

AVISTA

| <b>Topic</b><br>Introductions                                                       | <b>Time</b><br>9:00 | <b>Staff</b><br>John Lyons    |
|-------------------------------------------------------------------------------------|---------------------|-------------------------------|
| 2021 Action Item Review                                                             | 9:10                | John Lyons                    |
| Summer 2021 Heat Event<br>Resource Adequacy<br>Feeder Outages                       | 9:45                | James Gall<br>David Thompson  |
| NW Power Pool Resource Adequacy Program                                             | 10:45               | Scott Kinney                  |
| Lunch                                                                               | 11:30               |                               |
| Resource Adequacy Program Impact to IRP                                             | 12:30               | Michael Brutocao              |
| IRP Resource Adequacy/Resiliency<br>Planning                                        | 1:00                | James Gall                    |
| Break                                                                               | 1:45                |                               |
| TAC Survey Results & Discussion                                                     | 2:00                | Lori Hermanson                |
| Washington State Customer Benefit Indicators                                        | 2:45                | Annette Brandon<br>James Gall |
| 2023 Draft IRP Workplan                                                             | 3:15                | John Lyons                    |
| Adjourn                                                                             | 3:30                |                               |
| Microsoft Teams meeting<br>Join on your computer or mobile app: <u>Click here t</u> | o join the mee      | eting                         |

**Join on your computer or mobile app:** <u>Click here to join the meeting</u> **Or call in (audio only):** <u>+1 509-931-1514,,643047233#</u> United States, Spokane Phone Conference ID: 643 047 233#



# **2023 IRP Introduction**

#### 2023 Avista Electric IRP

TAC 1 – December 8, 2021

John Lyons, Ph.D. Senior Resource Policy Analyst

#### **Meeting Guidelines**

- IRP team is still working remotely and is available by email and phone for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- Other IRP data posted to web site will set up better descriptions and navigation this time due to the amount of data shared
- Virtual IRP meetings on Microsoft Teams until back in the office and able to hold large group meetings again
- TAC presentations and meeting notes posted on IRP page



#### **Virtual TAC Meeting Reminders**

- Please mute mics unless speaking or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting for the note taker
- This is a public advisory meeting presentations and comments will be documented and may be recorded if the tech cooperates



#### **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington now requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



#### **Technical Advisory Committee**

- The public process piece of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Ask questions
  - Always looking for help with soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for studies or different assumptions.
- Available by email or phone for questions or comments between meetings
- Do TAC members want a calendar invite for the meetings?



### Today's TAC Agenda

9:00 – Introductions, Lyons

9:10 – 2021 Action Item Review, Lyons

9:45 – Summer 2021 Heat Event, Gall and Thompson

10:45 – NW Power Pool Resource Adequacy Program, Kinney

11:30 – Lunch

12:30 – Resource Adequacy Program Impact to IRP, Brutocao

1:00 – IRP Resource Adequacy/Resiliency Planning, Gall

1:45 – Break

2:00 – TAC Survey Results and Discussion, Hermanson

2:15 – Washington State Customer Benefit Indicators, Brandon and Gall

3:00 – 2023 IRP Draft Work Plan

3:30 – Adjourn





2023 Avista Electric IRP

TAC 1, December 8, 2021 – TAC 1

John Lyons, Ph.D. – Senior Resource Policy Analyst

- Investigate and potentially hire a consultant to develop both a hydro and load forecast to include a shift in climate in the Inland Northwest. This analysis would include a range in new hydro conditions and temperatures so the Company can utilize the new forecast for resource adequacy planning and baseline planning.
  - Avista is internally studying temperature and precipitation trends at Natural Resources Conservation Service (NRCS) Snow Telemetry (SNOTEL) sites.
  - Studying when snowpack peaks, experiences total melt out, and whether the total amount of snow is increasing
    or decreasing at various locations during specific months.
  - Studying Clark Fork and Spokane River flow trends:
    - Is the annual flow amount increasing or decreasing?
    - Are the flow amounts during specific months increasing or decreasing?
  - Working though CEATI (Centre for Energy Advancement through Technological Innovation) to examine the
    effects of Climate Change. The members of CEATI contracted with Artelys Canada Inc. to create the Streamflow
    Assessment Toolkit for Changing Conditions. Members of CEATI are using this program to look at:
    - 1. Future Streamflow Scenarios from Available Model Datasets
    - 2. Historic vs. Future Streamflow Variability
    - 3. Streamflow correlation with climate indices
    - 4. Timing of the Spring Freshet
    - 5. Agreement among Climate Projections
    - 6. Change in drawdown low-flows

2

- Investigate streamlining the IRP modeling process to integrate the resource dispatch, resource selection and reliability verification functions.
  - With the RAP progressing, the need for reliability verification functions may not be necessary.
  - Avista is evaluating Plexos to perform this task. We are assessing the dispatch of the system and have not tested the Capacity Expansion logic. Avista does not anticipate using Plexos for the 2023 IRP with the exception of risk assessments.
- Study options for the Kettle Falls CT regarding potential reductions of the natural gas supply in winter months. The Company will investigate alternatives for this resource including fuel storage, retirement or relocation of the asset.
  - Avista is still investigating when the plant will be impacted from potential changes and is currently studying alternatives.



- Determine how to best implement the Washington Commission's strong encouragement under WAC 480-100-620 (3) regarding distribution energy resource planning as a separate process or in conjunction with the 2025 IRP.
  - This is an area of ongoing work that will be shared with the TAC in 2022.
  - Additional staff budgeted for 2022 to help with this effort.
- Form an Equity Advisory Group to ensure a reduction in burdens to vulnerable populations and highly impacted communities and to ensure benefits are equitably distributed in the transition to clean energy in the state of Washington. This group will provide guidance to the IRP process on ways to achieve these outcomes.
  - Equity Advisory Group is up and running. They are a major component of the Clean Energy Implementation Plan.



- Avista will conduct an existing resource market potential to estimate the amount and timing of existing resources available through 2045.
  - Avista is conducting an all-source RFP in Q1 2022 to identify resources through 2030.
  - Avista will study resource opportunities between 2030 and 2045 after the RFP and other regional RFPs are complete.
- Conduct further peak credit analysis to understand the reliability benefits of all resources including demand response options with different duration and call options of the wide range of DR program options.
  - Avista plans to use the Resource Adequacy Program Qualifying Capacity Credit (QCC).
  - Avista expects the RAP to develop QCC values in Q1 or Q2 of 2022.

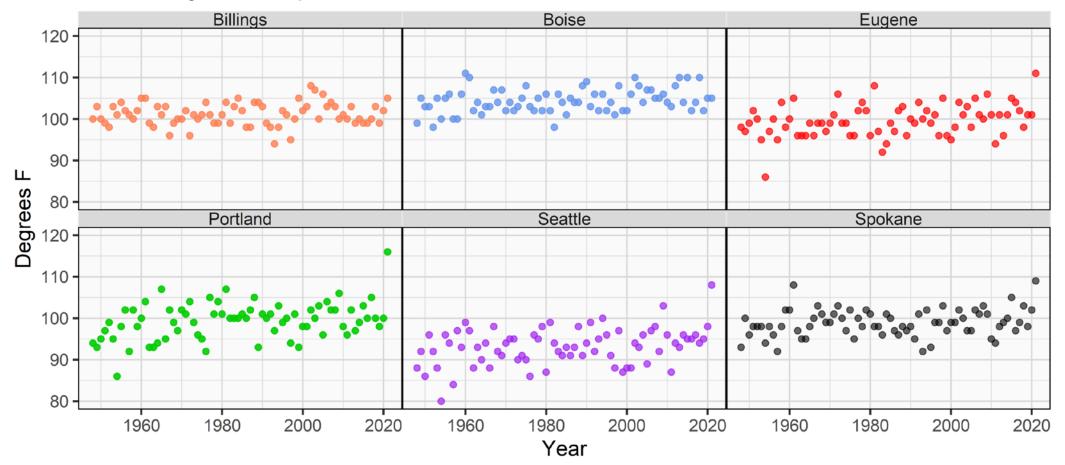


- Avista will partner with a third-party consultant to identify non-energy impacts that have not historically been quantified for both energy efficiency and supply side resources.
  - DNV was awarded a contract to study these impacts and will present their draft report at the March 2022 TAC meeting.
  - TAC participants will be able to provide comments prior to the final draft in April 2022.
- Formalize the process for public to submit IRP-related comments and questions and for Avista to share responses to those requests.
  - Realized we need a better system and structure with the shear amount of data being shared.
  - Still deciding if we will set something up and change as needed or provide options for feedback.
- Develop a transparent methodology to include pricing data and consider available options for new renewable generation and energy storage options.
  - The 2021 IRP included Avista's spreadsheet for resource cost calculations, due to the complexity of the analysis, Avista seeks input from TAC members on how to best share the information.



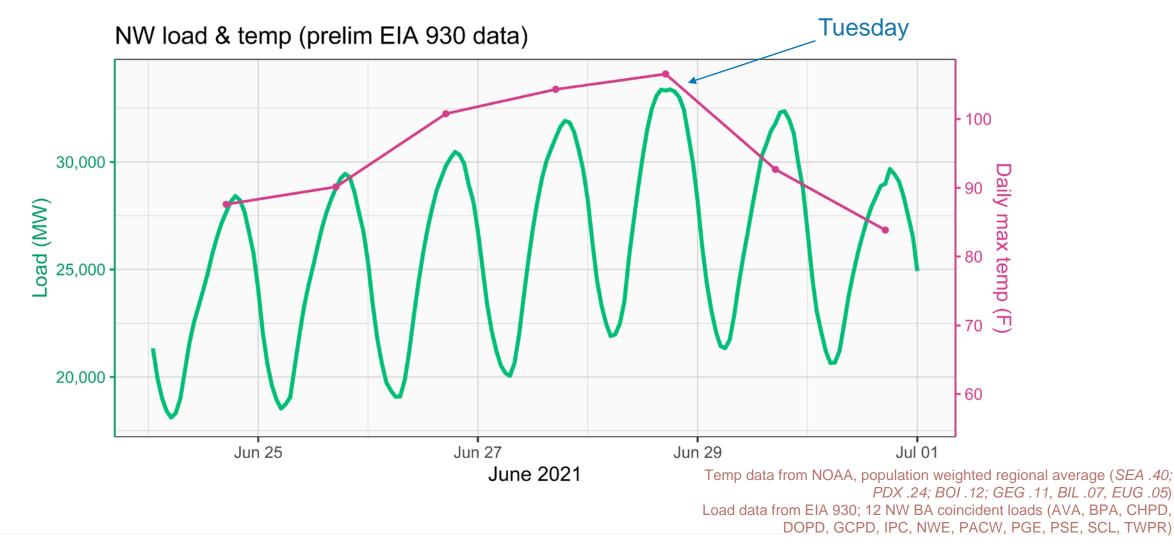


## **2021 Heatwave Loads & Resources**


Avista, Electric Technical Advisory Committee

December 8<sup>th</sup>, 2021 – TAC 1

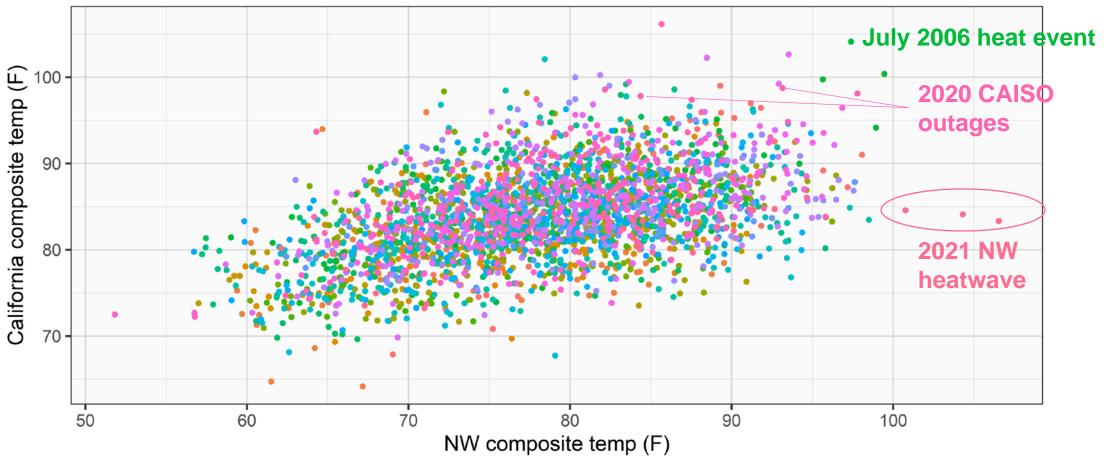
James Gall, Electric IRP Manager


#### **Regional Temperatures**

Annual highest temp, 1948 - 2021





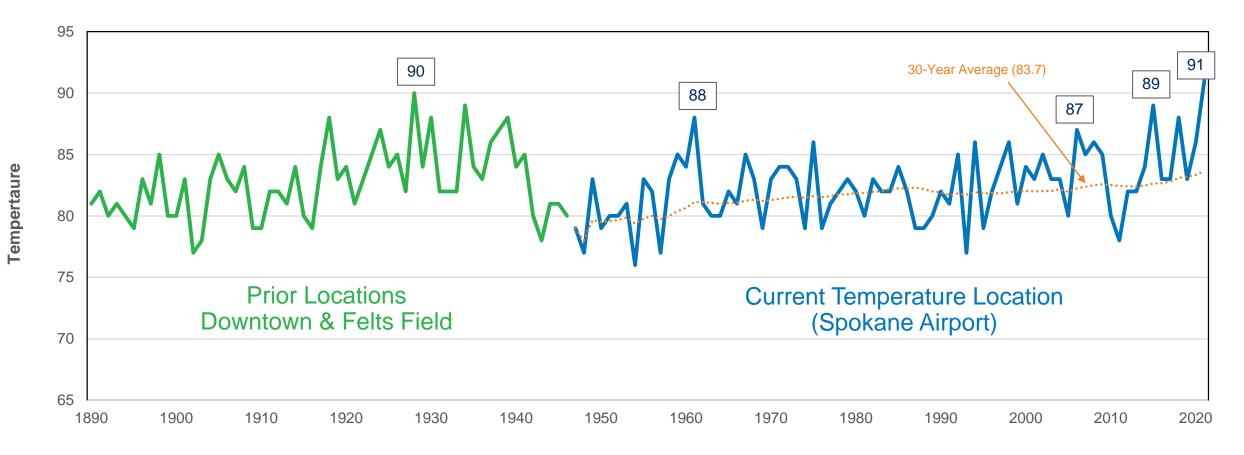

#### **Pacific Northwest Loads vs Temperature**





#### **NW vs California Loads**

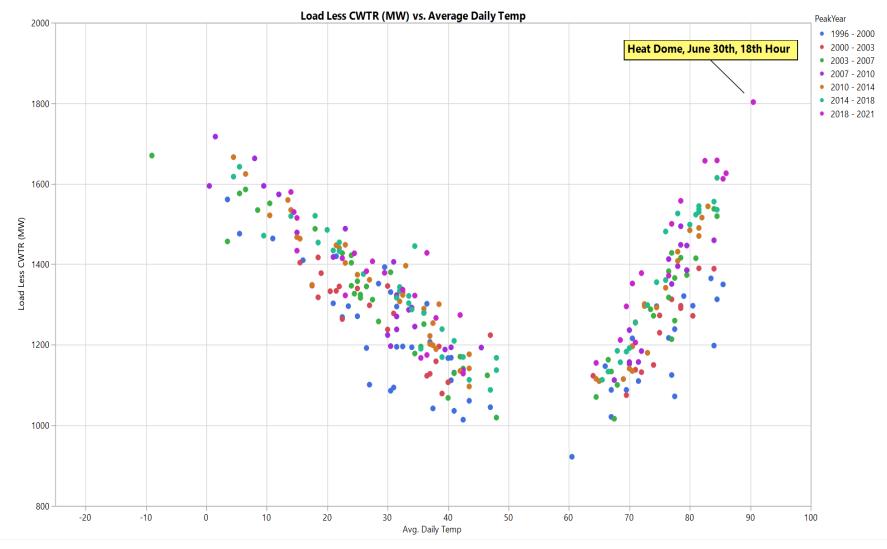
Max daily temperatures, July 1998 - early August 2021



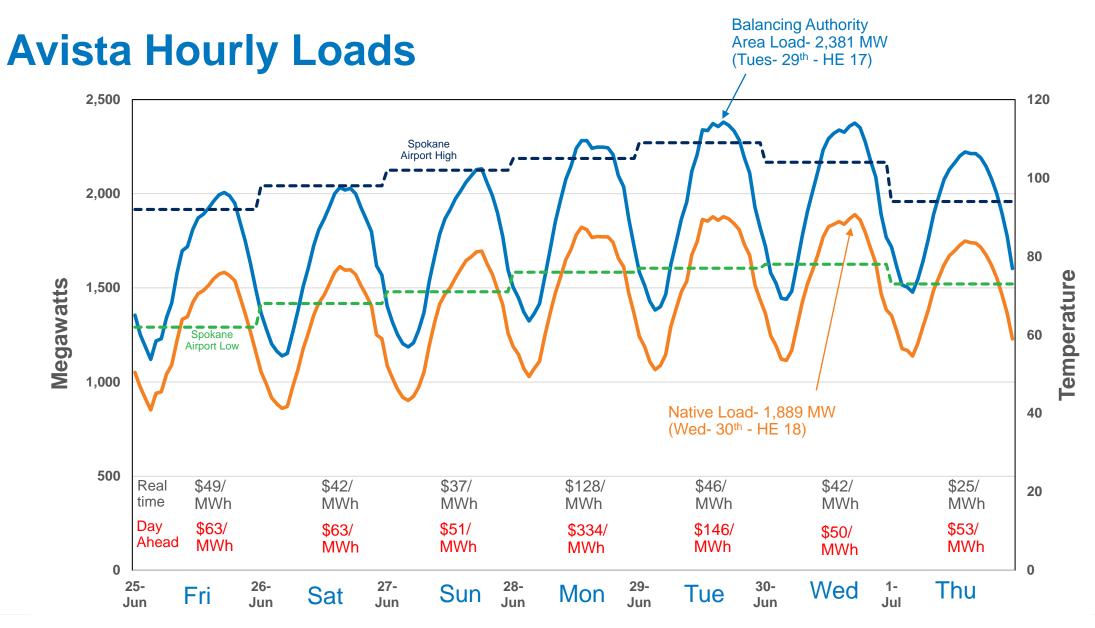

Northwest temp data from NOAA, population weighted regional average (*SEA .40; PDX .24; BOI .12; GEG .11, BIL .07, EUG .05*) California temp data from NOAA, roughly weighted average (LA (USC), SAN, SMF, FAT, SJC)



#### **Spokane Historical Hottest Days**

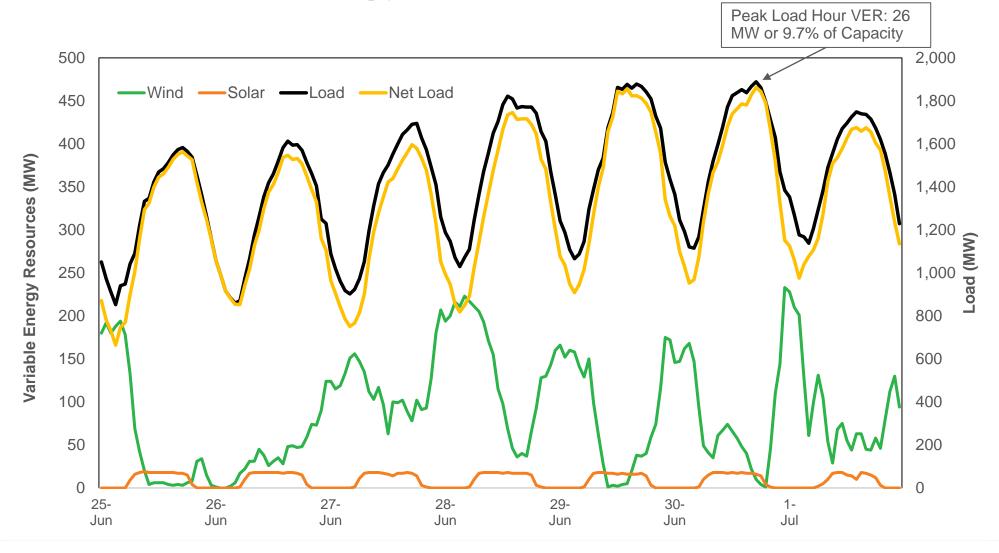

(Avg High & Low Daily Temperature)




Note: temperatures are not adjusted for locational differences, but summer months



#### **Avista Peak Loads in Perspective**








**VISTA** 

#### **Load vs Variable Energy Production**



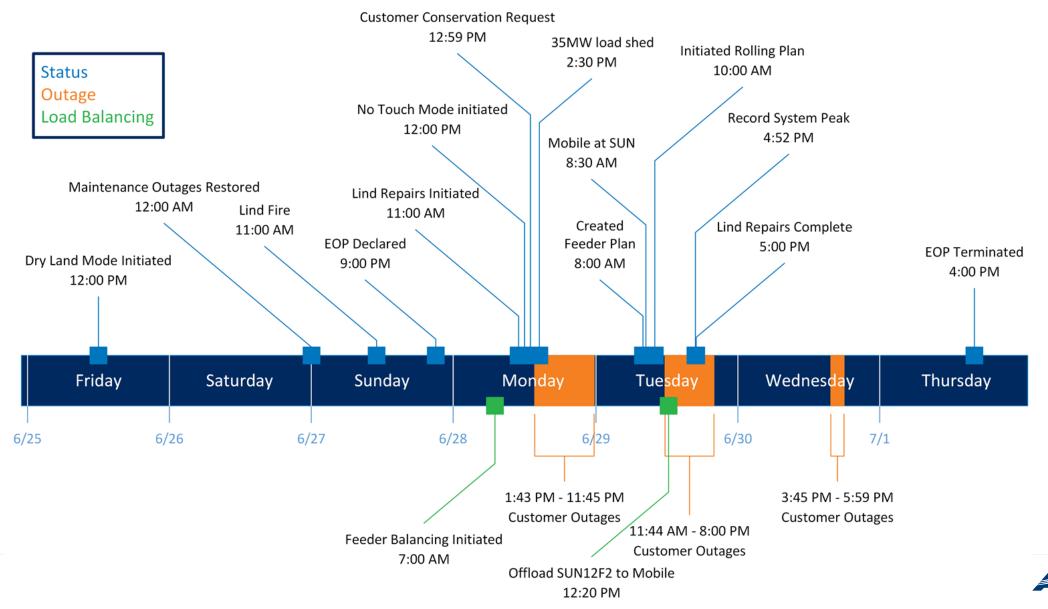


#### **Summer Peak Load Forecast Implications**

- Actual peak load was 92 MW higher (5%) then fundamental forecast given the actual temperature.
- Avista will move to a 30-year average hottest day for summer peak load forecasting.
- Improve peak load forecast techniques.






# Heat Event-Emergency Operating Plan June 28 – July 1, 2021

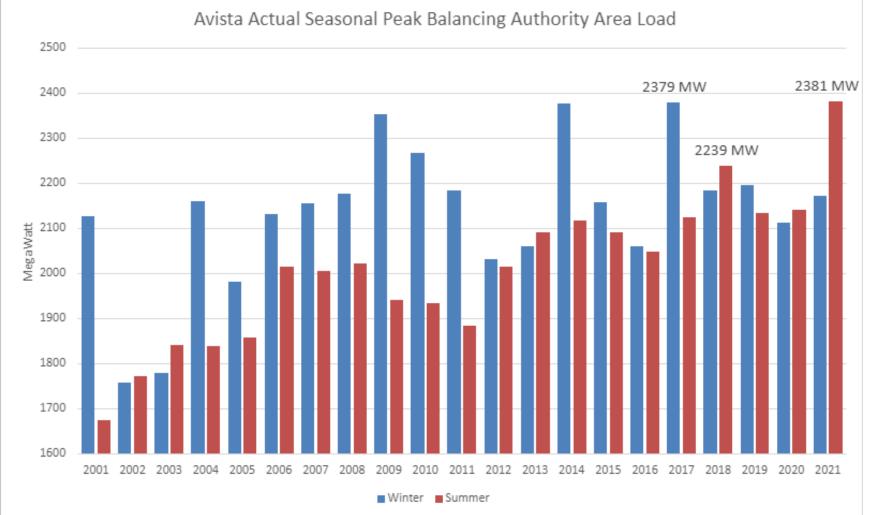
December 8, 2021

David Thompson, System Planning Engineer

EOP Overview June 25 – July 1, 2021

#### **Event Overview**




#### **Temperature Metrics**

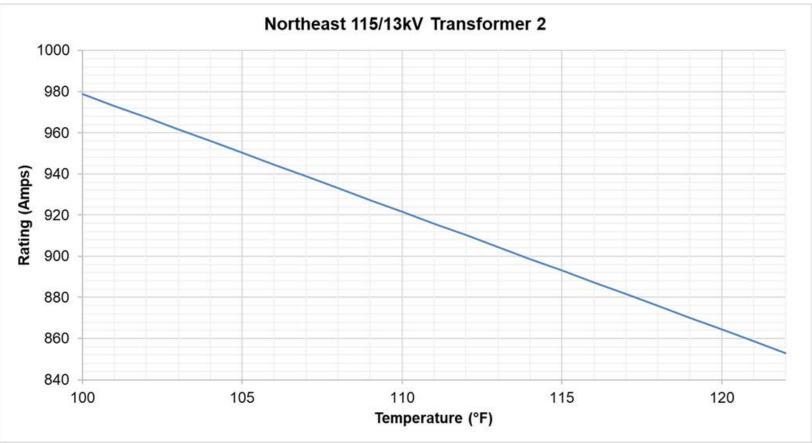
|                 | High Temperature (°F) |        | Low Temperature (°F) |        |
|-----------------|-----------------------|--------|----------------------|--------|
| Date            | Forecast              | Actual | Forecast             | Actual |
| Monday, 6/28    | 108                   | 105*   | 73                   | 76     |
| Tuesday, 6/29   | 110                   | 109*   | 74                   | 77     |
| Wednesday, 6/30 | 108                   | 104    | 74                   | 78     |
| Thursday, 7/1   | 106                   | 94     | 73                   | 73     |

- Record high daily temperatures forecasted by National Weather Service
- Expected significant customer demand for HVAC with indoor activities
- Relatively high "low" temperatures limited equipment cooling



#### **Balancing Authority Area Peak**




| June 28 | 2,285 MW |
|---------|----------|
| June 29 | 2,381 MW |
| June 30 | 2,358 MW |

New peak load is 6% increase over prior record.

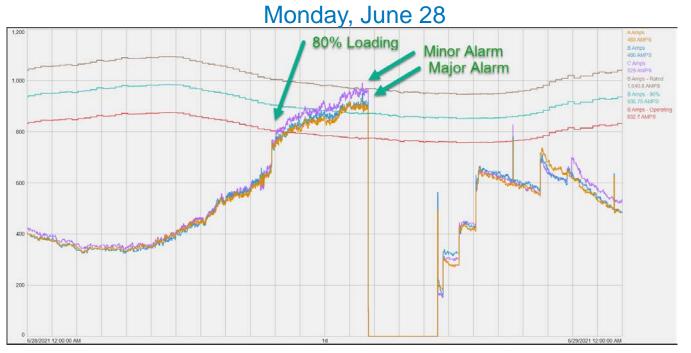


#### **Summer Challenges**

- Equipment capacity ratings are typically reduced with increasing ambient temperatures
- Cooling systems can adjust capacity ratings





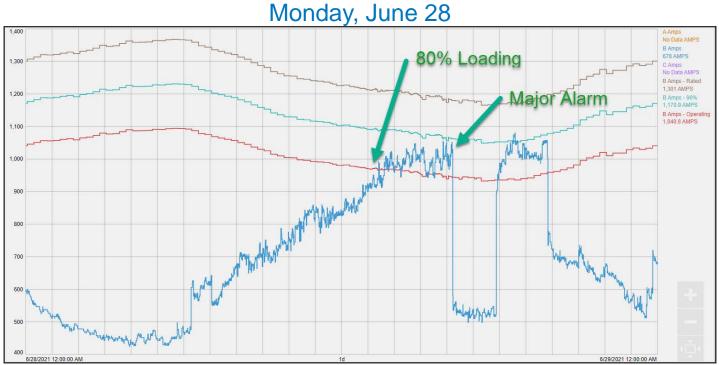

#### **Heat EOP Performance-Distribution Transformers**

- Operating limits are monitored for equipment protection
- 201 transformers in 140 substations throughout Avista's service territory
- Minor alarm at 80°C (176°F), monitored for continued safe operation
- Major alarm at 115°C (239°F), transformer to be taken out of service

| <b>Operating Limit</b> | June 28 | June 29 | June 30 |
|------------------------|---------|---------|---------|
| ≥80%                   | 19      | 32      | 19      |
| ≥90%                   | 7       | 7       | 1       |



#### Northeast 115/13kV Transformer 2




- 9:50 a.m. Transferred ROS12F1 feeder to Northeast
- 10:18 a.m. 80% loading
- 1:32 p.m. minor alarm at 96%
- 1:41 p.m. major alarm, dropped customers
- Investigation found three cooling fans nonfunctional



#### Sunset 115/13kV Transformer 2

- 1:44 p.m. reached 80%
- 4:12 p.m. major alarm at 89%, dropped customers on SUN12F2
- 5:30 p.m. restored SUN12F2
- 7:47 p.m. major alarm, dropped SUN12F1
- Mobile Substation 4 used to energize SUN12F2, required 4-hour outage



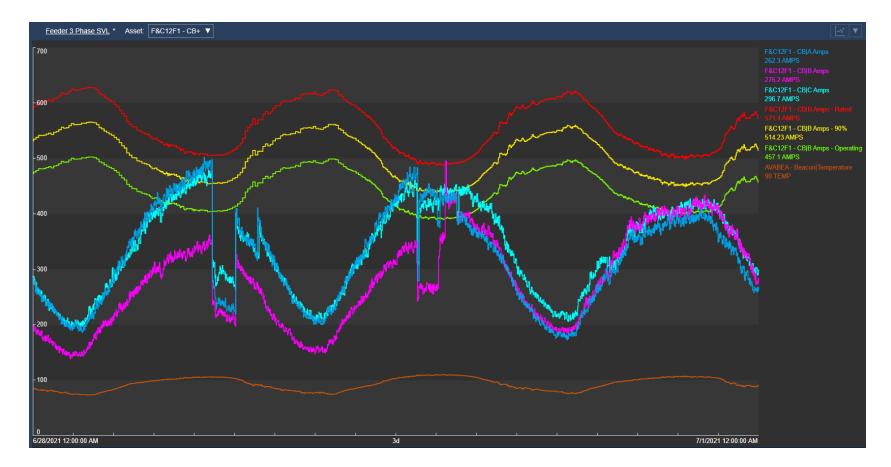


#### **Heat EOP Performance-Distribution Feeders**

- Operating limits are monitored for equipment protection
- 369 distribution feeders connecting substations to customer load
- Operation at 80% of limit initiates notification
- Operation at 100% of limit requires unloading

| <b>Operating Limit</b> | June 28 | June 29 | June 30 |
|------------------------|---------|---------|---------|
| ≥80%                   | 39      | 53      | 32      |
| ≥90%                   | 13      | 16      | 5       |




#### **Transferring Load**

- Move load from heavily loaded feeder to adjacent feeder
- Requires surplus capacity on adjacent feeders
- Transfers accomplished remotely or with field crews, depending on feeders

| Timestamp        | Switching Notice | Load Transfer Action                        |
|------------------|------------------|---------------------------------------------|
| 6/24, 7:18 a.m.  | CDA 21-56        | HUE142 to HUE141 <sup>1</sup>               |
| 6/28, 8:30 a.m.  | SPD 21-92        | COB12F2 to MEA12F3                          |
| 6/28, 9:30 a.m.  | CDA 21-57        | PRA222 to PF212                             |
| 6/28, 9:50 a.m.  | SPD 21-91        | ROS12F1 to NE12F1                           |
| 6/28, 11:30 a.m. | SPD 21-93        | GLN12F1 to 3HT12F2                          |
| 6/28, 11:30 a.m. | SPD 21-94        | GLN12F2 to SE12F2                           |
| 6/28, 3:12 p.m.  | CDA 21-58        | APW112 to APW115                            |
| 6/28, 3:44 p.m.  | SPD 21-96        | WAK12F1 to MEA12F2                          |
| 6/28, 5:18 p.m.  | CDA 21-59        | HUE142 to DAL132                            |
| 6/28, 11:33 p.m. | DO210629         | Restore SUN12F1 from<br>C&W12F4 and SUN12F6 |
| 6/29, 1:45 a.m.  | DD210628         | MEA12F2 to WAK12F1                          |
| 6/29, 8:00 a.m.  | CDA 21-60        | DAL132 to DAL135                            |
| 6/29, 9:00 a.m.  | PAL 21-18        | M15513 to M15514                            |
| 6/29, 10:41 a.m. | SPD 21-99        | NE12F4 to BEA12F2                           |
| 6/29, 10:45 a.m. | LC 21-20         | SLW1358 to LMR1530                          |
| 6/29, 1:00 p.m.  | PAL 21-19        | TUR116 to TUR112                            |
| 6/29, 1:30 p.m.  | CDA 21-62        | DAL131 to AVD151                            |
| 6/29, 2:10 p.m.  | CDA 21-63        | DAL132 to DAL136                            |
| 6/29, 7:39 p.m.  | DO2100629-1      | H&W12F2 to H&W12F5<br>SUN12F2 to H&W12F1    |
| 6/30, 9:30 a.m.  | CDA 21-64        | SPT4521 to SAG742                           |
| 6/30, 12:01 p.m. | CDA 21-61        | PRA221 to PRA222                            |



#### **Feeder Balancing**



| Feeder  | June 28 | June 29 | June 30 |
|---------|---------|---------|---------|
| 3HT12F2 |         | 4       |         |
| 3HT12F4 |         | 4       |         |
| BEA12F5 |         |         | 1       |
| BKR12F1 |         | 1       |         |
| DAL131  | 3       |         |         |
| F&C12F1 |         | 1       | 1       |
| F&C12F2 | 2       |         |         |
| F&C12F4 |         |         | 1       |
| IDR253  |         |         | 1       |
| L&S12F4 |         | 1       |         |
| LMR1530 |         | 1       |         |
| NE12F1  |         | 2       |         |
| PRA221  |         | 1       |         |
| Total   | 5       | 15      | 4       |

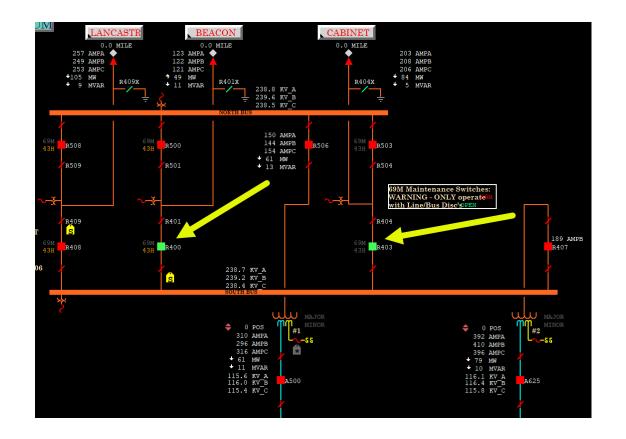


#### **Customer Engagement**

- Demand response conservation requests
- Commercial customer reduced 35MW on Monday afternoon
- Two high schools
- College campus
- Local water district



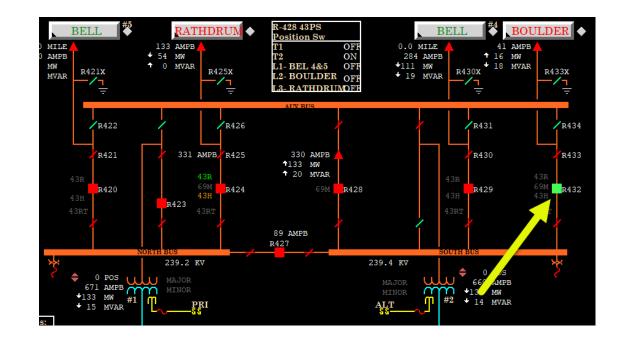



#### Heat EOP Performance-Transmission System

- Equipment issues
  - Three 230kV breakers
  - One 230/115kV transformer
  - Next issue would pose significant outage challenges
- No impacts to customers



#### **Rathdrum Station**


- Breaker R-403
  - Cabinet Rathdrum transmission line
  - Failed bushing
  - Monday 4:47 a.m. until Friday
- Breaker R-400
  - Beacon Rathdrum transmission line
  - Leaking bushing
  - Wednesday 9:05 a.m. until Thursday
- Additional device failure would likely cause transmission outage





## **Beacon Station**

- Breaker R-432
  - Beacon Boulder transmission line
  - Failed bushing
  - Monday 11:39 p.m. until Tuesday 5:13 p.m.
- Beacon 230/115kV Transformer 2
  - Multiple major alarms on Tuesday but operating at 80% of capacity
  - Cooling fan bank loss of power





## **Heat EOP Summary**

- 31 protective events caused customer outages
  - 16,029 customer outages on Monday, June 28
  - 5,523 customers with outages on Tuesday, June 29
  - 603 customers with outages on Wednesday, June 30
- Customer outages regions
  - South Lewiston area
  - Greater Spokane area



### **Recommendation Summary**



**Capacity Mitigation** 

**Distribution System** 

Planning

Assessment

**Feeder Balancing** 

Program

**Operational** Planning

**Major Equipment** Utilization





### Thank You



# WESTERN RESOURCE ADEQUACY PROGRAM Avista TAC Meeting December 8, 2021



# AGENDA

- » Overview
- » Timeline
- » Participation
- » Design Framework
- » Governance
- » Costs and Benefits
- » Next Steps

# **OVERVIEW**

# » The WRAP is a regional capacity program

- > America
- > necessary to administer program
- > manner

### Not building a market – relying on **>>** current bilateral structure

- Will not set prices for energy >
- > potentially deployed

Similar programs are available across North

Significant effort to build organizational structure Capacity will improve reliability in most expedient

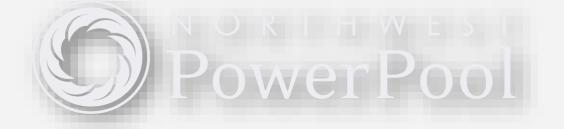
Load Responsible Entity (LRE) remain responsible for determining which resources participate and are



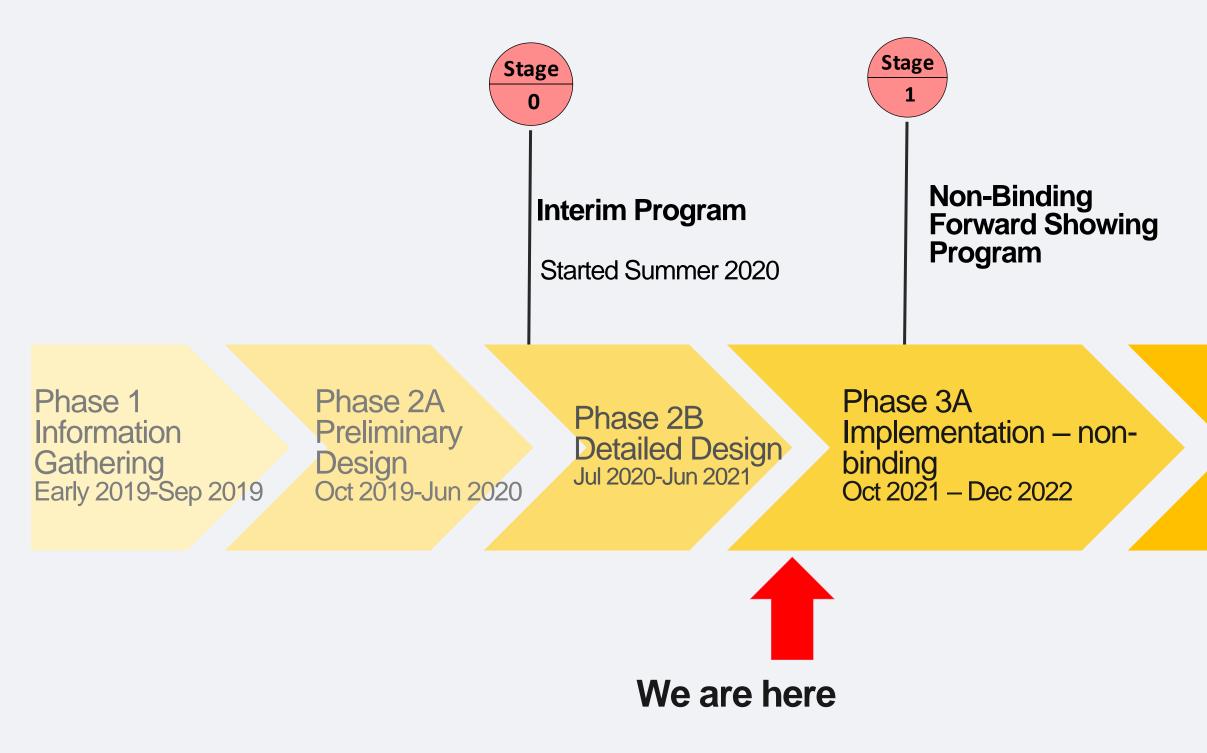
# BENEFITS

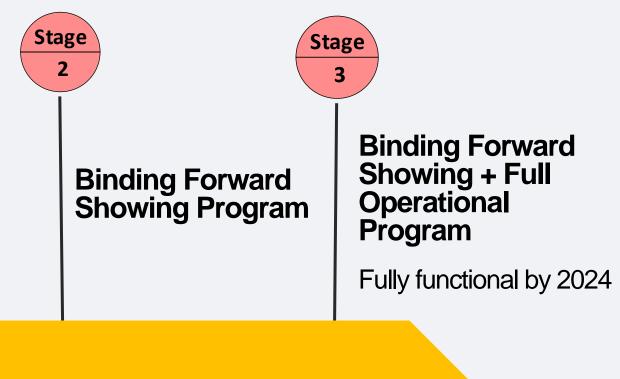
### RELIABILITY

confidence


# » COST SAVINGS

> Unlock the benefits of diversity in supply and demand in a safe and equitable way


- **IMPROVED VISIBILITY &**  $\rightarrow$ COORDINATION
  - planning metrics and methods


> Ensure sufficient generation and transmission resources are installed and committed to reliably serve demand, during stressed grid and market conditions, with a high degree of

> Enable members to make fully informed RA planning decisions, using common industry

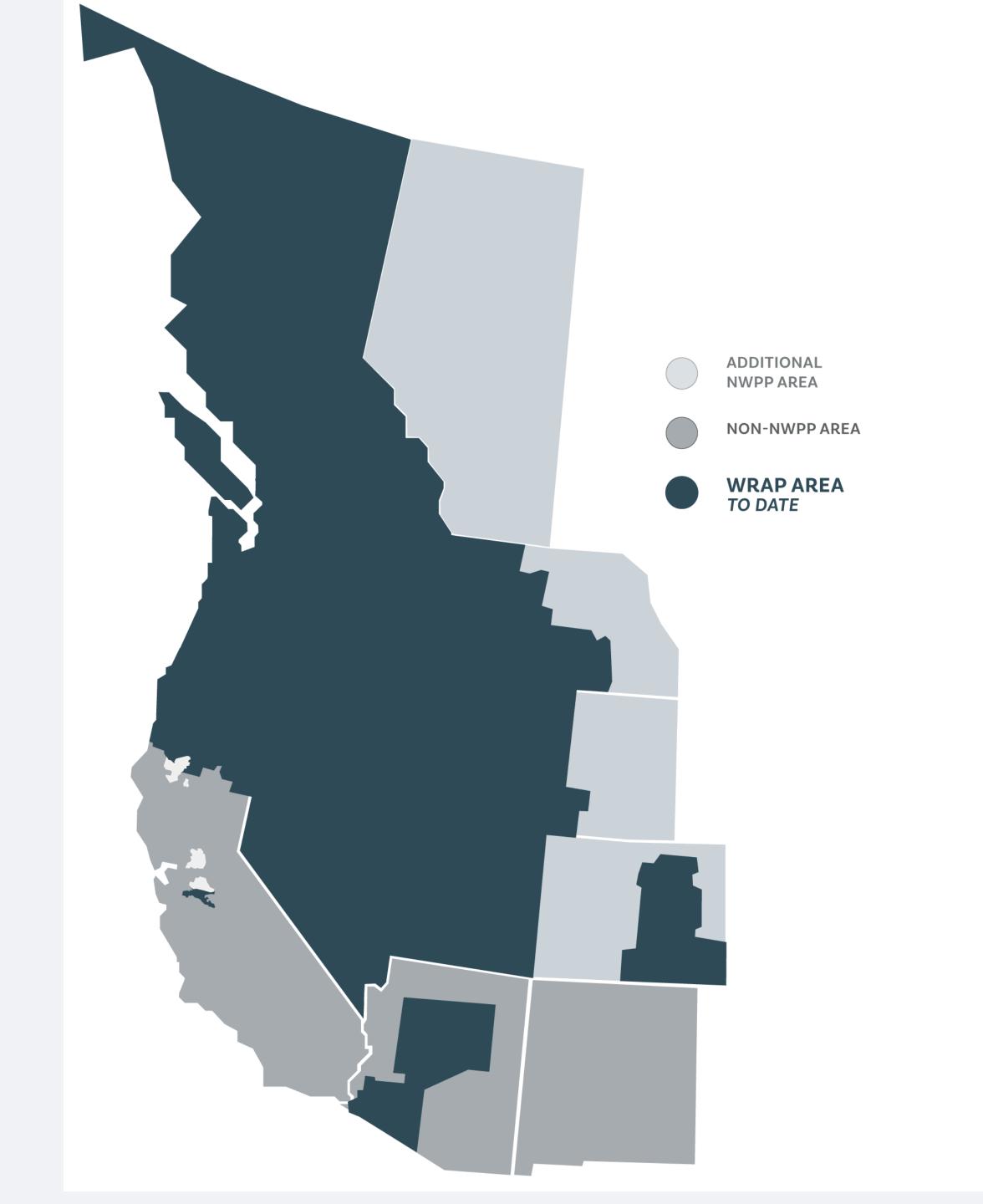


# PROJECT TIMELINE





Phase 3B Implementation – binding Jan 2023-2024

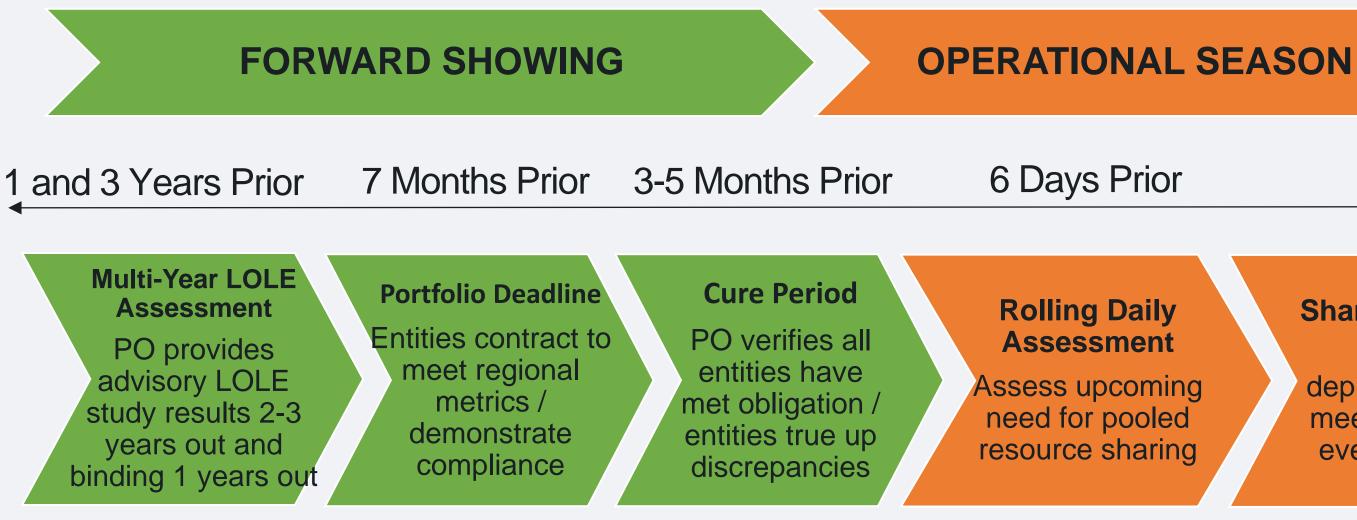

 $\wedge$ 

When Federal Energy Regulatory Commission (FERC) jurisdiction would be triggered (FERC approval required)

# PROGRAM PARTICIPATION

- Participation open to Load Responsible Entities (LREs) both in and outside current NWPP footprint
- Voluntary entry (absent any contractual or other regulatory requirements), followed by obligation to comply
- Participants decide how they will meet the program resource requirements – through resource ownership or contracts
- Participants agree to use common resource planning metrics
- IPPs and LREs (program Participants and those not participating) are all eligible to contract with Participants

INITIAL PHASE 3A PARTICIPANTS APS **AVANGRID** AVISTA BLACK HILLS BPA CALPINE CHELAN PUD CLATSKANIE PUD DOUGLAS PUD EWEB GRANT PUD IDAHO POWER NorthWestern NV ENERGY PACIFICORP PGE POWEREX PSE SRP SCL SHELL **SNOHOMISH PUD** TACOMA POWER TEA TID 7 NWPP




# PHASE 3A – NONBINDING TRIAL

- Phase 3A began Oct 1
- Runs through Dec 2022
- 25 Participants so far
- Approximately 70,000 MWs of peak season load
- Data collected for participating entities on Nov 8 —
- No penalty for non-compliance —
- First forward showing for Winter 2022-2023 on May 15, 2022
- Second forward showing in September 2022 for Summer 2023



# **PROGRAM FRAMEWORK** *Two Time Horizons*



Note: PO refers to Program Operator



### Present

### **Sharing Event**

Energy deployment to meet regional event needs Settlement for held and deployed energy

# **FORWARD SHOWING BALANCING LOADS AND RESOURCES**

# **DEMAND SIDE**

Calculate: "PURE" CAPACITY **NEEDED BASED ON:** 

- **P50 LOAD FORECAST +** >
- **Contingency Reserves +** >
- **PRM needed to meet The RA** > metric (1 in 10 LOLE)

# SUPPLY SIDE

**BASED ON:** 

### **Total Supply, de-rated and qualified as follows:**

Wind and solar – ELCC Thermals – UCAP Run of River Hydro – ELCC Storage Hydro – UCAP + NWPP developed hydro methodology **Other (Storage, Demand Response, etc.)** 

"PURE" CAPACITY NEEDED < "PURE" SUPPLY AVAILABLE

Show 75% of capacity is backed by firm or conditional firm transmission NWPP

# Calculate: "PURE" CAPACITY AVAILABLE

# **TWO BINDING SEASONS**

| Season | Binding/<br>Advisory | Duration     | Compliance<br>Showing Date    | Cure Period      |
|--------|----------------------|--------------|-------------------------------|------------------|
| Winter | Binding              | Nov-March 15 | March 31                      | June 1 – July 31 |
| Summer | Binding              | June-Sept 15 | October 31<br>(of prior year) | Jan 1 – Feb 28   |
| Spring | Advisory             | April-May    | N/A                           | N/A              |
| Fall   | Advisory             | October      | N/A                           | N/A              |

Program Operator will provide additional out-year (2-3 years) assessment of RA requirements for planning purposes

# **OPERATIONAL PROGRAM**

- Need ability to access diversity in real-time
- PO monitors participants needs 5-7 days in advance
- Day ahead assessment \_\_\_\_
  - Participants with unplanned conditions may be eligible for next day assistance >
  - Participants with planned extra capacity asked to hold back
- Operating day assessment \_\_\_\_
  - If a participant meets hour ahead criterion, then they will be provided energy >
  - Long participants must deploy energy >
- Transmission
  - All transactions scheduled to a hub (Mid-C and ?) >
  - Delivering participant must schedule firm transmission to the hub
  - Receiving participant can schedule firm or non-firm transmission from the hub >
- Settlement of both day ahead capacity hold and/or energy deployed

# GOVERNANCE

# **PROPOSED APPROACH**

- NWPP governing authority "Public Utility" **>>**
- Independent **Board of Directors** (BOD) **>>** 
  - Once the initial structure of the board and program is > established, the board has authority to approve budgets; provide direction and set priorities
  - > exiting NWPP program

### **Participant Committee** (RAPC) with influence **>>**

- >
- Substantive authority to modify RA Program rules >
- >
- Program Operator Southwest Power Pool **>>**
- **>>**

Proposed governance preserves structures and functions of

Substantive authority to modify amendments to the RA Program Subject to stakeholder right of appeal to independent board

Point of compliance - Load Responsible Entity (LRE)



# GOVERNANCE

# PROPOSED APPROACH

- » State Officials Committee (SOC) meeting through end of year to refine the role of this committee
- » Nominating Committee (NC) the members of the BOD will be selected by a NC comprised of multisector representatives.
- Program Review Committee (PRC) future
   changes to the program rules will be recommended
   through a multi-sector committee
- » Independent Evaluator (IE) Reports to BOD for annual review of program



# NEXT STEPS

# Phase 3A – Non-binding Program (October 2021-December 2022)

### Non-Binding Forward Showing Program **>>**

- Determine regional PRM and resource capacity credits in Q1 2022
- Perform two Forward Showings: Winter 2022/23, Summer 2023 >
- Preparation for later phases **>>** 
  - Prepare for FERC filing (filing targeted for March 2022)
  - Prepare for NWPP independent board (transition in 2023) >
  - Work through outstanding design considerations for Operations program >

# Phase 3B - Full Binding Program (March 2023 showing for winter 2023/24)

# QUESTIONS

# Northwest Power Pool (nwpp.org)





# **Resource Adequacy Program Impact to IRP** Avista, Electric IRP – TAC Meeting 1

December 8<sup>th</sup>, 2021

Michael Brutocao, Natural Gas Analyst

## **Planning Reserve Margin**

## Summer

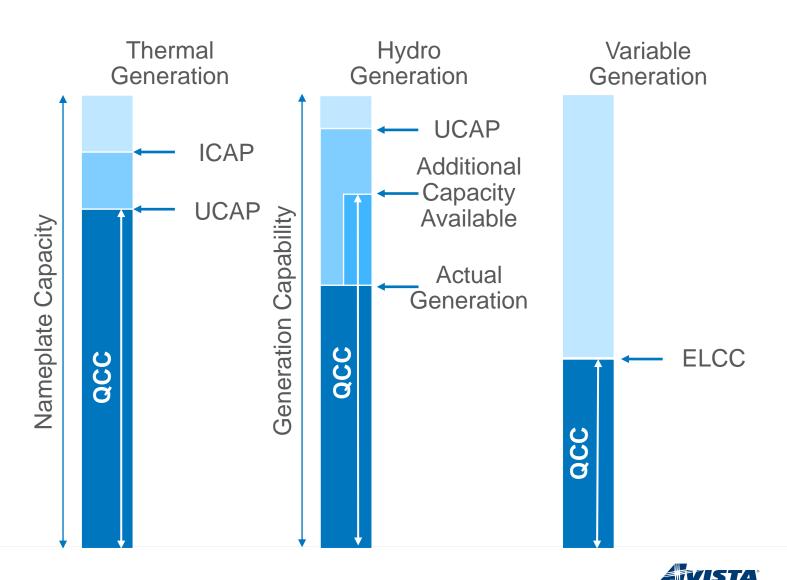
- 2021 IRP method: ~14.6%
  - **Planning Margin (7%)** + Operating Reserves + Regulation
- RAP: ~13%
  - Planning Margin (12%) + Operating Reserves for Non-Avista Load in Balancing Authority + Regulation

### Winter

- 2021 IRP method: ~24.6%
  - Planning Margin (16%) + Operating Reserves + Regulation
- RAP: ~18%
  - Planning Margin (16%) + Operating Reserves for Non-Avista Load in Balancing Authority + Regulation



# **Obligations – RAP**


- Peak Load
- System Sales
- Demand Response (-)
- Regulation
- Operating Reserves for BA Load (only non-native load)

Avista Operating Reserves



# **Rights – RAP**

- Power Deal Purchases
- Thermal Generation
- Hydro Generation
- Variable Generation
- Small Power (QF, PURPA)
- Storage
- Operating Reserve Credit – Hydro



## **Calculating Net Position – RAP**

Planning Margin Operating Reserves (load) Operating Reserves (generation)

### Obligations

Peak Native Load Power Deal Sales Capacity Services Demand Response Regulation Operating Reserves for BA Load Operating Reserves

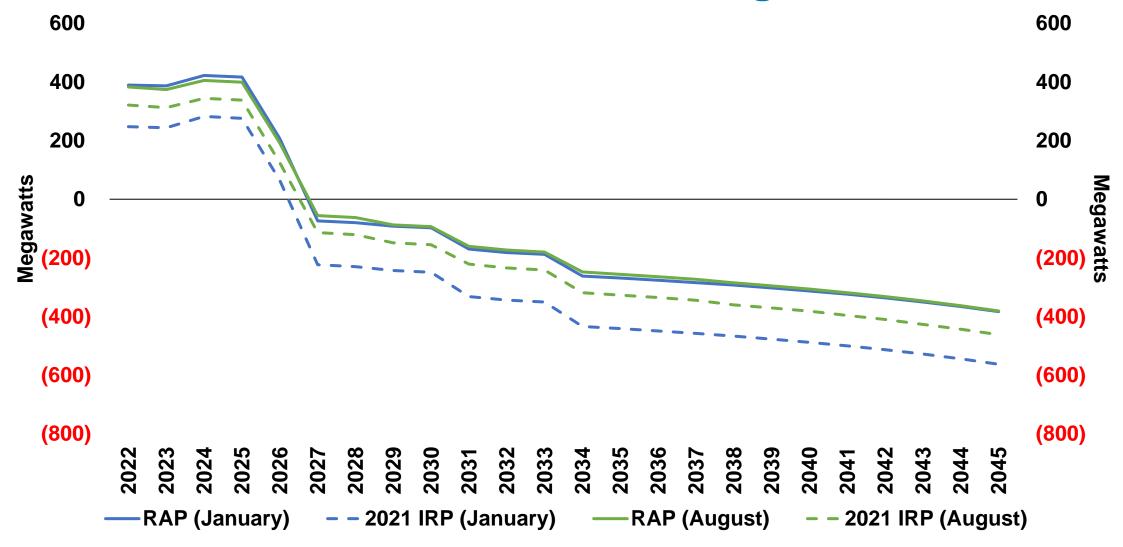
(1) Total Obligation

RightsPower Deal PurchasesCoalWoodWindSolarCCCTPeakerSpokaneClark ForkMid-ColumbiaSmall PowerStorageOper Reserve Credit-hydro

(2) Total Rights

(3) Planning Margin Net Position

(2) - (1) - (3)


Resource Capability x Qualified Capacity Contribution Net Capability

Example: Lancaster GS

282.00 x 98% 273.36



### **2021 IRP Net Position with RAP Changes**



\*Net positions subject to change

### **VISTA**

## Conclusions

- Participating utilities will use the same methodology for resource adequacy on determination
- Lower capacity requirements using RAP should lower customer cost
- RAP will result in additional market risk due to regional ELCCs for variable resources and storage





# **Resource Adequacy & Resiliency**

Avista, Electric Technical Advisory Committee

December 8<sup>th</sup>, 2021 – TAC 1

James Gall, Electric IRP Manager

## **Resource Adequacy (RA)**

- In the simplest terms, RA is just a regulatory construct developed to ensure that there will be sufficient resources available to serve electric demand under all but the most extreme conditions. – Gridworks
  - The result is a utility must plan for a certain "Planning Margin" or "Loss of Load Probability"
- Our utility Commissions have not required a specific RA requirement, but utilities have an obligation to serve (i.e. RCW 80.28.010 (2))
  - "safe, adequate and efficient, and in all respects just and reasonable"
- Sufficient Resource Adequacy requires either regional coordination or additional resource supply

## **NERC Defines Reliability**

The NERC defines reliability of the bulk electric system via two main responsibilities – adequacy and security.

