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Note

Biases in Arithmetic and Geometric
Averages as Estimates of Long-Run
Expected Returns and Risk Premia

Daniel C. Indro and Wayne Y. Lee

Daniel C. Indro is an Assistant
Professor of Finance and Wayne Y.
Lee is Firestone Professor of
Corporate Finance at Kent State
University.

B Consider an investment project with an average life
(duration) of N months. What rate should be used to
discount this project’s expected cash flows? In
particular, suppose the required return on the N-month
investment project is based on a market equity-risk
premium, that is, the difference between the future
expected return on the market index and the risk-free
rate of interest. Since risk premia are not constant
(Brigham, Shome, and Vinson, 1985; Harris, 1986;
Harris and Marston, 1992; Maddox, Pippert, and
Sullivan, 1995; and Brennan, 1997) and can depend on
the choice of measurement period, averaging method,
or portfolio weighting (Carleton and Lakonishok, 1985),
how should the historical monthly market return data
be used to compute the risk premium? In practice, the
arithmetic and geometric average of monthly returns
are used as a proxy for determining the future expected
N-month market return.!

We wish to thank Michael Hu, the Editors, and especially the
referee whose comments and suggestions greatly improved
the paper’s expositions. We are responsible for any remaining
errors.

!'Alternatively, in deriving the cost of equity estimates, Harris
(1986) and Harris and Marston (1992) employ the Discounted
Cash Flow (DCF) model, which uses a consensus measure of
financial analysts’ forecasts of earnings growth as a proxy for
investor expectations. Although this alternative is appealing,
Timme and Eisemann (1989) caution that it requires a judicious
choice of the weight assigned to each forecast to construct

The empirically documented presence of negative autocorrelation in
long-horizon common stock returns magnifies the upward (downward)
bias inherent in the use of arithmetic (geometric) averages as estimates
of long-run expected returns and risk premia. Failure to account for this
autocorrelation can lead to incorrect project accept/reject decisions.
Through simulations, we show that a horizon-weighted average of the
arithmetic and geometric averages contains a smaller bias and is a more
efficient estimator of long-run expected returns.

Brealey and Myers (1991) argue that if monthly
returns are identically and independently distributed,
then the arithmetic average of monthly returns should
be used to estimate the long-run expected return.
However, the empirical evidence from Fama and French
(1988a, 1988b), Lo and MacKinlay (1988), and
Poterba and Summers (1988) suggests that there is
significant long-term negative autocorrelation in
equity returns and that historical monthly returns are
not independent draws from a stationary distribution.
Based on this evidence, Copeland, Koller, and Murrin
(1994) argue that the geometric average is a better
estimate of the long-run expected return. Thus, as
noted by Fama (1996), when expected returns are
autocorrelated, compounding a sequence of one-
period returns is problematic for project valuation.

In this paper, we examine the biases obtained by
using the arithmetic or geometric sample averages of
single-period returns to assess the long-run expected
rates of return when there is both a time-varying and
a stationary component in those returns. To do this,
we adopt the analytical framework outlined in Blume
(1974). We find that for long-run expected return and
risk premium, the arithmetic average produces an

the consensus forecast. Otherwise, the DCF model can
generate a risk-adjusted discount rate that contains estimation
risk and requires an adjustment such as that outlined in Butler
and Schachter (1989).
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estimate that is too high relative to the true mean,
and that the geometric average produces an estimate
that is too low. The magnitude of upward and
downward bias is proportional to the total variance
underlying the asset’s return, and to the length of
the investment horizon (N months) relative to the
length of the historical sample period (T 2 N >1). In
addition, we confirm Blume’s finding that there are
significant biases associated with the use of the
arithmetic and geometric averages, even when returns
are independently and identically distributed each
period. Finally, simulation results show that the
horizon-weighted average of the arithmetic and
geometric averages proposed by Blume is less biased
and more efficient than alternative estimates.

l. The Bias in the Arithmetic and
Geometric Averages

Here, we describe the return generating process and
derive the biases in the arithmetic and geometric
averages.

