

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

	DOCKET NO. TR-
EWGR Petitioner,	PETITION TO CONSTRUCT A HIGHWAY-RAIL GRADE CROSSING
vs.	
Spokane County Respondent	USDOT CROSSING NO.: TBD

The Petitioner asks the Washington Utilities and Transportation Commission (UTC) to approve construction of a highway-rail grade crossing as described in this petition.

Prior to submitting this petition to the UTC, State Environmental Protection Act (SEPA) requirements must be met. Washington Administrative Code (WAC) 197-11-865 (2) requires:

All actions of the utilities and transportation commission under statutes administered as of December 12, 1975, are exempted, except the following:

(2) Authorization of the openings or closing of any highway/railroad grade crossing, or the direction of physical connection of the line of one railroad with that of another;

Please attach sufficient documentation to demonstrate that the SEPA requirement has been fulfilled. For additional information on SEPA requirements contact the Department of Ecology.

Section 1 - Petitioner's Information

Eastern Washington Gateway Railroad (EWGR)
Petitioner Petitioner
Signature
809 Madison Avenue
Street Address
Davenport, WA 99122
City, State and Zip Code
Mailing Address, if different than the street address
Contact Person Name
509-228-8979 info@ewgrr.com
Contact Phone Number and E-mail Address

Section 2 - Respondent's Information

Spokane County	
Respondent	
1026 W Broadway Ave	
Street Address	
Spokane, WA 99260	
City, State and Zip Code	
a a	
Mailing Address, if different than the street address	
Marriane Barrentine	4
Contact Person Name	
509-477-7443 mbarrentine@spokanecounty.org	
Contact Phone Number and E-mail Address	
¥	

Section 3 - Proposed Crossing Location

1. Existing highway/roadway Craig Road
2. Existing railroad <u>EWGR</u>
3. GPS location Latitude: 47°37'28"N Longitude: 117°36'15"W
4. Railroad mile post (nearest tenth) 0.66 on proposed track
5. City Spokane County Spokane County
Section 4 - Current Highway Traffic Information
1. Name of roadway/highway Craig Road
2. Roadway classification Rural Collector Arterial
3. Road authority Spokane County
4. Average annual daily traffic (AADT) 3,200 (Spokane County Traffic Counts, 2014)
5. Number of lanes 2
6. Roadway speed 45 mph
7. Is the road part of an established truck route? Yes X No
8. If so, trucks are what percent of total daily traffic? 42% (Spokane County Traffic Count, 2018, see Appendix B)
9. Is the road part of an established school bus route? Yes X No
10. If so, how many school buses travel over the crossing each day? 20
11. Describe any changes to the information in 1 through 9, above, expected within ten years: Medical Lake School District is expecting an increase in 4-6 bus trips per day in the next couple of years.

Section 5 - Railroad Information

1. Railroad company Eastern Washington Gateway Railroad
2. Type of railroad at crossing Common Carrier Logging X Industrial
□ Passenger □ Excursion
3. Type of tracks at crossing
4. Number of tracks at crossing1
5. Average daily train traffic, freight <u>Unknown (2 trains assumed in feasibility study, see Appendix A)</u> Authorized freight train speed <u>20 mph</u> Operated freight train speed <u>10 mph</u>
6. Average daily train traffic, passenger0
Authorized passenger train speed NA Operated passenger train speed NA
7. Will the proposed crossing eliminate the need for one or more existing crossings? Yes No _X_
8. If so, state the distance and direction from the proposed crossing.
9. Does the petitioner propose to close any existing crossings? Yes No _X_
Section 6 – Temporary Crossing
1. Is the crossing proposed to be temporary? Yes No _X
2. If so, describe the purpose of the crossing and the estimated time it will be needed
3. Will the petitioner remove the crossing at completion of the activity requiring the temporary crossing? Yes No _X
Approximate date of removal