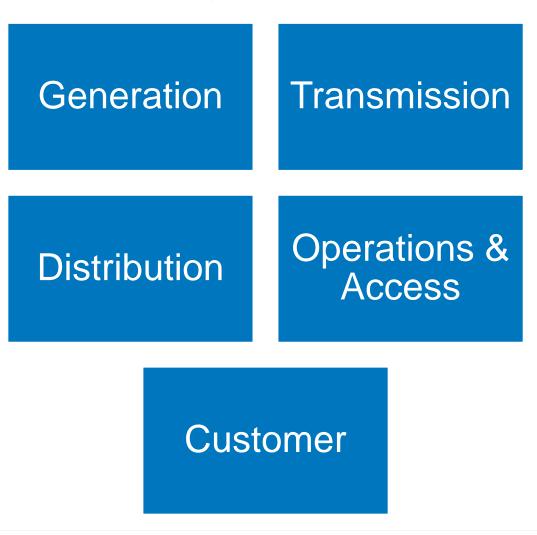
**Adequacy** is defined as "the ability of the bulk power system to supply the aggregate electrical demand and energy requirements of the customers at **all times** (e.g., 1 day in 10 years), taking into account scheduled and reasonably expected unscheduled outages of system elements".

**Security (operating reliability)** is defined as the "ability of the bulk power system to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements from credible contingencies"



## **Past IRP's Resource Adequacy Considerations**

- Planning margin requirements
- Loss of load probability studies
- Annual energy acquisition targets
- Resource peak credit estimates
- Largest single contingency


# Resiliency

 Resilience is generally defined as increasing the ability of the power system to prevent or mitigate the impact of unusual or catastrophic events (e.g., storms, fires, earthquakes, cyber and physical attacks).

- Finster, M., Phillips, J., Wallace, K. "Front-Line Resilience Perspectives: the Electric Grid." Prepared for U.S. Department of Energy, Office of Energy Policy and Systems Analysis – Global Security Sciences Division, Argonne National Laboratory (November 2016)

- Washington's CETA calls out energy security and resiliency as benefit from the transition to clean energy
  - This benefit is tracked as a customer benefit indicator"

### **Resiliency Area's of Concern**





## **Resiliency Risks**

6

| Flooding                                   | Wind, Snow, and Ice<br>Load | Extreme weather<br>(drought, heat, rainfall,<br>wind, etc.) |
|--------------------------------------------|-----------------------------|-------------------------------------------------------------|
| Cyber Security, Civil<br>Unrest, Terrorism | Wildfires                   | Permafrost and Land<br>Movement                             |
| Funding                                    | Organizational Silos        | Supply Chain &<br>Personnel                                 |

Hall, P., Vanderbeck, R., and Triano, M. (May 2019) Electric utilities: An industry guide to enhancing resilience. Resilience Primer. Wood Group PLC and Resilience Shift, UK.



## **Past IRP's Resiliency Considerations**

- Critical water planning (10<sup>th</sup> percentile)
- Fuel supply limitations
- Fuel price risk
- Weather protections included in resource costs
- Modeling weather related generation constraints
- Transmission interconnection requirements
- Non-energy impacts for energy efficiency



### **Resource Adequacy & Resiliency Changes for the 2023 IRP**

- Resource acquisition will target monthly & seasonal Resource Adequacy Program targets
  - Use RA Qualified Capacity Credits (QCC) for each existing and potential resource
  - Use RA required planning margin
- Ensure Avista has energy resources to meet each month's energy need assuming 10th percentile hydro conditions and 90<sup>th</sup> percentile loads
  - With increasing amounts of wind and solar generation, Avista will need to plan for lower expected generation
  - Should Avista plan for average monthly energy or both On-Peak vs Off-Peak?
  - Draft CETA "use" rules require hourly clean energy delivery "planning"
- Conduct stochastic risk assessment to measure market exposure risk
  - Risk assessment may lead to higher planning margins or need for additional transmission



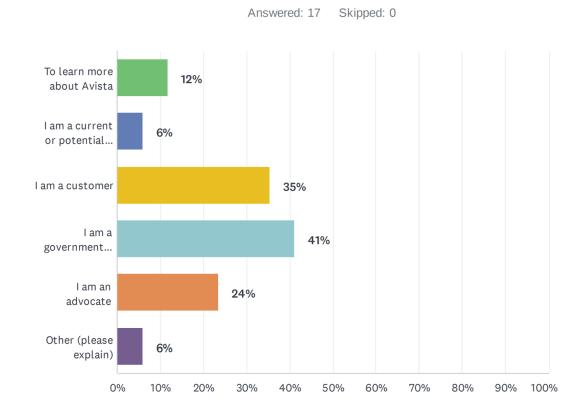
## **Resiliency Group Discussion**

- What resiliency topics should be evaluated in the IRP vs other planning forums?
- What level of resiliency should utilities plan for?
  - Spectrum of probability
  - Outage time and service level
  - Utility cost vs societal cost
- How interchangeable is DERs with grid improvements?
- Customer resiliency
  - Self generation, fuel diversity, shell improvements, shelters, critical infrastructure

- Should we conduct resiliency related scenario analysis and what should we change in the plan based on the results?
- Include resiliency credit for local resources
  - May have locational and benefit limitations
  - Additional resources cost are likely for resources to be responsive to distribution outages
  - Require feedback loop between T&D planning
- Integrated Resource and Resiliency
   Planning
- Resiliency product offerings (i.e., home generators or storage)



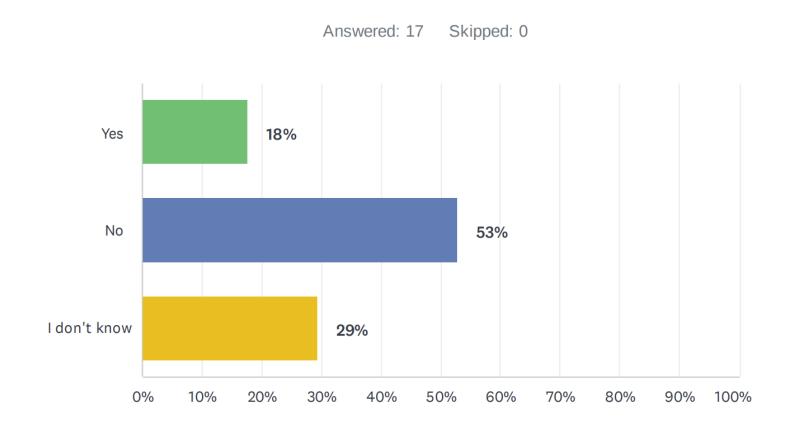



## Technical Advisory Committee Participant Survey

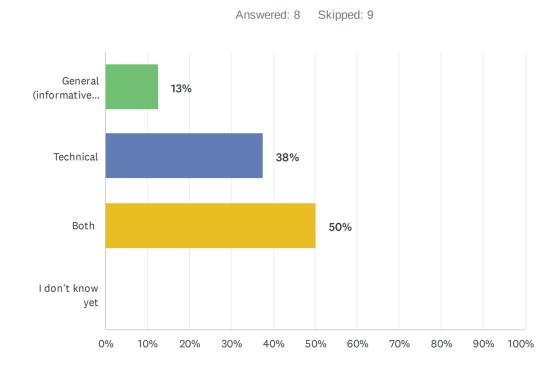
2023 Electric IRP

First Technical Advisory Committee Meeting, December 8, 2021

Lori Hermanson, Senior Power Supply Analyst


#### Why are you involved in the IRP process?

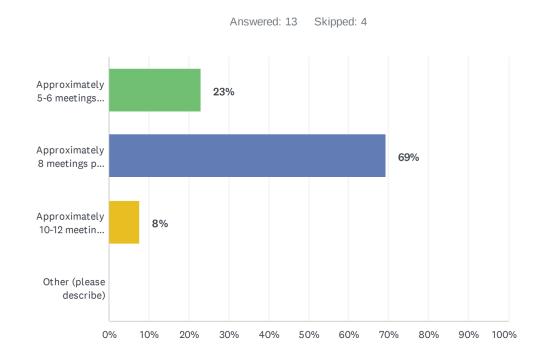



- Majority of participants are noncustomers from government entities
- Many are customers
- One wants to drive solar



# Would two IRP tracts (i.e. informative vs. technical) be better?




#### Which tract would you prefer to participate in?



 88% prefer to participate in technical or both technical and informative



# What is your preference for meeting occurrence and length?



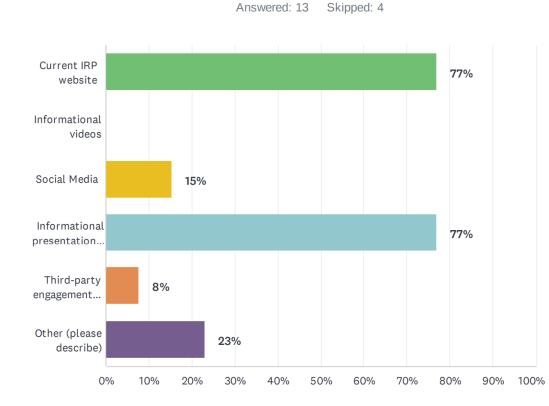
 69% prefer approximately 8 meetings per IRP with meetings no more than 3-4 hours in length



### What topics would you like to discuss?

- Customer partnerships local resource options (DR, EE, DER, electrification)
- Resource adequacy\*
- Regional area network vulnerability and Avista's contingency plan to prevent loss of service\*
- Stakeholder review and feedback of Avista's generic resource assumptions\*
- Potential sources of renewable energy realistic for Avista's service territory, DER and energy storage options\*
- Transmission and distribution technologies; T&D capacity limits; improvement needs (both regionally and local)\*
- Regulatory strategy to protect legacy power generating capacity

- Nuclear power to replace coal (longterm, low-cost) instead of wind or solar; use natural gas for peaking not energy
- Impact of customer benefit indicators on IRP process\*
- Resource cost/benefits analysis (new resources vs PPAs)
- Load & resource balance\*
- EV adoption forecast\*
- Action items status\*
- Climate change\*
- Reliability\*
- Jurisdictional allocations




### What additional supporting data would you like to see?

- Balance was right a strength of the 2021 IRP
- Chart of portfolio with annual operating costs and risk profile of each resource strategy shows customers' risk exposure
- Updated climate modeling
- Refined resource adequacy considerations that target multiple characteristics including need, duration, probability and size; modeling that allows a suite of storage resources to be selected
- Current plan is to comply with WA law plan should provide reliable, low-cost power to customers
- Modernize resource modeling with tools like WIS:dom-P (Vibrant Clean Energy) that models load, grid and renewable potential to the neighborhood level and identify where DER + storage deployment is least-cost investment
- Utilize existing biomass energy resource, not wind or solar



#### What are your preferences to engage customers?



- Majority prefer the website or informational presentations to engage customers
- Improved website that explains the issues and steps instead of text and links
- Newspaper articles
- Input from actual customers not outside environmental groups since customers pay the bills and hold the financial risk



### What did you like about the 2021 IRP Process?

- Process was complete and detailed. Appreciated how Avista endeavored to implement the WA clean energy law and meet Idaho policy expectations (challenging!)
- Increased transparency; amount of data and presentations for varying levels of technical expertise
- Large audience
- Nice job of explaining the data and modeling tools/techniques used so folks understood the outcomes
- Logic was to comply with CETA only we need a customer-focused IRP!
- Good presentations/presenters
- Remote meetings and format



### What improvements would you like to see?

- Stop assuming Idahoans want methane gas plants. We want reliable, affordable energy.
- Focus on providing low cost, reliable power from sources that have a long-term stable cost outlook. Natural gas costs driven up as its used to firm wind/solar. Should be using nuclear and biomass with limited natural gas for peaking.
- Continue to find ways to make complicated concepts accessible to the general public.
- Online index of what topics were covered during various TAC meetings.
- Promote the process.
- Ensure Avista's modeling tools are able to conduct modern day resource planning (e.g. consider a suite of storage resources to meet capacity shortfalls, multiple characteristics of resource adequacy, modern climate modeling and aligning inputs with a fast-evolving industry)






#### Washington State Clean Energy Implementation Plan Customer Benefit Indicators

December 8, 2021 – 2023 Electric IRP TAC 1

Annette Brandon

#### **Clean Energy Transformation IRP to CEIP**



#### Integrated Resource Plan (IRP)

20+ year resource planning identifying customer future resource needs

- Lowest reasonable cost of resource mix including societal benefits
- Maintain and protect safety, reliable operation and balancing of electric system
- Economic, health and environmental benefits

#### **Clean Energy Action Plan (CEAP)**

Sets 10-Year <u>targets</u> for resources based on the lowest reasonable cost plan including; filed jointly with IRP

- Societal costs;
- · Clean energy requirements; and
- Reliability Requirements.

#### **Clean Energy Implementation Plan (CEIP) 2022-2025**

CEIP establishes the <u>actions</u> the utility will take to comply with CETA goals over the next four years. Including:

- Interim Targets
- Specific Targets
- Public Participation Process
- Customer Benefit Indicators



### **Public Participation Inputs**



Identify Named Communities

Highly Impacted Communities Vulnerable Populations

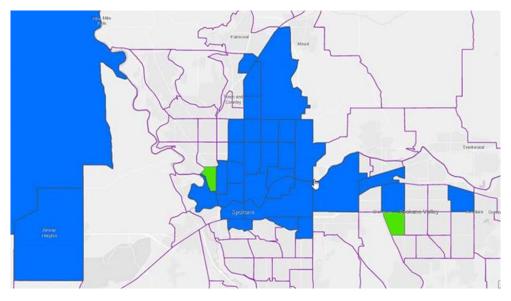


Benefits/Barriers "Equity Areas" Benefits of Clean Energy Prioritization Barriers to Participation

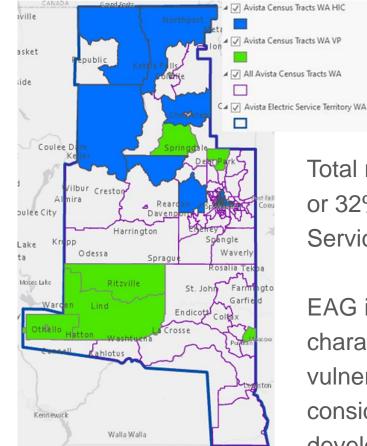


#### **Customer Benefit Indicators**

Measurable Accountable




CEIP


Resource Mix Lowest Reasonable Cost Resource Adequacy



#### Highly Impacted Communities and Vulnerable Populations ("Named Communities") Who is most Impacted?



- Highly Impacted Communities
  - Designated by DOH
  - 34 Census Tracts (25%)
- <u>Vulnerable Populations</u>
  - Socioeconomic and sensitive population areas 9 or higher
  - 13 Census Tracts (7%)



Total represents 47 areas or 32% of total Washington Service Territory.

EAG identified additional characteristics for vulnerable populations considered as part of CBI development.



#### **Benefits of Clean Energy Transition**

Utilities must consider input from advisory group members (including equity advisory group), and customers to meet requirement that all customers benefit from the transition to clean energy through:

#### Equity

• Equitable distribution of energy and nonenergy benefits and reductions of burdens to vulnerable populations and highly impacted communities

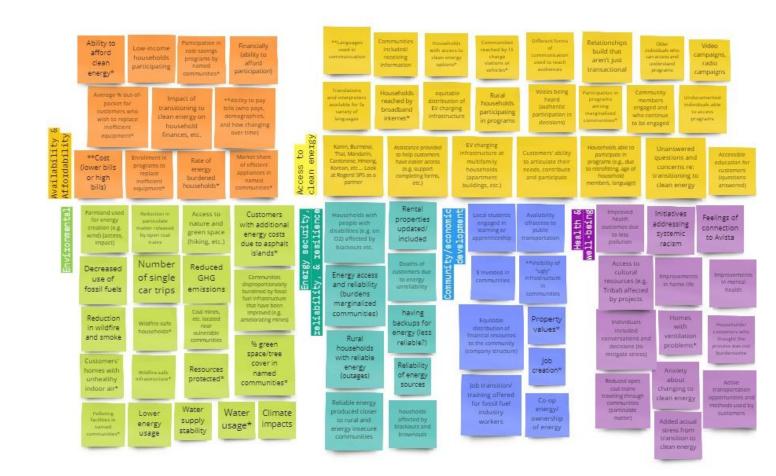
#### Public Health and Environmental

- Long term and short-term public health and environmental benefits and reductions of costs and risks;
- · Such as less air pollution which results in lower asthma rates

#### **Energy Security and Resiliency**

- Energy Security strategic objective to maintain energy services and protecting against disruption
- Energy Resiliency ability to adapt to challenging conditions from disruptions

#### Meet Planning Standards


- Maintaining and protecting the safety, reliable operation and balancing of the electric system
- · Lowest reasonable cost including social costs





### Developing Customer Benefit Indicators – From 86 touchpoints to 12 Final

- How could the transition to clean energy benefit (or unintentionally harm) customers?
  - Affordability
  - Environmental
  - Access to clean energy
  - Energy security, resiliency
  - Community/economic development
  - Health and well-being
- What may be some barriers or burdens?
  - Language
  - Cultural
  - Awareness
  - Transportation Access





#### **Prioritizing Customer Benefit Indicators**



This Photo by Unknown Author is licensed under CC BY-SA

#### Communication Power


- To what extent is the indicator easily understandable by a broad audience?
- Proxy Power
  - Which are critically tied to everyone benefiting equitably from the transition to clean energy? ("Data Herd")
- Data Power
  - Which are most able to be tracked, measured, and counted?



#### **Customer Benefit Indicators**

**Customer Benefit Indicator (CBI)** – is an attribute, either quantitative or qualitative of a resource or related distribution investment associated with customer benefits

### **Customer Benefit Indicators**



CBIs are measurement tools for evaluating progress towards ensuring customers are benefitting from the transition to clean energy.

#### Areas considered:

- ✓ Affordability
- ✓ Access to Clean Energy
- ✓ Environment and Public Health
- ✓ Energy Security and Resiliency
- Community and Economic Development



### **Directly Related IRP CBIs**

| •••      | Number of Households With High Energy<br>Burden | Energy Burden by All Customers and Named Communities                              |
|----------|-------------------------------------------------|-----------------------------------------------------------------------------------|
| *        | Named Community Clean Energy                    | Percent of Energy Efficiency, Non-Emitting, Renewable Energy in Named Communities |
| Ō        | Energy Availability                             | Resource Adequacy Planning Margin                                                 |
| *        | Energy Generation Location                      | Percent of Generation Located in Washington or Connected to Avista T&D system     |
| -        | Outdoor Air Quality                             | Avista Plant Air Emissions                                                        |
| <b>*</b> | Greenhouse Gas Emissions                        | Avista's GHG emissions                                                            |

### Number of Households with High Energy Burden

The goal is to reduce the number of customers, especially in Named Communities, with an energy burden of six percent or more.

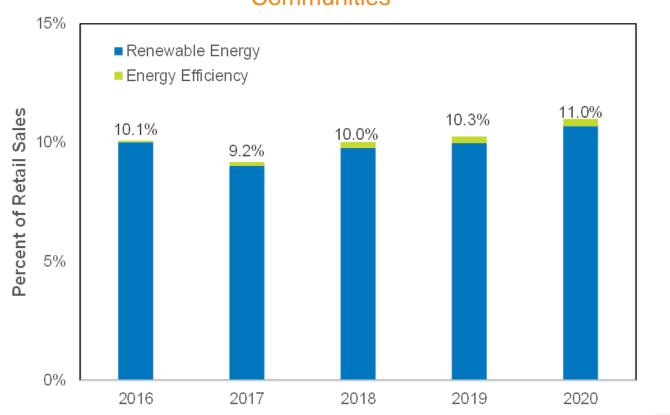
| County  | Households<br>Energy Burdened<br>in Excess of 6%<br>(electric heat) | Energy burdened<br>households as a<br>percent of total<br>households<br>(electric heat) | Average excess<br>burden per<br>household (electric<br>heat) |
|---------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Adams   | 802                                                                 | 22%                                                                                     | \$752                                                        |
| Asotin  | 810                                                                 | 13%                                                                                     | \$669                                                        |
| Ferry   | 198                                                                 | 18%                                                                                     | \$754                                                        |
| Lincoln | 427                                                                 | 18%                                                                                     | \$638                                                        |
| Spokane | 14,211                                                              | 16%                                                                                     | \$533                                                        |
| Stevens | 2,355                                                               | 20%                                                                                     | \$718                                                        |
| Whitman | 1,543                                                               | 11%                                                                                     | \$589                                                        |
| Total   | 20,346                                                              | 16%                                                                                     | \$621                                                        |

**BASELINE METRIC** 

Baseline (preliminary) a point-in-time estimate (as of year end 2020) developed by Empower DataWorks.

Lowest Reasonable Cost Resource calculation benefits customers in terms of

- ✓ Reduction of Burdens (if located in Named Community)
- ✓ Reduction of Cost (for all Customers)



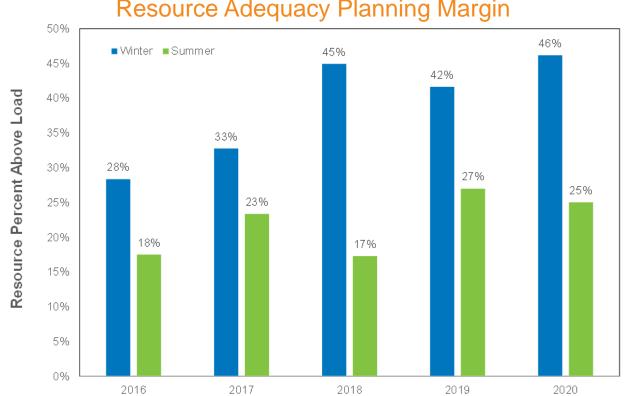

Named Community detail in progress.

### **Named Community Clean Energy**

The Named Community Clean Energy CBI concentrates on the percent of non-emitting or clean energy resources, including distributed generation or energy efficiency in Named Communities.

#### Percent of Non-Emitting/Renewable Energy in Named Communities



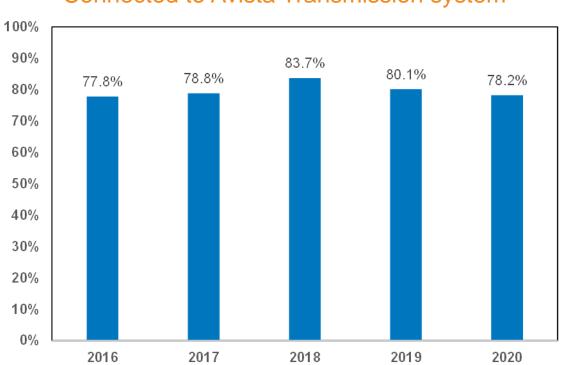

#### **Power Supply Contribution:**

- Reducing energy burdens and costs.
- New distributed energy resources may aid in faster recovery from outages.
- Non-energy benefits such as labor and economic development



#### **Energy Availability**

Avista's resource Planning Margin is a measure of resource adequacy indicating the level of customer exposure to resource outages or market reliance.



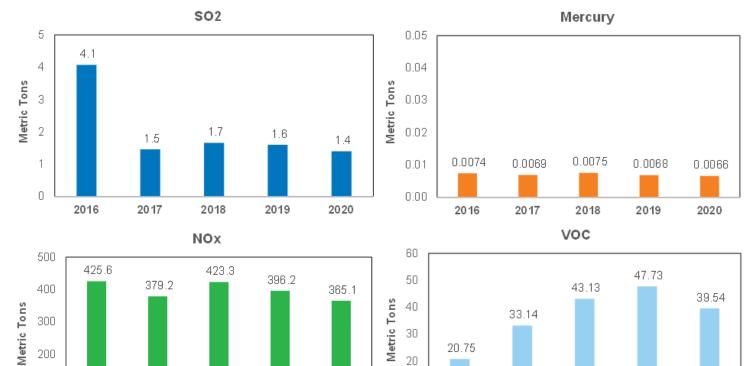

#### **Resource Adequacy Planning Margin**



### **Energy Generation Location – Energy Security**

As part of Named Community development, Avista will track the amount of clean generation and energy efficiency in its annual system resource mix. The benefits associated with this metric will provide economic opportunities to these communities and a more energy secure pathway.




#### Percent of Generation located in WA or Connected to Avista Transmission system

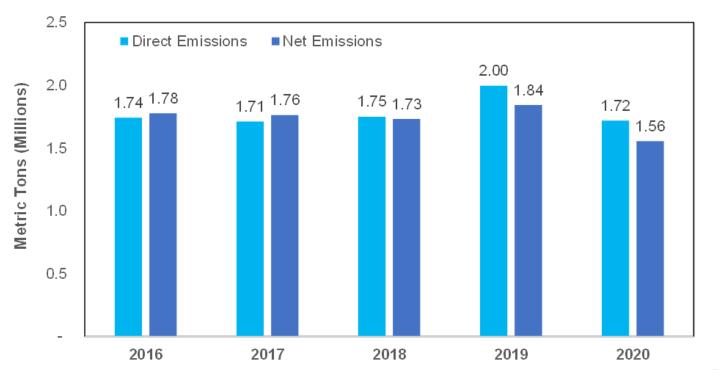
- Locating resources closer to customers will not eliminate disruptions.
- Local generation may create benefits by reducing transmission of power risk and/or policy issues from out-of-state resources.
- There are risks to utilizing local generation such as lack of diversity of weather, for example



### **Outdoor Air Quality**

Avista will monitor Avista-specific Plant Air Emissions on a locational basis.



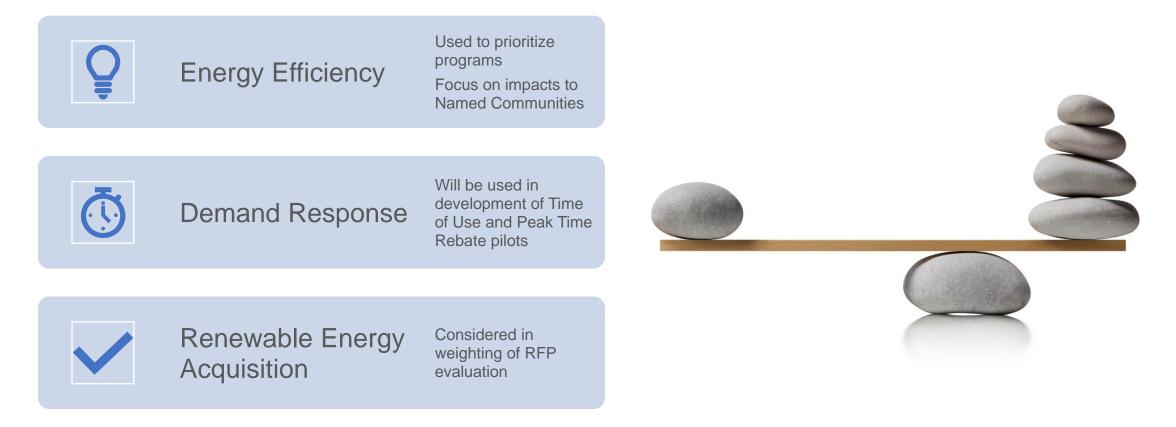

#### Avista Plant Air Emissions



#### **Greenhouse Gas Emissions**

Avista will monitor the greenhouse gas emissions from Avista resources and how it interacts with the wholesale market.

Renewable Energy Projects will contribute to the overall reduction in Regional GHG as we move towards 2030.




#### Avista-specific GHG



### **CBIs and Resource Selection**

CBIs must be incorporated into resource selection and program prioritization in order to ensure customers are benefitting from the transition to clean energy.





### **CBIs and Resource Selection**

### IRP Portfolio Analysis and Preferred Portfolio must consider:

- Lowest Reasonable Cost
- Include cost-effective, reliable and feasible conservation and efficiency resources and distributed energy sources
- Consider acquisition of existing renewable resources
- Maintain and Protect safety, reliable operation and balancing of the utility's electric system
- Include long-term strategy and interim steps to equitable distribute benefits or reduce burdens to highly impacted in vulnerable populations
- Assess the environmental health impacts to highly impacted communities



How to incorporate CBIs into this mix?

#### Prioritization

- one CBI is not determined to be more important than another on a stand-alone basis.
- Dependent upon resource selection, how much weight should be given?
- What about those that are not able to be quantified
- Weighting of factors?
- Develop standard weighting?



### **CBI's Indirectly Related to the IRP**

|          | Participation in Company Programs                         | Participation in weatherization programs and energy assistance programs (State and Named Community statistic)                |
|----------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| *        | Availability of Methods/Modes of Outreach & Communication | Number of outreach contacts<br>Number of marketing impressions                                                               |
| Ō        | Transportation Electrification                            | Number of trips provided by community-based organizations<br>Number of public charging stations located in Named Communities |
|          | Investments in Named Communities                          | Incremental spending each year in Named Communities<br>Number of customers/and/or community-based organizations served       |
| -        | Employee Diversity                                        | Employee diversity equal to communities served by 2035 (goal)                                                                |
|          | Outdoor Air Quality                                       | Weighted Average Days Exceeding Healthy Levels                                                                               |
| *        | Energy Availability                                       | Average Outage Duration                                                                                                      |
| <b>F</b> | Greenhouse Gas Emissions                                  | Regional GHG Emissions by Sector                                                                                             |
| <b></b>  | Supplier Diversity                                        | Supplier diversity at 11 percent by 2035 (goal)                                                                              |
| -1/-     | Indoor Air Quality                                        | In development                                                                                                               |



### How will the IRP address CBI's?

- Directly related IRP CBI's will be quantitatively forecasted in the IRP.
  - including of non-energy impacts and transitioning to 100% clean energy by 2045 may improve these indicators
- Indirectly related IRP CBI's will be qualitatively discussed in the IRP.
- In the event an indicator does not improve
  - Describe why the indicator is not improving
  - Document options for improvement, including impacts to other CBI's
- Other ideas?



#### **CBI List**

| ~              | Participation in Company Programs                         | Participation in Energy Efficiency and Weatherization ("other")<br>Saturation Rate for Energy Assistance Programs                                                                       |
|----------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •••            | Number of Households With High Energy Burden              | Energy Burden by All Customers and Named Communities                                                                                                                                    |
| Q              | Availability of Methods/Modes of Outreach / Communication | Number of Outreach Contacts<br>Number of Marketing Impressions                                                                                                                          |
| <sup>t</sup> æ | Transportation Electrification                            | Number of Annual Trips to CBOs <u>and</u> passenger miles for individuals utilizing electric transportation<br>Number of Public Charging ports available to public in Named Communities |
| *              | Named Community Clean Energy                              | Percent of Non-Emitting/Renewable Energy in Named Communities                                                                                                                           |
| •••            | Investment in Named Communities                           | Incremental annual spending of investments in Named Communities<br>Number of customers and/or CBOs served each year                                                                     |
| Ō              | Energy Availability                                       | Average Outage Duration<br>Resource Adequacy Planning Margin                                                                                                                            |
|                | Energy Generation Location                                | Percent of Generation Located in Washington or Connected to Avista TX system                                                                                                            |
| -              | Outdoor Air Quality                                       | Weighted Average Days Exceeding Healthy Levels<br>Avista Plant Air Emissions (SO2, Mercury, Nox, VOC)                                                                                   |
| •              | Greenhouse Gas Emission                                   | Regional GHG Emissions by Sector<br>Avista's GHG emissions                                                                                                                              |
| -\-            | Public Health                                             | Employee and Supplier Diversity<br>Indoor Air Quality                                                                                                                                   |





## 2023 IRP Draft Work Plan

2023 Electric IRP

TAC 1 – December 8, 2021

John Lyons, Ph.D. – Senior Resource Policy Analyst

### 2023 IRP Work Plan

- IRP regulations require an IRP to be filed in Idaho on April 1, 2023, and a progress report in Washington on January 1, 2023.
- Avista will ask Commissions to extend the filings to June 1, 2023, to allow for the completion of the 2022 All-Source RFP which will fundamentally change the resource strategy.
  - For the progress report in Washington, Avista will have 3 of the 4 requirements for the report by January 2023 but would prefer to hold off on filing a resource strategy until new contracts are signed.
- The IRP will incorporate resource selections from the 2022 All-Source RFP and meet capacity requirements in the Northwest Power Pool's Resource Adequacy Program.



### **2023 IRP Work Plan – Modeling**

- Use Aurora for electric market prices, resource valuation and Monte-Carlo style risk analyses of the electric marketplace.
- Aurora modeling results will be used to select the PRS and alternative scenario portfolios using Avista's proprietary PRiSM model.
- Qualitative market risk evaluations involve separate analyses with Avista's ARAM model or Plexos.
- Applied Energy Group (AEG) is conducting energy efficiency and demand response potential studies.
- DNV is conducting non-energy impact study for supply-side resources to improve customer benefit indicators for Washington customers. DNV recently completed a similar study for energy efficiency.



#### **Tentative 2023 Electric IRP TAC Schedule**

- TAC 1 (Wednesday, December 8, 2021): 2021 IRP Action Item Review, Summer 2021 Heat Event Review, NWPP Resource Adequacy Program Overview, Resource Adequacy Program Impact to the IRP, IRP Resource Adequacy/Resiliency Planning Discussion, TAC Survey Results and Discussion, Washington State Customer Benefit Indicators, and 2023 IRP workplan.
- TAC 2 (Tuesday, February 8, 2022): Process Update, Demand and economic forecast, and Preliminary Load & Resource Balance.
- TAC 3 (Wednesday, March 9, 2022): Preliminary natural gas market overview and price forecast, Preliminary wholesale electric price forecast, Non-Energy Impact Study by DNV, and Existing resource overview.



### **Tentative 2023 Electric IRP TAC Schedule**

- TAC 4 (Late July 2022): Conservation Potential Assessment (AEG), Demand Response Potential Assessment (AEG), energy efficiency inclusion of Social Cost of Greenhouse Gas (WA only)
- TAC 5 (Early August 2022): IRP transmission planning studies, distribution planning within the IRP, and NWPP Resource Adequacy Program update
- TAC 6 (August 2022): Supply side resource cost assumptions including DERs, ancillary services and intermittent generation analysis, update on All-Source RFP, update to energy and peak forecast, and update to Load & Resource balance
- TAC 7 (September 2022): Hydro impacts from global climate change studies, load impacts from global climate change studies, DER study scope for 2025 IRP, Clean Energy Implementation Plan update, final wholesale natural gas and electric price forecast, and discuss portfolio and market scenarios options



### **Tentative 2023 Electric IRP TAC Schedule**

- **Technical Modeling Workshop (October 2022):** PRiSM model overview, risk assessment overview (Plexos or ARAM), and Washington use of electricity modeling
- **TAC 8 (February 2023):** Wholesale market scenario results, RFP update, jurisdictional allocation update, draft Preferred Resource Strategy, Washington 100% clean energy planning standard modeling, and market risk assessment
- Virtual Public Meeting- Natural Gas & Electric IRP (February/March 2023)
- TAC 9 (March 2023): Final Preferred Resource Strategy, portfolio scenario analysis, final report overview and comment on plan, and Action Items
- Agendas, presentations & minutes: <u>https://myavista.com/about-us/integrated-resource-planning</u>



### **Tentative 2023 Draft Electric IRP Timeline**

| Task                                         | Target Date     |
|----------------------------------------------|-----------------|
| Update and finalize energy & peak forecast   | May 2022        |
| Transmission & distribution studies complete | June 2022       |
| Identify Avista's supply resource options    | July 2022       |
| Finalize demand response options             | July 2022       |
| Finalize energy efficiency options           | July 2022       |
| Finalize natural gas price forecast          | August 2022     |
| Finalize electric price forecast             | September 2022  |
| Determine portfolio & market future studies  | October 2022    |
| Due date for study requests from TAC members | October 1, 2022 |
| Finalize PRiSM model assumptions             | October 2022    |
| Simulate market scenarios in Aurora          | November 2022   |
| Portfolio Analysis                           | February 2022   |

# **Tentative 2023 IRP Writing Tasks**

| Writing Tasks                               | Target Date     |
|---------------------------------------------|-----------------|
| File 2023 IRP Work Plan                     | January 1, 2022 |
| Washington Partial Progress Report          | January 1, 2023 |
| External draft released to the TAC          | March 17, 2023  |
| Public Comments from TAC due                | May 12, 2023    |
| Final IRP submission to Commissions and TAC | June 1, 2023    |



#### **Tentative 2023 Electric IRP Timeline – Public Data Releases**

| Task                                 | Targeted Release |
|--------------------------------------|------------------|
| Peak & Energy Load Forecast          | June 2022        |
| Supply Side Resource Options         | July 2022        |
| Energy Efficiency Potential Study    | July 2022        |
| Demand Response Potential Study      | July 2022        |
| Transmission Interconnect Costs      | July 2022        |
| Wholesale Natural Gas Price Forecast | August 2022      |
| Wholesale Electric Price Forecast    | September 2022   |
| Climate Change Impact Study Data     | October 2022     |
| Load Scenario Data                   | October 2022     |
| PRiSM Model Available                | November 2022    |
| Draft PRiSM Model & Results          | February 2023    |
| Final PRiSM Model & Results          | March 2023       |



- 1. Executive Summary
- 2. Introduction, Stakeholder Involvement, and Process Changes

#### **3.** Economic and Load Forecast

- Economic Conditions
- Avista Energy & Peak Load Forecasts
- Load Forecast Scenarios

#### 4. Existing Supply Resources

- Avista Resources
- Contractual Resources and Obligations
- Customer Generation Overview



#### 5. Long-Term Position

- Regional Capacity Requirements
- Energy Planning Requirements
- Reserves and Flexibility Assessment

#### 6. Transmission Planning & Distribution

- Overview of Avista's Transmission System
- Future Upgrades and Interconnections
- Transmission Construction Costs and Integration
- Merchant Transmission Plan
- Overview of Avista's Distribution System
- Future Upgrades and Interconnections



#### 7. Distributed Energy Resources

- Energy efficiency potential
- Demand response potential
- Supply side resource options
- Named Community Actions

#### 8. Supply Side Resource Options

- New Resource Options
- Avista Plant Upgrades
- Non-Energy Impacts



#### 9. Market Analysis

- Wholesale Natural Gas Market Price Forecast
- Wholesale Electric Market Price Forecast
- Scenario Analysis

#### **10.** Preferred Resource Strategy

- Preferred Resource Strategy
- Market Exposure Analysis
- Avoided Cost
- Customer Benefit Indicator Impact
- Clean Energy Action Plan Update



#### 9. Portfolio Scenarios

- Portfolio Scenarios
- Market Scenario Impacts

#### **10.** Action Plan





#### 2023 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 2 Agenda Tuesday, February 8, 2022 Virtual Meeting

| <b>Topic</b><br>Introductions    | <b>Time</b><br>9:00 | <b>Staff</b><br>John Lyons |
|----------------------------------|---------------------|----------------------------|
| Process Update                   | 9:10                | John Lyons                 |
| Demand & Economic Forecast       | 9:30                | Grant Forsyth              |
| Load and Resource Balance Update | 11:00               | James Gall                 |
| Adjourn                          | 11:30               |                            |

#### Microsoft Teams meeting

Join on your computer or mobile app <u>Click here to join the meeting</u> Or call in (audio only) +1 509-931-1514,,935268410# United States, Spokane Phone Conference ID: 935 268 410# <u>Find a local number | Reset PIN</u> <u>Learn More | Meeting options</u>



# **2023 IRP Introduction**

#### 2023 Avista Electric IRP

TAC 2 – February 8, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

# **Meeting Guidelines**

- IRP team is working remotely and is available for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- IRP data posted to web site updated descriptions and navigation are in development
- Virtual IRP meetings on Microsoft Teams until able to hold large meetings again
- TAC presentations and meeting notes posted on IRP page
- This meeting is being recorded and an automated transcript made



# **Virtual TAC Meeting Reminders**

- Please mute mics unless speaking or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting for the note taker
- This is a public advisory meeting presentations and comments will be documented and recorded



## **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



# **Technical Advisory Committee**

- The public process piece of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Please ask questions
  - Always soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for new studies or different modeling assumptions.
- Available by email or phone for questions or comments between meetings



## **2023 IRP Process Update**

- Draft Work Plan sent with today's presentations
  - Are any days of the week better or worse for future meetings?
  - Based on feedback from last TAC aiming for shorter and more frequent meetings
- Intend to file 2023 IRP on June 1, 2023 allow time to incorporate results of 2022 All-Source RFP
- Idaho Extension
  - Filed request under Docket No. <u>AVU-E-22-01</u> to file the next IRP on June 1, 2023, instead of April 1, 2023
  - January 25, 2022: Staff recommendation to set a public comment deadline of February 24, 2022, and Company reply due by March 5, 2022
- Washington IRP update on January 1, 2022, with 3 of the 4 requirements only Preferred Resource Strategy will not be ready with RFP results



- TAC 3: Wednesday, March 9, 2022
  - Preliminary Natural Gas Market Overview and Price Forecast
  - Preliminary Wholesale Electric Price Forecast
  - Non-Energy Impact Study (DNV)
  - Existing Resource Overview
- TAC 4: August 2022
  - Conservation Potential Assessment (AEG)
  - Demand Response Potential Assessment (AEG)
  - Energy Efficiency Inclusion of Social Cost of Greenhouse Gas (WA Only)
- TAC 5: Early September 2022
  - IRP Generation Option Transmission Planning Studies
  - Distribution System Planning with the IRP
  - Western Resource Adequacy Program update



- TAC 6: End of September 2022
  - Supply Side Resource Cost Assumptions, including DERs
  - Ancillary Services and Intermittent Generation Analysis
  - All-Source RFP Update
  - Energy and Peak Forecast update
  - Load & Resource Balance update
- TAC 7: October 2022
  - Hydro Impacts from Global Climate Change studies
  - Load Impacts from Global Climate Change studies
  - DER Study Scope for 2025 IRP
  - Clean Energy Implementation Plan update
  - Final Wholesale Natural Gas and Electric Price Forecasts
  - Discuss portfolio and market scenario options



- Technical Modeling Workshop October 2022
  - PRiSM model overview
  - Risk Assessment overview
  - Washington use of electricity modeling
- TAC 8: February 2023
  - Wholesale Market Scenario results
  - RFP update
  - Jurisdictional allocation update
  - Draft Preferred Resource Strategy
  - Washington 100% clean energy planning standard modeling
  - Market risk assessment



- Virtual Public Meeting Natural Gas & Electric IRPs (February/March 2023)
  - Recorded presentation
  - Daytime comment and question session
  - Evening comment and question session
- TAC 9: March 2023
  - Final Preferred Resource Strategy
  - Portfolio scenario analysis
  - Final report overview & comment plant
  - Action Items



# **Key 2023 IRP Dates**

- Finalize 2023 IRP Work Plan February/March 2022
- Due date for study requests from TAC members October 1, 2022
- Washington IRP Progress Report January 1, 2023
- External IRP draft released to the TAC March 17, 2023
- Public comments from TAC due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023



# **Today's Agenda**

- 9:10 Process Update, Lyons
- 9:30 Demand and Economic Forecast, Forsyth
- 11:00 Load and Resource Balance Update

11:30 Adjourn

 $\mathbf{\cap}$ 





TAC Meeting February 8, 2022

# 2023 IRP: Preliminary Economic Conditions and Forecasts

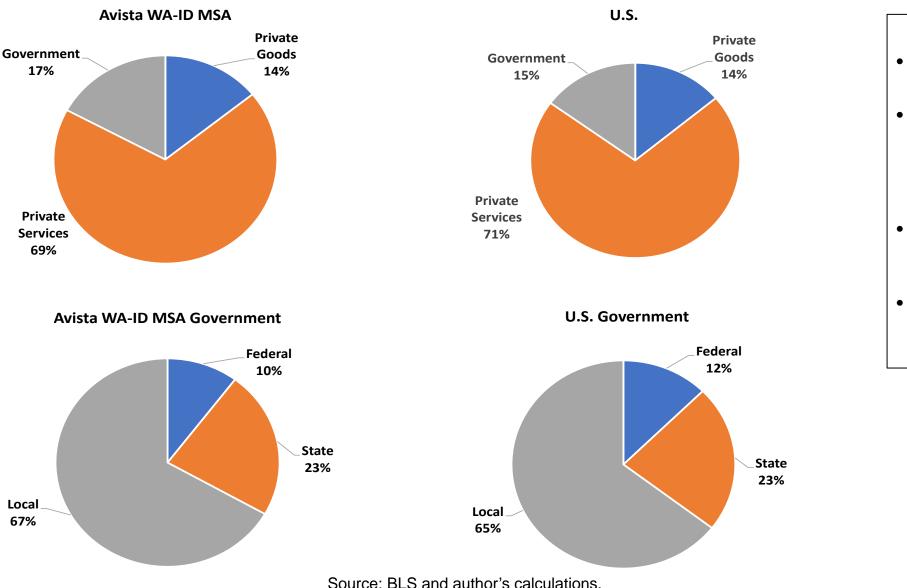
Grant Forsyth, Ph.D. Chief Economist Grant.Forsyth@avistacorp.com





**Long-run Energy Forecast** 



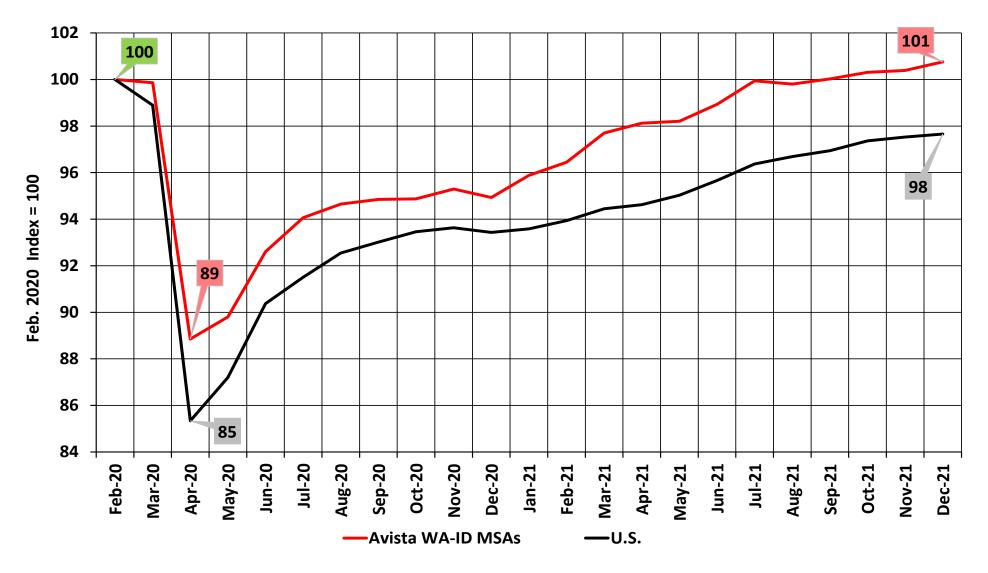

#### "Models are predicting what's normal in a world that isn't normal."

-Erica Groshen, former head of the BLS and current economic advisor to Cornell University's Industrial and Labor Relations School.