A. Return Generating Process

Let R, denote a one-period total return over a time
interval of length dt. Specifically,

R =1+rdt=1+pdt+ eVdt o)

where r dt is the net return for period t=1,2,....,T; u.dt
is the conditional mean, and the deviations from the
conditional mean, el\]d_t are independently and
identically distributed over time with mean zero and
variance Gﬁ dt. Further, assume that the conditional
mean [ dt is distributed as follows. For t = 1, the
conditional mean is

w dt = pdt +m Vdt 2)

where udt is the unconditional mean. Fort=2,3,....,T,
the conditional mean follows a mean-reverting process
around the unconditional mean:

w,,,dt = pdt + p(udt - pdt) +m Vdt = (1 - p) pdt
+ppdt +m Vdt = pdt + X pin nj\rcﬁ (3)

where the single-period autocorrelation between
conditional means, p< 0, captures the time variation in
expected returns, and mVdt are independently and
identically distributed random variables with mean zero
and variance og dt. From Equations (1) through (3) it
follows that

rdt=pdt +eVdt + ZiptnVdt=pdt +vNdt  (4)
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for all t. The return generating process described by
Equation (4) is consistent with that used by Fama and
French (1988a) to document significant negative
autocorrelations in long-horizon returns.? The
unconditional mean, E(rdt), is udt. The unconditional
variance, Var(rdt), is [(l—p")/(l—pz)]cf]dt +0o’dt fora
finite T, and [1/(1—p2)]cf]dt +02dtas T — oo.

B. The Bias in the Arithmetic Average

From a sample of T observations, we compute the
arithmetic average, R A, as:

R, =1+r,dt=1+pdt+ T e dt )
and the estimated N-period return, R = (1 +r,dt)¥,
RY = (1+pdt+ T'Z, v Vd)~ (6)

In addition, applying the expected value operators to
Equation (6) yields:

E(RY)=E(1 +pdt + T'ZLy NdO 7

Since (1 +udt + T'IZ‘T:y‘\/a)N is a convex function of
T"Zzlvt\]a_t, it follows by Jensen’s inequality that for

t:
N > 1, the arithmetic average is biased upward:

ERY)> (1 +pdt+E(T'Z Ly NdD)¥ > (1 +pdoN (8)

Further, by taking a Taylor series expansion of E (R})
around (1 + pdt), the extent of the bias is given by:3

ERY) = (1 +pdo™ [1+ N (14 pdy2 6,2 d
+0(dt?) 9)

2Specifically, in Fama and French (1988a), p(t), the natural
log of a stock price at time t, is the sum of a random walk,
q(t), and a stationary component, z(t):

p(t) = q(t) + z(t) and q(t) = q(t-1) + p + €(t) (3a)
where p is expected drift and €(t) is white noise. z(t) follows a
first-order autoregression (AR1) process:

z(t) = 0z(t-1) + n() (3b)
where M(t) is white noise and ¢ is less than [. From Equations
(3a) and (3b), we compute a continuously compounded return:

p(®) - p(t-1) = [q(t) - q(t-D] + [z(t) - z(t-1)]
=+ e + N + (¢-Dz(t-1) (3c)
Through successive substitutions for z(-) from Equations (3b)
into (3c), the consistency between our formulation and that
of Fama and French (1988a) follows from a comparison of
Equations (3c) and (3).
*Derivations of the extent of biases in the arithmetic and
geometric averages are available from the authors on request.
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where O(dt?) denotes an order of no greater than
dt?, 1imO(dt*) — 0 as dt — 0. From Equation (5),
EVdt = T'lztzlvt\/dt, and

oidt = E[(EVdt)?] = TA(To2dt + 2 (T - i)pc2dt)
+ T'Z(Tcgdt) = T’l(cﬁdt +02dt)

+ T(@4D) proza (10)

since by the mean value theorem there existsat, T >
©>1suchthat 2 (T - )p¥= &, (T-i)p*.

