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1 Executive Summary 

The Washington Utilities and Transportation Commission (“UTC”) engaged Power System 

Engineering, Inc. (“Power System”) to develop customized utility-wide reliability targets and 

statistical ranges of those targets for the three Washington investor-owned electric utilities.  Power 

System evaluated two reliability metrics: (1) the sustained average interruption duration index 

(“SAIDI”), and (2) the sustained average interruption frequency index (“SAIFI”). Both of these 

indexes are important measures of the reliability provided to customers by the utilities.  

 

SAIDI measures the average total outage time experienced by customers in a given year. For 

example, if an electric utility had a SAIDI of 100 for 2016, it means that the average customer 

experienced 100 minutes of outages in 2016. Obviously this is just an average; some customers 

might experience several hours of outages during the year, while some might have had no outages. 

SAIFI measures the average number of sustained outages experienced by customers within a given 

year.1 A SAIFI of 2.0 would indicate that the average customer experienced 2 outages (that met 

the minimum duration) during the year. Both of these indexes will exclude major event day 

(“MED”) outages.2  

 

For this analysis, two econometric models were created:  (1) SAIFI with MEDs excluded, and (2) 

SAIDI with MEDs excluded.  The explanatory variables in the models include: 

 

 The forestation levels of each utility,  

 Customer density measured by the number of retail customers divided by square miles of 

service territory,  

 The prevalence of thunderstorms in the service territory,  

 The standard deviation of elevation in the service territory used only in SAIDI model, 

 The percentage of underground plant in total distribution plant, and 

 Whether the MED exclusion criteria is based on the IEEE 1366 standard. 

 

The coefficients for the explanatory variables listed above are shown in Table 1. These coefficients 

are explained in Section 4.3. It should be noted that the model also uses certain variables multiplied 

by other variables (such as: % Underground * % Forestation); those variables are not presented in 

this initial table. 

 

                                                 
1 Most utilities define a “sustained outage” as an outage lasting five minutes or more.  However, definitions vary 

across the industry. In prior research, we have found that the sustained outage definition does not have the expected 

influence on reliability metrics.  Furthermore, including a sustained definition variable reduces the size of the sample 

due to unavailability of the definition for a number of utilities.  For more information please see page 6 of Power 

System’s expert testimony report filed on behalf of Toronto Hydro entitled, “Econometric Benchmarking of Toronto 

Hydro’s Historical and Projected Total Cost and Reliability Levels”. 

  
2 MEDS are discussed further in Section 4.1. The IEEE standard defines MEDs using the “beta” method.  If outages 

for a certain day exceed 2.5 standard deviations from the normal day, a major event day is declared.  A normal day 

and the standard deviation are determined by the utility’s previous five years of normal day data (not including the 

MEDs). 
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Table 1  Coefficient Values 

Variable SAIDI Coefficient SAIFI Coefficient 

Forestation % 0.418174 0.261986 

Customer Density -0.184581 -0.117477 

Thunderstorms 0.131738 0.191656 

Elevation Standard Deviation 0.037079 n/a 

% of Underground Plant -0.163976 -0.158076 

MED Exclusion IEEE 1366 0.093083 0.104879 

  

The results of the econometric analysis are shown in Table 2, Table 3, Figure 1 and Figure 2 below. 

Table 2 and Table 3 give the actual SAIFI/SAIDI and the targets for each individual year. 

 

Table 2  SAIFI Actual and Targets for Individual Years 

 
 

Table 3  SAIDI Actual and Targets for Individual Years 

 
 

Figure 1 and Figure 2 show the average targets for the 2011-2015 period. In Figure 1 and Figure 

2, the middle data point for each utility (the blue point) indicates the expected value for that utility 

over 2011-2015. For example, Figure 1 shows that for its Washington service territory Avista had 

an expected SAIFI of 1.05 for the period 2011-2015.3  This value indicates the SAIFI we would 

expect from an average utility with Avista’s service territory characteristics for that time period. 

The red and gray data points represent the upper and lower bounds of the estimate, respectively, 

using a 90% confidence interval.  

 

                                                 
3 Power System requested and received the Washington-only reliability metrics from both Avista and Pacific Power. 

Actual Target Actual Target Actual Target

2011 1.09 1.10 0.55 1.64 1.00 0.93

2012 1.03 1.04 0.66 1.43 0.80 0.89

2013 0.88 1.04 0.79 1.46 0.86 0.90

2014 1.06 1.05 0.79 1.47 0.96 0.89

2015 0.98 1.05 0.85 1.50 1.03 0.91

Year
Avista Corporation Pacific Power Puget Sound Energy

Actual Target Actual Target Actual Target

2011 109 115 80 113 142 129

2012 132 116 100 128 120 114

2013 118 117 113 125 125 105

2014 144 116 122 125 153 113

2015 159 116 100 122 161 103

Puget Sound Energy
Year

Avista Corporation Pacific Power
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Figure 1  Candidate SAIFI Targets (2011-2015) 

 
 

 

Figure 2  Candidate SAIDI Targets (2011-2015) 
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2 Introduction 

The Washington Utilities and Transportation Commission (“UTC”) engaged Power System 

Engineering, Inc. (“Power System”) to provide customized reliability targets and ranges for the 

three Washington investor-owned electric utilities.  These targets are derived from an econometric 

model, and the targets are based on the service territory conditions of each studied utility.  

Econometric models use regression techniques to determine how certain independent variables 

relate to a dependent variable; in this case the dependent variable is reliability, and the independent 

variables are service territory conditions, such as customer density, percent of service area that is 

forested, weather, etc. 

The three utilities studied are Avista Corporation (“Avista”), Pacific Power & Light Company 

(“Pacific Power”), and Puget Sound Energy.4  The examined reliability metrics in this study are 

the system average interruption frequency index (“SAIFI”) and the system average interruption 

duration index (“SAIDI”).  Both of the examined metrics exclude major event days (“MEDs”). 

The definitions of the metrics and of MEDs are covered in Section 4.1.  

In this study, the variables used to benchmark the Washington utilities are specific to each utility’s 

Washington service territory.  Although Avista and Pacific Power operate in multiple states, for 

the purposes of this study only the utilities’ Washington service territory characteristics are used 

to derive expected SAIFI and SAIDI levels. 

This study uses an econometric benchmarking approach to formulate reliability targets and 

develop confidence intervals for those targets. The next section will give a brief overview of 

benchmarking in general before describing the specific econometric benchmarking method used 

for this study. 

2.1  Overview of Benchmarking 

The term “benchmarking” originates with the practice of cobblers, who would draw an outline of 

a foot on a board or bench, so that they could compare the shoe they were making to the desired 

foot size. The basic idea behind benchmarking is to compare an actual result with a desired or 

“expected” result.   

For example, a company (the “ABC Company”) might want to answer the following question: 

“Are we paying our employees a competitive salary that is in line with salaries paid by other 

companies in our industry?”  ABC Company might want to set its salaries at the industry average, 

or alternatively it might want to set its salaries high, at say the top quartile, to attract the best 

employees.   