Quote from: "Here's another thing the pandemic messed up: economic forecasts," by David J. Lynch, *The Washington Post*, January 11, 2022



# Service Area Economy: Non-Farm Employment Structure



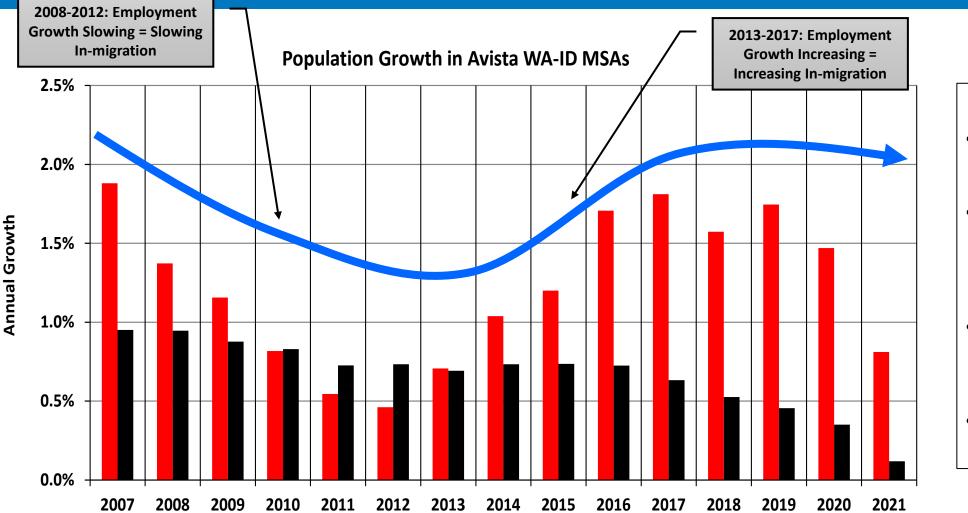

#### Comments

- Employment structure very similar to the U.S.
- Employment dominated by private services. Without service sector growth, very little employment growth will be generated.
- Majority of public sector employment is local and related to education.
- If agriculture is considered, it would account for about 1% to 1.5% of employment.

ANISTA

#### Service Area Economy: Non-Farm Employment




#### Source: BLS, WA ESD, and author's calculations.

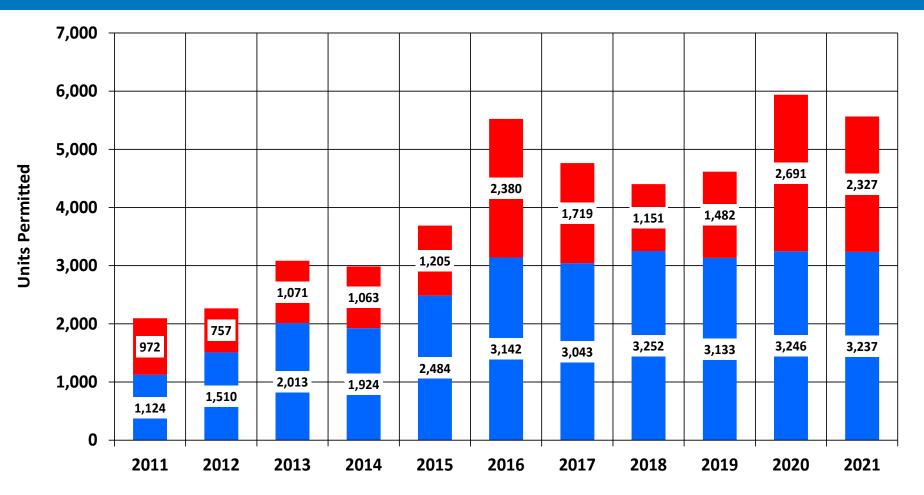
#### Comments

- Region has recovered from the pandemic faster than the U.S.
- Strong growth in ID and an Amazon expansion in WA were important drivers.
- However, the region is still suffering many of the same problems seen in the rest of the U.S.: labor shortages, supply disruptions, and inflation. Shelter cost growth has been some of the fastest in the U.S.

AVISTA

# Service Area Economy: WA-ID Metro Population Growth




#### Comments

- Population growth drives most of our customer growth.
- Significantly higher than U.S. growth because of inmigration. Without inmigration, growth would look like U.S.
- Pandemic suppressed growth in 2021. We expect a rebound in service area growth after 2021.
- Growth is highest on the ID side.



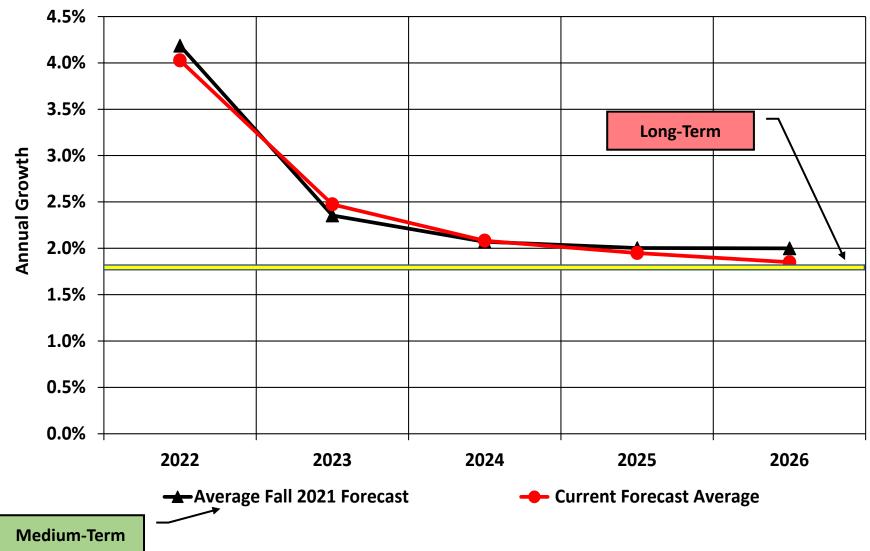
Source: BEA, U.S. Census, and author's calculations.

### Service Area Economy: Spokane+Kootenai Residential Units Permitted



#### Comments

- Strongly connected to population growth.
- Held up surprisingly well in the pandemic. Recessions would normally push down permitting.
- Even with strong permitting, demand has outstripped supply of housing. This has pushed price growth to some of the highest in the U.S.
- Apartments and duplexes have been an important source of new housing in both WA and ID. Duplexes are counted as "single family" in the graph.


ANISTA

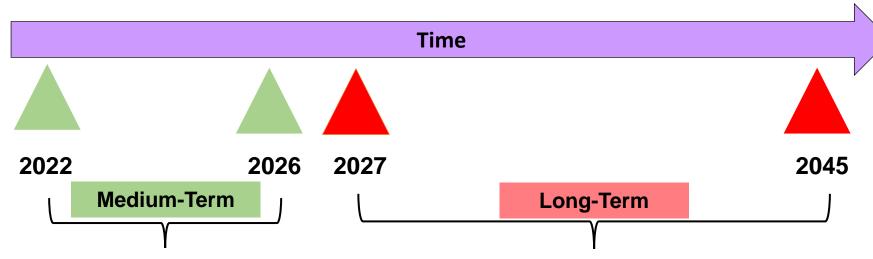
Total Spokane+Kootenai Single Family, WA-ID

Total Spokane+Kootenai Apartments, WA-ID

Source: Construction Monitor and author's calculations.

# Service Area Economy: U.S. GDP Growth Assumptions



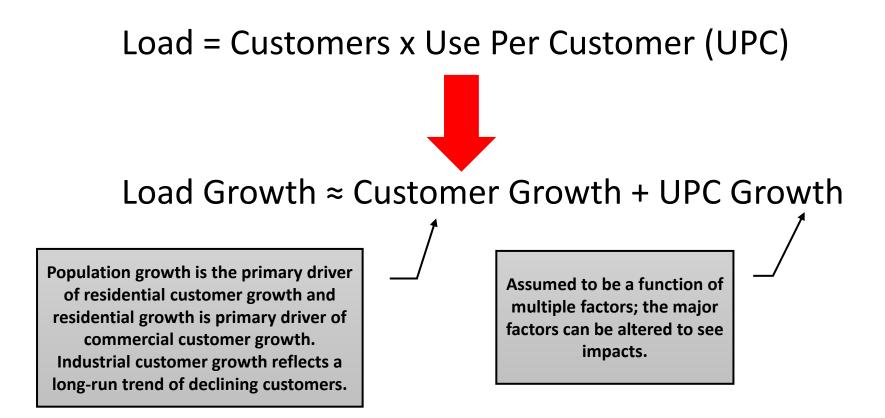

#### Comments

- Long-run growth is a function of population growth and labor productivity growth.
- U.S. continues to have weak productivity growth and weak population growth.
- The Fed's long-run expectation for GDP growth has fallen from 2% to 1.8% (yellow line). This is the growth rate assumed from 2027 to 2045.
- The assumed long-run GDP forecast is lower compared to previous IRPs. Long-run GDP growth must exceed 2.3% before forecasted industrial load will grow.

ANSTA

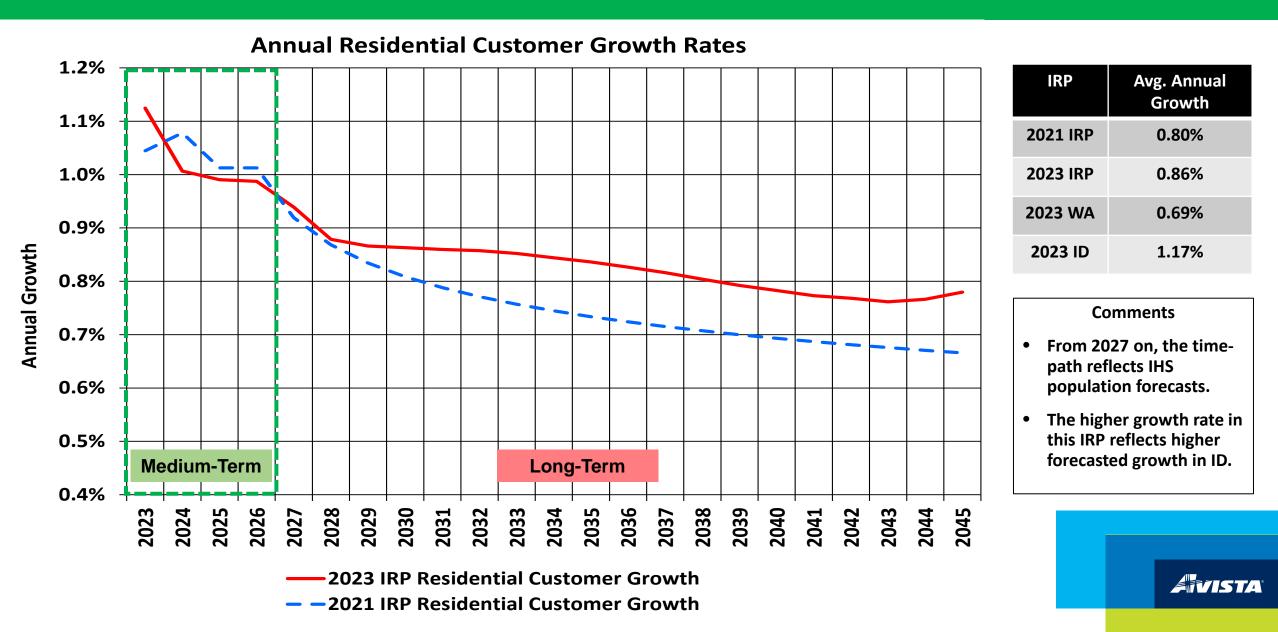
Source: Various and author's calculations.

#### Long-term Energy Forecast: Basic Approach

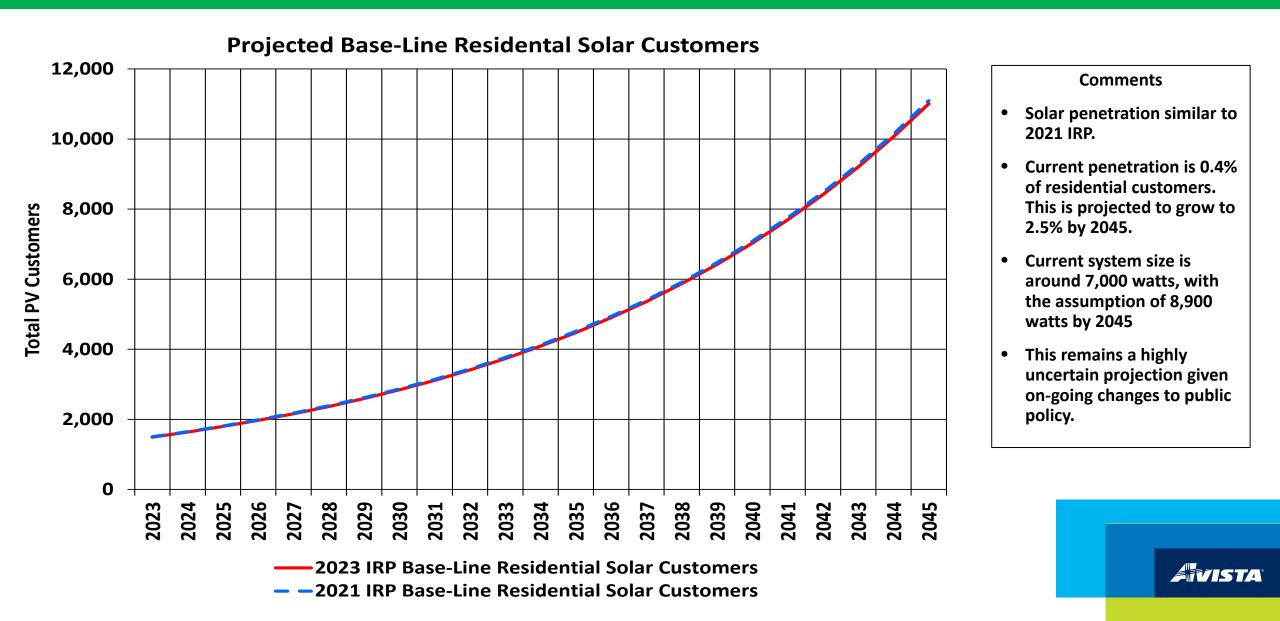



- 1) Monthly econometric model by schedule for each customer class.
- 2) Customer and UPC forecasts.
- 3) 20-year moving average for "normal weather."
- 4) Economic drivers: GDP, industrial production, employment growth, population, price, natural gas penetration, and ARIMA error correction.
- 5) Native load (energy) forecast derived from retail load forecast.
- 6) Current forecast is the Fall 2021 Forecast.

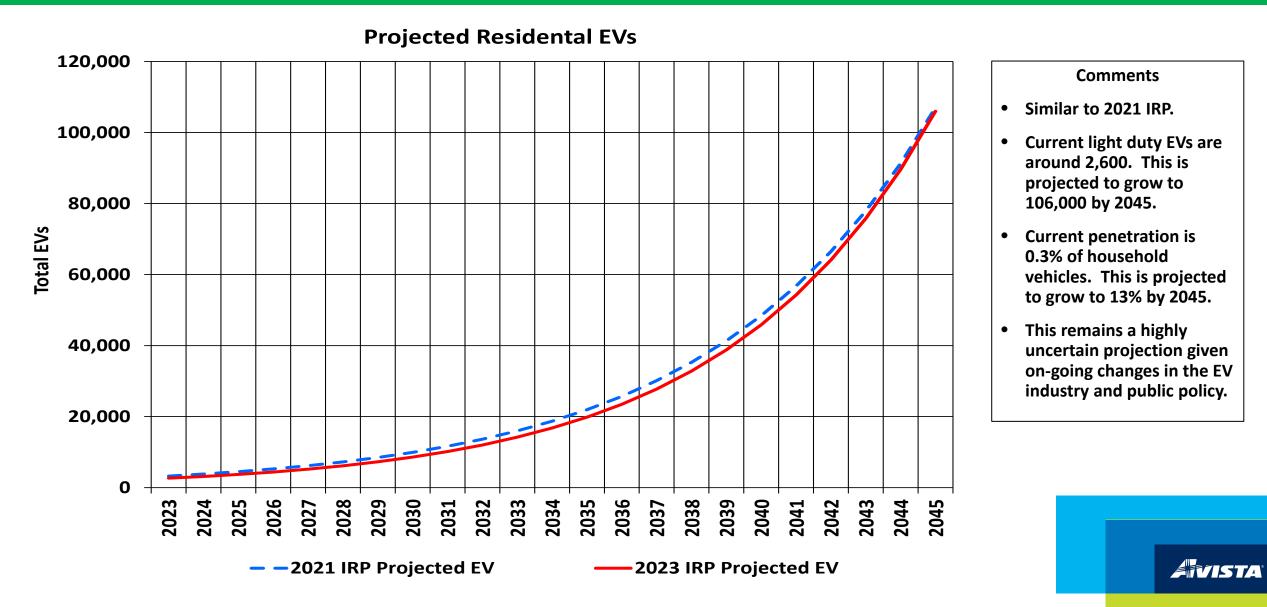
- 1) Boot strap off medium term forecast.
- 2) Apply long-run load growth relationships to develop simulation model for high/low scenarios.
- 3) Include different scenarios for roof top solar penetration with controls for price elasticity, EV/PHEVs, GDP growth, population growth, weather, and natural gas penetration.


*4*77577

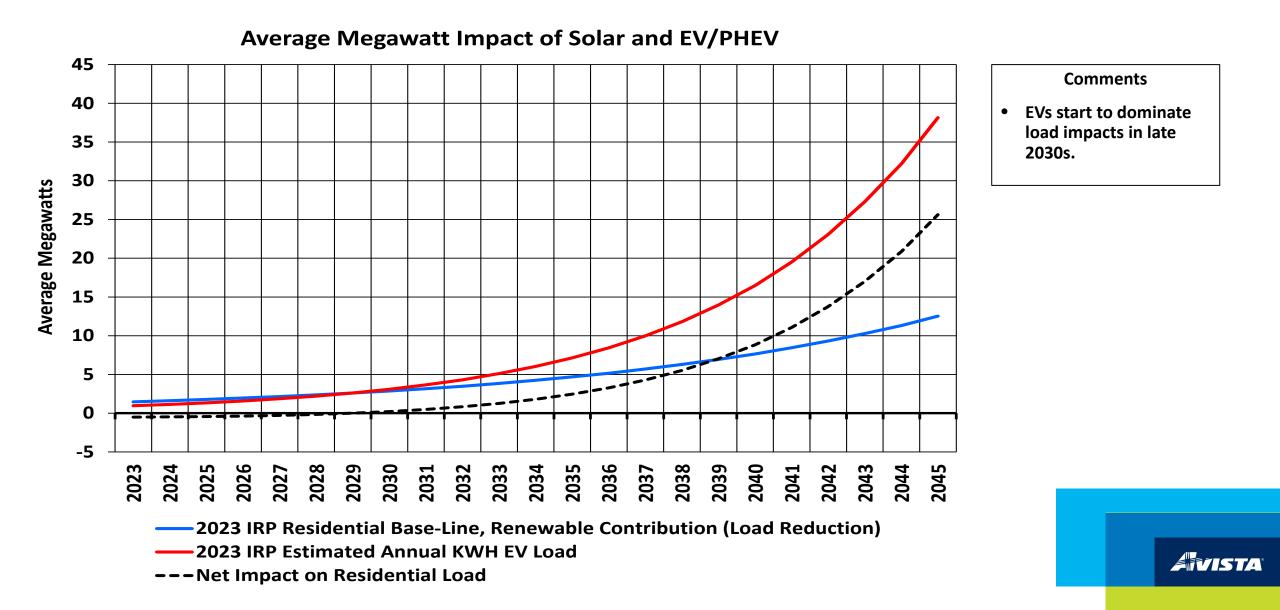
#### Long-term Energy Forecast: Growth Relationships



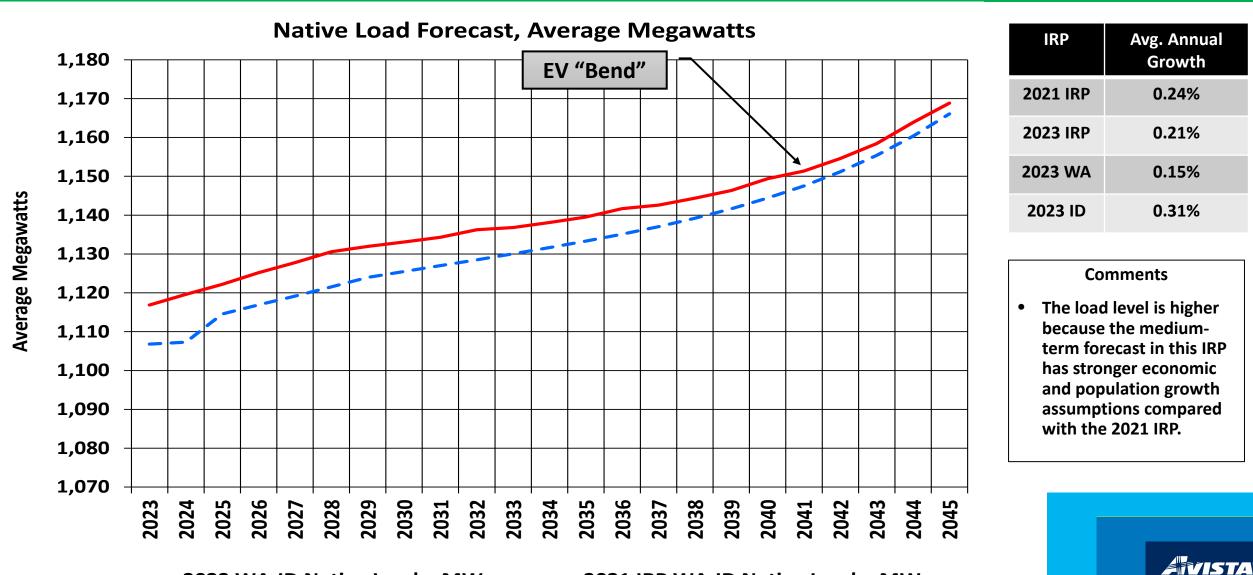

**ANISTA**<sup>®</sup>


### Long-term Energy Forecast: Residential Customer Growth




### Long-term Energy Forecast: Residential Solar Penetration

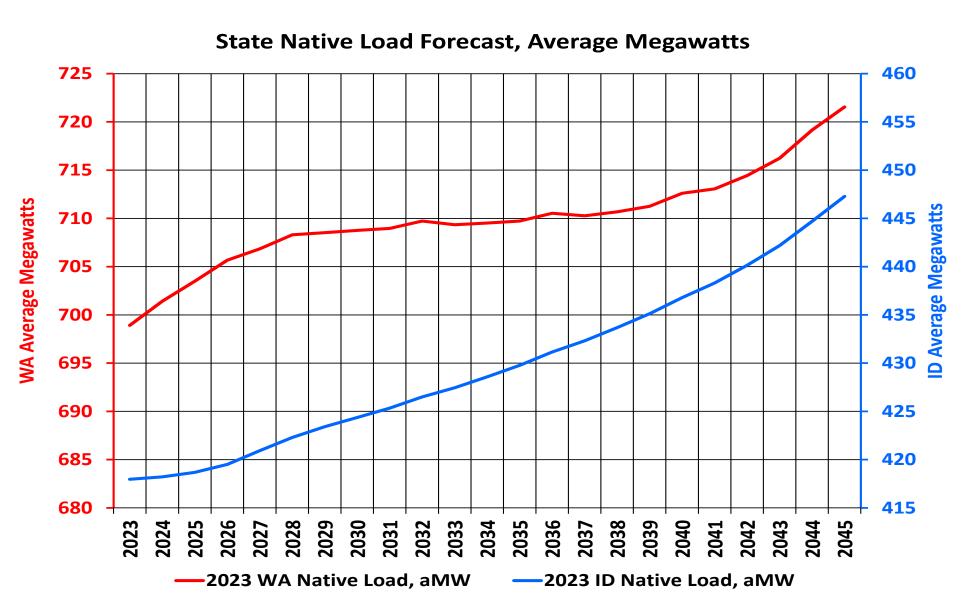



## Long-term Energy Forecast: Light Duty EVs, 2023-2045



# Long-term Energy Forecast: Net Solar and EV Impacts, 2023-2045




#### **Long-term Energy Forecast: Native Load**

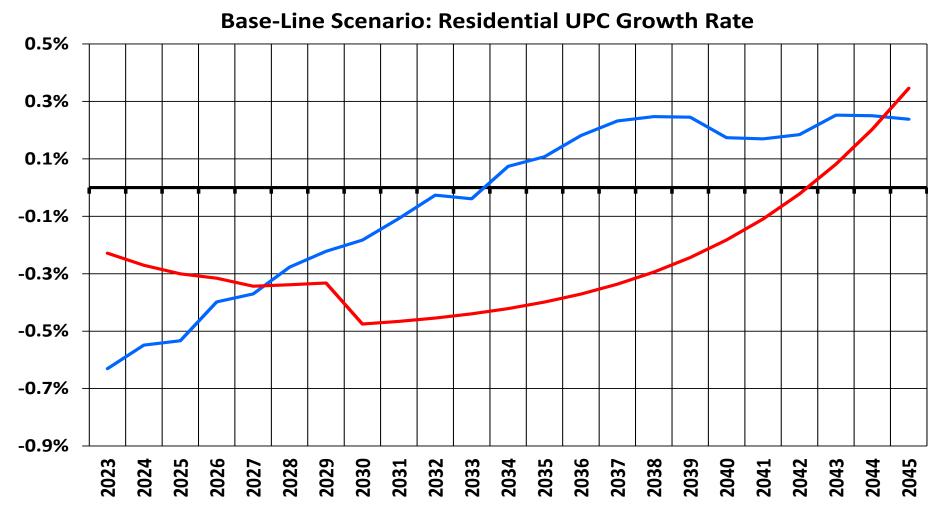


-2023 WA-ID Native Load, aMW

– – 2021 IRP WA-ID Native Load, aMW

#### Long-term Energy Forecast: State Native Load




| IRP      | Avg. Annual<br>Growth |
|----------|-----------------------|
| 2023 IRP | 0.21%                 |
| 2023 WA  | 0.15%                 |
| 2023 ID  | 0.31%                 |

#### Comments

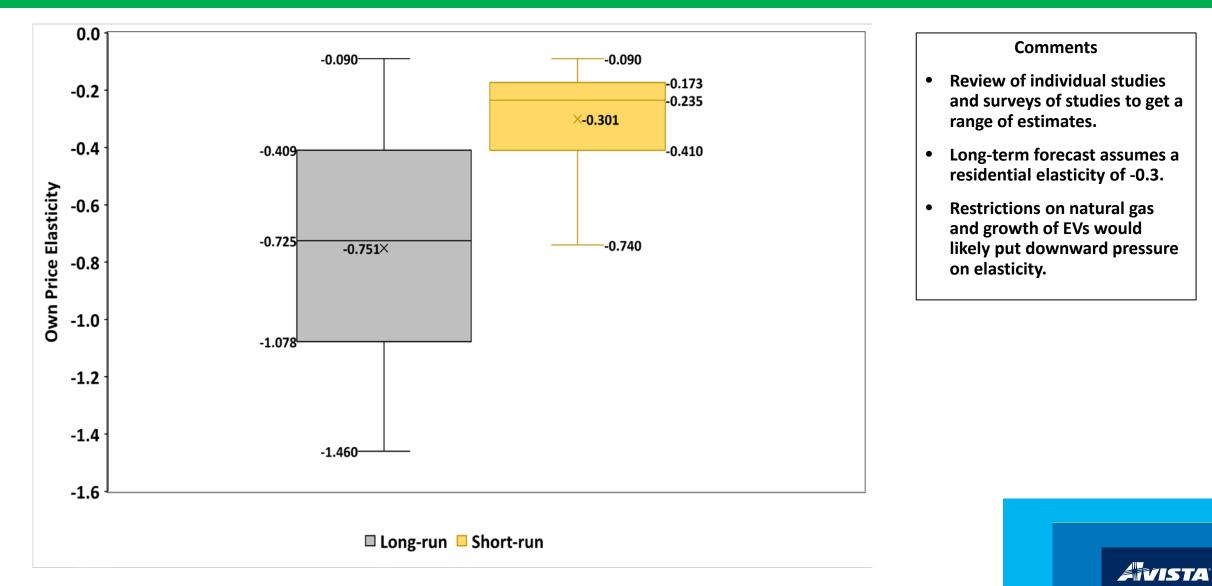
- ID load growth is higher because (1) its population growth forecast is higher and (2) lower solar penetration compared to WA.
- WA long-term forecast assumes gas penetration (as a share of residential electric customers) is constant. In ID the model assumes a gradual increase.

AVISTA

#### Long-term Energy Forecast: Annual Residential UPC Growth

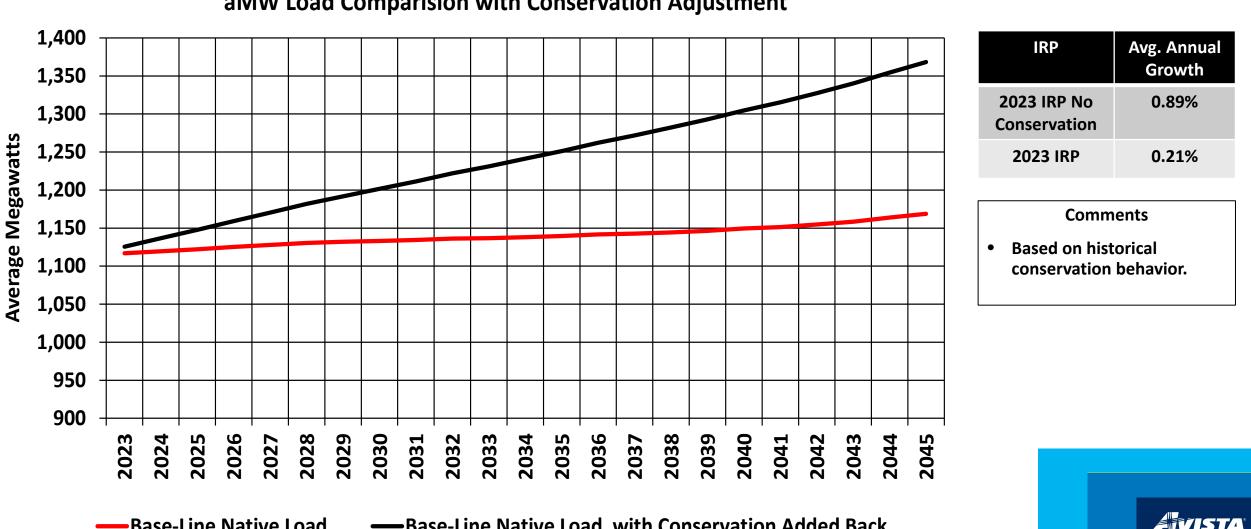


#### Comments


- Avista and EIA UPC growth look different because of U.S. population shifts to warmer regions.
- Avista UPC dips in 2030 due to the assumption that the annual growth rate in real residential rate will accelerate from 1% growth from 2027 to 2029 to 1.5% until 2045.
- As noted, it's assumed WA's share of residential customers with gas is constant from 2026 to 2045.

A STA

-EIA Refrence Case Use Per Household Growth


-2023 IRP Residential Base-Line UPC Growth

#### Long-term Energy Forecast: Residential Own Price Elasticity

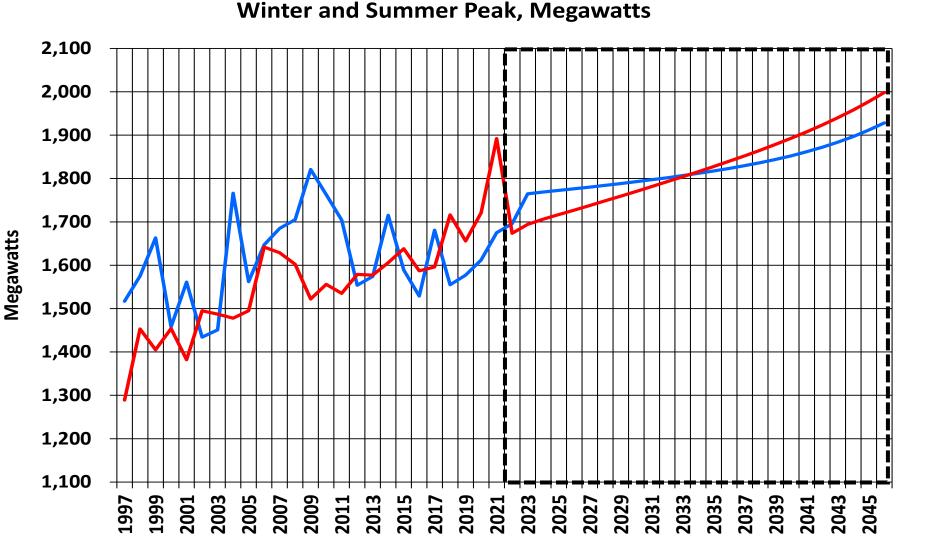


Source: Various sources and author's calculations.

#### Long-term Energy Forecast: Conservation Impacts



aMW Load Comparision with Conservation Adjustment


Base-Line Native Load —Base-Line Native Load with Conservation Added Back

#### **Peak Load Forecast: The Basic Model**

- Based on monthly peak MW loads since 2004. The peak is pulled from hourly load data for each day for each month. The model used for this IRP underwent a major revision after the 2021 IRP.
- Monthly time-series regression model that initially excludes certain industrial loads, EVs, and solar. However, those are added back for the final forecast. As part of the model revision, the forecasted impact of EVs and solar were improved for this IRP.
- Explanatory variables include HDD-CDD and monthly and day-of-week dummy variables. The level of real U.S. GDP is the primary economic driver in the model—the higher GDP, the higher peak loads. The model allows GDP impact to differ between winter and summer. This separation was improved on in the revised model, and it significantly changes the results between winter and summer. The revised model shows Avista is a winter peaking utility until around 2030. This reflects a forecasted summer peak that is expected to grow notably faster than the winter peak.
- The coefficients of the model are used to generate a distribution of peak loads by month based on historical max/min temperatures since 1890, holding GDP constant. A starting expected peak load is then calculated using the average peak load simulated for that month going back to 1890. For the 2023 IRP, the starting winter peak average uses data back to 1890; the starting summer peak using a 30-year average.
- The long-run growth rate of peak loads for summer and winter are calculated using GDP growth under the *"all else constant"* assumption for all other factors in the model.

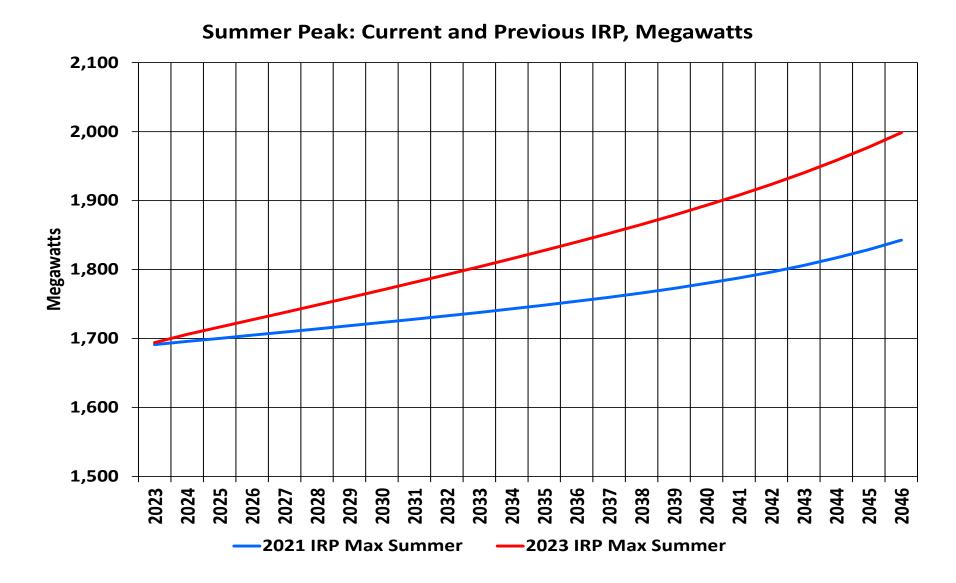


#### **Peak Load Forecast: Winter and Summer Forecast**



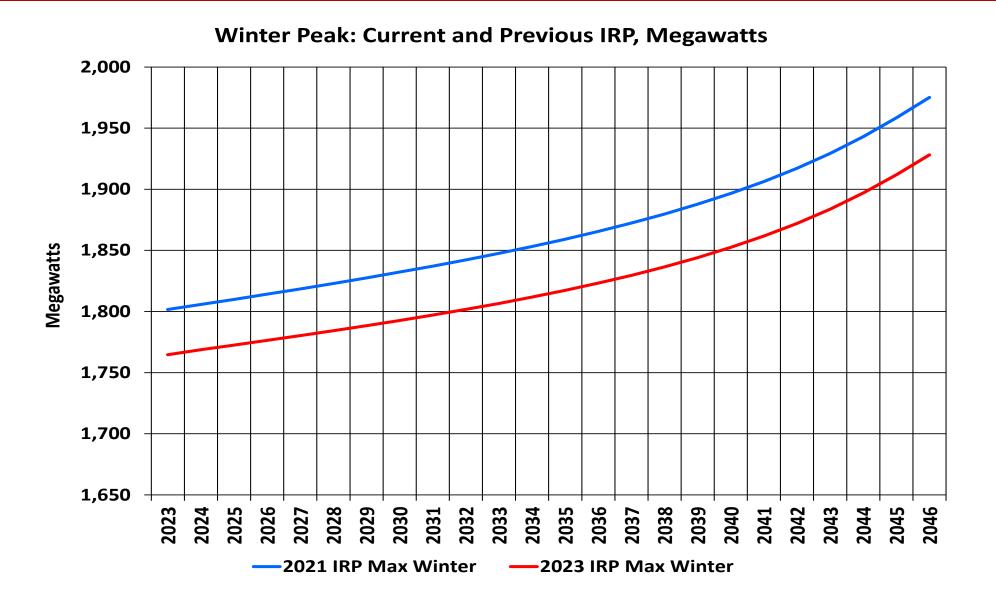
-Summer Peak

---Winter Peak


| Peak   | Avg. Growth<br>2023-45 |
|--------|------------------------|
| Winter | 0.37%                  |
| Summer | 0.73%                  |

#### Comments

- Extreme value of analysis of winter and summer temperatures suggests cold is still a risk.
- Impacts of electrification policies still being evaluated.
- There is no trended climate in the current forecast.


AVISTA

#### Peak Load Forecast: Change in IRP Summer Peak



**AVISTA** 

#### Peak Load Forecast: Change in IRP Winter Peak



**ATVISTA** 

# **Questions?**





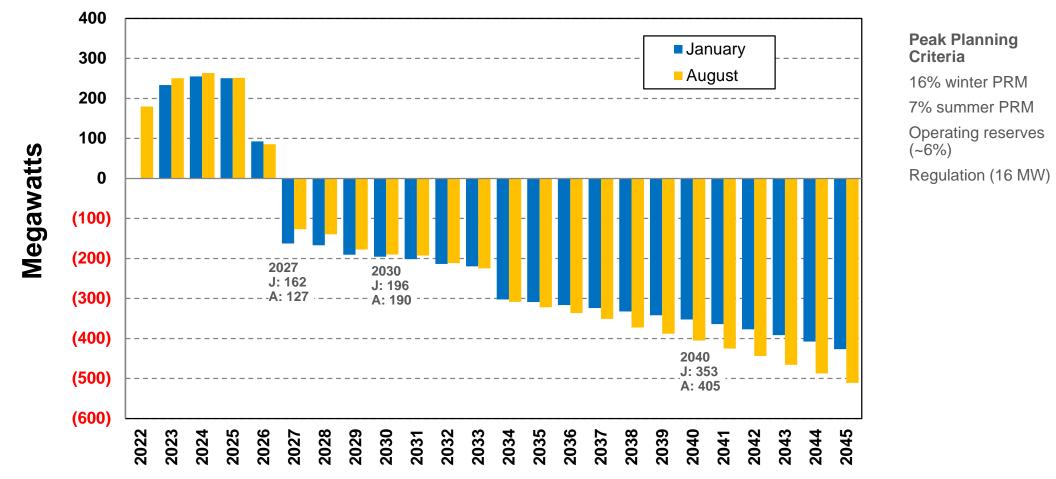
## Load & Resource Balance Update

Avista, Electric Technical Advisory Committee

February 8<sup>th</sup>, 2022 – TAC 2

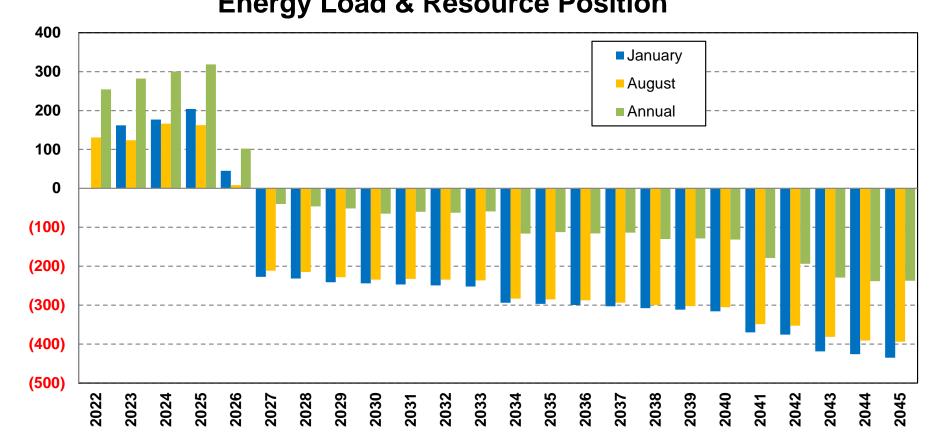
James Gall, Electric IRP Manager

#### Major L&R Changes Since 2021 IRP


- Load forecast
- 30 MW industrial demand response (Washington Rate Case Settlement)
- Chelan County PUD purchase
  - ~88 MW or ~54 aMW equal to 5% of Rocky Reach and Rock Island projects

|                        | 2022 | 2023 | 2024 | 2025 | 2026-<br>2030 | 2031-<br>2033 | 2034-<br>2045 |
|------------------------|------|------|------|------|---------------|---------------|---------------|
| Existing Slice         | 5%   | 5%   | 5%   | 5%   | 5%            |               |               |
| April 2021 Contract    |      |      | 5%   | 5%   | 5%            | 5%            |               |
| December 2021 Contract |      |      |      |      | 5%            | 10%           | 10%           |

### **System Capacity Position**


Western Resource Adequacy Program not included at this time

#### **1 Hour Peak Load & Resource Position**





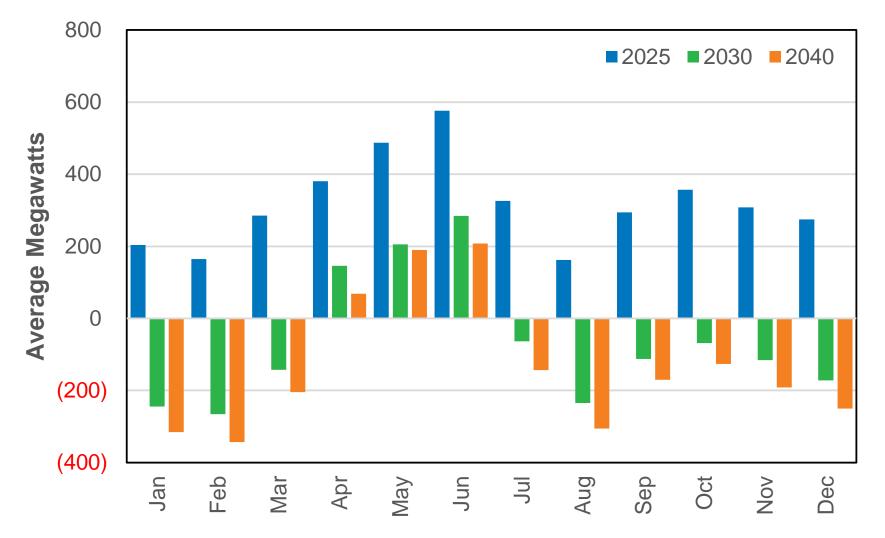
#### **System Planning Energy Position**



**Energy Load & Resource Position** 

2023 IRP will energy planning constraint beyond annual

#### **Energy Contingency** Metrics


10<sup>th</sup> percentile hydro

90<sup>th</sup> percentile load

2023 IRP will update contingency metrics for wind/solar variability (TBD in future TAC meeting)

Megawatts

#### **Monthly Planning Energy Position**





### **2030 Washington CETA Planning**

- Draft rules were released January 19<sup>th</sup>, 2022
- Creates a planning standard for renewable energy using two compliance mechanisms
  - Must plan for renewable generation equal to or greater then 80% of retail load to qualify as primary compliance by 2030
  - Remaining retail load must be offset using Alternative Compliance
    - Alternative compliance could be an unbundled REC, energy transformation project, compliance payment
- Planning standard time step and risk level is not defined in the draft rule



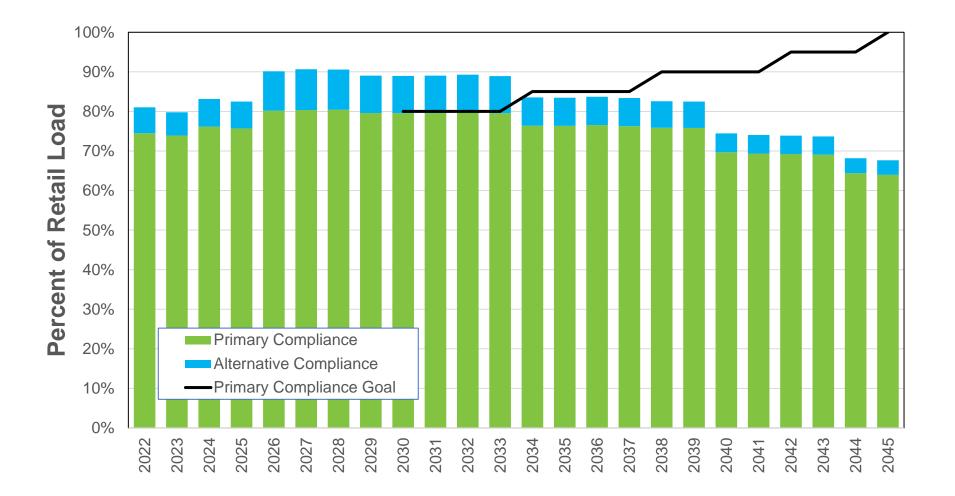
#### **Avista Clean Energy Position for Planning Standard** (strawman)

- Monthly retail load vs generation comparison
- Renewable generation exceeding monthly retail load qualifies as alternative compliance
  - On/off peak estimates could be used
- Expected Case Methodology
  - Median Hydro
  - Expected Loads
  - Historical average wind/solar if available
- Resource allocation
  - Existing hydro (PT Ratio)
  - Wind (PT Ratio + WA purchase hourly Idaho share of energy)
  - Solar (allocated to WA)
  - Kettle Falls (PT Ratio + WA purchase hourly Idaho share of energy, 95.4% qualifying)
  - New Chelan PUD contracts (PT Ratio + WA purchase hourly Idaho share of energy)



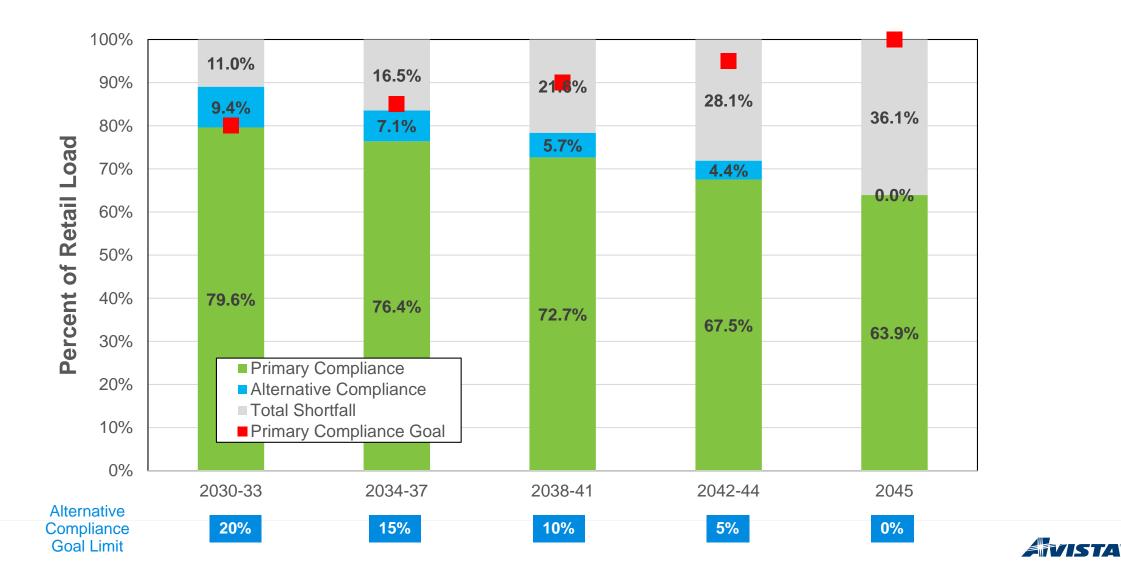
### 2030 Monthly Accounting Illustration (WA Only)

Illustration Purposes Only


|       |                   |             |                       |       | Washingt | on Share |         |                                  |                                  |                       |                           |
|-------|-------------------|-------------|-----------------------|-------|----------|----------|---------|----------------------------------|----------------------------------|-----------------------|---------------------------|
| Month | Sales<br>Forecast | WA<br>PURPA | Net<br>Retail<br>Load | Hydro | Wind     | Solar    | Biomass | Energy<br>Exchange<br>from Idaho | Total<br>Renewable<br>Generation | Primary<br>Compliance | Alternative<br>Compliance |
| Jan   | 801               | 21          | 780                   | 362   | 62       | 2        | 27      | 84                               | 537                              | 537                   | -                         |
| Feb   | 822               | 24          | 798                   | 333   | 66       | 4        | 26      | 80                               | 508                              | 508                   | -                         |
| Mar   | 688               | 27          | 661                   | 348   | 70       | 5        | 23      | 78                               | 524                              | 524                   | -                         |
| Apr   | 647               | 28          | 620                   | 519   | 66       | 7        | 15      | 81                               | 688                              | 620                   | 68                        |
| May   | 582               | 25          | 558                   | 706   | 55       | 8        | 0       | 78                               | 847                              | 558                   | 289                       |
| Jun   | 600               | 19          | 580                   | 730   | 58       | 8        | 10      | 82                               | 888                              | 580                   | 307                       |
| Jul   | 600               | 17          | 583                   | 498   | 45       | 9        | 23      | 74                               | 650                              | 583                   | 67                        |
| Aug   | 668               | 15          | 653                   | 279   | 46       | 8        | 26      | 70                               | 429                              | 429                   | -                         |
| Sep   | 664               | 16          | 648                   | 252   | 49       | 6        | 28      | 63                               | 399                              | 399                   | -                         |
| Oct   | 583               | 19          | 564                   | 259   | 60       | 4        | 27      | 69                               | 419                              | 419                   | -                         |
| Nov   | 636               | 19          | 617                   | 308   | 68       | 2        | 27      | 79                               | 484                              | 484                   | -                         |
| Dec   | 752               | 21          | 730                   | 377   | 63       | 1        | 29      | 80                               | 549                              | 549                   | -                         |
| Avg   | 669               | 21          | 649                   | 414   | 59       | 5        | 22      | 77                               | 577                              | 516                   | 61                        |
|       | -                 |             |                       |       |          |          | •       | • • •                            | • •                              | 79.6%                 | 9.4%                      |

Note: "Energy Exchange from Idaho" includes wind, biomass, and "new" Chelan PUDs contracts

8 For 2030, Avista does not have any voluntary renewable energy programs planned.




#### **Current Annual CETA Energy Position**





#### **Compliance Window CETA Energy Position**





AVISTA

| <b>Topic</b><br>Introductions                | <b>Time</b><br>8:30 | <b>Staff</b><br>John Lyons |
|----------------------------------------------|---------------------|----------------------------|
| Existing Resource Overview                   | 8:35                | Mike Hermanson             |
| Resource Requirements                        | 9:15                | James Gall                 |
| Break                                        |                     |                            |
| Non-Energy Impact Study                      | 10:00               | DNV                        |
| Lunch                                        | 11:30               |                            |
| Natural Gas Market Overview & Price Forecast | 12:30               | Tom Pardee                 |
| Wholesale Electric Price Forecast            | 1:15                | Lori Hermanson             |
| Adjourn                                      | 2:00                |                            |



# **2023 IRP Introduction**

#### 2023 Avista Electric IRP

TAC 3 – March 9, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

### **Meeting Guidelines**

- IRP team is working remotely and is available for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- IRP data posted to web site updated descriptions and navigation are in development
- Virtual IRP meetings on Microsoft Teams until able to hold large meetings again
- TAC presentations and meeting notes posted on IRP page
- This meeting is being recorded and an automated transcript made



#### **Virtual TAC Meeting Reminders**

- Please mute mics unless commenting or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting
- Public advisory meeting comments will be documented and recorded



#### **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



### **Technical Advisory Committee**

- Public process of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Please ask questions
  - Always soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for new studies or different modeling assumptions.
- Available by email or phone for questions or comments between meetings
- Due date for study requests from TAC members October 1, 2022
- External IRP draft released to TAC March 17, 2023, public comments due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023

### **2023 IRP TAC Meeting Schedule**

- TAC 4: August 2022
- TAC 5: Early September 2022
- TAC 6: End of September 2022
- TAC 7: October 2022
- Technical Modeling Workshop: October 2022
- TAC 8: February 2023
- Public Meeting Gas & Electric IRPs: February/March 2023
- TAC 9: March 2023



#### **Today's Agenda**

- 8:30 Introductions, John Lyons
- 8:35 Existing Resource Overview, Mike Hermanson
- 9:15 Resource Requirements, James Gall

#### Break

- 10:00 Non-Energy Impact Study, DNV
- 11:30 Lunch
- 12:30 Natural Gas Market Overview & Price Forecast, Tom Pardee
- 1:15 Wholesale Electric Price Forecast, Lori Hermanson

2:00 Adjourn





# **Existing Resource Overview**

2023 Avista Electric IRP

TAC 3 – March 9, 2022

Mike Hermanson - Power Supply/CETA Analyst

### **Existing Resource Types**

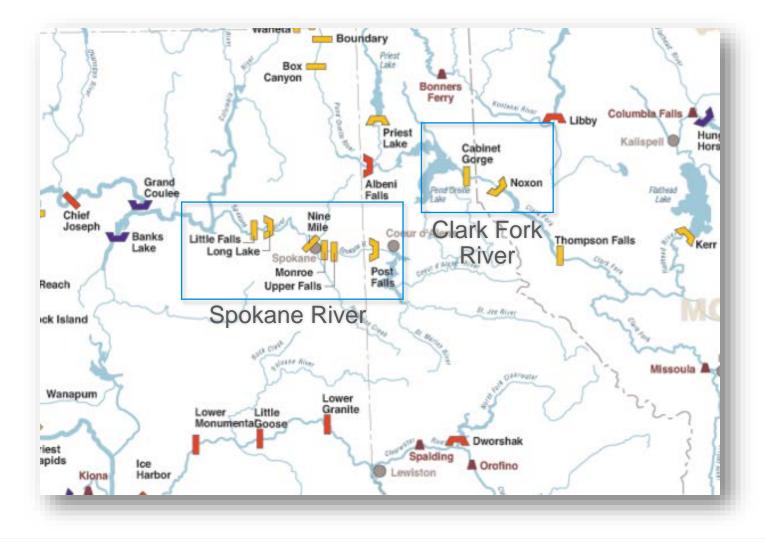
#### Avista-owned Hydro

#### **Avista-owned Thermal**

- Natural Gas
- Coal
- Biomass

#### **Contracted Resources**

- Mid Columbia Hydro
- Natural Gas
- Wind
- Solar
- PURPA


**Customer-Owned Resources** 





### **Avista Owned Hydro**


- Spokane River
  - Post Falls (14.8 MW)
  - Upper Falls (10 MW)
  - Monroe St. (14.8 MW)
  - Nine Mile (36 MW)
  - Long Lake (81.6 MW)
  - Little Falls (32 MW)
- Clark Fork River
  - Noxon Rapids (518 MW)
  - Cabinet Gorge (265.2 MW)





### **Spokane River**

| Project       | Nameplate<br>Capacity<br>(MW) | Maximum<br>Capability<br>(MW) | Expected<br>Energy<br>(aMW)* |
|---------------|-------------------------------|-------------------------------|------------------------------|
| Post Falls    | 14.8                          | 18                            | 11.2                         |
| Upper Falls   | 10                            | 10.2                          | 7.3                          |
| Monroe Street | 14.8                          | 15                            | 11.2                         |
| Nine Mile     | 36                            | 32                            | 22.6                         |
| Long Lake     | 81.6                          | 89                            | 56                           |
| Little Falls  | 32                            | 35.2                          | 11.2                         |
| TOTAL         | 189.2                         | 199.4                         | 119.5                        |



\* based on 80-year hydrologic record

• Post Falls refurbishment – additional 3.8 MW incremental winter capacity and 4 aMW of incremental clean energy.