Forp =0 and fixed N, it is clear that the estimator R‘:
is asymptotically unbiased and consistent as T — oo,
but for a finite and small T, is upward-biased for N > 1
by an amount proportional to the number of periods,
[N(N-1)/2], and variance, T"((‘ST‘]Z dt + oZdt).
Furthermore, for p < 0 and fixed N, the estimator R}
- is asymptotically unbiased and consistent only for
N = 1. For N > 1, the amount of upward bias is
proportional to the number of periods, [N(N-1)/2],
and either the variance ‘/zpz’cf]dt for T — oo, or the
variance T'l(c;dt +02dt) + T“[(T+1)/2]p2‘c§dt fora
finite and small T. Compounding the single-period
arithmetic return tends to produce an estimated long-
run return, and thus a risk premium, that is too high
relative to the true mean (1 + pdt)™.

C. The Bias in the Geometric Average

From a sample of T observations, the geometric
average, R, is computed as:

T uT
RG=(I—[l=1 ) an
and the estimated N-period return, Rg, as
N/T N
RY= (HL R) =exp {—T—Zilln Rl} (12)

Hence, for a fixed N and T — oo, it is clear from Equation
(12) that

plimRY= exp{p lim TTNZ'T“ InR } =exp{NE[InR ]}

<exp {NIn[ER)]} <1 +udt) (13)
The geometric average is asymptotically biased
downwards and thus is an inconsistent estimator of
the long-run expected return.

To examine the bias for a fixed N and finite T, we
rewrite the geometric average as:

RG= (HLRJNZ ITL, (1 +pde+ vV
= [( 1 +pdt)T + (Vv (14)

where

¢Vt =TT, (1 +pdt +vNdo) - (1 +pdo” (15)
Taking the expectation of Equation (14) and a Taylor
series expansion around (1 + udt)Tyields:

E(RY) = E[(1 +1d)™+ {VANT = (1 + pdo)™
v (35

(1 +pdt)¥2T E(CVdt)? + O(dt?) (16)

where

E({Vdt) = (1+ udt)™2[Z TpH1 X \ipTo2dt + O(dt?)
(17)

and
E(CVdt)? = (14 pdt)* ™[ T(c2dt + o2dt) + p?c2dt
ZLNT-Dpi+ 202dt pI 1p2‘ DS ]pT‘J]
+0(dt?) (18)
Observe that for p=0,

ERY) = (1 +pudt)™ {1 + (1 +pdty

Loy (T ; 1) [T(c2dt

19)

the geometric average is downward-biased for N < T
but unbiased as N — T. For p <0,

ERY) = (1+udt)”{1+( )(lﬂ,tdt) [E(CVdL)
+ (T-I)E (CVdo1}

By definition, E({Vdt)? = Var({Vdt) > 0, and it can be
shown that E({\dt) < 0 for p <0.* Hence, from Equation
(20), the geometric average is always biased downward
forp <0, even as N — T. It is also clear from Equation
(20) that an increase in the stationary variance ¢ dt
raises the magnitude of the downward bias. The
effect on the bias of changes in the parameters
governing the temporal variation in expected returns,
namely, p and cﬁdt, is generally ambiguous. However,
when N— T,

(20)

E(RY) = (1 +pdty¥{1+ (1 +pdty’[1 + (T - 2)plpo, *dt
+ O(p3)0 2dt} (21)

the downward bias at the limit is an increasing function
of p and ¢ *dt.

“The sketch of the proof is as follows. Let T = 5. Compute and
sum the five variances and ten covariances of v, Vdt. Examining
the covariance sum for p < 0 results in E(Cr) < 0. The
general result is obtained by induction. The formal derivation
is available from the authors on request.
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Il. Simulation Results

We use simulations to assess the severity of the
biases in the arithmetic and geometric averages. In
addition, we present two other estimates of expected
return, as suggested in Blume (1974): a weighted
average and an overlapping average.

We calculate the weighted average as a horizon-
weighted average of the arithmetic and geometric
averages:

T-Npn, N-Igx

T-1 T-1
where the weights sum to one. When N=1, the
arithmetic average receives all the weight. AsN — T,
more weight is given to the geometric average.