Benchmarking is a way to determine how the salaries for ABC Company compare to the average 

across the industry (or the top quartile salary, etc.). One way to do this would be to simply take all 

                                                 
4 Both Power System Engineering and Puget Sound Energy typically use the same acronym of “PSE”.  To avoid 

confusion, we will always refer to Puget Sound Energy by their full name, and Power System Engineering will be 

“Power System.” 
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the salaries in the industry, and list them from highest to lowest.5 Then we could calculate an 

average salary, or a median salary, or a “top 25%” salary, etc.  

However, there are problems that arise when we simply compare these “raw” salaries.  What if 

one company on the list is in downtown San Francisco, and ABC Company is in Omaha? This 

would not make for a meaningful comparison—the company in San Francisco will need to pay 

higher wages to account for the higher cost of living. Therefore we want some way to adjust for 

factors that influence a certain metric – in this example, we want to control for the effect cost of 

living on prevailing salaries in ABC’s industry. Two ways of adjusting for these types of factors 

are the “peer group” method and the econometric method.  

2.1.1 Peer Group Benchmarking  

In the peer group method, we select a group of peers with whom to compare “raw” data, rather 

than comparing to a comprehensive list of all peers. The peer group is typically chosen with an 

eye on including firms that have similar operating characteristics as the target firms.  

Continuing the example above regarding salaries, if Company ABC were based in a large city such 

as Chicago, the peers chosen might be based in other large cities—San Francisco, New York City, 

Seattle, Toronto, etc. How large the peer group is would be up to the researcher. A cut-off might 

be used (e.g. cities of two million or more), or the peer group might be simply “eyeballed.”  

In the case of utility reliability, we would want to pick a peer group that is similar to the utility 

being studied, and compare their reliability scores.  But now the question becomes—similar how?  

Total number of customers served?  Service territory area?  Total distribution line miles?  

Customer density?  Vegetation levels?  All of the above?  If we base the peer group on one metric 

only (e.g. total number of customers served), the risk is that we ignore a factor that may be very 

relevant to reliability (e.g. customer density, vegetation levels, etc.).  How do we know we are 

selecting a peer group that is truly “similar” to the target company?  

It quickly becomes evident that picking a suitable peer group is not easy—it is difficult to know 

what factors should be used to determine “similarity.” Furthermore, there are questions about how 

big the peer group should be—too small, and the results may not be very statistically significant. 

Too large, and too many dissimilar utilities may be included. There is always the chance that we 

left out a peer that should have been included, or included a peer that was not very similar. 

Furthermore, often the utilities with the best reliability scores in a peer group are simply those with 

the easiest service territory (i.e. fewer vegetation challenges, higher customer density).  

Additionally, peer groups that contain a small number of utilities can have their results skewed by 

one or two outlier observations.  Or, if the target utility is an outlier within the peer group, that can 

also skew the findings (because the peer group utilities are not really peers). For these reasons, 

simple peer group comparison is often not a reliable method in developing meaningful targets. An 

                                                 
5 For the sake of illustration, here we are assuming that all salaries are public knowledge and that job duties are the 

same.  Obviously in the real world, these assumptions will not be true. 
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econometric approach that controls for utility-specific service territory characteristics is far more 

informative.6  

2.1.2 Econometric Benchmarking 

Econometric benchmarking solves many of the issues discussed regarding the simple “list all the 

utilities” method and the peer group method. Econometric benchmarking discovers the factors 

(e.g. vegetation, customer density) that affect a certain metric (e.g. reliability), and then adjusts for 

those factors so that each utility in the sample receives a customized target or benchmark. In 

econometric benchmarking, typical practice is to make the number of comparison utilities in the 

dataset as large as feasible; that way we are working with more information with which to test how 

factors actually affect reliability. Once the econometric model is created, we use it to make 

comparisons between observed data values for each utility (e.g. actual SAIDI/SAIFI scores) to the 

predicted values obtained from the model.  

For the econometric analysis, we assume that the relationship between a utility’s reliability and 

the conditions that affect it (called independent or explanatory variables) can be quantified and 

captured by a statistical function (sometimes called a model). This function allows Power System 

to specify reliability as a dependent variable that can be explained by relevant independent 

variables, such as customer density, vegetation coverage, etc. Each variable is tested to see if it has 

a statistical effect on reliability and is signed according to theory. If a variable has a correctly-

signed and significant effect, it stays in the function.7 For the variables that have an effect on 

reliability, each variable has an associated “parameter,” which can be thought of as the magnitude 

of the effect that variable has on reliability.  

The following equation provides an example of a simplified reliability function. For this equation 

we assume that we ran all the regression calculations, and that the only two factors that influenced 

SAIDI were (1) customer density (customers per square mile of service territory), and (2) 

percentage of service territory that is forested.8 

                                                 
6 A 2010 report by the National Regulatory Research Institute (“NRRI”) came to the same conclusion:  Econometric 

benchmarking is a more reliable method of performance evaluation than simple peer comparisons. Shumilkina, 

Evgenia. Utility Performance: How Can State Commissions Evaluate It Using Indexing, Econometrics, and Data 

Envelopment Analysis. National Regulatory Research Institute Research Paper 10-05, 2010. 

  

7 It should be noted that econometric models generally only test “independent” variables. As implied by the term 

“independent,” the explanatory variables used in the model are factors that are outside the control of utility decision-

makers. For instance, the vegetation level in the service territory is largely outside the control of a utility’s managers. 

On the other hand, the number of employees hired are within management’s control, and thus cannot serve as an 

independent variable. One of the variables found to be significant in this report (% undergrounding) is to a certain 

extent controllable by the utility. However, this variable is controllable more in the long term, rather than the short 

term. 

 

In general, reliability is assumed to be a function of both dependent and independent variables. While a function 

specified by econometric means captures a reasonable level of reliability variability, it does not explain all the elements 

that affect reliability. Therefore, the function includes a random noise term to account for such idiosyncratic factors. 

8 The data used to estimate this relationship can be from a single firm with multiple time observations (time series 

data), from many firms observed at a single time period (cross-sectional data), or from many firms with multiple time 

observations (cross-sectional time-series or panel data). The estimation procedure used to estimate model parameters 
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In this equation, the terms Y, and P denote customer density and percentage of service territory 

that is forested, respectively. The β terms denote model parameters that capture the magnitude and 

sign of the effect of the explanatory variables on cost, and the error term captures random noise. 

The latter is assumed to be independent of the explanatory variables. 

Returning to the simplified SAIDI equation above: After this econometric function and its 

parameters are created, we can plug in a utility’s specific service conditions, and the model turns 

out an “expected” SAIDI value for that utility, also known as a benchmark. This is the value that 

we would expect an average-performing hypothetical utility (with those particular service 

conditions) to have. This benchmark is therefore calculated using both: (1) the industry-wide data 

(this is used to determine which variables influence SAIDI, and the magnitude of the β parameters), 

and (2) the specific utility’s actual service territory characteristics (in the simple case above, this 

is used to determine Y and P).  

Thus, any utility from the sample can receive a customized benchmark, which represents the 

performance we would expect from that utility if it were an average performer. 