### **Clark Fork River**

| Project       | Nameplate<br>Capacity<br>(MW) | Maximum<br>Capability<br>(MW) | Expected<br>Energy<br>(aMW)* |
|---------------|-------------------------------|-------------------------------|------------------------------|
| Cabinet Gorge | 265.2                         | 270.5                         | 123.6                        |
| Noxon Rapids  | 518                           | 610                           | 196.5                        |
| TOTAL         | 783.2                         | 880.5                         | 320.1                        |

\* based on 80-year hydrologic record





#### **Avista Owned Thermal Resources**

| Project Name     | Fuel<br>Type | Winter<br>Maximum<br>Capacity<br>(MW) | Summer<br>Maximum<br>Capacity<br>(MW) | Nameplate<br>Capacity<br>(MW) |
|------------------|--------------|---------------------------------------|---------------------------------------|-------------------------------|
| Colstrip         | Coal         | 222                                   | 222                                   | 247                           |
| Coyote Springs 2 | Gas          | 317.5                                 | 286                                   | 306.5                         |
| Rathdrum         | Gas          | 176                                   | 130                                   | 166.2                         |
| Northeast        | Gas          | 66                                    | 42                                    | 61.8                          |
| Boulder Park     | Gas          | 24.6                                  | 24.6                                  | 24.6                          |
| Kettle Falls     | Wood         | 47                                    | 47                                    | 50.7                          |
| Kettle Falls CT  | Gas          | 11                                    | 8                                     | 7.2                           |
|                  | Total        | 864.1                                 | 759.6                                 | 864.0                         |





### **Colstrip Units 3 & 4**

- Located in eastern Montana
- Avista owns 15% of units 3 & 4
- After 2025 will not be used to serve Washington customers
- Max net capacity of 222 MW





### **Coyote Springs 2**

- Natural gas-fired combined cycle combustion turbine (CCCT)
- A combined-cycle power plant uses both a gas and a steam turbine together to produce up to 50% more electricity from the same fuel than a traditional simplecycle plant. The waste heat from the gas turbine is routed to the nearby steam turbine, which generates extra power.
- Max winter capacity of 317.5 MW, Max summer capacity of 286 MW





#### Rathdrum, Northeast, & Boulder Park

#### Rathdrum

- Simple cycle combustion turbine (CT) units
- Winter max 176 MW, Summer Max 126 MW
- Boulder Park
  - Six natural gas internal combustion reciprocating engines
  - Max 24.6 MW
- Northeast
  - Two aero-derivative simple cycle CT units
  - Winter max 68 MW, Summer max 42 MW
  - Air permit allows 100 run hours per year

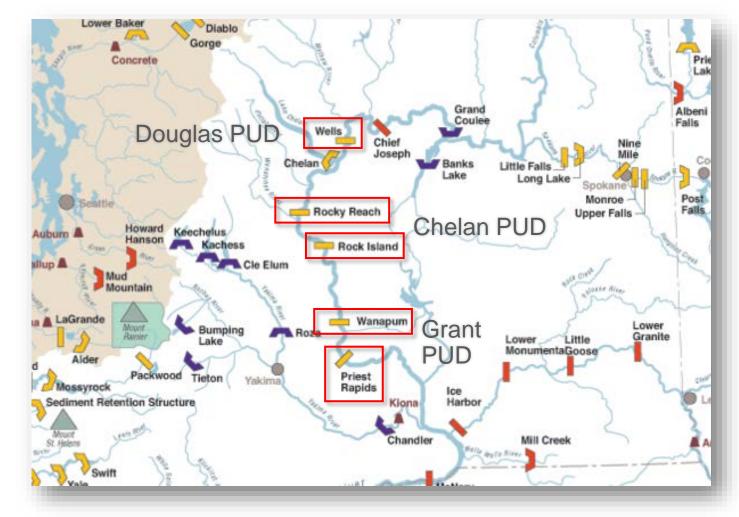




### **Kettle Falls Generating Station**

- Among the largest biomass generation plants in North America
- Open loop steam plant uses waste wood products (hog fuel) from area mills and forest slash.
- Max capacity of 50 MW
- Also has 7.5 MW gas combustion turbine increasing max capacity to 55-58 MW






### **Power Purchase and Sale Contracts**

| Contract           | Туре     | Fuel Source      | End Date | 2021 Annual<br>Energy (aMW) |
|--------------------|----------|------------------|----------|-----------------------------|
| Mid Columbia Hydro | Purchase | Hydro            | varies   | 132.9                       |
| Lancaster          | Purchase | Natural Gas      | Oct-26   | 207.8                       |
| Palouse Wind       | Purchase | Wind             | 2042     | 41.2                        |
| Rattlesnake Flats  | Purchase | Wind             | 2040     | 48.3                        |
| Adams-Nielson      | Purchase | Solar            | 2038     | 4.95                        |
| Nichols Pumping    | Sale     | System           | 2023     | -6.4                        |
| Morgan Stanley     | Sale     | Clearwater Paper | 2023     | -48.4                       |
| Douglas PUD        | Sale     | System           | 2023     | -47                         |

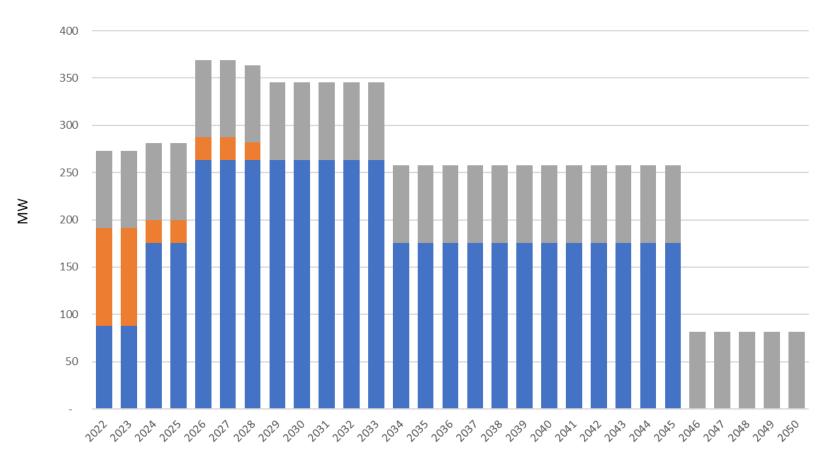
# **Mid-Columbia Hydroelectric Contracts**

- Douglas PUD
  - Wells Total Capacity 840 MW
- Chelan PUD
  - Rocky Reach Total Capacity 1254 MW
  - Rock Island Total Capacity 503 MW
- Grant PUD
  - Priest Rapids Total Capacity 953 MW
  - Wanapum Total Capacity 1,220 MW



Note: Total capacity represents overall capacity of project, not total capacity of Avista's share.




# **Mid-Columbia Hydroelectric Contracts**

| Counter Party            | Project(s)        | Percent<br>Share (%) | Start Date | End Date | 2020<br>Estimated<br>On-Peak<br>Capability<br>(MW) | 2020<br>Annual<br>Energy<br>(aMW) |
|--------------------------|-------------------|----------------------|------------|----------|----------------------------------------------------|-----------------------------------|
| Grant PUD                | Priest Rapids     | 3.79                 | Dec-2001   | Dec-2052 | 30                                                 | 19.5                              |
| Grant PUD                | Wanapum           | 3.79                 | Dec-2001   | Dec-2052 | 32                                                 | 18.7                              |
| Chelan PUD               | Rocky Reach       | 5                    | Jan-2016   | Dec-2030 | 57                                                 | 35.9                              |
| Chelan PUD               | Rock Island       | 5                    | Jan-2016   | Dec-2030 | 19                                                 | 18.4                              |
| Douglas PUD              | Wells             | 12.76*               | Oct-2018   | Dec-2028 | 107                                                | 57                                |
| Canadian Entitlement     |                   |                      |            |          | -14                                                | -5.6                              |
| 2020 Total Net Contracte | ed Capacity and E | nergy                |            |          | 231                                                | 143.90                            |

\* % share varies each year depending on Douglas PUD's load growth



# **Mid Columbia Hydroelectric Contracts**



■ Chelan PUD ■ Douglas PUD ■ Grant PUD

1

•



# Wind & Solar Resources

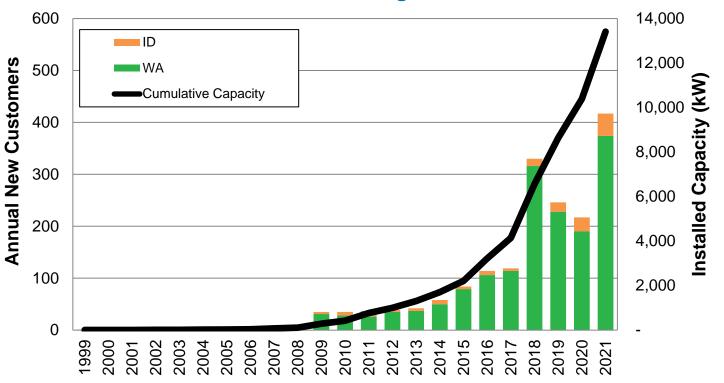
- Palouse PPA
  - Capability 105 MW
  - 30-year power purchase agreement (PPA)
  - 2021 output 41.2 aMW
- Rattlesnake Flat PPA
  - Capability 160.6 MW
  - 20-year PPA
  - 2021 output of 48.3 aMW
- Adams-Nielson Solar PPA
  - Capability 19.2 MW
  - 80,000 panel facility
  - 2021 output 4.95 aMW





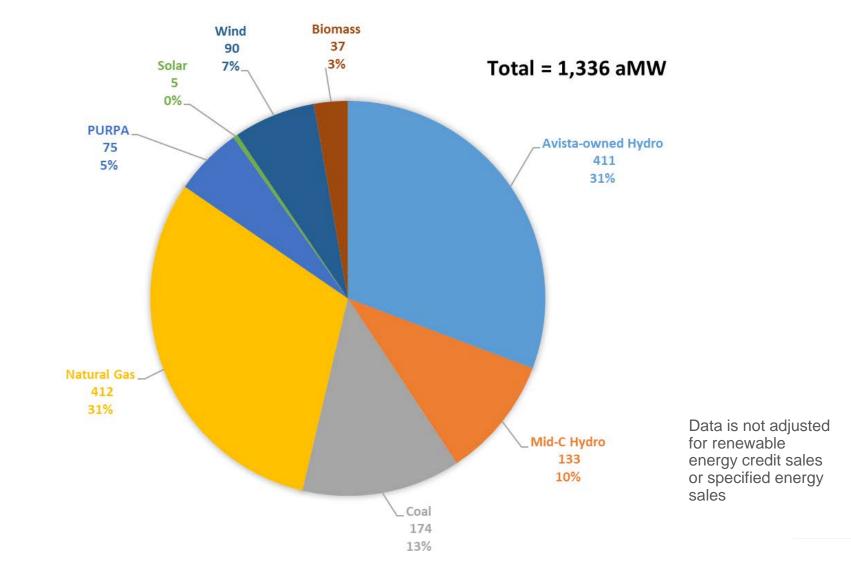
# Public Utility Regulatory Policies Act (PURPA) Contracts

| Owner                             | Fuel Source     | Location         | Contract End Date | Capability (MW) | Estimated<br>Energy (aMW) |
|-----------------------------------|-----------------|------------------|-------------------|-----------------|---------------------------|
| Sheep Creek Hydro Inc             | Hydro           | Northport, WA    | 12/31/2025        | 5 1.40          | 0.79                      |
| Hydro Technology Systems Inc.     | Hydro           | Kettle Falls, WA | 12/31/2025        | 5 1.30          | 1.05                      |
| Deep Creek Energy                 | Hydro           | Northport, WA    | 12/31/2022        | 0.41            | 0.23                      |
| Spokane County Water Reclamation* | Biomass         | Spokane, WA      | 8/31/2030         | 0.26            | 0.14                      |
| Phillips Ranch                    | Hydro           | Northport, WA    | N/A               | 0.02            | 0.01                      |
| City of Spokane Upriver Dam*      | Hydro           | Spokane, WA      | 12/31/2024        | 17.60           | 6.17                      |
| City of Spokane Waste to Energy   | Municipal Waste | Spokane, WA      | 12/30/2022        | 2 18.00         | 16.00                     |
| McKinstry*                        | Solar           | Spokane, WA      | 5/3/2035          | 0.25            | 0.05                      |
|                                   |                 |                  | WA Tota           | 39.24           | 24.44                     |
| University of Idaho*              | CHP Steam       | Moscow, ID       | 2/15/2042         | 0.825           | 0.74                      |
| University of Idaho*              | Solar           | Moscow, ID       | 2/15/2042         | 0.1322          | 0.033                     |
| Ford Hydro LP                     | Hydro           | Weippe, ID       | 6/30/2022         | 1.41            | 0.39                      |
| John Day Hydro                    | Hydro           | Lucille, ID      | 9/21/2022         | 0.90            | 0.25                      |
| Clark Fork Hydro                  | Hydro           | Clark Fork, ID   | 12/31/2037        | 0.22            | 0.12                      |
| Stimson Lumber                    | Wood Waste      | Plummer, ID      | 12/31/2023        | 5.80            | 4.00                      |
| Clearwater Paper                  | Wood Waste      | Lewiston, ID     | 12/31/2023        | 60.00           | 43.00                     |
| City of Cove                      | Hydro           | Cove, OR         | 6/30/2038         | 0.80            | 0.29                      |
|                                   |                 |                  | ID Tota           | 70.09           | 48.82                     |
|                                   |                 |                  | Total PURPA       | 109.3           | 73.3                      |


\*connection is net metered and only contributes when generation exceeds load at facility

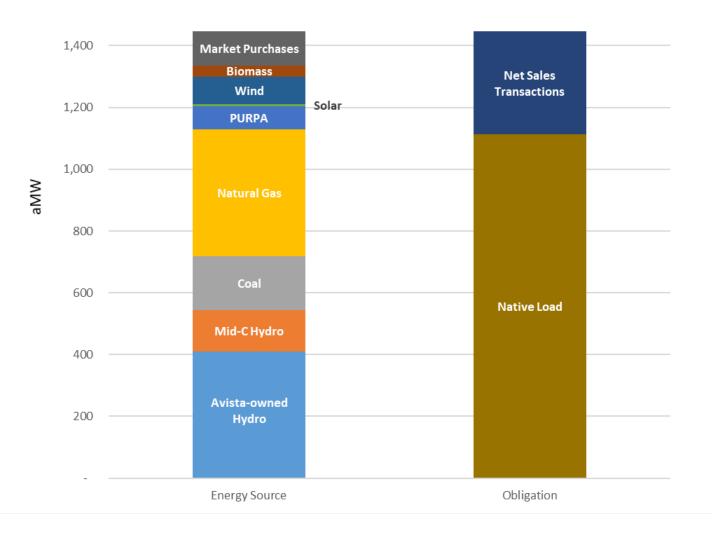


# **Customer Owned Generation**


- 1,798 customer installed systems
- Technology
  - Primarily Solar
  - Some wind, combined solar & wind, and biogas
- Average system is 7.63 kW
- 93% of systems in Washington
- 2021 estimated 1.21 aMW

**Avista's Net Metering Customers** 






# **2021 System Generation by Resource Type (aMW)**



# **2021 System Obligations & Energy Sources**

1,600







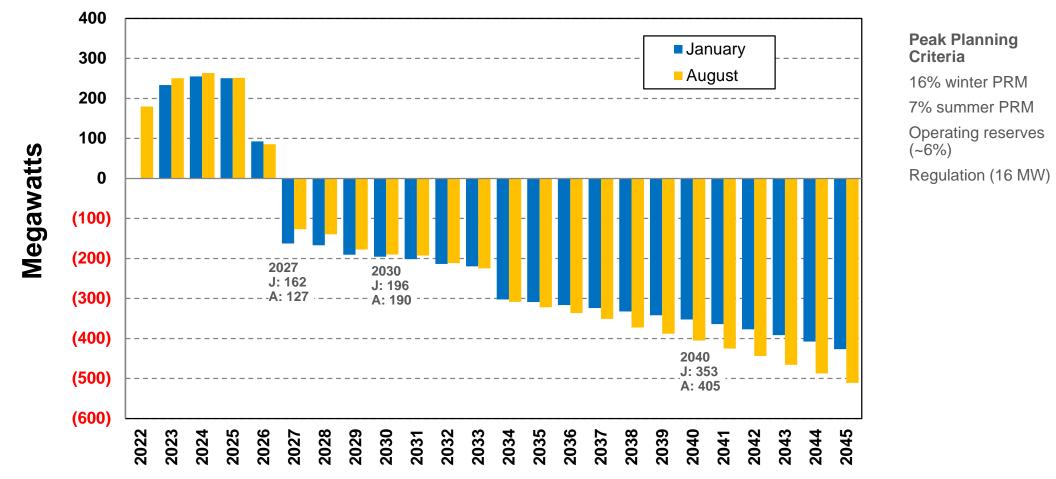
# Load & Resource Balance Update

Avista, Electric Technical Advisory Committee

March 9<sup>th</sup>, 2022 – TAC 3

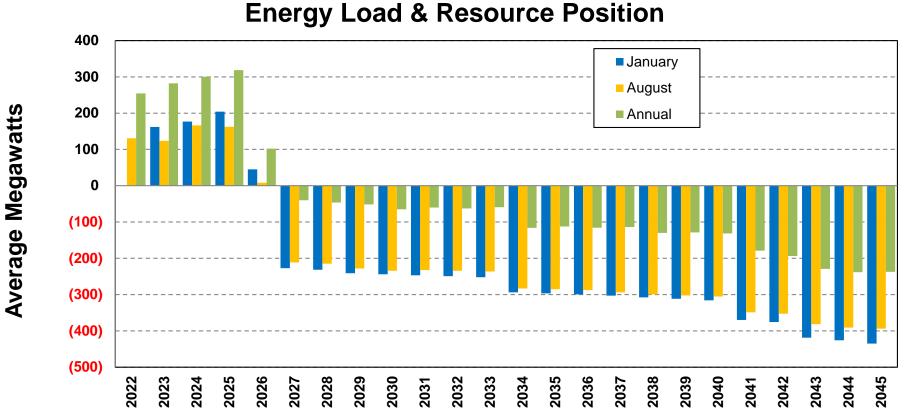
James Gall, Electric IRP Manager

# Major L&R Changes Since 2021 IRP


- Load forecast
- 30 MW industrial demand response (Washington Rate Case Settlement)
- Chelan County PUD purchase
  - ~88 MW or ~54 aMW equal to 5% of Rocky Reach and Rock Island projects

|                        | 2022 | 2023 | 2024 | 2025 | 2026-<br>2030 | 2031-<br>2033 | 2034-<br>2045 |
|------------------------|------|------|------|------|---------------|---------------|---------------|
| Existing Slice         | 5%   | 5%   | 5%   | 5%   | 5%            |               |               |
| April 2021 Contract    |      |      | 5%   | 5%   | 5%            | 5%            |               |
| December 2021 Contract |      |      |      |      | 5%            | 10%           | 10%           |

# **System Capacity Position**


Western Resource Adequacy Program not included at this time

### **1 Hour Peak Load & Resource Position**



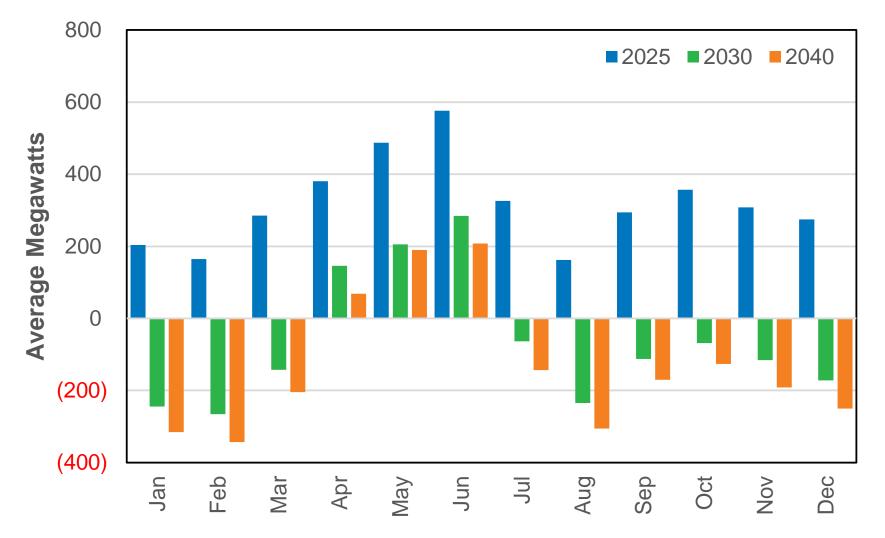


# **System Planning Energy Position**



**Energy Contingency** Metrics

10<sup>th</sup> percentile hydro


90<sup>th</sup> percentile load

2023 IRP will update contingency metrics for wind/solar variability (TBD in future TAC meeting)

2023 IRP with energy planning constraint beyond annual



# **Monthly Planning Energy Position**





# **2030 Washington CETA Planning**

- Draft rules were released January 19<sup>th</sup>, 2022
- Creates a planning requirement and operation requirements
  - Planning requirement designs system for renewable energy to deliver to load
  - Operating requirement is creation of renewable energy and retaining nonpower attributes
- The planning standard uses two compliance mechanisms
  - Must plan for renewable generation equal to or greater then 80% of retail load to qualify as primary compliance by 2030
  - Remaining retail load must be offset using Alternative Compliance
    - Alternative compliance could be an unbundled REC, energy transformation project, compliance payment
- Planning standard time step and risk level is not defined in the draft rule



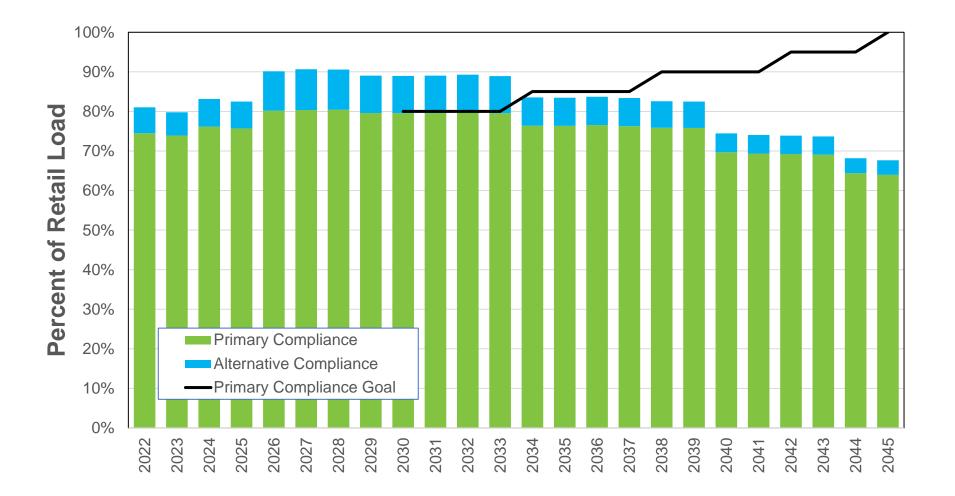
# **Avista Clean Energy Position for Planning Standard** (strawman- for illustrative purposes)

- Monthly retail load vs generation comparison
- Renewable generation exceeding monthly retail load qualifies as alternative compliance
  - On/off peak estimates could be used
- Expected Case Methodology
  - Median Hydro
  - Expected Loads
  - Historical average wind/solar if available
- Resource allocation
  - Existing hydro (PT Ratio)
  - Wind (PT Ratio + WA purchase hourly Idaho share of energy)
  - Solar (allocated to WA)
  - Kettle Falls (PT Ratio + WA purchase hourly Idaho share of energy, 95.4% qualifying)
  - New Chelan PUD contracts (PT Ratio + WA purchase hourly Idaho share of energy)



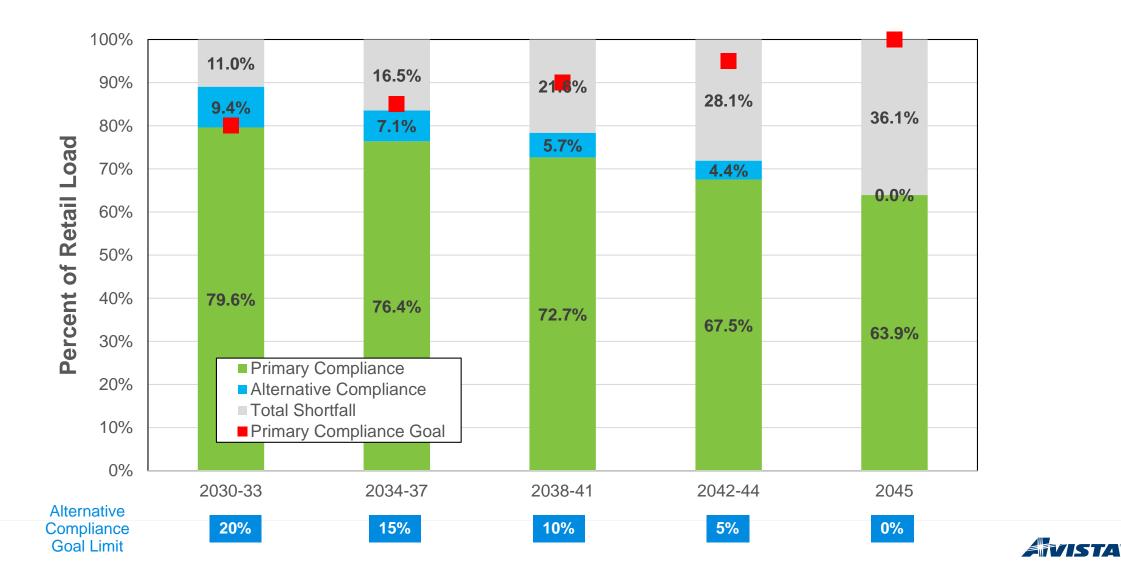
### 2030 Monthly Accounting Illustration (WA Only) Average Megawatts

Illustration Purposes Only


|       |                   |             |                       |       | Washingt | on Share |         |                                  |                                  |                       |                           |
|-------|-------------------|-------------|-----------------------|-------|----------|----------|---------|----------------------------------|----------------------------------|-----------------------|---------------------------|
| Month | Sales<br>Forecast | WA<br>PURPA | Net<br>Retail<br>Load | Hydro | Wind     | Solar    | Biomass | Energy<br>Exchange<br>from Idaho | Total<br>Renewable<br>Generation | Primary<br>Compliance | Alternative<br>Compliance |
| Jan   | 801               | 21          | 780                   | 362   | 62       | 2        | 27      | 84                               | 537                              | 537                   | -                         |
| Feb   | 822               | 24          | 798                   | 333   | 66       | 4        | 26      | 80                               | 508                              | 508                   | -                         |
| Mar   | 688               | 27          | 661                   | 348   | 70       | 5        | 23      | 78                               | 524                              | 524                   | -                         |
| Apr   | 647               | 28          | 620                   | 519   | 66       | 7        | 15      | 81                               | 688                              | 620                   | 68                        |
| May   | 582               | 25          | 558                   | 706   | 55       | 8        | 0       | 78                               | 847                              | 558                   | 289                       |
| Jun   | 600               | 19          | 580                   | 730   | 58       | 8        | 10      | 82                               | 888                              | 580                   | 307                       |
| Jul   | 600               | 17          | 583                   | 498   | 45       | 9        | 23      | 74                               | 650                              | 583                   | 67                        |
| Aug   | 668               | 15          | 653                   | 279   | 46       | 8        | 26      | 70                               | 429                              | 429                   | -                         |
| Sep   | 664               | 16          | 648                   | 252   | 49       | 6        | 28      | 63                               | 399                              | 399                   | -                         |
| Oct   | 583               | 19          | 564                   | 259   | 60       | 4        | 27      | 69                               | 419                              | 419                   | -                         |
| Nov   | 636               | 19          | 617                   | 308   | 68       | 2        | 27      | 79                               | 484                              | 484                   | -                         |
| Dec   | 752               | 21          | 730                   | 377   | 63       | 1        | 29      | 80                               | 549                              | 549                   | -                         |
| Avg   | 669               | 21          | 649                   | 414   | 59       | 5        | 22      | 77                               | 577                              | 516                   | 61                        |
|       |                   |             |                       |       |          |          |         |                                  |                                  | 79.6%                 | 9.4%                      |

Note: "Energy Exchange from Idaho" includes wind, biomass, and "new" Chelan PUDs contracts

8 For 2030, Avista does not have any voluntary renewable energy programs planned.




### **Current Annual CETA Energy Position**



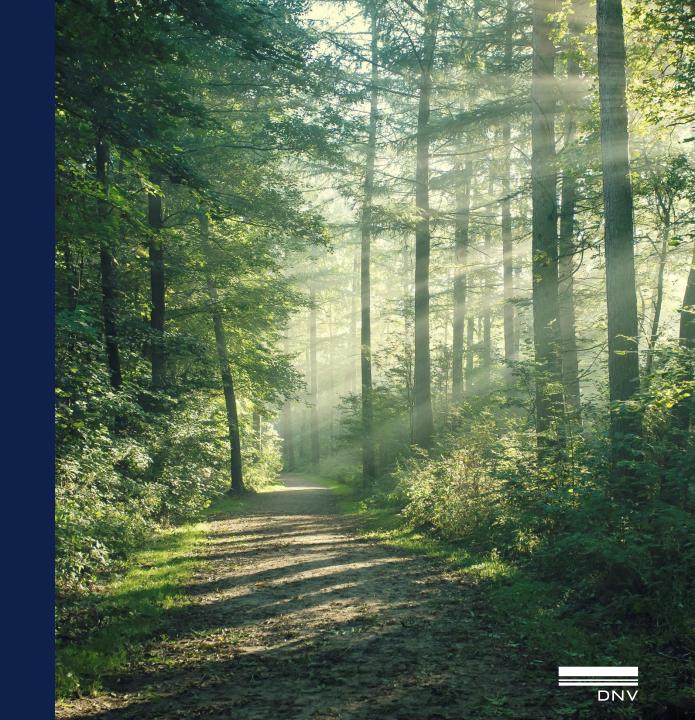


### **Compliance Window CETA Energy Position**





# Supply Side Non-Energy Impacts


09 March 2022

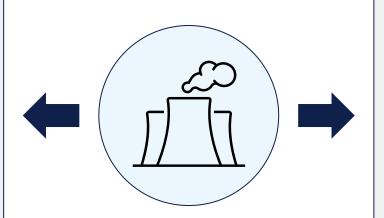


| 01 | Project Overview |
|----|------------------|
| 02 | Approach         |
| 03 | Results          |
| 04 | Gap Analysis     |
| 05 | Discussion       |



# Project Overview




# What is a Supply Side Non-Energy Impact (NEI)?

#### **Cost of Energy**

Impacts included in the cost of energy

Examples:

- Jobs and direct economic impacts
- Fuel costs
- Water use



#### **NEI (Externality)**

Impacts **not** accounted for in the cost of energy

#### Examples:

- Health impacts due to emissions
- Fatalities
- Water use

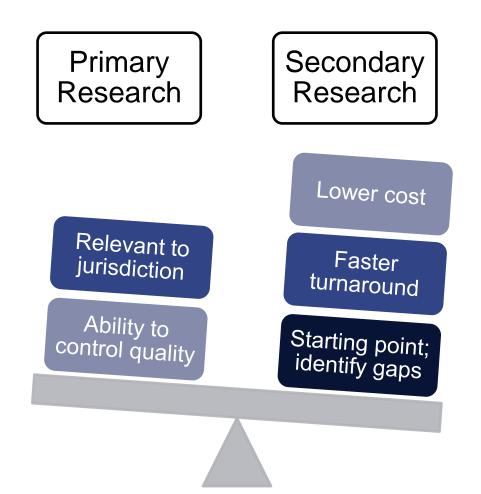


# **Project Overview**

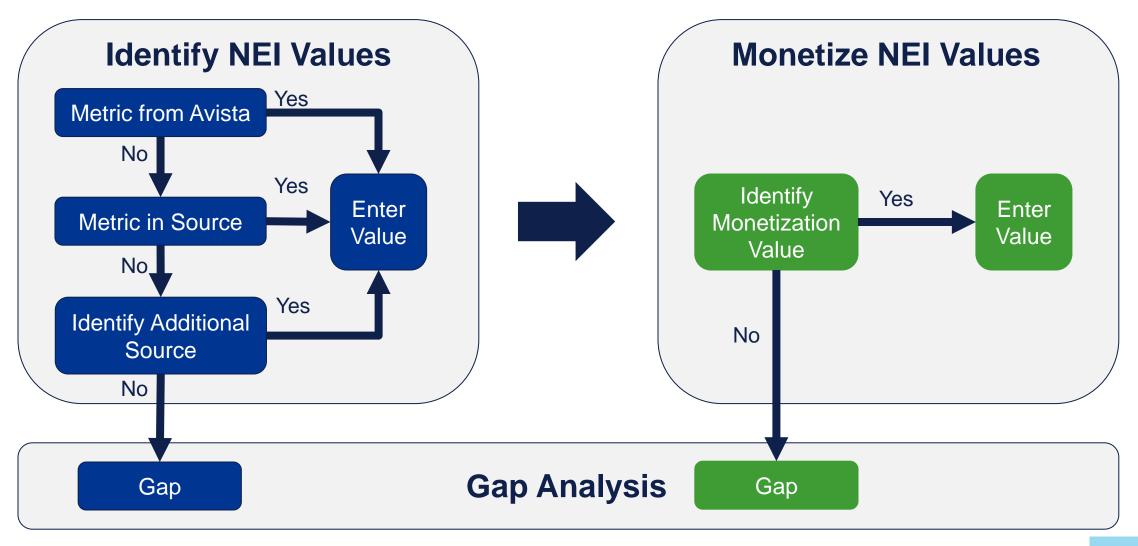
Jurisdictional Scan

**NEI** Database Development

**Database Application** 


Gap Analysis

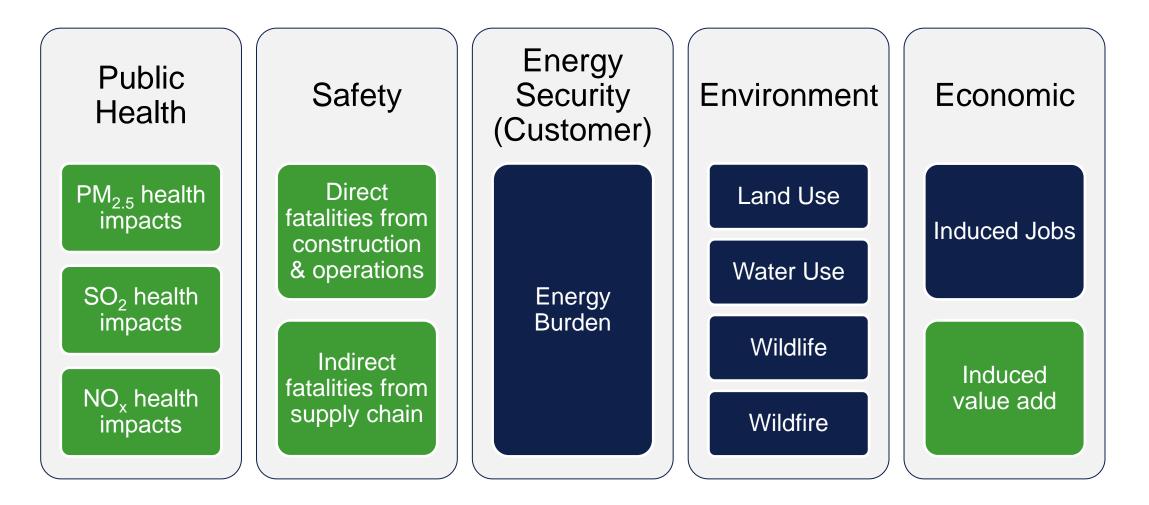
# Approach






# **Potential NEI Approaches**




# Database Compilation: Generalized Approach



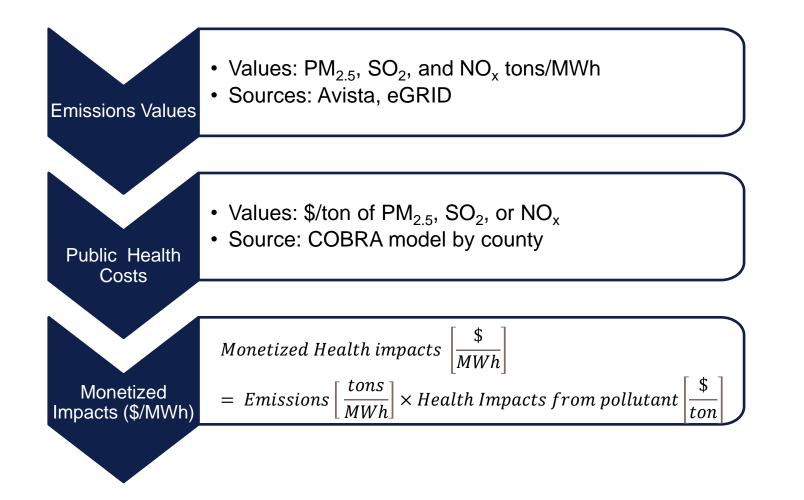
# **Approach Limitations**

- NEI values are not always comparable across regions
- Potential limitations:
  - Outdated studies
  - Issues with methodology
  - Lack of documentation for some values
- Gaps in secondary research, particularly for monetization

# **NEI** Metrics



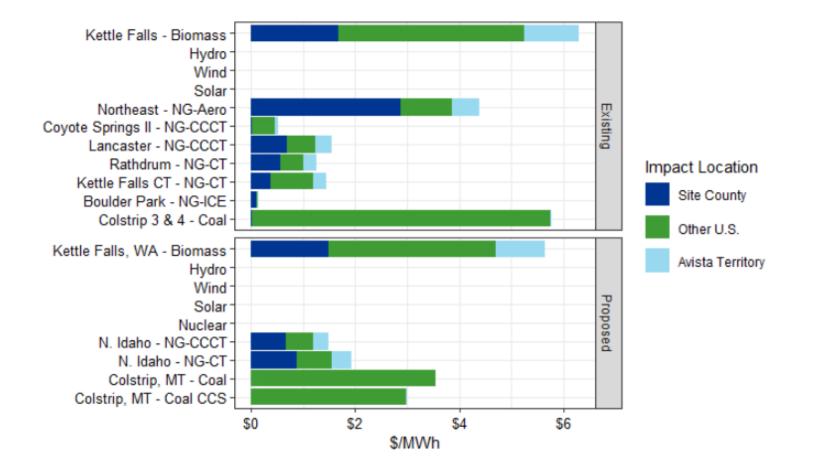
# Summary of Compiled Data


|                          |                    | lth           |              | Env          | vironr       | nent         | ပ            |
|--------------------------|--------------------|---------------|--------------|--------------|--------------|--------------|--------------|
| Group                    | Generator<br>Types | Public Health | Safety       | Land Use     | Water Use    | Wildlife     | Economic     |
| Biomass                  | Biomass            | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| Coal                     | Coal               | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                          | Coal CCS           |               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\approx$    |
| Hydro                    | Hydro-PB           | $\checkmark$  |              |              |              |              | $\checkmark$ |
|                          | Hydro-GF           | $\checkmark$  |              |              |              |              | $\checkmark$ |
|                          | Hydro-Res          | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
|                          | Hydro-RR           | $\checkmark$  |              |              |              |              | $\checkmark$ |
|                          | Hydro-<br>RRS      | √             |              |              |              |              | ✓            |
| Hydrogen<br>Electrolyzer | HE-LG              |               |              | ~            |              |              |              |
|                          | HE-SM              |               |              | $\checkmark$ |              |              |              |
| Lithium-ion<br>Storage   | Batt-LG            |               |              |              |              |              |              |
|                          | Batt-SM            |               |              |              |              |              |              |
| Natural gas              | NG-Aero            | $\checkmark$  | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |
|                          | NG-CCCT            | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                          | NG-CT              | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                          | NG-ICE             | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

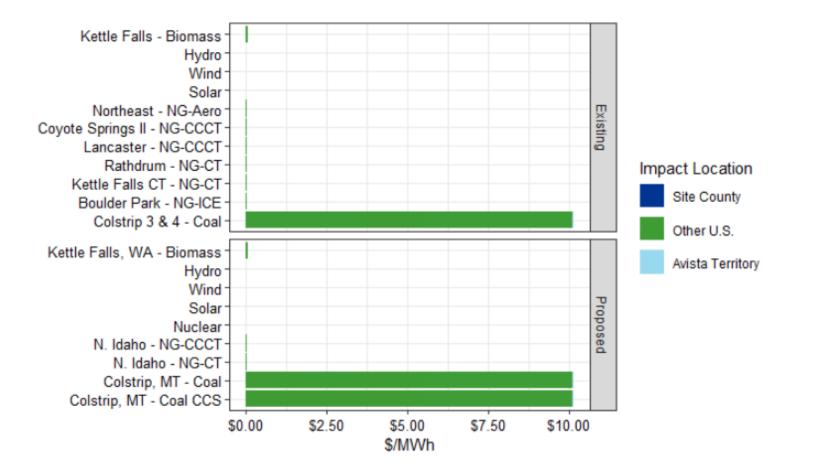
|                 | Generator | lealth        | ity          | Env          | mic          |              |              |
|-----------------|-----------|---------------|--------------|--------------|--------------|--------------|--------------|
| Group           | Types     | Public Health | Safety       | Land<br>Use  | Water<br>Use | Wildlife     | Economic     |
| Non-natural gas | NNG-Bio   |               | $\checkmark$ |              |              |              |              |
|                 | NNG-CF    |               |              |              |              |              | $\approx$    |
|                 | NNG-Hyd   |               |              | $\checkmark$ |              |              |              |
|                 | NNG-LAir  |               |              |              |              |              |              |
|                 | NNG-Ren   |               |              | $\checkmark$ |              |              |              |
| Nuclear         | Nuclear   | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Solar           | Solar-Com | $\checkmark$  | $\checkmark$ | $\checkmark$ |              |              | $\approx$    |
|                 | Solar-Rft | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\approx$    |
|                 | Solar-Utl | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\approx$    |
| Wind            | Wind-LG   | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                 | Wind-Off  | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\approx$    |
|                 | Wind-SM   | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

# Results

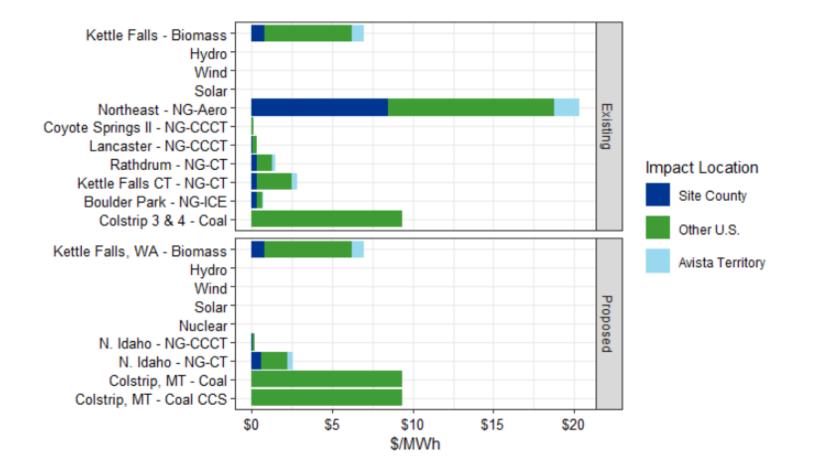



# **Public Health: Approach**

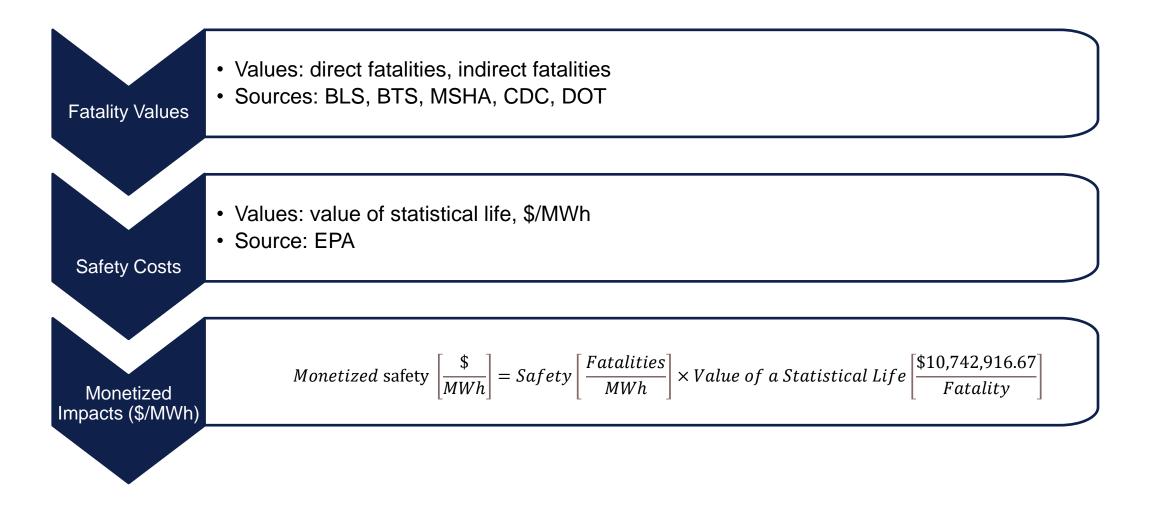



|                                    |                              | X Exp                 | ort: <u>All results</u> | Current filte |
|------------------------------------|------------------------------|-----------------------|-------------------------|---------------|
| Health Endpoint 🕦                  | Change in Inci<br>(cases, an | Monetary<br>(dollars, | -                       |               |
|                                    | Low                          | High                  | Low                     | High          |
| Mortality *                        | 0.004                        | 0.010                 | \$48,754                | \$110,385     |
| Nonfatal Heart Attacks *           | 0.000                        | 0.004                 | \$76                    | \$709         |
| Infant Mortality                   | 0.000                        | 0.000                 | \$298                   | \$298         |
| Hospital Admits, All Respiratory   | 0.001                        | 0.001                 | \$40                    | \$40          |
| Hospital Admits, Cardiovascular ** | 0.001                        | 0.001                 | \$55                    | \$55          |
| Acute Bronchitis                   | 0.006                        | 0.006                 | \$4                     | \$4           |
| Upper Respiratory Symptoms         | 0.107                        | 0.107                 | \$5                     | \$5           |
| Lower Respiratory Symptoms         | 0.075                        | 0.075                 | \$2                     | \$2           |
| Emergency Room Visits, Asthma      | 0.002                        | 0.002                 | \$1                     | \$1           |
| Asthma Exacerbation                | 0.112                        | 0.112                 | \$8                     | \$8           |
| Minor Restricted Activity Days     | 3.087                        | 3.087                 | \$271                   | \$271         |
| Work Loss Days                     | 0.522                        | 0.522                 | \$105                   | \$105         |
| 😍 Total Health Effects             |                              |                       | \$49,619                | \$111,882     |

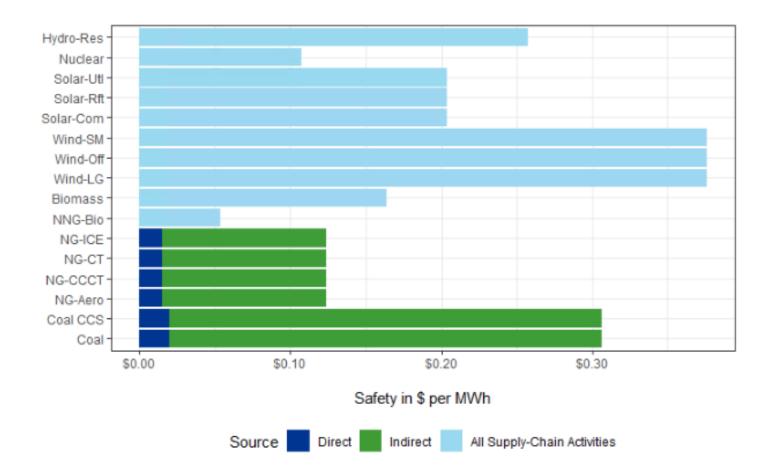
\*\* Except heart attacks.


