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• Brigham and Crum (5] describe difficulties with the 
Capital Asset Pricing Model (CAPM) in estimating 
utility cost of capital. This controversial article elicited 
six comments [7, 15, 17, 21, 22, 24], a reply [6], and one 
extension [ 11 ]. Examining the dividend omission by 
Consolidated Edison (Con Ed), Brigham and Crum 
note that this information release could confound es­
timation of Con Ed's beta. Although the Ordinary 
Least Squares (OLS) beta estimate decreased concur­
rent with the dividend omission, Brigham and Crum 
contend that Con Ed's risk had not decreased. 

An OLS estimate of beta requires an estimation 
period during which the relationship between stock 
return and market return is stable. Without this sta­
bility, the forecaster needs alternatives for forecasting 
a time-varying relationship, such as the general Bayesian 
adjustment process [25] or its specific variations em­
ployed by Merrill Lynch [ 18). The appropriateness of a 

84 

given procedure depends on the particular time-series 
properties of the beta being forecast. 

Information on the time-series properties of utility 
betas, including the variability of beta and the tendency 
of utility betas to auto-regress toward an underlying 
mean, is presented here. The degree of difficulty in 
forecasting beta depends on both of these properties. 
Since the basis of Bayesian adjustment lies in beta's 
tendency to return to an underlying mean, if betas 
follow a random walk process then Bayesian adjust­
ment will be fruitless. 

Collins, Ledolter. and Rayburn [10] explain that 
random variation in beta leads to severe forecasting 
difficulties, unlike variability due to auto-regression in 
beta. To the extent that beta instability is auto-corre­
lated, an unstable beta can be forecasted accurately. 
Estimating that about 25% of beta variability in their 
sample is due to auto-correlated beta changes, Collins, 
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Ledolter, and Rayburn suggest that recognition of au­
to-correlation can improve forecasting accuracy by 15%. 

Auto-correlated beta changes allow use of beta ad­
justment models to improve beta forecasts. A general 
Bayesian adjustment model would adjust the short­
term (transient) beta estimate towards a long-term 
underlying mean. An example of such an application is 
the Merrill Lynch [18] adjustment process: 

B1 = 0.65(B1 _ 1) + 0.35(1.0). (1) 

Here, the transient beta estimate obtained by OLS is 
presumed to return to an underlying mean of 1.0 slowly, 
since more weight is placed on the transient beta than 
on the underlying mean. 

Studying the time-series properties ofutility betas­
including their tendency to return to an underlying 
mean. the speed of this return, and the underlying mean 
itself-should prove helpful in formulating Bayesian 
adjustments of beta forecasts. Carleton [7] suggests 
that Bayesian-adjusted beta forecasts have been ap­
plied, often inappropriately, to beta forecasts in regu­
latmyproceedings. This study strives to determine whether 
such Bayesian adjustment processes are appropriate at 
all. 

I. Beta Coefficient Instability and the 
Rate-Setting Process 

Cooley [ 12] points out the widespread. albeit con­
troversial, use of the Capital Asset Pricing Model in 
estimating required return for utility equity. Exchanges 
published by two journals dealing with the CAPM for 
rate setting ([7, 15, 17, 21, 22, 24] and [ 4, 19, 20]) center 
not on the validity of the theory but on the reliability 
and usefulness of beta estimates. 

Concern over empirical estimates of systematic risk 
is based on a substantial body of empirical literature 
pointing to beta instability. From the early descriptive 
work of Blume [2] through later tests by Fabozzi and 
Francis [ 13] and Collins, Ledolter, and Rayburn [10], 
the evidence supports instability in security betas. Study­
ing specifically the behavior of utility betas, Bey [ 1], 
Chen [8], and Pettway [23] all demonstrate instability. 

Although the size of beta instability has been exten­
sively investigated, comparatively little attention has 
been focused on the form of that instability, particu­
larly for utilities. Beta instability does not necessarily 
preclude application of the CAPM unless combined 
with a random walk process for beta. 

The simplest case, a constant coefficient process for 
beta, may be expressed as: 

B;1 = B1, 1 _ 1 = B'(' for all t . (2) 

In Equation (2), the beta at any point in time remains 
equal to the previous beta and also to a constant un­

derlying mean beta, B'f. This constant coefficient pro­

cess is assumed in OLS estimation of a beta and serves 
as the null hypothesis in tests of beta variability (3, 13]. 