Section 7 – Alternatives to the Proposal

Does a safer location for a crossing exist within a reasonable distance of the proposed location? Yes No _X
2. If a safer location exists, explain why the crossing should not be located at that site.
Propertition graphs after the River of the first term of the analysis of the re-
3. Are there any hillsides, embankments, buildings, trees, railroad loading platforms or other barriers in the vicinity which may obstruct a motorist's view of the crossing? Yes No _X
There are scattered trees on the east side of the crossing. Trees which obstruct a motorist's view will be removed prior to the crossing becoming active.
 4. If a barrier exists, describe: ♦ Whether petitioner can relocate the crossing to avoid the obstruction and if not, why not. ♦ How the barrier can be removed. ♦ How the petitioner or another party can mitigate the hazard caused by the barrier.
Vigor de Sance de Legacorica, con hi directo di ettera a legacione in decido de la constante de la constante d
in the control of the
5. Is it feasible to construct an over-crossing or under-crossing at the proposed location as an alternative to an at-grade crossing? Yes No _X_
6. If an over-crossing or under-crossing is not feasible, explain why. Constructing an over or under crossing would not be economically feasible for the proposed track. It is also impractical due to the relatively flat terrain, limited space, and low rail traffic and speed. (see Feasibility Study - Appendix A)

7. Does the railway line, at any point in the vicinity of the proposed crossing, pass over a fill area or trestle or through a cut where it is feasible to construct an over-crossing or an under-crossing, even though it may be necessary to relocate a portion of the roadway to reach that point? Yes No _X_
 8. If such a location exists, state: The distance and direction from the proposed crossing. The approximate cost of construction. Any reasons that exist to prevent locating the crossing at this site.
9. Is there an existing public or private crossing in the vicinity of the proposed crossing?
Yes No _X
 ◆ The distance and direction from the proposed crossing. ◆ Whether it is feasible to divert traffic from the proposed to the existing crossing.

Section 8 - Sight Distance

1.	Complete the	following table,	describing the	sight	distance for	motorists	when	approachi	ng
th	e tracks from	either direction.							

a. Approaching the crossing from North, the current approach provides an unobstructed view as follows: (North, South, East, West)

Direction of sight (left or right)	Number of feet from proposed crossing	Provides an unobstructed view for how many feet
Right	300	1000 minimum
Right	200	1000 minimum
Right	100	1000 minimum
Right	50	1000 minimum
Right	25	1000 minimum
Left	300	225
Left	200	375
Left	100	550
Left	50	900
Left	25	1000 minimum

b. Approaching the crossing from <u>South</u>, the current approach provides an unobstructed view as follows: (Opposite direction-North, South, East, West)

Direction of sight (left or right)	Number of feet from proposed crossing	Provides an unobstructed view for how many feet
Right	300	125
Right	200	135
Right	100	200
Right	50	900
Right	25	1000 minimum
Left	300	1000 minimum
Left	200	1000 minimum
Left	100	1000 minimum
Left	50	1000 minimum
Left	25	1000 minimum

2. Will the new crossing provide a level approach measuring 25 feet from the center of the railway on both approaches to the crossing? Yes No _X_
3. If not, state in feet the length of level grade from the center of the railway on both approaches to the crossing. A level approach will be provided 4 feet from the center of the railway on both approaches to the crossing.
4. Will the new crossing provide an approach grade of not more than five percent prior to the level grade? Yes X No

ive percent.	e percentage of grade prior to the level grade and explain why the grade exceed
d	
	Section 9 – Illustration of Proposed Crossing Configuration
	d diagram, drawing, map or other illustration showing the following:
♦ The vi	cinity of the proposed crossing.
	t of the railway and highway 500 feet adjacent to the crossing in all directions. at of grade.
	actions of view as described in Section 7 or identified in Section 8.
♦ Traffic	c control layout showing the location of the existing and proposed signage.
ee Appendix C	,
	Section 10 – Sidewalks
. Provide the f	ollowing information, if applicable:
	de a description of the type of sidewalks proposed.
	ribe who will maintain the sidewalks.
c. Attac	h a proposed diagram or design of the crossing including the sidewalks.
lo sidewalks a	re proposed for the crossing. The proposed track crosses a rural arterial road that
oes not experi	ence regular pedestrian traffic and does not currently have any sidewalks.

