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Arcturus: International Evidence on Dynamic Pricing  

Ahmad Faruqui and Sanem Sergici 1 

Abstract 

This paper introduces Arcturus, an international database of dynamic pricing and time-of-use pricing studies.  It contains the 
demand response impacts of 163 pricing treatments that were offered on an experimental or full-scale basis in 34 projects in 
seven countries located in four continents.  The treatments included various types of dynamic pricing rates and simple time-
of-use rates, some of which were offered with enabling technologies such as smart thermostats.  The demand response 
impacts of these treatments vary widely, from 0% to more than 50%, and this discrepancy has led some observers to conclude 
that we still don’t know whether customers respond to dynamic pricing.   We find that much of the discrepancy in the results 
goes away when demand response is expressed as a function of the peak to off-peak price ratio.  We then observe that 
customers respond to rising prices by lowering their peak demand in a fairly consistency fashion across the studies.  The 
response curve is nonlinear and is shaped in the form of an arc: as the price incentive to reduce peak use is raised, customers 
respond by lowering peak use, but at a decreasing rate.  We also find that the use of enabling technologies boosts the amount 
of demand response.  Overall, we find a significant amount of consistency in the experimental results, especially when the 
results are disaggregated into two categories of rates: time-of-use rates and dynamic pricing rates.  This consistency evokes 
the consistency that was found in earlier analysis of time-of-use pricing studies that was carried out by EPRI in the early 
1980s.  Our analysis supports the case for the rollout of dynamic pricing wherever advanced metering infrastructure is in 
place.       

Introduction 

Many utilities have been deploying advanced metering infrastructure (AMI) as part of their grid 
modernization activities.  In addition to yielding operational efficiencies in the distribution system, such 
as lowering the cost of reading meters, faster detection of outages, and theft detection, AMI is also the 
enabler of dynamic and time-of-use pricing (called time-varying pricing in the rest of the paper).2  
Through the use of time-varying rates, utilities can lower their cost of doing business and customer bills 
by lowering, since such rates lower peak loads and improve utility load factors; see Faruqui, Hledik and 
Tsoukalis (2009).   

As of this writing, about a quarter of U.S. households are on smart meters; the number is projected to 
approach a hundred percent in a decade.  However, only two percent of the households are on any type 
of time-varying rate and only a very small percentage of these households are on any form of dynamic 
pricing rate.3 

Over the past decade, a number of dynamic pricing and time-of-use studies have been conducted around 
the globe in order to inform policy-making.  Some of these have been randomized experiments, some 
have been quasi experiments, some have been demonstrations, and some have been full-scale 
deployments.  A full-blown meta-analysis would require the analyst to normalize for differences in 

1 Ahmad Faruqui is a Principal and Sanem Sergici is a Senior Associate with The Brattle Group.  The authors would 
like to thank Eric Shultz and Isaac Toussie of Brattle for their excellent research assistance in developing Arcturus. We 
would also like to acknowledge numerous discussions on dynamic pricing with Ryan Hledik and Neil Lessem of 
Brattle which have helped inform and shape our thinking on the subject.  Faruqui is deeply indebted to his mentor Bob 
Malko for instilling in him a love for time-varying rates while both were part of the Electric Utility Rate Design Study  
at EPRI.   
2 Time-varying pricing refers to time-of-use (TOU) rates as well as dispatchable rate structures such as critical peak 
prices (CPP) and real time prices (RTP).  AMI is only a pre-requisite for dynamic pricing programs, whereas TOU 
rates can be implemented with legacy meters. 
3 Federal Energy Regulatory Commission. 
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experimental design, which in turn would require access to detailed information on the experiment 
design, implementation, and findings.  Such a study was carried out by EPRI in the early 1980s by using 
data from five experiments with time-of-use pricing.4  Lack of individual customer data prevents us 
from carrying out such an analysis at this time.  However, as a first step in that direction, we have 
assembled the results from 34 studies in a database called Arcturus.5   

The 34 studies in our analysis encompass a total of 163 “treatments” where a treatment is defined as a 
unique combination of a time-varying pricing design and enabling technology.  At first glance, there is 
little consistency in the results:  the amount of demand response exhibited across the 163 treatments 
ranges from zero percent to 58 percent.  This wide range of impacts has led observers such as Joskow 
(2012) and some policy makers to conclude that our understanding of customer behavior is not strong 
enough to proceed with universal deployment of dynamic pricing and time-of-use pricing, even though 
smart meters are being deployed.  However, this range just represents the raw data, unfiltered by the 
intensity of the price signal that was conveyed to participants.  If the data from those treatments that 
only featured time-varying prices are plotted separately from those that featured time-varying prices 
with enabling technology, even sharper results are obtained, as enabling technologies increase demand 
response even more.   