When the transient beta for a particular company 
(Bir) is distributed around an underlying mean beta for 

that company B'f, the resulting time-series process may 
be described as: 

(3) 

Equation (3) describes the random coefficient model 
tested by Fabozzi and Francis [13] and assumed in a 
beta forecasting model by Chen and Keown [9]. Since 
the deviations of beta from its underlying mean (ui1) are 
limited to a single period and are serially uncorrelated, 
the transient beta (1311 ) tends to return quickly to the 
underlying mean. 

If the transient beta takes more than one period to 
return to its underlying mean, then an auto-regressive 
process describes the time-series behavior of beta: 

B;1 =a,B;,r-I + (1-a,)Bj" +11;1 • 

This process is very similar to the random coefficient 
process, except for the strength of the tendency for 
mean-reversion. A value of 0.9 for 1 - ai would cause 

the process to be classified as auto-regressive, whereas 
a value of 1.0 would label it random coefficient. Other­
wise, there is little difference. 

(4) 

The auto-regressive model described in Equation 
( 4) is the same one studied by Bos and Newbold (3] and 
Collins, Ledolter, and Rayburn [10]. The process con­
siders a tendency to return to an underlying mean beta, 
where the tendency is measured by 1 - a;. The Merrill 

Lynch adjustment process [18] describes a special case 

in which the underlying mean beta (Bj'1) is 1.0 and the 

adjustment factor to the mean, also called the regres­
sion rate (1 - a;), is 0.35. Vasicek's adjustment model 
[25] is a less restrictive case in which the underlying 
mean beta is unity and no restriction is made on the 
adjustment rate toward the underlying mean. 
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If all beta variation is random, then there will be no 
tendency for beta to return to an underlying mean, 
resulting in a random walk process: 

B;r = B;, t - I + U;r · (5) 

This model has been suggested as a time-varying model 
for beta in a stability test described by Garbade and 
Rentzler (14]. Since there are no bounds on the value 
that beta can assume, the process is difficult to forecast, 
especially in the long run. If beta follows a random walk 
process then the best Jong-term forecast is the short­
term beta, and a Bayesian adjustment process will not 
improve the forecast. Notably, Brigham and Crum's [6] 
original criticism of the CAPM was based on unad­
justed OLS estimates of Con Ed's beta, which implicitly 
assumes that an unstable beta follows a random walk. 

II. The Beta Coefficient as an 
Auto-Regressive Variable 

Any of the four beta-generating processes can be 
represented as a special case of a general auto-regres­
sive process. The general model has a measurement 
equation, 

(6) 

and state equation, 

Bit= a1 Bi,t _ 1 + (1 - a;)B'{' + u1t, (6') 

where R 11 is the excess return on the ith security during 
time t, Rm1 is the return on the market index during time 
t, B'(1 is the underlying mean beta for the ith stock, and 

Bic is the transient beta for the ith stock at time t. 
Equation (6') specifies a first-order auto-regressive 

process for beta. If the value for 1 - ai is 0.0, then (6') 
reverts to the random walk process described in Equa­
tion (5). If the value for 1 - ai is 1.0, then (6') reverts 

to the random coefficient process described in Equa­
tion (3). If the residual variance is 0.0, then 1 - ai 
becomes 0.0 and the underlying mean and error terms 
in Equation (6 ') drop out, leaving the constant beta 
process in Equation (2). 

Ill. Estimating Parameters of the Model 
The parameters of the model in Equations (6) and 

(6') were estimated using monthly stock return data 
from the Com pus tat PDE file for 109 utility companies. 

FINANCIAL MANAGEMENT/AUTUMN 1990 

61 electric and 48 electric and gas. The 15-year sample 
period is from January 1967-December 1981. The peri­
od contains both the dividend omission by Consoli­
dated Edison [5] and the Three Mile Island incident. 