Section 11 - Proposed Warning Signals or Devices

1. Explain in detail the number and type of automatic signals or other warning devices planned at the proposed crossing, including a cost estimate for each. If requesting preemption, include the type of train detection circuitry, sequencing and advance preemption time. The Trunk Rail Extension Project initiated by the Spokane International Airport proposes to extend a trunk line as far east from the Geiger Spur as their budget allows. As part of Phase 1, the project trunk line proposes to cross Craig Road but will remain inactive. Phase 1 includes installation of concrete crossing panels, pavement warning markings, advance warning signs, "Tracks Out of Service" signs, and an earthen bumper on the west side of Craig Road to prevent a train from crossing the road if a train were to mistakenly turn off of the Geiger Spur onto the trunk line. Phase 1 of the crossing is estimated to cost \$150,000 and is anticipated to be
completed by the end of 2018. Phase 2 of the crossing will be constructed before the trunk line
becomes active. The trunk line will become active following development of adjacent property by industries which facilitate freight rail transportation. Phase 2 work will consist of removing
the "Tracks Out of Service" sign and earthen bumper, and installing active warning devices
including a flashing-light signal and automatic gate meeting current MUTCD and railroad standards and train detection circuitry. Phase 2 is estimated to cost \$275,000.
standards and train detection eneditry. I have 2 is estimated to cost \$273,000.
2. Provide an estimate for maintaining the signals for 12 months. \$12,000
3. Is the petitioner prepared to pay to the respondent railroad company its share of installing the warning devices as provided by law? Yes NA No

Section 12 - Additional Information

information such as the as proposed.					crossing
The Spokane Internathe Washington State Geiger Spur that will the track to extend to industrial developmenthe Spokane/Airway Spur and ultimately conce construction of the Spokane of the	Department of extend over 5,0 the east side of ht. The trunk rai Heights area by onnect to region	Transportation, 00 feet onto the Craig Road wh il extension wil allowing indus nal railroads. A	, consists of extent e airport's propert here the airport is I promote and sup strial facilities to I	iding a new track ty. The crossing v intending to attrace port industrial gr nave access to the	off the vill allow et owth in Geiger
1		80			
				•	

Section 13 - Waiver of Hearing by Respondent

Waiver of Hearing
The undersigned represents the Respondent in the petition to construct a highway-railroad grade crossing.
USDOT Crossing No.:TBD_
We have investigated the conditions at the proposed crossing site. We are satisfied the conditions are the same as described by the Petitioner in this docket. We agree that a crossing be installed and consent to a decision by the commission without a hearing.
Della Sauce William 1 20 TH
Dated at Spokane, Washington, on the 28 day of
AUGUST , 20 18.
Printed name of Respondent Signature of Respondent's Representative County Engineer Title Pokane County Public Works Name of Company
Phone number and e-mail address
1026 W. Broadway
Spokene, WA 99266 Mailing address

DOCKET NO. TR-PETITION TO CONSTRUCT A HIGHWAY-RAIL GRADE CROSSING Appendix A – Supplemental Information

Project: Proposed at-grade crossing for the Spokane International Airport Trunk Line at Craig Road.

Background:

Craig Road is an urban major collector road that runs north and south between Fairchild Air Force Base and the Spokane International Airport. The proposed track will cross Craig Road between McFarlane Road and Thorpe Road. The land surrounding the proposed crossing is owned by the Spokane International Airport and consists of open field/pasture with lightly scattered trees. The speed limit on Craig Road is 45mph and the average annual daily traffic is about 3200.

Why is a Grade Separation Not Warranted?

- The project does not meet the minimum threshold for FHWA Grade Separation Guidelines warranting a Grade Separation
 - a. Roadway Characteristics
 - b. Average Daily Vehicle Delay
 - c. Crossing Exposure Value
 - d. Accident Prediction

FHWA - Crossing Handbook

Grade separations should be considered in lieu of at-grade rail crossings if one or more of the following conditions are applicable:

Item	Yes/No
The State Route highway is part of the designated Interstate State Route System;	No
The State Route highway is otherwise designed to have full controlled access;	No
The posted State Route highway speed equals or exceeds 70mph;	No
AADT exceeds 100,000 in urban areas or 50,000 in rural areas;	No
Maximum authorized train speed exceeds 110mph;	No
An average of 150 or more trains per day or 300 Million Gross Tons per year;	No
An average of 75 or more passenger trains per day in urban areas or 30 or more passenger trains per day	No
in rural areas;	
Crossing exposure (the product of the number of trains per day and AADT) exceeds 1,000,000 in urban	No*
areas or 250,000 in rural areas;	
Passenger train crossing exposure (the product of the number of passenger trains per day and AADT)	No
exceeds 800,000 in urban areas or 200,000 in rural areas.	
The expected accident frequency (EAF) for active devices with gates, as calculated by the USDOT	No*
Accident Prediction Formula including 5-year accident history, exceeds 0.5; or	
Vehicle delay exceeds 40 vehicle hours per day	No*
The state of the s	

Items marked with * have calculations provided in this appendix.

