancy structures or areas".

CNG CP 716.04 gives the survey type and schedule for these areas as:

Public Building Inspection (PBI)	At least once each calendar year, but at intervals not exceeding 15 months

During the records review, CNG attempted to locate annual leak survey records for several Public Buildings/Areas identified by WUTC prior to the inspection. These were the Woodland Intermediate School, Castle Rock Community Church and St. Mark's Episcopal Church (both in Castle Rock). CNG could not locate annual survey records for these areas. According to the leak survey, these areas were in fact surveyed on a 3 year basis, typical of non-business district surveys done' in this district. This might be indicative of a larger CNG issue.

According to Tina Beach, when CNG changed from a paper based work order system to a new computer based system in 2010, some of the public building inspections (PBIs) which CNG checked annually did not make it into the new system. CNG attempted to go back and rectify this by hand, but according to Tina Beach and Tom Wilson, some were missed. Exactly how many is unknown, in this district or all of CNG's service area districts. As such, UTC will require CNG to evaluate, for each of their districts, how many of these structures/areas are in each district and compare this with what is actually being surveyed on an annual basis. A listing of these structures/areas, by district with addresses, will be sent to UTC after completion of this evaluation. Any structure/areas identified which are not on the current listing of such facilities in CNG's system will be immediately surveyed and added to the annual survey. These "new" facilities will be noted on the listing to be sent to WUTC as newly identified. Please identify when these tasks will be completed.

Note during the inspection there was some confusion regarding non-customers whose property fronts a street which has a buried gas main. UTC's position is there is no difference between non-customers and customers in the definition of HOS/PBs. CNG is to survey the right-of-way fronting these areas on an annual basis, regardless of whether they are a customer or not. If there is a service to the property, CNG is to survey the service to the building wall per 480-93-188 (1) (d).

AREAS OF CONCERN

1. WAC 480-93-170-Tests and Reports for Pipelines
(7) Each gas pipeline company must keep records of all pressure tests performed for the life of.the pipeline and must document the following information:
(a) Gas Pipeline Company's name;
(b) Employee's name;
(c) Test medium used;
(d) Test pressure;
(e) Test duration;
(f) Line pipe size and length;
(g) Dates and times; and
(h) Test results.

Finding(s):

CNG's 2012, 12" V90 Replacement Project included a pressure test of the installation after completion. After inspecting the data sheet from the pressure testing, it was noted that CNG failed to identify the test medium used on the record document per procedure CP 665.036. In response, CNG pointed out that CP 665 also states that valve installations may only use nitrogen for the test medium. CNG also produced an Airgas invoice for nitrogen supplied for the test dated $8 / 7 / 2012$-which is the date of the first test.

The issue, however, is not whether nitrogen was used, as it appears that it was, but rather the record document for a critical component of the distribution system which confirms MAOP was incomplete. Given the series of recent catastrophic events relating to pipelines and the subsequent investigation noting that records management of these critical MAOP confirming documents was less than satisfactory, it is surprising to find these records for a very recent construction project to be compromised. The WUTC and PHMSA believe this to be a critical issue which must be emphasized at all levels of CNG's organization. Records (and their management), especially of MAOP confirming documents, must be complete, accurate and readily available. Please ensure that CNG places the appropriate level of scrutiny on this situation so that a future violation, incident or loss of life or property does not occur.

2. WAC 480-93-188 Gas leak surveys

(4) Each gas pipeline company must conduct special leak surveys under the following circumstances:
(c) Unstable soil areas where active gas pipelines could be affected;

Finding(s):

During a pre-inspection site visit, it was noted that a section of Mt. Brynion Road near the intersection of Williams Finney Road appeared to have recent pavement work completed. It appeared that Mt. Brynion Road was moving downhill due to movement of the underlying land-i.e. a landslide. When CNG staff was asked about this situation, they did not know of any landslide issues in this area and said all landslide issues are handled by CNG's engineering department. The District Manager also added that they currently do a special leak survey on a portion of the high pressure 12 -inch line that feeds Longview Fibre whenever they get a "heavy rain". This location was located on UTC's mapping system which has historic landslides plotted. The location corresponds to a historic landslide area near the pipeline. CNG staff indicated that landslide training is not part of the OQ program and that landslide occurrences are handled on a case by case basis by CNG's engineering department.

UTC is concerned that in areas, such as Longview, where known and potentially still active, historic landslide areas could affect CNG's pipelines, that a program is not in place to alert CNG's personnel of potential dangers. UTC believes CNG should train their staff to be cognizant of potential landslide indicators to identify and potentially prevent future catastrophic incidents from occurring. Procedures should be developed to identify and manage this threat.

3. 49 CFR $\S 192.805$ Qualification program

Each operator shall have and follow a written qualification program. The program shall include provisions to:
(a) Identify covered tasks;
(b) Ensure through evaluation that individuals performing covered tasks are qualified;
(g) Identify those covered tasks and the intervals at which evaluation of the individual's qualifications is needed.
(h) After December 16, 2004, provide training, as appropriate, to ensure that individuals performing covered tasks have the necessary knowledge and skills to perform the tasks in a manner that ensures the safe operation of pipeline facilities; and

Finding(s):

During the field OQ evaluation, an employee was asked to take rectifier reads at GB02 Kalama. The employee responded that he was not "comfortable" performing this covered task as he does not perform it routinely-one other employee routinely performs this task. According to CNG OQ records, this employee is qualified to perform this task. If the employee is properly qualified per CNG's OQ qualification program, they should not be "uncomfortable" in performing covered tasks. CNG needs to "ensure that individuals performing covered tasks have the necessary knowledge and skills to perform the tasks in a manner that ensures the safe operation of pipeline facilities". CNG needs to determine what additional training or other appropriate methodology needs to be employed to ensure its employees are qualified and competent to perform OQ covered tasks.

4. 49 CFR §192.616 Public Awareness

(e) The program must include activities to advise affected municipalities, school districts, businesses, and residents of pipeline facility locations.
(f) The program and the media used must be as comprehensive as necessary to reach all areas in which the operator transports gas.

Finding(s):

In their Public Awareness plan, CNG identified, "Affected public-non customers" as a stakeholder audience but did not send them targeted information as required. As noted in the 2012 PA Plan effectiveness review, they failed to use targeted brochures, pamphlets etc. to inform this group. Instead, they used TV, radio etc. CNG needs to ensure the PA plan (CNG plans on updating its plan by April, 2012) reaches its intended audience by targeting its identified stakeholders with specific information for that group.

APPENDIX C

STATE OF WASHINGTON
WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION
1300 S. Evergreen Park Dr. S.W., P.O. Box 47250 • Olympia, Washington 98504-7250
(360) 664-1160 • TTY (360) 586-8203

CERTIFIED MAIL

May 29, 2013
Mr. Eric Martuscelli
Vice President-Operations
Cascade Natural Gas Corporation
8113 W. Grandridge Blvd.
Kennewick, WA 99336
Dear Mr. Martuscelli:

RE: 2013 Natural Gas Standard Inspection - Cascade Natural Gas (CNG) - Bellingham District

Staff from the Washington Utilities and Transportation Commission (staff) conducted a standard inspection from May 13-16, 2013 of Cascade Natural Gas Corporation's (CNG) Bellingham District gas system. The inspection included a review of district records and inspection of selected pipeline facilities.

Our inspection indicates one probable violation as noted in the enclosed report. We also noted two areas of concern, which unless corrected, could potentially lead to future violation of state and/or federal pipeline safety rules.

Your response needed

Please review the attached report and respond in writing by July 1, 2013. The response should include how and when you plan to bring the probable violations into full compliance. We also request your response to our areas of concern.

What happens after you respond to this letter?

The attached report presents staff's decision on probable violations and does not constitute a finding of violation by the commission at this time.

After you respond in writing to this letter, there are several possible actions the commission, in its discretion, may take with respect to this matter. For example, the commission may:

- Issue an administrative penalty under RCW 81.88.040, or
- Institute a complaint, seeking monetary penalties, changes in the company's practices, or other relief authorized by law, and justified by the circumstances, or
- Consider the matter resolved without further commission action.

Cascade Natural Gas Corporation
2013 Natural Gas Standard Inspection - Bellingham District
May 29, 2013
Page 2
If you have any questions, or if we may be of any assistance, please contact Dennis Ritter at (360) 664-1159. Please refer to the subject matter described above in any future correspondence pertaining to this inspection.

Sincerely,

David D. Lykken
Pipeline Safety Director

Enclosure

cc: Steve Kessie, Manager-Operations Services, CNG
Tina Beach, Manager of Standards \& Compliance, CNG
Vicki Ganow, Pipeline Safety Specialist, CNG
Enclosure

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION
 2013 Natural Gas Pipeline Safety Inspection
 Cascade Natural Gas Corporation-Bellingham District

The following probable violation and areas of concern of Title 49 CFR Part 192 were noted as a result of the 2013 inspection of the Cascade Natural Gas Corporation Bellingham District. The inspection included a random selection of records (operation and maintenance, emergency response, damage prevention) and field inspection of the pipeline facilities.

PROBABLE VIOLATIONS

1. 49 CFR $£ 192.619$ Maximum allowable operating pressure (MAOP) - Steel or plastic pipelines

(a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph
(c) or (d) of this section, or the lowest of the following:
(1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part.
(2) The pressure obtained by dividing the pressure to which the segment was tested after construction as follows:
(i) For plastic pipe in all locations, the test pressure is divided by a factor of 1.5.
(ii) For steel pipe operated at 100 p.s.i. (689 kPa) gage or more, the test pressure is divided by a factor determined in accordance with the following table:

Factors (see Note)

Class location	Segment Installed Before Nov. 12, 1970	Segment Installed After Nov. 11, 1970	Segment Converted under§192.14
1	1.1	1.1	1.25
2	1.25	1.25	1.25
3	1.4	1.5	1.5
4	1.4	1.5	1.5

Note: For offshore segments installed, or updated, or converted after July 31, 1977, that are not located on an offshore platform, the factor is 1.25. For segments installed, uprated, or converted after July 31, 1977 that are located on an offshore platform or on a platform in inland navigable waters including a pipe riser, the factor is 1.5
(3) The highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column. This pressure restriction applies unless the segment was tested according to the requirements in paragraph (a)(2) of this section after the applicable date in the third column or the segment was uprated according to the requirements in subpart K of this part:

Pipeline segment	Pressure date	Test date				
-Onshore gathering line that first became subject to this part (other than §192.612) after April 13, 2006.	March 15, 2006, or date line becomes subject to this part, whichever is later.	5 years preceding applicable date in second column.				
-Onshore transmission line that						
was a gathering line not subject to						
this part before March 15, 2006.			\quad	Offshore gathering lines	July 1, 1976	July 1, 1971
:---	:---	:---				
All other pipelines	July 1,1970	July 1.1965				

The pressure determined by the operator to be the maximum safe pressure after considering the history of the segment, particularly known corrosion and the actual operating pressure.
(b) No person may operate a segment to which paragraph (a)(4) of this section is applicable, unless overpressure protective devices are installed on the segment in a manner that will prevent the maximum allowable operating pressure from being exceeded, in accordance with §192.195.
(c) The requirements on pressure restrictions in this section do not apply in the following instance. An operator may operate a segment of pipeline found to be in satisfactory condition, considering its operating and maintenance history, at the highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column of the table in paragraph (a)(3) of this section. An operator must still comply with §192.611.
(d) The operator of a pipeline segment of steel pipeline meeting the conditions prescribed in § 192.620(b) may elect to operate the segment at a maximum allowable operating pressure determined under § 192.620(a)

Finding(s):

During the records review to confirm MAOP of HP lines, CNG staff were asked to produce the MAOP confirming documents for Line 1-8" Bellingham HP. CNG at the time of the inspection could not produce supporting MAOP documents for this line. This line was installed in 1957. The two documents CNG did produce cannot be considered reliable records. One was undated and titled "Construction Specification for Proposed Pipeline (Order Cause Nos.U-8799-8800, Rule 20)". This document notes the pipeline was to be tested to a pressure of 500 psi. The other document was a 1970 letter to Lee Johnson \& Associates which states that the line was "built to the following specifications" including pipe grade, diameter, thickness, coating and construction test pressure. These documents do not provide a definitive answer supporting the current

MAOP of 380 psi as they are not original record documents. CNG is searching their files for any additional information on this pipeline, however, the records available during the inspection do not allow confirmation of MAOP according to this subpart.

Records (and their management), especially of MAOP confirming documents, must be complete, accurate and readily available. CNG needs to have documents which support all the "facts" outlined in the 1970 letter to Lee Johnson \& Associates for Line 1-8" Bellingham HP. If pipe material cannot be ascertained, then 49 CFR 192.105 requires using 24,000 as the pipe strength in the design pressure formula to calculate MAOP.

Additionally, records management (not being able to find MAOP confirming documents) was also an issue during the 2013 CNG Longview inspection. It appears that this is not an isolated incident. Therefore, CNG must confirm the MAOP of all their HP lines with supporting documentation for Bellingham as well as all other districts. Please tell us the date by which CNG can produce the confirmation with supporting documentation.

AREAS OF CONCERN OR FIELD OBSERVATIONS

2. WAC 480-93-124 Pipeline Markers

(1) Each gas pipeline company must place pipeline markers at the following locations:
(a) Where practical, over pipelines operating above two hundred fifty psig;
(b) Over mains and transmission lines crossing navigable waterways (custom signage may be required to ensure visibility);
(c) Over mains and transmission lines at river, creek, drainage ditch, or irrigation canal crossings where hydraulic scouring, dredging, or other activity could pose a risk to the pipeline (custom signage may be required to ensure visibility);
(d) Over gas pipelines at railroad crossings;
(e) At above ground gas pipelines except service risers, meter set assemblies, and gas pipeline company owned piping downstream of the meter set assembly. The minimum lettering size requirements located in 49 CFR § 192.707 (d)(1) do not apply to services;
(f) Over mains located in Class 1 and 2 locations;
(g) Over transmission lines in Class 1 and 2 locations, and where practical, over transmission lines in Class 3 and 4 locations; and
(h) Over mains and transmission lines at interstate, U.S. and state route crossings where practical.
(2) If practical, the gas pipeline company must place markers on both sides of any crossing listed in subsection (1) of this section.

Finding(s):

During pre-inspection field reconnaissance it was noted that at several locations-Sumas
Ave. at Johnson Creek, Double Ditch Rd at Main St. in Lynden and E. Badger Rd at Fishtrap Creek in Lynden- CNG markers were not present. When asked about these locations, CNG sent personnel out to evaluate. It was determined that markers were needed. CNG generated work-orders and had these installed before end of inspection. However, it brings up the question as to how many more water crossings might need
markers. CNG needs to evaluate all water crossings per (1)(c) above and determine if markers are needed. If markers are needed, they shall be installed and added to CNG's GIS system. Please tell us the date by which CNG will have this evaluation completed.

3. 192.467 External corrosion control: Electrical isolation.

(d) Inspection and electrical tests must be made to assure that electrical isolation is adequate.

Finding(s):

During the field inspection of the Sumas Gate station, CNG personnel noted that they cannot check isolation between the CNG and Spectra piping as this would require a border crossing to physically test. CNG stated that their corrosion personnel are aware of this and are working on a solution. CNG must be able to inspect and test the isolation between the two systems. Please tell us the date by which CNG will have a solution for this area of concern.

APPENDIX D

Woodard, Marina (UTC)

From:	Beach, Tina Tina.Beach@cngc.com
Sent:	Friday, June 28, 2013 1:07 PM
To:	Woodard, Marina (UTC)
Cc:	Kessie, Steve; Martuscelli, Eric; Ganow, Vicki; Marek, Chanda; Nelson, Greg; Bergner,
	Kathy
Subject:	CNGC Response to Bellingham District Inspection
Attachments:	CNGC_Response_2013-6-28 Bellingham Dist Insp.pdf

Dear Marina;
Please find the attached Response to 2013 Natural Gas Standard Inspection - Bellingham District due July 1, 2013 . Please forward to the appropriate Washington Utility and Transportation staff. As requested by Mr. Lykken and Mr. Subsits Cascade Natural Gas Corporation will need only to provide this electronically unless requested otherwise by your agency. Please contact Steve Kessie at 509-734-4575 with any additional questions or comments you have regarding this response.

Tina R. Beach

Manager of Standards and Compliance

8113 Grandridge Blvd.
Kennewick, WA 99336
(509) 734-4576 Kennewick office
(206) 445-4121 Work cell
(509) 737-9803 Fax
(406) 939-2240 Home cell
tina.beach@.cngc.com

RECEIVED

JUN 282013
State of Washington
UTC
Pipeline Safety Program

June 28, 2013
David Lykken- Director of Pipeline Safety Program State of Washington Utilities and Transportation Commission 1300 S. Evergreen Park Dr. SW
P.O. Box 47250

JUN 282013
State of Washington
Pipeline Safety Program
Olympia, W A 98504-7250
Subject: Response to 2103 Natural Gas Standard Inspection - Bellingham District
Dear Mr. Lykken,
This letter is intended to address all probable state safety code violations and areas of concern. We specifically are addressing how and when we plan to bring the probable violations and areas of concern into full compliance. The inspection was conducted on May 13-16, 2013 in Bellingham, W ashington.

The following is in response to one probable violation and two areas of concern:
PROBABLE VIOLATIONS

1.49 CFR $\$ 192.619$ Maximum allowable operating pressure (MAOP)- Steel or plastic pipelines

(a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph (c) or (d) of this section, or the lowest of the following:
(1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part.
(2) The pressure obtained by dividing the pressure to which the segment was tested after construction as follows:
(i) For plastic pipe in all locations, the test pressure is divided by a factor of 1.5.
(ii) For steel pipe operated at 100 p.s. i. (689 kPa) gage or more, the test pressure is divided by a factor determined in accordance with the following table:
Factors (see Note)

Class location	Segment Installed Before Nov. 12, 1970	Segment Installed After Nov. 11, 1970	Segment Converted under§192.14
1	1.1	1.11	1.25
2	1.25	1.25	1.25
3	1.4	1.5	1.5
4	1.4	1.5	1.5

Note: For offshore segments installed, or updated, or converted after July 31, 1977, that are not located on an offshore platform, the factor is 1.25. For segments installed, uprated, or converted after July 31, 1977 that are located on an offshore platform or on a platform in inland navigable waters including a pipe riser, the factor is 1.5.
(3) The highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column. This pressure restriction applies unless the segment was tested according to the requirements in paragraph (a)(2) of this section after the applicable date in the third cohum or the segment was uprated according to the requirements in subpart K of this part:

Pipeline segment	Pressure date	Test date
- Onshore gather'ing Hine that first	March 15, 2006,	5 years
became subject to this part (other	or date line	preceding
than §192.612) afer April 13,	becomes subject to	applicable date
2006.	this parts, whichever is later.	In second columm.
- Onshore tran		
was a gathering line not subject to		
this part before March 15, 2006.		
Offshore gathering lines	July 1, 1976	July 1, 1971
All ofther pipelines	July 1, 1970	July 1. 1965

(4) The pressure determined by the operator to be the maximum safe pressure after considering the history of the segment, particularly known corrosion and the actual operating pressure.
(b) No person may operate a segment to which paragraph (a)(4) of this section is applicable, unless overpressure protective devices are installed on the segment in a manner that will prevent the maximum allowable operating pressure fi'om being exceeded, in accordance with § 192.195.
(c) The requirements on pressure restrictions in this section do not apply in the following instance. An operator may operate a segment of pipeline found to be in satisfactory condition, considering its operating and maintenance his/my, at the highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column of the table in paragraph (a)(3) of this section. An operator must still comply with §192.611.
(d) The operator of a pipeline segment of steel pipeline meeting the conditions prescribed in§ 192.620(b) may elect to operate the segment at a maximum allowable operating pressure determined under§ 192.620(a).

Finding(s):

During the records review to confirm MAOP of HP lines, CNG staff were asked to produce the MAOP confirming documents for Line $1-8^{\prime \prime}$ Bellingham HP. CNG at the time of the inspection could not produce supporting MAOP documents for this line. This line was installed in 1957. The two documents CNG did produce cannot be considered reliable records. One was undated and titled "Construction Specification for Proposed Pipeline (Order Cause Nos.U-8799-8800, Rule 20)". This document notes the pipeline was to be tested to a pressure of 500 psi. The other document was a 1970 letter to Lee Johnson \& Associates which states that the line was "built to the following specifications" including pipe grade, diameter, thickness, coating and construction test pressure. These documents do not provide a definitive answer supporting the current MAOP of 380 psi as they are not original record documents. CNG is searching their files for any additional information on this pipeline, however, the records available during the inspection do not allow confirmation of MAOP according to this subpart.

Records (and their management), especially of MAOP confirming documents, must be complete, accurate and readily available. CNG needs to have documents which support all the "facts" outlined in the 1970 letter to Lee Johnson \& Associates for Line 1-8" Bellingham HP. If pipe material cannot be ascertained, then 49 CFR 192.105 requires using 24,000 as the pipe strength in the design pressure formula to calculate MAOP.

Additionally, records management (not being able to find MAOP confirming documents) was also an issue during the 2013 CNG Longview inspection. It appears that this is not an isolated incident. Therefore, CNG must confirm the MAOP of all their HP lines with supporting documentation for Bellingham as well as all other districts. Please tell us the date by which CNG can produce the confirmation with supporting documentation.

Cascade Response

Cascade Natural Gas Corporation (CNGC) acknowledges that MAOP confirming documents for Line 18 " Bellingham HP were not available during the audit. A review of all CNGC HP records has been initiated and is anticipated to be completed by September 30, 2013. As part of this review, CNGC will address any HP lines whose MAOP confirming documents cannot be located.

AREAS OF CONCERN OR FIELD OBSERVATIONS

2. WAC 480-93-124 Pipeline Markers

(1) Each gas pipeline company must place pipeline markers at the following locations:
(a) Where practical, over pipelines operating above two hundred fifty psig;
(b) Over mains and transmission lines crossing navigable waterways (custom signage may be required to ensure visibility);
(c) Over mains and transmission lines at river, creek, drainage ditch, or irrigation canal crossings where hydraulic scouring, dredging, or other activity could pose a risk to the pipeline (custom signage may be required to ensure visibility);
(d) Over gas pipelines at railroad crossings;
(e) At above ground gas pipelines except service risers, meter set assemblies, and gas pipeline company owned piping downstream of the meter set assembly. The minimum lettering size requirements located in 49 CFR § 192.707 (d)(I) do not apply to services;
(f) Over mains located in Class I and 2 locations;
(g) Over transmission lines in Class 1 and 2 locations, and where practical, over transmission lines in Class 3 and 4locations; and
(h) Over mains and transmission lines at interstate, US and state route crossings where practical.
(2) If practical, the gas pipeline company must place markers on both sides of any crossing listed in subsection (I) of this section.

Finding(s):

During pre-inspection field reconnaissance it was noted that at several locations-Sumas Ave, at Johnson Creek, Double Ditch Rd at Main St. in Lynden and E. Badger Rd at Fishtrap Creek in Lynden- CNG markers were not present. When asked about these locations, CNG sent personnel out to evaluate. It was determined that markers were needed. CNG generated work-orders and had these installed before end of inspection. However, it brings up the question as to how many more water: crossings might need
markers. CNG needs to evaluate all water crossings per (1) (c) above and determine if markers are needed. If markers are needed, they shall be installed and added to CNG's GIS system. Please tell us the date by which CNG will have this evaluation completed.