The model in Equations (6) can be expressed in 
matrix format as: 

Rit = !!.1!imt +~it• 

!iit =-tL!i1,t - I +!lit' 

where 

b.t = (Rmt• 0); 
B.' it = (Bii. B'f); 
!.l..'ir = (u;1o 0) and is distributed as N(O, W1S1

2), 

[

a; 

A= 
- 0 

1 - a1 

(7) 

(7') 

(8) 

(9) 

The recursive Kalman filtering approach described by 
Kahl and Ledolter [16] is used to estimate simulta­
neously the three parameters of the market model in 
Equations (6). These parameters are: the underlying 
mean beta (Bf), the regression rate toward the under­

lying mean (1 - ai), and the variance of beta over time. 
Simultaneous estimation of three parameters re­

quires considerable data and computer resources which 
might explain why studies using broad samples and 
large numbers of stocks formulate the problem some­
what differently. Bos and Newbold estimated a Kalman 
filtering model with a two-pass process. Decreasing the 
number of parameters from three to two reduces the 
computation time to only a fraction of that required for 
a full model. Collins, Ledolter, and Rayburn [10] sug­
gest that the procedure followed by Bos and Newbold 
(3] creates a downward bias in the estimate of beta's 
regression rate. They were able to eliminate the es­
timate of the underlying mean beta in the model and 
focus on beta regression tendencies. 

The model used in this study produces independent 
variance estimates like the model used by Collins, Ledol­
ter, and Rayburn. In addition, this model estimates the 
underlying mean beta. Maximum likelihood estimates 
of elements in the transition matrix (ai), the variance 
ratio (wi), and the variance of the measurement equa-
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Exhibit 1. Maximum Likelihood Estimates of Model Parameters 

Regression Standard Deviation of Beta 
Rate 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 2a 3" 4• 6" i2• 5a 3" 

0.1 2 5 

0.2 I 7 2 5 2 

0.3 1 2 5 3 

0.4 2 3 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 6b 17c 

•These firms <lisp lay characteristics of firms whose betas follow a random coefficient process. 
ti-rhese firms display characteristics of firms whose betas arc constant. 
cThese firms display characteristics of firms whose betas follow a random walk process. 

tion (S?), were all concurrently estimated using a grid 
search procedure. 

IV. Results 
The particular time-series process followed by a 

beta can be indicated by two parameters: the standard 
deviation of this beta over time. ui1 in Equation (6'): 
and its adjustment rate to the mean, ( 1 - ai) in Equa-

tion ( 6' ). Consequently, the cross-tabulation of these 
two parameters in Exhibit 1 is also a tabulation of the 
process followed by the beta. The most common pro­
cess shown in Exhibit 1 is the auto-regressive process. 
Nearly half of the companies in the sample, 51 out of 
109, show a nonzero standard deviation of beta to­
getherwith a value for the regression rate between zero 
and unity. 

The next most common process is the random coef­
ficient process. indicated by a nonzero value for the 
standard deviation of beta together with an estimate of 
1.0 for 1 - ai. These estimates are shown by 35 of the 

sample companies. The firms with auto-regressive be­
tas and those with very similar random coefficient betas 
jointly comprise 86 of the 109 sample firms. 

A nonzero estimate of the standard deviation of beta 
combined with a regression rate of zero indicates a beta 
following a random walk process. Parameter estimates 
consistent with a random walk process are shown for 
only 17 companies. 

The least common process indicated by companies 
in the sample is the constant coefficient process. shown 

by only 6 companies. A constant beta coefficient is 
indicated by a zero estimate for the standard deviation 
of beta. 

Since the estimation period covers 15 years ( 180 
months), many companies could not maintain a con­
stant beta coefficient. The long estimation period al­
lows management, regulators, and the markets to react 
to any exogenous changes affecting systematic risk so 
as to bring risk back to reasonable levels. Such reaction 
is consistent with a beta that follows an auto-regressive 
process. Consequently, the preponderance of compa­
nies with auto-regressive betas in Exhibit 1 conforms 
to expected long-term behavior of management and 
markets. 

Internal consistency of parameter estimates in Ex­
hibit 1 is just as important as reasonableness. All com­
panies having a zero estimate for the standard devia­
tion of beta also show a value of 0.0 for the adjustment 
rate estimate. Any other estimate would be ambiguous 
for classifying the process. A positive association be­
tween the estimate of the standard deviation of beta 
and the estimate of 1 - ai further points to the lack of 

ambiguity and helps in interpreting the process for all 
of the sample companies. 

The positive association between beta variability 
and the regression rate is also consistent with boun­
daries upon beta values. Companies with high beta 
variability tend to have betas that return quickly to an 
underlying mean. Companies with low or zero return 
rates have low beta variability. High variability to-
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Exhibit 2. Three Time-Series Processes for Beta 
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gether with a low or zero return rate would lead to 
extreme beta instability and preclude application of the 
CAPM. The results show no evidence of this type of 
beta instability. 