These conditions were analyzed using both the proposed at-grade crossing data as well as the 20 year at-grade crossing data shown below:

- Current (2018) road and rail traffic
 - o AADT: 3200
 - The current speed limit is 45 mph
 - o Expected trains per day: 2 (Assumed value, actual value unknown)
 - All train traffic will be freight trains operating at a maximum of 10 mph
- Future 20 year (2038) road and rail traffic

- o AADT: 4200
 - AADT assumed to increase 1.5% annually
- Expected trains per day: 4 (Assumed value, actual value unknown)

The data above is used to predict if the at-grade crossing will meet the FHWA criteria when constructed in 2018 and in 2038 when road and rail traffic will be much greater. The expected accident frequency (EAF) values are calculated using the FHWA Accident Prediction model and U.S.DOT accident prediction factor values. The present and future EAF values are shown in Table 1 and are both below the 0.5 threshold.

Table1: USDOT Expected Accident Frequency

Scenario	Trains Per Day		Expected Number of Accidents per Year (EAF)
2018 Current Trains, Current Vehicles	2	3200	0.2168
2038 Future Trains, Future Vehicles	4	4200	0.2867

Estimated Vehicle Delay Time and Cost

Table 2: 2018 Estimated Delay and Crash Cost

2018 Estimated Delay and Crash Cost	
Variables	
L, Avg train length in miles ³	1.25
S = Avg train speed in MPH	10
T = Avg number of trains per day 5	2
AADT = Avg annual daily traffic 6	3200
T = Percent of Commercial Trucks ⁷	42
CMC = Cost per hour of vehicular delay, cars 1	\$41.9
CMT = Cost per hour of vehicular delay, commercial trucks ¹	\$67.99
F = Cost of fuel, per gallon	\$3.29
C1= Average Cost of a Fatality Crash ¹	\$6,200,000
C2= Average Cost of Injury Only Crash ¹	\$141,000
Calculations - Delay Costs	
MT = Number of minutes crossing is blocked per train ²	15.8
M = Number of minutes per day crossing is blocked ²	31.6
P = Probability that a vehicle will be delayed ²	0.0220
N = avg number of vehicles delayed at the crossing per day ²	70.3
D = Total minutes of daily vehicular delay ²	557.3
C = Cost of vehicular delay per day	\$491.3
F = Cost of fuel consumed by walting vehicles per day	\$29.3
Estimated vehicular delay and fuel cost per year	\$190,034.1
Dally Vehicular Delay, hours per day	9.2
Calculations - Crash Cost	
ECF= Estimated crash frequency per year ¹	0.00800
CC = Combine crash cost per crash	\$805,67
Estimated crash cost per year	\$6,44
Rounded Summary	
Daily Vehicular Delay, hours per day	9.
Estimated crash cost per year	\$6,44
Exposure Value (AADT x # of Trains)	640

Notes

- 1. Estimated costs and calculations from reference (1)
- 2. Calculations are per reference (2)
- 3. Train length represents longest conclevable train length
- 4. Costs adjusted by 1.5% annually from 2018 costs
- 5. Variable has been assumed
- 6. AADT is per Spokane County Traffic GIS Map
- 7. Truck percent is per Appendix B

Table 3: 2038 Estimated Delay and Crash Cost

Table 3: 2038 Estimated Delay and Crash Co	ost
2038 Estimated Delay and Crash Cost	
Variables	
L, Avg train length in miles ³	1,25
S = Avg train speed in MPH	10
T = Avg number of trains per day 5	4
AADT = Avg annual dally traffic 6	4200
T = Percent of Commercial Trucks ⁷	42
CMC = Cost per hour of vehicular delay, cars 1,4	\$56.50
CMT = Cost per hour of vehicular delay, commercial trucks ^{1,4}	\$91.57
F = Cost of fuel, per gallon	\$4.43
C1= Average Cost of a Fatality Crash ^{1,4}	\$8,350,501
C2= Average Cost of Injury Only Crash ^{1,4}	\$189,907