Cascade Response

CNGC has initiated the supplementary pipeline marker evaluation in the Bellingham district. The evaluation is anticipated to be completed by December 31, 2013. A correction should be noted for one of the field locations cited in the finding. Markers were not placed on East Badger Road at Fishtrap Creek as CNGC does not have a main or a transmission line that crosses the creek at this location but other crossings near this area were inspected for markers and remediation was made where needed.

3. 192.467 External corrosion control: Electrical isolation

(d) Inspection and electrical tests must be made to assure that electrical isolation is adequate.

Finding(s):

During the field inspection of the Sumas Gate station, CNG personnel noted that they cannot check isolation between the CNG and Spectra piping as this would require a border crossing to physically test. CNG stated that their corrosion personnel are aware of this and are working on a solution. CNG must be able to inspect and test the isolation between the two systems. Please tell us the date by which CNG will have a solution for this area of concern

Cascade Response

During the field inspection, CNGC's staff performed the OQ task as assigned, however answering the question regarding electrical isolation was beyond the scope of his expertise. CNGC's Corrosion Department has responsibility for monitoring all work performed in the field as it relates to corrosion control. To address the isolation question posed by WUTC staff, the Manager of Corrosion Control was consulted to explain the process for checking electrical isolation at the Sumas Gate Station and to verify it is being monitored. He indicated this takes place during the annual CP surveys. The process is to take a pipe to soil potential within the Sumas Gate Station to verify normal CP operations. Should the potential indicate a change in normal CP operations, a Corrosion Control Tech. would initiate troubleshooting to determine the cause of the deficiency. CNGC will continue to monitor electrical isolations during the annual survey.

Please contact Steve Kessie at 509-734-4575 with questions or comments.
Respectfully Submitted,

Eric Martuscelli,
Vice President, Operations
Cascade Natural Gas Corporation

APPENDIX E

From:	Ogden, Jeremy Jeremy.Ogden@cngc.com	
Sent:	Friday, September 27, 2013 3:50 PM	
To:	Woodard, Marina (UTC)	
Cc:	Martuscelli, Eric; Kessie, Steve; Beach, Tina	
Subject:	CNGC Response to Bellingham District Inspection	
Attachments:	CNGC Response - MAOP Validation -9-27-13.pdf	
		RECETVED
Follow Up Flag:	Follow up	SEP 272013
Flag Status:	Flagged	Sed Category
Categories:		Pipeline Safety Program

Marina:

Please find attached Cascade Natural Gas's response to 2013 Natural Gas Standard Inspection - Bellingham District due September 30, 2013. Please forward to the appropriate WUTC staff. Please contact me with any additional questions or comments. Thank you.

Jeremy

Jeremy Ogden, P.E. I Director, Engineering Services

[^0]
In the Community to Serve ${ }^{\circ}$

September 27, 2013

David D. Lykken
Pipeline Safety Director
Washington Utilities and Transportation Commission
1300 S. Evergreen Park Drive S.W.
RECEIVED
P.O. Box 47250

Olympia, WA 98504-7250

Subject: Cascade Natural Gas - Maximum Allowable Operating Pressure (MAOP)

David:
In response to a 2013 inspection performed by WUTC staff in the Bellingham District, Cascade Natural Gas (Cascade) has recently completed a review of the documentation on its high pressure (HP) pipelines which are operating in the state of Washington. The purpose of this review is to validate the Maximum Allowable Operating Pressure (MAOP) for each pipeline. This review included records located in Cascade's General Office, district offices, off-site storage facilities, and electronically stored files. As a result of this review Cascade discovered 28 pipeline sections with missing or insufficient documentation to validate the current MAOP. Cascade has prepared a plan of action for these pipelines and TABLE 1 - PLAN OF ACTION following this letter summarizes this plan.

Cascade has prepared a schedule to gather missing or insufficient information, or to replace the affected pipeline section. This schedule will cover 13 years and will address all 28 pipeline sections from most critical to least critical, with only two exceptions. These exceptions are pipeline sections that are already planned for replacement. This schedule can be seen in TABLE 2 - SCHEDULE TO GATHER INFORMATION.

In addition, as a result of the review described above, some of Cascade's pipelines will be operating with an MAOP based on an assumed yield strength of $24,000 \mathrm{psi}$, as prescribed in §192.107. TABLE 3 - PIPELINES ASSUMING YIELD STRENGTH OF 24,000 PSI following this letter summarizes this information. Please note that the MAOP for these pipelines did not change, only the hoop stress and subsequent \%SMYS calculations. Additionally, none of the changes resulted in a pipeline being stressed to greater than 20% SMYS. Because these pipeline sections are operating safely, no other action is planned.

Cascade appreciates the working relationship that we have with the WUTC. We feel that our efforts to date, coupled with the plan presented in this correspondence, will enhance the safety and reliability of our system. We look forward to working with you and your staff as we further

In the Community to Serve ${ }^{\circ}$

refine the details of this plan. If you have any questions or would like to discuss anything further, please feel free to contact me to discuss.

Sincerely,

Jeremy Ogden, P.E.
Director, Engineering Services
Cascade Natural Gas Corporation
jeremy.ogden@cngc.com
509-734-4509
enclosures

TABLE 1 - PLAN OF ACTION

Aberdeen District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
12	2" Elma HP Line	1978	Pressure test documentation	Validate operating pressure.
Bellingham District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
1	8" HP Line	1956	Pipe grade and wall thickness	Remove sections of retired in place pipe and test for pipe grade and wall thickness. Prepare sampling plan for further testing if necessary.
2	2" Bellingham HP Distribution System	1967	Pressure test documentation	Pipeline will be removed/downrated as part of future project to remove pipelines from aging bridges.
3	8" Central Whatcom HP Line	1957	Pipe grade and wall thickness	Test samples from James Street and Lampman Road, and any other points that are available, for pipe grade and wall thickness. Prepare sampling plan for further testing if necessary.
21	16" Squalicum HP Line	1993	Pipe grade	Prepare sampling plan to verify pipe grade of $2,600 \mathrm{ft}$ of pipeline.

Bremerton District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
2	$8 "$ Bremerton Line	1963	Pipe grade	Test abandoned sections to verify pipe grade.
11	$8^{\prime \prime}$ Bremerton HP Line	1971	Pressure test documentation	Validate operating pressure.

Kennewick District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
1	$8^{\prime \prime}$ Attalia HP Line	1958	Pipe grade	Test previously removed sections for pipe grade.
1	12" Attalia HP Line	1968	Pipe grade and wall thickness	Test and/or remove 183 ft section.
4	Pasco HP Distribution System	1995	Pipe material	Work Order states Iron pipe in one section. Test pipe to verify material, grade, and thickness. Alternative is to replace 187 ft section of pipeline.
16	4" North Pasco HP Line	Various	Pressure test documentation	Validate operating pressure test or replace 531 ft section of pipeline.
18	6" West Richland HP Line	2010	Pressure test documentation	Validate operating pressure.
Longview District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
1	12" Longview-Kelso HP Distribution Line	1957	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness. Test retired in place sections and sections which have previously been removed.
1	8" Longview-Kelso HP Distribution Line	1957	Pipe grade and wall thickness	In process of being replaced.
2	4" Kalama HP Line	1976	Pressure test documentation	Validate operating pressure.
8	8" Kalama HP Line	1996-1997	Pipe grade, wall thickness, and pressure test documentation	Test retired in place pipe and samples removed during replacements. Validate operating pressure on applicable sections.

Mt. Vernon District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
1	8" Anacortes HP Line	1972	Pipe grade	As-builts show X-42 pipe, MTR shows Grade B. In-situ testing and/or replacement of 80 ft of pipeline will be required.
1	8" Anacortes HP Line	1957	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
2	8" March Point HP Line	1957	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
15	6" Mt. Vernon HP Line	2009	Pressure test documentation	Validate operating pressure.
Walla Walla District - None				
Wenatchee District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
1	$6^{\prime \prime}$ \& 8" Moses Lake HP Line	1957	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
2	2" Wheeler HP Line	1962	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
3	4" Othello Line	1971	Wall thickness	Validate operating pressure or replace $191 \mathrm{ft} \mathrm{section} \mathrm{of} \mathrm{pipeline}$.

Sunnyside District (Merged with Yakima District)				
Line \#	Description	Year Installed	Critical Information	Plan of Action
5	6" Toppenish-Zillah HP Line	1956	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
5	6" Toppenish-Zillah HP Line	1993	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
6	3" Zillah HP Line	1956	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
8	3" South Toppenish HP Line	1956	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
Yakima District				
Line \#	Description	Year Installed	Critical Information	Plan of Action
1	8" Yakima HP Line	1978	Pressure test documentation	Validate operating pressure.

TABLE 2 - SCHEDULE TO GATHER INFORMATION

2014					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Bellingham	1	8" HP Line	1956	Pipe grade and wall thickness	Remove sections of retired in place pipe and test for pipe grade and wall thickness. Prepare sampling plan for further testing if necessary.
Bellingham	3	8" Central Whatcom HP Line	1957	Pipe grade and wall thickness	Test samples from James Street and Lampman Road, and any other points that are available, for pipe grade and wall thickness. Prepare sampling plan for further testing if necessary.
Mt. Vernon	1	8" Anacortes HP Line	1957	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
2015					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Mt. Vernon	1	8" Anacortes HP Line	1972	Pipe grade	As-builts show X-42 pipe, MTR shows Grade B. In-situ testing and/or replacement of 80 ft of pipeline will be required.
Bremerton	2	8" Bremerton Line	1963	Pipe grade	Test abandoned sections to verify pipe grade.
2016					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Longview	2	4" Kalama HP Line	1976	Pressure test documentation	Validate operating pressure.
Sunnyside	5	6" Toppenish-Zillah HP Line	1956	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
Bellingham	21	16" Squalicum HP Line	1993	Pipe grade	Prepare sampling plan to verify pipe grade of $2,600 \mathrm{ft}$ of pipeline.
Bellingham	2	2" Bellingham HP Distribution System	1967	Pressure test documentation	Pipeline will be removed/downrated as part of future project to remove pipelines from aging bridges.
2017					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Mt. Vernon	2	8" March Point HP Line	1957	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
Longview	8	8" Kalama HP Line	1996-1997	Pipe grade, wall thickness, and pressure test documentation	Test retired in place pipe and samples removed during replacements. Validate operating pressure on applicable sections.
2018					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Kennewick	1	8" Attalia HP Line	1958	Pipe grade	Test previously removed sections for pipe grade.
Longview	1	12" Longview-Kelso HP Distribution Line	1957	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness. Test retired in place sections and sections which have previously been removed.
Wenatchee	1	6" \& 8" Moses Lake HP Line	1957	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
2019					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Longview	1	12" Longview-Kelso HP Distribution Line	1957	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness. Test retired in place sections and sections which have previously been removed.
Kennewick	1	12" Attalia HP Line	1968	Pipe grade and wall thickness	Test and/or remove $183 \mathrm{ft} \mathrm{section}$.
Sunnyside	5	6" Toppenish-Zillah HP Line	1993	Pipe grade and wall thickness	Test samples from abandoned sections and those removed during replacements. If needed, prepare sampling plan.
2020					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Longview	1	12" Longview-Kelso HP Distribution Line	1957	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness. Test retired in place sections and sections which have previously been removed.
Wenatchee	3	4" Othello Line	1971	Wall thickness	Validate operating pressure or replace $191 \mathrm{ft} \mathrm{section} \mathrm{of} \mathrm{pipeline}$.
2021					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Bremerton	11	8" Bremerton HP Line	1971	Pressure test documentation	Validate operating pressure.
2022					
District	Line \#	Description	Year Installed	Critical Information	Plan of Action
Kennewick	16	$4^{\prime \prime}$ North Pasco HP Line	Various	Pressure test documentation	Validate operating pressure test or replace 531 ft section of pipeline.
Mt. Vernon	15	6" Mt. Vermon HP Line	2009	Pressure test documentation	Validate operating pressure.
2023					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Kennewick	18	6" West Richland HP Line	2010	Pressure test documentation	Validate operating pressure.
2024					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Aberdeen	12	2" Elma HP Line	1978	Pressure test documentation	Validate operating pressure.
Kennewick	4	Pasco HP Distribution System	1995	Pipe material	Work Order states Iron pipe in one section. Test pipe to verify material, grade, and thickness. Alternative is to replace 187 ft section of pipeline.
2025					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Yakima	1	8" Yakima HP Line	1978	Pressure test documentation	Validate operating pressure.
Wenatchee	2	$2^{\prime \prime}$ Wheeler HP Line	1962	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
2026					
District	Line\#	Description	Year Installed	Critical Information	Plan of Action
Sunnyside	8	3" South Toppenish HP Line	1956	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.
Sunnyside	6	3" Zillah HP Line	1956	Pipe grade and wall thickness	Prepare sampling plan to verify pipe grade and wall thickness.

TABLE 3 - PIPELINES ASSUMING YIELD STRENGTH OF 24,000 PSI

Aberdeen District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
4	4" Elma HP Line	R-6 to R-60	150	7.48\%
8	4" montesano HP Distribution System	R-4 to R-5	135	6.73\%
9	2" Elma Rendering Plant HP Line	Route 8 Crossing	150	7.48\%
Bellingham District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
2	4" Bellingham HP Distribution System	High Street	155	9.31\%
2	8" Bellingham HP Distribution System	Original line	155	14.81\%
2	10" Bellingham HP Distribution System	Original line	155	15.85\%
4	4" South Lynden HP Line	Original line	250	12.47\%
8	2" Nooksach HP Distribution System	Tap line 4 south	250	8.03\%
Bremerton District - None				
Kenne wick District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
4	Pasco HP Distribution System	Original line and N . of 8th St.	300	14.96\%
Longview District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
3	4" Dike Road HP Line	Original Line	80	4.81\%
Mt. Vernon District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
3	6" Anacortes HP Distribution System	518 Hillcrest Drive to R-32	105	7.71\%
3	8" Anacortes HP Distribution System	R-31 to 518 Hillcrest Drive	105	10.04\%
4	4" Mt. VernonHP Line	Original Line	250	12.47\%
5	3" Burlington HP Line	R-18 to R-19	249	11.64\%
7	4" North Texas Road HP Line	North Texas Road near R-85	250	8.03\%
8	4" Arlington HP Line	Gate to R-86	249	12.42\%
Walla Walla District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
1	8" Walla Walla HP Line	Original Line	150	14.34\%
2	3" College Place HP Line	Original Line	150	7.01\%
Wenatchee District				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
10	6" West Wheeler HP Line	205 ft segment installed in 1997	250	18.35\%
12	6" Wenatchee HP Line	Original line	225	16.52\%
Sunnyside District (Merged with Yakima District)				
Line \#	Description	Segment Description	MAOP (psig)	Revised \%SMYS
1	3" Sunnyside HP Line	Original line	200	9.35\%
2	2" South Sunnyside HP Line	North section of line	200	6.43\%
3	4" Grandview HP Line	Original line	250	12.47\%
4	3" Prosser HP Line	O-01 to R-1	250	11.69\%
7	4" Wapato HP Line	Original line	152	7.58\%
9	3" Granger HP Line	Original line	175	8.18\%
Yakima District - None				

APPENDIX F

Regarding the CNG High Pressure (HP) Pipeline Maximum Allowable Operating Pressure--Supporting Documentation Data Request

October 10, 2013

To: Steve Kessie, CNG, Manager-Operations Services (via email)
Please provide the UTC with the following data requests (DR).
The scope of the following DR's should be limited to the high pressure (HP) lines in CNG's Washington system which have insufficient documentation to determine MAOP.

DR No. 1

Please provide an updated Table 1 (or a new table) which lists ALL of the pipeline segments which have deficient MAOP records. Also add the following pipe data columns to Table 1 (or a new table): 1) grade; 2) wall thickness; 3) test pressure; 4) year installed; 5) \%SMYS--based on existing (current) operations; 6) pipe segment length; 7) a column denoting transmission or not; 8) class location.

DR No. 2

Please provide an updated Table 3 which shows only those pipelines from Table 1 which CNG reduced the pipe strength to 24,000 as allowed in 49 CFR 192.107(b). Also, please add a new column for 1) wall thickness (real or assumed and clarify which), 2) pipe length and 3)class location.

DR No. 3

Please provide leak history and any exposed pipe condition reports for all pipelines which have deficient/unknown MAOP records.

DR No. 4

Please provide and update to Table 2 indicating why CNG placed a particular pipeline in year one versus year 4 or 10 (ie: Was this decision based on location? leak history? HCAs? permitting? customer base?, etc.).

APPENDIX G

STATE OF WASHINGTON
WASHING்TON UTILITIES AND TRANSPORTATION COMMISSION
1300 S. Evergreen Park Dr. S.W., P.O. Box 47250 • Olympia, Washington 98504-7250
(360) 664-1160 • TTY (360) 586-8203

CERTIFIED MAIL

November 5, 2013

Eric Martuscelli

Vice President-Operations
Cascade Natural Gas Corporation
8113 W. Grandridge Blvd
Kennewick, WA 99336
Dear Mr. Martuscelli:

RE: 2013 Natural Gas Standard Inspection -Tri-Cities and Walla Walla Districts

The Washington Utilities and Transportation Commission (UTC) staff conducted a natural gas safety standard inspection, during the week of October 14-18, 2013, of Cascade Natural Gas (CNG) - Tri-Cities and Walla Walla Districts. The inspection included a records review and inspection of the pipeline facilities.

Our inspection indicates four probable violations as noted in the enclosed report. We also noted two areas of concern which, unless corrected, could potentially lead to future violations of state or federal pipeline safety rules.

Your response needed

Please review the attached report and respond in writing by December 6, 2013. The response should include how and when you plan to bring the probable violations into full compliance.

What happens after you respond to this letter?

The attached report presents staff's decision on probable violations and does not constitute a finding of violation by the commission at this time.

After you respond in writing to this letter, there are several possible actions the commission, in its discretion, may take with respect to this matter. For example, the commission may:

- Issue an administrative penalty under RCW 81.88.040, or;
- Institute a complaint, seeking monetary penalties, changes in the company's practices, or other relief authorized by law, and justified by the circumstances, or;
- Consider the matter resolved without further commission action.

We have not yet decided whether to pursue a complaint or penalty in this matter. Should an administrative law judge decide to pursue a complaint or penalty, your company will have an opportunity to present its position directly to the commissioners.

We would like to note that during this was the fourth of four CNG inspections completed this year. It was clear that overall, CNG's records and compliance have greatly improved over previous inspections. We expect CNG to continue on this course and would like to thank CNG's personnel for their cooperation and assistance during these inspections.

If you have any questions, please contact Dennis Ritter, Pipeline Safety Engineer at (360) 664-1159. Please refer to the subject matter described above in any future correspondence pertaining to this inspection

Sincerely,

David D. Lykken
Pipeline Safety Director
Enclosure
cc: Steve Kessie, Manager-Operations Services, Cascade Natural Gas Corporation Tina Beach, Manager of Standards \& Compliance, Cascade Natural Gas Corporation Vicki Ganow, Pipeline Safety Specialist, Cascade Natural Gas Corporation Kevin McCallum, Pipeline Safety Specialist, Cascade Natural Gas Corporation

WASHINGTON UTILITIES AND TRANSPORTATION COMIMISSION 2013 Standard Natural Gas Safety Inspection Cascade Natural Gas, Tri-Cities and Walla Walla Districts

The following probable violations of Title 49, CFR Part 192 and WAC 480-93 were noted as a result of the natural gas safety inspection of CNG's Tri-Cities and Walla Walla district records, plans, procedures and pipeline facilities.

PROBABLE VIOLATIONS

1. WAC 480-93-185 Gas leak investigation:

(1) Each gas pipeline company must investigate any odor, leak, explosion, or fire, which may involve its gas pipelines, promptly after receiving notification. Where the investigation reveals a leak, the gas pipeline company must grade the leak in accordance with WAC 480-93-186, and take appropriate action. The gas pipeline company must retain the leak investigation record for the life of the pipeline.

Finding(s):

CNG failed to grade 3 leaks as noted below. All three of these leaks were severed lines:
a. Kennewick WO\#197180, 10/25/12-contractor who struck line had pinched off broken end so gas was not "blowing", however, the line was severed and not graded per CNG CP 750.
b. Kennewick WO\#20064, 3/14/13—form noted "blowing gas". Leak grade was not graded per CNG CP 750.
c. Kennewick WO\#200503, 3/16/13-landscaper cut the service which had an EFV which prevented gas from blowing. However, line as severed and not graded per CNG CP 750:

2. WAC 480-93-186 Leak evaluation:

(3) The gas pipeline company must check the perimeter of the leak area with a combustible gas indicator. The gas pipeline company must perform a follow-up inspection on all leak repairs with residual gas remaining in the ground as soon as practical, but not later than thirty days following the repair.

Finding(s):

Two instances were found were CNG failed to follow up the initial leak response within the required 30 days:
a. Kennewick WO\#194048, 6/27/12-651 Oklahoma St., First response was 6/27/12; follow up was 8/30/12.
b. Kennewick WO\#202022, 9/5/13-679 S. Oklahoma St., First response was 9/5/13; follow up was on $10 / 8 / 13$.
3. WAC 480-93-188 Gas leak surveys:
(1) Each gas pipeline company must perform gas leak surveys using a gas detection instrument covering the following areas and circumstances:
(a) Over all mains, services, and transmission lines including the testing of the atmosphere near other utility (gas, electric, telephone, sewer, or water) boxes or manholes, and other underground structures;

Finding(s):

CNG uses printouts from its GIS mapping system to allow field crews the ability to "highlight" the pipelines they survey on a real time basis. In reviewing these leak survey records, several pipeline segments, stubs or services in both Tri Cities and Walla Walla were not highlighted. In some instances there was an issue, such as a locked gate, preventing access. CNG's procedure requires this to be noted on a separate "AOC" sheet (CNG 297) so it can be surveyed at a later date. Several non-highlighted pipeline facilities did not appear on AOC sheets and therefore, it could not be determined if the line had actually been surveyed. See attached sheets for locations.

4. WAC 480-93-180 Plans and procedures.

(1) Each gas pipeline company must have and follow a gas pipeline plan and procedure manual (manual) for operation, maintenance, inspection, and emergency response activities that is specific to the gas pipeline company's system. The manual must include plans and procedures for meeting all applicable requirements of 49 CFR $\$ \S 191,192$ and chapter 480-93 WAC, and any plans or procedures used by a gas pipeline company's associated contractors.

Finding(s):

CNG CP 7554.033 states, "Personnel shall grade each meter set and service riser listed in the shutdown section using the inspection criteria in section .02. If a meter set or riser is noted as "Needs Paint", or "Needs Repair", a description of the condition should be taken of the condition in the space provided. An individual completing a set of meters shall indicate by signing and dating the page of the report they completed."

During atmospheric corrosion control records review in Walla Walla, it was noted that there were pages of records which did not have a signature or name, just a date (see below). Additionally, it was noted the many different ways that CNG field personnel "signed" the forms: initials, first name, last name, or a combination of all three. The practice should be consistent for all personnel.