We examine the impact of the price ratio on the magnitude of the reduction in peak demand using a log-
linear regression model.  Because the amount of demand response varies with the presence or absence of 
enabling technology, such as a smart thermostat, an energy orb or an in-home display, we include a 
variable that indicates the use of enabling technologies.6  We find a statistically significant relationship 
between the price ratio and the amount of peak reduction.  The interaction variable between price and 
the use of enabling technologies is also statistically significant indicating that there is a boost to the peak 
reduction when prices are paired with enabling technologies.  This relationship is termed the Arc of 
Price Responsiveness for reasons that will become clear later in this paper.   

The Time-Varying Rate Designs 

Time-varying rate designs charge different electricity rates at different times of the day and year.7  These 
rates reflect the time-varying cost of supplying electricity and incentivize consumers to decrease their 
electrical usage during peak hours and/or shift consumption to less expensive off-peak hours.  This 
paper examines the resulting peak demand reductions from four types of time-varying rates: Time-Of 
Use (TOU), Critical Peak Pricing (CPP), Peak Time Rebate (PTR), and Variable Peak Pricing (VPP) 
rates.  The last three options fall under the rubric of dynamic pricing.  While Real-Time Pricing (RTP) 

4 D.W. Caves et. al.¸ “Consistency of Residential Customer Response in Time-of-Use Electricity Pricing Experiments,” 
Journal of Econometrics 26 (1984): 179-203. 
5 Faruqui and Sergici (2010) and Flaim, Neenan and Robinson (2013) summarize the results from some recent studies 
but do not attempt a meta-analysis of the type reported here.  A previous meta-analysis, more limited in scope that this 
one, is contained in Faruqui and Palmer (2011).  A comprehensive bibliography on dynamic pricing can be found in 
Enright and Faruqui (2013). 
6 Some studies characterize only smart thermostats as enabling technologies as these devices automatically adjust temperature 
settings without requiring an action from the customers.  For the purposes of this paper, we characterize smart thermostats, 
energy orbs, and in-home displays as enabling technologies since these devices either automate actions for customers or 
equip them with information to act on.  
7 For a detailed discussion of time-varying rates, see Faruqui, Hledik and Palmer (2012). 
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rates also fall into that rubric, and have been offered to customers in some of the published studies, the 
lack of a clear price ratio inhibits us from using these treatments in this paper. 

A time-of-use (TOU) rate could either be a time-of-day rate, in which the day is divided into time 
periods with varying rates, or a seasonal rate into which the year is divided into multiple seasons and 
different rates provided for different seasons.  TOU rates are fixed by period and consequently offer 
certainty as to what the rate will be and when they will occur.  In a time-of-day rate, a peak period might 
be defined as the period from 12 pm to 6 pm on weekdays, with the remaining hours being off-peak. The 
price would be higher during the peak period and lower during the off-peak period, mirroring the 
variation in marginal costs by pricing period.  TOU rates with three periods have also been offered. 
Such rate schemes include a shoulder (or mid-peak) period, where the cost of electricity is lower than 
peak period rates, but higher than off-peak period rates.  Additionally, TOU rates may future two peak 
periods (such as a morning peak from 8 am to 10 am, and an afternoon peak from 2 pm to 6 pm). 

On a critical peak price (CPP) rate, customers pay higher peak period prices during the few days a year 
when wholesale prices are the highest (typically the top 10 to 15 days of the year which account for 10 
to 20 percent of system peak load). This higher peak price reflects both energy and capacity costs and, as 
a result of being spread over relatively few hours of the year, can be in excess of $1 per kWh. In return, 
the customers pay a discounted off-peak price that more accurately reflects lower off-peak energy 
supply costs for the duration of the season (or year). Customers are typically notified of an upcoming 
“critical peak event” one day in advance, but if enabling technologies are used, these rates can also be 
activated on a day-of basis. 