2.2  Simple SAIDI/SAIFI Comparisons Are Not Sufficient 

If a utility wants to set a target SAIDI/SAIFI goal, how should this goal be determined? One 

approach to evaluating a utility’s reliability would be to simply look at its “raw” or unadjusted 

SAIDI/SAIFI scores, and compare these scores to those from other utilities. Many utilities 

formulate their reliability targets based on raw industry rankings. A “raw” industry ranking is one 

that simply compared unadjusted metrics, such as unadjusted SAIDI of SAIFI scores. On this 

method, to set a SAIDI goal, we could just list all the SAIDIs of a group of utilities from high to 

low, and set the goal at (for example) the top quartile of SAIDIs.  

However, we run into the problems mentioned above—the list of utilities may just reflect who has 

the “easiest” service territory conditions.  Another issue—where do we get the list of SAIDI and 

SAIFI scores? Do we use the list of utilities that have reported reliability scores to the Edison 

Electric Institute (EEI), which publishes an annual reliability report? There are problems with 

using EEI data to gauge a utility’s reliability. For one thing, submission of data to EEI is voluntary, 

and so utilities with poor reliability data sometimes do not submit their data, or drop out of the 

survey, thus skewing the EEI “averages.” So it is best to use a list of utilities that is as large as 

possible—all utilities who publish such data. 

But even if the report covered all U.S. utilities, we would have the problem discussed above—the 

list does not account for how challenging the service territory is. For example, if two utilities each 

have a SAIDI score of 120, that does not tell us whether achieving that score might be more 

challenging for one of the utilities—perhaps one of the utilities has a much higher percentage of 

its territory that is forested, resulting in more tree-related outages on average. Selecting a peer 

group and comparing “raw” scores does not solve these issues, as discussed above. Econometric 

                                                 
is affected by the type of data used to estimate the model. In our present study, we have a panel dataset with reliability 

data from multiple firms with observations starting in 2002 and extending to 2015. 
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modeling can screen out these service territory differences, and provide a more empirical 

foundation for target-setting. 

Similar problems arise when a utility compares its unadjusted SAIDI/SAIFI scores to its own 

historical values of those metrics. Even within a single service territory, service characteristics can 

change from year to year. Furthermore, reliability targets based on the historical reliability levels 

of each utility may also lead to economically inefficient goals.  This is because a given utility may 

historically be providing its customers with an improper level of electric reliability.  An old adage 

applies here: “There ain’t no such thing as a free lunch.”  If the historical reliability levels are too 

high, the utility will incur added costs as it strives to improve or maintain that challenging 

reliability level.  If historical reliability levels are too low, the utility will not be spending enough 

to improve its reliability. 

2.3  Summary: Why Econometric Benchmarking is Necessary 

Above we have discussed three main methods for evaluating utility reliability: (1) Comparisons of 

“raw” data (from a large list of utilities), (2) Peer group comparisons (comparing raw data from 

selected utilities), and (3) Econometric benchmarking. We recommend econometric benchmarking 

for the following reasons: 

 If targets are only based on simple reliability rankings (e.g., comparison to a long list of 

unadjusted SAIDI/SAIFI scores), with no regard for the various challenges inherent within 

service territories (e.g. vegetation levels, customer densities, undergrounding levels), the 

targets can end up being far too easy, or too challenging, to achieve. This is because there 

is no way of adjusting to account for the target utility’s characteristics. 

 If we try to adjust for a utility’s characteristics by using a peer group, other issues arise.  If 

the peer group is too small, the sample size may not be big enough. If the peer group is 

large, many of the “peers” may not be very similar to the target utility. Furthermore, even 

if another utility seems like a good peer (e.g. the customer density is similar), there may be 

other factors that are very different (e.g. vegetation levels). The fact is that even 

neighboring utilities can have vastly disparate service territories. 

 If reliability targets do not account for the diverse external factors faced by specific electric 

utilities, efforts to achieve these likely inappropriate targets can lead to excessive under-

spending or over-spending on reliability-driven projects.  These targets promote economic 

inefficiency and as a result may not be in the best interests of customers.  Electricity 

delivery rates and reliability levels will eventually be either too high or too low, as 

compared to the optimal rate-reliability balance for the service territory. 

 Econometric benchmarking is the method that best takes into account each utility’s service 

territory conditions. Each utility in a dataset receives a benchmark that is specific to its 

particular service conditions, so that a utility’s actual reliability can be compared to its own 

customized expected reliability. 

A detailed description of the particular econometric model used for this report can be found in 

Section 3.  
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2.4  Cautions in Interpreting the Targets   

While using the econometric approach is a step in the right direction, there are a number of items 

to be aware of when interpreting the study results.   

1. The data collected and reported by the utilities in the sample may contain recording errors, 

or may have been collected and calculated in a different manner than the Washington 

utilities.  Given the industry move to increasing automation in outage recording, there may 

be differences from the older to newer data, and differences between utilities. For example, 

if a utility is in the process of improving its measurement system to better tracks outages, 

this may result in the appearance of a worsening reliability score, when in reality actual 

reliability has remained roughly the same. The appearance of a worsening score merely 

reflects the fact that outages are beginning to be reported automatically, thereby starting 

the clock for determining outage duration immediately rather than when a customer reports 

the outage. This concern was raised by one of the Washington utilities.  

 

2. Not all of the uncontrollable service territory variables that impact reliability levels are 

captured in the models.  Responses to the request for information raised the concern that 

there could be many factors that affect reliability that will not be covered in the econometric 

model. This concern is valid; some variables are difficult to quantify and include in a 

model.  For example, animals can cause a significant number of outages, but empirically 

quantifying animal populations across utilities is a difficult endeavor.9 Although imperfect, 

an econometric model represents a method that is: (1) superior to “raw” data comparisons 

or peer group methodology, and (2) a model that can be created with the data that is 

reasonably widely available.  

 

Also, certain variables studied in isolation may be correlated with changes in reliability 

scores, but the econometric analysis may not produce logical signs or statistical 

significance for that variable, due to the fact that the variable in question is highly 

correlated with one or more variables already included in the model. This is called 

multicollinearity in the econometric literature. In these cases, the redundant variables are 

not included in the model.   

    

3. Reliability-driven investments may result in lags in the realization of reliability outcomes.  

A utility that is missing its target this year may have just implemented a reliability program, 

therefore working to improve its reliability, but results from these improvements require 

time to manifest themselves into improved reliability outcomes for utilities. 

 

4. The model created for this report does not attempt to take into account the technology 

deployment (e.g., feeder automation) used by each utility, as we do not have a reasonable 

way to measure the extent of such deployment.  

5. The model presents targets (benchmarks) derived from data for past years, namely 2011-

2015. Circumstances may change going forward.  

                                                 
9 Animal populations may indirectly enter the model since they are likely correlated with forestation levels and 

customer density. 
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For the above reasons, there may be valid reasons why the estimated targets in this report are too 

high or too low.  The targets, however, do provide a basis for a more-informed discussion on 

reliability targets and improved context for those discussions.  The results help to eliminate a 

number of known sources of variance and can help focus discussion on other possible sources. 