- 2012 Walla Walla Book 1, Shutdown section 26-I008, pg 11/451
- 2013 Walla Walla Book 1, Shutdown section 26-I001, pgs 17-22/1382
- 2013 Walla Walla Book ?, Shutdown section 26-I004, pgs 113-122/1382

AREAS OF CONCERN AND RECOMMENDATIONS

1. 49 CFR 8192.517 (a) Records/

(a) Each operator shall make, and retain for the useful life of the pipeline, a record of each test performed under $\$ \S 192.505$ and 192.507. The record must contain at least the following information:
(1) The operator's name, the name of the operator's employee responsible for making the test, and the name of any test company used.
(2) Test medium used.
(3) Test pressure.
(4) Test duration.
(5) Pressure recording charts, or other record of pressure readings.
(6) Elevation variations, whenever significant for the particular test.

Leaks and failures noted and their disposition.

2. 49 CFR § 192.619 Maximum Allowable Operating Pressure Steel or plastic pipelines:

(a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph (c) or (d) of this section, or the lowest of the following:
(1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part. However, for steel pipe in pipelines being converted under $\$ 192.14$ or uprated under subpart K of this part, if any variable necessary to determine the design pressure under the design formula (\$192.105) is unknown, one of the following pressures is to be used as design pressure:
(i) Eighty percent of the first test pressure that produces yield under section N5 of Appendix N of ASME 331.8 (incorporated by reference, see §192.7), reduced by the appropriate factor in paragraph (a)(2)(ii) of this section; or
(ii) If the pipe is $12 \frac{3}{4}$ inches (324 mm) or less in outside diameter and is not tested to yield under this paragraph, 200 p.s.i. (1379 kPa) gage.
(2) The pressure obtained by dividing the pressure to which the segment was tested after construction as follows:
(i) For plastic pipe in all locations, the test pressure is divided by a factor of 1.5 .
(ii) For steel pipe operated at 100 p.s.i. (689 kPa) gage or more, the test pressure is divided by a factor determined in accordance with the following table:

| Class
 location | Factors', segment- | | |
| :--- | :--- | ---: | ---: | ---: |
| loch | Installed before (Nov. 12, 1970) | Installed after (Nov. 11, 1970) | Converted under §192.14 |
| 1 | 1.1 | 1.1 | 1.25 |
| 2 | 1.25 | 1.25 | 1.25 |
| 3 | 1.4 | 1.5 | 1.5 |
| 4 | 1.4 | 1.5 | 1.5 |

Note: For offshore segments installed, or updated, or converted after July 31, 1977, that are not located on an offshore platform, the factor is 1.25. For segments installed, uprated, or converted after July 31, 1977 that are located on an offshore platform or on a platform in inland navigable waters (including a pipe riser), the factor is 1.5
(3) The highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column. This pressure restriction applies unless the segment was tested according to the requirements in paragraph (a)(2) of this section after the applicable
date in the third column or the segment was uprated according to the requirements in subpart K of this part:

Pipeline segment	Pressure date	Test date			
-Onshore gathering line that first became subject to this part (other than §192.612) after April 13, 2006	March 15, 2006, or date line becomes subject to this part, whichever is later	5 years preceding applicable date in second column.			
-Onshore transmission line that was a gathering line not subject to this part before March 15, 2006					
Offshore gathering lines	July 1, 1976		\quad	Jll other pipelines	July 1,1970
:---	:---				

(4) The pressure determined by the operator to be the maximum safe pressure after considering the history of the segment, particularly known corrosion and the actual operating pressure.
(b) No person may operate a segment to which paragraph (a)(4) of this section is applicable, unless overpressure protective devices are installed on the segment in a manner that will prevent the maximum allowable operating pressure from being exceeded, in accordance with §192.195.
(c) The requirements on pressure restrictions in this section do not apply in the following instance. An operator may operate a segment of pipeline found to be in satisfactory condition, considering its operating and maintenance history, at the highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second. column of the table in paragraph (a)(3) of this section. An operator must still comply with \$192.611

Findings:

Based on findings from previous CNG inspections completed this year, CNG has reviewed all of its high pressure pipelines in all units looking for missing data used to confirm MAOP including this unit. CNG has formulated a program to obtain all missing data and Pipeline Safety is currently reviewing it. However, pressure test records for the 8" Attalia Line were asked for during this inspection. CNG did not have complete pressure test records (per Kathleen Chirgwin, GO).

In reviewing CNG's table of missing information submitted to the UTC as part of the above mentioned program, the 8 " Attalia line was included, however, pressure testing records were not listed as missing; only "pipe grade" was listed as missing. This portion of the code is not retroactive and the 8 " Attalia line was installed pre code. CNG still must confirm MAOP per 192.619, if the pressure testing documents are not complete. We will require CNG to submit its MAOP confirming documents for the 8-inch Attalia line to the UTC within 30 calendar days from the date of this letter.
2. WAC 480-93-140(1) Service regulators:
(1) To ensure proper operation of service regulators, each gas pipeline company must install, operate, and maintain service regulators in accordance with federal and state regulations, and in accordance with the manufacturer's recommended installation and'maintenance practices.

Findings:

A review of the annual regulator maintenance records indicated that regulators R31 Kennewick, R37 Pasco, R39 Finley, and R64 Kennewick, had springs installed which were outside the set pressures of the regulator or relief. While not necessarily a violation of the code, CNG should have some documentation as to why this practice is being used. CNG did not provide documentation during the inspection. It should be noted, this same issue occurred in the Yakima/Sunnyside district inspection (9/27/13). At that time, CNG stated that GO Engineering establishes and approves all set points and spring ranges for regulators. CNG stated they would have justification "soon" and so it was not written into the report. As of the date of this report, CNG still has not provided justification. It should also be noted, that a regulator company Emerson (Fisher) was contacted to ask whether this situation was a safety concern. Emerson stated it was not a safety concern, but may be a reliability or accuracy issue. They recommend operators use springs (the lighter the better) with a range which encompasses the set point of the regulators/relief.

3. WAC 480-93-188(5) Gas leak surveys:

(5) Each gas pipeline company must keep leak survey records for a minimum of five years. At a minimum, survey records must contain the following information:
(a) Description of the system and area surveyed (including maps and leak survey logs);
(b) Survey results;
(c) Survey method;
(d) Name of the person who performed the survey;
(e) Survey dates; and
(f) Instrument tracking or identification number.

Findings:

CNG performs quarterly patrolling on the Columbia Mall rooftop (meter's and regulators are on the roof). During the patrol they also do leak surveys, however, they do not write down the instrument number on the patrol form-there actually is not a place on the form to write it. The same form used in Walla Walla does have place holder for this information. CNG should consider using this version of the form for all patrolling to assist field crews in writing down information

APPENDIX H

Huynh, Rhonda (UTC)

From: Beach, Tina Tina.Beach@cngc.com
Sent: Thursday, April 17, 2014 12:02 PM
To:
Cc:
Subject:

Attachments:
Huynh, Rhonda (UTC)
Martuscelli, Eric; Ogden, Jeremy; Kessie, Steve
FOLLOW UP: MAOP Validation - Response TriCities/Walla Walla Standard Inspection 2013
WUTC - 4-17-14.pdf

Dear Rhonda;
Per Dennis Ritter's original request dated October $10^{\text {th }}, 2013$ and subsequent discussions between Mr. Ogden and Mr. Lykken; please find the attached request for information related to 49CFR 192.619 Maximum Operating Pressure steel or plastic pipelines. Please forward this information to Mr. Lykken and Mr. Ritter. If you have further questions related to this data feel free to contact Mr. Ogden or myself.

Sincerely,

Tina R. Beach

Manager of Standards and Compliance

8113 Grandridge Blvd.
Kennewick, WA 99336
(509) 734-4576 Kennewick office
(206) 445-4121 Work cell
(509) 737-9803 Fax
tina.beach@cngc.com

RECEIVED

APR 172014
State of Washington UTC
Pipeline Safety Program TELEPHONE 509-734-4500 FACSIMILE 509-737-7166 www.cngc.com

In the Community to Serve*

April 17, 2014
RECEIVED
APR 172014
David D. Lykken
Pipeline Safety Director
Washington Utilities and Transportation Commission
State of Washington UTC
Pipeline Safety Program 1300 S. Evergreen Park Drive S.W.
P.O. Box 47250

Olympia, WA 98504-7250

Subject: Cascade Natural Gas - Maximum Allowable Operating Pressure (MAOP)

David:
Transmitted herewith is the data requested in the October 10, 2013 data request from the WUTC. TABLE 1 - PIPELINES WITH MISSING MAOP INFORMATION addresses DR \#1 and TABLE 3 - PIPELINES ASSUMING YIELD STRENGTH OF 24,000 PSI addresses DR \#2. Cascade has contracted with irth Solutions to perform a class location study on all of the high pressure (HP) pipelines and it is anticipated that the results will be available in late spring 2014. Additionally, the information requested in DR \#3 is too large to be transmitted by email and will be posted in the UTC online portal, as instructed by Dennis Ritter.

As a response to DR \#4, the schedule shown in TABLE 2 - SCHEDULE is based on a matrix that Cascade created to prioritize pipeline segments. This matrix took into account \% SMYS of pipe and fittings, pressure rating of fittings, population density near pipeline, length of pipeline segment, and documentation available. The schedule was then prepared to address the pipelines, with higher priorities first and minor exceptions as deemed necessary.

If you have any questions or would like to discuss anything further, please feel free to contact me to discuss.

Sincerely,

Jeremy Ogden, P.E.
Director, Engineering Services
Cascade Natural Gas Corporation
jeremy.ogden@cngc.com
509-734-4509

TABLE 1 - PIPELINES WITH MISSING MAOP INFORMATION

Aberdeen District											
Line \#	Dexcription	Year Installicd	Critical Information	Plan of Action	Pipe Grade	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Wall Thichness } \\ (\mathrm{in} .) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Test Pressure } \\ \text { (psig) } \end{array}$	9 SMYS	$\begin{gathered} \text { Pipe Segment Length } \\ \text { (fi) } \end{gathered}$	Transmixsion (Y/N)	
1	$5^{\text {T}}$ Kitsop Line	1972	Pressure rating on Sav-A-Valves (2)	Expose and invect Sav-A-Valves. Replice cops if necessary.	42,060	0.188	750	19.99	908	N	
		2000	158 ft of pipe assumed to be Grado B	Test to verify pire grade as X42 or greater.	52,000	0.312	1080	29.13	1,035	N	
		1963	Under rated Sav-A-Valves (2) and transition fittings (2)	Expose and inspect to wrify pressure rating and grade.	46,000	0.188	750	24.88	35,770	Y	
3	4* Micleary HP Line	1963	Pressure test dozumxntation	MAOP based en operatiog hittory.	35,000	0.188	None	5.13	225	N	
8	4^{-}Montecano HP Distribution System	1964	Pressure lest documxotation	MAAOP based on operatiog history.	35,000	0.188	None	3.66	1.645	N	
9	2"Elna Rendering I Mant IIP Line	1964	Pressure test documentation	MAOP based on operating history.	35,000	0.154	None	3.30	5,280	N	
		1964	Pressure test decumentation, pipe grale and wall thickness	MAOP bused on operating history. Assume mininuum pipe grade and wall thickoess values.	24.000	0.156	None	9.01	252	N	
15	12^{2} Kitap HP Line	1995	Under rated Sav-A-Value	Expose and inspect Sav-A-Value. Replace if necescory.	52,000	0.312	1080	19.61	34.782	N	
Bellingham District											
L.ine :	Description	$\begin{gathered} \text { Year } \\ \text { Installed } \end{gathered}$	Critical Information	Plan of Action	Pipe Grade	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Wall Thichness } \\ \text { (in.) } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Tat Pressure } \\ \text { (psig) } \end{array}$	\% Smys	$\underset{(\mathrm{fi})}{\text { Pipe Segment Length }}$	Transmissiou (Y/N)	
1	8^{\bullet} Bellingham HP Line	1956	Pressure lest documentation. pipe grode and wall thickness	MAOP based on operating history. Remove sections of retired in place pipe and test for pipe grade and wall thickness.	24,000	0.188	None	36.32	15,094	N	
2	Bellingham IIP Distribution System	1956	Pressure test documentation and pipe grade	MAOP laced on operating history. Pipelines will be removed/dmurated as part of future project to remove piplines from bridges which will he reploced.	24,000	0.188	None	14.81	16,475	N	
		1956	Pressure test documentation and pije grade		24,000	0.188	None	18.46	19,400	N	
		1960	Pressure lest documentation, pipe grade and wall thickness		24,000	0.156	Nunc	9.31	1,508	N	
		1964	Pressure test documentation	MAOP baseed on operating history.	35,000	0.188	None	5.30	2,356	N	
		1965	Pressure teat doxumxalation	MAOP hased on operating history.	35,000	0.188	None	7.80	988	N	
		1966	Pressure lest documsotation	MAOP kased on operating history.	35,000	0.188	Nonc	7.80	1.577	N	
		1966	Pressure leat documentation	MAOP kused on operating history.	35,000	0.188	None	10.16	396	N	
		1967	Pressure test docunzentation	MAOP based on opxating history.	35,000	0.154	None	3.41	2.025	N	
		1972	Pripe gracle and wall thickness	Pipclines will be removed/downrated as part of future project to reanove pipelines from bridges which will be replaced.	24,000	0.156	225	9.31	219	N	
3	8^{*} Central Whatcon HiP Line	1957	Pressure test documentation, pipe grade and wall thickness	MIAOP based on operating history. Test samples from James Stroet and tampmon Road, and any other points that are available, for pipe grade and wall thickness.	24,000	0.188	None	36.32	57,437	N	
		1993	Pipa grade on transition flutings	Expose and inspect fittings for pipe grade, either by stamp indentification or in-situ testiog.	46,000	0.188	680	24.91	10.579	N	
4	**South L.spden HP Line	1961	Pressure test documentation, pipe grade and wall thickness	MAOP based on operating history. Assume minimum pipe grade and wall thickness values.	24,000	0.156	None	15.02	35,41	N	
6	f- Ferndale HP Line	1962	Under rated flange tee at V-47	Inspectduring V-47 project in 2014.	25,000	0.188	500	18.19	8,120	N	
8	2"Nooksack HP Distribution System	1963	Pressure test documentation, pipe grade and wall thickness	MAOP based on operating history. Assume nuinimum pipe grade and wall thickness values.	24,000	0.154	None	8.03	732	N	
9	8* Lake Terrell Rosud Tramission Line	1965	Pripe grade and wall thikkness	Test samples ins-situ in 2015.	24,000	0.188	569	36.32	10,314	Y	
10	$16^{*} \mathrm{~N}$. Whatcom Transmission Line	1971	Under rated plugs at valves	Reploce plugs in 5 valves teginniog in 2014.	52,000	0.25	926	36.92	143,907	Y	
12	4*North L. misen HP Line	1978	Under rated Sav-A-Valive	Expose and inspeet to verify pressure rating.	35,000	0.188	600	13.68	8.161	N	
21	16° Squalicum HP Line	1993	Pipe grale	In situ testing in 3 loxations minimum.	24,000	0.281	620	29.66	2,600	N	
Bremerton Distrikt											
Line \#	Description	$\begin{gathered} \text { Year } \\ \text { Installed } \end{gathered}$	Critical Infornation	Plan of Action	Pipe Grade	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Wall Thickness } \\ \text { (in.) } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Test Pressure } \\ \text { (pstg) } \end{array} \\ \hline \end{array}$	\% SMYS	$\underset{\text { Pipe Segment Length }}{\text { (f) }}$	Transmission (YN)	
1	8^{8} Kitap Line	1972	Pressure rating on Sav-A-Volves (2)	Expose and inspett Sav-A-Vaties. Replace caps if necessary.	42,000	0.188	750	19.99	908	N	
		2000	t58 fi of pipe assumed to be Grosk B	Test to verify pipe grade as X42 or greater.	52,000	0.312	1080	29.13	1,035	N	
		1963	Under rated Saw-A-Valves (2) and transition fitings (2)	Expoce and inspect to verify presure rating and grade.	46,000	0.188	750	24.88	35,770	γ	
2	8"Bremerton Transmiskion Linc	1963	Pipe grade and wall thickness	Test atundoned sections to wrify pipe grade and wall thicknese	24.000	0.188	750	47.69	2,843	γ	
6	+* Olympic View HiP Line	1973	Under rated plags (2) in a value	Replace plags.	42,000	0.188	500	14.22	14,540	N	
11	8 8"Bremerton HP Line	1964	Pressure test documentation	MAOP based on operating history.	46,000	0.188	None	7.18	5.780	N	
		1971	Pressure test documenotation	Volidate operating pressure.	35,000	0.188	None	9.4.	3.269	N	
15	12* Kitap HIP Line	1995	Under rated Sas.A-Valve	Expose and inspoxt Ssw-A-Valve. Replace if docessary.	52,000	0.312	1080	19.61	34,782	N	
Kemnewick District											
Line \#	Description	Year Installed	Critical Infornation	Plan of Action	Pipe Grade	Wall Thickness (in)	$\begin{gathered} \text { Test Pressure } \\ \text { (psig) } \end{gathered}$	\% SMYS	$\begin{array}{\|c\|} \hline \text { Pipe Scgment Length } \\ \text { (fi) } \end{array}$	Transmission (Y/N)	
1	Atalia HP Line	1958	Pipe Grade	Test previously removed and abandoned sections to verify pipe grade.	24,000	0.188	337	28.67	78,449	N	
		1968	Presture test dociumentation	MAOP based on operating history.	35,000	0.188	None	19.66	49	N	
		1968	Pressure lest dexumentation	MAOP based on operating history.	35,000	0.25	None	21.86	183	N	
		1963	Pressure test doxumentation	MAOP lased on operating history.	35,000	0.375	None	14.57	42	N	
		1968	Pressure lest documemation	MAOP based on operating histery.	35,000	0.33	None	16.56	25	N	
		1968	Pressurc test documentation	MAOP based on operating history.	52,000	0.25	None	14.71	111	N	
3	${ }^{*}$ East Finky If Line	1967	Pressure test docuinentation	MAOP hased on operating history.	35,000	0.188	None	8.55	2,498	N	
4	Paso HP Distribution System	1960	Pipe grade and wall thickness	Assume minimum pipe grade and wall thickness values.	24,000	0.156	450	18.03	10,125	N	
5	4*Northwest Pasco HP Line	1966	Pressure test docummatation	MAOP fuxed on operating history,	35,000	0.188	None	10.26	2.847	N	
6	4^{+}- Glade Road HP Line	1966	Prossure test documentation	MAOP tased on operating history.	35,000	0.188	None	5.13	2.052	N	
7	2. Burbank HP Line	1967	Pressure test dexumentation	MAOP based on operating history.	35,000	0.154	None	3.18	3.520	N	
8	+*Finky HP Line	1959	Pressure test documentation, pipe grade and wall thickness	MAOP based on operating history. Assume minimum pipe grode and wall thickness salues.	24,000	0.156	None	12.02	12,391	N	
11	4- Plymouth HP Line	1980	Under rated SavA.Valve	Expose and inspet Sav-A-Valve. Replase if necescry.	35,000	0.188	600	13.68	4,112	N	