We construct the overlapping average as follows.
We compute an N-period total return, T-N+1 in number,
by multiplying the first through the N one-period total
returns together, the second through the (N+1)* one-
period returns together, and so on. We then average
the overlapped total returns.

To examine the empirical properties of each estimator,
we use the return generating process described in
Equation (3). For a benchmark monthly return, i = 0.01,
and alternative values of autocorrelations p = 0, -0.05,
-0.25, we draw a total of 250,000 random values of sl\/dt
and nl\/dt from zero mean normal variates with
variances ranging from zero to 0.0081 for 62 and zero
to 0.0045 for 0;, respectively. We then partition the
250,000 returns into 1,000 samples of 250 observations
(T =250), and calculate the values of the four estimators
for horizons N = 12,24,60,84,120.

Table 1 presents the simulation results when the
autocorrelation and time-varying variance components
are absent, i.e.,p = 0 and Gﬁ = 0. Simulation results in
the presence of both time-varying and stationary
variance as well as negative autocorrelation
components appear in Table 2 (p =-0.05) and Table 3 (p
=-0.25).

For the four estimators, the patterns of bias (direction
and magnitude) and efficiency (standard deviation or
the 0.05-0.95 fractile values) that appear in Table 1 are
similar to those found in Blume (1974). Notice from
Table 1 that for any investment horizon and stationary
variance, the geometric average is always biased
downward. For longer horizons N (=60,84,120), the
arithmetic average is upward-biased, regardless of the
stationary variance. For shorter horizons, N (=12,24),
the arithmetic average is downward-biased for a small
value of stationary variance, 62 (= 0.0036), but upward-
biased for a large value of stationary variance, ci (=
0.0081). For a small value of stationary variance, cﬁ (=
0.0036), the overlapping estimator is downward-biased
for any horizon, but for a large value of stationary

E(WN) = (22)
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variance, oi (=0.0081), the estimator is upward-biased
for shorter horizons, N (=12,24), and downward-biased
for longer horizons, N (=60,84,120). Finally, for any
horizon, the weighted average estimator is downward-
biased for a small value of stationary variance, Gf: (=
0.0036),and upward-biased for a large value of
stationary variance, 6 (= 0.0081).

The magnitude of the bias is the largest for the
geometric average. In addition, observe that for the
smaller value of stationary variance, Gﬁ (=0.0036), the
arithmetic average has the least bias for shorter
horizons, N (= 12,24), and the overlapping average the
least bias for longer horizons, N (= 60,84,120). For the
large value of stationary variance, ¢? (= 0.0081), and
any horizon, the weighted and overlapping averages
have less bias than the arithmetic and geometric
averages. Overall, the geometric average is the most
efficient estimator, and the overlapping average is the
least efficient. The weighted average is consistently
more efficient than the arithmetic and overlapping
averages.

If we compare both Panel A’s in Tables 1 and 2,
we see that the arithmetic and geometric averages
are more upward- and less downward-biased,
respectively, and that both averages are less
efficient. This represents the combined effect of a
small negative autocorrelation (p = -0.05) and time-
varying variance (o2 = 0.0036),which is greater than
that of ¢ alone. Moreover, although the bias for all
estimators increases with N, the weighted average is
not only the least biased, but is also more efficient
than the overlapping average.

Similarly, if we compare Panels A and B of Table 2,
introducing ¢ (= 0.0045) to a small negative
autocorrelation (p = -0.05) and time-varying variance
(02=0.0036) magnifies the magnitude of bias for all
estimators. The overlapping average is the least biased,
but least efficient, estimator. The weighted average is
only slightly more biased, but is more efficient than
the overlapping average.

Finally, the relative impact of o2 and 0121 is evident
when we compare Panels B and C of Table 2. When csf]
> o2, the weighted average contains consistently
smaller biases than when 012] < ¢ and its efficiency
improves as N increases. Although the overlapping
average is still the least biased, it is also the least
efficient estimator. The weighted average is only
slightly more biased, but is more efficient, than the
overlapping average.