Calculations - Delay Costs	
MT = Number of minutes crossing is blocked per train ²	15,84
M = Number of minutes per day crossing is blocked ²	63,35
P = Probability that a vehicle will be delayed ²	0.04399
N = avg number of vehicles delayed at the crossing per day ²	184.77
D = Total minutes of daily vehicular delay ²	1463.12
C = Cost of vehicular delay per day	\$1,736.99
F = Cost of fuel consumed by waiting vehicles per day	\$84.28
Estimated vehicular delay and fuel cost per year	\$664,765.41
Daily Vehicular Delay, hours per day	24.39
Calculations - Crash Cost	
ECF= Estimated crash frequency per year ¹	0.009387
CC = Combine crash cost per crash	\$805,675
Estimated crash cost per year	\$7,563
Rounded Summary	
Daily Vehicular Delay, hours per day	24.4
Estimated crash cost per year	\$7,563
Exposure Value (AADT x # of Trains)	16800

The results from Tables 2 and 3 show that the 2038 analysis has the higher controlling data and it meets the FHWA Crossing Handbook requirements. The crossing exposure is calculated to be 16,800 which is under the 250,000 rural area limit. The estimated daily vehicular delay is 24.29 hours per day which falls under the 40 hour per day limit.

Summary of Results

- 1. The project does not meet the minimum threshold for FHWA Grade Separation Guidelines warranting a Grade Separation
 - a. Average Daily Vehicle Delay (2038)
 - i. 24.29 hours < 40 hours
 - b. Crossing Exposure (2038)
 - i. 16,800 < 250,000
 - c. Expected Accident Frequency (2038)
 - i. 0.29 < 0.5

All results fall below the threshold for their respective criteria. Therefore, a grade separation at the Craig Road Crossing may not be warranted from a public benefit perspective.

References

- 1. Mid-America Transportation Center, Report # MATC-UNL:422, WBS:25-1121-0001-4222
- 2. National Cooperative Highway Research Program, Report 288 Evaluating Grade-Separated Rail and Highway Crossing Alternatives

DOCKET NO. TR-PETITION TO CONSTRUCT A HIGHWAY-RAIL GRADE CROSSING Appendix B – Spokane County Traffic Study

Site: 0653-1-2913 Thursday, 3/29/2018 10:00 AM -Friday, 3/30/2018 10:00 AM

Classification Grand Totals

: Craig Rd : North of McFarlane Rd : GB

Road Name Location Operator

						Hourly A	Hourly Averages							
						~	NB							
treto levactat	Total	Motor	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi
12.00 AM	7.0	0.0	4.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MA OO-F	8.0	0.0	5.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00 AM	4.0	0.0	1.0	2.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3-00 AM	8.0	0.0	6.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00 AM	11.0	1.0	5.0	2.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K-00 AM	34.0	0:0	19.0	8.0	0.0	6.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0:0
6:00 AM	35.0	0.0	15.0	10.0	0.0	7.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0
7:00 AM	97.0	0.0	46.0	25.0	5.0	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8-00 AM	92.0	1.0	47.0	23.0	4.0	16.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
A-00 AM	95.0	0.1	42.0	33.0	1.0	17.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
10.00 AM	0.09	0.0	4.0	26.0	3.0	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11-00 AM	84.0	0.0	35.0	29.0	1.0	19,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12.00 PM	88.0	0.0	38.0	24.0	3.0	13.0	1.0	0.0	5.0	4.0	0.0	0.0	0.0	0.0
Md OU-L	87.0	0.0	33.0	29.0	1.0	19.0	0.0	0.0	4.0	1.0	0.0	0.0	0:0	0.0
2.00 PM	107.0	0.0	42.0	37.0	1.0	26.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
MQ 00.5	150.0	3.0	80.0	34.0	7.0	23.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
4.00 PM	106.0	1.0	50.0	27.0	1.0	26.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Md UU-Z	1010	1.0	54.0	33.0	0.0	13,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MQ 00.9	63.0	1.0	29.0	24.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MG 00.2	50:0	2.0	22.0	17.0	1.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8:00 PM	42.0	0.0	24.0	13.0	0.0	4.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Md 00-6	20.0	0.0	13.0	5.0	0.0	1.0	0.0	0.0	0.0	T.0	0:0	0.0	0:0	0.0
10.00 PM	22.0	0.0	13.0	5.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11:00 PM	19.0	1.0	13.0	1.0	0.0	3.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Daily Average	1420.0	12.0	680.0	410.0	29.0	259.0	3.0	0.0	20.0	7.0	0.0	0.0	0.0	0.0
						Shirdy Gr	Shirdy Grand Totals							
	Total	Motor	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axle	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi
		DINGS	ii ailci s	S IN							0			
NB	1420	12	089	410	53	259	m	0	70	, ;	0	0 .00	200	2 6
		0.8%	47.9%	28.9%	2.0%	18.2%	0.2%	%0.0	1.4%	0.5%	%0.0	%0.0	0.0%	%0.0