Longriew District										
Line f	Description	$\begin{aligned} & \text { Yar } \\ & \text { Installed } \end{aligned}$	Critical Information	Plan of Action	Pipe Grate	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Wall Thickness } \\ \text { (in) } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Test Pressure } \\ \text { (psig) } \end{array}$	4 s.mys		Transmission (YNA)
1	Longsiew-Ketso HP Disaribution Line	1957	Pipe grade and wall thichees	Test retired in place sections and sections which have previously been removed.	24,000	0.25	400	26.56	27,350	N
		1957	Pressure test docunentatiose, pipe grode and wall lhickness	MAOP based on operating histay. Acsunce minimam pife grade and wall hickness values.	24,000	${ }^{0.156}$	None	15.02	4.96 H	N
2	4+Kalamu	1976	Preasue test docunentition	Validate operoting pressure.	35,000	0.188	None	10.26	18,075	N
3	4- Dike Rood If Line (Longriew)	1965	Pressure tes docurnentation, pip grade and wall lhickness	MAOP based on opxrating history. Assune ninininum pipe prode and wall hickness values.	24,000	0.156	None	4.81	6.463	N
7	12. South Loagriew IP Line	1995	Assumed Grade B transition	Eppose and let fitiongs for grode.	52,000	0.312	1050	19.61	18.373	N
8	8* Kalonut IP Lime	19%	Presure tel doxumentation	Validate opersing presure.	46,000	0.332	None	8.47	2.019	N
		1997	Pressure test documentation, pipc grade, and wall thichness	Test retired in place pipe and samples removed during replacements. Validate operating perssure on applicable sections.	24,000	0.188	None	28.67	7,132	N
		197	Pressure test documentation and pipe grade		24,000	0.25	None	21.56	550	N
		1997	Pressure tee dexurnolation	Valikate operating ressure.	46,000	0.25	None	11.25	550	N
Ml. Verruon District										
Line E	Description	$\begin{gathered} \text { Year } \\ \text { Installed } \\ \hline \end{gathered}$	Critcal Information	Plan of Action	Pipe Grade	$\begin{array}{\|c\|} \hline \text { Wall Thickness } \\ (\mathrm{ini}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Test Pressure } \\ \text { (psig) } \end{array} \\ \hline \end{array}$	9 smvs	$\left\lvert\, \begin{gathered} \text { Pipe Segment Levgth } \\ \text { (fi) } \end{gathered}\right.$	Transmisslon (YM)
1	8^{*} Ansortes HP Line	1957	Pressure tet documentation, pipc grade and wall hikikness	MAOP based on operating pressure. Test samples from abandoned sections and those removed during replacemente.	24,000	0.188	None	3.41	103,74	N
		1972	Presive Eest docunemation	Replacesestion of pipline.	35,000	0.188	None	23.59	80	N
2	8* Manch Point HP Live	1957	Pressure test dosumentation, pipe grade and wall thickness	MAOP based on operating histary. Test samples in-situ at 4 locations mininimum	24,000	0.188	None	34.41	9,233	N
3	Ansoonces HP Distribution System	1956	Pressure tes documeotation and pipe grode	MAOP tased on openting histery. Assume minimum pipe grode value.	24,000	0.188	None	7.71	7.352	N
		1956	Pressure test documentation and pipe grade	MAOP based on operating history. Assume minimum pipe grade value.	24,000	0.188	None	10.04	4,675	N
		1957	Pressure test documentation, pipc grade and wall thickness	SAOP laserl oa operating history. Assune múninum pipe grade and wall thickness values.	24,000	0.156	None	6.31	349	N
4	4-Mt Vemon HPLiome	1957	Pije erade and wall hickness	Assume minimum Pipe grode and wall hickness ralue.	24,000	0.156	None	15.02	29,922	N
5	3^{3} Burfiogtoo HP Line	1957	$\begin{aligned} & \text { Pressure test documentation, pipe } \\ & \text { grade and wall thickness } \end{aligned}$	MAOP hawed on operating histery. Assume minimum pipe grave and wall thickness values.	24,000	0.156	None	11.64	5,769	N
7	4- Notht Teas Roosd HP Line	1960	$\begin{aligned} & \text { Pressure test drewmentation, pipe } \\ & \text { grade and wall hickiness } \end{aligned}$	MAOP based on openting histry. Assune nininitram pipe erade and wall hickness alues.	24,000	0.154	None	8.03	914	N
8	f* Aftingion HP Line	1961	Prossure test docuncrataion, pipe grode and wall hiciness	MAOP based on eperating history. Aswime minimum pipe grade and wall hickness values.	24,000	0.156	None	14.96	10.177	N
10	+ Scdrowoonley IP Li.ine	1968	Presure lest daunmenation	MAOP Pasel On operating histery.	35,000	0.188	None	3.42	3.633	N
11	6^{6} Whidthy Lland IIP line	1969	Pipe and valive assembly	Replae 45 f of pipe and value ascembly.	52,000	0.188	750	13.55	27,550	N
12	6"North Oak liather HP Line	1972	Uolder rited stoperef fiting	Eypose and inspet stopper fititing. Replice if ifecessary.	42,000	0.188	675	16.78	19.048	N
14	16° Fredonia Transmiskion Line	1983	Unknown grode and wall dickners on fitings	Evpose and perform insisitu texing.	52,000	0.281	750	27.37	6,426	γ
		1983	Unknoum grade and wall whickness of fitings	Expose and perform in-situt testing.	4,900	0.312	750	26.16	563	Y
		2001	Unknown grade and wall thickness on fittings	Expose and perform in-situ testing.	52,000	0.312	800	23.89	323	Y
16	16^{*} March Point Transuisision Line	1992	Uaknown grave and walt thichness on fitinges	Expose and perform in-simu yestiog.	52,000	0.281	750	27.37	43,34	Y
Walla Walla District										
Line ${ }^{\text {8 }}$	Description	$\begin{gathered} \text { Year } \\ \text { Installed } \end{gathered}$	Critcal Informution	Plan of Action	Pipe Grude	$\left\lvert\, \begin{gathered} \text { Wall Thickness } \\ \text { (ini) } \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \text { Test Pressure } \\ \text { (psig) } \end{array}$	\% SMys	$\left\lvert\, \begin{gathered} \text { Pipe Segment Length } \\ \text { (fi) } \end{gathered}\right.$	Tranmismion (YN)
1	8^{*} Walla Walla IIP Line	1956	Pressure test documentation, pipe grode and wall thickness	MAOP bused on operating histery. Asume mininmam pipe grade and wall thickness salues.	24,000	0.188	None	14.34	4.595	N
2	3^{*} Collcge Pluse HP Line	1956	Prasture test doumenation, pipe grave end wall lickness	MAOP based on operating history. Assume minimum pipe grade and wall thickness values.	24,000	0.156	None	7.01	2.474	N
Wenatchee District										
Lhe :	- Description	$\begin{gathered} \hline \text { Year } \\ \text { Installed } \\ \hline \end{gathered}$	Critical Information	Plan of Action	Pipe Grade	$\begin{array}{\|c\|} \hline \text { Wall Thickness } \\ \text { (in.) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Test Pressure } \\ \text { (psig) } \\ \hline \end{array}$	\% smys	$\boldsymbol{c}_{\text {Fipe Segment Length }}^{\text {(fi) }} \mid$	Transmission (Y/N)
1		1957	Pressure test documentation, pipe grode and wall thickness	MAOP based on opratiog histary. Test samples insitu.	24,000	0.188	None	18.35	509	N
		1957	Preisune test documentation, pipe grade and wall thickners	MAOP Pused on operating histay. Tet samples ins-situ.	24,000	0.188	None	23.89	12,956	N
		1981	Pipe grade and wall hiickness	Test smingles in-situ.	24,000	0.156	375	15.02	2,041	N
2	2*Wheler IlP Line	1962	Pressure test documenotition, pipc grade and wall hickness	MAOP based on operating history. Assume minimum pipe grode and wall thickness values.	24,000	0.154	None	8.03	2.375	N
3	4-O Ohello Transmixsion Line	1971	Wall hickness	Validate wall hichices or replace 191 ff section of pipline.	35,000	0.188	465	20.14	191	Y
6	+- South Mosee Lake flp Line	1968	Prestret test doummention	MAOP tueced on operating histery.	35.000	0.188	None	8.55	3.087	N
10	6^{*} West Wheeler HP Line	1997	Prip grade and wall thikknes	Assume minitrum pipe grade and wall lichocoss valueer	24,000	0.188	755	1835	205	N
12	6^{*} Wenatcho HPLine	1956	Pressure test docunentation, pipe grade and wall lhickness	MAOP based on operating histary. Assume minimimum pipe grade and wall thickness values.	24,000	0.188	None	16.52	31,812	N
Yakima District										
Linet	Dascription	$\begin{gathered} \text { Year } \\ \text { Installel } \end{gathered}$	Crihical Infornution	Phan of Action	Pipe Grade	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Wall Thickness } \\ (\mathrm{in} .) \end{array} \\ \hline \end{array}$	Test Pressure	\% smys	$\begin{array}{\|c\|} \hline \text { Pipe Segnent Length } \\ (f) \end{array}$	Tranmilsion (YN)
1	s^{-}Yakinu	1956	Pressure test documentation, pipe grade and wall thickness	MAOP baced on operating hitery. Test samyles from abandoned sections and in-situ.	24,000	0.188	None	19.12	3.032	N
		1956	Pressure test documentation and pipe grase	MAOP based on operating history. Aswune mininum pipe grode value.	24.000	0.5	Noos	7.19	695	N
		1961	Pipe erade and wall thickness	Test samples from abandened sections and iossinu.	24,000	0.188	360	19.12	4,891	N
		1978	Presure test downmentation	Validate eperating pessure.	35.000	0.188	None	13.11	42	N
		1978	Presure ede downmeration	Validate opprating pressur.	46.000	0.25	None	7.50	1.585	N

Line II	Description	$\begin{gathered} \text { Year } \\ \text { Installed } \end{gathered}$	Critical Information	Sunnyside District (Merged with Yakinua Disirict) Plan of Action	Pipe Grade	Wall Thickness (in)	Test Pressure (psig)	${ }_{5}$ Smvs	Pipe Segment Length (ii)	Transmission (Y/N)
1	3^{3} Sunnyside HP Line	1956	Pressure test documentation, pipe grade and wall thickness	MLAOP based on operating history. Assume minimum pipe grade value.	24,080	0.156	None	9.35	4,536	N
2	2^{*} South Sunnyside HP Line	1959	Pressure test documentation, pipe erode and wall thickness	MAOP based on operating history. Arsume minimum pipe grade value.	24,000	0.154	Nose	6.43	4,018	N
3	4^{*} Grandriew HP Lioe	1956	Presture test docuncatation, pije grale and wall thickness	Replace pipeline in 2015.	24.000	0.156	None	15.02	4,736	N
4	3^{3} Proser HP Line	1956	Pressure test documentation, pipe grade and wall thickness	MAOP baced on operating history. Assume mínimum pipe grade value.	24,000	0.156	None	11.69	5.832	N
5	6° Toppenish-Zillah HP Line	1956	Pressure test documentation, pipe grade and wall thichness	MAOP based on operating history. Sample sections removed in 2014 and abandooed sections to validate pipe grode and wall thickness.	24,000	0.188	None	29.37	32,566	N
6	3" Zillah HP Line	1956	Pressure test documentation, pipe grade and wall thickness	MAOP based on operating history. Assume minimum pipe grade value.	24,000	0.156	None	18.70	873	N
7	${ }^{*}$ Waputo HP Line	1956	Pressure tet documentaticn, pipe grode and wall thickness	MIAOP based on eperating history. Assume minimum pipe grade value.	24,000	0.156	None	9.13	33,284	N
8	3' South Toppenish HP Line	1956	Pressure test docurnentation, pipe grade and wall thickness	MAOP based on operating history. Assume minimum pipe grade value.	24,000	0.156	Nonc	8.18	6,161	N
9	3^{3} Cranger HP Line	1956	Prossure lest documentation, pipe grade and wall thickness	MAOP bused en operating history. Assume minimam pipe grade value.	24,000	0.156	Nune	8.18	31,347	N

; $\quad=$ ASSUMED VALUE

TABLE 2 -SCHEDULE

2014					
District	Une \#	Description	Year Intaltled	Critical Information	Plan of Action
nellingham	1	8^{-8} Bellinghum HP Line	1956	Pressure lest documentation, pipe grade and wall thickness	MAOP based ea ogerating history. Remone sectioas of retired in place pipe and test for pipe grate and wall thichness.
Yaxinu (Sunnyside)	5	6\% Toppenih-ZZillh HP Line	1956	Pressure test documentation. pipe graide and wall thickness	MAOP based on operating history. Sumple sections removed in 2014 and ahundoned sections to validate pipe grade and wall thichness.
nellinghum	6	15Fendile HP Line	1962	Under rated fange the at V-47	thipeat during V 477 projed in 2014.
Bellinglum	10	$16^{\circ} \mathrm{N}$. Whicomen Trasmistion Line	1971	Under rited plugz al valies	Replace plugs in 5 vales begiming in 2014.
2015					
District	Une \#	Description	Year Installced	Critical Infornation Pressure test documentation and pipe grade	Plan of Action
Bellingham	2	Bellinglum HP Distritution System	1956		MAOP bused on operating history. Pipclines will he remorel/downrated as purt of future project to remove pipelines from bridyes which will be replaced.
Mi. Veman	14	16° Trethoia Transmistion Line	1983	Unknown grade and wall thickners on fittings	Erpose and perfoxm inssitu leting.
			1983	Unknown grade and wall thickness on fittings	Expose and perform in situ testing.
			2201	Unknown grade and wall thickness on fitings	Expose and perform in sisitu lesting.
nellingham	16	16 March Pdoin Tranamision Line	1992	Unknown grade and wall thickness on fittings	Eypuce and perform inasitit tectiog.
Bellinghim	9	S * ITic Terrell Rowd Tranmision Line	1965	Pipe grade and wall licichness	Tet smples inssitu in 2015.
ML. Vemon	2	8* March PGint HP Line	1957	Pressure test decumentation, pipe grade and wall thickness	MAOP buced on operating history. Test samples in-situ at 4 leations minimum.
Yabinu (Sunnyside)	3	1*Gradtiew HPLIne	1936	Pressure lest doxumentation, pipe grade and wall thickness	Replase pipeline in 2015.
Bellinghm	10	$110^{\circ} \mathrm{N}$. Whatem Tranmixiwion Line	1971	Under rated plugs sat vales	Replace plugs in 5 values begiming in 2014.
2016					
District	Line ${ }^{\text {P }}$	Dsacription	Year Intatled	Critical Information	Plan of Action
Mi. Vernoen	1	8* Ansentes HP Line	1957	Pressure test doccamentation, pipe grade and wall thiciness	MLSOP based ca operating pressure. Test samples from abandoned sections and those removed during replacenents.
Bellinglam	3	8^{*} Central Whatcom HP Line	1957	Pressure lest documentation, pipe grade and wall thichnews	MAOP based on operating history. Test samples from Jamer Street and Lampnun Roal, and any other points that are available, for pipe grate and wall thickness.
Kennewich	1	Atalia HP Line	1958	Prpe Crade	Test pretionsly remored and atundoned sections to verify pipe grade.
			1968	Presure test dacummatation	MAOP bisel en eperating histery.
2017					
District	Line \#	Dascriplion	Year Installed	Critical Information	Plan of Action
Bremerom	2	8^{-}- memerten Trammistion Line	193	mpe grade and wall thichnes	Test tanndood section to verify pipe grase and wall luichness.
Loogriew	1	Longsiew.Kelio HP Distribution Line	1957	Pipe grade and wall lhichness	Test retired in place sections and sections which have previously been removed.
Diemertea	6	4-Ofympic View HP Line	1973	Under rated plugs (2) in a alue	Replace plug.
2018					
District	Hne \#	Description	Year Installed	Critcol Information	Plan of Action
Longricw	8	8* Kalamu IIP Line	1996	Presure test downemation	Valiche eprating prewere.
			1997	Pressure test decumentation, pipe grade, and wall thichness	Test teliced in plare pipe and sumples remoed during replacements.
			1997	Pressure test decumentation and pipe grade	Validste operating presure en applicable setions.
			1997	Pressme test doumenation	Valifte operating pesesure.
2019					
District	Une \#	Dessripton	Year Installed	Critcal Information	Plan of Action
nellingham	21	16° Squalicum HP Line	1993	Pipe erase	In situ testing in 3 loations minimum
Wenathee	1	$\mathrm{G}^{\circ} \& 8^{\circ}$ Moses Lake HP Line	1957	Pressure lest documentation, pipe grade and wall thickness	MAOP bued on operating histery. Test smmpks in-silu.
			1957	Pressure test documentation, pipe grade and wall thickness	MAOP tuved on ereratiog histay. Tert samples insisitu.
			1981	Pipe grave and wall lichness	Test smples in sistu.
2020					
District	Une ${ }^{\text {a }}$	Descriplien	Year lastalled	Critical Information	Plan of Action
Yalinu	1	8^{*} Yatimu HP Line	1956	Pressure test documeatation, pipe grade and wall thickness	MAOP bued on operating history. Test samples from atundoned sections and in situ.
			1961	Pipe erate and wall thichness	Test samples from abandoned sections and inssifu.
Bellinghum	2	Bellinplam HP Distriturion System	1956	Pressure test documentation, pipe grade and wall thichness	MAOP based on operating history. Remove setions of retired in place pipe and test for pipe grade and wall thickness. Prepare sampling plan for further testing if necestary.
2021					
District	H, ine ${ }^{\text {P }}$	Discripiton	Year Installed	Critcal Information	Plan of Action
Mi. Vemman	12	6. North Oak Hultur HP Line	1972	Under rated stopper fitiog	Expose and inspet stapper filing. Replase if focessary.
Bellingham	3	8^{*} Central lhatom HP Line	1993	Pipe grade eat transition filuings	Expose and inspect fitings for pipe grade, either by stamp indentification or in-site testing.
Bcllingham	12	+ Narth L.ymden HP Line	1978	Under ratel Sav. A . Vatie	Expone and ingeest to verify presure ealing.
2022					
Yalimu	Line ${ }^{\text {a }}$	Dascription	Year Instatled	Critical Information	Plan of Action
	1	${ }^{\text {- }}$ Yalinu HP Iİine	1978	Pressure teat downmentation	Validate cerating prosure.
	1	${ }^{\text {r }}$ - Yalinu HP Line	1978	Pressure tel documentuion	Validute operatios pressur.
Aberdecn Bremertion	1	${ }^{\text {s }}$ Kitspp Line	1963	Under rated Sav-A-Valses (2) and transition fittings (2)	Expose and in inpect to verify pressure rating and grate.
2023					
District	Hnct ${ }^{\text {F }}$	Dasaription	Year Installed	Critcal Intormation	Flan of Action
nicmerrem	11	8^{-}- Bremetion HP Live	1971	Presure tel dow	Validute creating presure.
Longiew	7	1^{12} - South Longtiew HP Line	1995	Assumed Grade B transition fittings on X52 pipeline	Expone and test fillings fior grade.
2024					
District	Line ${ }^{\text {a }}$	Dsacription	Year Installed	Critioal Intornultion	Plan of Action
Longriew	2	4*Kalanu HP Line	1976	Pressure lest douninhation	Validale operating presure.
Mt. Vemon	1	8^{8} Ansaentes HP Line	1972	Presesure test doxumenation	Replace extion of pipeline.
2025					
Dsstrict	Une t	Dascription	Year Instatled	Critical Information	Plan of Action
Aberdeen Bremerton	1	8* Kitsp Line	2000	158 ft of pipe assumed to be Grade B Grade B	Test to verify pipe grade as X.22 er greater.
Mt. Vemion	11		1969	Pipe and valie asscmbly	Replice 45 for of pie and valie ascembly.
2026					
District	Line ${ }^{\text {a }}$	Dsacription	Year Imtalled	Critical Information	Plan of Action
Aberiben Bremerton	1	${ }^{\text {8* }}$ Kitup Line	1972	Pressure rating on Sav-A.Valves (2)	Expose and inspet Sav-A.Valves. Replace evps if inecesury.
Alerdeen	15		1995	Under rated Saw-A.Valie	Expose and inpeet Saw. A-Valie. Replace if neesury.
District	Une ${ }^{\text {E }}$	Descripition	Year Instatled	Crilcal Infornation	Plan of Action
Wenathee	3	4*Ohello Trammiswien Line	1971	Wall thichess	Validate wall thichnss ocreplace 191 f section of pipline.
Kennewick	11	1-Plymoulh HP Line	1980	Under fated Sav.A.Valie	Evpase and inspert Sav-A.Valie., Replace if neessary.

TAbLE 3 - PIPELINES ASSUMING YIELD STRENGTH OF 24,000 PSI

APPENDIX I

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

In re
Commission Investigation of the Gas Pipeline System of Cascade Natural Gas Corporation

DOCKET PG-150120

STIPULATED AGREEMENT

I. NATURE OF AGREEMENT

This Stipulated Agreement (Agreement) is entered into between Cascade Natural Gas Corporation ("Cascade" or "Company") and Staff of the Washington Utilities and Transportation Commission ("Commission Staff" or "Staff") (collectively, "the Parties") for . the purpose of resolving issues resulting from natural gas inspections conducted on the Company's high pressure pipelines located in the following areas: Longview District, Bellingham District and Kennewick District.

This Agreement is subject to review and disposition by the Washington Utilities and Transportation Commission ("Commission"), and it is not effective until approved by the Commission.

The Parties understand that the process for approval is at the discretion of the Commission. However, the Parties believe the Commission may approve this Agreement by Order consistent with the conditions stated herein by taking action at an open public meeting, if the Commission desires to do so. The Parties recommend that procedure to the Commission.

II. BACKGROUND

Cascade owns and operates a natural gas distribution system in Washington State. In this docket, Commission Staff conducted a series of Standard Natural Gas Pipeline Inspections of Cascade's pipeline facilities in the Longview District, Bellingham District and Kennewick District. The inspections included a review of Cascade's records, policies and procedures, and pipeline facilities. The inspections took place between the months of March through October 2013.

During four independent inspections conducted on March 28, 2013, May 16, 2013 and October 7, 2013, Commission Staff requested from Cascade additional documentation on four randomly selected high pressure pipelines. Staff requested this documentation in order to confirm the selected pipelines' maximum allowable operating pressure (MAOP). In all four cases, the documentation provided Staff was missing some form of essential data necessary for Staff to judge whether the MAOP of the pipelines could be validated.

Given the above information, Commission Staff then requested from Cascade a list of all high pressure pipelines in its Washington service territory where some form of essential data necessary to confirm the pipeline's MAOP was missing. Cascade provided such a list on September 27, 2013. Staff reviewed the newly provided information and believed that further information would be necessary to clarify the information provided.

III. AGREEMENT

Consistent with the above-stated facts, Commission Staff and Cascade have agreed to a systematic process designed to provide Staff certain detailed information regarding Cascade's high pressure pipeline system. Staff and Cascade seek Commission approval of
the Parties' proposed treatment of the matters set forth herein. To that end, the Parties agree and stipulate as follows:

1. Cascade will submit to the Commission a written plan that Cascade intends to implement for the purpose of determining the MAOP of all its high pressure pipelines in Washington for which there is insufficient documentation to confirm the current MAOP. The plan shall be submitted to the Commission within six months from the approval of this Agreement and should include:
i. A summary of all high pressure systems with data currently insufficient to demonstrate and confirm the MAOP of such systems. The Parties agree that for purposes of this Agreement, high pressure shall be defined as any system greater than 60 psig .
ii. For pre-code pipe with unknown characteristics, written documentation describing the basis or bases by which the Company has determined said pipe's current MAOP.
iii. Any such process or processes the Company uses to validate data to calculate hoop stress for unknown pipe, including but not limited to, pipe grade, diameter and wall thickness. Such process or processes must conform to the requirements set forth in 49 CFR 192.107. Any new or innovative processes for validating pipe characteristics shall be submitted to the Commission for review.
iv. For the high pressure pipelines identified pursuant to section i. above, the following information:
2. Percentage of Specified Minimum Yield Strength (\%SMYS);
3. Test pressure;
4. Installation year
5. Critical missing information; and,
6. An action plan for each pipeline segment set forth in a tabular format.
v. Rationale describing the prioritization of the action plan referenced in section iv, above.
vi. A process for identifying when immediate corrective actions will be required
vii. Time frames for completion of the action plan for each pipeline segment referenced in section iv, above. The Company shall also provide a justification for the established times frames for each line segment.
7. Until a pipe's characteristics can be verified, Cascade will assume the most stringent criteria for unknown pipe characteristics, as described in 49 CFR 192. 107 \& 109. If said stringent criteria puts the line over 20\% Specified Minimum Yield Strength ("SMYS"), the line shall immediately be incorporated into Cascade's transmission integrity management program. For said pipe, the Company shall perform a threat evaluation, and incorporate the pipe into its risk and pipe assessments.
8. The baseline assessment for all high pressure lines moving into transmission status shall be completed within three years from the date this Agreement is approved.
9. If at any time Cascade decides to accept the most stringent criteria as the final resolution for a particular line segment, then it must submit an amended plan reflecting this change to the Commission for approval.
10. If assumptions for unknown pipe characteristics as described in 49 CFR 192.107 \& 109 result in a hoop stress of 20% SMYS or greater, that pipeline will be leak surveyed two (2) times per calendar year.
11. Pre - 1970 pipe calculated at over 30% SMYS will undergo a 20% pressure reduction if the seam type is unknown.
12. Cascade will submit an annual status report on its progress in implementing the plan with appropriate updates to project summary tables.
13. If an amendment to the plan is necessary, Cascade will submit the proposed amended plan to Staff for review at least ninety (90) days prior to the time Cascade submits the amended plan to the Commission for formal approval.

IV. GENERAL PROVISIONS

Nothing in this Agreement affects the ability of the Commission Staff to seek a complaint for penalties or other appropriate relief, if gas pipeline safety rule violations are found in subsequent inspections by Commission Staff of the Company's gas distribution system, policies and procedures. However, so long as Cascade performs the actions set forth in Section III of this Agreement, Commission Staff does not intend to utilize the information provided by Cascade in compliance with this Agreement, including but not limited to Cascade's submission of a written action plan and Cascade's implementation of said plan, to generate enforcement actions or to recommend that the Commission take enforcement actions. Nothing in this Agreement prevents or places any conditions upon the Company from contesting any such Commission enforcement action, if any is initiated.

This is the entire agreement of the Parties. The Agreement supersedes all prior oral and written agreements on issues addressed herein. It may not be cited as precedent in any proceeding other than a proceeding to enforce the terms of this Agreement.

This Agreement is considered executed when all Parties sign the Agreement. A designated and authorized representative may sign the Agreement on a party's behalf. The Parties may execute this Agreement in counterparts. If the Agreement is executed in counterparts, all counterparts shall constitute one agreement. An Agreement signed in counterpart and sent by facsimile is as effective as an original document. A faxed signature page containing the signature of a party is acceptable as an original signature page signed by that party. Each Party shall indicate the date of its signature on the Agreement. The date of execution of the Agreement will be the latest date indicated on the signatures.

