EXH. PKW-3C DOCKET UE-17 PCA 15 COMPLIANCE WITNESS: PAUL K. WETHERBEE

BEFORE THE
WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

In the Matter of the Petition of PUGET SOUND ENERGY

For Approval of its April 2017 Power Cost Adjustment Mechanism Report

SECOND EXHIBIT (CONFIDENTIAL) TO THE PREFILED DIRECT TESTIMONY OF

PAUL K. WETHERBEE ON BEHALF OF PUGET SOUND ENERGY

APRIL 28, 2017

PUGET SOUND ENERGY
 SECOND EXHIBIT (CONFIDENTIAL) TO THE PREFILED DIRECT TESTIMONY OF PAUL K. WETHERBEE

I. PUGET SOUND ENERGY'S HEDGING PLAN .. 1
II. PROGRAMMATICALLY MANAGED HEDGE PERIOD THROUGH .2
III. ACTIVELY MANAGED HEDGE PERIOD .. 6
IV. APRIL 2016 - WITHIN MONTH OVERVIEW .8
V. SUPPORTING EXHIBITS

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

PUGET SOUND ENERGY

ILLUSTRATION OF PSE'S PORTFOLIO AND RISK MANAGEMENT ACTIVITIES FOR PCA PERIOD 15 POWER SUPPLY FOR THE SINGLE MONTH APRIL 2016

I. PUGET SOUND ENERGY'S HEDGING PLAN

The purpose of this exhibit is to illustrate the manner in which Puget Sound Energy ("PSE") manages its electric portfolio, including risk management activities, by describing how PSE managed power supply and costs for a single month during Power Cost Adjustment Mechanism ("PCA") Period 15: April 2016.

In accordance with PSE’s Energy Risk Policy, the Energy Management Committee ("EMC") is responsible for providing policy-level and strategic direction on energy supply portfolio risk issues and significant new long-term resources and contracts. Energy Supply Merchant department staff ("Employees") follow the EMC approved Programmatically Managed Hedge strategy, which is explained in detail in Exh. PKW-1CT, to guide them in the specific time periods and quantities of energy to hedge. PSE manages its short-term energy supply hedging and portfolio risk activities, the Actively Managed Hedge period, in accordance with the EMC-approved Energy Supply Transaction and Hedging Procedures Manual ("Procedures Manual").

As defined in the Procedures Manual under Schedule F - Spot Market Exposure for Gas and Power Portfolios, the Authorized Traders have an exposure authority limit up to monthly and $\$ \square$ for a rolling \square period. Spot market exposure above the Authorized Traders limit requires notification to the EMC. The exposure is calculated individually for on-peak, off-peak, and gas for power positions with the authority limit calculated on the net spot exposure of all three positions. Spot market exposure is measured

[^0]Exh. PKW-3C
Page 1 of 10

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

by multiplying the net open position, in megawatt hours, times the forward market price. It represents the net dollar amount that PSE has not hedged during a given timeframe, given forecasted volumes and market prices. See Exh. PKW-7C for the Schedule F excerpt from the Procedures Manual.

Employees use various reports, analytics and data tools to manage positions, measure specific portfolio risks, and compare hedge choices. Examples include stochastic price simulations, portfolio cost simulation and scenario analysis. The stochastic model allows varying key inputs, such as volatility, to create price distributions, which can aid in making hedge decisions.

The remainder of this exhibit will illustrate the executed hedging strategy decisions used by Employees for PCA Period 15. Please reference sections II through IV, which provide a summary of and review the analyses relied upon by Employees to make hedging decisions for April 2016. Section V provides a description of Exh. PKW-4C through Exh. PKW-9C, which collectively provide additional detail supporting this narrative.
II. PROGRAMMATICALLY MANAGED HEDGE PERIOD THROUGH

In rolled into the Programmatically Managed Hedge period. At the time, the April 2016 net exposure was \square with a \square MW on-peak power position, a MW \square power \square position and a \square MMBtu/day natural gas position. The unhedged on- and off-peak power positions, valued at the forward market price at the time, resulted in an on- and off-peak power exposure of and \quad, respectively. This power exposure, combined with the

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160 natural gas exposure totaled a net exposure of See Exh. PKW-4C for the April 2016 exposures over the entire \square hedging period. In \square, with remaining until April 2016 would roll into the Actively Managed Hedge, the maximum monthly exposure reduction was $\$$) and the minimum monthly exposure reduction was $\$$ million \square See Exh.