In general, the direction and magnitude of the biases
reported in Table 2 are also observed in Table 3. In the
majority of the cases reported in Table 3, however, the
weighted average is the least biased of all estimators,
although this improvement is achieved at the expense
of efficiency. If we compare Panels A and C, we also
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Table 1. Simulation Results in the Absence of Autocorrelation and Time-Varying Variance,
p=0andoc?=0

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average
of the arithmetic and geometric averages. Overlap is the overlapping average.

Panel A. p=0, cr:: 0,6%= 0.0036

Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1254 0.0507 1.0427 1.1246 12076
Geometric 1.1018 0.0499 1.0209 1.1013 1.1831
Wt. Ave. 1.1243 0.0507 1.0417 1.1237 12064
Overlap 1.1251 00516 1.0427 1.1248 1.2090
Arithmetic 24 12697 12691 0.1146 1.0872 12648 14582
Geometric 12165 0.1104 1.0422 12128 13998
Wt. Ave. 12640 0.1142 1.0831 12604 14526
Overlap 12657 0.1191 1.0786 12610 1.4682
Arithmetic 60 18167 1.8422 04198 12325 1.7990 25677
Geometric 16575 03796 1.1088 16198 23181
Wt. Ave. 1.7966 04098 12036 17567 25050
Overlap 1.8022 04725 1.1562 1.7383 26531
Arithmetic 84 23067 23858 07693 1.3400 22752 3.7442
Geometric 20580 0.6672 1.1556 19645 32448
Wt. Ave. 22719 0.7337 12796 2.1701 3.5650
Overlap 22851 0.8909 1.1991 2.1236 39425
Arithmetic 120 33004 35698 16822 15190 3.2362 65931
Geometric 2.8912 13714 12295 26239 53736
Wt. Ave. 32319 15270 13830 29328 59712
Overlap 32528 1.9440 12160 2.7965 6.8591

Panel B. p=0, of,: 0,0°= 0.0081
Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1306 0.0760 1.0079 1.1284 12583
Geometric 10774 0.0730 09599 1.0745 12022
Wt. Ave. 1.1281 00758 1.0059 1.1261 12556
Overlap 1.1283 0.0780 1.0047 1.1260 12605
Arithmetic 24 12697 12839 0.1727 1.0159 12734 15833
Geometric 1.1662 0.1581 09214 1.1544 14452
Wt. Ave. 12726 0.1713 1.0071 12624 15697
Overlap 12703 0.1791 09944 12607 1.5759
Arithmetic 60 18167 19316 0.6610 1.0403 1.8298 3.1544
Geometric 15195 05241 08149 14320 25107
Wt. Ave. 1.8299 06269 09857 1.7356 29926
Overlap 1.8074 0.6846 0.8913 16954 3.1078
Arithmetic 84 23067 25929 12706 1.0569 23301 49944
Geometric 1.8540 09167 0.7508 16531 3.6284
Wt. Ave. 23363 1.1471 09532 2.1020 45182
Overlap 22787 12826 0.7824 2.0096 47529
Arithmetic 120 33004 41676 3.0671 1.0823 33482 99503
Geometric 25834 19241 0.6640 20506 63036
Wt. Ave. 33788 24961 08798 27156 8.1821
Overlap 3.2201 27834 06314 24351 8.7221
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Table 2. Simulation Results with a Small Autocorrelation p = -0.05

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average
of the arithmetic and geometric averages. Overlap is the overlapping average.