The cautions above illustrate why the confidence intervals provided in this report are important to 

consider.  All empirical studies contain “data noise” and random error.  The confidence intervals 

provide a range of targets that would still be considered “normal” in the presence of the data noise 

and random error. 
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3 Description of Econometric Benchmarking 
Approach 

The previous section discussed econometric benchmarking in general. This section describes the 

specific process for the econometric model created for this report. To recap, the econometric 

approach estimates the impact of external factors (e.g., vegetation levels, customer density, 

undergrounding) on reliability indexes.  The impacts of these factors on reliability across the 

industry are estimated and quantified through regression analysis. The resulting econometric 

model enables a formulation of an expected or benchmark reliability for any utility in the dataset, 

based on the factors and circumstances of that particular utility. The econometric approach is the 

most accurate and trustworthy method of formulating reliability targets.  Power System 

recommends this method when setting reliability targets.10   

Power System’s research uses a dataset constructed from publicly available sources, primarily 

from state commissions and U.S. Energy Information Administration (EIA) Form 861 data.  

Gathering data from sources that require utility reporting eliminates the bias that is built into 

voluntary datasets (e.g., EEI reliability survey).  Furthermore, the EEI data does not allow us to tie 

a specific reliability score to a specific utility; this information is required to perform an 

econometric analysis.  

In this report, Power System will provide customized SAIFI and SAIDI targets for each of the 

three Washington electric investor-owned utilities.  The targets are generated using an econometric 

model; the model is estimated using a dataset which includes 81 U.S. investor-owned utilities.  We 

have gathered both the reliability data from these 81 utilities and the service territory characteristics 

for each utility, used as explanatory variables.   

The dataset is a panel dataset (or cross-section, time series dataset).  It contains annual observations 

for the 81 utilities.  The time period was restrained to starting in 2006 and ending in 2015 (ten 

years); therefore each utility in the dataset has up to ten annual observations each.  However, not 

all utilities will have ten observations due to missing or implausible data in any one given year.11 

The research process is summarized below:  

1. Power System assembled the historical reliability metrics of all utilities in the dataset, along 

with the variables that affect reliability, such as customer density, vegetation density, 

percent undergrounding, etc. 

2. Using the historical data, Power System estimated two econometric models (one for SAIFI 

and one for SAIDI) that express the relationship between the explanatory variables and 

SAIFI or SAIDI. 

3. Power System can then produce “benchmark” or “target” value for each utility in a given 

year. The benchmark values are determined from the model. The benchmark represents the 

SAIDI or SAIFI value we would expect for an average-performing utility with the same 

                                                 
10 See Power System’s 2012 journal article in The Electricity Journal: Fenrick, S. and L. Getachew, 2012, 

“Formulating Appropriate Electric Reliability Targets and Performance Evaluations,” The Electricity Journal, 25 (2): 

44-53.    

11 This is called an unbalanced panel dataset. 
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service territory conditions faced by that particular utility.  

4. To set the targets for each Washington utility, we took an average of their targets for the 

most recent five years, 2011-2015. 

3.1  Regression Modeling and Confidence Intervals   

Power System’s method of econometric modeling applies regression techniques to a subset of 

population data to form a mathematical model.  The model uses inputs (service territory data, etc.) 

and produces an expected reliability index for each observation (e.g. each utility in a given year).  

By using the model, and given a set of explanatory variables, Power System can estimate an 

expected reliability level for each utility in each year. The model should not be seen as being able 

to always predict the “true” expected value for each utility with 100% accuracy. This is because 

the model is formed from a sample of data from which inferences are made concerning the larger 

population. In addition, the model contains other sources of error from unknown sources.  

Fortunately, statistical methods provide techniques for handling and quantifying modeling error.   

To calculate the CI, the modeling error of the model prediction must be calculated.  The error of 

each annual prediction is calculated directly by EViews (the econometric software used by Power 

System).  The standard error factors in the standard error of the regression and the difference in 

the explanatory variable values for each observation and the sample mean values.  To calculate the 

standard error of the five-year mean, we averaged the modeling error for the five predictions and 

divided by the square root of five. 

Modelling error is incorporated into the model by using confidence intervals (“CI”).  A CI consists 

of an upper and lower bound placed around the model’s expected reliability level.  An example of 

a simple regression model is shown in Figure 3.  The regression line provides an estimate for the 

expected reliability value given specific operating conditions, while the confidence interval 

attaches a level of precision to the estimate.  The width of the CI – the distance from the lower to 

the upper bound – is determined by the chosen tolerance for risk of the “true” expected value being 

outside those bounds.  Lower risk produces a wider CI and higher risk produces a narrower CI. 

 

CI is specified as a percent, which is 100% (a probability of one) minus the risk level.  For example, 

a 15% level of risk results in an 85% CI.  There are two ways to interpret this 85% CI.  First, we 

can say that for an 85% CI, we are 85% confident that the “true” expected value of the population 

is between the upper and lower bounds of the CI.  Stated differently, we can say that we have a 

15% risk that the true expected value is not between the upper and lower bounds of the CI. Figure 

3 shows a hypothetical example, where the population values happen to lie between the upper and 

lower CI.  With a confidence interval of 85%, this will occur approximately 85% of the time. 
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Figure 3  Example Regression Model 
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4 Variables, Sample, and Model Details 

This section provides details on the sample used, the variables use, and the details of the model, 

and further explains how the targets were calculated.  The variables and parameter estimates are 

provided for both the SAIDI and SAIFI models.  The sample used is described in the latter part of 

this section. 

 

In the electric distribution industry, simple rate or reliability index comparisons do not provide 

appropriate targets for individual utilities.  Uncontrollable factors influence attainable levels of 

reliability and costs.12  Such factors include geographical size, consumer density, mix of consumer 

classes, and vegetation levels.  Therefore, more sophisticated tools that normalize for these specific 

factors must be employed to accurately set targets. 

 

The econometric benchmarking approach relies on comparisons between observed data values to 

the predicted values obtained from regressions. The researcher determines an appropriate 

functional form for the relationship between the studied metric and factors that influence it, and 

uses appropriate econometric methods for obtaining good parameter estimates of the specified 

model.  Point predictions for each firm in each year are obtained by inserting company-specific 

variable values into the estimated equation.  Confidence intervals are measured by examining the 

standard error of each point prediction. 

The variables included in the econometric models for SAIDI and SAIFI are shown in the figure 

below. Squared and interaction terms for these variables are also included in the models, but not 

shown below. 

Figure 4  Econometric Variables 

 
 

                                                 
12 It should be noted again that one of the variables found to be significant in this report (% undergrounding) is to a 

certain extent controllable by the utility. However, this variable is controllable more in the long term, rather than the 

short term. 

SAIFI or 
SAIDI 
Target

Forestation 
Density

Customer 
Density of 
Territory

Thunderstorms
Percentage of 

Plant in Service 
Underground

Standard 
Deviation of 
Elevation in 

Territory

MED definition
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4.1  Key Reliability Indexes and Major Event Day Exclusions 

Nearly all jurisdictions that require reporting of reliability indicators include the metrics of SAIDI, 

SAIFI, and Customer Average Interruption Duration Index (“CAIDI”).13  SAIDI measures the 

average duration of sustained interruptions per utility customer.  SAIFI is a gauge of the average 

frequency of sustained interruptions per customer.  CAIDI evaluates the average duration time per 

sustained interruption.  SAIDI is thus the product of SAIFI and CAIDI. 