Upon execution, Commission Staff will make reasonable efforts to have the matter placed on the Commission's open meeting agenda within a short period following the execution of this Agreement. If this matter is not handled at a Commission open public meeting, the Parties agree to support the Agreement during the course of whatever procedures the Commission determines are appropriate.

For Commission Staff:

David Y/Yken
Director, Pipeline Safety Washington Utilities and Transportation Commission

Date signed: $2 / 2 / 15$

For Cascade Natural Gas Company:

Date signed: $1-30-15$

APPENDIX J

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

)	
Gas Pipeline System of)	DOCKET PG-150120
)	
)	ORDER 01
)	
Cascade Natural Gas Corporation)	ORDER ACCEPTING
)	AGREEMENT AND CLOSING
)	DOCKET
)	

BACKGROUND

1 The Washington Utilities and Transportation Commission (Commission) regulates the safety of gas pipelines, including those owned and operated by Cascade Natural Gas Corporation (CNG or Company). Commission Staff (Staff) conducted gas pipeline inspections in the Longview, Bellingham and Kennewick districts, in March, May, and October 2013, respectively.

Staff sent Inspection Reports to CNG on April 11, May 29, and November 5, 2013, alleging several violations of Commission statutes and rules and identifying areas of concern. CNG provided a written response to the reports on May 10, June 28, and December 18, 2013. CNG and staff engaged in further discussion regarding the investigation, Staff's findings, and CNG's responses, and subsequently reached an agreement to resolve the issues Staff identified.

On February 3, 2015, Commission Staff and CNG filed a "Stipulated Agreement to Close Docket" (the Agreement). The Agreement is attached as Exhibit A to, and incorporated into, this Order. The Agreement addresses certain issues in this docket, including compliance and specific steps CNG will take to improve its system and practices.

The Agreement is not effective until it is accepted by the Commission. If CNG fails to comply with the terms of the Agreement or this Order, the Commission may invoke its authority to assess penalties for violations of a Commission order.

DISCUSSION

The terms of the Settlement Agreement are not contrary to law or public policy and reasonably resolve all issues in this proceeding. The Settlement Agreement supports the Commission's goal of compliance by requiring the Company to take specific actions to bring its system and practices in line with regulations governing natural gas pipelines. Given these factors, we find the Settlement Agreement is consistent with the public interest and should be approved as filed.

FINDINGS AND CONCLUSIONS

(1) The Washington Utilities and Transportation Commission is an agency of the State of Washington vested by statute with the authority to regulate the safety of gas pipeline companies.
(2) CNG is a gas pipeline company operating in the state of Washington subject to Commission jurisdiction.
(3) Commission Staff conducted inspections of CNG's gas pipeline system in the Longview, Bellingham, and Kennewick districts in March, May, and October 2013, respectively.
(4) Commission Staff and CNG have entered into a Settlement Agreement, attached as Exhibit A to, and incorporated into, this Order, as an appropriate resolution of the issues raised by the inspections in March, May, and October 2013.
(5) After reviewing the Agreement entered into between CNG and Commission Staff, and giving due consideration, the Commission finds that the Agreement is in the public interest and represents an appropriate resolution of the issues raised by the inspections of CNG's natural gas pipelines in the Longview, Bellingham and Kennewick districts in March, May, and October 2013, respectively.
(6) The Settlement Agreement is effective date as of the date of this Order.

ORDER

THE COMMISSION ORDERS:

(1) The Settlement Agreement is approved without condition, is attached as Exhibit A to, and incorporated into, this Order, and is adopted as the final resolution of the disputed issues in this docket.
(2) The Commission retains jurisdiction to effectuate the terms of this Order.

DATED at Olympia, Washington, and effective February 12, 2015.

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

DAVID W. DANNER, Chairman

PHILIP B. JONES, Commissioner

ANN E. RENDAHL, Commissioner

APPENDIX K

UTILITIES AND TRANSPORTATION COMMISSION

1300 S. Evergreen Park Dr. S.W., P.O. Box 47250 • Olympia, Washington 98504-7250 (360) 664-1160 • TTY (360) 586-8203

CERTIFIED MAILL

January 12, 2016

Eric Martuscelli
Vice President-Operations
Cascade Natural Gas Corporation
8113 W. Grandridge Blvd.
Kennewick, WA 99336

Dear Mr. Martuscelli:

RE: PG-150120 - Violation of Stipulated Agreement (Insp. No. 2655)

The Washington Utilities and Transportation Commission (Commission) and Cascade Natural Gas Corporation (CNGC) entered into the attached Stipulated Agreement (Agreement) on February 2, 2015. The Agreement laid out how CNGC would collect information, prioritize and execute steps to confirm the maximum allowable operating pressure (MAOP) for high pressure pipelines in Washington. Section III. 1 of the Agreement states that CNGC will submit a written plan to the Commission within six months of approval of the Agreement. The Agreement became effective when the Commission signed the Order on Feburary 12, 2015. Therefore, CNGC had until August 12, 2015 to submit the written plan. At present, no plan has been received by the Commission. CNGC staff stated it was not submitted due to personnel issues. None the less, CNGC is in violation of a Commission Order referencing this Stipulated Agreement.

Per Section IV of the Agreement, the Commission's intentions were to not pursue any enforcement actions for these MAOP defeciences as long as CNGC performs the actions established in Section III of the Agreement. CNGC has not performed and is therefore in violation of the Order. Therefore, the Commission is obligated, in the public interest, to issue a complaint unless the performance defeciencies are immediately rectified. As such, CNGC must submit the aforementioned written plan required by Section III of the Agreement to the Commission by no later than January 29, 2016.

If you have any questions or if we may be of any assistance, please contact Dennis Ritter at (360) 664-1159. Please refer to the inspection number above in any future correspondence.

Alan E. Rathbun
Pipeline Safety Director

Enclosure
cc: Steve Kessie, Director Operation Services, CNG
Jeremy Ogden, Director Engineering Services, CNG
Mike Eutsey, Manager, Standards and Compliance, CNG
Vicki Ganow, Pipeline Safety Specialist, CNG

APPENDIX L

January 29, 2016

Alan Rathbun- Director of Pipeline Safety Program
State of Washington Utilities and Transportation Commission
1300 S. Evergreen Park Dr. SW
P.O. Box 47250

Olympia, WA 98504-7250

Re: MAOP Determination \& Validation Plan
Docket PG-150120

Dear Mr. Rathbun:
Sincerely,
In accordance with the Stipulated Agreement in Docket PG-150120 Cascade Natural Gas Corporation (CNGC) hereby submits its Maximum Allowable Operating Pressure (MAOP) Determination \& Validation Plan. This plan outlines how CNGC will collect information, prioritize, and execute steps to confirm the MAOP for high pressure pipelines in Washington.

If there are any questions regarding this update please contact Jeremy Ogden at (509) 734-4509.

Eric Martuscelli
Vice President, Operations
Cascade Natural Gas Corporation

Cascade Natural Gas Corporation

MAOP Determination \& Validation Plan

in accordance with

Stipulated Agreement in Docket No. PG-150120

Cascade Natural Gas Corporation (Cascade) has prepared a Maximum Allowable Operating Pressure (MAOP) Determination \& Validation Plan for all high pressure (HP) pipelines in the State of Washington. The purpose of this plan is to determine and verify the MAOP of all HP pipelines for which there is insufficient documentation to confirm the current MAOP. This MAOP Validation Plan consists of the following elements:

1. Summary of all HP pipelines with data currently insufficient to demonstrate and confirm MAOP
2. Determination of MAOP for each segment of pipeline
3. Process that Cascade will use to validate data to calculate hoop stress for unknown pipe
4. Action plan for each pipeline segment
5. Rationale describing prioritization of each action plan
6. Process for corrective actions and updates to plan
7. Schedule listing time frames for completion of action plan for each pipeline segment

Beginning in 2013, Cascade performed a comprehensive search of records to locate information that can be used to validate MAOP on HP pipelines in the state of Washington. Critical information that can validate MAOP includes, but is not limited to, pipeline diameter, wall thickness, pipe grade (i.e. X52), pressure rating of fitting, longitudinal seam type, pressure test records, and as-built records. Records searched included those in storage facilities, Cascade's District Offices and Kennewick General Office, and electronic records. This plan is based on the results of that search.

Summary of HP Systems

Table 1 lists the HP pipeline segments with data currently insufficient to demonstrate and confirm MAOP. This table also includes the MAOP, pipeline segment description, installation year, pipe diameter, pipe wall thickness, pipe grade, test pressure, \% Specified Minimum Yield Strength (SMYS), critical missing information, and action plan. Information for this table was gathered through a comprehensive review of all of Cascade's available records. Critical missing information (wall thickness, pipe grade, pressure test) is highlighted in this table. Values shown in yellow highlighted fields indicate that Cascade has assumed the most stringent criteria for missing values.

If assuming the most stringent criteria resulted in a pipeline segment operating with a hoop stress of 20% SMYS or greater, that pipeline segment was reclassified as transmission and incorporated into Cascade's Transmission Integrity Management Program (TIMP). Additionally, these pipeline segments will have baseline assessments completed by February 2, 2018 and will be leak surveyed two (2) times per calendar year. Table 2 lists the pipeline segments that were reclassified as transmission. The entirety of some pipelines were classified as transmission even though only segments are operating at 20\% SMYS or above.

In some instances, assuming the most stringent criteria for missing information resulted in a pre-1970 pipeline segment operating at greater than 30% SMYS. Those pipelines segments, and the justification for the corresponding action plan, are described below.

1. $8^{\prime \prime}$ Bellingham HP Line \#1 - Testing up to this point indicates that this pipeline has a yield strength of $46,000 \mathrm{psi}$. This results in the pipeline operating at 18.9% SMYS, rather than 36.3% SMYS. Additionally, lowering the pressure to 20% below MAOP (288 psig) will result in Cascade likely not being able to supply gas to all customers. For these reasons, Cascade does not feel that it is prudent to lower the operating pressure and has made this pipeline one of the top priorities.
2. $8^{\prime \prime}$ Central Whatcom HP Line \#3 - Pipeline is operating at greater than 20% below MAOP. Cascade does not plan to lower pressure further and has made this pipeline one of the top priorities.
3. $8^{\prime \prime}$ Lake Terrell Road Transmission Line \#9 - Pipeline is connected to $8^{\prime \prime}$ Central Whatcom HP Line, is operating at greater than 20% below MAOP. Additionally, Cascade's as-built documents for this pipeline call this pipe out as Grade B, which will result in the pipeline operating at 24.91\% SMYS. This pipeline is currently operating as transmission and will continue to remain so. Cascade does not plan to lower pressure further and has made this pipeline one of the top priorities.
4. $8^{\prime \prime} \& 12^{\prime \prime}$ Bremerton Line \#2 - Testing up to this point indicates that this pipeline has a yield strength of $46,000 \mathrm{psi}$ and was manufactured with a high-frequency weld process. This results in the pipeline operating at 24.9% SMYS. Additionally, lowering the operating pressure to 20% below MAOP will result in Cascade likely not being able to supply gas to all customers in the Bremerton District. For these reasons Cascade does not feel that it is prudent to lower the operating pressure and has made this pipeline one of the top priorities.
5. 8" Anacortes HP Line \#1 - Testing up to this point indicates that this pipeline has a yield strength of at least $42,000 \mathrm{psi}$ and was manufactured with a high frequency weld process. This results in the pipeline operating at $\mathbf{1 9 . 7 \%}$ SMYS or below. For these reasons Cascade does not feel that it is prudent to lower the operating pressure and has made this pipeline one of the top priorities.
6. $8^{\prime \prime}$ March Point HP Line \#2 - Cascade will fabricate a regulator station and modify set points on the existing regulator station feeding this pipeline to lower the operating pressure to 20% below MAOP and meet customer demands. The lower operating pressure will result in the pipeline operating at $\mathbf{2 7 . 5 3 \%}$ SMYS. In situ testing on this pipeline is Cascade's highest priority and will be performed in 2016.

Determination of MAOP

Tables 3-7 list the basis of determination for Cascade's pipeline segments which are missing critical information. Table 3 lists the pipelines that Cascade considers low-risk due to knowing wall thickness and pipe grade, operating below 20% SMYS, with the pressure test as the only missing information. Cascade has been safely operating these pipelines for approximately 50 years and requests an allowance to continue operating these pipelines at the currently established operating pressure and MAOP.

Table 4 lists the pipelines that Cascade considers low-risk due to operating below 20\% SMYS with the most stringent criteria for missing critical information applied. These pipelines do not have pressure test records. Cascade has been safely operating these pipelines for approximately 50 years and requests an
allowance to accept the most stringent criteria as final and continue operating these pipelines at the currently established operating pressure and MAOP.

Table 5 lists the pre-code pipelines for which Cascade has a pressure test, but the pressure test is not sufficient for the current MAOP. The wall thickness and pipe grade are known for these pipelines. Cascade has been safely operating these pipelines for approximately 50 years and requests an allowance to continue operating these pipelines at the currently established operating pressure and MAOP until an uprate can be completed.

Table 6 lists the pipelines which will undergo pressure testing, in situ testing, replacement, or other verification method. Cascade requests an allowance to continue operating all but one of these pipelines at the currently established operating pressure and MAOP until validation efforts are complete. The lone exception is the previously-mentioned $8^{\prime \prime}$ March Point HP Line \#2, which will undergo a pressure reduction.

Table 7 lists the pipelines which have the MAOP determined by pressure testing. Validation efforts will be performed on some of these pipelines, and on some pipelines the most stringent criteria will be applied as final.

In all but three instances where Cascade requests an allowance to operate at the currently established operating pressure and MAOP, the MAOP is less than the most conservative design pressure calculated as prescribed in 49 CFR 192.105. In the three exceptions, the assumed yield strength results in a design pressure lower than the MAOP. However, all three pipelines have pressure test records and test results or as-built records giving a preliminary indication that the yield strength is greater than the most stringent criteria.

Processes to Validate Data

In addition to gathering information through a comprehensive review of all available records, Cascade's plan will include gathering and verifying data from pipelines in service. Methods that will be employed include:

1. Measuring pipe wall thickness with Ultrasonic Thickness (UT) gauge
2. Verifying pipe grade and/or longitudinal seam type through mechanical testing of samples at an accredited materials testing laboratory in accordance with 49 CFR 192.107
3. Verifying pipe grade by non-destructive in situ testing as described in a letter to the Washington Utilities and Transportation Commission (UTC) on June 2, 2015
4. Confirming pipe diameter through field measurements
5. Pressure testing
6. Exposing rated fittings to verify pressure rating

As information is collected the records will be stored on Cascade's SharePoint site. Any process used to validate data not listed above will be submitted to the UTC for review.

Cascade has contracted Parametrix, Inc. (Parametrix) to perform a statistical analysis of all pipeline segments with missing pipe grade and to determine the number of sampling points that will be required to validate pipe grade. This analysis will be conducted in accordance with 49 CFR 192 Appendix B Qualification of Pipe. Parametrix will also work with Cascade's Engineering Services and local districts to identify the testing locations. Parametrix has completed the analysis for pipelines in Cascade's Bellingham and Mt. Vernon districts, and those results have been used to estimate the number of sampling points that will be required on pipelines in other districts until the analysis is completed in 2016.

Cascade has also contacted ABI Services, LLC (ABI), located in Oak Ridge, Tennessee, to perform in situ testing at the determined locations. Information describing their testing process was sent to the UTC on June 2, 2015, and approval of this testing method was received on January 12, 2016. Das-Co of Idaho, Inc. will be the excavation contractor used for the in situ testing.

Action Plan

Cascade has reviewed each segment of HP pipeline and identified those segments with missing critical information. Table 1 contains the pipelines by district and the overall action plans for each. The time frames for completion of each action plan are shown in Table 8. Plans of action include replacement, pressure testing, lowering pressure, mechanical testing of samples, statistical analysis and in situ testing, uprating, and operating pipeline with assumptions.

Prioritization

Cascade has prepared a matrix to individually evaluate each segment of HP pipeline with missing critical information. Components of the priority matrix, in descending order of weighting, are: urgent need, \% SMYS of pipe and fittings, pressure rating of fittings, population density near pipeline, length of pipeline segment, and presence of as-built and pressure test records. The matrix produced a total prioritization score for each segment of pipeline and a prioritization score per length of pipeline. These scores were then combined with Subject Manner Expert (SME) knowledge of pipelines to finalize priorities. In general, pipeline segments operating at greater than 30% SMYS which were constructed prior to 1970 were the highest priorities, with subsequent priorities following the descending order of $\%$ SMYS.

Process for Corrective Actions and Update to Plan

Cascade will continue to evaluate all current and future HP pipelines on an ongoing basis to verify that critical information used to validate MAOP is known and to identify when immediate corrective actions are required. Existing pipelines will be evaluated annually by Cascade's Engineering Services group. Documentation for new pipelines will be audited by Cascade's Standards \& Compliance group or Engineering Services group as construction of new pipelines is completed. If any critical information necessary to validate MAOP is discovered to be insufficient, corrective actions will be taken. Corrective actions include, but are not limited to, review of records as well as the processes used to validate data listed above.

Until a pipeline's characteristics can be verified, Cascade will assume the most stringent criteria for unknown pipe characteristics, as described in 49 CFR 192.107 \& 109. If these assumptions result in a pipeline operating at 20% SMYS or greater, the pipeline will be leak surveyed two (2) times per calendar year and incorporated into Cascade's TIMP. For these pipelines, Cascade will perform a threat evaluation, and incorporate the pipe into risk and pipe assessments. Baseline assessments for all pipelines reclassified as transmission status shall be completed within three (3) years of reclassification.

When information is verified that results in a pipeline operating at a higher or lower \% SMYS, changing classification from transmission to HP, or other similar actions, this plan will be amended and updated. If an amendment to the plan is necessary, Cascade will submit the proposed amended plan to Commission Staff for review at least ninety (90) days prior to the time Cascade submits the amended plan to the Commission for formal approval.

Cascade will also submit to Commission Staff an annual status report on the progress in implementing this plan. The annual status report will be submitted by March 15 of each year. As part of the annual status report every aspect of the plan will be reviewed and the tables and schedule will be revised as required. Test results will be updated, as well as any resulting changes in priorities and schedule. If Cascade decides to accept the most stringent criteria as the final resolution for a particular line segment, that will be included in an amended plan or annual status report and submitted to the Commission for approval.

Schedule

Table 8 below provides the schedule for the action plans for each HP pipeline segment with missing critical information. In situ testing, replacement, pressure testing, and fitting exposure have been scheduled commensurate with the availability of resources. The number of in situ tests that are scheduled to be completed each year are based on Cascade's prior experience with ECDA and ICDA digs as part of Cascade's TIMP.

TABLES

Table 1

Hp line 1	Hp Line ${ }^{\text {ame }}$	maop (oxic)	HPLinesemmentwo Number	Vex instabed	Dismeter (in)	wanticanes (in)	Yeid serenth (xat	Test Preswretoxit	*swrs	Actionpon
Bellingham Distice										
1		${ }_{30}$	Une 1-1	1956	2.625	0.138	24,000		${ }^{36} 3$	Request allowance to continue operating pipeline at preszure currently established, preliminary festing to be performed on available samples, third party to perform statistical analysis to determine the number of test points and identify their locations, in sifu testing to verfly pipe grade and wall thickness, request allowance to continue operating peline at pressure currently entablahed.
2	Pellinghem M.P. Dismbution 5xtem	135	rat-1	1956	8.625	0.188	24.000		14.35	
			Trater	198\%	10.75	0.183	24,000		185\%	
			103328	1980	4.5	0.156	24,000		93\%	Request allowance to contimue operating low-risk pipeline at pressure currentiy established, accept most stringent criteria as linal wall thickness and pipe grade, test samples os ther become arollable.
			20.2082	1964	45	0.188	35.000		${ }_{5} 53 \times$	Pe
			100883	$\frac{1955}{1966}$	$\frac{6.655}{6.55}$	$\frac{0.183}{0.188}$	$\frac{35,000}{35,000}$		$\frac{788}{785}$	
			11488.1	$\frac{1966}{1966}$	6.625 8.65	$\frac{0.188}{0.189}$	${ }_{\text {35,000 }}^{35000}$		$\frac{785}{102 \%}$	
			31350	1967	2.375	0.154	35.000	100	3.4\%	Converind to meremediste Pressure.
			22564	1972	4.5	0.156	24,000	23	936	Acceot mos stinemi criteria as final woll hick
3	8^{*} Central Whatcom H.P. Line	${ }^{330}$	Une 3.1	1957	${ }^{3.25}$	0.188	24,000	-	363\%	Preliminary testing to be performed on avoilable samples, third party to perform statistical analysis to determine the number of test points and identify their locations, in situ testing to verify plpe grade and wall thlcknes, request allowance to continue operating pipeline at pressure currently established (20\% below MAOP).
			20855 (Transtion futines)	1993	8.625	Q. 188	24,000	680	3\%	
4	4-South Limden H.p. Une	250	Une 4. 1	1961	4.5	0.356	, 000		15,0\%	as they brome wovalable.
8	F Nooksoekt.r., Distrbution Sprem	250	1657000	1963	2375	0.556	,000		2.0\%	Requer
,	8 - Lake Tereral did Tremmisison Une	380	187341	1965	8.65	0.183	24,000	5 ¢9	363\%	
10	$16^{\circ} \mathrm{N}$. Whatcomm Tranamision Line	600	12774	197	16	0.25	50000	900	N/A	
12	4^{4} Korat Lrmaen Mr, Lime	400	2573	1978	45	0.188	35000	60	N/A	Veitr ins swavave
21		250	14508	193	16	0.231	20,000	620	207\%	
Aberdeen District										
1.	15^{-6} cesolime	366	261	197	8.625	Q, 128	42000	750	N/A	
3	4- Mecrear M. . ine	150	xc633	196	4.5	154	24,000		2.15	
8	2-Emo Remdering Pant c.p. Une	135	7c6321	1954	4.5	0.185	35000		468	
,		150	780902.1	1964	2375	0186	35000		335	Pequest allowanco to continue opperaing low-rikk opopline at pressure currentivestobliched.
			Tecroor:2	1964	4.5	0.156	20000		9.18	
15°		49	14000	1995	1275	0.312	52000	2080	N/A	
Bremetton Distict										
2	5-8. $5^{2 \prime}$ Brameron Trammizion Une	69	BremenomL2-1	196	8.625	0.288	24,000	750	47\%	estios foverilv vipe ertade
6		499	$\frac{2038}{}$	193	4.5	0.188	42000	500	N/A	Verity the plups hove sufficient pressure rating.
11	$\mathrm{s}^{\text {P Bremeton }} \mathrm{H}$. P Une	${ }^{144}$	$\frac{2066316}{12522}$	$\frac{1964}{197}$	$\frac{8.625}{8.625}$	$\frac{0.1288}{0.158}$	45000		$\frac{7.28}{9.48}$	
Mount Vemon District										
1	$8^{\text {a Ansoortes H.P. Line }}$	360	MTV1-1	1957	${ }^{2} .65$	0.888	24,000		34.4\%	Preliminary testing to be performed on available samples, third party to performstatistical analysis to determine the number of test points and identify their locations, in situ testing to verify pipe grade and wall thickness, request allowance to continue operating pipeline at pressure currently established, validate pressure rating of line stopper resting to verify pipe grade and wail thickness, request allowance to continue operating pipeline at pressure currently established, validate pressure rating of line stopper nithres $\mathrm{V} \cdot \mathrm{V} \cdot 3 \mathrm{~N} .4$.
			18192	1972	8.625	0.188	33,000		23.6\%	
2		360	${ }^{1214144}$	1957	8.625	0.188	24,000		34.4\%	Lower presure to 20% below MAOP, third party to perform statistical analyais to determine the number of test points and identily their locations, in situ testing to verify pipe grade and wall thickness, upon completion of testing request allowance to continue operating pipeline $3 t$ pressure currently estabilshed,
			He1434	${ }^{1957}$	8.65	0.25	24,000		259\%	Lower pressure to 20% below MAOP, third porty to periorm statistical anslysis to determine the number of test points and identify their locations, in situ teating to verify pipe grade and wall thichness, upon completion of testing request allowance to continue operating pipeline at pressure currently established.
			110628	1963	8.625	0.188	24,000		3 3045	
3	Ansorte th. Disaribution Sprem	${ }^{105}$	MTV13. 1	${ }^{1956}$	6.625	0.188	24,000			Request allowance to continue operating low-risk pipeline at presture currently established, accept most stringert criteria as final pipe grade, test samples as they become svallable. svailable.
			MTV32	1936	8.625	0.188	24,000		10.0\%	
4	- M Mount Vermoar.p.i.ine	250	Mrivas	1957	45	0.156	24.000	200	1505	
5	3^{3} Puvination KP , Lim	249	211220	1957	35	0.156	24.500		11.58	
7	2-Norntees Rd, MP. Line	50	120775	1900	2375	Qase	24.000		8.05	as they become available.
8	2-Atrington HP . Une	299	Fan 18cazz2	1961	4.5	0.36	24,000		13.0\%	an ther beceme waplobe.
10	- Satro. Wooller M. U. Une	100	24788	1988	2.5	0.158	35000	100	3.45	Conoxt yor ite to wistate MAOP.
12	26- fresonia Transmision Line	500	17206	1972	6.625	0.188	22000	673	N/A	
${ }^{24}$		500	30536 (Tramition Stines)	1983	16	0231	${ }^{24,000}$	750	593\%	
			30636(Elibow)	1938	16	0.375	35,000	750	305\%	
26	16^{-}Marth Point Tranmisson tine	500	20000 (Trasition frimes)	2992	16	0.281	20,000	750	593\%	
			20000 (E1b0w)	1992	16	0.775	35,000	750	30.5k	

