BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

)

)

))

)

)

)

)

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

PUGET SOUND ENERGY, INC.,

Respondent.

Dockets UE-121697 and UG-121705 *(Consolidated)*

Dockets UE-130137 and UG-130138 (Consolidated)

EXHIBIT NO.__(MCD-5)

Revenue Regulation and Decoupling: A Guide to Theory and Application (Excerpt)

April 26, 2013

Exhibit No.__(MCD-5) Page 1 of 8

RAP Energy solutions for a changing world

Revenue Regulation and Decoupling:

A Guide to Theory and Application

June 2011

The Regulatory Assistance Project

HOME OFFICE 50 State Street, Suite 3 Montpelier, Vermont 05602 phone: 802-223-8199 fax: 802-223-8172

www.raponline.org

billing period, normal seasonal variations in consumption are automatically captured. This causes revenue collection to match the underlying seasonal consumption patterns of the customers.

Some decoupling schemes exclude very large industrial customers. Because the rates for these customers are often determined by contractual requirements and specified payments designed to cover utility nonproduction costs, there may be little or no utility throughput incentive opportunity relating to these customers anyway. Also, in many utilities, this class of customers may consist of only a small number of large and unique (in load-shape terms) customers, so that a "class" approach is not apt.

In cases in which new customers (that is, those who joined the system during the term of the decoupling plan) have significantly different consumption patterns (and, therefore, revenue contributions to the utility) than existing customers, regulators may want to modify the decoupling formula to account for the difference. This can be accomplished by using different RPC values for new customers and existing customers. The nature of this issue and methodologies for addressing it are discussed in Section 6, *Application of RPC Decoupling: New vs. Existing Customers.*

5.3 Attrition Adjustment Decoupling

Some jurisdictions take a different approach to decoupling. They set base rates in a periodic major rate case, then conduct annual abbreviated reviews to determine whether there are particular changes in costs that merit a change in rates. In such instances, the regulators adjust rate base and operating expenses only for known and measurable changes to utility costs and revenues since the rate case, and adjust for them through a small increment or decrement to the base rates (called "attrition adjustments"). The regulators normally do not consider more controversial issues such as new power plant additions or the creation of new classes of customers, which are reserved for general rate cases.

In attrition decoupling, the utility's allowed revenue requirement is the amount allowed in the first year after the rate case, plus the addition (or reduction) that results from the attrition review. Every few years, a new general rate case is convened to re-establish a cost-based revenue requirement considering all factors.

5.4 K Factor

The K factor is an adjustment used to increase or decrease overall growth in revenues between rate cases.

In its simplest application, the K factor can be used in lieu of either the

Exhibit No.___(MCD-5) Page 3 of 8

Revenue Regulation and Decoupling

inflation-minus-productivity method or the RPC method; it could be, for example, a specified percentage per year. Although one could vary the K factor itself over time, in this context the most likely application would simply set an annual between-rate-case growth rate for revenues, resulting in a steady change (probably an increase) in year-to-year allowed revenues for each period between rate cases. Such an approach has a high degree of certainty, but runs the risk of being disassociated from, and therefore out of sync with, measurable drivers of a utility's cost of service. All of the data used in a rate case change over time, and the elements making up the K factor are no different. The K factor therefore may become obsolete within a few years,

providing another reason why periodic general rate cases should be required by regulators under decoupling (and, arguably, under traditional regulation as well).

An alternative approach is to use the K factor as an adjustment to the RPC allowed revenue determination. Here, the K factor growth rate (positive or negative) would be applied to the RPC values, rather than to the allowed revenue value itself. This approach

A "successful" revenue function would be one that keeps the utility's actual revenue collection as close as possible to its actual cost of service throughout the period between rate cases.

would be useful when an additional revenue requirement is anticipated due to identifiable increases in revenues from capital expenditures or operating expenses, or because of some underlying trend in the RPC values. An example would be a utility with a distribution system upgrade program driven by reliability concerns, where the investment is not generating new revenue. It may also be used as an incentive for the utility to make specific productivity gains, in which case the K factor would be a negative value causing revenues to be slightly lower than they otherwise would have been.

In any case, allowed revenues would still be primarily driven by the number of customers served, but the revenue total would be driven up or down by the K factor adjustment.

```
Formula 11: Revenue Per Customer ALLOWED =
Revenue Per Customer TEST PERIOD * K
Formula 12: Revenues ALLOWED = Revenue Per Customer ALLOWED X
No. of Customers ACTUAL
Formula 10: Price ACTUAL = Revenues ALLOWED ÷ Units Sold ACTUAL
```


Exhibit No.___(MCD-5) Page 4 of 8

10 Earnings Volatility Risks and Impacts on the Cost of Capital

tility earnings can be volatile because of the way weather and other factors influence sales volumes and revenues in the short run, without corresponding short-run impacts on costs. They can also be volatile because of the way weather and other factors influence costs in the short run, without corresponding short-run impacts on revenue (such as a drought has on a hydro-dependent utility). As a result of this volatility, utilities typically retain a relatively higher level of equity in their capital structure, so that a combination of adverse circumstances (adverse weather, economic cycle, cost pressures, and customer attrition) does not render them unable to service their debt. In addition, utilities also try to pay their dividends with current income or from retained earnings. In fact, most bond covenants prohibit paying dividends if retained earnings decline below a certain point. A utility that is forced to suspend its dividend is viewed as a higher-risk venture.