Panel A. p=-0.05, 0'2”= 0.036 o°= 0

Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1269 0.0515 1.0446 1.1237 12166
Geometric 1.1032 0.0506 1.0246 1.1003 1.1917
Wt. Ave. 1.1258 0.0515 1.0437 1.1226 12156
Overlap 1.1236 0.0527 1.0383 1.1221 12165
Arithmetic 24 1.2697 12724 0.1171 1.0913 12627 14801
Geometric 12195 0.1125 1.0499 12107 14201
Wt. Ave. 12674 0.1167 1.0872 12574 14748
Overlap 12621 0.1216 1.0743 12546 1.4707
Arithmetic 60 1.8167 1.8556 04393 1.2440 1.7918 26651
Geometric 1.6687 03962 1.1294 16127 24032
Wt. Ave. 1.8095 04286 12159 1.7476 26018
Overlap 1.7869 04676 1.1393 1.7179 26344
Arithmetic 84 23067 24123 08214 13575 22626 3.9446
Geometric 2.0793 0.7102 1.185% 19524 34127
Wt. Ave. 22966 0.7826 1.2986 2.1572 3.7665
Overlap 22608 0.8839 1.1510 2.1064 40036
Arithmetic 120 3.3004 3.6361 1.8669 15475 32106 7.1027
Geometric 29415 15153 12756 2.6007 5.7753
Wt. Ave. 32902 1.6915 1.4119 29204 64632
Overlap 32330 19575 1.1754 27698 6.8499

Panel B. p=-0.05, azﬂ= 0.036, &= 0.0045
Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1319 0.0748 1.0164 1.1283 1.2568
Geometric 1.0786 0.0720 0.9662 1.0763 1.1971
Wt. Ave. 1.1294 0.0747 10143 1.1259 12544
Overlap 1.1278 0.0771 1.0077 1.1238 12610
Arithmetic 24 12697 12867 0.1713 1.0331 12732 1.5796
Geometric 1.1686 0.1571 09335 1.1585 14330
Wt. Ave. 12754 0.1669 1.0239 12617 1.5668
Overlap 12720 0.1819 1.0056 1.2590 1.6056
Arithmetic 60 18167 19412 0.6685 1.0847 1.8290 3.1359
Geometric 15266 0.5307 0.8419 14446 24583
Wt. Ave. 1.8388 0.6343 1.0243 1.7300 29745
Overlap 1.8159 0.7385 09271 1.6760 3.1844
Arithmetic 84 23067 2.6111 13023 1.1206 23285 49536
Geometric 1.8663 09401 0.7859 1.6736 35227
Wt. Ave. 23524 1.1760 1.0025 20926 44684
Overlap 23005 14391 0.8698 19396 47906
Arithmetic 120 33004 42146 32132 1.1767 3.3451 9.8342
Geometric 2.6119 20128 0.7088 2.0869 60431
Wt. Ave. 34166 26141 09468 2.6988 79694
Overlap 33191 34287 0.7108 23538 8.5702
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Table 2. Simulation Results with a Small Autocorrelation p = -0.05 (Continued)
Panel C. p=-0.05, o’ = 0.0045 &= 0.0036
Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1306 0.0749 1.0085 1.1289 1.2550
Geometric 1.0779 0.0720 0.9603 10771 1.1963
Wt. Ave. 1.1282 0.0747 1.0064 1.1265 12522
Overlap 1.1266 0.0779 0.9985 1.1242 12583
Arithmetic 24 12697 1.2839 0.1701 1.0172 12744 15750
Geometric 1.1670 0.1559 09223 1.1602 14312
Wt. Ave. 12727 0.1687 1.0084 12632 15609
Overlap 1.2689 0.1828 09850 12568 15954
Arithmetic 60 18167 19297 0.6472 1.0435 1.8333 3.1133
Geometric 1.5206 05141 08168 14500 24503
Wt. Ave. 1.8287 06141 09896 1.7368 29461
Overlap 18123 0.7192 0.8688 1.6657 3.1331
Arithmetic 84 23067 25865 12395 1.0614 23363 49036
Geometric 1.8538 0.8962 0.7533 1.6824 3.5067
Wt. Ave. 23320 1.1197 09580 2.1085 44085
Overlap 22913 13224 0.7811 1.9445 47278
Arithmetic 120 33004 4.1422 29827 1.0888 3.3611 9.6930
Geometric 2.5764 1.8779 0.6672 2.1025 6.0039
Wt. Ave. 33626 24308 0.8854 27379 7.8210
Overlap 3.2489 2.8583 0.6348 23838 8.1933

Table 3. Simulation Results with a Large Autocorrelation p = -0.25

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average

of the arithmetic and geometric averages. Overlap is the overlapping average.