Like on a CPP rate, customers on variable peak price (VPP) rates pay higher peak period prices during 
a few days a year when wholesale prices are highest.  The main difference between a critical peak price 
and a variable peak price is that the variable peak price varies from one event day to the next, as 
determined by market rates.  On-peak prices generally vary each day based on day-ahead market prices. 
On non-event days, the VPP rate acts like a normal TOU rate, with fixed period prices. 

If a CPP tariff cannot be rolled out because of political or regulatory constraints, some parties have 
suggested the deployment of a peak-time rebate (PTR). Instead of charging a higher rate during critical 
events, participants are paid for load reductions (estimated relative to a forecast of what the customer 
otherwise would have consumed). If customers do not wish to participate, they simply buy electricity 
through at the existing rate. There is no rate discount during non-event hours.  

Participants in real-time pricing (RTP) programs pay for energy at a rate that is linked to the hourly 
market price for electricity. Depending on their size, participants are typically made aware of the hourly 
prices on either a day-ahead or hour-ahead basis. Typically, only the largest customers —above one 
megawatt of load — face hour-ahead prices. These programs post prices that most accurately reflect the 
cost of producing electricity during each hour of the day, and thus provide the best price signals to 
customers, giving them the incentive to reduce consumption at the most expensive times. 

Figure 1 presents a visual representation of these rate types.   
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Figure 1: Common Time-Varying Rate Options 

Enabling technologies such as programmable thermostats and in-home displays (IHDs) can be offered 
with time-varying rates in order to enhance the effectiveness of the rates by automating response and 
minimizing customer transaction costs.  Programmable communicating thermostats (PCTs) can receive a 
signal during a critical peak pricing event and automatically reduce air-conditioning usage to a level that 
is specified by the customer, reducing the need to manually respond to high-priced events.  Information-
enhancing technologies such as in-home displays (IHDs) can give customer information such as the 
amount of electricity that they are using, what it is costing them, how that translates into their carbon 
footprint, how close they are to energy savings goals, and other such data.  The information can also be 
provided online through web portals or even through a smartphone.  Energy orbs provide visual 
feedback to customers by changing color depending on the price of electricity.   

 The 34 Studies 

The 34 studies encompassing 163 experimental treatments in the Arcturus database span four continents 
and seven countries. Figure  sorts the peak reductions for each of the 163 experimental treatments from 
lowest to highest.  At first glance, there is little consistency in the results, for demand response varies 
from 0 percent to 58 percent.  Some of the variation in demand response can be attributed to the 
different rate types tested, while the rest is potentially due to other factors such as differences in 
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experimental design, socio-demographic characteristics, and climate conditions.  Grouping the results by 
rate type slightly improves the resolution, but not by much.  There still remains significant variation 
among pricing types, as shown in Figure 3.  Due to their tendency to have higher price ratios than TOU 
rates, we hypothesize that CPP and PTR rates tend to result in higher customer response.8  We 
hypothesize that this is primarily due to the use of high price ratios for these rates.  By filtering by rate 
type and the use of enabling technologies, as done in Figure , we can see a clearer picture emerge from 
the data.  The use of enabling technology appears to increase demand response to levels above pricing-
only observations for a given price ratio.  

Figure 2: Impacts from Residential Time-Varying Pricing Tests, Sorted from Lowest to Highest 

8 For the PTR rate, the effective critical peak price is calculated by adding the peak time rebate to the rate the customer 
normally pays during that time period (in the absence of the rebate).  This is essentially the opportunity cost of consuming 
every kWh of electricity. 
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Figure 3: Impacts from Pricing Tests, by Rate Type 

Figure 4: Impacts from Pricing Tests by Rate Type and Use of Enabling Technologies 

Even after sorting the observations by rate type and the use of enabling technology, significant 
unexplained variation remains.  As hypothesized before, the range of results may be due to the variation 
in the peak-to-off-peak price ratio employed across the studies among other reasons.  In order to 
examine this, we carried out an exploratory data analysis by plotting demand response as a function of 
the price ratio.  The plots initially focus only on pricing treatments that were not accompanied by 
enabling technology. As seen below in Figure , the 92 price-only treatments fall into a tight pattern. 
These are then followed by plots that focus on pricing treatments that were also technology enabled.   
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Figure 5: Price-Only Treatments 

The 71 treatments involving price and enabling technologies have a more diffuse pattern, but peak 
reductions still tend to increase with the peak-to-off-peak price ratio.  In addition, for a given price ratio, 
peak reductions for these technology enabled treatments tend to be greater than those exhibited by price-
only treatments.   