 

Figure 4-5  SAIDI, SAIFI, CAIDI 

 
 

Most utilities report metrics that exclude extraordinary events from reliability statistics, with the 

goal of increasing historical and peer comparability.  The bulk of events stem from major storms.  

These severe storms vary in number and intensity from year to year.  MED definitions are 

determined by each state regulatory commission.  Definitions vary by state and utility; some use 

the IEEE standard 1366 to determine what constitutes a MED14 while others have customized 

definitions.  For example, for some states, if 10 percent of a utility’s customers experience an 

outage lasting more than a 24-hour period, a MED has occurred.  While considerable differences 

across utilities remain, the IEEE method is the most widespread among the MED definitions. The 

three Washington utilities in this study have defined MEDs using the IEEE method. 

 

By identifying and excluding MEDs, a utility’s performance during major storms and during 

normal operations can be analyzed separately. Extreme weather occurrences, which are 

unpredictable and outside the control of the distributor, will have a significant impact on SAIDI, 

and to a lesser extent on SAIFI.  By segregating these atypical events, a utility can analyze its 

performance during normal operations free from the effects of major storms or other significant 

phenomena.15  Moreover, a utility can analyze its performance during MEDs apart from normal 

operations.  Looking at reliability performance without considering MEDs can distort the data, 

thus inviting unfair comparisons against other utilities which have experienced more (or fewer) 

MEDs. 

 

                                                 
13 Some states only require reporting of two of these measures.  However, the excluded indicator can still be 

determined by the researcher.  SAIDI is equal to the product of SAIFI and CAIDI.   

 

14 The IEEE standard defines MEDs using the “beta” method.  If outages for a certain day exceed 2.5 standard 

deviations from the normal day, a major event day is declared.  A normal day and the standard deviation are 

determined by the utility’s previous five years of normal day data (not including the MEDs).   

15 In practice, identification and separation of major storm events can be difficult and indistinct. 
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In this study, we have not knowingly excluded loss of service/power (LOS) outages that stem from 

the transmission or generation system.  This is because LOS outages and reliability statistics 

excluding both LOS and MEDs are not widely reported.  Therefore, the study results and targets 

provided in this report include LOS outages that do not result in a MED.  This will have the effect 

of increasing the targets (i.e., higher SAIFI and SAIDI) relative to the case where non-MED LOS 

outages were excluded from the dataset.     

 

4.2  Data Sources 

The industry reliability data is gathered through reports and rate case filings made public by state 

commissions and through the EIA-861 data.  Power System gathered SAIDI, SAIFI, and CAIDI 

values for over 100 utilities. However, some utilities only filed reliability data with no MED 

exclusions made.  We eliminated those from our analysis.  For those utilities that did report indexes 

with MEDs excluded, we note whether or not their MED definition was based on the IEEE 

standard. 

 

Additional variable data is also collected.  FERC Form 1 data for the industry is collected via a 

third-party data service, SNL Energy. This data provides us with the total number of retail 

customers and information on underground gross plant in service.  Land types (e.g., forestation, 

prairie, artificial surfaces) found in the service territory, service territory square miles, and the 

standard deviation of the elevation in the territory are found using Geographic Information System 

(GIS) data.  A more detailed description of these variables and their data sources is provided below. 

 

The final sample includes 81 utilities across the United States.  The data spans the years 2006 to 

2015, with 543 total observations points.  Some utilities have data available for all ten of those 

years, while others only have data for some of that ten year period.  Both the SAIFI and SAIDI 

models are estimated using an identical dataset.  The following table lists the utilities found in the 

dataset. 
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Table 4  Utilities in Data Sample 

Alabama Power Company 

ALLETE (Minnesota Power) 

Appalachian Power Company 

Arizona Public Service Company 

Atlantic City Electric Company 

Avista Corporation 

Baltimore Gas and Electric Company 

Central Hudson Gas & Electric 

Corporation 

Central Maine Power Company 

Cleveland Electric Illuminating Company 

Commonwealth Edison Company 

Connecticut Light and Power Company 

Consolidated Edison Company of New 

York, Inc. 

Consumers Energy Company 

Duke Energy Carolinas, LLC 

Duke Energy Indiana, LLC 

Duke Energy Kentucky, Inc. 

Duke Energy Ohio, Inc. 

Duquesne Light Company 

El Paso Electric Company 

Empire District Electric Company 

Entergy Arkansas, Inc. 

Entergy Mississippi, Inc. 

Entergy New Orleans, Inc. 

Florida Power & Light Company 

Georgia Power Company 

Gulf Power Company 

Idaho Power Co. 

Indiana Michigan Power Company 

Indianapolis Power & Light Company 

Jersey Central Power & Light Company 

Kentucky Power Company 

Kentucky Utilities Company 

Kingsport Power Company 

Louisville Gas and Electric Company 

Madison Gas and Electric Company 

Massachusetts Electric Company 

Metropolitan Edison Company 

Monongahela Power Company 

Mt. Carmel Public Utility Company 

Nevada Power Company 

New York State Electric & Gas 

Corporation 

Niagara Mohawk Power Corporation 

Northern Indiana Public Service Company 

Ohio Edison Company 

Oklahoma Gas and Electric Company 

Orange and Rockland Utilities, Inc. 

Pacific Gas and Electric Company 

PacifiCorp 

PECO Energy Company 

Pennsylvania Electric Company 

Pennsylvania Power Company 

Portland General Electric Company 

Potomac Edison Company 

Potomac Electric Power Company 

PPL Electric Utilities Corporation 

Public Service Company of Colorado 

Public Service Company of New 

Hampshire 

Public Service Company of New Mexico 

Public Service Company of Oklahoma 

Public Service Electric and Gas Company 

Puget Sound Energy, Inc. 

Rochester Gas and Electric Corporation 

San Diego Gas & Electric Co. 

Sierra Pacific Power Company 

South Carolina Electric & Gas Co. 

Southern California Edison Company 

Southern Indiana Gas and Electric 

Company, Inc. 

Superior Water, Light and Power 

Company 

Tampa Electric Company 

Union Electric Company 

United Illuminating Company 

Upper Peninsula Power Company 

Virginia Electric and Power Company 

West Penn Power Company 

Westar Energy (KPL) 

Western Massachusetts Electric Company 

Wheeling Power Company 

Wisconsin Electric Power Company 

Wisconsin Power and Light Company 

Wisconsin Public Service Corporation 
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4.3  Model Specification, Variables, and Parameter Estimates 

Two models are estimated:  (1) SAIFI with MEDs excluded, and (2) SAIDI with MEDs excluded.  