# Public Health: PM<sub>2.5</sub>




# Public Health: SO<sub>2</sub>




# Public Health: NO<sub>x</sub>



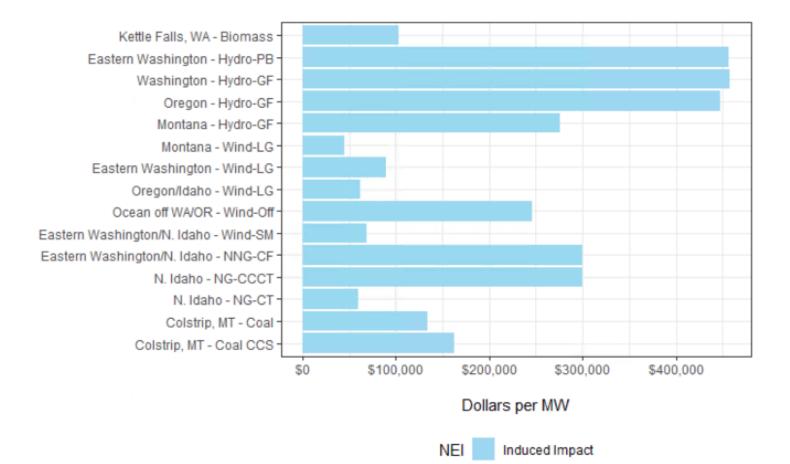
# Safety: Approach



# Safety: Fatalities

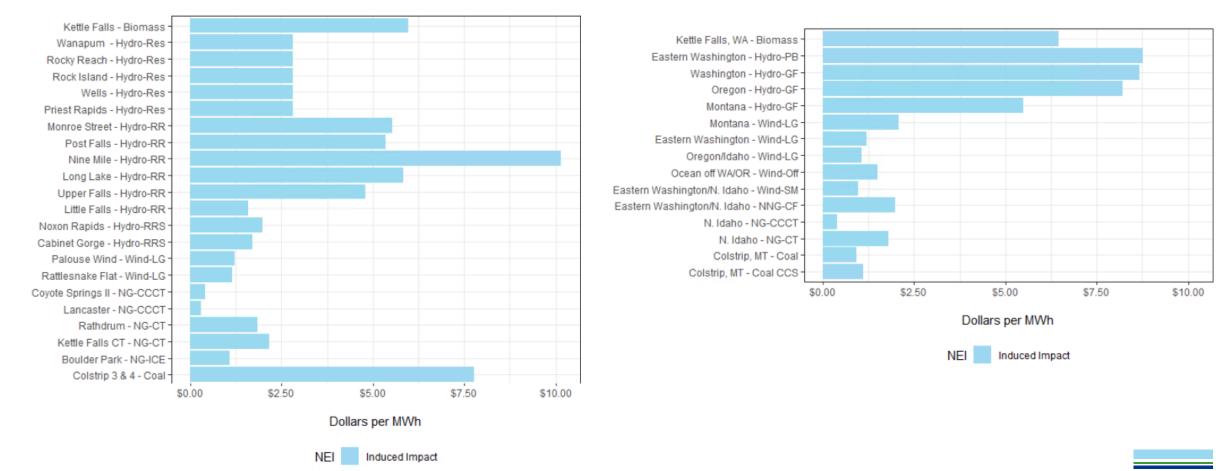


18 DNV © 09 MARCH 2022


# **Economic:** Approach

#### NREL JEDI models

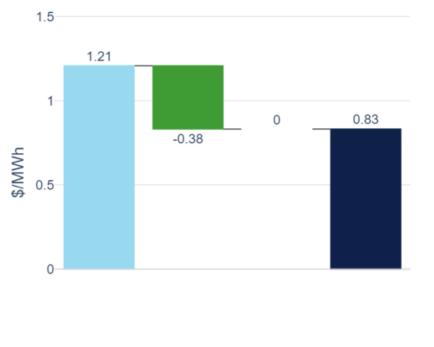
- 6 different models
- Specified location, year of construction, & MW
- Types of impacts:
  - **Direct**: Labor directly related to onsite development, construction, and operations
  - Indirect: Supporting industry impacts
  - **Induced**: Impacts due to reinvestment and spending driven by the direct and indirect impacts
- Value added: The difference between total gross output and the cost of intermediate inputs. Equivalent to gross domestic product.


| ocal Economic Impacts - Summary Results      |       |          |         |             |
|----------------------------------------------|-------|----------|---------|-------------|
|                                              | Jobs  | Earnings | Output  | Value Added |
| During construction period                   |       |          |         |             |
| Project Development and Onsite Labor Impacts | 1,087 | \$93.3   | \$180.6 | \$119.5     |
| Construction and Interconnection Labor       | 657   | \$75.1   |         |             |
| Construction Related Services                | 431   | \$18.2   |         |             |
| Power Generation and Supply Chain Impacts    | 488   | \$22.0   | \$69.2  | \$35.3      |
| Induced Impacts                              | 364   | \$16.0   | \$50.1  | \$26.7      |
| Total Impacts                                | 1,939 | \$131.3  | \$299.9 | \$181.5     |
| During operating years (annual)              |       |          |         |             |
| Onsite Labor Impacts                         | 29    | \$2.6    | \$2.6   | \$2.6       |
| Local Revenue and Supply Chain Impacts       | 44    | \$2.6    | \$10.5  | \$4.9       |
| Induced Impacts                              | 17    | \$0.8    | \$2.4   | \$1.3       |
| Total Impacts                                | 89    | \$5.9    | \$15.4  | \$8.8       |

# Economic: Construction Impacts (proposed)



# **Economic: Operations Impacts**


#### Existing



Proposed

# Database Application Example: Proposed Eastern Washington Large Wind Farm

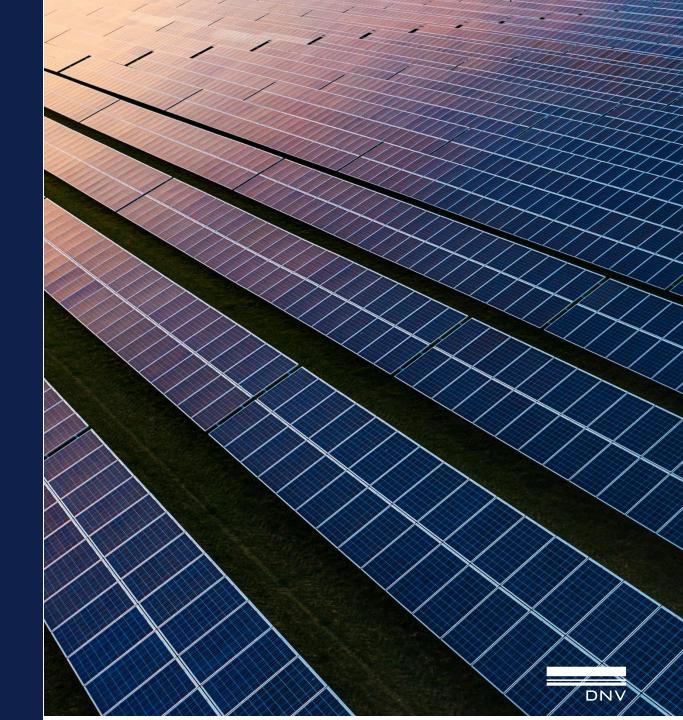
#### **Impacts per MWh**



#### **Impacts per MW**

| NEI                     | Impact<br>(\$/MW) |
|-------------------------|-------------------|
| Economic - Construction | \$89,600          |

Econ - Operations Safety Public Health Total


# Gap Analysis



# Gap analysis

| Economic (solar PV)                                                                                               | <ul> <li>Wildfires (all)</li> <li>Economic (battery)</li> <li>Public health (battery)</li> </ul>                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   | <ul> <li>Public health (all;<br/>construction, mining phases)</li> <li>Reliability &amp; resiliency (all)</li> <li>Economics (H<sub>2</sub> electrolyzer)</li> <li>Economic (non-natural gas)</li> <li>Public health (non-natural gas)</li> <li>Decommissioning (all)</li> </ul> |
| <ul> <li>Disaggregate safety</li> <li>Land use, Water use<br/>monetization</li> <li>Economic (nuclear)</li> </ul> | Wildlife monetization                                                                                                                                                                                                                                                            |

# Discussion





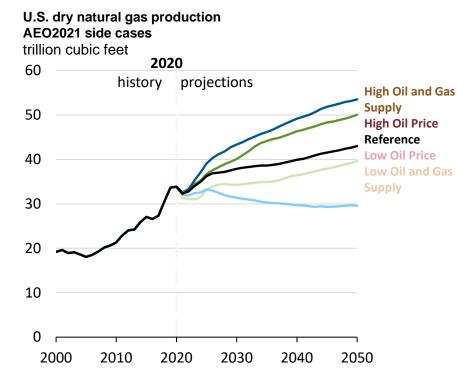
WHEN TRUST MATTERS

DNV

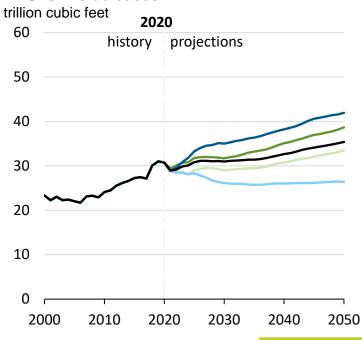
# **Database Compilation: Resource Types**

| C rown                | Technology   |                                        |  |
|-----------------------|--------------|----------------------------------------|--|
| Group                 | Abbreviation | Generator Types                        |  |
| Biomass               | Biomass      | Biomass                                |  |
| Coal                  | Coal         | Coal                                   |  |
|                       | Coal CCS     | Coal with Carbon Capture               |  |
| Hydro                 | Hydro-PB     | Pumped hydro - brownfield              |  |
|                       | Hydro-GF     | Pumped hydro - greenfield              |  |
|                       | Hydro-Res    | Reservoir hydro                        |  |
|                       | Hydro-RR     | Run-of-river hydro                     |  |
|                       | Hydro-RRS    | Run-of-river hydro with storage        |  |
| Hydrogen electrolyzer | HE-LG        | Hydrogen electrolyzer - large          |  |
|                       | HE-SM        | Hydrogen electrolyzer - small          |  |
| Lithium-ion storage   | Batt-LG      | Lithium-ion Storage - Large            |  |
|                       | Batt-SM      | Lithium-ion Storage - Small            |  |
| Natural gas           | NG-Aero      | Natural gas Aero Turbine               |  |
|                       | NG-CCCT      | Natural gas CCCT                       |  |
|                       | NG-CT        | Natural gas CT                         |  |
|                       | NG-ICE       | Natural gas internal combustion engine |  |
| Non-natural gas       | NNG-Bio      | Non-natural gas (Bio-fuel)             |  |
|                       | NNG-CF       | Clean Fuel Turbine                     |  |
|                       | NNG-Hyd      | Non-natural gas (Hydrogen)             |  |
|                       | NNG-LAir     | Non-natural gas (Liquid air)           |  |
|                       | NNG-Ren      | Renewable natural gas storage tank     |  |
| Nuclear               | Nuclear      | Nuclear                                |  |
| Solar                 | Solar-Com    | Community solar                        |  |
|                       | Solar-Rft    | Rooftop solar                          |  |
|                       | Solar-Utl    | Utility-scale solar                    |  |
| Wind                  | Wind-LG      | Large wind                             |  |
|                       | Wind-Off     | Off-shore wind                         |  |
|                       | Wind-SM      | Small Wind                             |  |




# **Natural Gas Price Forecast**

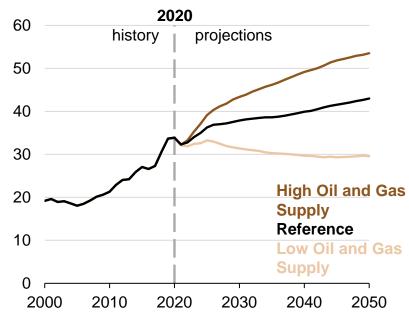
Avista, Electric Technical Advisory Committee March 9<sup>th</sup>, 2022 – TAC 3


Tom Pardee, Natural Gas IRP Manager



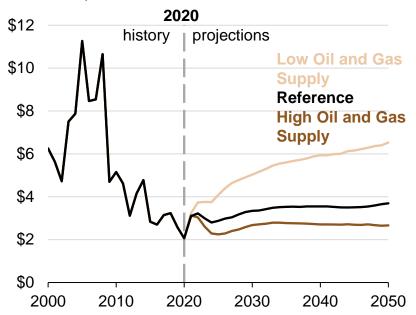
## **U.S. dry natural gas production and consumption**




#### U.S. natural gas consumption AEO2021 side cases



ATVISTA'


### Natural gas production and prices

U.S. dry natural gas production AEO2021 oil and gas supply cases trillion cubic feet

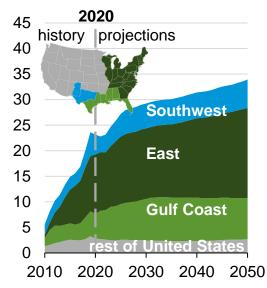


#### Natural gas spot price at Henry Hub AEO2021 oil and gas supply cases

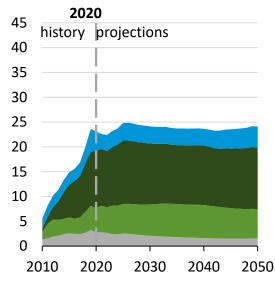
2020 dollars per million British thermal units



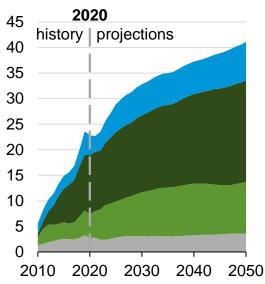
ANISTA


3

### **U.S. production of natural gas from shale resources**


U.S. dry natural gas production from shale resources by region, AEO2021 oil and gas supply cases

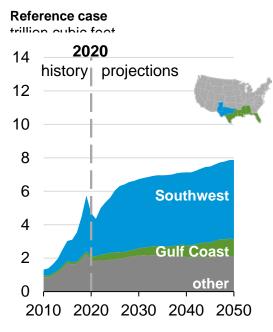
**Reference case** 

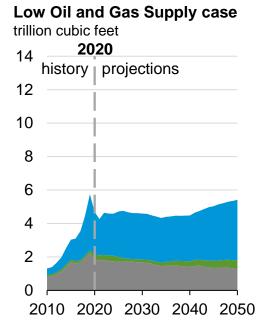

trillion cubic feet



Low Oil and Gas Supply case trillion cubic feet




High Oil and Gas Supply case trillion cubic feet




ANISTA

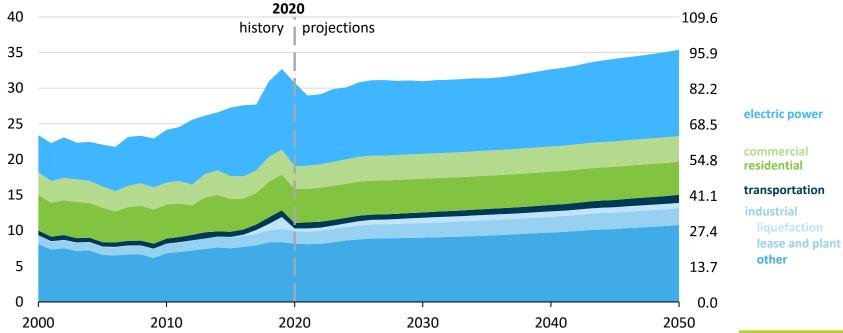
## **U.S. production of natural gas from oil formations**

U.S. dry natural gas production from oil formations by region, AEO2021 oil and gas supply cases





High Oil and Gas Supply case trillion cubic foot



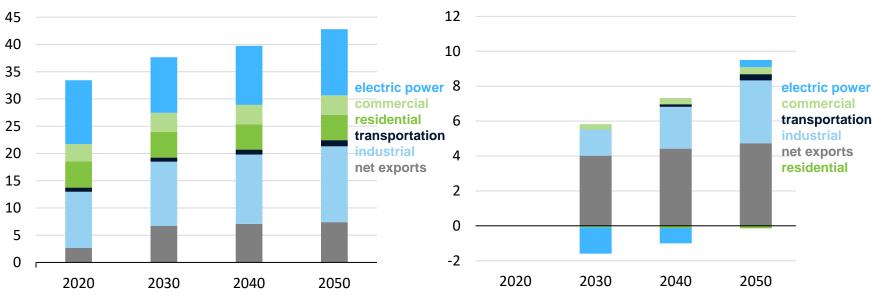

### U.S. natural gas consumption by sector

#### Natural gas consumption by sector, AEO2021 Reference case

trillion cubic feet






AVISTA

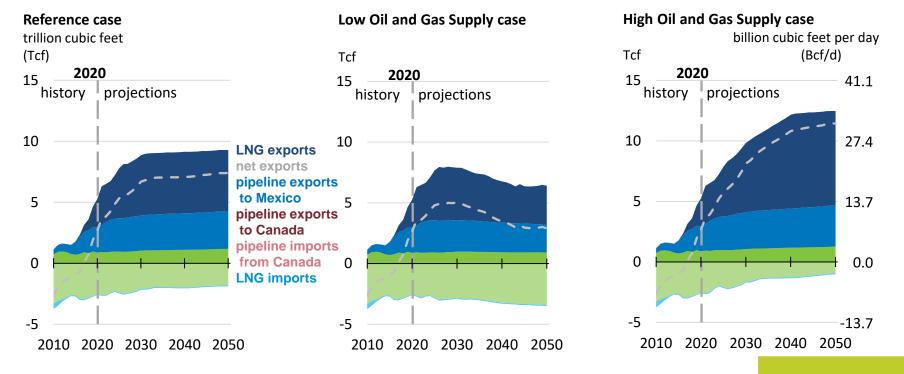
# Change in natural gas disposition by sector and net exports

Natural gas disposition by sector and net exports

#### AEO2021 Reference case

trillion cubic feet

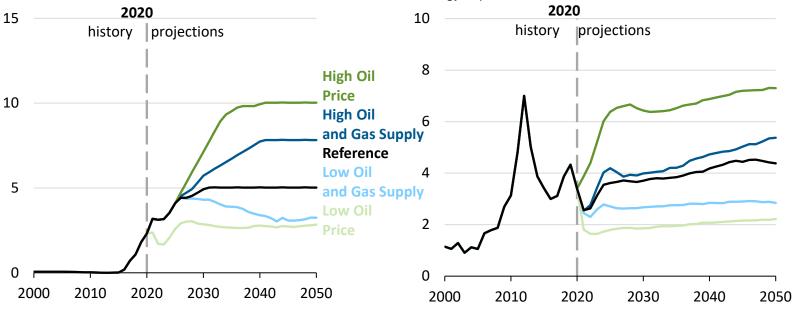



Change in natural gas disposition and net exports AEO2021 Reference case

relative to 2020 in trillion cubic feet

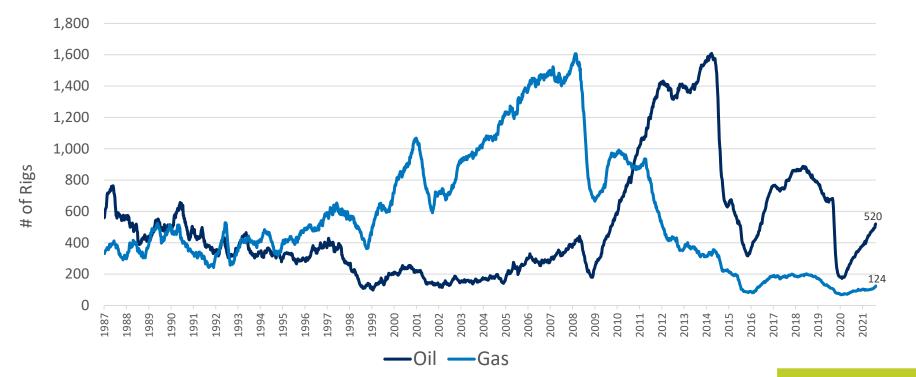
AIVISTA

## U.S. natural gas and liquefied natural gas (LNG) trade


U.S. natural gas and LNG trade, AEO2021 oil and gas supply cases



ATVISTA'


# U.S. liquefied natural gas (LNG) exports and oil and natural gas prices

U.S. liquefied natural gas exports AEO2021 supply and price cases trillion cubic feet Ratio of Brent crude oil price to natural gas price at Henry Hub, AEO2021 supply and price cases energy-equivalent terms



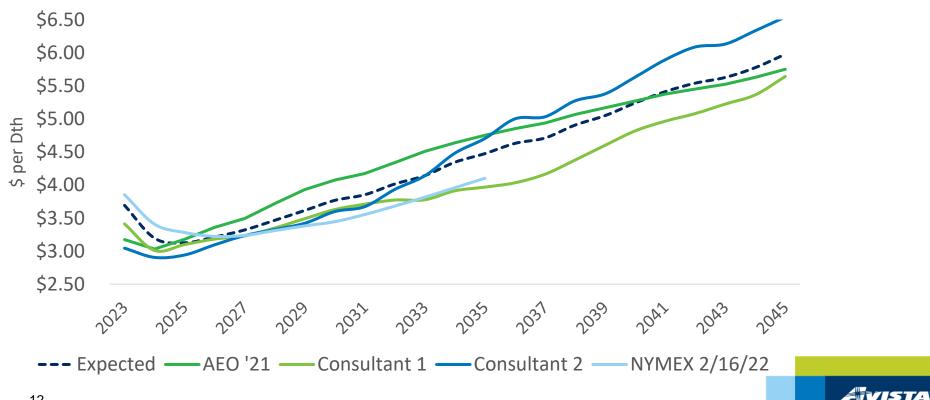

AVISTA

### **Rig Count**



AIVISTA'

#### **Production**




11

#### AVISTA'

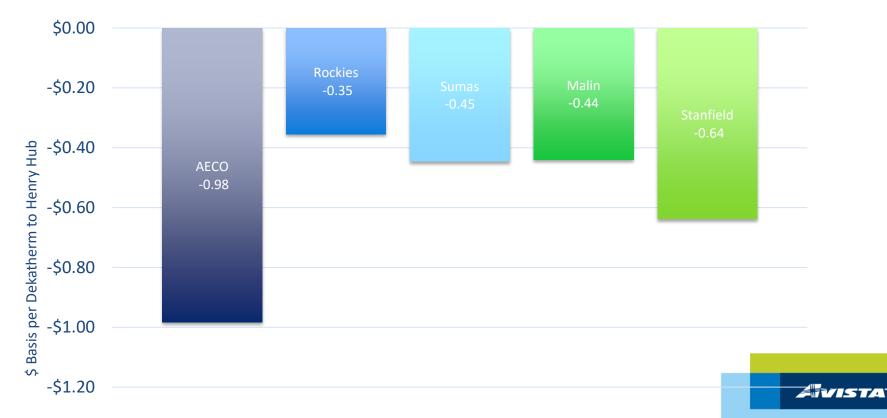
Oct

#### **Expected Prices**



#### **Expected Prices - Levelized**



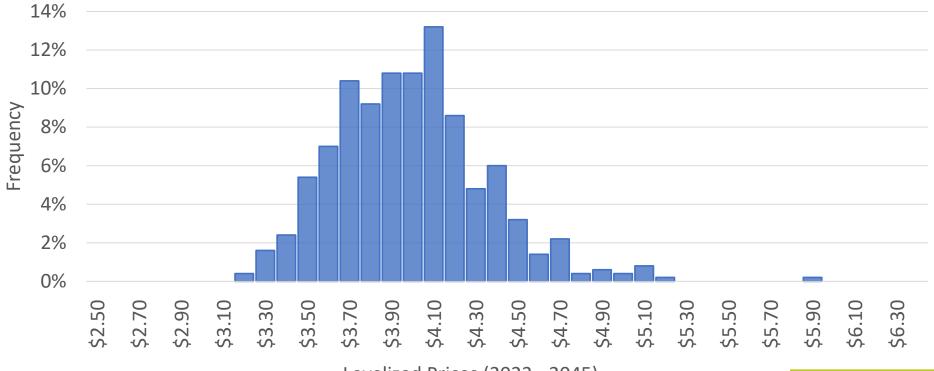

## Levelized Costs (2023 – 2045)



Expected Price

AVISTA

#### **Basis to Henry Hub - Levelized**




#### Henry Hub Stochastic Results (500 Draws)



ANISTA

#### Henry Hub Stochastic Results (500 Draws)

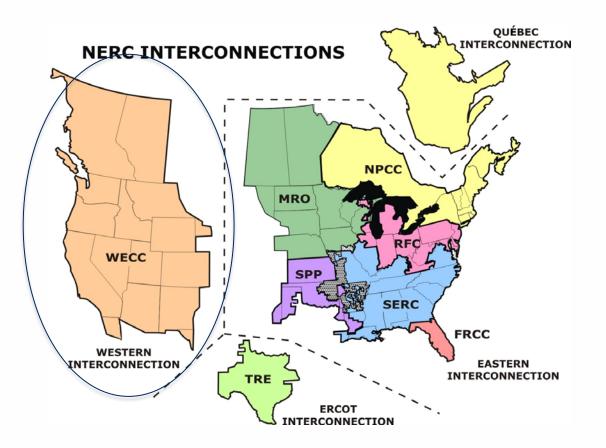


Levelized Prices (2023 - 2045)

ATVISTA'



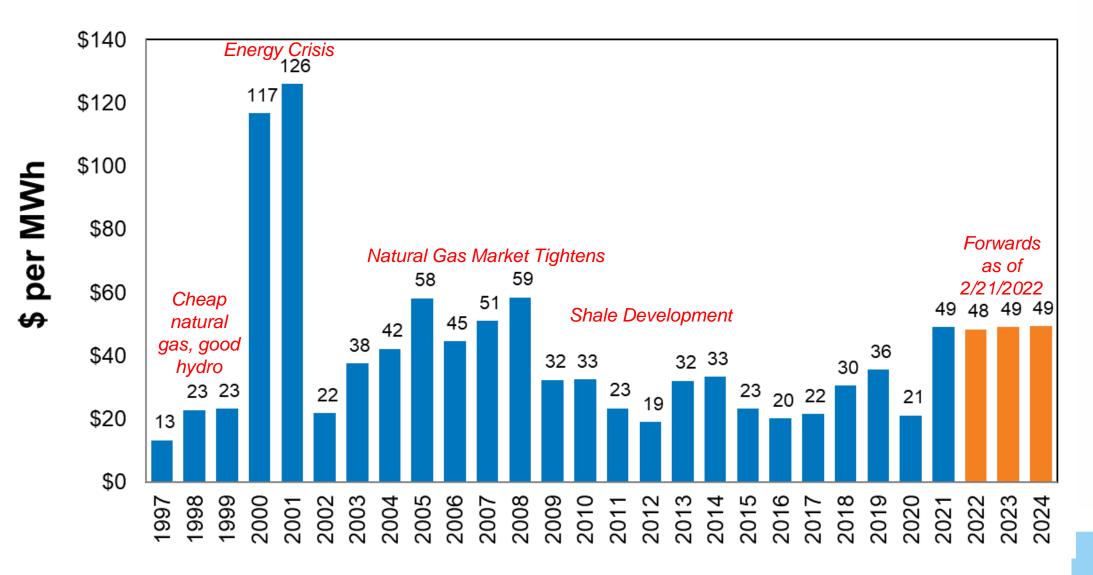
## **Electric Wholesale Market Price Forecast**


Lori Hermanson, Senior Resource Analyst Electric IRP, Third Technical Advisory Committee Meeting March 9, 2022

# **Overview**

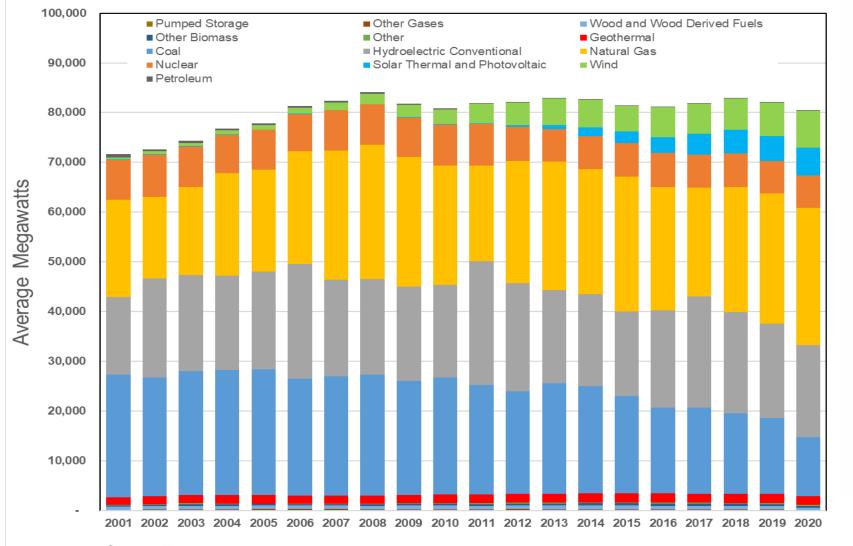
- Draft market price forecast based on preliminary analysis
  - To be used for RFP response comparison
- IRP will use this market price forecast with updated natural gas price and other assumptions (late summer)
- Stochastics pricing results will be discussed at a future TAC meeting

# **Market Price Forecast – Purpose**


- Estimate "market value" of resources options for the IRP
- Estimate dispatch of "dispatchable" resources
- Informs avoided costs
- May change resource selection if resource production is counter to needs of the wholesale market



# **Methodology**


- 3<sup>rd</sup> party software Aurora by Energy Exemplar
- Electric market fundamentals production cost model
- Simulates generation dispatch to meet regional load
- Outputs:
  - Market prices (electric & emission)
  - Regional energy mix
  - Transmission usage
  - Greenhouse gas emissions
  - Power plant margins, generation levels, fuel costs
  - Avista's variable power supply costs

# **Wholesale Mid-C Electric Market Price History**



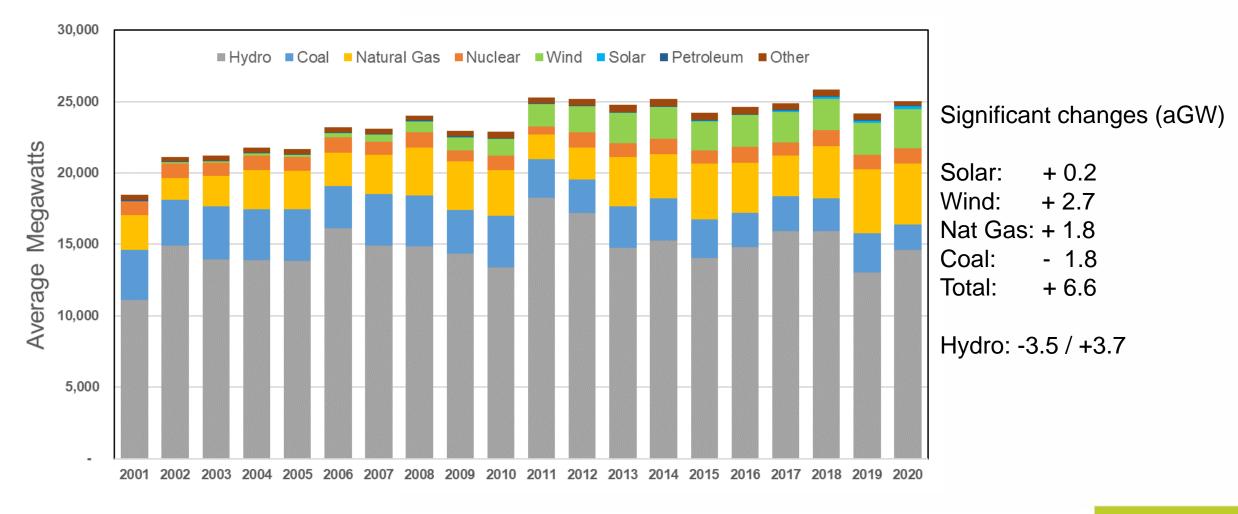
AVISTA

# **U.S. Western Interconnect Historical Generation Mix**



#### Significant changes (aGW)

AVISTA


| Solar:   | + 5.6  |
|----------|--------|
| Wind:    | + 7.0  |
| Nat Gas: | + 7.9  |
| Coal:    | - 12.8 |
| Total:   | + 9.5  |

Hydro: -4.1 / +5.3

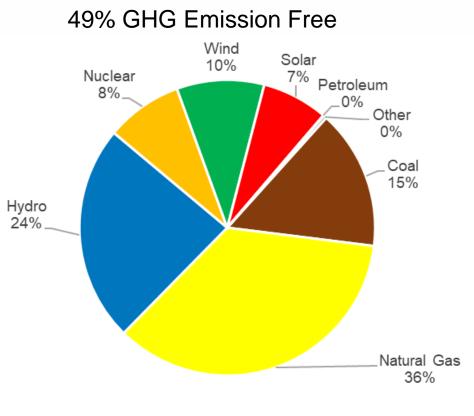
Source: EIA

6

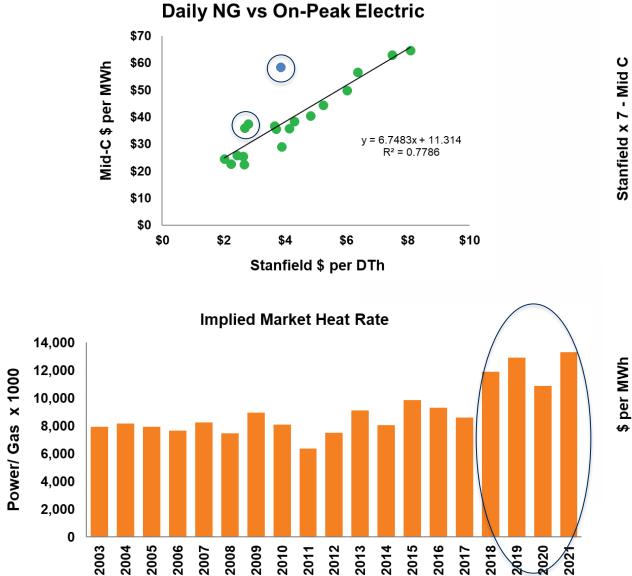
# Northwest Generation Mix (ID, MT, OR and WA)

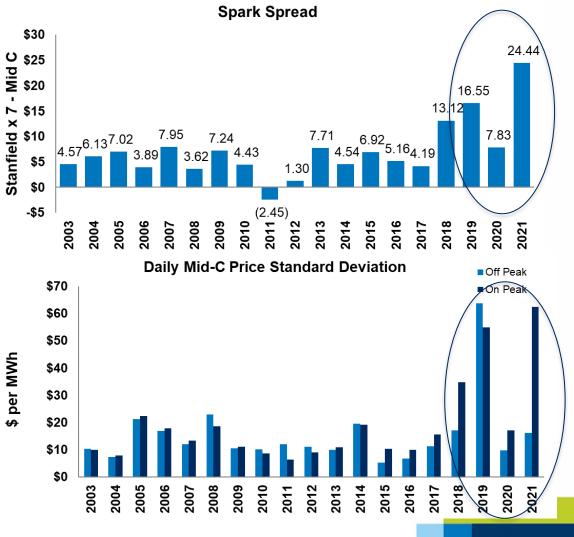


Source: EIA


7

AVISTA


# **2020 Fuel Mix**

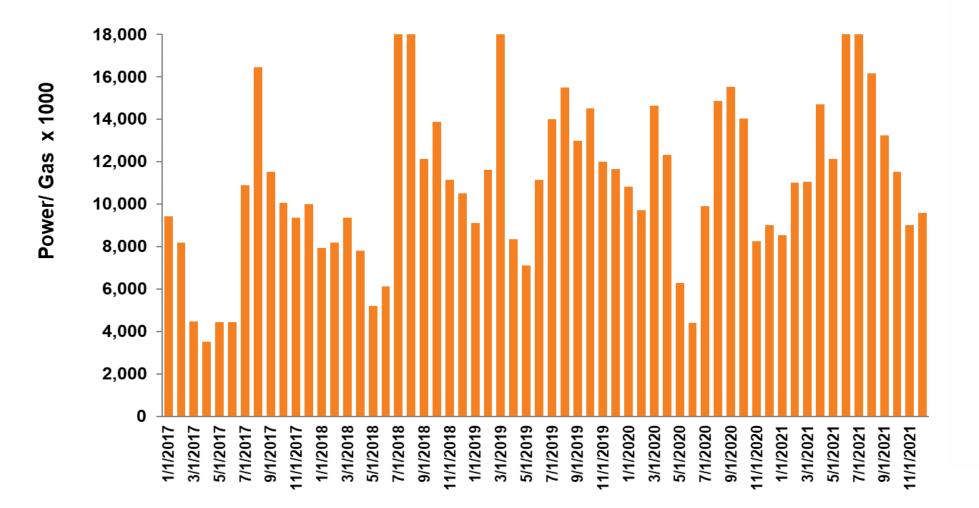

#### **Northwest** 75% GHG Emission Free Nuclear 4% Wind 11% Solar Hydro 1% 59% Petroleum Other <sup>0%</sup> 1% Coal 7% Natural Gas 17%

#### **U.S. Western Interconnect**

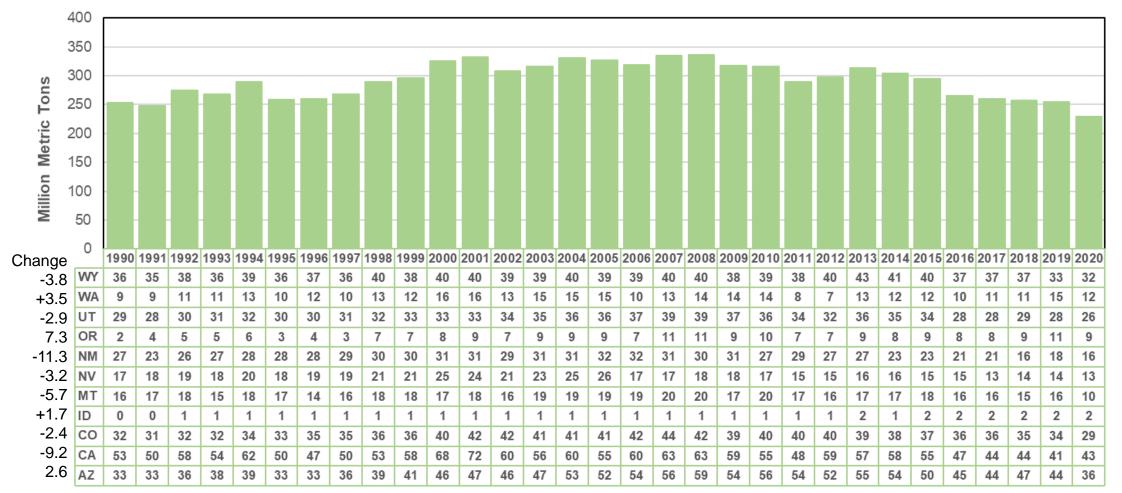


# **Market Indicators- Market is Tightening**






AVISTA


9

### Monthly Implied Market Heat Rate (2017-2021)

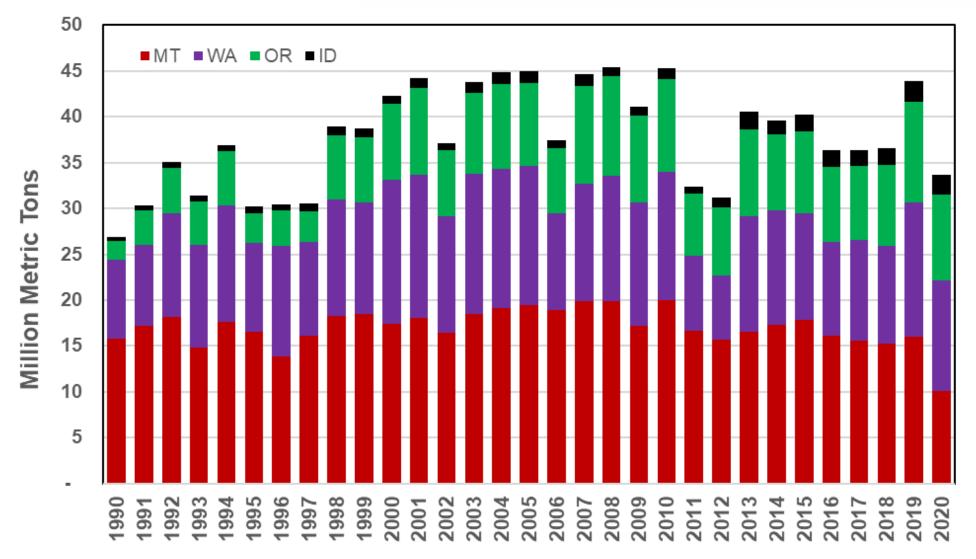
Implied Market Heat Rate



## **Electric Greenhouse Gas Emissions U.S. Western Interconnect**



#### Source: EIA


11

Emissions are adjusted for generation within the Western Interconnect

2020 estimates are subject to adjustment

*Avista* 

### **Northwest Greenhouse Gas Emissions**

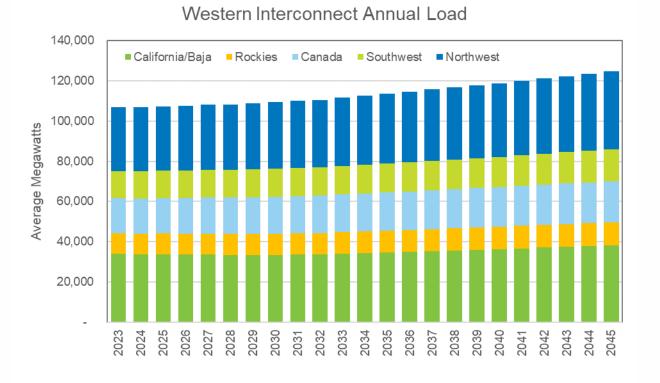



Source: EIA

AVISTA'

12

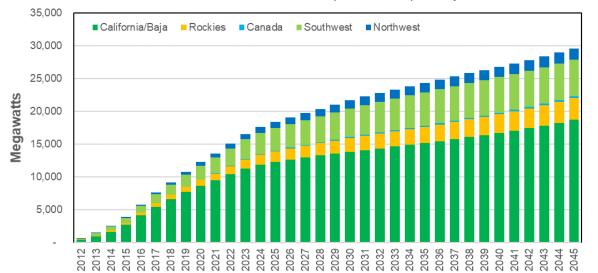
## **Modeling Process**




#### Draft Forecast

ANISTA

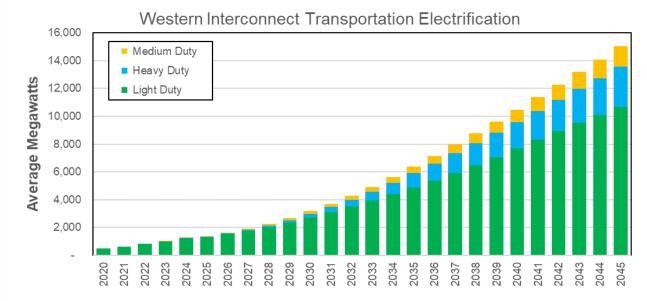
## **Load Forecast**


- Regional load forecast from IHS
  - Forecast includes energy efficiency
- Add net meter resource forecast
   Input annually with hourly shape
- Add electric vehicle forecast
  - Input annual with hourly shape
- Future load shape differs from today's load shape



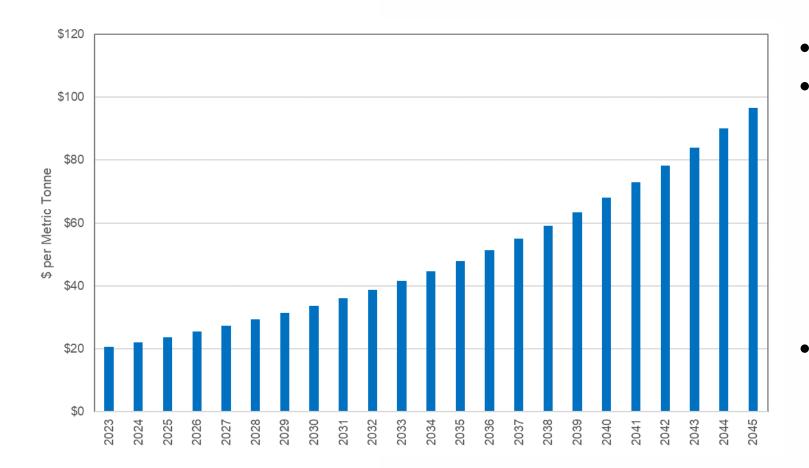
### **Electric Vehicle and Solar Adjustments**

### Roof Top Solar


- EIA existing estimates for history
- IHS regional growth rates



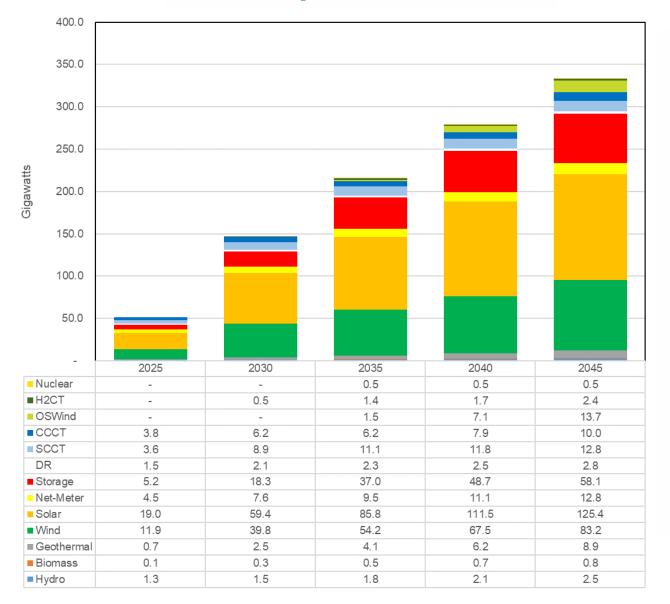
#### Western Interconnect Rooftop Solar Capability


### **Electric Vehicles**

- Penetration rates increase each year
- 15-65% light duty (2040)
- 12-15% medium duty (2040)
- 5% heavy duty (2040)

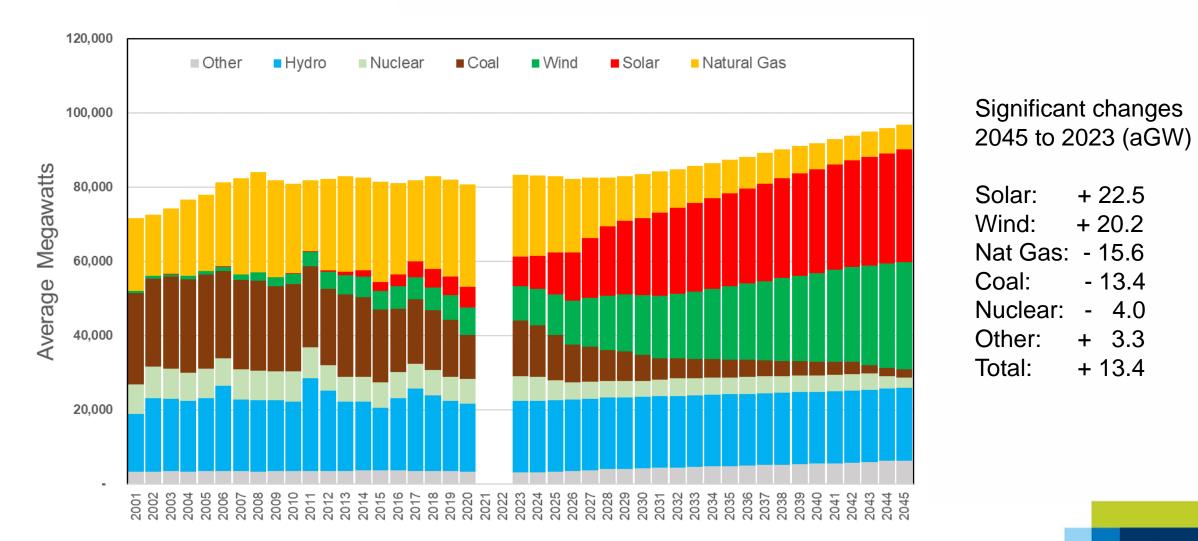


AVISTA

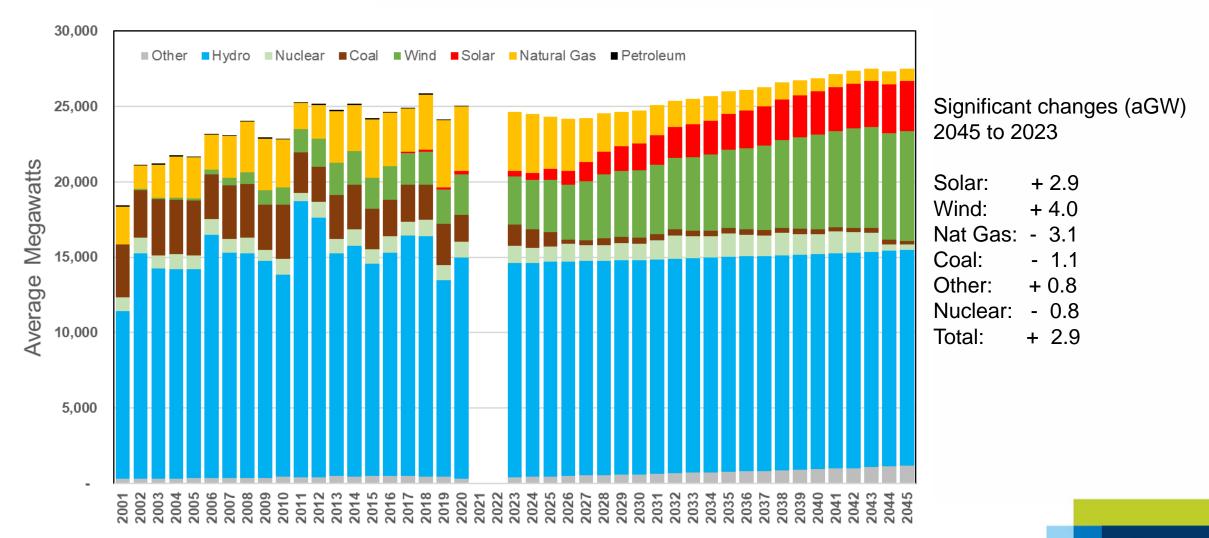

## **Northwest GHG Emission Prices**



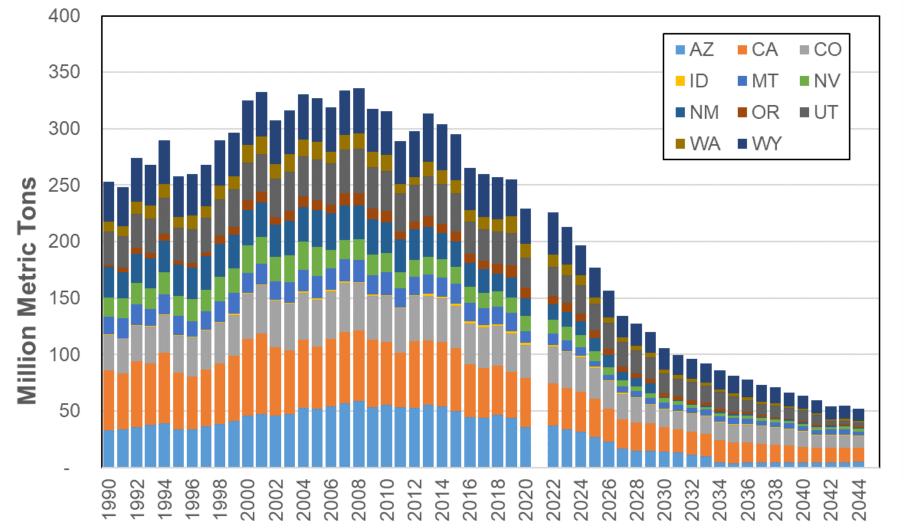
- \$41.47 levelized
- Assumes California
  Emission Prices for the
  Northwest from the Revised
  2019 IEPR Carbon Price
  Projections as placeholder
  for WA Climate
  Commitment Act and OR
  Climate Protection Program
- To address imports, exporting region includes a carbon price adder to transfer power


