

Avista's Smart Grid Projects

February 10, 2011 Olympia, WA

Photo courtesy of Bill Owens, City of Pullman

Energy for a Smart Future

COMMERCIAL & INDUSTRIAL BUSINESS CONSUMERS

Seven Characteristics of the Smart Grid

Characteristic	Today's Grid	Smart Grid
Enables active participation by consumers	Consumers are uninformed and non-participative with power system	Informed, involved, and active consumers - demand response and distributed energy resources.
Accommodates all generation and storage options	Dominated by central generation- many obstacles exist for distributed energy resources interconnection	Many distributed energy resources with plug-and-play convenience focus on renewables
Enables new products, services and markets	Limited wholesale markets, not well integrated - limited opportunities for consumers	Mature, well-integrated wholesale markets, growth of new electricity markets for consumers
Provides power quality for the digital economy	Focus on outages - slow response to power quality issues	Power quality is a priority with a variety of quality/price options - rapid resolution of issues
Optimizes assets & operates efficiently	Little integration of operational data with asset management - business process silos	Greatly expanded data acquisition of grid parameters - focus on prevention, minimizing impact to consumers
Anticipates and responds to system disturbances (self-heals)	Responds to prevent further damage- focus is on protecting assets following fault	Automatically detects and responds to problems - focus on prevention, minimizing impact to consumer
Operates resiliently against attack and natural disaster	Vulnerable to malicious acts of terror and natural disasters	Resilient to attack and natural disasters with rapid restoration capabilities

http://www.oe.energy.gov/SmartGridIntroduction.htm

Energy for a Smart Future

What are the potential benefits of a smart grid?

- Reduce waste and increase efficiency
- Decrease outages
- Empower customers
- Environmental benefits

Transformation

Distribution Reliability

- Distribution Automation
- O&M Driven Asset Replacement
- Pro-active Pole Management

Energy Efficiency

- Conductor "Right Sizing"
- Transformer Replacement
- Feeder Balancing
- Capacitor Placement
- Monitoring

American Recovery and Reinvestment Act – Smart Grid Investment Grant Opportunity

July 2009

Communications and Integration

Spokane "Smart Circuit" Overview

Funding Overview

\$3.4 Billion awarded in the following categories

Source: Edison Electric Institute Smart Grid Website http://eei-stimulus.groupsite.com/file_cabinet/49994?lpx=1

Goals of the Spokane Project

- Increased Reliability
- Reduce Energy Losses
- Integration of distributed energy resources
- Extend life of assets

Increased Reliability

Fault Detection Isolation & Restoration

- Distribution Supervisory Control and Data Acquisition (SCADA)
- Line Monitoring
- Communication System
- Remotely Operable Line Devices
- Remotely Operable Substation Devices

Outage Restoration Example

Increased Efficiency

Active Power Flow Management

- Distribution SCADA
- Line Monitoring
- Communication System
- Remotely Operable Line Devices
- Remotely Operable Substation Devices

Distributed Resources & Asset Life

 System capable of handling a wide range of customer, and utility owned <u>resources</u>.

 System capable of handling a wide range of customer loads and system constraints.

Project Scope

- 59 Circuits
- 14 Substations
- 110,000 electric customers

Benefits for Spokane Smart Circuit

Savings (MegaWattHour)

Carbon Reduction: 14,360 Tons a year.

- \$50/Ton to Sequester
- \$718,000/year.

Capacitors

Voltage Optimization

Reconductor

Smart Grid Demonstration Project

ARRA Smart Grid Demonstrations

Pacific Northwest Demonstration Project

What:

- \$178M, ARRA-funded, 5year demonstration
- 60,000 metered customers in 5 states

Why:

- · Quantify costs and benefits
- Develop communications protocol
- Develop standards
- Facilitate integration of wind and other renewables

Who:

Led by Battelle and partners including BPA, 11 utilities, 2 universities, and 5 vendors

NW Smart Grid Demonstration

NW Smart Grid Demonstration

Project Impacts

- 3 Substations
- 13 Circuits
- 13000 Electric Customers
- 5000 Gas Customers

Pullman Smart Grid Demonstration Project

- Upgrade facilities and automate distribution system
- Install technologies and tools for customers to actively monitor and manage their energy usage

2010 Year in Review Smart Grid Demonstration Project

- Project Funding
- Substation Design
- Distribution Design & Construction
- Communication Network Design
- Distribution Management System
- Communications
- Residential Meter Design

2011 Project Activities Smart Grid Demonstration Project

- Substation Construction device installation
- Distribution Construction conductor upgrade, capacitor bank and recloser installation
- Communication Installation –radio mesh network deployed to allow meter communication
- Baseline system analysis of Pullman system
- Provide Advanced Meter residences a web based tool for data access

Smart Grid Demonstration Project

Benefits

- Distribution switches, capacitors and reclosers make the system more efficient
- A rapid communication system will shorten customer outages
- Management of the distribution grid improves reliability
- Automated outage detection and reporting to effectively locate outages
- Ongoing energy use information allows customers to monitor and manage energy

The Customer Experience

The Customer Experience

- Advanced Meter Infrastructure
- Customer Education and Energy Awareness (Web Portal)
- Customer Participation (Demand Response)
- Real Time Energy Use Feedback (Inhome, real-time display)

Advanced Meter Infrastructure (AMI) Scope

Digital meters provided by our cost share partner, Itron, that operate via a secure wireless network, allowing two-way, real-time communication between the customers' meter and Avista.