Site: 0653-1-2913 Thursday, 3/29/2018 10:00 AM -Friday, 3/30/2018 10:00 AM

Classification Grand Totals

: Craig Rd : North of McFarlane Rd : GB

Road Name Location Operator

The color of the							Hourly 1	Hourly Averages							
Total Notor Care 8 Avide Avide Stagle Stagle Stagle Stagle Double Double							51	38							
10.0 0.0 9.0 0.0	Interval Start	Total	Motor Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi
7.0 6.0 6.0 1.0 0.0 <td>12:00 AM</td> <td>10.0</td> <td>0.0</td> <td>9.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	12:00 AM	10.0	0.0	9.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
The color The	1-00 AM	7.0	0.0	6.0	1.0	0.0	0.0	0.0	0.0	0:0	0:0	0.0	0.0	0.0	0.0
100 0.0	2.00 AM	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.0 0.0 6.0 0.0 <td>3-00 AM</td> <td>0.01</td> <td>0.0</td> <td>8.0</td> <td>1.0</td> <td>0.0</td> <td>1.0</td> <td>0:0</td> <td>0.0</td> <td>0:0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	3-00 AM	0.01	0.0	8.0	1.0	0.0	1.0	0:0	0.0	0:0	0.0	0.0	0.0	0.0	0.0
1.5 1.0 2.10 1.0 1.0 0.10 0.	4.00 AM	0.8	0.0	6.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70.0 0.0 49.0 4.0 2.0 0.0	K-00 AM	35.0	0.7	21:0	10.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66.0 0.0 49.0 13.0 0.0 2.0 0.0<	6.00 AM	70.0	0-0	49.0	14.0	1.0	4.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53.0 0.0 34.0 13.0 3.0 0.0<	7:00 AM	66.0	0.0	49.0	13.0	0.0	2.0	2.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8:00 AM	53.0	0.0	34.0	13.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
57.0 0.0 36.0 11.0 2.0 6.0 1.0 1.0 1.0 1.0 0.0<	9.00 AM	42.0	0.0	28.0	11.0	0.0	0.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
54,0 0.0 33.0 13.0 2.0 4.0 1.0 0.0<	10:00 AM	57.0	0.0	36.0	11.0	2.0	5.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0
50.0 0.0 3.6.0 1.0 0.0<	11.00 AM	54.0	0.0	33.0	13.0	2.0	4.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
72.0 3.0 42.0 13.0 2.0 4.0 0.0 1.0 1.0 1.0 1.0 0.0<	12:00 PM	50.0	0.0	36.0	10.0	0.0	3.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
95.0 2.0 66.0 16.0 0.0 8.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0<	T:00 PM	72.0	3.0	42.0	13.0	2.0	4.0	0:0	1.0	5.0	1.0	0.1	0.0	0.0	0.0
123.0 1.0 81.0 19.0 5.0 14.0 1.0 0.0 2.0 0.	2:00 PM	95.0	2.0	66.0	16.0	0.0	8.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0
78.0 0.0 57.0 15.0 1.0 3.0 1.0 0.0<	3:00 PM	123.0	1.0	81.0	19.0	5.0	14.0	1.0	0.0	2.0	0:0	0.0	0.0	0.0	0:0