HP Unes	Hp U ine Nome	MAOP (paxe)	HPLine Sementwo Number	Yest masted	Diameter [in)	Wartickese \mid nel \mid	Yelastrentetisai)	Tent Pessuretasiel	*smm	Actionplian
Longriew Distrikt										
${ }^{1}$	Longuew.Welos HP. Oistrivution Une	250	Precocclu 2	1397	12.75	0.25	24,000	4∞	26.68	
			Preencelur 2	197	4.5	0.35	24,000		15.08	
			23521	1980	1275	0.25	52000		123\%	
2	-5 Colmamprome	300	22676	1975	4.5	0.188	35.000		${ }^{303 \mathrm{x}}$	
3	4- Due foodt.p. Une flonswem)	${ }^{30}$	${ }^{22 c s 335}$	1985	is	0.156	24,000		4.85	
8	8- Kaloma HP. U U Me	300	$\frac{5182021}{5182012)}$	$\frac{1298}{197}$	$\frac{8.625}{8.65}$	$\frac{0.35}{0.18}$	26,000		$\frac{858}{8878}$	Presure testesd devese ilo
				-1997	$\frac{8625}{8.65}$	0.188	${ }^{240000}$		$\frac{28.78}{2168}$	
				$\frac{1997}{1997}$	$\frac{8.625}{8.625}$	$\frac{0.25}{0.25}$	26,000		$\frac{21.68}{113 \%}$	
7	12 - Sout Longevew $\mathrm{H} . \mathrm{P}$. Une	99	[3600 (Trasition futinss)	1995	12.5	0.312	24,000	1080	425\%	
Yakims Districet (Sunnpide)										
1	3 3 Sunnside HP. Line	200	Fabhicle	1956	3.5	0.56	20,000		9.3\%	Request ailowance to continue operating low-risk pipeline at pressure currently established, accept most stringent criteria as final wall thickness and pipe grade, test samples as they become available.
2		200	22 cess	1999	2.375	0.154	24,000		6,4\%	
3	$4 *$ Grandvew M.P. Une	250	Fabt-12-1	1956	4.5	0.156	24,000		15.0\%	Request allowance to continue operating low-risk pipeline at pressure currently estabiliked, accept most stringent criteria as finol wall thickness and pipe grade, test amples as they become available.
4	3^{-9} Proser th. Une	250	rokemoles-1	1935	3.5	0.156	24,000		117\%	request alowance to eontinue operating low-risk pipeline at pressure curfentivestablished, accept moit stringent cilteria as inal wall thickness and pipe crade, test rampless as ther become avolitable
5		800	rabimas-1	1956	6.63	0.188	24,000		29,4\%	Preliminary testing to be performed on available samples, third party to perform statistical analysis to determine the number of test point and identify their locations, in situ testing to verily pipe erade and wall thickness, request allowance to operate pipeline at pressure currently establlhed.
6	3-zllan H.p.tine	400	Tathi6-1	1956	3.5	0.156	24,000		18.75	
7	4-Wapato H .P. Une	152		1356	4.5	0.156	24,000		2.1\%	
8	5 South Topeenalah MP. Une	175	Tamess. 1	1956	3.5	0.156	24,000		8285	Request allowance to continue operating low-risk pipeline at pressure currently established, accept moat stringent criteria as finai wall thickness and pipe grade, test samples las they become available.
9	${ }^{5}$ Graver HP. Uine	175	Tramela	1956	3.5	0.156	24,000		82\%	Request allowance to continue operating low-risk pipeline at pressure currently established, accept mos stringent criteria as final wali thickness and pipe grade, test samples as they become available.
Yakima Distrike										
1	-r roxmo te. une	200	Fat.ge	1956	8.625	0.188	24,000		19.15	as they become available.
			FESHSSE_LTE 26	1956	8.65	0.5	24,000		728	
			200337	1961	3.625	018	24.000	332	19.15	
			22375	1978	8.625	0.25	26.000		75\%	
Wenotchee Distict										
1	$6^{\circ} 88^{2}$ Morest alae HP. Une	250	Wencu-1	1957	6.625	Q.188	24.000		18\%\%	Request allowance to continue operating low-risk pipeline at pressure currently established, accept most stringent criteria as final wall thicioness and pipe grade, test samples as they become avallable.
			Wentr 2	1957	2.625	C188	${ }^{24,000}$		23.3%	Preliminary testing to be performed on available samples, third party to perform statistical analyals to determine the number of test points and identify their focations, in situ testing to verify pipe grade and wall thickness, request allowance to continue operating pipeline at pressure currently established.
			6039	1988	45	0.156	24.000	375	150\%	
2	2^{2} Wheoter M. P. Line	250	Wencl2 2	1962	2375	0.156	24,000		8.08	Request aliowance to continue operating tow-risk pipeline at pressure currentiy establighed, accept most stringent criteria as final wall thickness and pipe grade, test samples as they become availabie, verify pressure rating of block valve at $\mathrm{R}-53$.
3	${ }^{2}$ - Otherio Trammision Une	200	18993	1971	6.625	0.188	35.000	531	20.15	
${ }^{6}$		$\frac{250}{250}$	${ }^{124555}$	$\frac{1988}{1997}$	$\frac{4.5}{6.25}$	$\frac{0.138}{0.188}$	35000 24.000		$\frac{8.55}{18.45}$	
10	6° Wes Wheeter M.P. Line	250	54006	1997	6.625	0.128	24,000	740	18.4\%	
12	σ^{*} Wenmechee H . P Une	225	2012 l I3h	1956	6.625	0.188	24,000		165\%	
Kennewlck										
1	S'Aatalan.p, ine	300	014076	1958	8.625	0.158	24,000		28.78	Request allowance to continue operating pipeline at pressure currentiy established, preliminary testing to be periormed on ovailabie aamples, conduct study to determine replacement options and projects, third porty to perform statistical analysis to defermine number of test points, operate with assumptions untll replacement or in situ testing is performed. pertormed.
			12375 (1)	${ }^{196 \%}$	8.625	0.188	35,000		19.75	Request aliowance to continue operating pipeline at pressure curtentiy established, conduct study to determine teplocement and testing options, verily pressure rating of Sov-
			123375 (2)	1968	1275	025	35,000		21.9\%	trpass valve.
			${ }^{23723}$	$\frac{1988}{1988}$	$\frac{1275}{1275}$	0.375	33.000		$\frac{14.58}{165}$	
			$\frac{23355(4)}{1237555}$	$\frac{1989}{1988}$	$\frac{1275}{1275}$	0.33	${ }_{\text {35, }}^{5000}$		$\frac{16.65}{14.75}$	
3	A-Esax finler Hp.tion	250	${ }^{123614}$	196	45	0.188	35000	120	8.58	Conductuorite to wididte MAOP.
	PaxenP. Oistibution Snuem	300	$\mathrm{x}_{\text {cmalta }}$	1950	45	0.356	22.000	450	180\%	
5	0^{-N} Northers Pazorp. Line	300	1209712)	136	4.5	0.188	35000		103\%	
6		150	11097127	196	45	Q138	35000		515	
7	2-8atank kp,ume	158	12301	196	2375	0.154	35000	100	355	Conduct unrsie to valiote MAOP.
8	4- Finerer HP. Line	200	1580527	195	45	0.156	24.000		120\%	
Wallowals										
1	Io wata Wala He. Une	150	wn ${ }^{1 / 1}$	1956	8.625	0.138	24,000		143\%	hequest alfowance to continue operating low-risk pipeline at pressure currentiy established, accept most stringent criteria as final wall thickness and pipe grade, test samples as they become available.
2		150	mnt2-1	1956	3.5	0.356	24.000		7.0\%	Request allowance to continue operating low-riak pipeline at pressure currently establiahed, accept most stringent criteria as final wall thiciness and pipe grade, test samples as they become available.
	-					Citital Mising mitormation		Pancode Minict resurt Test		

Table 2								
HP Line\#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	\% SMYS
Bellingham District								
1	$8^{\prime \prime}$ Bellingham H.P. Line	380	Line 1-1	1956	8.625	0.188	24000	36.3\%
3	8" Central Whatcom H.P. Line	380	Line 3-1	1957	8.625	0.188	24000	36.3\%
			40855 (Transition fittings)	1993	8.625	0.188	24000	36.3\%
21	$12^{\prime \prime}, 16^{\prime \prime}$ \& $4^{\prime \prime}$ Squalicum H.P. Line	250	41508	1993	16	0.281	24000	29.7\%
Mount Vernon District								
1	8" Anacortes H.P. Line	360	MTVL1-1	1957	8.625	0.188	24000	34.4\%
			18191	1972	8.625	0.188	35000	23.6\%
2	8" March Point H.P. Line	360	$11 \mathrm{C1144}$	1957	8.625	0.188	24000	34.4\%
			11C1144	1957	8.625	0.25	24000	25.9\%
			11C5628	1963	8.625	0.188	24000	34.4\%
Longview District								
1	Longview-Kelso H.P. Distribution Line	250	Pre-CNGC-L1-1	1957	12.75	0.25	24000	26.6\%
8	$8^{\prime \prime}$ Kalama H.P. Line	300	51820 (1)	1996	8.625	0.332	46000	8.5\%
			51820 (2)	1997	8.625	0.188	24000	28.7\%
			51820 (3)	1997	8.625	0.25	24000	21.6\%
			51820 (4)	1997	8.625	0.25	46000	11.3\%
Yakima District (Sunnyside)								
5	\|6" Toppenish-Zillah H.P. Line	400	YakimaL5-1	1956	6.625	0.188	24000	29.4\%
Wenatchee District								
1	.	0	WenL1-1	1957	6.625	0.188	24000	18.4\%
			WenL1-2	1957	8.625	0.188	24000	23.9\%
			60390	1981	4.5	0.156	24000	15.0\%
3	4" Othello Transmission Line	400	18998	1971	6.625	0.188	35000	20.1\%
Kennewick								
0		00	0164776	1958	8.625	0.188	24000	28.7\%
			14375 (1)	1968	8.625	0.188	35000	19.7\%
			14375 (2)	1968	12.75	0.25	35000	21.9\%
			14375 (3)	1968	12.75	0.375	35000	14.6\%
			14375 (4)	1968	12.75	0.33	35000	16.6\%
			14375 (5)	1968	12.75	0.25	52000	14.7\%

Table 3									
HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	\% SMYS	Design Pressure (psig)
Bellingham District									
2	Bellingham H.P. Distribution System	155	$10 ¢ 8241$	1964	4.5	0.188	35,000	5.3\%	877
			10c9683	1965	6.625	0.188	35,000	7.8\%	795
			11480-1	1966	6.625	0.188	35,000	7.8\%	795
			11480-2	1966	8.625	0.188	35,000	10.2\%	610
			13150	1967	2.375	0.154	35,000	3.4\%	1,362
Aberdeen District									
8	4" Montesano H.P. Distribution System	135	$77 C 6321$	1964	4.5	0.188	35000	4.6\%	877
9	$2^{\prime \prime}$ Elma Rendering Plant H.P. Line	150	78C7902-1	1964	2.375	0.156	35000	3.3\%	1,379
Bremerton District									
11	$18^{\prime \prime}$ Bremerton H.P. Line	144	$20 C 6316$	1964	8.625	0.188	46000	7.2\%	802
Wenatchee District									
6	4" South Moses Lake H.P. Line	250	14455	1968	4.5	0.188	35000	8.5\%	877
Kennewick									
1	8"Attalia H.P. Line	300	14375 (1)	1968	8.625	0.188	35,000	19.7\%	610
			14375 (3)	1968	12.75	0.375	35,000	14.6\%	824
			14375 (4)	1968	12.75	0.33	35,000	16.6\%	725
			14375 (5)	1968	12.75	0.25	52,000	14.7\%	816
5	$4^{\prime \prime}$ Northwest Pasco H.P. Line	300	11097 (1)	1966	4.5	0.188	35000	10.3\%	877
6	4" Glade Road H.P. Line	150	11097 (2)	1966	4.5	0.188	35000	5.1\%	877

Table 4									
HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	\% SMYS	Design Pressure (psig)
Bellingham District									
2	Bellingham H.P. Distribution System	155	fish-1	1956	8.625	0.188	24,000	14.8\%	419
			fish-2	1956	10.75	0.188	24,000	18.5\%	336
			10 c 3298	1960	4.5	0.156	24,000	9.3\%	499
4	4" South Lynden H.P. Line	250	Line 4-1	1961	4.5	0.156	24,000	15.0\%	499
8	2" Nooksack H.P. Distribution System	250	$16 C 7000$	1963	2.375	0.154	24,000	8.0\%	934
3	4"' McCleary H.P. Line	150	79C6323	1963	4.5	0.154	24,000	9.1\%	493
9	2" Elma Rendering Plant H.P. Line	150	78C7902-2	1964	4.5	0.154	24000	9.1\%	493
Mount Vernon District									
3	Anacortes H.P. Distribution System	105	MTVL3-1	1956	6.625	0.188	24,000	7.7\%	545
			MTVL3-2	1956	8.625	0.188	24,000	10.0\%	419
5	3" Burlington H.P. Line	249	211220	1957	3.5	0.156	24,000	11.6\%	642
7	$4^{\prime \prime}$ North Texas Rd H.P. Line	250	1102775	1960	2.375	0.154	24,000	8.0\%	934
8	$4^{\prime \prime}$ Arlington H.P. Line	249	Fish 18C4272	1961	4.5	0.156	24,000	15.0\%	499
1	Longview-Kelso H.P. Distribution Line	250	Pre-CNGC-L1-2	1957	4.5	0.156	24,000	15.0\%	499
3	4" Dike Road H.P. Line (Longview)	80	$82 C 8335$	1965	4.5	0.156	24,000	4.8\%	499
Yakima District (Sunnyside)									
1	3" Sunnyside H.P. Line	200	Fish-L1-1	1956	3.5	0.156	24,000	9.3\%	642
2	2" South Sunnyside H.P. Line	200	4202530	1959	2.375	0.154	24,000	6.4\%	934
3	$4^{\prime \prime}$ Grandview H.P. Line	250	Fish-L2-1	1956	4.5	0.156	24,000	15.0\%	499
4	3" Prosser H.P. Line	250	YakimaL4-1	1956	3.5	0.156	24,000	11.7\%	642
6	3" Zillah H.P. Line	400	fish-L6-1	1956	3.5	0.156	24,000	18.7\%	642
7	$4^{\prime \prime}$ Wapato H.P. Line	152	fish-17-1	1956	4.5	0.156	24,000	9.1\%	499
8	$3^{\prime \prime}$ South Toppenish H.P. Line	175	fish-L8-1	1956	3.5	0.156	24,000	8.2\%	642
9	$13^{\prime \prime}$ Granger H.P. Line	175	fish-L9-1	1956	3.5	0.156	24,000	8.2\%	642
Yakima District									
1	8" Yakima H.P. Line	200	Fish_968	1956	8.625	0.188	24,000	19.1\%	419
			FISH_968_Lat_26	1956	8.625	0.5	24,000	7.2\%	1,113
Wenatchee District									
1	6" \& 8" Moses Lake H.P. Line	250	WenL1-1	1957	6.625	0.188	24,000	18.4\%	545
2	$2^{\prime \prime}$ Wheeler H.P. Line	250	WenL2-2	1962	2.375	0.154	24,000	8.0\%	934
10	$6^{\prime \prime}$ West Wheeler H.P. Line	250	54006	1997	6.625	0.188	24,000	18.4\%	545
12	$6{ }^{\prime \prime}$ Wenatchee H.P. Line	225	2912 fish	1956	6.625	0.188	24,000	16.5\%	545
Kennewick									
8	14" Finley H.P. Line	200	$53 C 2527$	1959	4.5	0.156	24,000	12.0\%	499
Walla Walla									
1	8" Walla Walla H.P. Line	150	WWL1-1	1956	8.625	0.188	24,000	14.3\%	419
2	$3{ }^{\prime \prime}$ C College Place H.P. Line	150	WWL2-1	1956	3.5	0.156	24,000	7.0\%	642

Table 5										
HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	Test Pressure (psig)	\% SMYS	Design Pressure (psig)
Mount Vernon District										
10	14"Sedro-Woolley H.P. Line	100	14788	1968	4.5	0.188	35000	100	3.4\%	877
Kennewick										
3	4" East Finley H.P. Line	250	12614	1967	4.5	0.188	35000	120	8.5\%	877
7	2"'Burbank H.P. Line	158	12301	1967	2.375	0.154	35000	100	3.5\%	1,362

Table 6									
HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	\% SMYS	Design Pressure (psig)
Bellingham District									
1	$8^{\prime \prime}$ Bellingham H.P. Line	380	Line 1-1	1956	8.625	0.188	24,000	36.3\%	419
3	$8^{\prime \prime}$ Central Whatcom H.P. Line	380	Line 3-1	1957	8.625	0.188	24,000	36.3\%	419
Bremerton District									
2	$8^{\prime \prime}$ \& $12^{\prime \prime \prime}$ Bremerton Transmission Line	499	BremertonL2-1	1963	8.625	0.188	24,000	47.7\%	419
11	8" Bremerton H.P. Line	144	18522	1971	8.625	0.188	35000	9.4\%	610
Mount Vernon District									
1	$8^{\prime \prime}$ Anacortes H.P. Line	360	MTVL1-1	1957	8.625	0.188	24,000	34.4\%	419
			18191	1972	8.625	0.188	35,000	23.6\%	610
2	$8^{\prime \prime}$ March Point H.P. Line	360	$11 \mathrm{C1144}$	1957	8.625	0.188	24,000	34.4\%	419
			$11 \mathrm{C1144}$	1957	8.625	0.25	24,000	25.9\%	557
			$11 \mathrm{C5628}$	1963	8.625	0.188	24,000	34.4\%	419
Longview District									
1	Longview-Kelso H.P. Distribution Line	250	28621	1980	12.75	0.25	52,000	12.3\%	816
2	$4^{\prime \prime}$ Kalama H.P. Line	300	24676	1976	4.5	0.188	35,000	10.3\%	877
8	8" Kalama H.P. Line	300	51820 (1)	1996	8.625	0.332	46,000	8.5\%	1,417
			51820 (2)	1997	8.625	0.188	24,000	28.7\%	419
			51820 (3)	1997	8.625	0.25	24,000	21.6\%	557
			51820 (4)	1997	8.625	0.25	46,000	11.3\%	1,067
Yakima District (Sunnyside)									
5	6" Toppenish-Zillah H.P. Line	400	Yakimat5-1	1956	6.625	0.188	24,000	29.4\%	545
1	$18^{\prime \prime}$ Yakima H.P. Line	200	20375	1978	8.625	0.25	46,000	7.5\%	1,067
Wenatchee District									
1	6" \& 8" Moses Lake H.P. Line	250	WenL1-2	1957	8.625	0.188	24,000	23.9\%	419
3	4" Othello Transmission Line	400	18998	1971	6.625	0.188	35,000	20.1\%	795
Kennewick									
1		300	$01 \mathrm{C4776}$	1958	8.625	0.188	24,000	28.7\%	419
	8'Attalia R.P. Line		14375 (2)	1968	12.75	0.25	35,000	21.9\%	549