PKW-1CT for a detailed explanation of the minimum and maximum exposure reduction parameter calculations. During May 2013, Employees purchased MW
 exposure. Employees also MMBtu/day of gas for April 2016 delivery. These hedges, in addition to changes in commodity prices and heat rates, resulted in a reduction of net exposure over the month. Often a power hedge transaction spans a full quarter or full calendar year due to the fact that quarterly and calendar strips are more liquid than single month markets and the pricing and volume reflect the availability at that time. Many of the power hedge transactions for April 2016 were either quarterly or calendar year strips. See Exh. PKW-5C for the power and gas hedges for April 2016.
 April 2016 spot market exposure similar to \square, by hedging to \square. Employees
 PSE updated its customer load forecast and as a result, the April 2016 demand forecast decreased by \square MW in the \square and \square MW in the \square hours. The combination of the change in forecasted load, commodity prices, heat rates and hedges over the \square, reduced total net exposure for April 2016 by \square.

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160
In early \square Employees determined to switch from hedging at exposure reduction levels to exposure reduction levels for all delivery terms of the Programmatically Managed Hedge period, which included April 2016. Market liquidity in the forward power markets, especially beyond one year out, had declined. It was unclear at the time whether this was a transitory event or a longer term structural change. There were three main factors contributing to the power market illiquidity. First, there were fewer market participants. Several entities had scaled back or exited the Western regional power markets over time (e.g.,
). Second, power markets had changed as a result of Dodd-Frank regulation. Many entities moved away from transacting fixed-for-float power swaps and were instead transacting Intercontinental Exchange ("ICE") cleared futures and/or physical power. Credit under physical enabling agreements was more restrictive and therefore PSE had fewer counterparties willing to transact beyond twelve months out. Lastly, new rules and regulations related to California Air Resource Board (CARB) were adding to the illiquidity and price uncertainty. Employees continued to hedge at \square exposure reduction levels
 These hedges, along with the increase in market heat rates, reduced the total net exposure for April 2016 by

In \square, Employees chose to hedge to the \square hedging level (the of the \square hedge parameters) for the entire Programmatically Managed Hedge program. This change was due to lower gas prices resulting from increased gas production and producer hedging. By February 2014, both Sumas gas and Mid-C power

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

prices for calendar year 2016 delivery were at similar levels as they were in November 2013, prior to the cold winter. Employees hedged similarly for March 2014, at the
 hedge level, resulting in total \square gas of \square MMBtu/day, over the 2-month period, for April 2016 delivery. These hedges reduced net exposure for April 2016 by \square

During , gas and power prices increased due to extended cold, winter-like weather which generated a fear premium in the forward commodity markets. Therefore, Employees elected to hedge to levels for the entire Programmatically Managed Hedge period and remained at through November 2014. See Exh. PKW-9C for forward prices. During the months of \square Employees \square a total of \square MMBtu/day of gas for April 2016 delivery and \square MW of \square power for the entire calendar year of 2016. Hedges during this \square month period combined with changes in commodity prices reduced net exposure for April 2016 by \qquad

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

III. ACTIVELY MANAGED HEDGE PERIOD

In \square April 2016 rolled into the Actively Managed Hedge period. This hedge program allows Employees to more actively manage the April 2016 position for a full \square prior to delivery. At the beginning of \square, the April 2016 net exposure was \square with a \square million or \square MW on-peak power \square position, a \square million or \square MW off-peak power \square position and a \square million or \square MMBtu/day natural gas position. See Exh. PKW-4C for the April 2016 exposures over the hedging period. At that time, market implied flat heat rates for April 2016 were averaging around , a level where two of PSE's gas-fired generators could be economically dispatched. See Exh. PKW-8C for the daily forward heat rate trends for April 2016. Given the relatively small net exposure position, Employees chose, at that time, to
and well within the monthly exposure limits under Schedule F of the Procedures
Manual.
 for April 2016. Implied on-peak market heat rates, for April 2016, increased from approximately $\square \mathrm{MMBtu} / \mathrm{MWh}$. This was due mostly to a steady decline in gas prices during the four month period. As a result, the probabilistic on- and off-peak power positions \square while the gas position got \square. In July 2015 PSE updated its customer load forecast which resulted in \quad customer demand for April 2016. The lower gas prices, increased market heat rates and the change in the load forecast resulted in net exposure reduction from \square million to \square from \square

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

rates, Employees \square MW These hedges, in addition to changes in commodity prices and heat rates kept the net exposure at

With the start of a new hydro year in October 2015, the Northwest River Forecast Center (NWRFC) forecasts for January through July 2016 outflows at Grand Coulee ranged from ninety-five to eighty-nine percent of normal. See Exh. PKW-6 for NWRFC Grand Coulee forecasts. In \square, Employees a total of \square MMBtu/day of \square and \square MMBtu/day of \square to manage physical index supply at PSE's transport receipt points.