70.00 0.00 55.0 10.00 2.00 4.00 0.00 <	4:00 PM	78.0	0.0	57.0	15.0	1.0	3.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
48.0 0.0 38.0 6.0 0.0 4.0 0.0 </td <td>5:00 PM</td> <td>70.0</td> <td>0.0</td> <td>55.0</td> <td>10.0</td> <td>2.0</td> <td>3.0</td> <td>0.0</td> <td>0.0</td> <td>0:0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	5:00 PM	70.0	0.0	55.0	10.0	2.0	3.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0
33.0 1.0 26.0 5.0 0.	6:00 PM	48.0	0.0	38.0	6.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38.0 0.0 28.0 0.0 </td <td>7:00 PM</td> <td>33.0</td> <td>1.0</td> <td>26.0</td> <td>5.0</td> <td>0:0</td> <td>0:0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0:0</td> <td>0.0</td>	7:00 PM	33.0	1.0	26.0	5.0	0:0	0:0	0.0	0.0	1.0	0.0	0.0	0.0	0:0	0.0
28.0 0.0 2.30 3.0 0.0 </td <td>8:00 PM</td> <td>38.0</td> <td>0.0</td> <td>28.0</td> <td>9.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	8:00 PM	38.0	0.0	28.0	9.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11.0 0.0 9.0 0.0 <td>Md 00:6</td> <td>28.0</td> <td>0.0</td> <td>23.0</td> <td>3.0</td> <td>0.0</td> <td>2.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0:0</td>	Md 00:6	28.0	0.0	23.0	3.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0
14:0 0:0 10:0 0:0 </td <td>10:00 PM</td> <td>11.0</td> <td>0.0</td> <td>9.0</td> <td>2.0</td> <td>0.0</td>	10:00 PM	11.0	0.0	9.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1073.0 8.0 751.0 201.0 18.0 65.0 11.0 3.0 12.0 1.0 3.0 0.0 0.0 0.0 Study Grand Totals Total Bikes Trailers Long Buses Tire Single Single Double Double Double Double Multi Multi Multi 1073 8 751 201 18 65 11 3 12 1 3 0 0.0% 0.0% 0.0% 10.73 8 751 201 18 65 11 3 11 0.1% 0.1% 0.1% 0.3% 0.0% 0.0% 0.0%	11:00 PM	14.0	0:0	10.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Study Grand Totals Total Motor Cars & 2 Axle 2 Axle 2 Axle 4 Axle 4 Axle 5 Axle 5 Axle 5 Axle 6 Axle 7 Axle 7 Axle 7 Axle 7 Axle 7 Axle 7 Axle 8 Axle 8 Axle 9 Axle<	Daily Average	1073.0	8.0	751.0	201.0	18.0	65.0	11.0	3.0	12.0	1.0	3.0	0.0	0.0	0.0
Total Motor Cars & 2 Axle 2 Axle 3 Axle 4 Axle 4 Axle 5 Axle 6							Study Gr	and Totals							
1073 8 751 201 18 65 11 3 12 1 3 0 0 0 0 0 0 0.7% 70.0% 18.7% 1.7% 6.1% 1.0% 0.3% 1.1% 0.1% 0.3% 0.0% 0.0%		Total	Motor Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	<6 Axle Multi	6 Axle Multi	>6 Axle Multi
0.7% 70.0% 18.7% 1.7% 6.1% 1.0% 0.3% 1.1% 0.1% 0.3% 0.0% 0.0%	SB	1073	8	751	201	18	65	11	3	12	T	3	0	0	0
			0.7%	70.0%	18.7%	1.7%	6.1%	1.0%	0.3%	1.1%	0.1%	0.3%	%0"0	%0.0	0.0%