Table 7										
HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	Test Pressure (psig)	\% SMYS	Design Pressure (psig)
Bellingham District										
2	Bellingham H.P. Distribution System	155	20564	1972	4.5	0.155	24,000	225	9.3\%	499
3	$8^{\prime \prime}$ Central Whatcom H.P. Line	380	40855 (Transition fittings)	1993	8.625	0.188	24,000	680	36.3\%	419
9	8" Lake Terrell Rd Transmission Line	380	18734-1	1965	8.625	0.188	24,000	569	36.3\%	419
10	$16^{\prime \prime} \mathrm{N}$. Whatcom Transmission Line	600	18794	1971	16	0.25	52000	900	N/A	650
12	4^{*} North Lymden H.P. Line	400	25773	1978	4.5	0.188	35000	600	N/A	877
21	$112^{\prime \prime}, 16^{\prime \prime}$ \& $4^{\prime \prime}$ Squalicum H.P. Line	250	41508	1993	16	0.281	24,000	620	29.7\%	337
Aberdeen District										
$1 *$	8" Kitsap Line	366	19261	1972	8.625	0.188	42000	750	N/A	732
15*	$12^{\prime \prime}$ Kitsap H.P. Line	499	44000	1995	12.75	0.312	52000	1080	N/A	1,018
6	$14^{\prime \prime}$ Olympic View H.P. Line	499	20387	1973	4.5	0.188	42000	500	N/A	1,053
4	$4^{\prime \prime}$ Mount Vernon H.P. Line	250	MTVL.4-1	1957	4.5	0.156	24,000	400	15.0\%	499
12	$5^{\prime \prime}$ North Oak Harbor H.P. Line	400	17206	1972	6.625	0.188	42000	675	N/A	953
14	$16^{\prime \prime}$ Fredonia Transmission Line	500	30636 (Transition fittings)	1983	16	0.281	24,000	750	59.3\%	337
			30636 (Elbows)	1983	16	0.375	35,000	750	30.5\%	656
16	$16^{\prime \prime}$ March Point Transmission Line	500	40000 (Transition fittings)	1992	16	0.281	24,000	750	59.3\%	337
			40000 (Elbows)	1992	16	0.375	35,000	750	30.5\%	656
1	Longview-Kelso H.P. Distribution Line	250	Pre-CNGC-L1-1	1957	12.75	0.25	24,000	400	26.6\%	376
7	$12^{\prime \prime}$ South Longview H.P. Line	499	43600 (Transition fittings)	1995	12.75	0.312	24,000	1080	42.5\%	470
Yakima District										
1	$18^{\prime \prime}$ Yakima H.P. Line	200	$40 C 4357$	1961	8.625	0.188	24,000	352	19.1\%	419
Wenatchee District										
1	$16^{\prime \prime} \& 8^{\prime \prime}$ Moses Lake H.P. Line	250	60390	1981	4.5	0.155	24,000	375	15.0\%	499
Kennewick										
4	Pasco H.P. Distribution System	300	KennL4-1	1960	4.5	0.156	24,000	450	18.0\%	499

HPune ${ }^{\text {a }}$	4 U Une Some	HP Line Sexmentwo Number	2016 action	2017 action	2018 ection	2019 action	2280 action	2021 Action	2022 Action	
Dollintum Onskict										
1	8- odiligrom Mr.une	the 1.1	Tequest allowance to continve operating pipeline at gressure currently established, perform tatistical analyah, replace section at Squalicum Creek croising and teet samples from that project							
2	. 0 tantivonon 5ne	0 and	Reguert allowance to continue operating low-risk pipeline at pressure currently established. accept most stringent etteria as final plpe grade, test samples as they become avalable.							
		nath 2	Request allowance to cortinue operating low-ilsk pipeline at pressure currently entablished, accept most stringent enteria an final plpe grade, tost samples as they become avaltable.							
		120329	fequest allowance to comtinue operating low-risk pipeline at pressure currently establilshed. accept most stringent criteria as final wall thickness and pipe grade, test samples an they become avaliable.							
		1008831								
		200883								
		1218001								
		120002								
		23150	Cometect to inemedist preswe.							
		20564	Accept moxt turingent citerib as final wall thicknexs ond plpe gade, tert samples in they become wviltoble.							
3		Lne 3-1		mand westincat 701 ceations	In sinu testre at 65 lecasions					
		Cass5 framilion futes)								
4	-5outh tyemers. Une	Unest.	Request allowance to continue operating low-riak pigeline at pressure currently eatabllhed, acceot most stringent criteria an linal wal thickness and pipe grade, test samples as they become avalable.							
8		186	Requent allowance to continve operating low-ibk pipeline at preswure currently entabllihed, accept most stringent criteris as final wat thiciness and pipe gade, test samples as they become mavilable.							
,	8r Later Terell Ret Trammistion une	${ }^{1873}{ }^{1}$								
10	$16^{-N, W . W h o t c o m ~ T r a m m b i s o n ~ L i m e ~}$	18794								
12	- Norrt Lmemen HP. Lhe	2573								
21		A1508	Perrom n natiscal analis							
Asercrem Districa										
${ }^{*}$	F-xame une	${ }^{22281}$								
3	F Mccearner ume	${ }^{196333}$	Tequent allowance to continue operating low-rikk pipeline at prenzure currentir establahed, rceept most stringent criteris as final pope grade, tent samples an they become avalable.							
s	-Mentesmo H. Dastruson sprem	7 cosm								
,	z Elima Remearine Plomt H.P. Une	78croses 1								
		78C780:2	Request allowance to continue operating low-fisk plpelline at pressure currently established, accept most stringent criteria as final wall thickness and plpe grade, test samples is they become avatiable.							
2	F5 12 Bremeton Trammbion Une	Deremeranas 1	Request allowance to continue operating plpellne at pressure currently eatablithed, perform suatitical analvib	In situ teating at approximately 15 locations						
6	Froimme Vewnp, une	2087								

11		20c316								
		13522			pressuretstor epplace.					
Maxin Vemon Distret										
1		MTV1-1	Request allowance to continue operating pipeline at pressure currently established, perform statistical analyals	Approximately 9 milles to be retired and replaced	In situ testing at approximately 65 Iocations	In stu testing at approximately 65 locations				
		18591	Request allowance to continue uperating plpeline at pressure currently establishod until replacement	ke						
2	5-March Point H.P. Une	${ }^{111144}$	Lower operating pressure to be 20% below MAOP. periorm statistical analyals, and in situ testing at 21 locations							
		${ }_{212134}$		Instut testingest 1010 cations						
		${ }^{1155828}$	Lewer operatmg persure b 200%	Replaxemem						
3		Mrn3-1	Request allowance to continue operating low-risk pipeline at pressure currentiy established accept mort atringent eriteria as final pipe grade, test samples as they become avolbble.							
		MTV3. 2	Request allowance to continue operating low-riak pipel̆ine at pressure curremtly eatablizhed, aceept most stingent eriteria as final pipe grade, test samples as ther become avalble.							
4	-Mmant Vemon H.P. une	Mrnas	Accept most stringent criteria as final wafl thickness and plpe grade, test samples as they become avallable.				-			
5	$3^{\text {B Burlinstan H.p. Une }}$	21220	Request altowance to continue operating low-risk pipeline at pressure currently established until replacememt in 2016.							
,		1112275	Request allowance to continue operating low-risk pipelline at pressure currently eatablighed, accept most stringent criteria as final wall thickness and plpe grade, test samples as they become avaitable.							
8	- Andmeton M.P. Une		Nequest allowance to continue operatinc low-risk pipeline at pressure currently established, accept most stringent erteria as finat wal thiciness and pipe erade, test samples as they become available.							
10	- Sedrowowe	1473	Request aflowance to continue operating low-risk pipeline at pressure currently established until uprate is completed	Conduct upree tovaldare MAOP						
12		12706	Validate pressure rating of line stopper fitting, elbow at V-193, and Sow-A-Valve and service tee at V - 104							
14	125 fereonala Trammision Une		Peftom teatbeal andret							
		30656(Ebow)								
16	15 March Pamm Tranmmsion Une	42000 framition fatiost	Perrom tutatical endrat							
		A0000 (tblowe)								
Lemplew ostrict										
1		preovectis		Replese these	Reolace P meel 1	Prepece fase ill	Pepabace Prose N			
		Preecocech-2	Request allowance to continue operating low-risk plpeline at preasure currently estabtished, accept most stringent certeria as finol wall thickness and pipe grade, test samples as they became available.		-					
		${ }^{28621}$	Request allowance to continue operating' pipeline at pressure currently established until pressure test or replacenent is complete.						ce	
2	4-Kamana M. . Une	${ }^{26576}$	Request allowance to continue operating pipeline at preswure currently established until pressure test or replacement is complete.						ce	presure ese arembace
3	- Dice Road H.P. Ume (lomenem)	${ }^{2263335}$	Request allowance to continve operating low-risk pipeline at pressure currently established, accept most stringent eriteria as firnal for wall thickness and pipe grade, test samples x they secome svatiable.							
		51820(1)	Request allowance to continve operating plpeline at pressure currently eatablishod untif pressure teat or replacement is complete.						Presure ter or enpere	Presure est er remace

:	-ramas Me.une	(13800 2)						wro testorresice	tera a restace
		(18200(3)	Request allowance to continue operating ploeline at pressure currently establinhed untl oressure test or replacement is complete.					mesure ene or red	messur lera \times resacke
		(51820 49)	Request affowance to continue operating plpeline at presture currently eatabliched until presgure test or replacement ts comptete.					Mresur cestortelace	Peewne mex α restoce
7	Ir Sout benenowh. . ine	135600 (rasision (fines)				in situ teating ot approximately 20 locations			
Tstimsobstat (sammide)									
1	-'Sumpide fr.t.the	Fath-4.1	Request allowance to continue operating low-risk pipeline at presture currently establshed, accept most stringent criteria as final wall thickness and pipe grade, test samples as they become avalitable.						
2	2- Sount summider H, Une	426530	Request allowance to continue operating low-risk pipeline at pressure currently established, accept most stringent criteria on final wall thicknexs and plpe grade, test samples as they become avallable.						
3	-Grandew H .	Tastic-1	Request alfowance to continue operating lowrisk pipeline at pressure currently established, accept nost stringent criteria as final wall thictness and plpe grade, test samples as they become avaitable.						
4	$5^{\text {Proser }}$ W, Une	Totmosen-1	Requert allowance to continue operatine low-risk pipellne at pressure currently ectablished, xccept most stringent criteria as finat wal thiciness and pipe erade, test samples as they become avalable.						
s	CT Tooensh-zman hr. une	ramast	Tequest allowance to continue operating pipetine at pressure currently established, perform statintical analyds and test wallable samples	Reploce section on Fraley Road and test samples			In situ testing at appradmately 12 locatiom		
6	remat kr. Une	ratic. ${ }^{\text {a }}$	hequert allowance to continue operating low-risk pipeline at pressure currently established. accept most stringent criteria as final wall thicloress and plpe grade, test samples at they become avaitable.						
,	rwoprotrp. Une	Tos-16. 1	Request allowance to continue operating low-risk pipeline at pressure currently established, accept most stringent criteria as finat wall thickness and pipe frade, tent samples as they become avaliable.						
:	TSount Topememit	nothe	Request allowance to continue operating low-risk pipeline at pressure currontty establiahed. most stringent cifteria as final wall thicloness and pipe grade, test samples as they become avallable.						
,	TGoremer HP.Une	manc.as	Request atfowance to continue operating low-risk pipeline at pressure currently established, accept most stringent criteria in finat wall thichness and pipe grade, test samples as they become ovaitoble.	-					
Othmo Ohater									
1	80 ramane He.une	7at_, 968	Request alfowance to continue operating low-risk plpelline at pressure currently establithed, accept most stringent criteria as final wall thiciness and pipe grade, test samples as they become aviaitable.						
		25H.968_ut.26	hequest allowance to continue operating low-rikk pipeline at pressure currently establiched, scoept most stingent eriteria as final wat thickness and pipe gade, test samples as they become avalable.						
		eccass	Accept most stringent orlterla as final wall thicheness and ploe grade, test samples as they specone aralabie.						
		20375	request allowance to continue operating olpeline at presture currently established unbl pressure test or replacement is complete.		reswre tetas reobse				

APPENDIX M

April 29, 2016

RECEIVED
MAY 022016
State of Washington UTC
Pipeline Safety Program

Alan Rathbun- Director of Pipeline Safety Program
State of Washington Utilities and Transportation Commission 1300 S. Evergreen Park Dr. SW
P.O. Box 47250

Olympia, WA 98504-7250

RE: Docket PG-150120 - Response to March 22, 2016 WUTC Letter

Dear Mr. Rathbun:
In accordance with the Stipulated Agreement in Docket PG-150120 Cascade Natural Gas Corporation (CNGC) hereby submits its Maximum Allowable Operating Pressure (MAOP) Determination \& Validation Plan. This plan outlines how CNGC will collect validation information, prioritize, and schedule steps to confirm the MAOP for referenced high pressure distribution and transmission pipelines in Washington.

If there are any questions regarding this submission please contact Jeremy Ogden at (509) 7344509.

Eric Martuscelli
Vice President, Operations
Cascade Natural Gas Corporation

Cascade Natural Gas Corporation

MAOP Determination \& Validation Plan

in accordance with

Stipulated Agreement in Docket No. PG-150120

Cascade Natural Gas Corporation (Cascade) has prepared a Maximum Allowable Operating Pressure (MAOP) Determination \& Validation Plan for all high pressure (HP) distribution and transmission pipelines in the State of Washington. HP distribution is defined as having an MAOP greater than 60 psig which produces a hoop stress less than 20\% Specified Minimum Yield Strength (SMYS). The purpose of this plan is to determine and validate the MAOP of all HP distribution and transmission pipelines for which there is insufficient documentation to confirm the current MAOP. This MAOP Validation Plan consists of the following elements:

1. Summary of all HP distribution and transmission pipelines with data currently insufficient to demonstrate and confirm MAOP
2. Determination of MAOP for each segment of pipeline
3. Process that Cascade will use to validate data to calculate hoop stress for unknown pipe
4. Action plan for each pipeline segment
5. Rationale describing prioritization of each action plan
6. Process for corrective actions and updates to plan
7. Schedule listing time frames for completion of action plan for each pipeline segment

Critical information that can validate MAOP includes, but is not limited to, pipeline diameter, wall thickness, pipe grade (i.e. X52), pressure rating of fitting, longitudinal seam type, pressure test records, and as-built records.

Summary of HP Distribution and Transmission Pipelines

Table 1 - Summary of HP Distribution and Transmission Pipelines with Insufficient Data lists the HP distribution and transmission pipeline segments with data currently insufficient to demonstrate and confirm MAOP. This table also includes the MAOP, pipeline segment description, installation year, pipe diameter, pipe wall thickness, pipe grade, test pressure, \% Specified Minimum Yield Strength (SMYS), critical missing information, and action plan. Information for this table was gathered through a comprehensive review of all of Cascade's available records. Critical missing information (wall thickness, pipe grade, pressure test) is highlighted in this table. Values shown in yellow highlighted fields indicate that Cascade has assumed the most stringent criteria for missing values.

If assuming the most stringent criteria resulted in a pipeline segment operating with a hoop stress of 20\% SMYS or greater, that pipeline segment was reclassified as transmission and incorporated into Cascade's Transmission Integrity Management Program (TIMP) and was placed on a semiannual leak survey schedule. Additionally, these pipeline segments will have baseline assessments completed by February 2, 2018. Table 2 - Pipeline Segments Reclassified as Transmission lists the pipeline segments that were reclassified as transmission.

In some instances, assuming the most stringent criteria for missing information resulted in a pre-code pipeline segment operating at greater than 30% SMYS. Those pipelines segments, and the justification for the corresponding action plan, are described below.

1. $8^{\prime \prime}$ Bellingham HP Line \#1 - Testing up to this point indicates that this pipeline has a yield strength of 46,000 psi. This results in the pipeline operating at 18.9% SMYS, rather than 36.3% SMYS. Additionally, lowering the pressure to 20% below MAOP (288 psig) will result in Cascade not being able to supply gas to all customers. For these reasons, Cascade does not feel that it is prudent to lower the operating pressure and has made this pipeline one of the highest priorities.
2. $8^{\prime \prime}$ Central Whatcom HP Line \#3 - The current operating pressure is more than 20% below MAOP. Cascade does not plan to lower pressure further and has made this pipeline one of the higher priorities.
3. 8" Lake Terrell Road Transmission Line \#9 - Pipeline is connected to $8^{\prime \prime}$ Central Whatcom HP Line, and the current operating pressure is more than 20% below MAOP. Additionally, Cascade's as-built documents for this pipeline call this pipe out as Grade B, which will result in the pipeline operating at $\mathbf{2 4 . 9 1 \%}$ SMYS. This pipeline is currently operating as transmission and will continue to remain so. Cascade does not plan to lower pressure further and has made this pipeline one of the higher priorities.
4. $8^{\prime \prime}$ \& $12^{\prime \prime}$ Bremerton Line \#2 - Testing up to this point indicates that this pipeline has a yield strength of $46,000 \mathrm{psi}$ and was manufactured with a high-frequency weld process. This results in the pipeline operating at 24.9% SMYS. Additionally, lowering the operating pressure to 20% below MAOP will result in Cascade not being able to supply gas to all customers in the Bremerton District. For these reasons Cascade does not feel that it is prudent to lower the operating pressure and has made this pipeline one of the highest priorities.
5. $8^{\prime \prime}$ Anacortes HP Line \#1 - Testing up to this point indicates that this pipeline has a yield strength of at least $42,000 \mathrm{psi}$ and was manufactured with a high frequency weld process. This results in the pipeline operating at 19.7% SMYS. For these reasons Cascade does not feel that it is prudent to lower the operating pressure and has made this pipeline one of the highest priorities.
6. 8" March Point HP Line \#2-Cascade will fabricate a regulator station and modify set points on the existing regulator station feeding this pipeline to lower the operating pressure to 20% below MAOP and meet customer demands. The lower operating pressure will result in the pipeline operating at $\mathbf{2 7 . 5 3 \%}$ SMYS. In situ testing on this pipeline is Cascade's highest priority and will be performed in 2016.

Table 3 - Branch Lines with Insufficient Data lists the validated pipelines which have branch lines with data currently insufficient to determine and confirm MAOP. All of these branch lines will be pressure tested or replaced. Additionally, all HP services that are determined to have insufficient data to validate MAOP will be pressure tested or replaced.

Determination of MAOP

Table 4 - Pre-Code Pipelines with Pressure Test lists the pre-code pipelines with unknown characteristics whose current MAOP is based on a pressure test. Missing information, such as pipe grade or wall thickness, will be obtained through testing.

Table 5 - Pre-Code Pipelines without Pressure Test lists the pre-code pipelines with unknown characteristics that do not have a pressure test as the basis of determination of current MAOP. While Cascade Natural Gas Corporation - MAOP Determination \& Validation Plan

April 29, 2016
there are varying degrees of preliminary and partial documentation for some of these pipelines, Cascade does not have operating records from 1965-1970 as described in 49 CFR 192.619(a)(3).

In all but one instance - Bremerton Line 2 in Table 4 - the current MAOP is less than the most conservative design pressure calculated as prescribed in 49 CFR 192.105. In this instance, the assumed yield strength based on the most stringent criteria results in a design pressure lower than the MAOP. However, the pipeline has pressure test records and test results giving a preliminary indication that the yield strength is greater than the most stringent criteria.

Processes to Validate Data

In addition to gathering information through a comprehensive review of all available records, Cascade's plan will include gathering and validating data from pipelines in service. Methods that will be employed may include but are not limited to:

1. Measuring pipe wall thickness with Ultrasonic Thickness (UT) gauge
2. Validating pipe grade and/or longitudinal seam type through mechanical testing of samples at an accredited materials testing laboratory in accordance with 49 CFR 192.107
3. Validating pipe grade by non-destructive in situ testing as described in a letter to the Washington Utilities and Transportation Commission (UTC) on June 2, 2015
4. Confirming pipe diameter through field measurements
5. Pressure testing
6. Exposing rated fittings to validate pressure rating

As information is collected the records will be stored in accordance with WAC-480-90-228 and 480-90999. Any process considered to validate data not listed above will be submitted to the UTC for review prior to use. Any new or innovative processes for validating pipe characteristics shall be submitted to the Commission for review.

Cascade has contracted with Parametrix, Inc. (Parametrix) to perform a statistical analysis of all pipeline segments with missing pipe grade and to determine the number of sampling points that will be required to validate pipe grade. This analysis will be conducted in accordance with 49 CFR 192 Appendix B Qualification of Pipe. Parametrix will also work with Cascade's Engineering Services to identify the testing locations. Parametrix has completed the analysis for pipelines in Cascade's Bellingham and Mt. Vernon districts, and those results have been used to estimate the number of sampling points that will be required on pipelines in other districts until the analysis in the remaining districts is completed in 2016.

Cascade has also contracted ABI Services, LLC (ABI), located in Oak Ridge, Tennessee, to perform in situ testing at the determined locations. Information describing their testing process was sent to the UTC on June 2, 2015, and approval of this testing method was received on January 12, 2016. Das-Co of Idaho, Inc. will be the excavation contractor used for the in situ testing. Cascade has coordinated with above contractors to begin work the week of July 11, 2016.

Pressure Testing

In instances where pressure testing is required, Cascade's primary consideration is to isolate the pipeline and perform the pressure test. Test medium, pressure and duration will be based on current Cascade procedures. After completion of a successful pressure test, the pipeline will be put back into service.

In situations where isolation is not feasible due to factors such as customer loads or single feed systems, or construction constraints make replacement impractical, Cascade's secondary consideration is to pressure test an in-service pipeline. Cascade will consider two options for pressure testing an in-service pipeline. The first option is to use the current operating pressure as a test pressure. If it is determined that customer demands can be met by lowering the operating pressure by one third, Cascade will consider using the current operating pressure as a test pressure. A pressure recording device will be connected to the pipeline to record the pressure, and the pipeline will be leak surveyed. Test pressure, duration, and leak surveys will be performed as necessary to ensure discovery of all potentially hazardous leaks in the segment being tested. This is similar to Method 2 in the April 8, 2016 NPRM for transmission lines.

To establish the current operating pressure as MAOP, the second option for in-service pressure testing will be used. The process for this option is as follows:

1. A pressure recording device will be installed to monitor the pressure during the incremental increases
2. A leak survey will be performed at the current operating pressure
3. Operating pressure will be increased (in 10 psig increments or $\mathbf{2 5 \%}$ of the total pressure increase, whichever produces the fewer number of increments)
4. Leak survey will be performed after each incremental pressure increase
5. When test pressure is reached, it will be held per Cascade procedures and engineering specifications
6. Final leak survey will be performed
7. Pressure will be reduced to at or below newly established MAOP

It is not Cascade's intent to use this method to increase the current MAOP, but to establish the current operating pressure, which Cascade has been using for decades, as MAOP.

All proposed pressure testing options meet Subpart J requirements.

Action Plan

Cascade has reviewed each segment of HP pipeline and identified those segments with missing critical information. Table 1 contains the pipelines by district and the overall action plans for each. The time frames for completion of each action plan are shown in Table 6 - Schedule. Plans of action include replacement, pressure testing, lowering pressure, mechanical testing of samples, statistical analysis and in situ testing, uprating, and operating pipeline with assumptions.

Prioritization

Cascade has prepared a matrix to individually evaluate each segment of HP distribution and transmission pipeline with missing critical information. Components of the priority matrix, in descending order of weighting, are: \% SMYS of pipe and fittings, available pressure test records, number of High Consequence Areas (HCAs) on a pipeline segment, class location, age of pipe (i.e. precode), and length of segment. The matrix produced a total prioritization score for each segment of pipeline, and pipelines were addressed in descending order of priority. In general, pre-code pipeline segments operating at greater than 30% SMYS without pressure test records were the highest priorities, with subsequent priorities influenced by the availability of pressure test records.

Process for Corrective Actions and Update to Plan

Cascade will continue to evaluate all current and future HP distribution and transmission pipelines on an ongoing basis to verify that critical information used to validate MAOP is known and to identify when immediate corrective actions are required. Existing pipelines will be evaluated annually by Cascade's Engineering Services group through the Distribution Integrity Management Plan (DIMP) and model. The plan and model will be reviewed annually to ensure that all information obtained as part of this MAOP Validation \& Determination Plan is incorporated. Documentation for new pipelines will be audited by Cascade's Standards \& Compliance group or Engineering Services group as construction of new pipelines is completed. If any critical information necessary to validate MAOP is discovered to be insufficient, corrective actions will be taken. Corrective actions include, but are not limited to, review of records as well as the processes used to validate data listed above.