Decoupling can significantly reduce earnings volatility due to weather and other factors, and can eliminate earnings attrition when sales decline, regardless of the cause (e.g., appliance standards, energy codes, customer- or utility-financed conservation, self-curtailment due to price elasticity). This in turn lowers the financial risk for the utility, and that is reflected in the company's cost of capital.

The reduction in the cost of capital resulting from decoupling could, if the utility's bond rating improves, result in lower costs of debt and equity; but this generally requires many years to play out, and the consequent benefits for customers are therefore slow to materialize. New debt issues will carry lower interest rates, but utility bonds carry long maturities, and it can take 30 years or more to roll over all of the debt in a portfolio.

Alternatively, a lower equity ratio may be sufficient to maintain the same bond rating for the decoupled utility as for the non-decoupled utility. This would allow the benefits associated with the lower risk profile of the decoupled company to flow through to customers in the first few years after the mechanism is put in place. However, for this to be justified, the investors must have confidence that the decoupling mechanism will remain in effect for many years; a typical three-year approval period may not provide that confidence.

10.1 Rating Agencies Recognize Decoupling

The bond rating agencies have come to recognize that decoupling mechanisms, weather adjustment mechanisms, fuel and purchased-gas adjustment mechanisms, and other outside-the-rate-case adjustment mechanisms all reduce net earnings volatility and risk, and therefore contribute to a lower cost of capital for the utility. It is important when selecting "comparable" utilities for cost of capital studies to use only utilities with similar risk-mitigation tools in place, so that an apples-to-apples comparison is possible.

Standard and Poor's has explicitly recognized risk mitigation measures by rating the "business risk profile" of utility sector companies on a scale of 1 to 10. The distribution utilities without supply responsibility and with risk mitigation measures are mostly rated 1 to 3, whereas the independent power producers without stable customer bases or any risk mitigation measures are 7 to 10. The vertically integrated utilities with some risk mitigation measures are in between.³⁰

The risk mitigation of decoupling can be reflected in either of two ways. First, it can be directly applied to reduce the equity capitalization ratio of the utility in a rate case. This has the effect of reducing the overall cost of capital and revenue requirement, without changing either the cost of debt or the allowed return on equity. This approach recognizes that a utility with more stable earnings does not require as much equity in its capital structure, because there is less likelihood of the utility depleting its retained earnings.

Table 12 summarizes how a change in the equity capitalization ratio reduces the revenue requirement.

Quantification of Savings from Capital Structure Shift			
Element	Allowed Return	Ratio w/o Decoupling	Ratio with Decoupling
Equity	11%	45%	42%
Debt	8%	55%	58%
Overall Return with Taxes		10.48%	10.13%
Revenue Requirement (\$ millions)		\$104.80	\$101.30
Difference			-\$3.50

Table 12

30 See Standard and Poor's New Business Profile Scores Assigned for US Utility and Power Companies: Financial Guidelines, revised 2 June 2004. See also Moody's Investor Services, Local Gas Distribution Companies: Update on Revenue Decoupling And Implications for Credit Ratings, 2006, and Standard and Poor's, Industry Report Card: U.S. Electric Utilities Well Positioned For 2011 Challenges, December 10, 2010.

Exhibit No.___(MCD-5) Page 6 of 8

Revenue Regulation and Decoupling

The overall impact is on the order of a 3% reduction in the equity capitalization rate, which in turn can produce about a 3% decrease in revenue required for the return on rate base, or about a 1% decrease in the total cost of service to consumers (including power supply or natural gas supply). This is not a large impact — but it is on the same order of magnitude as many utility energy

Cost savings from implementation of decoupling can fully fund a modest energy conservation program at no incremental cost to consumers.

conservation budgets, meaning that cost savings from implementation of decoupling can fully fund a modest energy conservation program at no incremental cost to consumers.

It is important to recognize that this type of change involves neither a reduction in the return on equity, nor a reduction in the allowed cost of debt. It simply reflects a realignment of the amount of each type of capital required.

A utility could adapt its actual capital structure to reflect this change, either by issuing debt rather than equity for a period of months or years, or by paying a special dividend (reducing equity) and issuing debt to replace that capital.

The second approach to reflecting the risk reduction afforded by decoupling is simply to reduce the utility's allowed return on equity, discounting by some number of basis points what would otherwise have been approved. This has been done in a number of jurisdictions. There are, however, several points that regulators should consider when weighing this option against the first.

10.2 Some Impacts May Not Be Immediate, Others Can Be

If rating agencies perceive that a risk mitigation measure will be in place for an extended period, they may be willing to recognize the benefit of risk mitigation immediately upon implementation. If the risk mitigation measure is put in place only for a limited period, or the regulatory commission has a record of changing its regulatory principles frequently, the rating agency may not recognize the measure.