The explanatory variables in the models include: 

 

 The forestation levels of each utility (F),  

 Customer density measured by the number of retail customers divided by square miles of 

service territory (D),  

 The prevalence of thunderstorms in the service territory (T),  

 The standard deviation of elevation in the service territory used only in SAIDI model (E), 

 The percentage of underground plant in total distribution plant (U), and  

 Whether the MED exclusion criteria is based on the IEEE 1366-2003 standard (I).   

 

Both the SAIFI and SAIDI models use a translog functional form, where model variables are 

logged, and explanatory variables include logged first order, square and interaction terms. The 

translog function form is widely used in research and provides considerable flexibility in 

estimating variable impacts.  This form allows us to adjust for interactions between variables in 

determining reliability levels. For example, the forestation variable may have differing impacts on 

reliability at different levels of undergrounding.  The interaction terms allow the model to adjust 

for these different impacts.  The equation for the SAIFI model used is given by the following 

equation: 

 

ln(𝑆𝐴𝐼𝐹𝐼) =∝ + 𝛽1 ∗ ln(𝑈) + 𝛽2 ∗ ln(𝐹) + 𝛽3 ∗ ln(𝐷) + 𝛽4 ∗ ln(𝑇) + 𝛽5 ∗  𝐼 +  𝛽6 ∗ ln(𝑈) 
∗ ln(𝑈) +  𝛽7 ∗ ln(𝐹)  ∗ ln(𝐹) +  𝛽8 ∗ ln(𝐷) ∗ ln(𝐷) +  𝛽9 ∗ ln(𝑇)  ∗ ln(𝑇)
+  𝛽10 ∗ ln(𝑈) ∗ ln(𝐹) +  𝛽11 ∗ ln(𝑈) ∗ ln(𝐷) +  𝛽12 ∗ ln(𝑈) ∗ ln(𝑇) +  𝛽13

∗ ln(𝐹)  ∗ ln(𝐷) +  𝛽14 ∗ ln(𝐹)  ∗ ln(𝑇) + 𝛽15 ∗ ln(𝐷)  ∗ ln(𝑇) + 𝜀 
 

For instance, we note from the equation that customer density (𝐷) enters the model in several 

ways:  

 

 logged (as ln(𝐷)),  

 squared (as ln(𝐷)2), and  

 interacted with other variables such forestation (as ln(𝐷) ∗ ln(𝐹)).  

 

These inputs allow us to determine the impact of density not just at the mean, but also at various 

values of the variable. The interaction terms allow us to determine how density affects reliability 

for given levels of forestation and undergrounding. The last term, ε, represents the random error. 

The β terms are the coefficients for each variable; they represent the impact each variable has on 

the studied metric. Since the terms are logged the coefficients are elasticity estimates.  That is, they 

estimate the expected percent change in reliability given a percent change in the explanatory 

variable value.  A β of 0.10 would mean that in general, a 100% increase in that variable would 

result in a 10% increase in the studied metric. 

 

The equation for the SAIDI model used is given by the following equation: 
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ln(𝑆𝐴𝐼𝐷𝐼) =∝ + 𝛽1 ∗ ln(𝑈) + 𝛽2 ∗ ln(𝐹) + 𝛽3 ∗ ln(𝐷) + 𝛽4 ∗ ln(𝑇) + 𝛽5 ∗  𝐼 + 𝛽6 ∗ ln(𝑈) 
∗ ln(𝑈) +  𝛽7 ∗ ln(𝐹)  ∗ ln(𝐹) +  𝛽8 ∗ ln(𝐷) ∗ ln(𝐷) +  𝛽9 ∗ ln(𝑇)  ∗ ln(𝑇)
+  𝛽10 ∗ ln(𝑈) ∗ ln(𝐹) +  𝛽11 ∗ ln(𝑈) ∗ ln(𝐷) +  𝛽12 ∗ ln(𝑈) ∗ ln(𝑇) +  𝛽13

∗ ln(𝐹)  ∗ ln(𝐷) +  𝛽14 ∗ ln(𝐹)  ∗ ln(𝑇) +  𝛽15 ∗ ln(𝐷) ∗ ln(𝑇) + 𝛽16 ∗ ln(𝐸)
+ 𝜀 

 

The SAIDI equation is the same, except it adds a variable not in the SAIFI equation: the standard 

deviation of elevation (𝛽16 ∗ ln(𝐸)).  It should be noted that that the coefficients 𝛽1 etc. will have 

different values in the SAIFI equation and the SAIDI equation.  

 

The SAIFI model includes 81 utilities with varying time-series lengths covering the years 2006 to 

2015, which result in 543 total observations. This type of dataset requires an estimation procedure 

that accounts for the cross-sectional time-series, or panel, nature of the data. We use a feasible 

generalized least squares (“FGLS”) estimator that corrects for cross-sectional heterogeneity as well 

as addresses the panel form of the data.  The estimator accomplishes this by correcting for group-

wise (utility-by-utility) heteroskedasticy, and results in parameter estimates that are more accurate, 

consistent, and precise than other methods.   

 

We note that all first order explanatory variables are statistically significant at a 95 percent 

confidence level (p-value < 0.05).  The p-value column in the table below provides the probability 

the “true” coefficient is actually zero, that is, the variable has no impact on reliability.  The smaller 

the number the higher the statistical chance is the variable has an impact on reliability.  For 

example, a p-value of 0.0100 means there is a one percent probability that the variable has no 

influence on the reliability metric.  

Table 5  SAIFI Model Variables 

Variable 
Coefficient 

Estimate 

Coefficient in 

Model 
P-Value 

Constant -0.065957 ∝  0.0162 

% Underground (U) -0.158076 𝛽1 0.0000 

% Forestation (F) 0.261986 𝛽2 0.0000 

Customer Density (D) -0.117477 𝛽3 0.0000 

Thunderstorms (T) 0.191656 𝛽4 0.0000 

IEEE MED Definition 0.104879 𝛽5 0.0000 

U*U 0.132452 𝛽6 0.0000 

F*F 0.005125 𝛽7 0.6430 

D*D -0.064507 𝛽8 0.0000 

T*T 0.030706 𝛽9 0.0000 

U*F 0.100410 𝛽10 0.0084 

U*D 0.001082 𝛽11 0.9633 

U*T 0.067185 𝛽12 0.0005 

F*D 0.136388 𝛽13 0.0000 

F*T -0.008807 𝛽14 0.5310 

D*T 0.070328 𝛽15 0.0000 
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The SAIDI model is similarly based on a translog specification.  The only variable difference is 

that the standard deviation of elevation variable is included in the SAIDI model.  First order 

explanatory variables are statistically significant at the 95 percent confidence level. 