Figure 6: Price + Technology Treatments 

We took this exploratory analysis one step further and estimated a simple regression model for the 163 
experimental treatments to quantify the effect of the price ratio and use of enabling technology on 
demand response.  For the purposes of this cursory analysis, we assumed that the main determinant of 
the variations in the peak reduction is the variations in the peak to off-peak price ratio. Using a log-
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linear specification, we model the amount of demand response, expressed as a percentage, as a function 
of the log of the price ratio, with and without enabling technology. 

y = a + b*ln(price ratio) + c*ln(price ratio*tech) 

where: 

y:  peak demand reduction expressed in percentages; 

ln (price ratio): natural logarithm of peak to off-peak price ratio; 

ln (price ratio*tech): interaction of the ln (price ratio) and tech dummy variable (where tech takes the 
value of 1 when enabling technology is offered in conjunction with price).  

Table 1 presents the regression results. 

Table 1: Regression Results 

 

The results reveal that as the peak-to-off-peak price ratio increases, the peak reduction also increases.  In 
addition, the positive and significant relationship between peak reduction and the ln(price ratio*tech) 
variable indicates that the use of enabling technology further boosts demand response.  The R-squared 
value of 0.37 means that approximately 37% of the variation in the dependent variable (i.e. peak demand 
reduction) can be explained by the independent variables.   

As seen in Figure 7, the analysis yields two “arcs of price responsiveness” for pricing-only treatments 
and technology enabled pricing treatments.  These Arcs of Price Responsiveness can be used to make 
preliminary assessments about expected customer impacts from various time-varying rates.  For 
example, for a peak-to-off-peak price ratio of 5:1, the expected peak reductions for price-only and price-
technology treatments are 12.7 percent and 21.6 percent respectively.  For a price ratio of 10:1, these 
reductions would increase to 16.2 percent and 29.0 percent respectively.  

Coefficient
Ln(Price Ratio) 0.051 ***

0.011
Ln(Ratio_EnablingTech) 0.056 ***

0.008
Intercept 0.045 *

0.020

Adjusted R-Squared 0.372
F-Statistic 49.02
Observations 163

Standard errors are shown below the estimates
*** p ≤ 0.001
** p ≤ 0.01 
* p ≤ 0.05
. p ≤ 0.1

Regression
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Figure 7: Arc of Price Responsiveness 

 

Figure 7 also shows that some of the 163 treatments yielded either extremely high or extremely low 
impacts.  In order to minimize the impact of these outliers on the regression estimators, we re-estimated 
the models using a robust regression technique that utilizes the MM-estimator.  This reduces the 
influence of moderate outliers and completely eliminates the impact of gross outliers by down-weighting 
their influence in estimating the parameters of the model. “Moderate” and “gross” outliers are defined 
based upon the scale of the data and such that, were there truly no outliers, all observations would 
receive the same treatment as in a standard ordinary least squares model.  

The regression results from the MM estimation are presented in Table 2.  

Table 2: Regression Results using MM-Estimation 
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Coefficient
Ln(Price Ratio) 0.054 ***

0.011
Ln(Ratio_EnablingTech) 0.054 ***

0.008
Intercept 0.027 .

0.016

Number of outliers 3.000
Observations 163

Standard errors are shown below the estimates
*** p ≤ 0.001
** p ≤ 0.01 
* p ≤ 0.05
. p ≤ 0.1

Regression
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As done earlier, the Arcs of Price Responsiveness (shown in Figure ) can be used to make preliminary 
assessments about expected demand response from time-varying rates.  For a price ratio of 5:1, the 
expected peak reduction in price-only and price-tech experimental treatments is 11.5 percent and 20.1 
percent respectively.  For a price ratio of 10:1, expected peak period reductions are 15.2 percent and 
27.6 percent respectively.9  The preliminary results with the 5:1 price ratio are similar to the results from 
the California Statewide Pricing Pilot (SPP) in 2005; this study featured a CPP rate with a price ratio of 
6.56 and resulted in a 13 percent peak reduction.10 

Figure 8: Arc of Price Responsiveness (Using MM-Estimation) 

 