Until a pipeline's characteristics can be verified, Cascade will assume the most stringent criteria for unknown pipe characteristics, as described in 49 CFR $192.107 \& 109$. If these assumptions result in a pipeline operating at 20% SMYS or greater, the pipeline will be leak surveyed two (2) times per calendar year and incorporated into Cascade's TIMP. For these pipelines, Cascade will perform a threat evaluation, and incorporate the pipe into risk and pipe assessments. Baseline assessments for all pipelines reclassified as transmission status shall be completed within three (3) years of reclassification.

When information is verified that results in a pipeline operating at a higher or lower \% SMYS, changing classification from transmission to HP distribution, or other similar actions, this plan will be amended and updated. If an amendment to the plan is necessary, Cascade will submit the proposed amended plan to Commission Staff for review at least ninety (90) days prior to the time Cascade submits the amended plan to the Commission for formal approval.

Cascade will also submit to Commission Staff an annual status report on the progress in implementing this plan. The annual status report will be submitted by January 31 of each year. As part of the annual status report every aspect of the plan will be reviewed and the tables and schedule will be revised as required. Test results will be updated, as well as any resulting changes in priorities and schedule. If Cascade decides to accept the most stringent criteria as the final resolution for a particular line segment,
that will be included in an amended plan or annual status report and submitted to the Commission for approval.

Schedule

Table 6 - Time Frames for Completion provides the beginning and completion years for the action plans for each HP distribution and transmission pipeline segment with missing critical information. The priority matrix was the basis for the scheduling of action plans. Fifty percent of pipeline mileage will be addressed by 2018, and the remaining pipelines will be addressed by 2026 . The schedule will be reviewed and revised with each annual update.

TABLES

Poricodembinim Pressuratest

Table 2 - Pipeline Segments Reclassified as Transmission

HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Wall Thickness (in.)	Yield Strength (psi)	\% SMYS
Bellingham District								
1	8" Bellingham Transmission Line	380	Line 1-1	1956	8.625	0.188	24,000	36.32\%
3	8" Central Whatcom Transmission Line	380	14c1314	1957	8.625	0.188	24,000	36.32\%
			40855 (Transition fittings)	1972	4.5	0.156	24,000	36.32\%
21	16" Squalicum Transmission Segment	250	41508	1993	16	0.281	24,000	29.66\%
Mount Vernon District								
1	$8^{\prime \prime}$ Anacortes HP Line	360	MTVL1-1	1957	8.625	0.188	24,000	34.4\%
			18191	1972	8.625	0.188	35,000	23.6\%
2	8" March Point H.P. Line	360	$11 \mathrm{C1144}$	1957	8.625	0.188	24,000	34.4\%
			$11 \mathrm{C1144}$	1957	8.625	0.25	24,000	25.9\%
			11C56.28	1963	8.625	0.188	24,000	34.4\%
Longview District								
1	Longview-Kelso H.P. Distribution Line	250	Pre-CNGC-L1-1	1957	12.75	0.25	24,000	26.6\%
8	8" Kalama H.P. Line	300	51820(1)	1996	8.625	0.322	46,000	8.5\%
			51820(2)	1997	8.625	0.188	24,000	28.7\%
			51820(3)	1997	8.625	0.25	24,000	21.6\%
			51820(4)	1997	8.625	0.25	46,000	11.3\%
Yakima District (Sunnyside)								
5	6" Toppenish-Zillah H.P. Line	400	YakimaL5-1	1956	6.625	0.188	24,000	29.4\%
Wenatchee District								
1	$6^{\prime \prime}$ \& 8" Moses Lake H.P. Line	250	WenL1-1	1957	6.625	0.188	24,000	18.4\%
			WenL1-2	1957	8.625	0.188	24,000	23.9\%
			60390	1981	4.5	0.156	24,000	15.0\%
3	4" Othello Transmission Line	400	18998	1971	6.625	0.188	35,000	20.1\%
Kennewick								
1	$8^{\prime \prime}$ Attalia H.P. Line	300	O1C4776	1958	8.625	0.188	24,000	28.7\%
			14375 (1)	1968	8.625	0.188	35,000	19.7\%
			14375 (2)	1968	12.75	0.25	35,000	21.9\%
			14375 (3)	1968	12.75	0.375	35,000	14.6\%
			14375 (4)	1968	12.75	0.33	35,000	16.6\%
			14375 (5)	1968	12.75	0.25	52,000	14.7\%

Table 3 - Branch Lines with Insufficient Data

HP Line \#	HP Line Name	MAOP (psig)	Branch Segments	
			\# HP Invalidated	\# Transmission Invalidated
Bellingham District				
5	$4^{\prime \prime}$ South Everson H.P. Line	250	6	0
6	$4^{\prime \prime}$ Ferndale H.P. Line	380	2	0
10	$16^{\prime \prime}$ N. Whatcom Transmission Line	600	24	4
11	$8^{\prime \prime}$ Kickerville Transmission Line	600	1	1
14	4"\% BlaineiH:P P Line:	250	4	0
15	$4^{\prime \prime}$ South Sumas H.P. Line	170	1	0
17	10" Squalicum H:P. Line	380	1	0
18	20"Ferndale Transmission Line	600	2	0
19,	20" Sumas Transmission Line	780	4	0
20	8" South Kickerville Transmission Line	380	1	0
22	4": \& 6" Bay Road H.P. Line	150	3	0
23	$4^{\text {N }}$ West Ferndale H.P. Line	250	1	0

Aberdeen District
Aberdeen District

1	$8^{\prime \prime}$ Kltsap Line			
2	$8^{\prime \prime}$ Grays Harbor H.P. Line	$366 / 499$	15	0
4	$4^{\prime \prime}$ Elma H.P. Line	305	5	0
5	$4^{\prime \prime}$ Shelton H.P. Line	150	4	0
6	$6^{\prime \prime}$ Aberdeen H.P. Line	155	10	0
7	$4^{\prime \prime}$ Montesano H.P. Line	150	6	0
10	$4^{\prime \prime}$ South Elma H.P. Line	305	2	0
11	$2^{\prime \prime}$ North Shelton H.P. Line	150	2	0
14	$4^{\prime \prime}$ North Shelton H.P.Line	125	8	0
15	$12^{\prime \prime}$ Kitsap HP Line	250	5	0
16	$4^{\prime \prime}$ Satsop H.P. Line	499	3	0

Bremerton District

1	$8^{\prime \prime}$ KItsap Line	$366 / 499$	10	0
3	$8^{\prime \prime}$ West Bremerton H.P. Line	250	10	0
4	$4^{\prime \prime}$ Port Orchard H.P. Line	170	11	0
5	$2^{\prime \prime}$ Belfair H.P. Line	499	1	0
6	$4^{\prime \prime}$ OlympicView H.P. Line	499	3	0
7	$8^{\prime \prime}$ North Kitsap H.P. Line	250	133	0
8	$6^{\prime \prime}$ Port Orchard H.P. Loop Line	170	2	0
9	$6^{\prime \prime}$ Bangor H.P. Line	250	1	0
12	$6^{\prime \prime}$ North Bremerton H.P. Line	250	1	0

Table 3 - Branch Lines with Insufficient Data

HP Line \#	HP Line Name	MAOP (psig)	Branch Segments	
			\# HP Invalidated	\# Transmission Invalidated
Mount Vernon District				
9	4"' La Conner H.P. Line	151	4	0
11	$6^{\prime \prime}$ Whidbey Island H.P. Line	400	17	0
15	$6^{\prime \prime}$ Mount Vernon H.P. Line	250	1	0
16	$16^{\prime \prime}$ March Point Transmission Line	500	1	0
19	$4^{\prime \prime}$ South Anacortes H.P. Line	250	4	0
20	$6^{\prime \prime}$ North Anacortes H.P. Line	105	2	0
21	6". South Mount Vernon H.P. Line	250	2	0
22	12" Anacortes H.P. Line (Phase 1)	500	7	0
23	$4^{\prime \prime}$ South Texas Rd H.P. Line.	500	2	0
Longview District				
9	6\% South Kalama H.P. Line	300	6	0
10	$4^{\prime \prime}$ Woodland H.P. Line	150	5	0
Yakima (Sunnyside) District				
10	2": Sunnyside H.P. Line	200	3	0
11	4" West Sunnyside H.P. Line	200	3	0
12	4"E East Toppenish H.P. Line	400	1	0
14	Sunnyside H.P. Distribution System	200	1	0
15	4". Sunnyside H.P. Line	200	3	0.
Yakima District				
2	4* Selah H.P. Line	250	3	0
3	$4^{\prime \prime}$ Moxee H.P. Line	250	2	0
Wenatchee District				
4	6", Quincy H.P. Line	250	4	0
5	$6^{\prime \prime}$ South Moses Lake H.P. Line	250	2	0
7	$4^{\prime \prime}$ Wheeler H.P. Loop Line.	250	7	0
8	Wheeler H.P. Distribution System	250	1	0
14.	6^{4} North Moses Lake H:P.Line	250	3	0
16	$4^{\prime \prime}$ N Wheeler HP Line	250	1	0
Kenneiwck District				
2	6"\&.8*:Richland:H.P. Line	250	13	0
12	$4^{\prime \prime}$ Paterson H.P. Line	300	1	0
15	4\%: East Port of. Pasco HiP. Line:	300	3	0
17	6"\& 8" North Richland H.P. Line	250	4	0
18	$6^{\prime \prime}$ West Richland H.P. Line	250	2	0

Table 4-Pre-code Pipelines with Pressure Test

HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Length (Ft.)	Wall Thickness (in.)	Yield Strength (psi)	Test Pressure (psig)	\% SMYS	Design Pressure (psig)
Bellingham District											
9	8" Lake Terrell Rd Transmission Line	380	18734-1	1965	8.625	10,314	0.188	24,000	569	36.32\%	419
Bremerton District											
2	$18^{\prime \prime}$ \& $12^{\prime \prime}$ Bremerton Transmission Line	499	\|BremertonL2-1	1963	8.625	2,843	0.188	24,000	750	47.69\%	419
Mount Vernon District											
4	14^{*} Mount Vernon H.P. Line	250	\|MTVL4-1	1957	4.5	23,760	0.156	24,000	400	15.02\%	399
Longview District											
1	Longview-Kelso Transmission Segments and H.P.	250	Pre-CNGC-L1-1	1957	12.75	23,205	0.250	24,000	400	26.56\%	301
	Distribution Line		Pre-CNGC-L1-2	1957	4.5	4,964	0.156	24,000	392	15.02\%	499
Yakima District											
1	[8" Yakima H.P. Line	200	40C4357	1961	8.625	4,891	0.188	24,000	350	19.12\%	419
Kennewick District											
4	Pasco H.P. Distribution System	300	KennL4-1	1960	4.5	10,125	0.156	24,000	450	18.03\%	499

Table 5 - Pre-Code Pipelines without Pressure Test

HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Length (Ft.)	Wall Thickness (in.)	Yield Strength (psi)	Test Pressure (psig)	\% SMYS	Design Pressure (psig)
Bellingham District											
1	8" Bellingham Transmission Line	380	Line 1-1	1956	8.625	15,086	0.188	24,000	No Test	36.32\%	419
2	Bellingham H.P. Distribution System	150	fish-1	1956	8.625	16,475	0.188	24,000	No Test	14.34\%	335
			fish-2	1956	10.75	15,630	0.188	24,000	No Test	17.87\%	269
			10 c 1315	1958	4.5	927	0.156	24,000	No Test	9.01\%	399
			10c1559	1958	4.5	520	0.156	24,000	No Test	9.01\%	399
			10 c 3298	1960	4.5	1,448	0.156	24,000	No Test	9.01\%	399
			$10 ¢ 4799$	1962	2.375	221	0.154	24,000	No Test	4.82\%	747
			10 c 5321	1963	2.375	1,505	0.154	24,000	No Test	4.82\%	747
			10c9831	1966	2.375	1,309	0.154	24,000	No Test	4.82\%	747
3	8" Central Whatcom Transmission Line	380	14 c 1314	1957	8.625	57,437	0.188	24,000	No Test	36.32\%	419
4	$4^{\prime \prime}$ South Lynden H.P. Line	250	Line 4-1	1961	4.5	35.441	0.156	24,000	No Test	15.02\%	499
8	2"Nooksack H.P. Distribution System	250	1607000	1963	2.375	732	0.154	24,000	No Test	8.03\%	934
Aberdeen District											
3	4" McCleary H.P. Line	150	$79 C 6323$	1963	4.5	225	0.156	24,000	No Test	9.01\%	499
			7887902-2	1964	4.5	252	0.156	24,000	No Test	9.01\%	499
Mount Vernon District											
1	8" Anacortes Transmission Line	360	MTVL1-1	1957	8.625	102,813	0.188	24,000	No Test	34.41\%	419
2	8"' March Point Transmission Line	360	11C1144-1	1957	8.625	8,134	0.188	24,000	No Test	34.41\%	419
			11C1144-2	1957	8.625	814	0.250	24,000	No Test	25.88\%	557
			11 C 5628	1963	8.625	285	0.188	24,000	No Test	34.41\%	419
3	Anacortes H.P. Distribution System	105	MTVL3-1	1956	6.625	5,102	0.188	24,000	No Test	7.71\%	545
			MTVL3-2	1956	8.625	4,675	0.188	24,000	No Test	10.04\%	419
			$11 \mathrm{C1491}$	1958	2.375	3	0.154	24,000	No Test	3.37\%	934
			11C2330	1959	2.375	70	0.154	24,000	No Test	3.37\%	934
			$11 \mathrm{C2626}$	1959	2.375	127	0.154	24,000	No Test	3.37\%	934
			09801	1966	2.375	112	0.154	24,000	No Test	3.37\%	934
5	$3^{\prime \prime}$ Burlington H.P. Line	249	211220	1957	3.5	5,769	0.156	24,000	No Test	11.64\%	642
7	$4^{\prime \prime}$ North Texas Rd H.P. Line	250	11 C 2775	1960	2.375	914	0.154	24,000	No Test	8.03\%	934
8	$4^{\prime \prime}$ Arlington H.P. Line	249	Fish 18C4272	1961	4.5	10,177	0.156	24,000	No Test	14.96\%	499
Longview District											
1	Longview-Kelso Transmission Segments and H.P.	250	82C8335-2	1965	2.375	521	0.154	24,000	No Test	8.03\%	934
	Distribution Line		82C8335-3	1965	4.5	152	0.156	24,000	No Test	15.02\%	499
3	4" Dike Road H.P. Line (Longview)	80	$82 C 8335$	1965	4.5	6,463	0.156	24,000	No Test	4.81\%	499
Yakima (Sunnyside) District											
1	3" Sunnyside H.P. Line	200	Fish-L1-1	1956	3.5	4,494	0.156	24,000	No Test	9.35\%	642
			15420	1969	3.5	42	0.156	24,000	150	9.35\%	642
2	$2^{\prime \prime}$ South Sunnyside H.P. Line	200	$42 \mathrm{C2530}$	1959	2.375	4,018	0.154	24,000	No Test	6.43\%	934
3	$4^{\prime \prime}$ Grandview H.P. Line	250	Fish-L2-1	1956	4.5	4,736	0.156	24,000	No Test	15.02\%	499
4	3"P Prosser H.P. Line	250	Yakimal4-1	1956	3.5	5,832	0.156	24,000	No Test	11.69\%	642
5	6" Toppenish-Zillah Transmission Line	400	Yakimal5-1	1956	6.625	32,566	0.188	24,000	No Test	29.37\%	545
6	3" Zillah H.P. Line	400	fish-L6-1	1956	3.5	873	0.156	24,000	No Test	18.70\%	642
7	$4^{\prime \prime}$ Wapato H.P. Line	152	fish-L7-1	1956	4.5	33,284	0.156	24,000	No Test	9.13\%	499
8	$3^{\prime \prime}$ South Toppenish H.P. Line	175	fish-L8-1	1956	3.5	6,161	0.156	24,000	No Test	8.18\%	-642
9	$3^{\prime \prime}$ Granger H.P. Line	175	fish-L9-1	1956	3.5	31,347	0.156	24,000	No Test	8.18\%	- 642

Table 5 - Pre-Code Pipelines without Pressure Test

HP Line \#	HP Line Name	MAOP (psig)	HP Line Segment/WO Number	Year Installed	Diameter (in.)	Length (Ft.)	Wall Thickness (in.)	Yield Strength (psi)	Test Pressure (psig)	\% SMYS	Design Pressure (psig)
Yakima District											
1	$8^{\prime \prime}$ Yakima H.P. Line	200	Fish. 968	1956	8.625	3,032	0.188	24,000	No Test	19.12\%	419
			FISH_968_Lat_26	1956	8.625	695	0.500	24,000	No Test	7.19\%	1113
Wenatchee District											
1	$6^{\prime \prime} \& 8^{\prime \prime}$ Moses Lake H.P. Line	250	Went1-1	1957	6.625	509	0.188	24,000	No Test	18.35\%	545
			WenL1-2	1957	8.625	15,956	0.188	24,000	No Test	23.89\%	419
2	$2^{\prime \prime}$ Wheeter H.P. Line	250	WenL2-2	1962	2.375	2,375	0.154	24,000	No Test	8.03\%	934
			58C5745	1962	2.375	179	0.154	24,000	No Test	8.03\%	934
12	$6^{\prime \prime}$ Wenatchee H.P. Line	225	2912 fish	1956	6.625	31,812	0.188	24,000	No Test	16.52\%	545
Kennewick District											
1	8 "Attalia Transmission Line	300	0164776	1958	8.625	78,449	0.188	24,000	No Test	28.67\%	419
			54C2565	1959	2.375	2	0.154	24,000	No Test	9.64\%	934
3	$4^{\prime \prime}$ East Finley H.P. Line		16256	1969	2.375	365	0.154	24,000	No Test	8.03\%	934
8	$4^{\prime \prime}$ Finley H.P. Line	200	$53 C 2527$	1959	4.5	12,391	0.156	24,000	No Test	12.02\%	499
Walla Walla District											
1	8^{8} Walla Walla H.P. Line	150	WWWL1-1	1956	8.625	4,595	0.188	24,000	No Test	14.34\%	419
2	3^{*} College Place H.P. Line	150	WWL2-1	1956	3.5	2,474	0.156	24,000	No Test	7.01\%	642

APPENDIX N

From: Ogden, Jeremy [mailto:Jeremy.Ogden@cngc.com]
Sent: Monday, June 06, 2016 11:36 AM
To: Ritter, Dennis (UTC) dritter@utc.wa.gov; Eutsey, Mike Mike.Eutsey@cngc.com
Cc: Sorensen, Renie Renie.Sorensen@cngc.com; Subsits, Joe (UTC) jsubsits@utc.wa.gov
Subject: RE: MAOP Validation HP Washington Pipelines-Data Request

Dennis:

Following is a table showing per district the total unvalidated mileage and total mileage of all pipelines operating at over 60 psig.

District	Total Unvalidated Mileage	Total Mileage
Aberdeen	15.01	85.14
Bellingham	62.73	105.51
Bremerton	4.69	65.58
Kennewick	22.12	53.34
Longview	13.75	24.67
Mt. Vernon	55.24	103.87
Walla Walla	1.34	22.28
Wenatchee	25.37	68.76
Yakima	222.68	50.52
Total		559.67

In the Bellingham, Longview, and Mt. Vernon districts, we are including the entire length of some pipelines, even though only a small portion ($\approx 100 \mathrm{ft}$) needs to be tested at fittings. Please let me know if you need anything else.

Jeremy

Jeremy Ogden, P.E. | Director, Engineering Services

Cascade Natural Gas Corporation

A Subsidiary of MDU Resources Group, Inc.
8113 Grandridge Blvd, Kennewick, WA 99336
[office] 509.734.4509
[cell] 509.845.5485
[email] jeremy.ogden@cngc.com

APPENDIX 0

(Available at http://www.ecfr.gov/cgi-bin/text-
idx?SID=83b75887d4585650101d7f09b0a91bfa\&mc=true\&node=se49.3.192 1619\&rgn=div8)
(a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph (c) or (d) of this section, or the lowest of the following:
(1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part. However, for steel pipe in pipelines being converted under $\S 192.14$ or uprated under subpart K of this part, if any variable necessary to determine the design pressure under the design formula ($§ 192.105$) is unknown, one of the following pressures is to be used as design pressure:
(i) Eighty percent of the first test pressure that produces yield under section N5 of Appendix N of ASME B31.8 (incorporated by reference, see §192.7), reduced by the appropriate factor in paragraph (a)(2)(ii) of this section; or
(ii) If the pipe is $123 / 4$ inches (324 mm) or less in outside diameter and is not tested to yield under this paragraph, 200 p.s.i. (1379 kPa).
(2) The pressure obtained by dividing the pressure to which the segment was tested after construction as follows:
(i) For plastic pipe in all locations, the test pressure is divided by a factor of 1.5 .
(ii) For steel pipe operated at 100 p.s.i. (689 kPa) gage or more, the test pressure is divided by a factor determined in accordance with the following table:

Class location	Installed before (Nov. 12, 1970)	Installed after (Nov. 11, 1970)	Converted under §192.14
		1.1	1.1

${ }^{1}$ For offshore segments installed, uprated or converted after July 31, 1977, that are not located on an offshore platform, the factor is 1.25 . For segments installed, uprated or converted after July 31, 1977, that are located on an offshore platform or on a platform in inland navigable waters, including a pipe riser, the factor is 1.5 .
(3) The highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column. This pressure restriction applies unless the segment was tested according to the requirements in paragraph $(\mathrm{a})(2)$ of this section after the applicable date in the third column or the segment was uprated according to the requirements in subpart K of this part:

Pipeline segment	Pressure date	Test date

-Onshore gathering line that first became	March 15, 2006, or date line becomes subject to this part, subject to this part (other than §192.612) after April 13, 2006	5 years preceding applicable date in second column.		
-Onshore transmission line that was a				
gathering line not subject to this part before				
March 15, 2006			\quad	
:---				
Offshore gathering lines				
All other pipelines				

(4) The pressure determined by the operator to be the maximum safe pressure after considering the history of the segment, particularly known corrosion and the actual operating pressure.
(b) No person may operate a segment to which paragraph (a)(4) of this section is applicable, unless over-pressure protective devices are installed on the segment in a manner that will prevent the maximum allowable operating pressure from being exceeded, in accordance with §192.195.
(c) The requirements on pressure restrictions in this section do not apply in the following instance.

An operator may operate a segment of pipeline found to be in satisfactory condition, considering its operating and maintenance history, at the highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column of the table in paragraph (a)(3) of this section. An operator must still comply with §192.611.
(d) The operator of a pipeline segment of steel pipeline meeting the conditions prescribed in §192.620(b) may elect to operate the segment at a maximum allowable operating pressure determined under §192.620(a).
[35 FR 13257, Aug. 19, 1970]

[^0]: Cascade Natural Gas Corporation
 A Subsidiary of MDU Resources Group, Inc.
 8113 Grandridge Blvd, Kennewick, WA 99336
 [office] 509.734.4509
 [cell] 509.440.1467
 [email] jeremy.ogden@cngc.com