Table 6  SAIDI Model Variables 

Variable 
Coefficient 

Estimate 

Coefficient 

Variable 
P-Value 

Constant 4.629731 ∝  0.0000 

% Underground (U) -0.163976 𝛽1 0.0000 

% Forestation (F) 0.418174 𝛽2 0.0000 

Customer Density (D) -0.184581 𝛽3 0.0000 

Thunderstorms (T) 0.131738 𝛽4 0.0000 

S.D. of Elevation (E) 0.037079 𝛽16 0.0000 

IEEE MED Definition 0.093083 𝛽5 0.0000 

U*U -0.108617 𝛽6 0.0000 

F*F -0.035252 𝛽7 0.0000 

D*D -0.104197 𝛽8 0.0000 

T*T 0.007068 𝛽9 0.4647 

U*F -0.298562 𝛽10 0.0000 

U*D 0.279773 𝛽11 0.0000 

U*T -0.157866 𝛽12 0.0000 

F*D 0.250083 𝛽13 0.0000 

F*T -0.072504 𝛽14 0.0000 

D*T 0.084436 𝛽15 0.0000 

 

The variables used in the equations above are explained in more detail in the next section.  

   

4.4  Variable Definitions and Washington Utility Values 

As discussed above, both models use a translog model specification that includes both first order 

and interaction terms.  Power System mean-scaled all the explanatory variables.  This entails that 

the first order terms will indicate the impact of the variables at the sample mean of the data.  Below 

we describe the impacts of each of the variables at the sample mean (i.e. the first order terms).   

 

Some explanatory variables were tested but rejected; the typical reason for rejection was that the 

statistical significance threshold of 90% was not met. Another reason for rejection could be that 

the sign of the variable was different than expected. Rejected variables include: percent service 

area that is artificial (wrong sign), wind speeds in territory (statistically insignificant), percent 

commercial and industrial sales in total sales (statistically insignificant and wrong sign), and 

extreme temperatures (wrong sign).16  

 

Placing power lines underground lessens the susceptibility of these lines to environmental 

                                                 
16 Reason for exclusions are in parenthesis and based on the final SAIDI model. 
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factors.17  In the SAIDI and SAIFI models, the percentage of underground plant tends to reduce 

both the frequency and total duration of outages.  These findings are significant at a 99 percent 

confidence level. The variable is calculated using the annual FERC Form 1 data for the 81 

utilities.18 The variable is calculated by dividing the distribution gross plant in service accounts of 

underground conduit and underground conductors and devices by total distribution plant.  This 

calculation is done for every utility and for every year within the sample. 

 

The percentage of service territory that is forested is also included in the reliability models.  A 

higher proportion of trees increase the number of incidents of branches or trees falling onto power 

lines.  The forestation parameter estimate is positive in both models, indicating that higher 

vegetation leads to higher SAIDI and SAIFI values.  This finding is significant at a 99 percent 

confidence level. The percentage of forestation variable is based on GIS (geographic information 

system) land cover maps. Power System used the GlobCover 2009 product processed and 

produced by the European Space Agency (“ESA”) and the Université catholique de Louvain. These 

maps are matched with the areas served by each utility to create the forestation variable. 

 

The customer density of the service territory and its impact on reliability measures is also tested.  

Density is measured by the number of retail customers per square mile of service territory.  Higher 

density would be expected to lower SAIDI and SAIFI values, as customers are more concentrated 

across the service territory, requiring fewer line miles and shorter drive times.  In both models, we 

find that higher density levels tend to lower SAIDI and SAIFI values.  This finding is significant 

at a 99 percent confidence level in both models. The customers per square mile variable is 

calculated using GIS coordinates of each utility’s service area provided to Power System by Platts.  

The variable equals the total square miles of the area of the distributors service territory divided 

by the number of retail customers served.  The customer variable comes from the FERC Form 1 

or EIA-861 data.   

 

The thunderstorm variable is included in both models.  The thunderstorm variable is defined as 

the annual sum of hours designated as being hours in which thunderstorms took place.  We would 

expect a higher level of thunderstorm hours to increase SAIFI and SAIDI levels.  In both models, 

we find this to be true with at the 99% confidence level.  This data comes from historical weather 

station data from the counties in each service territory.  We gathered weather station data for each 

county in the country.  This data comes from the National Climatic Data Center (“NCDC”). Power 

System mapped the counties served by each utility in the sample and then population weighted the 

hours designated as thunderstorm hours based on that mapping. 

 

The standard deviation of elevation variable measures the variance in elevation within each 

utility’s service territory.  The more “hilly” the service territory, the more difficult restoration of 

outages is expected to be.  This variable is included in the SAIDI model and has the expected 

positive coefficient sign.  It is statistically significant at the 99% confidence level.  The variable 

data is gathered using GIS.  More specifically, it uses GTOPO30, which is a global digital elevation 

model (“DEM”) resulting from a collaborative effort led by the staff at the U.S. Geological 

Survey’s EROS Data Center in Sioux Falls, South Dakota.  The name GTOPO30 is derived from 

                                                 
17 However, underground lines are more susceptible to flooding and damage caused by freezing/thawing soil. 

 

18 Washington-only plant in service data was provided to Power System directly by Avista and Pacific Power. 
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the fact that elevations in GTOPO30 are regularly spaced at 30-arc seconds (approximately 1 

kilometer).    

 

Also included in the models is a binary variable denoting whether the MED definition is based 

on the IEEE standard. The variable equals “one” if the IEEE definition is used and “zero” 

otherwise.  This allows us to inform our models with data from utilities which report IEEE-based 

data to their commissions, and at the same time expand our sample by including data from those 

that do not use IEEE-based exclusion criterion. There is no a priori expectation on the sign of the 

parameter estimate.  The parameter estimate on this variable is positive in both models and 

statistically significant at the 99% confidence level in both models. 

 

The average 2011-2015 values for the three Washington utilities and the sample mean is provided 

in the table below. 

Table 7  Variable Values 

Avista 
Variable 2011 2012 2013 2014 2015 2011-2015 

Sample 

Mean 

SAIFI 1.09 1.03 0.88 1.06 0.98 1.05 

SAIDI 109 132 118 144 159 125 

Percent 

Underground 

19.1% 18.8% 18.6% 18.6% 18.6% 20.4% 

Percent 

Forestation 

29.0% 29.0% 29.0% 29.0% 29.0% 65.9% 

Customer Density 38.9 39.2 39.5 39.9 40.8 312.4 

Thunderstorm 

Hours 

6.9 20.8 25.1 17.1 19.0 54.9 

S.D. of Elevation 173.5 173.5 173.5 173.5 173.5 147.7 

IEEE Binary 1 1 1 1 1 0.73 
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Pacific Power 
Variable 2011 2012 2013 2014 2015 2011-2015 

Sample 

Mean 

SAIFI 0.55 0.66 0.79 0.79 0.85 1.05 

SAIDI 80 100 113 122 100 125 

Percent 

Underground 

9.4% 9.5% 9.4% 9.4% 9.3% 20.4% 

Percent 

Forestation 

30.2% 30.2% 30.2% 30.2% 30.2% 65.9% 

Customer Density 47.5 47.6 47.6 47.7 48.0 312.4 

Thunderstorm 

Hours 

4.1 11.9 9.9 9.9 8.2 54.9 

S.D. of Elevation 306.9 306.9 306.9 306.9 306.9 147.7 

IEEE Binary 1 1 1 1 1 0.73 

 