Road Name Location Operator

: Craig Rd : North of McFarlane Rd : GB

Classification Grand Totals

Site: 0653-1-2913 Thursday, 3/29/2018 10:00 AM -Friday, 3/30/2018 10:00 AM

																						v.												
	>6 Axle Multi	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0		>6 Axle Multi	0	%0.0	0	%0.0	0	%0.0
	6 Axle Multi	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		6 Axle Multi	0	%0.0	0	%0.0	0	%0.0
	<6 Axle Multi	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		<6 Axle Multi	0	%0.0	0	%0.0	0	%0.0
	>6 Axle Double	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0:0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	3.0		>6 Axle Double	3	0.1%	0	%0.0	m	0.3%
	5 Axle Double	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	4.0	2.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	1.0	0.0	1.0	8.0		5 Axle Double	8	0.3%	7	0.5%	Н	0.1%
	<5 Axle Double	0.0	0.0	0.0	0.0	0.0	1.0	3.0	0.0	1.0	2.0	1.0	1.0	5.0	0.6	1.0	4.0	2.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	32.0		<5 Axle Double	32	1.3%	20	1.4%	12	1.1%
Di Tira	4 Axle Single	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	3.0		4 Axle Single	8	0.1%	0	%0.0	e	0.3%
rdy Averages	3 Axle Single	0.0	0:0	1.0	0.0	0.0	0:0	2.0	2.0	0.0	2.0	0.0	1.0	2.0	0.0	1.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.0	Study Grand Totals	3 Axle Single	14	%9.0	m	0.2%	11	1.0%
Hourly Averages	2 Axle 6 Tire	2.0	2.0	0.0	2.0	3.0	0.6	11.0	23.0	19.0	17.0	22.0	23.0	16.0	23.0	34.0	37.0	29.0	16.0	13.0	8.0	5.0	3.0	4.0	3.0	324.0	Study Gra	2 Axle 6 Tire	324	13.0%	259	18.2%	65	6.1%
	Buses	0.0	0.0	0.0	1.0	0.0	0.0	1.0	5.0	7.0	1.0	5.0	3.0	3.0	3.0	1.0	12.0	2.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	47.0		Buses	47	1.9%	29	2.0%	18	1.7%
	2 Axle Long	2.0	2.0	2.0	1.0	4.0	18.0	24.0	38.0	36.0	44.0	37.0	42.0	34.0	42.0	53.0	53.0	42.0	43.0	30.0	22.0	22.0	8.0	7.0	5.0	611.0		2 Axle Long	611	24.5%	410	28.9%	201	18.7%
	Cars & Trailers	13.0	11.0	2.0	14.0	11.0	40.0	64.0	95.0	81.0	70.0	80.0	68.0	74.0	75.0	108.0	161.0	107.0	109.0	67.0	48.0	52.0	36.0	22.0	23.0	1431.0		Cars & Trailers	1431	57.4%	089	47.9%	751	70.0%
	Motor Bikes	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	3.0	2.0	4.0	1.0	1.0	1.0	3.0	0.0	0.0	0.0	1.0	20.0		Motor Bikes	20	0.8%	12	%8.0	∞	0.7%
	Total	17.0	15.0	5.0	18.0	19.0	0.69	105.0	163.0	145.0	137.0	147.0	138,0	138.0	159.0	202.0	273.0	184.0	171.0	111.0	83.0	80.0	48.0	33.0	33.0	2493.0		Total	2493		1420		1073	
	Interval Start	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM	6:00 AM	7:00 AM	8:00 AM	9-00 AM	10:00 AM	11:00 AM	12:00 PM	1.00 PM	2-00 PM	3-00 PM	4:00 PM	5:00 PM	6:00 PM	7.00 PM	7	Md 00:0	10:00 PM	11:00 PM	Daily Average			Combined		NB BR		SB	Market State of the State of th

DOCKET NO. TR-PETITION TO CONSTRUCT A HIGHWAY-RAIL GRADE CROSSING Appendix C – Drawings

DOCKET NO. TR-PETITION TO CONSTRUCT A HIGHWAY-RAIL GRADE CROSSING Appendix D – SEPA DNS

WAC 197-11-970 Determination of Non-Significance (DNS)

DETERMINATION OF NON-SIGNIFICANCE

Description:

Construction of Approx. 5000' Rail Extension off the Geiger Spur

Proponent:

Spokane Airport Board

Location of proposal: 9000 W. Airport Drive

Spokane International Airport

Spokane, WA 99224

Lead agency:

Spokane Airport Board

The lead agency for this proposal has determined that it does not have a probable significant adverse impact on the environment. An environmental impact statement (EIS) is not required under RCW 43.21C.030 (2) (c). This decision was made after review of a completed environmental checklist and other information on file with the lead agency. This information is available to the public on request.

This DNS is issued under WAC 197-11-340(2); the lead agency will not act on this proposal for 14 days from the date below. Comments must be received by April 6, 2018

Responsible official: Matt Breen

Position/title:

Director, Planning & Engineering Department

Address:

9000 W. Airport Drive, Suite 204, Spokane WA 99224

Allaci Breen

Date:

March 13, 2018

Signature:

You may appeal this determination in writing to: Matt Breen

Spokane Airports

9000 W. Airport Drive, Suite 204

Spokane, WA 99224

Not later than April 6, 2018. You should be prepared to make specific factual objections.

Contact Spokane Airports to read or ask about the procedures for SEPA appeals.