ANISTA

# New Resource Forecast (Western Interconnect) Draft Forecast



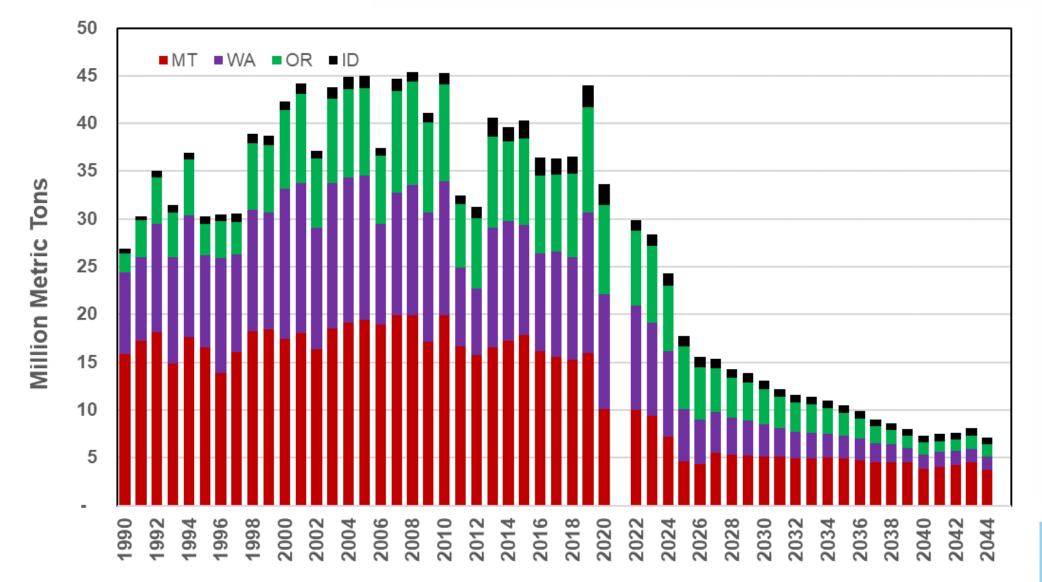

AVISTA'


## **U.S. West Resource Type Forecast**



### **Northwest Resource Type Forecast**




## **Greenhouse Gas Forecast U.S. Western Interconnect**



AVISTA

#### Draft Forecast

## **Greenhouse Gas Forecast Northwest States**



AVISTA

21

#### draft

### **Mid-C Electric Price Forecast**

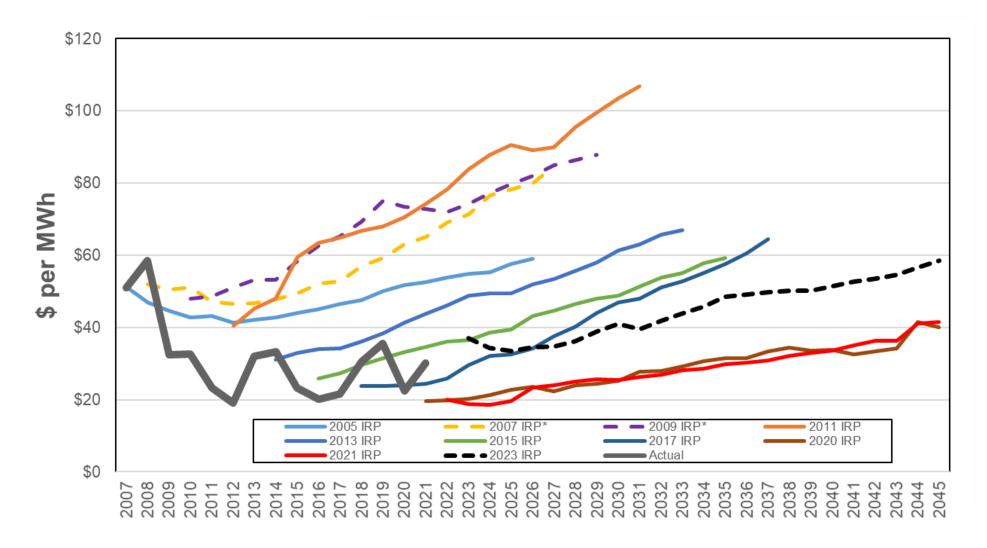


- Levelized Prices:
  - 2023-45: \$41.76/MWh
- Off-peak prices overtake on-peak in 2023 on an annual basis

ANISTA

 Evening peak (4pm-10pm) and off-peak prices remain high

#### Draft Forecast


## Hourly Wholesale Mid-C Electric Price Shapes

Spring: Mar 16 - Jun 15 Winter: Dec 16 - Mar 15 **—**2030 **—**2035 2023 2040 \_\_\_\_2045 -2023 -2030 -2035 2040 -2045 \$150 \$150 \$130 \$130 \$110 \$110 \$ per MWh \$ per MWh \$90 \$90 \$70 \$70 \$50 \$50 \$30 \$30 \$10 \$10 -\$10 -\$10 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Hour Fall: Sep 16 - Dec 15 Summer: Jun 16 - Sep 15 **—**2030 **—**2035 2040 \_\_\_\_2045 **—**2030 **—**2035 **—**2040 **—**2045 2023 \$150 \$150 \$130 \$130 \$110 \$110 \$ per MWh \$ per MWh \$90 \$90 \$70 \$70 \$50 \$50 \$30 \$30 \$10 \$10 -\$10 -\$10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 5 6 7 8 9 10 Hour Hour

Aivista<sup>.</sup>

23

### **Mid-C Electric Price Comparison vs. Previous IRPs**



\* These forecasts use price scenarios without GHG "taxes" to make all forecasts consistent

AVISTA

24

### **Next Steps**

- Conduct stochastic studies and verify resource adequacy
- Update price forecast this summer for final IRP analysis
  - Update gas prices (including stochastics),
  - Western Resource Adequacy Program (WRAP)
  - New IHS Markit forecast (load forecast and new regional resource forecast), if available
  - WA and OR carbon pricing update, if available

## **Data Availability**

### **Outputs**

- Expected Case: annual Mid-C prices by iteration
- Expected Case: hourly Mid-C prices
- Regional resource dispatch
- Regional GHG emissions



#### 2023 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 4 Agenda Wednesday, August 10, 2022 Microsoft Teams Virtual Meeting

| <b>Topic</b><br>Introductions              | <b>Time</b><br>9:00 | <b>Staff</b><br>John Lyons |
|--------------------------------------------|---------------------|----------------------------|
| Electric Conservation Potential Assessment | 9:05                | AEG                        |
| Break                                      |                     |                            |
| Electric Demand Response Study             | 10:35               | AEG                        |
| Lunch                                      | 11:30               |                            |
| Clean Energy Survey                        | 12:30               | Mary Tyrie                 |
| Adjourn                                    | 2:00                |                            |

### Microsoft Teams meeting

Join on your computer or mobile app <u>Click here to join the meeting</u> Or call in (audio only) +1 509-931-1514,,184108690# United States, Spokane Phone Conference ID: 184 108 690# <u>Find a local number | Reset PIN</u> <u>Learn More | Meeting options</u>



# **2023 IRP Introduction**

### 2023 Avista Electric IRP

TAC 4 – August 10, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

## **Meeting Guidelines**

- IRP team is working remotely and is available for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- IRP data posted to web site updated descriptions and navigation are in development
- Virtual IRP meetings on Microsoft Teams until able to hold large meetings again
- TAC presentations and meeting notes posted on IRP page
- This meeting is being recorded and an automated transcript made



## **Virtual TAC Meeting Reminders**

- Please mute mics unless commenting or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting
- Public advisory meeting comments will be documented and recorded



## **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



## **Technical Advisory Committee**

- Public process of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Please ask questions
  - Always soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for new studies or different modeling assumptions.
- Available by email or phone for questions or comments between meetings
- Due date for study requests from TAC members October 1, 2022
- External IRP draft released to TAC March 17, 2023, public comments due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023

## **2023 IRP Progress Update**

- Please provide any feedback on Washington and Regional Carbon Pricing Assumptions by August 15<sup>th</sup>
- Schedule changes:
  - Oct 12<sup>th</sup> TAC moved to Oct 11<sup>th</sup>
  - Move Global Climate Change Studies from Oct 11<sup>th</sup> meeting to Sept 28<sup>th</sup> meeting
  - Move L&R and load forecast from September 28<sup>th</sup> meeting to Oct 11<sup>th</sup> meeting
- Public Participation Partner's (P3) reach out opportunity (Date TBD)



## **2023 IRP TAC Meeting Schedule**

- TAC 4: August 10, 2022
- TAC 5: September 7, 2022
- TAC 6: September 28, 2022
- TAC 7: October 11, 2022
- Technical Modeling Workshop: October 20, 2022
- Washington Progress Report Workshop: December 14, 2022
- TAC 8: February 16, 2023
- Public Meeting Gas & Electric IRPs: March 8, 2023
- TAC 9: March 22, 2023



## **Today's Agenda**

- 9:00 Introductions, John Lyons
- 9:05 Electric Conservation Potential Assessment, AEG

### Break

- 10:35 Electric Demand Response Study, AEG
- 11:30 Lunch
- 12:30 Clean Energy Survey, Mary Tyrie
- 2:00 Adjourn Electric IRP





## Avista 2022 Electric Conservation Potential Assessment

Date: 8/10/2022 Prepared for: Avista Technical Advisory Committee



## Agenda

AEG Introduction
Study Objectives
AEG's CPA Methodology
Electric CPA Draft Results Summary
Electric DR Analysis Summary





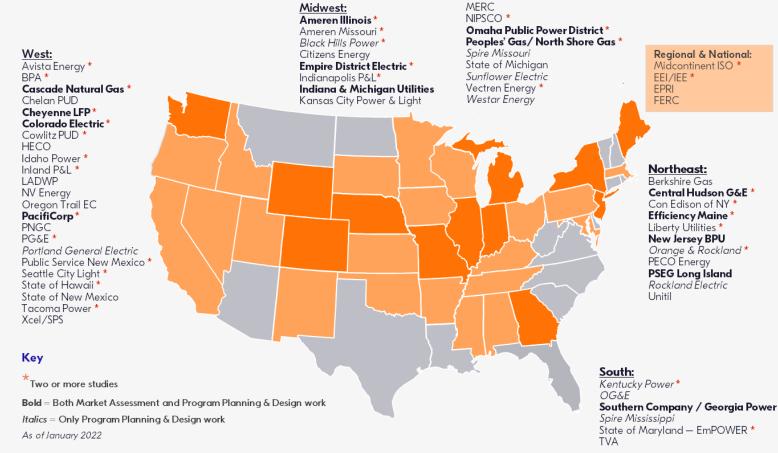
## **AEG Introduction**





Eli Morris **Project Director** 




**Kelly Marrin** Demand **Response Lead** 



**Energy Efficiency** 



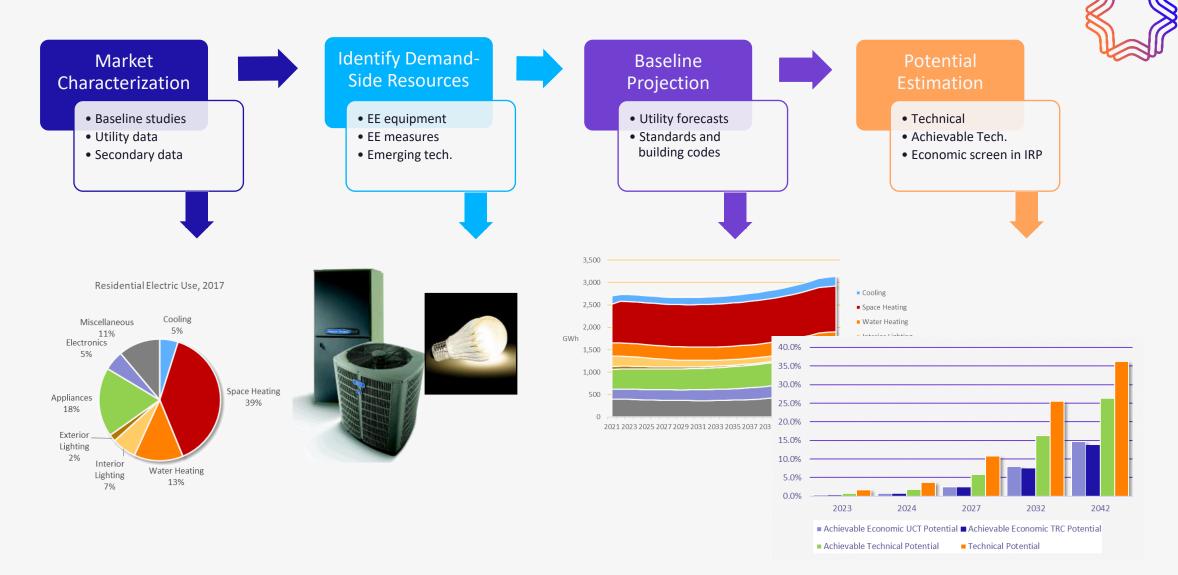
**Andy Hudson** Project Manager



60 potential studies in last 5 years, many of these in the Pacific Northwest  $\odot$ 

## **CPA Objectives**

- Assess a broad set of technologies to identify long-term energy efficiency and demand response potential in Avista's Washington and Idaho service territories to support:
  - Integrated Resource Planning
  - Portfolio target-setting
  - Program development
- Provide information on costs and seasonal impacts of conservation to compare to supply-side alternatives
- Understand differences in energy consumption and energy efficiency opportunities by income level
- Ensure transparency into methods, assumptions, and results






## AEG CPA Methodology



## AEG's Modeling Approach



**Regional data sources:** 

Avista data sources:

 $\odot$ 

 $\odot$ 

٠

2013 Residential GenPop Survey

Forecast data and load research

CPA Base Period: Sept 2020 – Aug 2021

⊘ NEEA studies (RBSA 2016, CBSA 2019, IFSA)

**Key Sources of Data** 

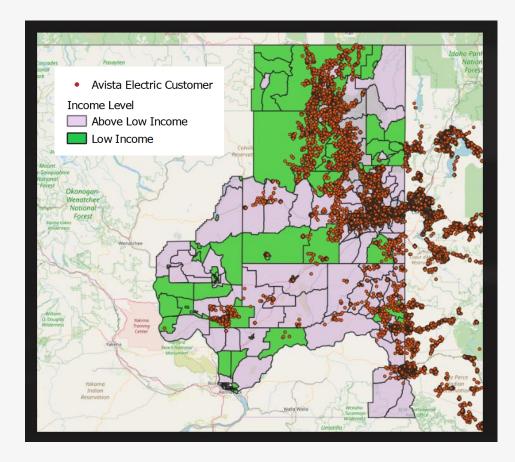
Historical energy, peak loads, and customer counts

Recent-year program accomplishments and plans

 Regional Technical Forum and NW Power and Conservation Council methodologies, ramp rates, and measure assumptions

### **Additional sources:**

- ⊘ U.S. DOE's Annual Energy Outlook
- ✓ U.S. DOE's projections on solid state lighting technology improvements
- Technical Reference Manuals and California DEER


# Data from Avista is prioritized when available, followed by regional data, and finally well-vetted national data.

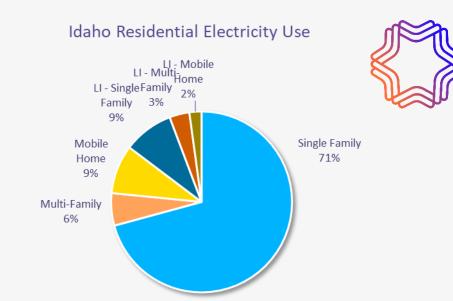


## **Residential Customer Segmentation**

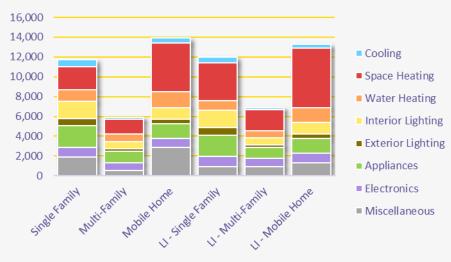


- ✓ This CPA enhances the residential segmentation to distinguish low-income households within each housing type rather than a single grouped "low income" segment.
- AEG cross referenced geographic data from Avista's customer database with data from the US Census American Community Survey to estimate the presence of low-income households within Avista's service territory (WA Census blocks shown at right).
  - "Low Income" was defined by household size. In Washington the threshold is 80% of Area Median Income, and in Idaho it is 200% of the Federal Poverty Level.
- Oata from NEEA's Residential Building Stock Assessment (RBSA II, 2016) was used to differentiate energy characteristics of low-income households, including differences in building shells, energy use per customer, and presence of energy-using equipment




## **Market Profiles**

#### Example – Idaho Residential


- Always calibrated to Avista's use-per-customer at the household level
- Seaks down energy consumption to the end use and technology level
- Defines the saturation (presence of equipment) and the annual consumption of a given technology where it is present (Unit Energy Consumption – UEC)
- ✓ Refer to data sources slide

Single Equily Deg. Income Drofile (excernt)

|                        |                               |            | UEC    | Intensity | Usage  |
|------------------------|-------------------------------|------------|--------|-----------|--------|
| End Use                | Technology                    | Saturation | (kWh)  | (kWh/HH)  | (MWh)  |
| Cooling                | Central AC                    | 33%        | 1,432  | 471       | 37,616 |
|                        | Room AC                       | 11%        | 487    | 52        | 4,127  |
|                        | Air-Source Heat Pump          | 14%        | 1,476  | 207       | 16,539 |
|                        | Geothermal Heat Pump          | 1%         | 1,300  | 11        | 855    |
|                        | Ductless Mini Split Heat Pump | 1%         | 517    | 6         | 450    |
| Elect<br>Air-S<br>Geot | Electric Furnace              | 5%         | 16,251 | 830       | 66,273 |
|                        | Electric Room Heat            | 9%         | 1,616  | 139       | 11,100 |
|                        | Air-Source Heat Pump          | 12%        | 9,954  | 1,230     | 98,255 |
|                        | Geothermal Heat Pump          | 1%         | 8,539  | 62        | 4,946  |
|                        | Ductless Mini Split Heat Pump | 1%         | 4,977  | 54        | 4,328  |
| Water Heating          | Water Heater (<= 55 Gal)      | 46%        | 2,364  | 1,096     | 87,540 |
|                        | Water Heater (> 55 Gal)       | 3%         | 2,144  | 71        | 5,669  |
|                        |                               |            |        |           |        |

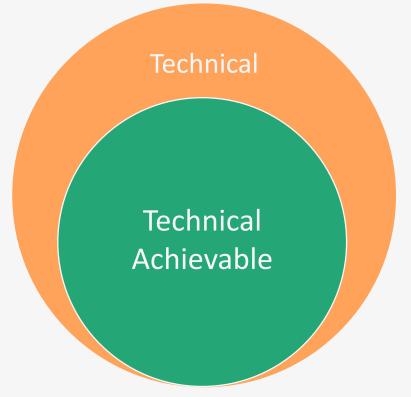


#### ID Residential Intensity (kWh/HH)



#### Applied Energy Group, Inc. | appliedenergygroup.com

## Two Levels of Savings Estimates


NW Power Council Methodology

This study develops two sets of estimates:

- **Technical potential (TP)**: upper bound on potential, assuming all of the most energy efficiency opportunities are adopted without consideration of cost or customer willingness to participate.
  - This may include emerging or very expensive ultra-high efficiency technologies
- **Technical Achievable Potential (TAP)** is a subset of TP that accounts for customer preference and likelihood to adopt through **both** utilityand non-utility driven mechanisms, but does not consider costeffectiveness

In addition to these estimates, the study produces cost data for the Total Resource Cost (TRC) and Utility Cost Test (UC)T perspectives that can be used by Avista's IRP process to select energy efficiency measures in competition with other resources (see next slide)





### Levelized Costs

Two Cost-Effectiveness Tests

AEG provided a levelized cost of conserved energy (\$/kWh) for each measure within the technical achievable potential within Avista's Washington and Idaho territories from two perspectives.

- Utility Cost Test (UCT): Assesses cost-effectiveness from a utility or program administrator's perspective.
- Total Resource Cost Test (TRC): Assesses cost-effectiveness from the perspective of the utility and its customers. Includes quantifiable and monetizable non-energy impacts if they can be quantified and monetized.

ComponentUCTTRCMeasure Incremental CostCostIncentiveCostAdministrative CostCostNon-Energy Benefits\*CostNon-Energy Costs\* (e.g. O&M)Cost

\*Council methodology includes monetized impacts on other fuels within these categories

Both values are provided to Avista for all measure level potential, so that the IRP can use the appropriate evaluation for each state: TRC for WA and UCT for ID.



### **Potential Estimates**

Achievability

- All potential "ramps up" over time all ramp rates are based on those found within the NWPCC's 2021 Power Plan
- Max Achievability
  - NWPCC 2021 Plan allows some measures max achievability to reach up to 100% of technical potential
  - Previous Power Plans assumed a maximum achievability of 85%
  - AEG has aligned assumptions with the 2021 Plan and measures such as lighting reach greater than 85%
- Note that Council ramp rates are agnostic to delivery to acquisition mechanism and include potential that may be realized through utility DSM programs, regional initiatives and market transformation, or enhanced codes and standards



Measures examples over 85% Achievability:

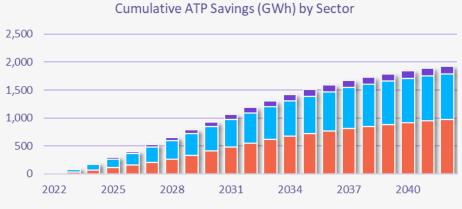
- All Lighting
- Washers/Dryers
- Dishwashers
- Refrigerators/Freezers
- Circulation Pumps
- Thermostats
- C&I Fans

### Electric CPA Draft Results

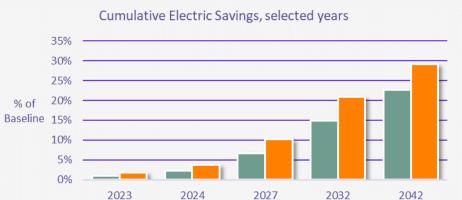


Energy Efficiency Potential (WA & ID, All Sectors) Draft results indicate energy savings of ~1.1% of baseline consumption per year are Technically Achievable.

⊙ 1,193 GWh (136.2 aMW) by 2032


⊙ 1,929 GWh (220.2 aMW) by 2042






### Energy Efficiency Potential, Continued

#### Potential Summary – WA & ID, All Sectors



#### Residential Commercial Industrial

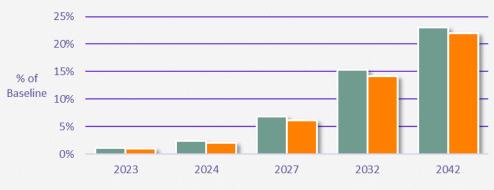


Technical Potential

Technical Achievable Potential

| Summary of Energy Savings (GWh), Selected<br>Years | 2023  | 2024  | 2027  | 2032  | 2042  |
|----------------------------------------------------|-------|-------|-------|-------|-------|
| Reference Baseline                                 | 8,009 | 7,996 | 7,933 | 7,982 | 8,520 |
| Cumulative Savings (GWh)                           |       |       |       |       |       |
| Technical Achievable Potential                     | 86    | 183   | 522   | 1,193 | 1,929 |
| Technical Potential                                | 144   | 304   | 813   | 1,665 | 2,486 |
| Energy Savings (% of Baseline)                     |       |       |       |       |       |
| Technical Achievable Potential                     | 1.1%  | 2.3%  | 6.6%  | 15.0% | 22.6% |
| Technical Potential                                | 1.8%  | 3.8%  | 10.3% | 20.9% | 29.2% |
| Incremental Savings (GWh)                          |       |       |       |       |       |
| Technical Achievable Potential                     | 86    | 97    | 121   | 130   | 43    |
| Technical Potential                                | 144   | 160   | 170   | 157   | 48    |




### EE Potential, Continued

#### Potential Summary – State Comparison

Annual Incremental Potential

#### WA D





WA ID

| Summary of Energy Savings (GWh), Selected<br>Years | 2023  | 2024  | 2027  | 2032  | 2042  |
|----------------------------------------------------|-------|-------|-------|-------|-------|
| Reference Baseline                                 |       |       |       |       |       |
| Washington                                         | 5,309 | 5,301 | 5,256 | 5,277 | 5,60  |
| Idaho                                              | 2,700 | 2,695 | 2,678 | 2,705 | 2,91  |
| Cumulative Savings (GWh)                           |       |       |       |       |       |
| Washington                                         | 59    | 127   | 358   | 809   | 1,28  |
| Idaho                                              | 26    | 57    | 165   | 384   | 640   |
| Energy Savings (% of Baseline)                     |       |       |       |       |       |
| Washington                                         | 1.1%  | 2.4%  | 6.8%  | 15.3% | 23.0% |
| Idaho                                              | 1.0%  | 2.1%  | 6.1%  | 14.2% | 22.0% |
| Incremental Savings (GWh)                          |       |       |       |       |       |
| Washington                                         | 59    | 67    | 82    | 87    | 27    |
| Idaho                                              | 26    | 30    | 39    | 43    | 10    |
|                                                    |       |       |       |       |       |

### **EE Potential - Top Measures**



Cumulative Potential Summary – WA

#### **Top Measure Notes**

- Some expensive or emerging measures have significant technical achievable potential, but may not be selected by the IRP due to costs
- Heat Pump measures, including DHPs and HPWHs, have significant annual energy benefits, however since heat pumps revert to electric resistance heating during extreme cold, they may not have a corresponding winter peak benefit
- ☑ In addition to being expensive, some emerging tech measures are included in Technical Achievable which may not prove feasible for programs at this time, but can be kept in mind for future programs

| Rank | Measure / Technology                                    | 2032 Achievable<br>Technical Potential %<br>(MWh) | of Total | TRC Levelized<br>\$/kWh |
|------|---------------------------------------------------------|---------------------------------------------------|----------|-------------------------|
| 1    | Residential - Connected Thermostat - ENERGY STAR (1.0)  | 66,516                                            | 8.2%     | \$0.25                  |
| 2    | Commercial - Linear Lighting                            | 56,757                                            | 7.0%     | \$0.00                  |
| 3    | Commercial - Ductless Mini Split Heat Pump              | 46,099                                            | 5.7%     | \$0.89                  |
| 4    | Residential - Windows - Low-e Storm Addition            | 42,942                                            | 5.3%     | \$0.21                  |
| 5    | Residential - Water Heater (<= 55 Gal)                  | 38,857                                            | 4.8%     | \$0.12                  |
| 6    | Residential - Home Energy Management System (HEMS)      | 26,551                                            | 3.3%     | \$0.35                  |
| 7    | Commercial - HVAC - Dedicated Outdoor Air System (DOAS) | 18,215                                            | 2.3%     | \$1.30                  |
| 8    | Residential - Windows - Cellular Shades                 | 16,852                                            | 2.1%     | \$0.62                  |
| 9    | Commercial - Retrocommissioning                         | 13,583                                            | 1.7%     | \$0.01                  |
| 10   | Commercial - Strategic Energy Management                | 11,198                                            | 1.4%     | \$0.18                  |
| 11   | Commercial - HVAC - Energy Recovery Ventilator          | 10,374                                            | 1.3%     | \$0.13                  |
| 12   | Commercial - Server                                     | 9,551                                             | 1.2%     | \$0.01                  |
| 13   | Commercial - Refrigeration - High Efficiency Compressor | 9,429                                             | 1.2%     | \$0.40                  |
| 14   | Residential - Windows - High Efficiency (Class 22)      | 9,328                                             | 1.2%     | \$0.54                  |
| 15   | Commercial - High-Bay Lighting                          | 9,066                                             | 1.1%     | \$0.00                  |
| 16   | Commercial - Insulation - Wall Cavity                   | 8,551                                             | 1.1%     | \$0.03                  |
| 17   | Residential - Windows - High Efficiency (Class 30)      | 8,417                                             | 1.0%     | \$0.42                  |
| 18   | Commercial - Ventilation - Demand Controlled            | 8,267                                             | 1.0%     | \$2.15                  |
| 19   | Residential - Insulation - Floor Installation           | 8,249                                             | 1.0%     | \$0.17                  |
| 20   | Commercial - Desktop Computer                           | 7,884                                             | 1.0%     | \$0.11                  |
|      | Total of Top 20 Measures                                | 426,685                                           | 52.7%    |                         |
|      | Total Cumulative Savings                                | 809,194                                           | 100.0%   |                         |

### **EE Potential - Top Measures**

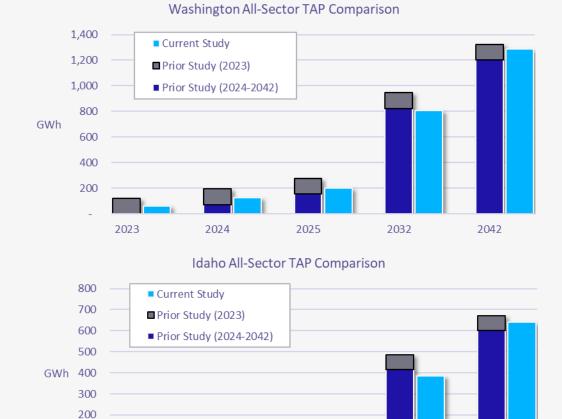


Cumulative Potential Summary – ID

#### **Top Measure Notes**

- Some expensive or emerging measures have significant technical achievable potential, but may not be selected by the IRP due to costs
- Heat Pump measures, including DHPs and HPWHs, have significant annual energy benefits, however since heat pumps revert to electric resistance heating during extreme cold, they may not have a corresponding winter peak benefit
- ☑ In addition to being expensive, some emerging tech measures are included in Technical Achievable which may not prove feasible for programs at this time, but can be kept in mind for future programs

| Rank | Measure / Technology                                                | 2032 Achievable<br>Technical Potential<br>(MWh) | % of Total | UCT Levelized<br>\$/kWh |
|------|---------------------------------------------------------------------|-------------------------------------------------|------------|-------------------------|
| 1    | Commercial - Linear Lighting                                        | 27,909                                          | 7.3%       | \$0.00                  |
| 2    | Commercial - Ductless Mini Split Heat Pump                          | 17,184                                          | 4.5%       | \$0.59                  |
| 3    | Residential - Water Heater (<= 55 Gal)                              | 16,791                                          | 4.4%       | \$0.09                  |
| 4    | Residential - Windows - Low-e Storm Addition                        | 13,713                                          | 3.6%       | \$0.17                  |
| 5    | Residential - Connected Thermostat - ENERGY STAR (1.0)              | 11,260                                          | 2.9%       | \$0.20                  |
| 6    | Residential - Home Energy Management System (HEMS)                  | 10,512                                          | 2.7%       | \$0.27                  |
| 7    | Residential - Windows - Cellular Shades                             | 8,363                                           | 2.2%       | \$0.49                  |
| 8    | Commercial - HVAC - Dedicated Outdoor Air System (DOAS)             | 7,942                                           | 2.1%       | \$0.86                  |
| 9    | Residential - Insulation - Floor Installation                       | 7,934                                           | 2.1%       | \$0.13                  |
| 10   | Commercial - Engine Block Heater Controls                           | 7,437                                           | 1.9%       | \$0.01                  |
| 11   | Commercial - Refrigeration - High Efficiency Compressor             | 6,570                                           | 1.7%       | \$0.16                  |
| 12   | Commercial - Retrocommissioning                                     | 6,391                                           | 1.7%       | \$0.01                  |
| 13   | Commercial - Refrigeration - Floating Head Pressure                 | 6,079                                           | 1.6%       | \$0.06                  |
| 14   | Residential - Advanced New Construction Design - Zero Net<br>Energy | 5,436                                           | 1.4%       | \$0.10                  |
| 15   | Industrial - Linear Lighting                                        | 5,385                                           | 1.4%       | \$0.01                  |
| 16   | Residential - Insulation - Ceiling Installation                     | 5,247                                           | 1.4%       | \$0.16                  |
| 17   | Commercial - Strategic Energy Management                            | 5,164                                           | 1.3%       | \$0.12                  |
| 18   | Commercial - Server                                                 | 4,976                                           | 1.3%       | \$0.01                  |
| 19   | Commercial - Insulation - Wall Cavity                               | 4,457                                           | 1.2%       | \$0.02                  |
| 20   | Residential - TVs                                                   | 4,225                                           | 1.1%       | \$0.00                  |
|      | Total of Top 20 Measures                                            | 182,975                                         | 47.6%      |                         |
|      | Total Cumulative Savings                                            | 384,102                                         | 100.0%     |                         |


# Comparison with 2020 Electric CPA

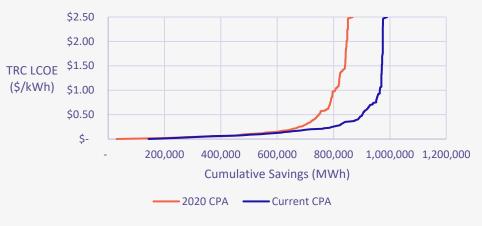


### **Achievable Potential Comparison**

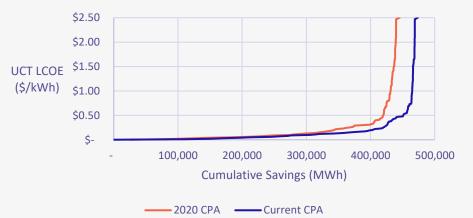


#### Comparison with Prior Potential Study (2022-2042 TAP)




| Sector<br>(All States) | End Use           | Prior CPA 2042<br>MWh | Current Study<br>2042 MWh | Diff.   |
|------------------------|-------------------|-----------------------|---------------------------|---------|
|                        | Cooling           | 112,802               | 75,404                    | -37,398 |
|                        | Heating           | 403,894               | 453,969                   | 50,075  |
|                        | Water Heating     | 220,393               | 227,303                   | 6,910   |
| Residential            | Interior Lighting | 18,040                | 29,624                    | 11,584  |
|                        | Exterior Lighting | 1,320                 | 10,922                    | 9,601   |
|                        | Appliances        | 85,150                | 96,145                    | 10,995  |
|                        | Electronics       | 56,747                | 59,310                    | 2,563   |
|                        | Miscellaneous     | 46,509                | 20,171                    | -26,339 |
|                        | Cooling           | 130,699               | 127,447                   | -3,252  |
|                        | Heating           | 89,773                | 113,699                   | 23,925  |
|                        | Ventilation       | 100,043               | 119,087                   | 19,045  |
|                        | Water Heating     | 21,941                | 25,733                    | 3,791   |
|                        | Interior Lighting | 195,773               | 192,109                   | -3,663  |
| Commercial             | Exterior Lighting | 52,777                | 48,740                    | -4,037  |
|                        | Refrigeration     | 107,229               | 105,453                   | -1,776  |
|                        | Food Preparation  | 7,662                 | 26,932                    | 19,270  |
|                        | Office Equipment  | 13,101                | 45,382                    | 32,282  |
|                        | Miscellaneous     | 9,240                 | 14,077                    | 4,837   |
|                        | Cooling           | 4,218                 | 11,895                    | 7,677   |
|                        | Heating           | 461                   | 6,912                     | 6,451   |
|                        | Ventilation       | 12,137                | 5,346                     | -6,791  |
| Industrial             | Interior Lighting | 42,345                | 22,883                    | -19,462 |
|                        | Exterior Lighting | 4,745                 | 18,386                    | 13,641  |
|                        | Motors            | 60,407                | 62,550                    | 2,142   |
|                        | Process           | 6,055                 | 8,346                     | 2,291   |
|                        | Miscellaneous     | 678                   | 1,511                     | 833     |
| Grand Total            |                   | 1,804,139             | 1,929,335                 | 125,196 |




Supply Curves – Compare to Prior CPA

#### WA & ID Technical Achievable Potential











### **Sector-Level Notes**

Comparison with Prior Potential Study – Technical Achievable

#### **Residential:**

- O Updates to RTF Workbooks and latest Avista TRM are driving increase in potential across weatherization measures.
  - Low-E Storm Addition, Floor Insulation and Cellular Shades are the largest increases.
- O Ductless Mini Split Heat Pump measures showing less potential driven by RTF savings update.

#### **Commercial:**

- Similar lighting potential. New LED replacement with Controls measure offsets increase in LED saturation.
- Increase in potential across Food Preparation and Office Equipment end uses driven by updates to ENERGY STAR specifications and market data.
- Updated savings characterizations across HVAC and water heating measures leading to lower potential estimates in those end uses.

#### Industrial:

- Industrial measure data was revised to reflect the newest iteration of the 2021 Industrial Tool (v8), updating savings and costs for many measures.
- OPUMPING MEASURES Showing increased potential due to explicit accounting for Avista pumping rate schedule and the new Pumping measures from the V8 Industrial Tool update.
- Solution Fan controls also have greater savings as a result of the measure data update



### Thank you. Questions?



### **Demand Response**



### Approach to the Study



### All Program Options

| Conventional DLC              | Central AC<br>Water Heating<br>Electric Vehicle Charging                                  |
|-------------------------------|-------------------------------------------------------------------------------------------|
| Smart/Interactive DLC         | Grid-Interactive Water Heating<br>Smart Thermostats (Cooling/Heating)<br>Smart Appliances |
| Third Party Curtailment       | Capacity Bidding<br>Emergency Curtailment                                                 |
| Energy Storage                | Battery Storage<br>Thermal Storage                                                        |
| Time-Varying Rates/Behavioral | Behavioral<br>Time-of-Use<br>Electric Vehicle Time-of-Use<br>Variable Peak Pricing        |

### Avista Pilot Program Scenario

Avista plans to run the following DR Pilot Programs in Washington:

- CTA-2045 HPWH
  CTA-2045 ERWH
  Time of Lise Opt i
- ⊘ Time-of-Use Opt-in
- 🥝 Peak Time Rebate

All Pilot Programs will run for a three-year period starting in 2024

The TOU Opt-in Pilot will have an optional two-year extension pending results



#### Some of the options require AMI

- OLC Options- No AMI Metering Required
- Oynamic Rates- require AMI for billing

#### Washington

⊘ Assume 100% throughout study for all sectors

Idaho starting AMI rollout in 2024

### **Assumptions and Updates**



#### Smart Thermostat - Heating Program will piggyback off Cooling Program

Shared Admin, Development, and O&M Costs

#### **Grid-Interactive Water Heaters**

- Split results across water heater type- ER and HP
  - Lowered CTA-2045 impacts to reflect "BPA 2018" peak mitigation strategies

#### **Dynamic Rates**

- ⊘ PTR for Residential and General Service
- ✓ VPP for Large and Extra-Large General Service
- ⊘ Added EV TOU

#### Program Impact and Cost assumptions mainly based on NWPCC 2021 Power Plan assumptions

- Oiverged from these where appropriate
  - Customization for Avista's service territory
  - Where NWPCC program information wasn't available

### **Program Impact Calculation**



Program Impact<sub>year,program</sub>

- = Per Customer Peak Impact<sub>y,p</sub> \* Eligible Participants<sub>y,p</sub> \* Participation Rate<sub>y,p</sub>
- \* Equipment Saturation Rate y,p

### Baseline Characterization



### **Baseline Comparisons to 2020 Study**

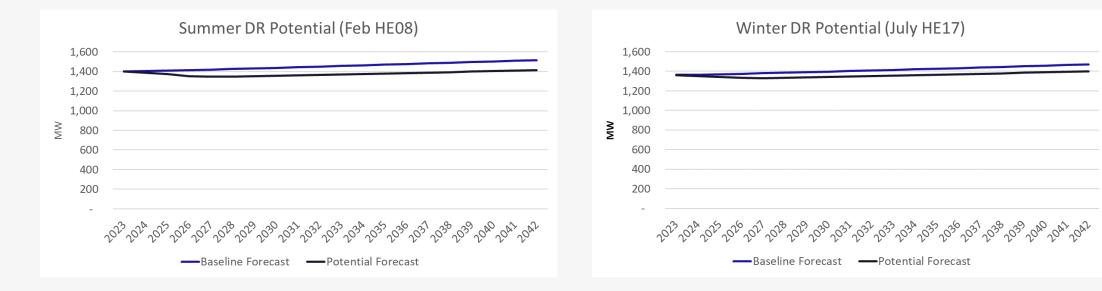
Summer Baseline Forecast





Winter Baseline Forecast

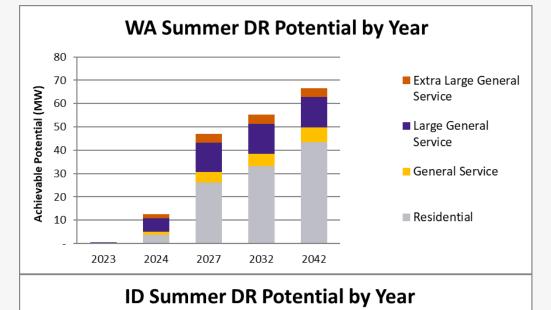
### Achievable Potential



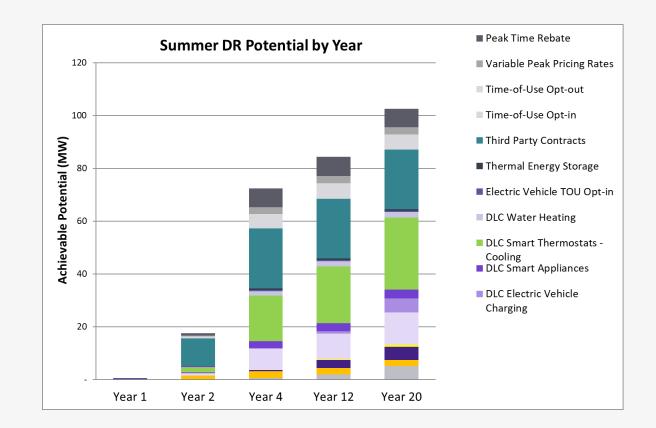



## All Program Options

### **Potential by Season**

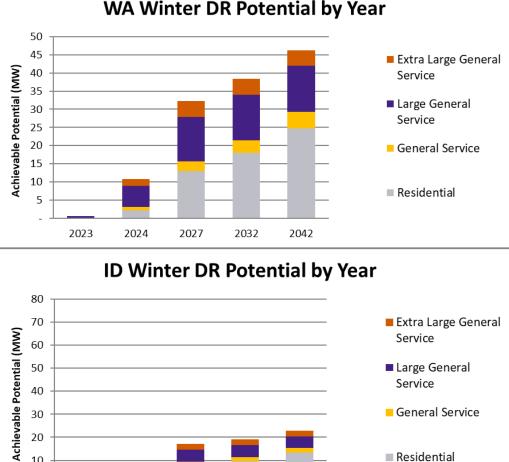




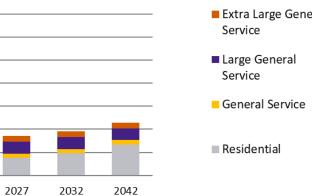


| Summer Potential     | 2023  | 2024  | 2027  | 2032  | 2042  |
|----------------------|-------|-------|-------|-------|-------|
| Baseline Forecast    | 1,400 | 1,404 | 1,420 | 1,450 | 1,516 |
| Achievable Potential | 0.5   | 17.5  | 72.3  | 84.3  | 102.6 |
| % of Baseline        | 0.0%  | 1.2%  | 5.1%  | 5.8%  | 6.8%  |
| Potential Forecast   | 1,400 | 1,386 | 1,348 | 1,365 | 1,414 |

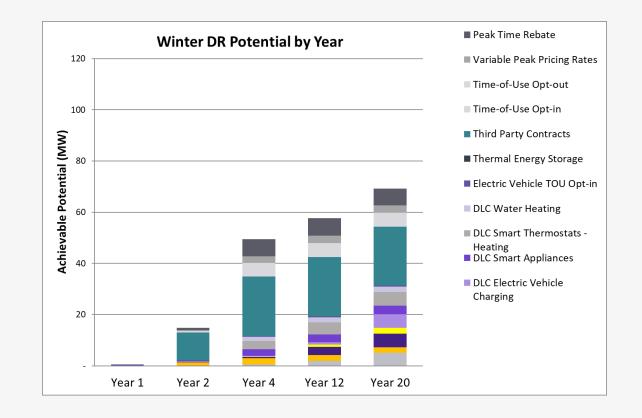
| Winter Potential     | 2023  | 2024  | 2027  | 2032  | 2042  |
|----------------------|-------|-------|-------|-------|-------|
| Baseline Forecast    | 1,363 | 1,366 | 1,381 | 1,408 | 1,471 |
| Achievable Potential | 0.5   | 14.8  | 49.4  | 57.6  | 69.3  |
| % of Baseline        | 0.0%  | 1.1%  | 3.6%  | 4.1%  | 4.7%  |
| Potential Forecast   | 1,362 | 1,351 | 1,331 | 1,351 | 1,401 |

### **Summer DR Potential**




#### Extra Large General Achievable Potential (MW) Service Large General Service General Service Residential




### Winter DR Potential



WA Winter DR Potential by Year



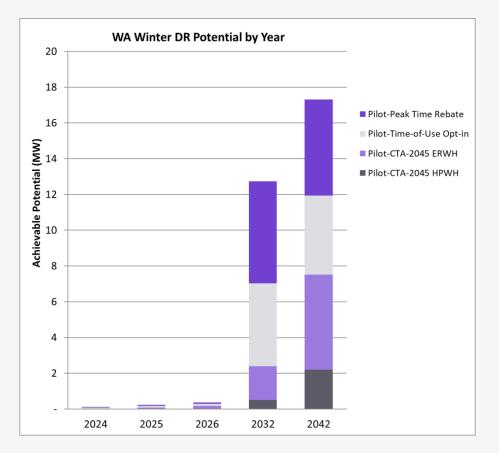






Pilot Program Scenario WA

### **Pilot Programs Summer DR Potential**




| Pilot Summer<br>Potential    | 2024 | 2025 | 2026 | 2032 | 2042  | 18                        | nmer DR Potential | by Year |      | _                                                                   |
|------------------------------|------|------|------|------|-------|---------------------------|-------------------|---------|------|---------------------------------------------------------------------|
| Baseline Forecast<br>(MW)    | 941  | 944  | 948  | 975  | 1,024 | 16                        |                   |         |      | <ul> <li>Pilot-Pea</li> <li>Pilot-Tim</li> <li>Pilot-CTA</li> </ul> |
| Achievable Potential<br>(MW) | 0.1  | 0.2  | 0.4  | 12.9 | 16.2  | Achievable Potential (MW) |                   |         |      | ■ Pilot-CTA                                                         |
| Pilot-CTA-2045<br>HPWH       | 0.0  | 0.0  | 0.0  | 0.2  | 0.8   | 8 8000                    |                   |         | _    | _                                                                   |
| Pilot-CTA-2045<br>ERWH       | 0.0  | 0.1  | 0.1  | 1.7  | 4.9   | Achie 9                   |                   | T       | ÷    | _                                                                   |
| Pilot-Time-of-Use<br>Opt-in  | 0.1  | 0.1  | 0.1  | 4.9  | 4.7   | 2                         |                   |         |      | _                                                                   |
| Pilot-Peak Time<br>Rebate    | 0.0  | 0.1  | 0.1  | 6.1  | 5.7   | 2024                      | 2025 2026         | 2032    | 2042 | _                                                                   |

### **Pilot Programs Winter DR Potential**



| Pilot Winter<br>Potential    | 2024 | 2025 | 2026 | 2032 | 2042 |
|------------------------------|------|------|------|------|------|
| Baseline Forecast<br>(MW)    | 910  | 914  | 917  | 942  | 988  |
| Achievable<br>Potential (MW) | 0.1  | 0.2  | 0.4  | 12.7 | 17.3 |
| Pilot-CTA-2045<br>HPWH       | 0.0  | 0.0  | 0.0  | 0.5  | 2.2  |
| Pilot-CTA-2045<br>ERWH       | 0.0  | 0.1  | 0.2  | 1.9  | 5.3  |
| Pilot-Time-of-Use<br>Opt-in  | 0.1  | 0.1  | 0.1  | 4.6  | 4.4  |
| Pilot-Peak Time<br>Rebate    | 0.0  | 0.1  | 0.1  | 5.7  | 5.4  |



### Demand Response Program Costs

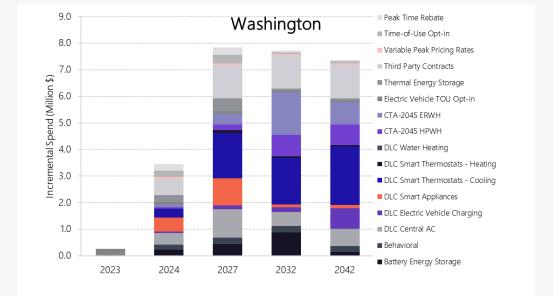


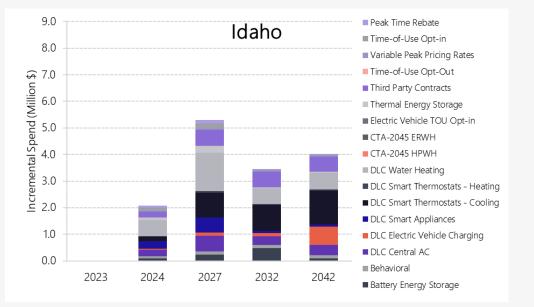
### **Developing Demand Response Resource Costs**



- DR Programs have both upfront and ongoing costs according to the table below
- DR costs are amortized over 10 years to allow programs time to fully ramp up
- ✓ Levelized costs are presented in \$/kW-year

| One-Time Fixed Costs                      | One-Time Variable Costs             | Ongoing Costs                           |
|-------------------------------------------|-------------------------------------|-----------------------------------------|
| Program Development<br>Costs (\$/program) | Equipment Costs<br>(\$/participant) | Administrative Costs<br>(shared costs)  |
|                                           | Marketing Costs<br>(\$/participant) | O&M Costs<br>(\$/participant)           |
|                                           |                                     | Incentives<br>(\$/participant or \$/kW) |