Puget Sound 
Variable 2011 2012 2013 2014 2015 2011-2015 

Sample 

Mean 

SAIFI 1.00 0.80 0.86 0.96 1.03 1.05 

SAIDI 142 120 125 153 161 125 

Percent 

Underground 

35.7% 42.1% 42.3% 42.2% 42.2% 20.4% 

Percent 

Forestation 

85.5% 85.5% 85.5% 85.5% 85.5% 65.9% 

Customer Density 117.6 118.2 117.8 118.5 119.8 312.4 

Thunderstorm 

Hours 

1.8 4.0 7.7 4.2 9.7 54.9 

S.D. of Elevation 576.6 576.6 576.6 576.6 576.6 147.7 

IEEE Binary 1 1 1 1 1 0.73 
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5 Reliability Targets 

The models presented in Section 4, combined with the variable values for each Washington utility, 

are used to calculate the expected SAIFI and SAIDI targets for each utility.  These targets represent 

the model prediction for each utility based on their explanatory variable values. For example, the 

targets for Avista represent the values we would expect from an average utility with the particular 

service territory characteristics of Avista. Power System used variable values for each utility that 

corresponds to only their Washington service territory.  Therefore, these targets are applicable only 

to each utility’s Washington service territory.19   

 

The targets exclude MED days but include loss of supply (“LOS”) outages, due to the lack of 

industry data that excludes both MED days and LOS.  The MED definition for the target is based 

on the IEEE “2.5 beta” method.20  We accomplished this by including the IEEE variable in the 

model, and then setting the Washington utility IEEE variable value equal to “1”. For utilities in 

the sample that did not use the IEEE “2.5 beta” method, we set this variable value to “0”.  

 

The actual and expected SAIDI and SAIFI for the individual years 2011-2015 are shown in Table 

8 and Table 9. 

Table 8  Actual and Expected SAIDI, 2011-2015 

 
  

Table 9  Actual and Expected SAIFI, 2011-2015 

 
 

5.1  Reliability Target Results: 2011-2015 Average  

The targets in this section are based on a 5-year average of the most recent model predictions (i.e. 

the above five-year periods are averaged).  For this study, those are the years of 2011-2015. Thus 

                                                 
19 Since Puget Sound Energy operates entirely in Washington, the targets are applicable to its entire service territory. 

 
20 The IEEE “2.5 beta” method and MEDs in general were discussed in Footnote 2 and Section 4. 

Actual Target Actual Target Actual Target

2011 109 115 80 113 142 129

2012 132 116 100 128 120 114

2013 118 117 113 125 125 105

2014 144 116 122 125 153 113

2015 159 116 100 122 161 103

Puget Sound Energy
Year

Avista Corporation Pacific Power

Actual Target Actual Target Actual Target

2011 1.09 1.10 0.55 1.64 1.00 0.93

2012 1.03 1.04 0.66 1.43 0.80 0.89

2013 0.88 1.04 0.79 1.46 0.86 0.90

2014 1.06 1.05 0.79 1.47 0.96 0.89

2015 0.98 1.05 0.85 1.50 1.03 0.91

Year
Avista Corporation Pacific Power Puget Sound Energy
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these targets represent the average SAIDI and SAIFI that we would expect for these specific 

utilities over the 2011-2015 period. The targets provide an empirically-driven goal that can  be 

used for future year goal-setting. However, the targets would not necessarily project into the future 

indefinitely as each utility’s circumstances change or the industry reliability expectation changes 

over time.21 A 5-year average target should be seen as what the utility’s target is for a 5-year rolling 

average of reliability outcomes.  Given that annual reliability metrics will vary based on a host of 

factors, a longer run target makes sense.  

 

The targets in the tables below are the “Model Expected” targets.  These targets are the estimated 

“average” or “normal” level of reliability derived from the econometric model.  One would expect 

this level of reliability from an “average performer” facing the exact conditions of each of the 

Washington utilities.  While this is our “best estimate” of where each utility’s reliability should be 

to align itself with the industry given its operating characteristics, the model results possess a 

degree of uncertainty. Accordingly, the expected targets should be considered approximations 

while the confidence intervals surrounding each target give some sense of the degree of uncertainty 

for that target.  

 

The model’s expected targets for each utility are shown below.  These are based on the 2011-2015 

average model predictions for each utility. The results for each individual year are shown in the 

previous section. 

Table 10  Expected Targets 

Utility SAIFI Target SAIDI Target 

Avista 1.05 116 

Pacific Power 1.50 123 

Puget Sound Energy 0.90 113 

 

The next two tables show the upper and lower bounds for SAIFI and SAIDI, respectively.  The 

upper and lower bounds are constructed using a 90% confidence interval.  The concept of 

confidence intervals is discussed in section 3.1 above.  The confidence intervals are constructed 

using the 5-year standard error of each utility’s observations. 

 

Table 11  Model Expected Target (SAIFI Upper and Lower Bounds) 

Utility Lower Bound SAIFI Target Upper Bound 

Avista 0.82 1.05 1.29 
Pacific Power 1.17 1.50 1.83 

Puget Sound Energy 0.70 0.90 1.10 
 

 

                                                 
21 Power System would suggest updating the reliability benchmarks at least once every five years in order to capture 

industry expectation changes and service territory variable changes for each utility. 
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Table 12  Model Expected Target (SAIDI Upper and Lower Bounds) 

Utility Lower Bound SAIDI Target Upper Bound 

Avista 86 116 147 
Pacific Power 90 123 155 

Puget Sound Energy 83 113 142 
 

The figures below provide the targets and confidence intervals for each utility.   

 

Figure 6  Candidate SAIFI Targets (2011-2015) 
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Figure 7  Candidate SAIDI Targets (2011-2015) 
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6 Concluding Remarks  

The targets and ranges found in this report provide the long-run reliability outcomes that our 

models predict each utiltiy to achieve.  Given the annual variability in reliability metrics, a 5-year 

rolling average target is appropriate, rather than a focus on outcomes in one specific year.  In any 

one given year, fluctuations will be seen primarily due to weather differences.  Even though the 

metrics are normalized and exclude severe weather outages, weather conditions will still have an 

impact on annual outcomes.  Some years will be more or less challenging.  Taking a 5-year rolling 

average enables a smoothing of those fluctuations. 

 

It is important to note that these reliability targets are based on what the industry expectations were 

for 2011-2015, given the service territory conditions each Washington utility faces.  However, 

there is no guarantee that the industry is in proper balance and is providing the right amount of 

reliability.  The targets are dependent on the “collective wisdom” of the 81 utility sample.  If these 

utilities are not providing the proper cost/reliability balance overall, then the developed targets will 

also not provide the right balance.  The industry may also change the reliability expectations in the 

future as consumer preferences and available technology transform.  Power System recommends 

updating the reliability benchmarks at least once every five years to account for changing service 

territory conditions for the Washington utilities and changing industry expectations.   

 

It is also worth stating that being well above or below these targets does not necessarily mean the 

utility is performing at a “poor” or “good” level.  Besides reliability, customers care a great deal 

about their electric rates.  A utility may be missing its reliability targets by a large margin, but 

saving its customers money on their electric bills through strong cost performance.  That is, they 

may be missing their reliability targets, but have cost levels far lower than what their expected cost 

targets would be.  
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