A. Behavior of Transient Betas 
To illustrate the implications of different processes 

and parameters, plots of betas following an auto-re­
gressive process, a random coefficient process, and a 
random walk process are presented in Exhibit 2. Each 
of these processes behaves according to average coef­
ficient values of companies with that process in Exhibit 
1. For the auto-regressive process, the coefficients are 
an underlying mean of 0.51, a standard deviation of 
transient beta of 0.50, and a return rate toward the 
underlying mean of 0.52. For the random coefficient 
process, the underlying mean is 0.52 and its standard 
deviation is 0.53. For the random walk process the 
standard deviation of beta is 0.05. 

The auto-regressive beta depicted in Exhibit 2 shows 
considerable variability and ranges between a mini­
mum value of -0.8 and a maximum value of 1.50. Al­
though the variability in the short run is rather large, 
the beta at no time takes longer than 9 months to return 
to its underlying mean, usually returning in three or 
four months. However, upon returning to its underly­
ing mean it often strays on the opposite side, requiring 
several additional months to return. 

Over the 60-month period shown for the auto-re­
gressive process in Exhibit 2, only 36 of the transient 
beta values fall between a low of 0.0 and a high of 1.0. 
These bounds might be considered reasonable for a 
utility. Nine of the 60 beta observations lie below 0.0. 
The presence of such outliers might frustrate, but not 
obviate. application of OLS techniques for beta es­
timation. Although Exhibit 2 indicates that extreme 
beta values, such as those discussed by Brigham and 
Crum [5], might be common in the short run, the 
forecaster should not be deterred by the presence of 
short-run instability. ln the long run, beta will return 
to its mean. 

The similarity between the auto-regressive process 
and the random coefficient process, also shown in Ex­
hibit 2. is obvious. Even if rather extreme values are 
encountered, the random coefficient beta reverts back 
to the mean within the next two observations. The 
upper and lower bounds on beta as well as the propor­
tion of betas less than zero are very similar for the two 
processes. 

Exhibit 2 also contains a plot of the time-series 
behavior of a beta following a random walk process. 
Although the beta behavior for the random walk pro­
cess seems more stable than the auto-regressive or 
random coefficient process, such apparent short-run 
stability is misleading. Over the 60 months depicted in 
Exhibit 2, the beta wanders from a value of0.6 to a value 
of about 0.9. Over the next 60 months, the beta could 
potentially rise by another 0.3, fall back to 0.6, or be 
anywhere in between. In the longer run, the beta be­
comes even more difficult to forecast, due to the lack 
of any tendency to revert to an underlying mean. 

B. Focusing on the Consolidated Edison 
Dividend Omission 

A plot during the period from January 1970-De­
cember 1984 of the behavior of the transient beta for 
Consolidated Edison is presented in Exhibit 3. The 
transient beta behaves much like the typical beta for 
any utility with an auto-regressive beta. except for the 
period immediately following the dividend omission. 
During this period. the transient beta becomes very 
erratic for about 9 months. Once it settles down. it 
continues to behave like any other utility with a typical 
auto-regressive beta. The plot of the transient beta for 
Con Ed over the last 60 months, if placed on the same 
scale as Exhibit 2, would be visually indistinguishable 
from the auto-regressive process depicted in that ex­
hibit. 

The plot of Con Ed's transient beta shown in Exhibit 
3 depicts the transitory effect of economic disturbances 
on beta estimates. Even in this dramatic case of a 
dividend omission, the relationship between the stock 
and the market returned to normal within less than one 
year. This strong tendency to return to the mean beta 
gives empirical support to forecaster-supplied prior 
values in Bayesian adjustment models that place more 
weight on the underlying mean beta and less weight on 
the transient beta than the Merrill Lynch model would 
imply. 