### Example: Residential Grid-Interactive Electric Resistance Water Heaters




| Cost Type      | Unit               | Cost     |
|----------------|--------------------|----------|
| Development    | \$/program         | \$34,000 |
| Administrative | \$/program/yr      | \$40,800 |
| 0&M            | \$/participant/yr  | \$0      |
| Marketing      | \$/new participant | \$60     |
| Equipment      | \$/new participant | \$170    |
| Incentive      | \$/program/yr      | \$24     |

### **Program Costs**







# Thank You.

Eli Morris, Managing Director emorris@appliedenergygroup.com

Kelly Marrin, Managing Director kmarrin@appliedenergygroup.com

Max McBride, Lead Analyst mmcbride@appliedenergygroup.com

Andy Hudson, Project Manager ahudson@appliedenergygroup.com





# **Baseline Projection**

- ✓ "How much energy would customers use in the future if Avista stopped running conservation programs now and in the absence of naturally occurring efficiency?"
  - The baseline projection answers this question
- O The baseline projection is an independent end-use forecast of electric or natural gas consumption at the same level of detail as the market profile

## The baseline projection:

## Includes

- To the extent possible, the same forecast drivers used in the official load forecast, particularly customer growth, natural gas prices, normal weather, income growth, etc.
- Trends in appliance saturations, including distinctions for new construction.
- Efficiency options available for each technology , with share of purchases reflecting codes and standards (current and finalized future standards)
- Expected impact of appliance standards that are "on the books"
- Expected impact of building codes, as reflected in market profiles for new construction
- Market baselines when present in regional planning assumptions

## Excludes

- Expected impact of naturally occurring efficiency (except market baselines)
  - Exception: RTF workbooks have a market baseline for lighting, which AEG's models also use.
- Impacts of current and future demand-side management programs
- Potential future codes and standards not yet enacted



## **Conventional DLC Assumptions**



|                  |                                                                               | Program Option            | Residential | General<br>Service | Large<br>General<br>Service | Extra Large<br>General<br>Service | Source                               |
|------------------|-------------------------------------------------------------------------------|---------------------------|-------------|--------------------|-----------------------------|-----------------------------------|--------------------------------------|
|                  |                                                                               | Central AC                | 0.5 kW      | 1.25 kW            |                             |                                   | NWPCC DLC Switch Cooling             |
| Conventional DLC | Conventional DLC<br>Assumptions Peak Impacts<br>Steady-State<br>Participation | Water Heating             | 0.5 kW      | 1.26 kW            |                             |                                   | Best Estimate based on Industry Exp. |
| Assumptions      |                                                                               | Electric Vehicle Charging | 0.5 kW      |                    |                             |                                   | Avista Background and Research       |
|                  |                                                                               | Central AC                | 10%         | 10%                |                             |                                   | NWPCC DLC Switch Cooling             |
|                  |                                                                               | Water Heating             | 15%         | 5%                 |                             |                                   | Best Estimate based on Industry Exp. |
|                  | pation                                                                        | Electric Vehicle Charging | 25%         |                    |                             |                                   | NWPCC Electric Resistance Grid-Ready |



## Smart/Interactive DLC Assumptions

|                                      |               | Program Option              | Residential  | General<br>Service | Large General<br>Service | Extra Large<br>General<br>Service | Source                                                                                                                  |
|--------------------------------------|---------------|-----------------------------|--------------|--------------------|--------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                      |               | Smart Thermostats - Cooling | 0.5 kW       | 1.25 kW            |                          |                                   | NWPCC Smart Thermostat- Cooling<br>(Adjusted for proposed cycling strategy)                                             |
|                                      |               | Smart Thermostats - Heating | 1.09 kW      | 1.35 kW            |                          |                                   | NWPCC Smart Thermostat- Heating                                                                                         |
|                                      |               | Grid-Interactive WH (ER)    | 0.35-0.37 kW | 0.87 kW            |                          |                                   | BPA 2018 Peak Mitigation (ER)                                                                                           |
|                                      |               | Grid-Interactive WH (HP)    | 0.09-0.22 kW | 0.21 kW            |                          |                                   | BPA 2018 Peak Mitigation (HP)                                                                                           |
|                                      | Peak Impacts  | Smart Appliances            | 0.14 kW      | 0.14 kW            |                          |                                   | Ghatikar, Rish. Demand Response<br>Automation in Appliance and Equipment.<br>Lawrence Berkley National Laboratory, 2015 |
| Smart/Interactive<br>DLC Assumptions |               | Third Party Curtailment     |              | 10%                | 21%                      | 21%                               | 2019 Statewide Load Impact Evaluation of<br>California Aggregator Demand Response<br>Programs                           |
|                                      |               | Smart Thermostats - Cooling | 20%          | 20%                |                          |                                   | NWPCC Smart Thermostat Cooling                                                                                          |
|                                      |               | Smart Thermostats - Heating | 5%           | 3%                 |                          |                                   | Piggybacks off of cooling- Adjusted down to reflect realistic participation for space heating in Avista's territory     |
|                                      | Steady-State  | Grid-Interactive WH (ER)    | 50%          | 50%                |                          |                                   | Reflects Rollout → Ten-Year Ramp Rate                                                                                   |
|                                      | Participation | Grid-Interactive WH (HP)    | 50%          | 50%                |                          |                                   | Reflects Rollout → Ten-Year Ramp Rate                                                                                   |
|                                      |               | Smart Appliances            | 5%           | 5%                 |                          |                                   | 2015 ISACA IT Risk Reward Barometer - US<br>Consumer Results. October 2015                                              |
|                                      |               | Third Party Contracts       |              | 15%                | 21%                      | 22%                               | Best Estimate based on Industry Exp.                                                                                    |

# Time-Varying Rates/Behavioral Assumptions



|                                  |                               | Program Option                   | Residential | General<br>Service | Large<br>General<br>Service | Extra Large<br>General<br>Service | Source                                                                    |
|----------------------------------|-------------------------------|----------------------------------|-------------|--------------------|-----------------------------|-----------------------------------|---------------------------------------------------------------------------|
|                                  |                               | Behavioral                       | 2%          |                    |                             |                                   | Opower documentation for Behavioral DR with Consumers and DTE             |
|                                  |                               | Time-of-Use Opt-In               | 2.9%-5.7%   | 0.1%-0.2%          | 1.3%-2.6%                   | 1.6%-3.1%                         | Brattle Analysis and Estimate - PacifiCorp<br>2019 opt-in scenario        |
|                                  | Peak Impacts                  | Time-of-Use Opt-Out              | 1.7%-3.4%   | 0.1%-0.2%          | 1.3%-2.6%                   | 1.6%-3.1%                         | Brattle Analysis and Estimate - PacifiCorp<br>2019 opt-out scenario       |
| Time-Varying<br>Rates/Behavioral |                               | Time-of-Use Electric<br>Vehicles |             | 0.1%-0.2%          | 1.3%-2.6%                   |                                   | Brattle Analysis and Estimate - PacifiCorp 2019 opt-in scenario           |
| Assumptions                      |                               | Variable Peak Pricing            | 8%-10%      | 3%-4%              | 3%-4%                       | 3%-4%                             | OG&E 2020 Smart Hours Study                                               |
|                                  | Steady-State<br>Participation | Behavioral                       | 20%         |                    |                             |                                   | PG&E rollout with six waves                                               |
|                                  |                               | Time-of-Use Opt-In               | 13%         | 13%                | 13%                         | 13%                               | Best estimate based on industry experience; Brattle Analysis and Estimate |
|                                  |                               | Time-of-Use Opt-Out              | 74%         | 74%                | 74%                         | 74%                               | Best estimate based on industry experience; Brattle Analysis and Estimate |
|                                  |                               | Time-of-Use Electric<br>Vehicles |             | 13%                | 13%                         |                                   | Best estimate based on industry experience; Brattle Analysis and Estimate |
|                                  |                               | Variable Peak Pricing            | 25%         | 25%                | 25%                         | 25%                               | OG&E 2020 Smart Hours Study                                               |

## **Energy Storage Assumptions**



|                |                               | Program Option | Residential | General<br>Service | Large<br>General<br>Service | Extra Large<br>General<br>Service | Source                               |
|----------------|-------------------------------|----------------|-------------|--------------------|-----------------------------|-----------------------------------|--------------------------------------|
| Energy Storage | Dook Imposto                  | Battery        | 2 kW        | 2 kW               | 15 kW                       | 15 kW                             | Typical Battery Size Per Segment     |
| Assumptions    | Peak Impacts                  | Thermal        | 0.5 kW      | 1.26 kW            |                             |                                   | 2016 Ice Bear Tech Specifications    |
|                | Steady-State<br>Participation | Battery        | 0.5%        | 0.5%               | 0.5%                        | 0.5%                              | Best Estimate Based on Industry Exp. |
|                |                               | Thermal        |             | 0.5%               | 1.5%                        | 1.5%                              | Best Estimate Based on Industry Exp. |





## Avista IRP Clean Energy Research

April 2022

### **Research Overview**

#### **Objectives**

Determine willingness to pay for the implementation of clean energy among Avista customers



Establish baseline of environmental concerns; perceived responsibility of individuals, businesses, and Avista specifically



Understand customer tradeoffs between bill increases and carbon emission goals



Explore perceptions associated with Avista should they invest in carbon-neutral or carbon-free emissions



Gauge perceptions specific to natural gas preferences and tradeoffs



Quantify differences by state, customer type, green perceptions, and demographic factors

#### Methodology



#### Web survey with Avista customers.

- Customers from Washington, Idaho, and Oregon sourced randomly by email
- Survey optimized for both desktop and mobile
- Conducted in April 2022
- Final sample size of n=1,100



#### Proportional representation of state and service type.

| WA  | ID  | OR  | G   | GE  | E   |
|-----|-----|-----|-----|-----|-----|
| 52% | 29% | 20% | 25% | 47% | 29% |

#### Respondents screened to ensure appropriate target

- Avista customer age 18+
- Has or shares household finance and utility bill responsibility
- Not employed by a utility company, or in media, advertising, or market research firm

#### **Report Interpretation**



- All significant differences are reported at the 95% confidence level or higher. The total sample size of n=1,100 has a maximum sampling variability of +/-3.0% at the 95% level.
- Some percentages may not add to 100% due to rounding

### Analysis Approach

This study incorporates a conjoint exercise to force tradeoffs between various green initiatives and customer willingness to pay.

Respondents review various combinations of **energy goals**, **timeframes for that goal**, **energy sources**, and **potential bill increases**, and select their "most preferred" from a series of options (including an option for "none" each time).

Subsequent analysis produces utility scores for each individual attribute, allowing us to calculate which combination has the broadest appeal.

|           | Energy Goal    | Investing in renewables to achieve carbon neutrality<br>Providing 100% carbon-free power by only generating energy through clean energy sources |
|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>17</b> | Goal Timeframe | In the next year<br>In the next 5 years (by 2027)<br>In the next 10 years (by 2032)<br>In the next 25 years (by 2047)                           |
|           | Bill Increase  | 2% monthly increase<br>5% monthly increase<br>10% monthly increase<br>20% monthly increase<br>50% monthly increase<br>100% monthly increase     |
|           | Energy Source  | Sourced locally<br>Sourced regionally<br>Sourced from anywhere                                                                                  |



### Key Takeaways

## Price is Important.



When faced with tradeoffs, price is the prevailing factor. While the majority of customers find importance in sourcing green or local energy, they are only willing to pay so much. Anything beyond a 10% monthly bill increase shows significant declines in popularity.

If bill increases to invest in carbon-free or carbon-neutral options are kept below 10%, the specific energy goal, timeframe, local vs. regional source are less important.

## Some customers see beyond price

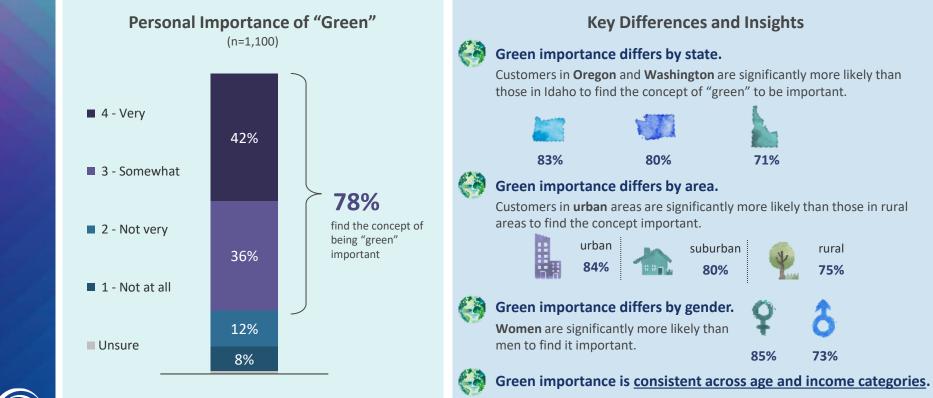


Increases beyond 10% monthly still appeal to a certain subset of customers, particularly those who place great importance on "green," and/or when the goal can be achieved within the next 10 years.

## Any increase to invest in "green" energy will alienate some customers

Overall, roughly one in five do not find importance in being "green"

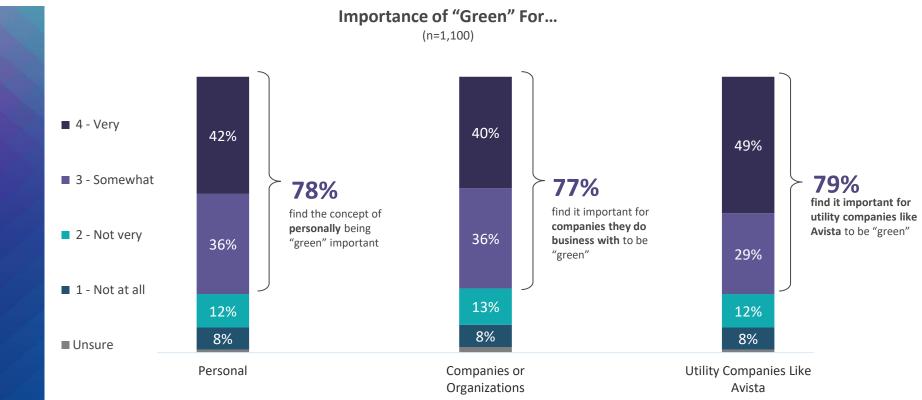
When evaluating various green investment options, 17% reject all, including more ambitious outcomes for just a 2% increase


Three in ten say they would be likely to seek bill assistance or consider moving to another state if bill were to increase due to Avista investing in carbon-free or carbon-neutral energy



Detailed Findings: Green Insights




## At a personal level, the concept of being environmentally friendly or "green" is important to nearly eight in ten customers





Q1. How important is the concept of being environmentally friendly or "green" to you personally?

Customers place similar importance on the "green" responsibility of themselves, businesses, and utility companies





Q1. How important is the concept of being environmentally friendly or "green" to you personally?

Q3. How important is it for general companies or organizations you do business with to be environmentally friendly or "green?"

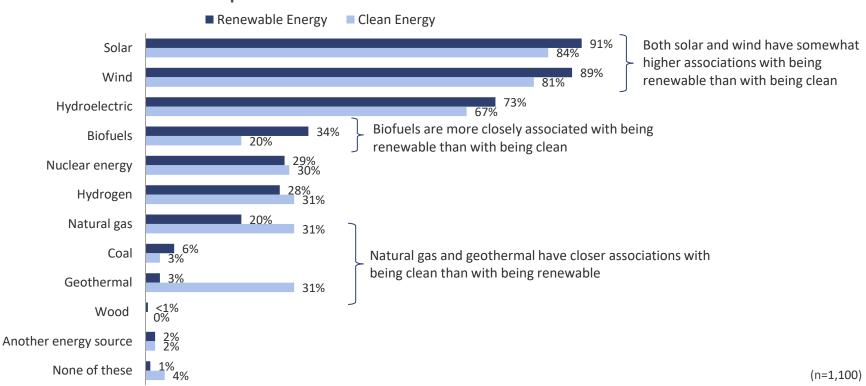
Q4. How important is it specifically for utility companies like Avista to be environmentally friendly or "green?"

Personal importance to be "green" is driven by responsibility to protect the planet; for those believing it is not important to personally be green, cost is the main reason

| Why is it Important?<br>(n=860)<br>To protect our planet/environment (38%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>"If we take care of our planet, it will in turn last for generations to come. If we take care of it, it will always take care of us."</i>                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Good for the future/future generations (24%)</li> <li>Responsibility/right thing to do/stewardship (16%)</li> <li>To address climate change/global warming (13%)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "Every person has to take responsibility for the environment.<br>We are stewards of the Earth after all. That responsibility<br>cannot, and should, not be abrogated. If we don't stand up and<br>insist on choices that protect that for which we are responsible<br>then no one will and we necessarily choose a very dark<br>alternative for an uncertain and unjust future." |
| Why is it NOT Important?(n=224)Cost/it's expensive (29%)Image: Solution of the second se | "In the 60+ years I've been around, the air land and waters<br>have markedly improved. As the current crop of 'renewables'<br>are unreliable and expensive, good ol' fossil fuels are the best<br>bang for bucks."                                                                                                                                                               |



"Green" is worse for the environment, not better (20%)

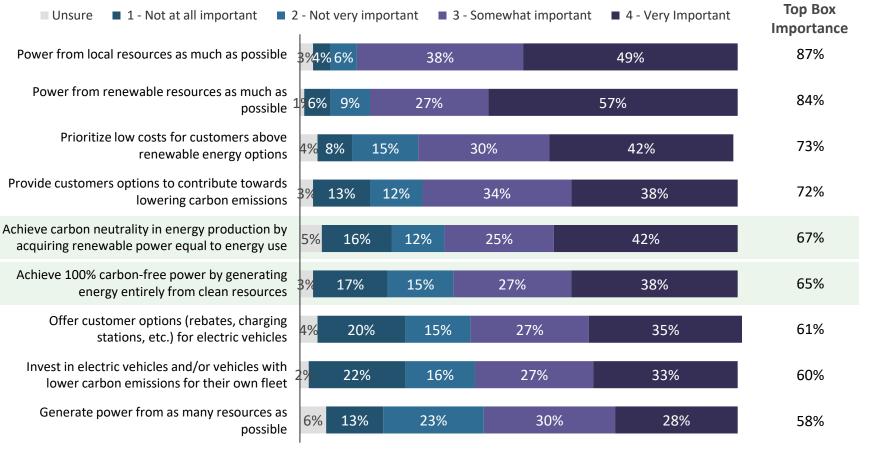



Politics/Political Agenda (17%)

*"Because the terms 'environmentally friendly' and 'green' have been distorted to the point where they have little relevance to actually protecting the environment."* 

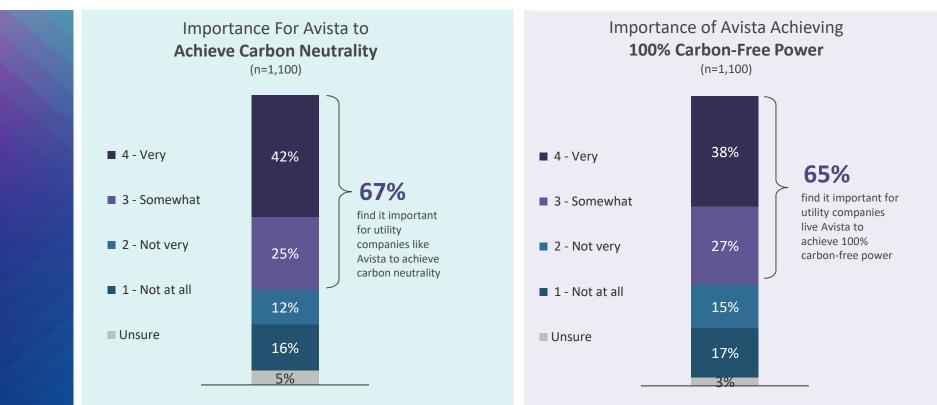
Q2A. Why is it [very/somewhat important] to personally be environmentally friendly or "green?" Q2B. Why is it [not very/not at all important] to personally be environmentally friendly or "green?"

### Solar and wind are commonly associated with both renewable and clean energy









Q6. When you hear the words "renewable energy," what sources come to mind? Q7. When you hear the words "clean energy," what sources come to mind?

# When considering potential utility company initiatives, customers place highest importance on generating power from local and renewable resources



Q5. How important is it for utility companies like Avista to do each of the following?

## Customers place near equal importance on Avista achieving carbon neutrality and on achieving 100% carbon-free power





Q5. How important is it for utility companies like Avista to do each of the following? Achieve carbon neutrality in energy production by acquiring renewable power equal to energy use. Achieve 100% carbon-free power by generating energy entirely from clean resources.

### The importance of Avista achieving these goals differs by certain key audiences



### Key Differences and Insights: Carbon Neutrality

#### Carbon neutrality importance differs by state.

Customers in **Oregon** are significantly more likely than those in Idaho to say it is important for to achieve carbon neutrality.





#### Carbon neutrality importance differs by area.

Customers in **urban** areas are significantly more likely than those in rural areas to find the achievement important.





#### Carbon neutrality importance differs by gender.

Women are significantly more likely than 75% are men to find it important.



#### Importance of carbon neutrality differs by income.

Those making **\$150K+ in household income** are significantly more likely than those making less than \$60K to say it is important.

<\$60K \$150K+ 62% 72%

#### Key Differences and Insights: 100% Carbon-Free



#### Carbon-free power importance differs by state.

Customers in **Oregon** are significantly more likely than those in Idaho to find an achievement of 100% carbon-free to be important.





#### Carbon-free power importance differs by area.

Customers in **urban** and **suburban** areas are significantly more likely than those in rural areas to find the achievement important.





#### Importance of 100% carbon-free power differs by gender.

**Women** are significantly more likely than men to find it important.

73% 💍 59

#### Importance is <u>consistent across age and income</u> <u>categories</u>.



Q5H. How important is it for utility companies like Avista to do each of the following? Achieve carbon neutrality in energy production by acquiring renewable power equal to energy use. | Achieve 100% carbon-free power by generating energy entirely from clean resources.

## Detailed Findings: Green Investment



## Conjoint Results Summary: Overall Feature Scoring

| Category       | Attribute                                                                               | Result | Meaning                                                                                                              |
|----------------|-----------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------|
|                | Investing in renewables to achieve carbon neutrality                                    | 0.55   | If all other factors are held consistent, providing                                                                  |
| Energy Goal    | Providing 100% carbon-free power by only generating energy through clean energy sources | 0.59   | 100% carbon-free energy vs. investing in carbon neutrality has almost no impact                                      |
| 48.5.2         | In the next year                                                                        | 0.60   | There is a drop-off in utility at the 25-year level;                                                                 |
| Goal Timeframe | In the next 5 years (by 2027)                                                           | 0.59   | however, there is little differentiation between in                                                                  |
|                | In the next 10 years (by 2032)                                                          | 0.59   | the next year, five years, or ten years when all other                                                               |
|                | In the next 25 years (by 2047)                                                          | 0.52   | factors are held consistent                                                                                          |
|                | 2% monthly increase                                                                     | 0.83   | If all other factors are held consistent, the monthly                                                                |
|                | 5% monthly increase                                                                     | 0.78   | bill increase has the biggest impact; utility drops off                                                              |
| Bill Increase  | 10% monthly increase                                                                    | 0.69   | considerably with more than a 10% increase                                                                           |
| Din increase   | 20% monthly increase                                                                    | 0.53   | It should be noted, however, that those placing high                                                                 |
|                | 50% monthly increase                                                                    | 0.36   | importance on being green demonstrate a                                                                              |
|                | 100% monthly increase                                                                   | 0.25   | willingness to pay beyond the 10% mark                                                                               |
|                | Sourced locally                                                                         | 0.59   | Though 87% find sourcing power locally to be                                                                         |
| Energy Source  | Sourced regionally                                                                      | 0.58   | important, ultimately there is little differentiation between <i>local, regional,</i> and <i>anywhere,</i> when      |
|                | Sourced from anywhere                                                                   | 0.55   | considering other factors along with locality                                                                        |
| None           |                                                                                         | 0.39   | Overall, 17% of respondents said no to all options presented, indicating no willingness to pay for green investments |

(n=1,100)



C2. Now, we will present you with a series of 12 screens, each with a set of options for an energy package that could be made available in the future for your home. For each set, please indicate the one you would be most likely to choose. You can always select "none" if you would not select any of the options.

### Conjoint Results Summary: Feature Scores by Personal Green Importance

| Category Attribute |                                                                                         | Feature Score by Green Importance |                            |                       |  |
|--------------------|-----------------------------------------------------------------------------------------|-----------------------------------|----------------------------|-----------------------|--|
|                    |                                                                                         | <b>Very</b><br>(n=445)            | <b>Somewhat</b><br>(n=399) | <b>Not</b><br>(n=331) |  |
|                    | Investing in renewables to achieve carbon neutrality                                    | 0.67                              | 0.53                       | 0.38                  |  |
| Energy Goal        | Providing 100% carbon-free power by only generating energy through clean energy sources | 0.76                              | 0.54                       | 0.35                  |  |
|                    | In the next year                                                                        | 0.79                              | 0.54                       | 0.33                  |  |
| Goal Timefran      | In the next 5 years (by 2027)                                                           | 0.76                              | 0.54                       | 0.35                  |  |
| Goal Timetran      | In the next 10 years (by 2032)                                                          | 0.72                              | 0.55                       | 0.38                  |  |
|                    | In the next 25 years (by 2047)                                                          | 0.59                              | 0.52                       | 0.39                  |  |
|                    | 2% monthly increase                                                                     | 0.87                              | 0.86                       | 0.71                  |  |
|                    | 5% monthly increase                                                                     | 0.88                              | 0.78                       | 0.60                  |  |
| Bill Increase      | 10% monthly increase                                                                    | 0.85                              | 0.65                       | 0.45                  |  |
| Bill Increase      | 20% monthly increase                                                                    | 0.74                              | 0.46                       | 0.24                  |  |
|                    | 50% monthly increase                                                                    | 0.53                              | 0.30                       | 0.13                  |  |
|                    | 100% monthly increase                                                                   | 0.42                              | 0.17                       | 0.04                  |  |
|                    | Sourced locally                                                                         | 0.72                              | 0.55                       | 0.39                  |  |
| Energy Source      | Sourced regionally                                                                      | 0.73                              | 0.55                       | 0.37                  |  |
|                    | Sourced from anywhere                                                                   | 0.69                              | 0.51                       | 0.34                  |  |
| None None          |                                                                                         | 0.14                              | 0.43                       | 0.80                  |  |



C2. Now, we will present you with a series of 12 screens, each with a set of options for an energy package that could be made available in the future for your home. For each set, please indicate the one you would be most likely to choose. You can always select "none" if you would not select any of the options.

## Conjoint Results Summary: Feature Scores by Service Type

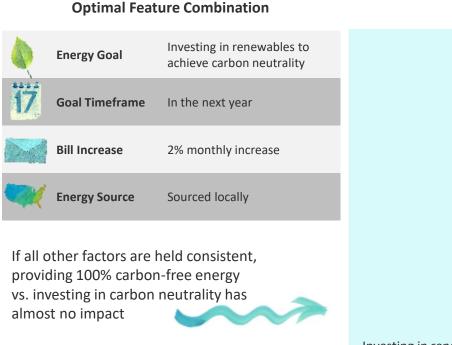
| Category       | Attribute                                                                               | Feature Score by Service Type |                        |                          |
|----------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------|--------------------------|
|                |                                                                                         | <b>Gas Only</b><br>(n=271)    | <b>Dual</b><br>(n=513) | Electric Only<br>(n=316) |
|                | Investing in renewables to achieve carbon neutrality                                    | 0.57                          | 0.56                   | 0.54                     |
| Energy Goal    | Providing 100% carbon-free power by only generating energy through clean energy sources | 0.61                          | 0.60                   | 0.58                     |
|                | In the next year                                                                        | 0.63                          | 0.60                   | 0.58                     |
| Goal Timeframe | In the next 5 years (by 2027)                                                           | 0.62                          | 0.59                   | 0.57                     |
|                | In the next 10 years (by 2032)                                                          | 0.61                          | 0.59                   | 0.57                     |
|                | In the next 25 years (by 2047)                                                          | 0.52                          | 0.52                   | 0.51                     |
|                | 2% monthly increase                                                                     | 0.83                          | 0.84                   | 0.82                     |
|                | 5% monthly increase                                                                     | 0.79                          | 0.79                   | 0.76                     |
| Bill Increase  | 10% monthly increase                                                                    | 0.71                          | 0.70                   | 0.66                     |
| Dill increase  | 20% monthly increase                                                                    | 0.56                          | 0.53                   | 0.50                     |
|                | 50% monthly increase                                                                    | 0.39                          | 0.35                   | 0.35                     |
|                | 100% monthly increase                                                                   | 0.28                          | 0.24                   | 0.24                     |
|                | Sourced locally                                                                         | 0.61                          | 0.59                   | 0.57                     |
| Energy Source  | Sourced regionally                                                                      | 0.60                          | 0.59                   | 0.56                     |
|                | Sourced from anywhere                                                                   | 0.57                          | 0.55                   | 0.53                     |
| None None      |                                                                                         | 0.36                          | 0.38                   | 0.42                     |



C2. Now, we will present you with a series of 12 screens, each with a set of options for an energy package that could be made available in the future for your home. For each set, please indicate the one you would be most likely to choose. You can always select "none" if you would not select any of the options.

## **Conjoint Results Summary: Optimal Feature Combination**

Unsurprisingly, the optimal utility results from customers achieving the most for the lowest cost. While this is not a realistic scenario, it provides a baseline for any changes made to move toward carbon-free or carbon-neutral energy in the future. Subsequent slides show change from optimal should other factors be considered.

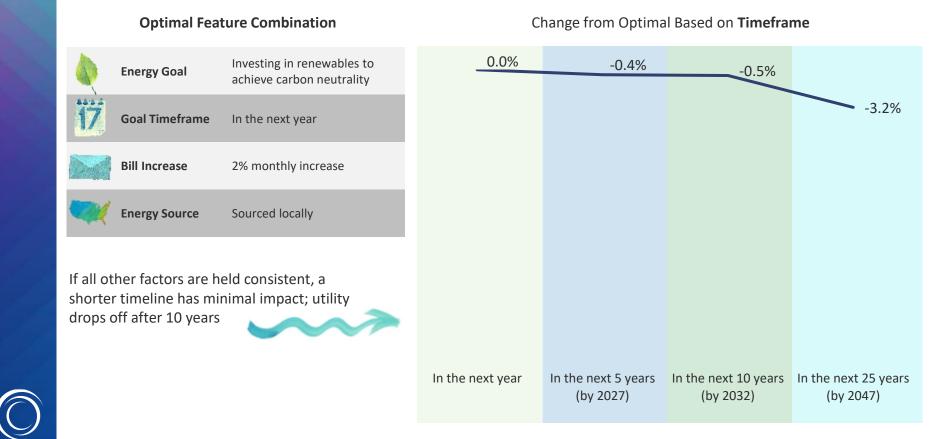

| Category       | Attribute                                            |
|----------------|------------------------------------------------------|
| Energy Goal    | Investing in renewables to achieve carbon neutrality |
| Goal Timeframe | In the next year                                     |
| Bill Increase  | 2% monthly increase                                  |
| Energy Source  | Sourced locally                                      |



C2. Now, we will present you with a series of 12 screens, each with a set of options for an energy package that could be made available in the future for your home. For each set, please indicate the one you would be most likely to choose. You can always select "none" if you would not select any of the options.

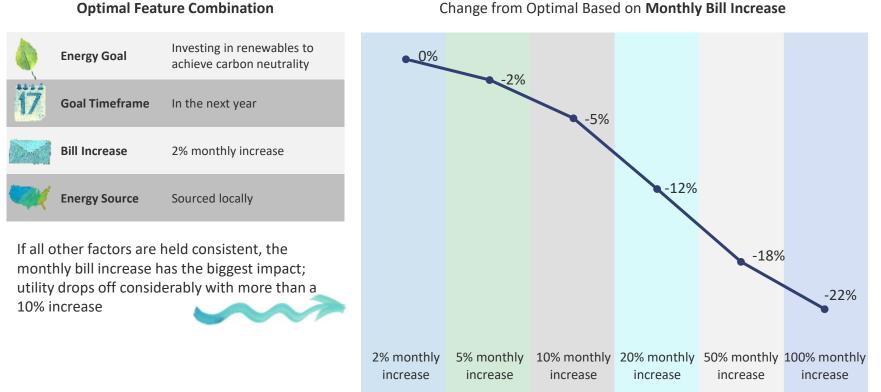
(n=1,100)

## Conjoint Summary: Difference from Optimal Combination (Based on Goal)




Change from Optimal Based on Goal

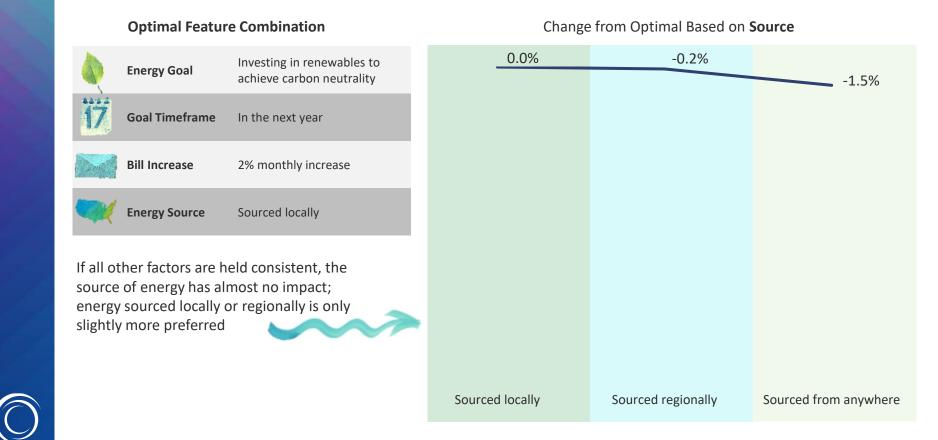
| 0.0%                                      | -0.2%                                    |
|-------------------------------------------|------------------------------------------|
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
| Investing in renewables to achieve carbon | Providing 100% carbon-free power by only |
| neutrality                                | generating energy through clean energy   |
|                                           | sources                                  |
|                                           |                                          |




## Conjoint Summary: Difference from Optimal Combination (Based on Timeframe)



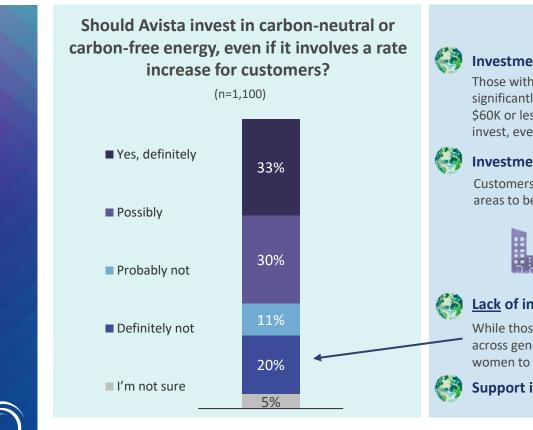
#### 19


### Conjoint Summary: Difference from Optimal Combination (Based on Bill Increase)



#### **Optimal Feature Combination**

20


### Conjoint Summary: Difference from Optimal Combination (Based on Source)



## Detailed Findings: Investment Support



## Three in five customers say Avista should invest in carbon-neutral energy even if it involves a rate increase for customers



#### Key Differences and Insights

#### Investment sentiment differs by income.

| Those with higher household incomes are         | <\$60K | \$60K+ |
|-------------------------------------------------|--------|--------|
| significantly more likely than those making     | <\$00K | 200K+  |
| \$60K or less to agree Avista definitely should | 28%    | 42%    |
| invest, even if it involves a rate increase.    |        |        |

15%

23%

#### Investment sentiment differs by area.

Customers in **urban** areas are significantly more likely than those in rural areas to believe Avista should definitely invest.



#### Lack of investment support differs by gender.

While those **supporting** investment is consistent across gender, **men** are significantly more likely than women to **definitely not** support investment.

Support is <u>consistent across age and state</u>.



C3. Should Avista invest in carbon-neutral or carbon-free energy, even if it involves a rate increase for customers?

Supporters say the main reason Avista should invest in carbon-neutral energy is to "save the planet," while the main reason to not invest among detractors is "consumer cost"

### What is the main reason to invest?

(n=697)



To save the planet (21%)



For a cleaner environment (19%)



For cleaner air (16%)



To fight climate change (16%)



Depends on cost effectiveness (16%)



It's the right thing to do (16%)

"Finite resources are finite. It doesn't matter that you save money today but have fewer or no energy sources later."

#### What is the main reason to NOT invest? (n=345)



Consumer costs/expensive (57%)

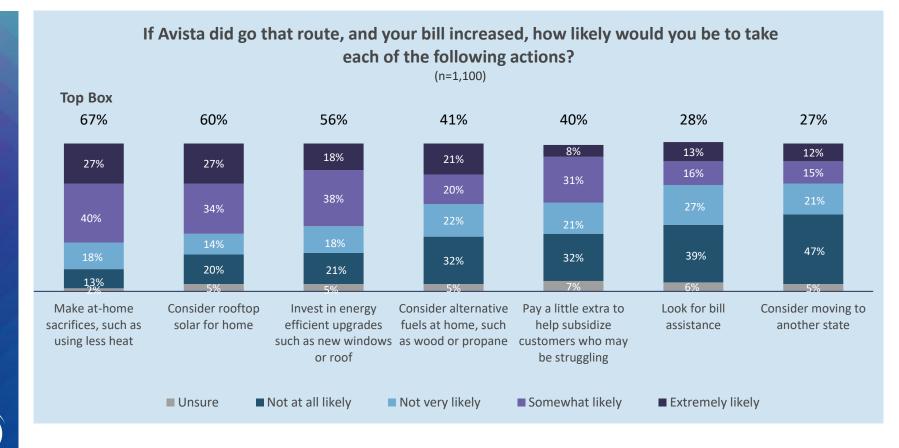


On't believe in it/hoax/impossible (17%)



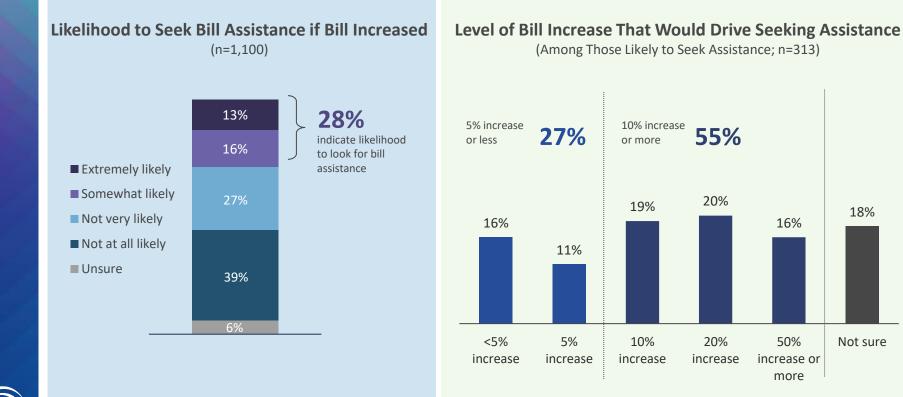
Unnecessary/will not change anything (16%)




Politics/political agenda (10%)

"Carbon neutral and carbon free energy are ridiculous ideas that only increase the cost of energy for everyone."



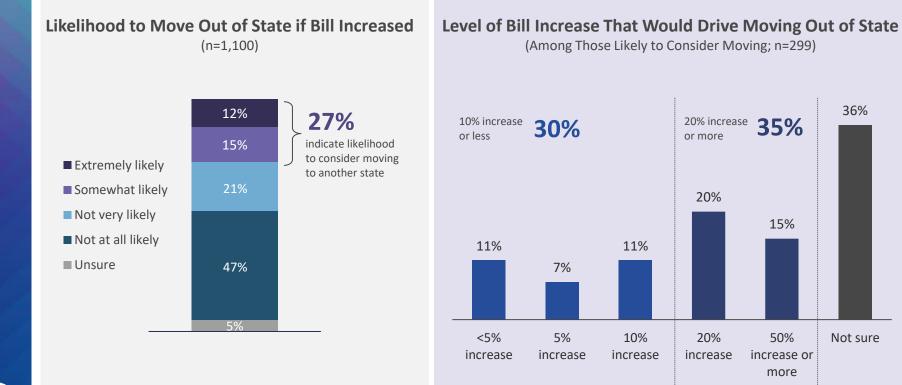

C3A. In your opinion, what is the main reason Avista should invest in carbon-neutral or carbon-free energy, even if it involves a rate increase for customers? C3B. In your opinion, what is the main reason or reasons Avista should not invest in carbon-neutral or carbon-free energy?

Nearly seven in ten customers would be likely to "make at home-sacrifices" if their bill increased due to Avista's investment in carbon-neutral energy



C4. If Avista did go that route, and your bill increased, how likely would you be to take each of the following actions?

Just over a quarter indicate they'd seek bill assistance should rates rise due to Avista pursuing carbon-neutral or carbon-free options; for over half, this would take a 10% increase or more

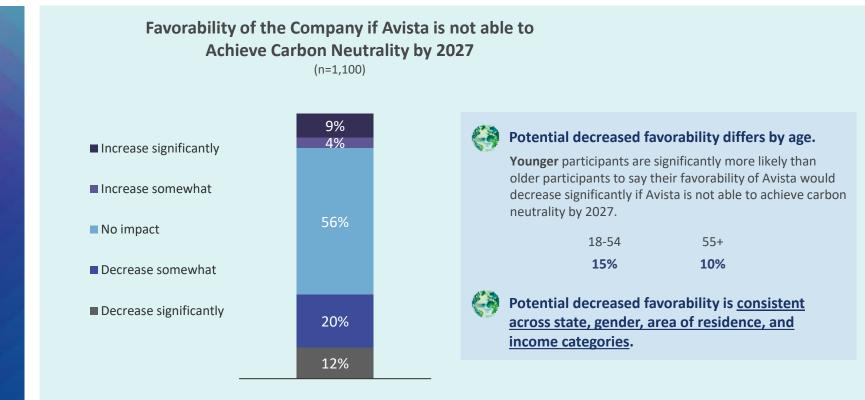



 $\bigcirc$ 

C4. If Avista did go that route, and your bill increased, how likely would you be to take each of the following actions? *Look for bill assistance* C5. What level of bill increase would you envision driving you to seek bill assistance?

26

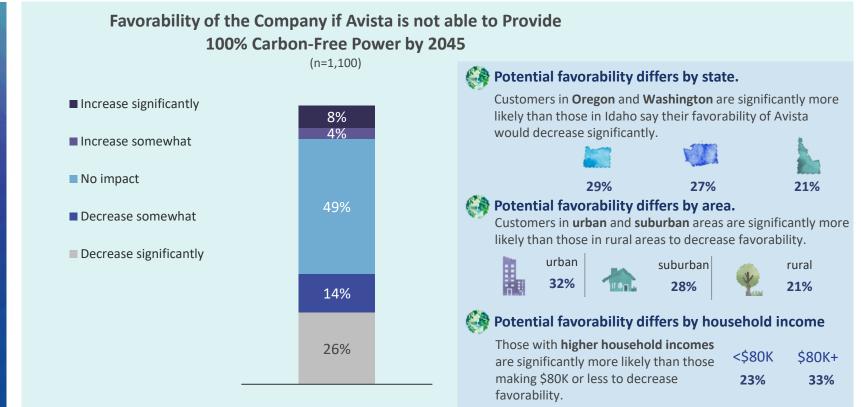
Roughly a third indicate they'd consider moving to another state should rates rise; however, there is uncertainty around what threshold of increase would drive this decision






C4. If Avista did go that route, and your bill increased, how likely would you be to take each of the following actions? *Consider moving to another state* C6. What level of bill increase would you envision driving you to consider moving to another state?

27


## Over half of customers say their favorability would not be impacted if Avista does not achieve carbon neutrality by 2027

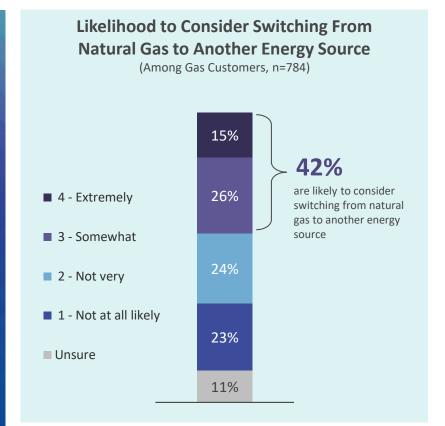




C7. If Avista is not able to achieve carbon neutrality by 2027, how would this affect your favorability of the company?

## Nearly half say their favorability would not change if Avista does not achieve carbon free by 2045

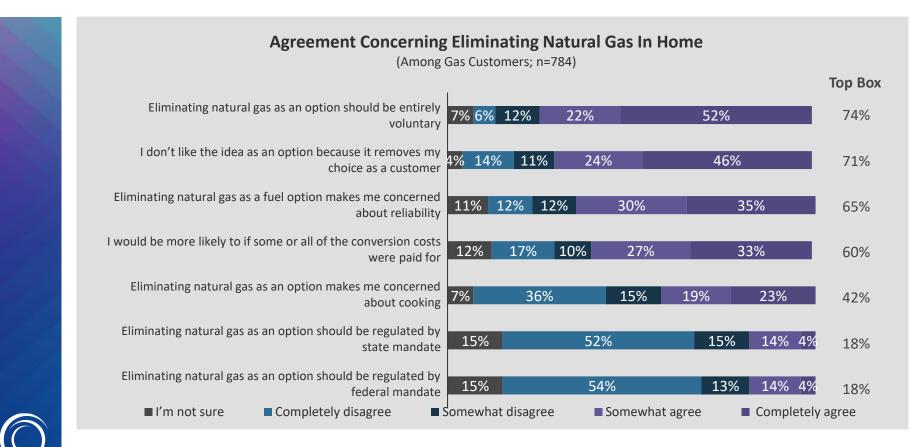





C8. If Avista is not able to provide 100% carbon-free power by 2045, how would this affect your favorability of the company?

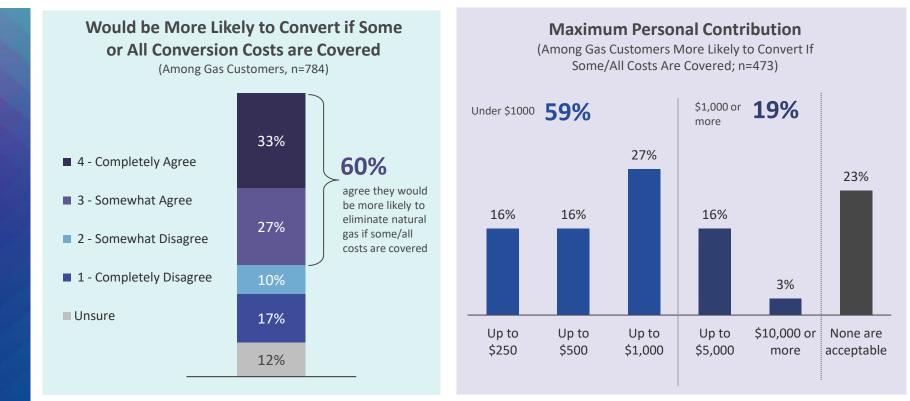
## Detailed Findings: Natural Gas Insights




## Nearly half of customers would **not** consider switching from natural gas to help reduce carbon emissions






N1. How likely would you be to consider switching from natural gas to another energy source to help reduce carbon emissions?

#### Three-quarters gas customers agree eliminating natural gas should be entirely voluntary



N2. How much do you agree or disagree with the following statements concerning natural gas in your home?

Six in ten would be more likely to convert from natural gas if some or all conversion costs were covered; of these, 59% would be willing to pay under \$1000





N2. How much do you agree or disagree with the following statements concerning natural gas in your home? I would be more likely to eliminate natural gas as an option in my home if some or all of the conversion costs were paid for by the electric utility and/or government incentives

N3. If you did have to contribute some costs towards converting from natural gas in your home, how much would you consider your max level of contribution?

33

#### **Customer Demographics**



#### Demographics

| Education                    | <b>Total</b><br>(n=1,100) | WA<br>(n=569) | ID<br>(n=316) | OR<br>(n=215) |
|------------------------------|---------------------------|---------------|---------------|---------------|
| High school or less          | 7%                        | 5%            | 10%           | 7%            |
| Trade or Technical School    | 6%                        | 6%            | 9%            | 4%            |
| Some college                 | 20%                       | 20%           | 20%           | 21%           |
| Graduated college            | 36%                       | 37%           | 35%           | 33%           |
| Graduate/professional school | 26%                       | 28%           | 22%           | 30%           |
|                              | Age                       |               |               |               |
| 18-24                        | 1%                        | <1%           | 2%            |               |
| 25-34                        | 5%                        | 4%            | 9%            | 4%            |
| 35-44                        | 13%                       | 15%           | 14%           | 9%            |
| 45-54                        | 14%                       | 14%           | 14%           | 12%           |
| 55-64                        | 23%                       | 21%           | 26%           | 22%           |
| 65-74                        | 25%                       | 24%           | 24%           | 31%           |
| 75+                          | 12%                       | 16%           | 4%            | 16%           |
| Refused                      | 6%                        | 5%            | 7%            | 7%            |

| Home Type                          | Total<br>(n=1,100) | WA<br>(n=569) | ID<br>(n=316) | OR<br>(n=215) |  |
|------------------------------------|--------------------|---------------|---------------|---------------|--|
| Single family dwelling             | 83%                | 92%           | 64%           | 87%           |  |
| A duplex or triplex                | 4%                 | 2%            | 7%            | 3%            |  |
| In a building with 4 or more units | 6%                 | 2%            | 16%           | 2%            |  |
| Income                             |                    |               |               |               |  |
| Median                             | ~\$70K             | ~\$78K        | ~\$62K        | ~\$66K        |  |
| Но                                 | usehold            |               |               |               |  |
| Mean # of people                   | 2.4                | 2.5           | 2.2           | 2.2           |  |
| G                                  | Gender             |               |               |               |  |
| Women                              | 46%                | 44%           | 47%           | 53%           |  |
| Men                                | 46%                | 49%           | 45%           | 40%           |  |
| Non-binary or Other                | <1%                | 1%            | 1%            |               |  |
| Prefer not to say                  | 7%                 | 7%            | 7%            | 8%            |  |





AVISTA

| <b>Topic</b><br>Introductions                                 | <b>Time</b><br>12:30 | <b>Staff</b><br>John Lyons |
|---------------------------------------------------------------|----------------------|----------------------------|
| IRP Generation Option Transmission Planning Studies           | 12:40                | Dean Spratt                |
| Distribution System Planning within the IRP                   | 1:45                 | Damon Fisher               |
| Break                                                         |                      |                            |
| Social Cost of Greenhouse Gas for Energy Efficiency (WA only) | 3:00                 | James Gall                 |
| Avoided Cost Rate Methodology                                 | 3:15                 | Clint Kalich               |
| Adjourn                                                       | 4:00                 |                            |



# **2023 IRP Introduction**

#### 2023 Avista Electric IRP

TAC 5 – September 7, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

# **Meeting Guidelines**

- IRP team is working remotely and is available for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- IRP data posted to web site updated descriptions and navigation are in development
- Virtual IRP meetings on Microsoft Teams until able to hold large meetings again
- TAC presentations and meeting notes posted on IRP page
- This meeting is being recorded and an automated transcript made



# **Virtual TAC Meeting Reminders**

- Please mute mics unless commenting or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting
- Public advisory meeting comments will be documented and recorded



### **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



# **Technical Advisory Committee**

- Public process of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Please ask questions
  - Always soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for new studies or different modeling assumptions.
- Available by email or phone for questions or comments between meetings
- Due date for study requests from TAC members October 1, 2022
- External IRP draft released to TAC March 17, 2023, public comments due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023

# **Remaining 2023 IRP TAC Meeting Schedule**

- TAC 5: September 7, 2022
- TAC 6: September 28, 2022, 12:30 4:00 pm
- Public Participation Partners opportunity to comment on Avista's advisory groups
  - September 12, 2022, 11:00 am to 12:00 pm or September 13, 2022, 9:00 am to 10:00 am
- TAC 7: October 11, 2022, 9 am 3:30 pm
- Technical Modeling Workshop: October 20, 2022
- Washington Progress Report Workshop: December 14, 2022
- TAC 8: February 16, 2023
- Public Meeting Gas & Electric IRPs: March 8, 2023
- TAC 9: March 22, 2023



# **Today's Agenda**

- 12:30 Introductions, John Lyons
- 12:40 IRP Generation Option Transmission Planning Studies, Dean Spratt
- 1:45 Distribution System Planning within the IRP, Damon Fisher

#### Break

- 3:00 Social Cost of Greenhouse Gas for Energy Efficiency (WA Only), James Gall
- 3:15 Avoided Cost Rate Methodology, Clint Kalich

4:00 Adjourn





### Integrated Resource Plan (IRP) Transmission Planning Studies

Dean Spratt, Transmission Planning Technical Advisory Committee Meeting September 07, 2022

# **FERC Standards of Conduct**

Summary of requirements

- Non-public transmission information can not be shared with Avista Merchant Function employees.
- There are Avista Merchant Function employees attending today.
- We will not be sharing any non-public transmission information. Avista's OASIS is where this information is made public.