In , the NWRFC January through July forecasts for Grand Coulee outflows increased, ranging from ninety-five to one hundred and three percent of normal. Looking at the April 2016 position under various scenarios, Employees elected to \square MW of \quad for the entire second quarter. These hedges combined with lower market heat rates resulted in an \square in exposure to

In , forward gas and power prices continued their decline due in part to above normal temperature forecasts. Employees \square MW on-peak power and MW off-peak power while \square a total of \square MMBtu/day of gas to commodities. Employees also \square MW \square power and \square MW \square power to optimize assets. These hedges combined with higher heat rates reduced net exposure by

In \square, the Bonneville Power Administration (BPA) elected to perform drum gate maintenance at Grand Coulee in spring of 2016 which could support power prices in April and May 2016. Given the \square power position, Employees \square MW of

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

 power for April 2016 delivery. At the end of , the updated hydro forecast shifted hydro generation from May and June 2016 to April 2016 so Employees MW of \square power for April 2016 and \square power for \square These hedges combined with changes in commodity prices brought the net exposure to million.

In March 2016 the NWRFC hydro forecasts for January through July Grand Coulee output increased to slightly above normal. There was also a change in \square planned maintenance resulting in higher generation. As a result of these adjustments, Employees MW of on- and off-peak power. To manage physical index supply at PSE's transport receipt points, Employees \square MMBtu/day of \square gas and the equivalent volume of gas and purchased $10,000 \mathrm{MMB}$ tu/day of Station 2 gas and sold the equivalent volume of Hunt gas.. The combination of these hedges and changes in gas and power prices resulted in a total net exposure of \square at the end of March 2016.

IV. APRIL 2016 - WITHIN MONTH OVERVIEW

At the end of March 2016, the net exposure for April 2016 was \square, which represented \square position for gas of $\square \mathrm{MMBtu} /$ day \square and a
 participation in lower If heat rates decrease within the month of April 2016, Employees can

Above average temperatures enveloped the Pacific Northwest region during April 2016. Seattle averaged six degrees above normal. The higher temperatures produced lower

REDACTED VERSION

loads and above average hydro generation for the month. Runoff measured at Grand Coulee was 75% higher than normal for April 2016. See Exh. PKW-6 for Grand Coulee runoff volumes. Daily market flat heat rates for April 2016 ranged from zero to 12.3 MMBtu/MWh. The average daily flat heat rate for the month was $7.3 \mathrm{MMBta} / \mathrm{MWh}$, with on-peak Mid-C power prices averaging $\$ 12.14 / \mathrm{MWh}$, off-peak Mid-C power prices averaging $\$ 6.08 / \mathrm{MWh}$ and Sumas gas price averaging $\$ 1.31 / \mathrm{MMBtu}$.

In the first half of the month, Employees
 power, for the remainder of April 2016, to hedge load given lower prices. Employees also commodities within the month by
 and for the remainder of April 2016 (a heat rate , participating in lower power prices. In addition, Employees \square within the month due to lower loads and an increase in expected wind generation for the remainder of the month.

From May 2013 through March 2016, Employees \quad MW of on-peak power, MW of off-peak power and \square MMBtu/day of natural gas. Employees also a total of \square of on-peak power, \square of off-peak power and MMBtu/day of gas. See Exh. PKW-5C for further detail of PSE's hedges for April 2016.

V. SUPPORTING EXHIBITS

The monthly exposure for April 2016 is included in Exh. PKW-4C. April 2016 hedges were executed in accordance with both the Programmatically Managed Hedge and Actively Managed Hedge programs, and the hedge details are shown for both power and gas in Exh. PKW-5C.

REDACTED VERSION

Designated Information is Confidential per WAC 480-07-160

A graph of the NWRFC forecasts for the January through July 2016 period is provided in Exh. PKW-6. The 30 year average (1981-2010), referred to as "normal," for the January through July period at Grand Coulee is 59,599 thousand acre-feet ("KAF"). The actual January through July 2016 runoff was nearly 100 percent of normal at Grand Coulee, or $59,577 \mathrm{KAF}$. The actual monthly runoff volumes at Grand Coulee for water years 2014 through 2016 are also shown in Ex. PKW-6.

A copy of Schedule F from the Procedures Manual, "Spot Market Exposure for Gas and Power Portfolios," which provides the monthly exposure limits, is provided in Exh. PKW-7C.

Daily heat rate trends for April 2016 can be found in Exh. PKW-8C, as well as the dispatch heat rate of PSE's gas fired turbines. Implied market heat rates fluctuate daily depending on the power and gas prices, and are part of the dispatch logic used in the risk model to determine which gas fired turbines are "in the money" and may dispatch economically.

Commodity prices for April 2016 are provided in Exh. PKW-9C. The first chart illustrates on-peak power, off-peak power, and gas forward market prices as they evolved over the hedging period. The second chart displays the daily settlement prices for Mid-C power and Sumas gas prices for the month of April 2016. The final chart demonstrates the forward market prices for calendar year strips 2015 and 2016.

[^0]: Second Exhibit (Confidential) to the
 Prefiled Direct Testimony of Paul K. Wetherbee