While this approach led to some interesting and statistically significant results, it became apparent that 
the analysis could be refined by splitting the Arcturus database and corresponding regressions into two: 
one for TOU-only treatments and one for dynamic pricing treatments (i.e. CPP, PTR, & VPP). Not only 
are TOU price ratios consistently lower than other rate types, as can be seen in Figures 9 and 10 below, 
but customer reactions to TOU pricing  are probably different.  In TOU pricing, the altered rates are 
applied every day, as opposed to only on discrete event days which is the case in dynamic pricing. This 
gives TOU customers more opportunity to change their energy consumption habits, leading to greater 
impacts from TOU. On the other hand, it is easier to change behavior for a few hours per year on 
dynamic pricing rates.     

                                                            
9 By using MM estimation, our re-estimated arcs predict impacts that are lower than before.  
10 Faruqui and George (2005).  
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Figure 9: Price-Only Treatments Split by TOU and Non-TOU Treatments 

 

Figure 10: Price + Technology Treatments Split by TOU and Non-TOU Treatments 
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Table 3 presents the regression results of the TOU-only arc using MM-estimation.  

Table 3: Regression Results of the TOU-only Arc using MM-Estimation 

 

The results again reveal that as the peak-to-off-peak price ratio increases, the peak reduction also 
increases.  In addition, the positive and significant relationship between peak reduction and the ln(price 
ratio*tech) variable indicates that the use of enabling technology further boosts demand response. 

As done earlier, the Arcs of Price Responsiveness (shown in Figure 11) can be used to make preliminary 
assessments about expected demand response from time-varying rates.  For a price ratio of 2:1, the 
expected peak reduction in price-only and price-tech experimental treatments is 4.7 percent and 9.4 
percent respectively.  For a price ratio of 5:1, expected peak period reductions are 9.9 percent and 20.7 
percent respectively.  The preliminary results with the 2:1 price ratio are similar to the results from the 
California Statewide Pricing Pilot (SPP) in 2005; this study featured a TOU rate with a price ratio of 2:1 
and resulted in a 4-5% percent peak reduction.11 

                                                            
11 Faruqui and George (2005). 

Coefficient
Ln(Price Ratio) 0.056 **

0.021
Ln(Ratio_EnablingTech) 0.067 *

0.026
Intercept 0.009

0.022

Number of outliers 0
Observations 65

Standard errors are shown below the estimates
*** p ≤ 0.001
 **  p ≤ 0.01 
  *   p ≤ 0.05

Regression
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Figure 11: TOU-only Arc of Price Responsiveness (Using MM-Estimation) 

 

Table 4 presents the regression results of the non-TOU arc (CPP, PTR, & VPP) using MM-estimation.  

Table 4: Regression Results of the non-TOU (CPP, PTR, & VPP) Arc using MM-Estimation 

 

The results again reveal that as the peak-to-off-peak price ratio increases, the peak reduction also 
increases, although the relationship is weaker and less significant. However, the positive and significant 
relationship between peak reduction and the ln(price ratio*tech) variable remains strong, and indicates 
that the use of enabling technology further boosts demand response. 

As done earlier, the Arcs of Price Responsiveness (shown in Figure 12) can be used to make preliminary 
assessments about expected demand response from time-varying rates.  For a price ratio of 5:1, the 
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Coefficient
Ln(Price Ratio) 0.030 .

0.015
Ln(Ratio_EnablingTech) 0.049 ***

0.008
Intercept 0.090 **

0.031

Number of outliers 2
Observations 98

Standard errors are shown below the estimates
*** p ≤ 0.001
 **  p ≤ 0.01 
  *   p ≤ 0.05
   .   p ≤ 0.1

Regression
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expected peak reduction in price-only and price-tech experimental treatments is 13.8 percent and 21.7 
percent respectively. For a price ratio of 10:1, expected peak period reductions are 15.9 percent and 27.2 
percent respectively. 