Some additional information on the behavior of 
Con Ed's beta is presented in Exhibit 4. During the 
overall period, which extends from January 1970-June 
1984, its OLS beta estimate was 0.61 and the estimate 
of its underlying mean beta was 0.58. Since this overall 
period contains the dividend omission, a null hypothe­
sis of a constant coefficient process for beta can be 
easily rejected. The regression rate of 0.70 toward the 
underlying mean indicates a strong mean-reversion 
tendency. 
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Exhibit 3. Transient Beta for Consolidated Edison, 1970-1984 
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Exhibit 4. Parameter Estimates for Consolidated Edison Beta 

Parameter 

Ordinary Least Squares Beta 

Standard Error of OLS Beta 

K - F Underlying Mean Beta 

K - F Regression Rate to Mean 

K - F Standard Deviation of Beta 

K - F Residual Error in Market Model 

K - F Beta Stability Test 

'Significant at the 0.05 level. 

Overall Period 
1970-1984 

0.61 

0.08 

0.58 

0.70 

0.74 

0.05 

58.80° 

Exhibit 4 also contains Kalman filtering and OLS 
estimates of beta for both a four-year period prior to 
the divided omission and a four-year period after the 
dividend omission. Forty-eight monthly observations is 
not sufficient to estimate reliably the underlying mean 
beta. since by nature this parameter reveals itself only 
over the long run. Likewise. the estimate of 1 - ai may 

also be unreliable when estimated by only a few obser­
vations over a short time period. However. the sub­
periods do depict the variability that is characteristic of 
short-term estimates. whether those estimates are ob­
tained by OLS or by Kalman filtering. 

Although these short-term estimates should be ap­
proached with caution. some effects of the dividend 
omission on Con Ed's risk might be inferred. First, 
estimates for the long-term period or either of the 
short-term periods do not appear contaminated by the 
dividend omission but appear quite reasonable for a 
utility. Second. no indication of a decline in the beta 
estimate due to inclusion of the dividend omission 
period is evident. The indication is to the contrary. The 
estimate of the underlying mean beta for the overall 
period is higher than either the four- year period prior 
to the omission or the four years following the omis­
sion. 

V. Implications for Beta Forecasting 
and Rate Setting 

A partial resolution to the beta measurement prob­
lem is outlined by Peseau and Zepp [22], who show that 
the effect of the dividend omission was transitory and 
could be diagnosed from examination of OLS statistics. 
Although the dividend omission produces beta estima­
tion problems for Consolidated Edison. subsequent 
estimates using data after the omission become much 
more reasonable. 

Before Dividend Omission After Dividend Omission 
1970-1973 1978-1981 

0.39 0.62 

0.04 0.05 

0.34 0.47 

1.00 1.00 

0.62 0.78 

0.03 0.04 

20.30° 1.00· 

The primary difference between the Brigham and 
Crum [5] forecast using an OLS beta and the Peseau 
and Zepp comment lies in the assumption of the time­
series process followed by beta. The OLS estimate for 
five years of return data is only a good beta forecast if 
beta follows a constant coefficient process. This as­
sumption is untenable for an estimation period con­
taining a major information release. 

When beta is time-varying, a short-term unadjusted 
OLS estimate may not be the best estimate of beta. 
instead, the forecaster. taking advantage of auto-re­
gressive properties of beta, should adjust that short­
term estimate toward an underlying mean beta. When 
beta is unstable but reverts to an underlying mean. beta 
instability would not preclude application of the CAPM, 
but might preclude use of an OLS beta. 

Reliance on a short-term beta forecast. whether 
from an OLS estimate or the transient beta estimate in 
the Kalman filtering model. is appropriate only if the 
firm's beta follows a random walk process. This re­
search shows little evidence suggesting the typical util­
ity beta follows a random walk and no evidence that. 
specifically, Con Ed's beta follows a random walk. 

Due to the preponderance of auto-regressive or ran­
dom coefficient betas, the results of this study strongly 
support the use of Bayesian-type adjustment processes 
such as the one employed by Merrill Lynch. The results 
also suggest that the behavior of utility betas may differ 
from the behavior of large diversified samples of stocks. 
For example, since Blume [2] finds an underlying mean 
beta of 1.0 for a large sample of stocks, many Bayesian 
models will adjust the OLS beta estimate toward 1.0. 
The results of this study, however. indicate that 1.0 is 
too high an underlying mean for most utilities. Instead, 
they should be adjusted toward a value that is less than 
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one. For Consolidated Edison, an underlying mean of 
0.7 would be more appropriate. 