If the regulator does not change the allowed equity capitalization ratio when a new risk mitigation measure is implemented, the rating agency will eventually realize that the mitigation is occurring, and that earnings are more stable; and eventually a bond rating upgrade is possible. Once that occurs, the cost of debt will eventually decline, and consumers will realize the benefit of lower costs of debt in the conventional ratemaking process.

In theory, the total cost savings from a bond rating upgrade should be about the same as the savings from an equity capitalization reduction. The

principal reason for preferring the equity capitalization option is that it can be implemented concurrently with the imposition of the risk mitigation measure, so that consumers receive an immediate economic benefit when the measure is implemented. The lag to a bond rating upgrade can be years, or as much as a decade; and the cost savings will phase in very slowly as new bonds are issued.

10.3 Risk Reduction: Reflected in ROE or Capital Structure?

Some ratepayer advocates have proposed an immediate reduction in the allowed return on common equity as a condition of implementing decoupling. This may create controversy in the ratemaking process, with the risk that utilities then become resistant to implementation of decoupling. Utilities have pointed to rate cases in other jurisdictions, where many of the "comparable" utilities used to estimate the required return on equity already have risk mitigation measures in place.

Economic theory supports the notion that risk mitigation is valuable to investors and that that value will (eventually) be revealed in some way in the market — through a lower cost of equity, a lower cost of debt, or a lower required equity capitalization ratio. Any of these will eventually produce lower rates for consumers, in return for the risk mitigation measure. Regardless of the theory, however, utilities may tend to view a reduction in the return on equity as a penalty associated with decoupling. In contrast, a restructuring of the capitalization ratio does not necessarily alter the required return on equity, and it is more directly reflective of the risk mitigation that decoupling actually provides — that is, stabilization of earnings with respect to factors beyond the utility's control. By reducing volatility, the utility needs less equity to provide the same assurance that bond coverage ratios and other financial requirements will be met.

Rating agencies have recognized the linkage between risk mitigation and the required equity ratio to support a given bond rating, rather than to the required return on equity. For this reason, there may be advantages to focusing on the utility's capital structure, rather than on its allowed return on equity or the cost of debt, when regulators consider how to flow through the risk-mitigation benefits of decoupling to consumers when a mechanism is put into place.³¹

³¹ One recent paper concluded that decoupling did not result in a decrease in the cost of equity capital in the short run. The study focused on only one approach to measure the cost of capital, the discounted cash flow method. It did not consider the reduction in systematic risk (the change in earnings relative to the change in the overall market earnings in the same period) that is measured by the Capital Asset Pricing Model. Decoupling will reduce systematic risk (reducing earnings volatility due to economic cycles) because sales variations in business cycles do not affect earnings under decoupling. The study also did not

10.4 Consumer-Owned Utilities

Consumer-owned utilities (COUs) do not pay cash dividends, but they do need to maintain a sound bond rating to support future investments. The rating agencies look at the TIER (times interest earned ratio) of COUs.³² Typical bond covenants for COUs obligate the utility to maintain its TIER above a minimum defined level, so they might be required to raise rates if they suffered severe earnings attrition (from any cause).

A loss of revenue due to conservation, weather, or other factors can impair the TIER, and therefore the borrowing capacity of a COU. A decoupling mechanism will provide the same stability of earnings for a COU as for an investor-owned utility (IOU). However, there is a smaller body of research on whether decoupling will actually have a meaningful effect on the borrowing costs of COUs, assuming that their TIER remains within a range in which they are able to borrow.

Without decoupling, COUs tend to set rates at levels that provide 75%-90% assurance that the TIER will remain at an acceptable level. It is clear that a decoupling mechanism will ensure that the TIER remains in an acceptable range, and that the COU will be able to borrow. A decoupling mechanism may thus allow a COU to set rates at a slightly lower level, without fear that a variation in weather or sales will cause it to fall to a level that would trigger a larger rate adjustment.

10.5 Earnings Caps or Collars

Some commissions have imposed an earnings cap, or an earnings collar, as part of a decoupling mechanism. These ensure that, if earnings are too high above a baseline (or too low below the baseline), the decoupling mechanism is automatically subject to review. Because decoupling reduces earnings volatility, it should be unlikely for earnings to vary outside a range of reasonableness. Therefore such a cap or collar, while unlikely to be triggered, may provide greater comfort with the change represented by decoupling.

Even so, in practical application, it is simpler to impose a cap on the variability in prices than in earnings, because the calculation of earnings for regulatory purposes can be significantly different than earnings reporting under generally accepted accounting principles and may invite disputes over methodology.

³² TIER is a measure of the extent of which earnings are available to meet interest payments. Mathematically it is defined by this formula: TIER = (net income + interest) / (interest).

attempt to measure the change in probability that a utility would exhaust its ability to pay dividends from cash earnings, which is reduced if the utility is protected from variations in earnings driven by weather and economic cycles. These are factors that lead RAP to believe that adjusting the capital structure is more appropriate than adjusting the allowed return on equity when decoupling is implemented on a permanent basis. See Brattle Group, The Impact of Decoupling on the Cost of Capital, March, 2011.