Figure 12: non-TOU (CPP, PTR, & VPP) Arc of Price Responsiveness (Using MM-Estimation) 

 

 

Comparison to Earlier Meta-Analysis of TOU Experiments 
 

It is useful to put the results of our analysis in historical perspective.  We have done this by comparing 
them to an earlier meta-analysis of TOU pricing experiments.  This was carried out in the early 1980s by 
Christensen Associates under contract to EPRI and managed by Ahmad Faruqui.  In this meta-analysis, 
data from the five best residential TOU experiments was combined and analyzed.  This yielded a variety 
of elasticities of substitution: 1) for the average household across all five experiments, 2) for households 
with all major electric appliances living in a hot climate, and 3) for households with no major electric 
appliances in a cool climate.12  The elasticity of substitution for this meta-analysis captures a customer’s 
decision to shift usage from higher priced peak periods to lower priced off-peak periods.  Using Brattle’s 
Price Impact Simulation Model (PRISM), which grew out of California’s Statewide Pricing Pilot, we 
have used these elasticities to simulate the impact of different price ratios on peak demand.13  The results 
are shown in Figure 9 below. 

                                                            
12 D.W. Caves et al., Op. cit. 
13 Ahmad Faruqui et al., “The Power of Dynamic Pricing,” The Electricity Journal (2009). 
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Figure 13: Meta-Analysis of 5 TOU Experiments 

 

And to put these results in perspective, Figure 14 shows the new Arc of Price Responsiveness for 
pricing-only TOU treatments superimposed on the previous figure. The results are similar between the 
average household results from the early 1980s and the price-only result from the recent studies. 

Figure 14: Price-Only Arc Superimposed 

 

 
 
 
 
 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P
e
ak

 R
e
d
u
ct
io
n

Peak to Off‐Peak Price Ratio

Hot climate, all major electric appliances

Average Household

Cool climate, no major electric appliances

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P
e
ak

 R
e
d
u
ct
io
n

Peak to Off‐Peak Price Ratio

Hot climate, all major electric appliances

Average Household

Cool climate, no major electric appliances

Price Only

Exh. JLB-18 
Dockets UE-190529/UG-190530 and 

UE-190274/UG-190275 (consol.) 
Page 15 of 17



16 
 

 
Elasticity Estimates 

 
In our review of these 34 studies, we find that the impacts also vary widely among the experiments 
using the same rate design.  Other than the differences in the peak to off-peak price ratios, this variation 
is largely attributed to the variation in price elasticities and sample designs. Most studies estimated two 
types of elasticities: 1) substitution elasticity that captures customers to substitute relatively inexpensive 
off-peak consumption for relative expensive peak consumption, and 2) own price elasticity that captures 
the change in the level of overall consumption due to the changes in the average daily price.  Based on 
our review, substitution elasticities from the experiments range from -0.07 to -0.40 while the own price 
elasticities range from -0.02 to -0.10. Availability of the enabling technologies, ownership of central air 
conditioning and the type of the days studies (weekend vs. weekday) are some of the factors that yield 
variations in the price elasticities.  

 

Price elasticities allow the estimation of peak impacts for a given time-varying rate design.  Brattle’s 
PRISM model predicts the changes in electricity usage that are induced by time-varying rates by 
utilizing a constant elasticity of substitution (CES) demand system. This demand system consists of two 
equations. The substitution equation predicts the ratio of peak to off-peak quantities as a function of the 
ratio of peak to off-peak prices and other factors.  The daily energy usage equation predicts the daily 
electricity usage as a function of daily price and other factors. Once the demand system is estimated, the 
resulting equations are solved to determine the changes in electricity usage associated with a time-
varying rate. PRISM has the capability to predict these changes for peak and off-peak hours for both 
critical and non-critical peak days. Moreover, PRISM allows predictions to vary by other exogenous 
factor such as the saturation of central air conditioning and variations in climate. The model can be set to 
demonstrate these impacts on different customer types.  

 
 
Conclusion 

 

The amount of demand response increases as the peak to off-peak price ratio increases but at a 
diminishing rate.  When coupled with enabling technologies, price responsiveness increases even more.  
Of course, there are many drivers of demand response besides the price ratio.  The length of the peak 
period, number of pricing periods, climate, and appliance ownership can all affect the average customer 
response during the peak period.  Additionally, the marketing of dynamic pricing rates has a tremendous 
impact on customer response, for customer awareness and education is critical to the success of time-
varying pricing.  Finally, the section of customers into time-varying rate experiments can affect the 
results of these studies.  Because we were unable to control for these factors in this initial analysis, there 
are some outliers in our dataset which require further inspection.  Even then, the surprising amount of 
consistency in the results shows that utilities and policymakers can be confident that dynamic pricing 
and time-of-use pricing will yield significant load reductions. 
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