VI. Conclusions 
Understanding beta behavior requires more infor­

mation than whether or not betas are stable. Develop­
ment of statistical procedures admitting a continuously 
time-varying beta now allows forecasters to understand 
how beta may behave over the short run and how that 
short-run behavior can differ from long-run behavior. 
Measuring continuously time-varying betas also frees 
the forecaster from the limitations imposed by assum­
ing a constant coefficient beta. Instead, like most eco­
nomic variables. beta can be modeled as a coefficient 
that is always changing. From the time series process 
followed by betas. the forecaster also gains an under­
standing of the difficult problem of forecasting beta. 
The beta for the majority of utility companies in this 
sample follows either an auto-regressive process or a 
constant coefficient process. Very few appear to follow 
a random walk process, which would produce betas that 
are not only unstable but very difficult to forecast. On 
the other hand. with an auto-regressive process, a pa­
tient forecaster using relatively simple diagnostic pro­
cedures should be able to obtain a reasonable long-run 
estimate of systematic risk. A reasonable forecast of 
beta then admits application of the CAPM for utilities 
even if beta is time varying. 

The strong evidence of auto-regressive tendencies 
in utility betas lends support to the application of 
adjustment procedures such as the Bayesian adjust­
ment procedure presented by Vasicek [25]. This proce­
dure depends upon beta following an auto-regressive 
process. In addition, the Kalman filtering methodology 
also provides objective prior estimates of the underly­
ing mean beta and the adjustment rate toward that 
underlying mean. 

Typical adjustment models use a prior estimate of 
about 0.35 for the adjustment rate toward the underly­
ing mean and a prior estimate of 1.0 as the underlying 
mean. The results of this study indicate that an under­
lying mean of 1.0 is too high for most utilities and an 
adjustment rate of 0.35 is too low. 

Although considerable variability in adjustment rates 
and underlying mean betas can be observed in the 
sample. it may not be necessary for a forecaster to apply 
the Kalman filtering approach in order to obtain these 
estimates. A reasonable estimate of the underlying 
mean may be obtained by OLS if applied to a very long 
time period. The prior estimate of the adjustment rate 
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toward the mean can be obtained by considering the 
positive relationship between the adjustment rate and 
beta variability. Estimates of the prior adjustments in 
the Bayesian adjustment models could be applied with­
out relying blindly on large-sample estimates that may 
not be applicable to utilities. 
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The Symposium is organized as a forum for exchange of innovative research ideas for scholars active in all 
aspects of cash, treasury. and working capital management. To highlight the state-of-the-art discussion. recent 
keynote speakers (e.g .. James S. Ang. 1988; Stewart C. Myers. 1989; and Clifford W. Smith. Jr., 1990) have 
explored exciting new research dimensions with the Symposium participants. Tremendous progress is in the 
making. and the tradition will be continued at the 1991 Symposium site. Authors are invited to submit both 
empirical and theoretical papers. 

Papers submitted will be screened by Yong H. Kim and sent for blind review by the following editorial board 
members: Edward l. Altman (NYU), William Beranek (Georgia). Gary W. Emery (Oklahoma). James A. 
Gentry (Illinois). Ned C. Hill (BYU), Theodore 0. Johnson (Mellon Bank). Jar! G. Kallberg (NYU andJCA1). 
Steven F. Maier (Duke and UAI Technology), Dileep R. Mehta (Georgia State). Tom W. Miller (Emory), 
James W. Nethercott (Procter and Gamble). William L. Sartoris (Indiana), Keith Y. Smith (Purdue), Bernell 
K. Stone (BYU). James H. YanderWeide (Duke). Mohsen Anvari (Concordia), Samuel Eilon (imperial and 
OA!EGA), and Yair E. Orgler (Tel-Aviv). 

The deadline for submitting completed papers is March 3 L 1991; acceptance decisions will be made by May 
31. 1991. Earlier submission is strongly encouraged. however. and papers (or detailed abstracts) received well 
in advance will have greater opportunities to improve the quality before the final acceptance decision. Upon 
request of the authors at the time of submission. the accepted papers may be considered for publication in 
Advances in Working Capital Management (a Research Annual) edited by Yong H. Kim and Venkat Srinivasan 
to be published by JAi Press Inc. The Annual is intended as an outlet for innovative research manuscripts that 
are comprehensive in nature and perhaps too long as typical journal articles. 

Please send papers ( 4 copies) to: 

YongH. Kim 
University of Cincinnati 

College of Business Administration 
Cincinnati. OH 45221-lll 95 

( 513) 556-7ll84 
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