Panel A. p= -0.25, 02”= 0.00108 o’= 0.00252

Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1262 0.0487 1.0448 1.1266 12077
Geometric 1.1021 0.0478 1.0213 1.1024 1.1816
Wt. Ave. 1.1251 0.0486 1.0437 1.1254 1.2065
Overlap 1.1225 0.0494 1.0386 1.1221 1.2011
Arithmetic 24 12697 12708 0.1097 1.0915 12692 14585
Geometric 12169 0.1054 1.0431 12152 13962
Wt. Ave. 12656 0.1092 1.0869 12638 14527
Overlap 12603 0.1136 10728 12567 14536
Arithmetic 60 1.8167 1.8458 03996 12447 1.8149 25689
Geometric 1.6565 03602 1.1113 1.6280 23034
Wt. Ave. 1.7991 03898 12134 1.7704 25056
Overlap 1.7895 04342 1.1623 1.7311 2.5611
Arithmetic 84 23067 23891 0.7302 13586 23035 37467
Geometric 20536 0.6308 1.1592 19784 32159
Wt. Ave. 22726 0.6955 12935 2.1953 35686
Overlap 22606 0.7989 1.1846 2.1236 3.7313
Arithmetic 120 3.3004 35665 15918 15493 32937 6.5994
Geometric 2.8738 1.2908 12349 2.6504 53055
Wt. Ave. 32216 14415 13994 29794 59669
Overlap 32091 16643 1.1889 2.8265 64095
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Table 3. Simulation Results with a Large Autocorrelation p = -0.25 (Continued)

Panel B. p=-0.25, 02,]= 0.000405 o= 0.007695

Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1299 0.0785 1.0006 1.1268 12676
Geometric 1.0768 00756 09512 1.0737 1.2076
Wt. Ave. 1.1275 0.0783 09980 1.1244 12646
Overlap 1.1264 00812 09936 1.1230 12652
Arithmetic 24 12697 1.2829 0.1789 1.0011 12696 1.6069
Geometric 1.1652 0.1643 09049 1.1528 14583
Wt. Ave. 12715 0.1775 09908 1.2584 1.5910
Overlap 12679 0.1898 09755 1.2511 1.5983
Arithmetic 60 18167 19326 0.6969 1.0028 1.8162 32732
Geometric 15208 05546 0.7788 14267 25679
Wt. Ave. 1.8309 0.6615 09445 1.7202 3.0817
Overlap 18186 0.7458 08661 1.6569 32862
Arithmetic 84 23067 26022 13673 1.0040 23058 52596
Geometric 1.8619 09902 0.7047 1.6447 37447
Wt. Ave. 23451 12358 0.8964 20758 46840
Overlap 23242 14276 0.7842 19571 5.1075
Arithmetic 120 33004 42200 34602 1.0057 32985 10.7135
Geometric 2.6200 2.1793 0.6066 2.0356 6.5943
Wit. Ave. 34233 28210 0.8030 26675 8.5390
Overlap 33601 3.1676 0.6356 23754 9.7576

Panel C. p= -0.25, 0.2”= 0.00243 o= 0.00567
Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1294 00721 1.0199 1.1252 12561
Geometric 1.0753 0.0694 09690 1.0721 1.1970
Wt. Ave. 1.1269 00719 10174 1.1225 12533
Overlap 1.1200 0.0738 1.0113 1.1146 12504
Arithmetic 24 12697 1.2808 0.1641 1.0403 12661 1.5779
Geometric 1.1611 0.1505 0.9390 1.1493 14329
Wt. Ave. 12693 0.1628 1.0296 12543 15632
Overlap 12529 0.1700 1.0132 1.2368 1.5553
Arithmetic 60 1.8167 19141 06252 1.1038 1.8038 3.1274
Geometric 14987 04957 0.8545 14161 24576
Wt. Ave. 1.8115 0.5930 1.0404 1.7044 29563
Overlap 1.7524 0.6358 09180 1.6407 29633
Arithmetic 84 23067 25532 1.1906 1.1483 22839 49347
Geometric 18140 08578 0.8024 1.6276 35213
Wi. Ave. 22965 1.0745 1.0309 20482 44316
Overlap 2.1744 1.1431 0.8366 19151 44332
Arithmetic 120 33004 40541 2.8088 12184 32539 9.7808
Geometric 24915 1.7562 0.7301 2.0054 6.0396
Wt. Ave. 32761 22832 09765 26212 7.8862
Overlap 29808 23220 06750 22822 75861
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Table 3. Simulation Results with a Large Autocorrelation p = -0.25 (Continued)