- Installation begins March 2011 Scope Services – trucks will carry Avista logo
 - ~13,000 Electric
 - ~5,000 Gas
- Customer web tools Fall 2011

The Customer Experience Scope

Web-Portal

- Display interval energy usage data
- Provide education and tools to understand and manage energy consumption
- Available to all Customers with Advanced Meters

Demand Response/Home Area Network

- Respond to Battelle's Transactive Signal
- Provide a Home-Area-Network & Smart Thermostat
- 1,500 Customers in Pullman

Real Time Energy Use Feedback

The Customer Experience Web Portal Objectives

- Provide capability to display meter interval data
- Provide capability for customers to compare usage & costs in a variety of ways
- Provide capability for customers to set a budget and manage energy cost to that budget
- Provide customer education and generate interest in energy management
- Provide web-channel information to a mobile application.
- Develop an understanding of cause and effect results on customer behavior

Service Details at:

Spokane, WA 99223

Curtis A Kirkeby

Account #:

60

My Account

Bill Assistance

- My Bill
- My Payments
- Moving?
- Update My Account
- Billing Options
- Payment Options
 - Bill Inserts

Your home is equipped with the innovative technology that will help you manage and better track your energy and save you money.

Getting started is easy.

Answer the 5 questions by ow Once complet, , , , u, I be firer ted to your Smart Meter.

- What year was our ho le built?
- How many people side in your home?
- o What is the size of your home?

oWhat is your homes main source of heating?

o How do you heat your water?

1970's 💌	
4 💌	
2800 sqft.	
Electric 💌	
Electric 💌	Next

Careers | Site Map | Privacy Policy | About This Site

Search

[†] Energy estimates are based on publically available data for each home and typical usage data for households in your area.

Careers | Site Map | Privacy Policy | About This Site

The Customer Experience Web Portal Timeline

The Customer Experience Demand Response

- Growing national interest in reducing the peak demand for electricity at critical times by eliminating some electricity use or shifting it to non-peak times.
- Strategy—'demand response'(DR). Eliminates need to run or build more expensive, fossil-burning peaking generation plants.
- Pacific Northwest Regional Demonstration Project explores this on a regional scale
- Led by Battelle and its partners, including Avista

The Customer Experience Demand Response Objectives

- Improve prediction and aggregation of energy consumption
- Establish and test the communication of and response to regionally communicated incentive signals
- Measure, analyze and report participant response to and comfort during DR events
- Measure, analyze and report multiple aspects of customers' satisfaction with the program
- Determine, document and report reasons customers leave the program by conducting program drop-out surveys
- Validate the need for and type of customer incentives

The Customer Experience Enrollment

- Inform and educate customer pool about opportunity
- Potential tactics being explored:
 - Targeted direct mail to eligible participants
 - Doorhangers to eligible participants
 - Outbound calling to eligible participants
- Avista intends to test education/recruitment materials in advance with customers to ensure clarity and understanding

The Customer Experience Demand Response Focus Groups

Conducted two customer focus groups in the summer of 2010

Purpose: gage customer response to preliminary demand response program design; assess interest level to participate in the demonstration; and collect customer suggestions for communicating about the demonstration

Results: Response to preliminary design was positive; 15 of 16 said they are interested in participating in the demonstration; several good suggestions received for how best to communicate about the demonstration

The Customer Experience Demand Response Timeline

The Customer Experience In-Home Real-Time Usage Presentation

- Direct communication with the meter
- Energy usage available in real time
- Provide for customer understanding of energy impact for devices within the home
- Allow customer to view energy usage on many devices?

Stakeholder Communications

Commission

Monthly WUTC updates

Community

- Pullman City Council presentations
- Community presentations

<u>Customers</u>

- Advanced meter pre-installation letter to all Pullman and Albion customers
- AvistaUtilities.com
- Outbound calls
- Door hangers, FAQs, brochures
- Informed Customer Service Reps

GET YOUR QUESTIONS ANSWERED AT EI

Energy on the Street

This summer Avista hit the streets with a can questions, now Avista experts are answering what your neighbors are asking about.

Assistance Programs