Panel D. p= -0.25, aznz 0.0036 o?= 0.0045

Fractiles
Benchmk Standard

Estimator Horizon Return Average Error 0.05 0.50 0.95

Arithmetic 12 1.1268 1.1275 0.0709 10146 1.1272 1.2492
Geometric 1.0730 0.0684 09633 1.0725 1.1877
Wt. Ave. 1.1250 00708 10125 1.1247 12467
Overlap 1.1158 00724 1.0008 1.1168 12410
Arithmetic 24 12697 12762 0.1605 1.0295 12705 1.5606
Geometric 1.1560 0.1474 09280 1.1503 14107
Wt. Ave. 12646 0.1592 1.0207 12593 1.5468
Overlap 12446 0.1662 09894 1.2401 1.5459
Arithmetic 60 18167 1.8947 0.6019 1.0754 18196 3.0423
Geometric 14809 04767 0.8296 14190 23638
Wt. Ave. 1.7925 0.5707 10183 1.7202 2.8760
Overlap 1.7249 06193 0.8986 1.6286 29045
Arithmetic 84 23067 25137 1.1352 1.1072 2.3119 47477
Geometric 17816 0.8146 0.7699 16323 33347
Wt. Ave. 22595 10233 09959 20773 42567
Overlap 2.1478 1.1423 0.8072 1.8783 44142
Arithmetic 120 33004 39518 2.6400 1.1565 33109 9.2557
Geometric 24201 1.6346 0.6883 20137 55876
Wt. Ave. 3.1891 2.1377 09301 26705 74157
Overlap 29632 2.3759 0.6444 22599 7.7379

observe that when 62and ofl both increase by the same
proportion, the weighted average experiences a smaller
bias relative to the other three estimators. Furthermore,
we see from Panels B and C that a reduction in ¢? that
is offset by a corresponding increase in cﬁ improves
the weighted average’s efficiency.

The effect of higher negative autocorrelation is
evident when we compare Panel D in Table 3 with Panel
B in Table 2. Even though we obtain a higher efficiency
for all estimators, a higher negative autocorrelation p
leads to a smaller bias in the arithmetic and weighted
averages, but a larger bias for the geometric and
overlapping averages. Moreover, although Table 3
shows that the weighted average is the second most
efficient estimator, it is overall the least biased when
negative autocorrelation, time-varying, and stationary
variance components are all present.

lll. Concluding Remarks

We show that both the arithmetic and geometric
averages are biased estimates of long-run expected
returns, and the bias increases with the length of the
investment horizons. The existence of negative

autocorrelation in long-horizon returns documented
by Fama and French (1988a, 1988b), Lo and MacKinlay
(1988), and Poterba and Summers (1988) exacerbates
the bias. The implication is that without making an
adjustment, we are likely to obtain an estimate of long-
run expected return (and risk premium) that is either
too high or too low, and this can result in an
inappropriate decision to reject a good project or accept
a bad project.

The horizon-weighted average of the arithmetic and
geometric averages, proposed by Blume (1974), is an
alternative estimate of long-run expected returns. Our
simulation results indicate that in general, the horizon-
weighted average contains the least bias. It is also
more efficient than other estimators in the presence of
negative autocorrelation, time-varying, and stationary
variances. This conclusion contrasts with Blume’s
conjecture that “...if one cannot assume independence
of successive one-period relatives or if there is even a
slight chance that these relatives are dependent, the
simple average of N-period relatives would appear
preferable to the nonlinear estimators which, even
under ideal conditions, yield only a modest increase
in efficiency.” B
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