# Agenda

- Introduction to Avista System Planning
  - Useful information about Transmission Planning
  - Overview of recent Avista projects
- Generation Interconnection Study Process
  - Integrated Resource Plan (IRP) Requests
  - Large Generation Interconnection Queue
  - Transition to Cluster Study Process



# **Introduction to Avista System Planning**

Avista's System Planning Group includes:

- Distribution Planning
- Transmission Planning
  - Focus on reliable electric service
    - Federal, regional, and state compliance
    - Regional system coordination
  - Provide transmission service and system analysis
    - Planned load growth and changing generation mix/dispatch
    - Interconnection of any type of generation or load
      - We are ambivalent about type (must perform though)



# **Information About Transmission Planning**

- Our focus is the Bulk Electric System (BES)
   Avista's 115 kV and 230 kV facilities (>100 kV)
- We identify issues where Avista's BES won't reliably deliver power to our customers
- Then we develop plans to fix it
  - "Corrective Action Plans"
  - Mandated and described in NERC TPL-001-4
- We live in the world of NERC Mandatory Standards
  - Energy Policy Act of 2005



## **NERC Standard TPL-001-4**

- Describes outage conditions we must study
  - P0: everything online and working
  - P1: single facility outages, like a transformer
  - P2, P4, P5 & P7: multiple facility outages
  - P3 & P6: overlapping combination of two facilities

|                                   |                                                                    | Table 1 – Steady State & Stability P                                                                                                                                                            | erformance Pla           | nning Events           |                                                                      |                                     |
|-----------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------------------------------------------------|-------------------------------------|
| teady State                       | & Stability:                                                       |                                                                                                                                                                                                 |                          |                        |                                                                      |                                     |
| a. The Sy                         | stem shall remain stable. Case                                     | ading and uncontrolled islanding shall not occur.                                                                                                                                               |                          |                        |                                                                      |                                     |
|                                   |                                                                    | eneration loss is acceptable as a consequence of                                                                                                                                                |                          |                        |                                                                      |                                     |
| <li>c. Simula</li>                | te the removal of all elements the                                 | hat Protection Systems and other controls are exp                                                                                                                                               | ected to automatic       | cally disconnect fo    | r each event.                                                        |                                     |
|                                   | te Normal Clearing unless othe                                     |                                                                                                                                                                                                 |                          |                        |                                                                      |                                     |
|                                   | d System adjustments such as<br>n applicable to the Facility Ratir | Transmission configuration changes and re-dispa<br>ngs.                                                                                                                                         | tch of generation a<br>T | are allowed if such    | adjustments are executal                                             | ble within the time                 |
| teady State                       | Only:                                                              |                                                                                                                                                                                                 | ~                        |                        |                                                                      |                                     |
| f. Applica                        | able Facility Ratings shall not be                                 | exceeded.                                                                                                                                                                                       |                          |                        |                                                                      |                                     |
| g. Systen<br>Planne               |                                                                    | t-Contingency voltage deviations shall be within a                                                                                                                                              | cceptable limits as      | established by th      | e Planning Coordinator an                                            | d the Transmission                  |
| h. Planni                         | ng event P0 is applicable to stea                                  | ady state only.                                                                                                                                                                                 |                          |                        |                                                                      |                                     |
|                                   | sponse of voltage sensitive Loa<br>nance requirements.             | d that is disconnected from the System by end-us                                                                                                                                                | er equipment asso        | ociated with an eve    | ent shall not be used to me                                          | eet steady state                    |
| tability Only                     |                                                                    |                                                                                                                                                                                                 |                          |                        |                                                                      |                                     |
| j. Transi                         | ent voltage response shall be w                                    | thin acceptable limits established by the Planning                                                                                                                                              | Coordinator and t        | the Transmission I     | Planner.                                                             |                                     |
| Category                          | Initial Condition                                                  | Event 1                                                                                                                                                                                         | Fault Type <sup>2</sup>  | BES Level <sup>3</sup> | Interruption of Firm<br>Transmission<br>Service Allowed <sup>4</sup> | Non-Consequenti<br>Load Loss Allowe |
| 0<br>Io Contingency               | Normal System                                                      | None                                                                                                                                                                                            | N/A                      | EHV, HV                | No                                                                   | No                                  |
|                                   |                                                                    | Loss of one of the following:<br>1. Generator                                                                                                                                                   |                          |                        | EHV, HV No <sup>9</sup>                                              |                                     |
| 21<br>Single<br>Contingency       | Normal System                                                      | Generator     Transmission Circuit     Transformer 5     Shunt Device 6                                                                                                                         | 3Ø                       | EHV, HV                | No <sup>9</sup>                                                      | No <sup>12</sup>                    |
| Single                            | Normal System                                                      | 2. Transmission Circuit     3. Transformer <sup>5</sup>                                                                                                                                         | 3Ø<br>SLG                | EHV, HV                | No <sup>a</sup>                                                      | No <sup>12</sup>                    |
| Single                            | Normal System                                                      | 2. Transmission Circuit     3. Transformer <sup>5</sup> 4. Shunt Device <sup>6</sup>                                                                                                            |                          | EHV, HV                | No <sup>9</sup><br>No <sup>9</sup>                                   | No <sup>12</sup>                    |
| ingle                             | Normal System                                                      | 2. Transmission Circuit     3. Transformer 5     4. Shunt Device 8     5. Single Pole of a DC line     1. Opening of a line section w/o a fault 7                                               | SLG<br>N/A               |                        |                                                                      |                                     |
| contingency                       |                                                                    | 2. Transmission Circuit     3. Transformer <sup>5</sup> 4. Shunt Device <sup>6</sup> 5. Single Pole of a DC line                                                                                | SLG                      | EHV, HV                | No®                                                                  | No <sup>12</sup>                    |
| angle<br>ontingency<br>2<br>ingle | Normal System                                                      | 2. Transmission Circuit     3. Transformer 5     4. Shunt Device 8     5. Single Pole of a DC line     1. Opening of a line section w/o a fault 7                                               | SLG<br>N/A<br>SLG        | EHV, HV<br>EHV         | No <sup>9</sup>                                                      | No <sup>12</sup><br>No              |
| ingle                             |                                                                    | 2. Transmission Circuit     3. Transformer <sup>5</sup> 4. Shurt Device <sup>6</sup> 5. Single Pole of a DC line     1. Opening of a line section w/o a fault <sup>7</sup> 2. Bus Section Fault | SLG<br>N/A               | EHV, HV<br>EHV<br>HV   | No <sup>o</sup><br>No <sup>o</sup><br>Yes                            | No <sup>12</sup><br>No<br>Yes       |

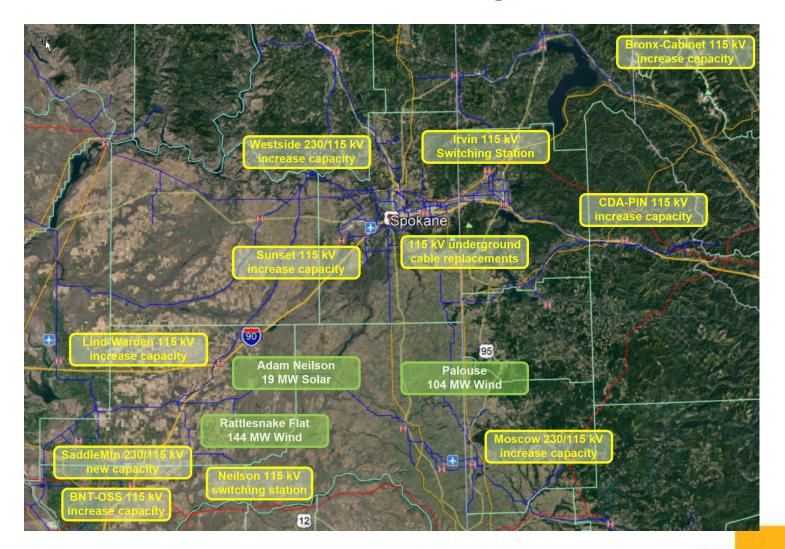
| Category                                                                      | Initial Condition                                                                                                                         | Event <sup>1</sup>                                                                                                                                                   | Fault Type <sup>2</sup> | BES Level <sup>3</sup> | Interruption of Firm<br>Transmission<br>Service Allowed <sup>4</sup> |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|----------------------------------------------------------------------|--|
| P3<br>Multiple<br>Contingency                                                 | Loss of generator unit<br>Loss of generator unit<br>offlowed by System<br>adjustments <sup>®</sup> 4. Shurt Device <sup>6</sup>           |                                                                                                                                                                      | 30                      | EHV, HV                | No <sup>9</sup>                                                      |  |
|                                                                               |                                                                                                                                           | 5. Single pole of a DC line                                                                                                                                          | SLG                     |                        |                                                                      |  |
| P4<br>Multiple<br>Contingency<br>(Fault plus stuck<br>breaker <sup>10</sup> ) |                                                                                                                                           | Loss of multiple elements caused by a stuck<br>breaker <sup>10</sup> (non-Bus-tie Breaker) attempting to<br>clear a Fault on one of the following:                   | ß                       | EHV                    | No <sup>9</sup>                                                      |  |
|                                                                               | Normal System                                                                                                                             | 1. Generator     2. Transmission Circuit     3. Transformer <sup>5</sup> 4. Shunt Device <sup>6</sup> 5. Bus Section                                                 |                         | HV                     | Yes                                                                  |  |
|                                                                               |                                                                                                                                           | <ol> <li>Loss of multiple elements caused by a<br/>stuck breaker<sup>10</sup> (Bus-tie Breaker)<br/>attempting to clear a Fault on the<br/>associated bus</li> </ol> | SLG                     | EHV, HV                | Yes                                                                  |  |
| P5                                                                            |                                                                                                                                           | Delayed Fault Clearing due to the failure of a<br>non-redundant relay <sup>13</sup> protecting the Faulted<br>element to operate as designed, for one of             |                         | EHV                    | No <sup>9</sup>                                                      |  |
| Multiple<br>Contingency<br>(Fault plus relay<br>failure to<br>operate)        | Normal System                                                                                                                             | the following:<br>1. Generator<br>2. Transmission Circuit<br>3. Transformer <sup>6</sup><br>4. Shunt Device <sup>®</sup><br>5. Bus Section                           | SLG                     | HV                     | Yes                                                                  |  |
| P6<br>Multiple<br>Contingency<br>(Two<br>overlapping                          | Loss of one of the<br>following followed by<br>System adjustments. <sup>9</sup><br>1. Transmission Circuit<br>2. Transformer <sup>6</sup> | Loss of one of the following:<br>1. Transmission Circuit<br>2. Transformer <sup>5</sup><br>3. Shunt Device <sup>6</sup>                                              | 3Ø                      | EHV, HV                | Yes                                                                  |  |
| overlapping<br>singles)                                                       | 3. Shunt Device <sup>6</sup><br>4. Single pole of a DC line                                                                               | 4. Single pole of a DC line                                                                                                                                          | SLG                     | EHV, HV                | Yes                                                                  |  |

#### 6

# **TPL-001-4**, cont.

- A couple of NERC directives for the above faults
  - "The System shall remain stable"
    - Cascading and uncontrolled islanding shall not occur
  - "Applicable Facility Ratings shall not be exceeded"
    - Equipment ratings, voltage, fault duty, etc
  - "An objective of the planning process is to minimize the likelihood and magnitude of Non-Consequential Load Loss following planning events"

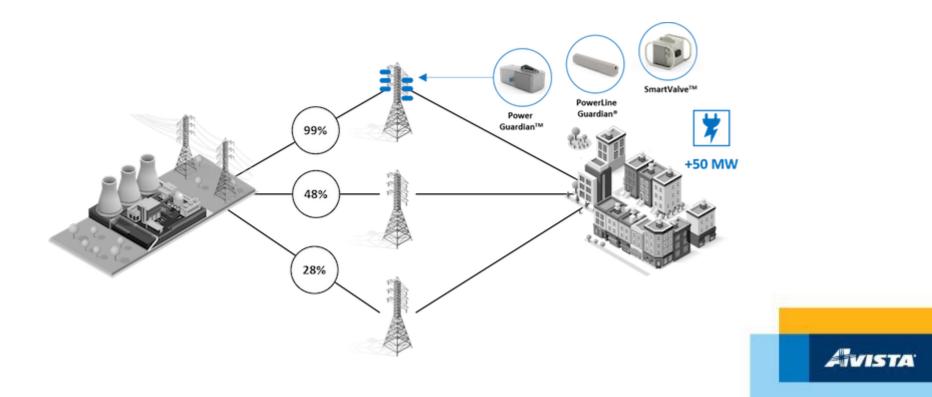
# **Two Approaches to Reliability Issues**


- Transmission Operations (TO) are guided by <u>significantly</u> different standards than Transmission Planning (TP).
- TO standards provide *flexibility* that TP standards do not allow
  - Operators can push system limits to SAVE the interconnected system
    - Shed load, overload equipment, etc all short term
    - The planned system should give them the tools to do this
    - The standards continue to define this balance



# **Standards are a Roadmap**

- Western Systems Coordinating Council (WSCC)
  - Ensure that disturbances in one system do not spread to other systems.
    - Operating agreement with 40 electric power systems established in 1967
- Western Electricity Coordinating Council (WECC)
  - Responsible for coordinating and promoting electric system reliability established in 2002
- North American Electric Reliability Council (NERC)
  - Ensure the reliability of the North American bulk power system reformed in 2006; Corporation in 2007
    - Established as a voluntary organization in 1968


### **Recent Transmission Projects**





# **Non-Wire Alternatives are Considered**

- We are documenting this with more clarity
- Non-wire options require robust wires to perform
   Avista is working on the transmission fundamentals



### **Evaluated Batteries for T-1-1**

- TPL-001-4 ~ T-1-1 for long lead equipment
  - Double transformer outages
    - Shawnee 230/115 kV outage followed by a concurrent outage of Moscow 230/115 kV transformer.
  - Could we mitigate performance issues with storage?
    - Yes...but... We would need a 125 MW battery
      - Typical charge is 8 hours, discharge for 12 to 16 hours
      - Transformer outage is weeks to months
    - A third transformer is a better solution
      - Robust performance and much less \$\$\$\$

| Requisitions: Requisitions >                                                                                                                                                                                                                                                                                                                          |                             |                  |      |          |               |                                        |                                     |             |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------|----------|---------------|----------------------------------------|-------------------------------------|-------------|------------------|
| Requisition 162964                                                                                                                                                                                                                                                                                                                                    |                             |                  |      |          |               |                                        |                                     |             |                  |
| Description       M08 - Westide 250/280MVA, 230-115-13.8kV, three phase auto transformer.         Created By       Wilson, Barnes Scott (Scott)         Creation Date       12/06/2017 12:49:35         Deliver-To       One Time Ship To         Justification       This is the second transformer associated with the Westside Substation rebuild. |                             |                  |      |          |               | Change His<br>Urgent Requis<br>Attachr | ition <b>No</b><br>nent <u>View</u> |             | uation sheet pre |
| Details                                                                                                                                                                                                                                                                                                                                               |                             |                  |      |          |               |                                        |                                     |             |                  |
| Line Description                                                                                                                                                                                                                                                                                                                                      | Need-By                     | Deliver-To       | Unit | Quantity | Qty Delivered | Qty Cancelled                          | Open Quantity                       | Price       | Amount (USD)     |
| 1 250/280MVA, 230-115-13.8kV, three phase auto transf                                                                                                                                                                                                                                                                                                 | former. 10/03/2018 12:51:34 | One Time Ship To | Each | 1        | 1             | 0                                      | 0                                   | 2397826 USD | 2,397,826.00     |
| 2 SFRA Testing at factory and field                                                                                                                                                                                                                                                                                                                   | 10/03/2018 12:51:34         | One Time Ship To | Each | 1        | 1             | 0                                      | 0                                   | 5400 USD    | 5,400.00         |
|                                                                                                                                                                                                                                                                                                                                                       |                             |                  |      |          |               |                                        |                                     | Total       | 2,403,226.00     |



# **Generation Interconnection Study Process**

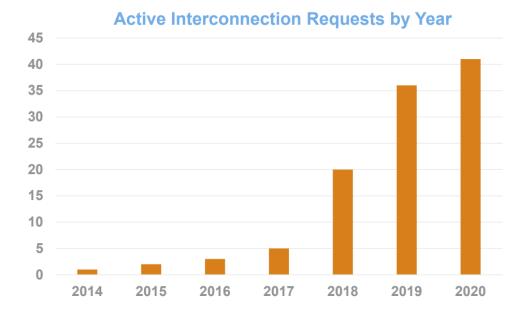
#### **Process for Generation Requests**

- Two sources:
  - External developers
    - Enter via the OATT
  - Internal IRP requests
    - Feasibility Light Study...then OATT
      - AVA Merchant MUST follow the OATT just like external parties
- Typical process:
  - Hold a scoping meeting to discuss particulars
  - Outline a study plan
  - Augment WECC approved cases for our studies
  - Analyze the system against the standards
  - Publish our findings and recommendations




# **Transition - Serial to Cluster Study Process**

Challenges with Serial Interconnections

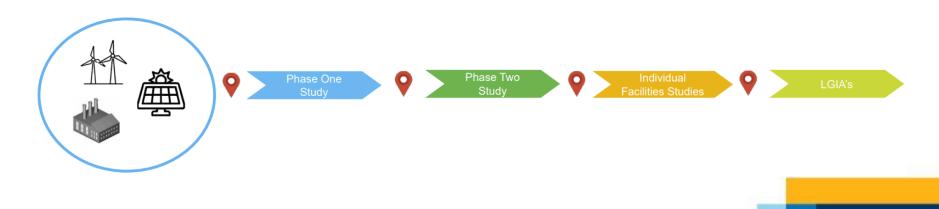

- Large serial queues become difficult to process efficiently
- Interdependency of projects becomes complicated
  - Studying single projects is inefficient compared to studying projects in a group
  - Projects that do not reach commercial operation may cause re-studies
  - System Upgrade allocation
- The serial process is difficult for the developers and the utility



# **Serial Process was Complex and Slow**



#### Interconnection Requests necessitated a better Process






# **Two-Phase Cluster Study Process**

#### **Benefits and Objectives**

- Create a more efficient process
- Design a process with definitive timelines that can be consistently met
- Allocate System Upgrades proportionally
- Ensure commercially viable projects have a clear path for development
- Alleviate the backlog in the queue

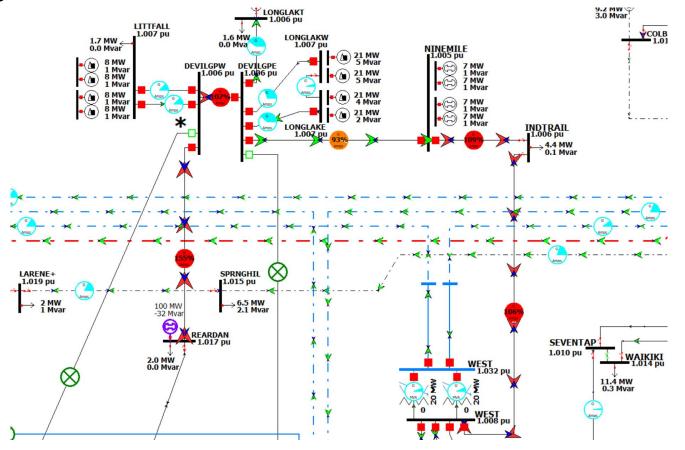


### **Current Interconnection Queue**

| Serial or<br>Cluster<br>Number | Project <u>Name</u> | Former<br>Queue<br>Number | Max<br>MW<br>Output | Туре                    | County          | State |
|--------------------------------|---------------------|---------------------------|---------------------|-------------------------|-----------------|-------|
| LGIA                           | Saddle Mountain     | 46                        | 126                 | Wind                    | Adams           | WA    |
| LGIA                           | Taunton             | 52                        | 100                 | Solar                   | Adams           | WA    |
| LGIA                           | Asotin              | 60                        | 150                 | Solar                   | Asotin          | WA    |
| LGIA                           | Kettle Falls        | 66                        | 71                  | Wood <u>Burner</u> / CT | Stevens         | WA    |
| Senior                         | Aurora              | 59                        | 116                 | Solar/Storage           | Adams           | WA    |
| Senior                         | Post Falls          | 63                        | 26                  | <u>Hydro</u>            | <u>Kootenai</u> | ID    |
| Senior                         | <u>Elf</u> II       | 79                        | 2.1                 | Solar                   | Spokane         | WA    |
| Senior                         | ElfI                | 80                        | 19                  | Solar                   | Spokane         | WA    |
| Senior                         | Acadia              | 84                        | 5                   | Solar                   | Stevens         | WA    |
| Senior                         | Lolo Solar          | 97                        | 100                 | Solar/Storage           | Nez Perce       | ID    |
| TCS-02                         | Rattlesnake II      | 62                        | 123.2               | Wind                    | Adams           | WA    |
| TCS-03                         | Old Milwaukee       | 67                        | 80                  | Solar/Storage           | Adams           | WA    |
| TCS-04                         | Sprague             | 73                        | 94                  | Solar/Storage           | Adams           | WA    |
| TCS-05                         | Royal City          | 76                        | 114.12              | Solar                   | Grant           | WA    |
| TCS-06                         | Ralston             | 81                        | 94                  | Solar/Storage           | Adams           | WA    |
| TCS-07                         | Rainier             | 85                        | 5                   | Solar                   | Adams           | WA    |
| TCS-08                         | <u>Wahatis</u>      | 99                        | 200                 | Solar/Storage           | Franklin        | WA    |
| TCS-09                         | Stringtown          | 100                       | 100                 | Solar/Storage           | Spokane         | WA    |
| TCS-10                         | Harrington          | 103                       | 40                  | Solar                   | Lincoln         | WA    |
| TCS-11                         | Latah               | 104                       | 120                 | Wind                    | Spokane         | WA    |
| TCS-12                         | Qrin                | 105                       | 5                   | Solar                   | Stevens         | WA    |
| TCS-14                         | Cloudwalker         | 110                       | 375                 | Wind/Solar/Storage      | Garfield        | WA    |
| TCS-16                         | Daydreamer          | 112                       | 125                 | Solar/Storage           | Lincoln         | WA    |
| TCS-18                         | Dry Falls           | 119                       | 200                 | Solar/Storage           | Grant           | WA    |

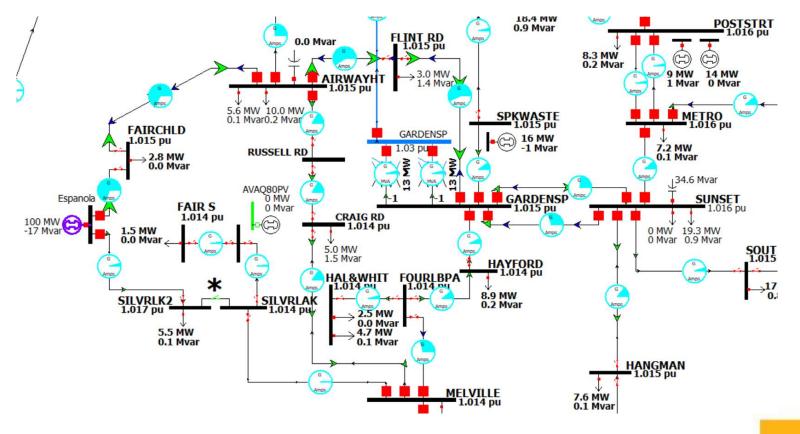
AVISTA

# **Transmission Integration** Cost Estimates


| POI Station or Area                      | Requested<br>(MW) | POI<br>Voltage | Cost<br>Estimate<br>(\$ million) |
|------------------------------------------|-------------------|----------------|----------------------------------|
| Big Bend area near Lind (Tokio)          | 100/200           | 230kV          | 138.2                            |
| Big Bend area near Odessa                | 100               | 230kV          | 167.1                            |
| Big Bend area near Odessa                | 200/300           | 230kV          | 168.0                            |
| Big Bend area near Othello               | 100/200           | 230kV          | 222.2                            |
| Big Bend area near Othello               | 300               | 230kV          | 262.4                            |
| Big Bend area near Reardan               | 50                | 230kV          | 9.7                              |
| Big Bend area near Reardan               | 100               | 230kV          | 10.3                             |
| Clarkston/Lewiston area                  | 100/200/300       | 230kV          | 1.9                              |
| Kettle Falls substation, existing POI    | 12/50             | 115kV          | 1.8                              |
| Kettle Falls substation, existing POI    | 100               | 115kV          | 24.9                             |
| Lower Granite area                       | 100/200/300       | 230kV          | 2.9                              |
| Northeast substation, existing POI       | 10                | 115kV          | 1.6                              |
| Northeast substation, existing POI       | 100               | 115kV          | 6.7                              |
| Palouse area, near Benewah (Tekoa)       | 100/200           | 230kV          | 2.4                              |
| Rathdrum substation, existing POI        | 25/50             | 115kV          | 11.5                             |
| Rathdrum substation, existing POI        | 100               | 230kV          | 16.7                             |
| Rathdrum substation, existing POI        | 200               | 230kV          | 27.0                             |
| Rathdrum Prairie, north Greensferry Rd   | 100               | 230kV          | 32.7                             |
| Rathdrum Prairie, north Greensferry Rd   | 200               | 230kV          | 43.0                             |
| Rathdrum Prairie, north Greensferry Rd   | 300               | 230kV          | 54.4                             |
| Rathdrum Prairie, north Greensferry Rd   | 400               | 230kV          | 91.5                             |
| Thornton substation, existing POI        | 10/50             | 230kV          | 1.9                              |
| West Plains area north of Airway Heights | 100               | 115kV          | 2.4                              |
| West Plains area north of Airway Heights | 200/300           | 115kV          | 4.7                              |

Assume anti-islanding scheme is in place, but no remedial Action Scheme (RAS)

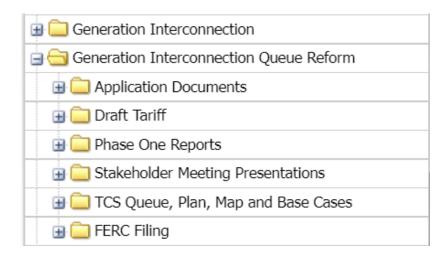
18


# Reardan: 100 MW

Choice of interconnection point may result in extensive system reinforcements



# Espanola: 100 MW


Optimizing the interconnection point is a key benefit of the Cluster Study process





## **Questions?**

#### Refer to Avista's OASIS link for information regarding System Planning and the Interconnection Process: http://www.oasis.oati.com/avat/index.html







#### **Distribution Resource Planning**

Damon Fisher, System Planning Fifth Technical Advisory Committee Meeting September 7, 2022

# **Goals of Electric Distribution Planning**

- Ensure electric distribution infrastructure to serve customers now and in the future with a focus on:
  - Safety
  - Reliability
  - Capacity
  - Efficiency
  - Level of service
  - Operational flexibility
  - Corporate/Regulatory goals
  - Affordability





### **Primary Goal of Distribution Resource Plan**

 Where possible, solve distribution grid deficiencies using distributed energy resources (DER) that also contribute to system resource needs as identified in the Integrated Resource Plan.



# Can IRP resource needs and distribution "fixes" be aligned? Certainly.

- Not without challenges.
  - Temporal need
  - Grid operation and flexibility
  - Resource adequacy- a new distribution definition?
  - System Protection

## **Typical Distribution System Deficiencies**

- Low Voltage
- Capacity (Substation/Feeder)
- Asset Condition
- Contingency Switching Limits

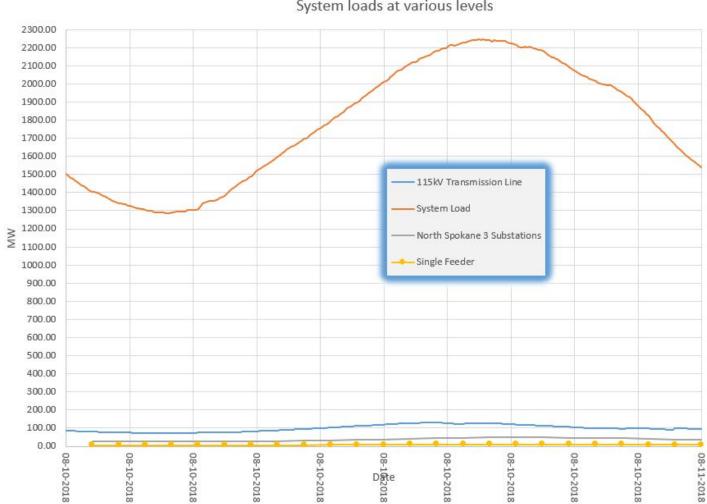
#### What are DER's? – Distribution's Perspective

Anything that can reduce demand or support voltage

Real

Targeted Energy Efficiency

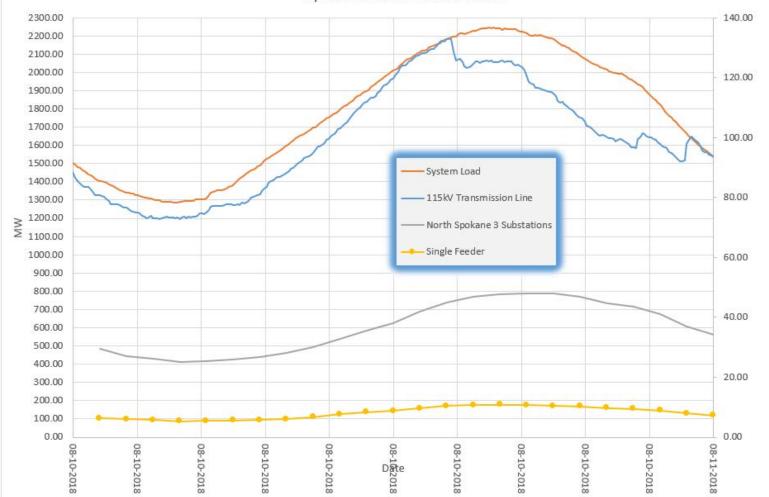
**Targeted Demand Response** 


Apparent

Storage (Load shifting)

Generation (Load service)



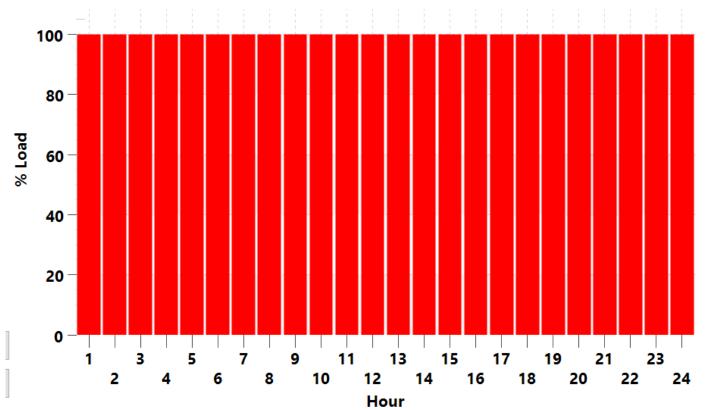

#### **System Resources vs. Feeder Demand**



System loads at various levels



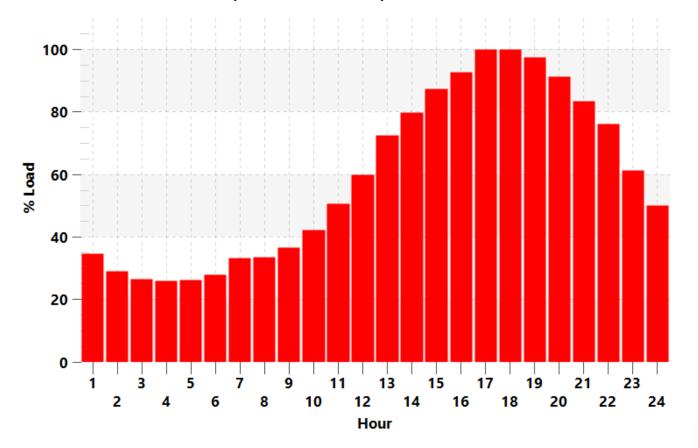
#### **System Resources vs. Feeder Demand**




System loads at various levels

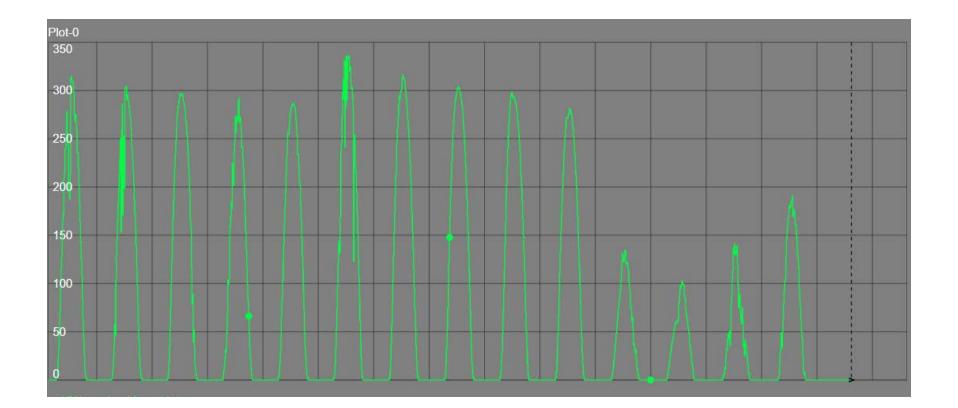


#### It Is All About Curves


• The ideal curve-

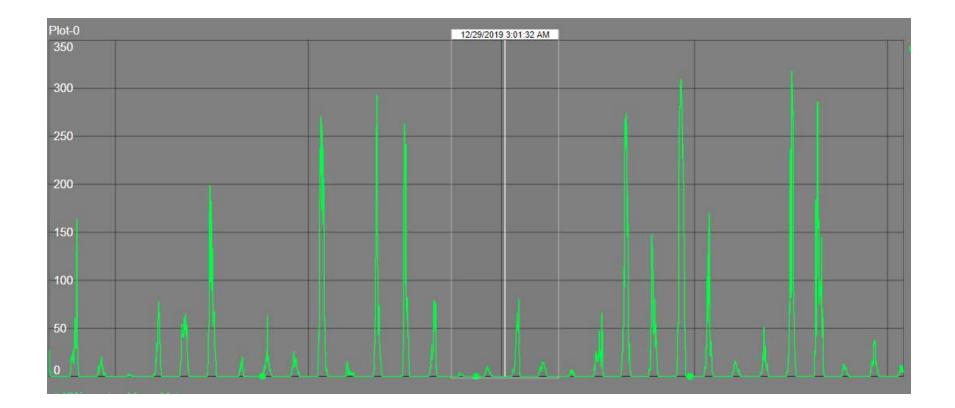


AVISTA


#### It is all about curves

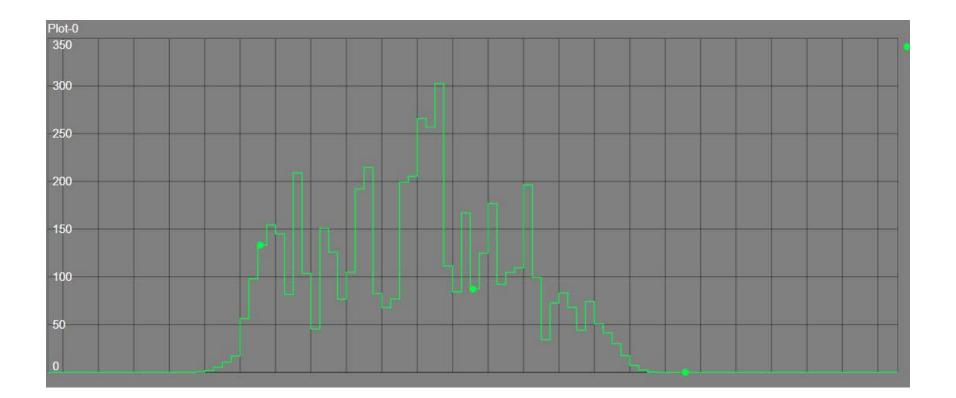
#### • A real curve (not ideal)-




AVISTA

#### Can We Fix Curves with PV? Community Solar – Summer






#### Can We Fix Curves with PV? Community Solar – Winter





## Can We Fix Curves with Just PV? Community Solar – Cloudy Day, Battery





#### **DRP Implementation-**

- Spatial Load Forecasting
- Spatial DER Forecasting (gap)
- System Performance Criteria
- DER Acquisition and Implementation Processes (in process)
- Engineering/Operational Expertise (in process)
- Time series analysis
- Hosting capacity maps (in process)
- Non-Wired and Wired Playbook (in process)



|                                                    |              | Reliability |             |          | Safety        |                      | Capacity         |                       |                    |       | Power Quality |                |         |                        |
|----------------------------------------------------|--------------|-------------|-------------|----------|---------------|----------------------|------------------|-----------------------|--------------------|-------|---------------|----------------|---------|------------------------|
|                                                    |              |             | Outag       | -        |               |                      |                  | Load G                | rowth              | Peak  | Support       |                |         |                        |
|                                                    | Preven       | Shorte      |             |          | Vulnerabl     |                      |                  | Transportation        |                    |       |               |                |         |                        |
|                                                    | t<br>(SAIFI) | n<br>(SAIDI | n<br>(CAIDI | Reduce   | e<br>Customer | Mitigate<br>Wildfire | Short<br>Circuit | Electronificatio<br>n | n (replace<br>gas) | Summe | e Winte       | 8,760<br>Hours | Voltago | Flicker &<br>Harmonics |
| Non-Wires Alternatives                             | (SHIIII)     |             | (CHIDI      | (CEPIIS) | Customer      | Whitine              | circuit          |                       | yası               |       |               | nouis          | vonage  | Harmonic               |
| Transmission Connected                             |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Remedial action schemes                            |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Dynamic line rating                                |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Series compensation                                |              |             |             |          |               |                      |                  |                       |                    | 0     |               |                |         |                        |
| Hydrogen fuel-cell                                 |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Storage                                            |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Short-duration (<=8hrs.) - lithium (NMC, LFP, LTO) |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Medium-duration (>8hrs.& <=72hrs.)                 |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Long-duration (>72hrs.)                            |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Distribution Connected                             |              |             |             | -        |               |                      |                  |                       |                    |       |               |                |         |                        |
| Natural gas generation                             |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Distribution automation FDIB (FLISB)               |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Resource aggregation - virtual power plant         |              |             |             |          |               |                      |                  |                       |                    | 4     | 4             | ٢              |         |                        |
| Automatic feeder reconfiguration (load shif z)     |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Load balancing                                     |              |             |             |          |               |                      |                  |                       |                    | 4     | 4             |                |         | 4                      |
| Demand response                                    |              |             |             |          |               |                      |                  | 4                     | 4                  | 4     | 4             |                |         |                        |
| Energy efficiency                                  |              |             |             |          |               |                      |                  |                       |                    |       |               | 4              |         |                        |
| Remedial action schemes                            |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Wind                                               |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Solar                                              |              |             |             |          |               |                      |                  |                       |                    | 4     |               | ٢              | 4       |                        |
| Hydrogen fuel-cell                                 |              |             |             |          | 4             |                      |                  |                       |                    |       |               |                |         |                        |
| Storage                                            |              |             |             |          |               | •                    |                  |                       |                    |       |               |                |         |                        |
| Short-duration (<=8hrs.) - lithium (NMC, LFP, LTO) |              |             |             |          | 4             |                      |                  | 4                     |                    |       |               |                | 4       |                        |
| Medium-duration (>8hrs.& <=72hrs.)                 |              |             |             |          | 4             |                      |                  |                       |                    |       |               |                |         |                        |
| Long-duration (>72hrs.)                            |              |             |             |          | 4             |                      |                  |                       |                    |       |               |                |         |                        |
| Portable storage                                   |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Immediate response storage (e.g., fly-wheel)       |              |             |             |          |               |                      |                  |                       |                    |       |               |                | 4       |                        |
| Behind the Meter                                   |              |             |             |          |               | •                    |                  | •                     | I                  |       |               |                |         |                        |
| Wind                                               |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Solar                                              |              |             |             |          |               |                      |                  |                       |                    |       |               | 4              | 4       |                        |
| Natural gas generator                              |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Demand response                                    |              |             |             |          | -             |                      |                  | 4                     |                    |       |               |                |         |                        |
| Hydrogen fuel-cell                                 |              |             |             |          | 4             |                      |                  |                       |                    |       |               |                |         |                        |
| Storage                                            |              |             |             |          |               |                      |                  |                       | -                  |       |               |                |         |                        |
| Short-duration (<=8hrs.) - lithium (NMC, LFP, LTO) |              |             |             |          | 4             |                      |                  | 4                     |                    | 4     | 4             |                | 4       |                        |
| Medium-duration (>8hrs.& <=72hrs.)                 |              | 0           |             |          | -             |                      |                  |                       |                    | •     | •             |                |         |                        |
| Long-duration (>72hrs.)                            |              |             |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Microgrid                                          |              | -           |             |          |               |                      |                  |                       |                    |       |               |                |         |                        |
| Eco-district                                       |              |             |             |          |               |                      |                  | 4                     |                    | 4     | 4             | 4              |         |                        |
| Fossil generation                                  |              |             |             |          |               | 4                    |                  |                       | -                  |       |               |                |         |                        |
| Renewable generation                               |              |             |             |          |               |                      |                  |                       |                    | Ŏ     |               |                |         |                        |
| Stand-alone Storage                                |              |             |             |          | 4             |                      |                  |                       |                    | 4     | 4             |                | 4       |                        |
| Fossil generation w/ storage                       |              |             |             |          |               | 4                    |                  |                       |                    | 9     | 4             |                | 4       |                        |
| Renewable generation w/ storage                    |              | 0           |             |          |               |                      |                  | 4                     | 4                  |       |               | 4              | 4       |                        |

15

AVISTA

#### **Generation Integration Costs**

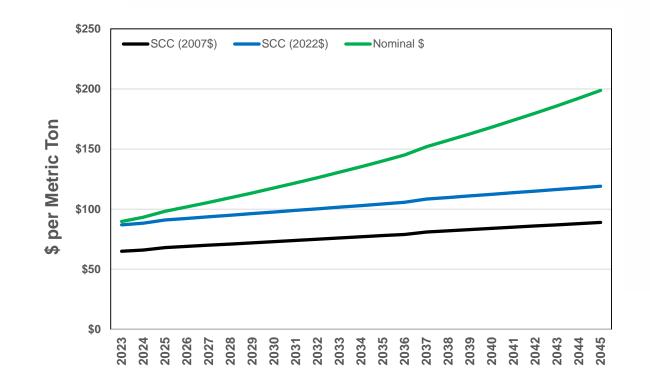
- 5MW assuming dedicated feeder bay and SCADA comms required - \$975,000 to \$1,350,000
- 1MW assuming a feeder tap, viper, and SCADA comms required -\$170,000 to \$254,000
- 500kW assuming tap the feeder with some upgrades \$24,000 to \$36,000
- 100kW assuming tap the feeder, not a net-metered project -\$8,000 to \$12,000



#### **Questions?**



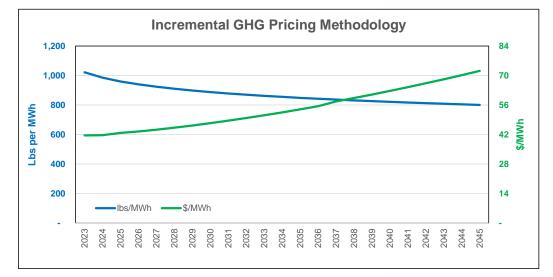





#### Social Cost of Greenhouse Gas for Energy Efficiency (Washington State Methodology)

James Gall, Integrated Resource Planning Manager Electric IRP, Fifth Technical Advisory Committee Meeting September 7, 2022

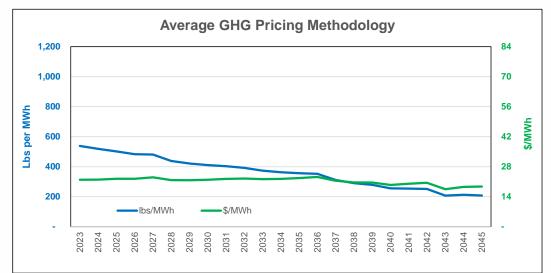
#### **Requesting TAC Input**


- Avista must include the Social Cost of GHG for Energy Efficiency selected
  - Per Clean Energy Transformation Act (CETA) for Washington customers.
- There are three proposed options to incorporate the non-energy impact into resource planning.
- Levelized SCGHG is estimated at \$125.84 per metric ton.
  - Awaiting WUTC's official pricing.



#### Methods Studied in the 2021 IRP

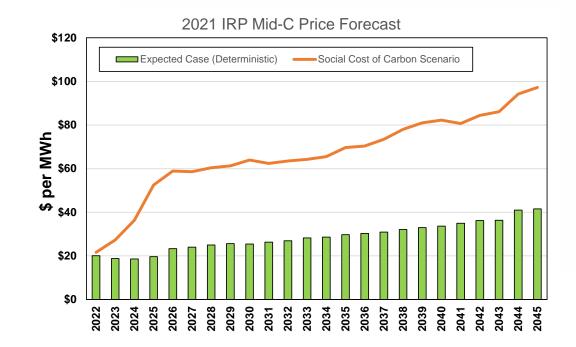
#### 1) Incremental Method


 Uses regional GHG incremental emissions rate for the Northwest



- Each MWh of energy efficiency receives a credit toward avoided cost for savings priced at the SCGHG.
- Results in \$50.32/MWh credit

#### 2) Average Method


Uses regional GHG average emissions rate for the Northwest



- Each MWh of energy efficiency receives a credit toward avoided cost for savings priced at the SCGHG.
- Results in \$21.70/MWh credit

#### 3) Wholesale Price Method

- Apply SCGHG to all resources in the dispatch within Aurora model.
- Creates new wholesale price forecast for energy efficiency avoided cost.
- Caution: some wholesale price forecasts with SCGHG have an overbuild of renewables creating lower wholesale marginal prices.



## Results from 2021 Electric IRP Washington only savings (GWh)

| GWh Savings     | Incremental<br>Method |       | Wholesale<br>Price Method |       |
|-----------------|-----------------------|-------|---------------------------|-------|
| 10-year savings | 507.8                 | 452.4 | 506.6                     | 370.8 |
| 20-year savings | 772.4                 | 671.5 | 769.4                     | 557.9 |

## **Options for 2023 IRP**

- Incremental Method
  - SCGHG adder will be reduced to account for CCA price already included in dispatch.
- Average Method
  - SCGHG adder will be reduced to account for CCA price already included in dispatch.
- Market Dispatch Method
  - All regional resources dispatched with SCGHG.



## Valuing QF Resources (Avoided Costs)

Fifth Electric Technical Advisory Committee

September 7, 2022

Clint Kalich, Senior Manager—Resource Analysis clint.kalich@avistacorp.com

#### Agenda

- Define qualifying facility or QF
- Detail sizes in Federal, Idaho and Washington
- Describe Washington QF methodologies (published vs. IRP method)
- Define Idaho QF Rate methodologies (published SAR vs. IRP method)



## **PURPA Regulations**

#### For Avista, defined by federal government and two states

- Federal Rules (Public Utilities Regulatory Policy Act of 1978)
  - Buy all cogeneration, and non-cogeneration up to 80 MW, at rates defined by state rules
  - Qualifying non-cogeneration, with a couple of exceptions, defined as renewable resources
  - Rates based on utility-avoided energy and capacity values
- Idaho Implementation
  - Small QF uses "Published SAR Method" rate for up to 10 aMW (100 kW wind/solar)
  - Negotiated rate for larger QFs based on "IRP Methodology"
- Washington Implementation
  - Published rate for QFs up to 5 MW based on IRP Methodology
  - Negotiated rate for larger QFs based on IRP Methodology



#### QF Published Rate Eligibility Washington

- Projects up to 5 MW receive payments using a published rate schedule
- Projects over 5 MW receive a negotiated rate
  - Based on conceptual methodologies of published rates
  - Adjustments (up/down) can be applicable to the extent the larger resource differs from the value streams reflected in the published rate schedule



## Washington State Avoided Costs

(IRP-Based Methodology)



#### Washington QF Value Streams

Payment consists of value streams dependent on resource/products offered

- Commodity Energy
- Peaking Capacity Value
- Clean Energy Premium
- Transmission
- Contingency Reserves
- Integration Charge for variable generation resources (wind/solar)
- Others



## **Commodity Energy – Washington**

The most basic value associated with electricity provided to the grid

- Latest-approved IRP energy price forecast
- Priced in two blocks of on- and off-peak periods each month
  - Hours 0700-2200 defined as on-peak
  - Hours 0000-0700 and 2200-2400 are off-peak
- Payment is monthly for each MWh of facility production delivered to grid during that month



#### **Transmission Credits and Charges – Washington** Portfolio savings or costs associated with transporting energy to/from market

- Credit paid in addition to others in hours IRP shows imported market power
- Charge in addition to others in hours IRP shows imported market power
- Rate equals BPA hourly Point-To-Point transmission tariff rate
- Credits and charges billed monthly for each MWh of forecast facility production delivered to grid during a month
  - Not a real-time credit/charge but is determined based on IRP data at the time of contracting
  - Rate escalates with IRP inflation forecast
- For published rates, billed as adjustment to Commodity Energy rate equal to:
  - Delivered energy (MWh) \* Transmission credit/charge



## Variable Energy Resource Integration Charge – Washington

Cost of incremental capacity services necessary to support grid reliability

- Avista applies variable energy resource (VER) integration charge to all such resources, whether owned or contracted for
- Covers various incremental ancillary services
  - Regulation, load following, forecast error
- Priced at VER integration study rate \* QF nameplate capacity
- Discount will not apply until VER study is complete
- For published rates, billed as reduction to Commodity Energy rate equal to:
  - Delivered energy (MWh) \* VER integration charge



## **Peaking Capacity Value – Washington**

The value of providing electricity to the grid during times of system peak demands

- Fixed costs from one of two utility options:
  - Fixed costs associated with the last-approved- IRP's first capacity addition fixed cost
  - Fixed costs associated with bids in most recent WAC 480-107 compliant RFP
- Paid based on Qualifying Capacity Contribution (QCC) factor
  - Will update QCC for 2023 IRP to Western Power Pool figures once available
- For published rates, value is paid monthly as a per-MWh rate:
  - Total annual value (TAV) = Nameplate Capacity \* QCC \* Price
  - Rate equals total annual value divided by annual energy output in MWh



## Defining Qualifying Capacity Credit (QCC)

2021 IRP Data will be updated with WPP values once approved (WA & ID IRP Method)

Table 9.12: Peak Credit or Equivalent Load Carrying Capability Credit

| Resource                              | Peak Credit<br>(percent) |  |  |  |
|---------------------------------------|--------------------------|--|--|--|
| Northwest solar                       | 2                        |  |  |  |
| Northwest wind                        | 5                        |  |  |  |
| Montana wind <sup>11</sup> 100-200 MW | 35 to 28                 |  |  |  |
| Hydro w/ storage                      | 60-100                   |  |  |  |
| Hydro run-of-river                    | 31                       |  |  |  |
| Storage 4 hr duration                 | 15                       |  |  |  |
| Storage 8 hr duration                 | 30                       |  |  |  |
| Storage 12 hr duration                | 58                       |  |  |  |
| Storage 16 hr duration                | 60                       |  |  |  |
| Storage 24 hr duration                | 65                       |  |  |  |
| Storage 40 hr duration                | 75                       |  |  |  |
| Storage 70 hr duration                | 90                       |  |  |  |
| Demand response                       | 60                       |  |  |  |
| Solar + 4 hr Storage <sup>12</sup>    | 17                       |  |  |  |
| Solar + 2 hr Storage <sup>13</sup>    | 12                       |  |  |  |

<sup>&</sup>lt;sup>11</sup> Net of transmission losses. Montana wind peak credits decline with additional capacity, the first 200 MW is 35 percent, the next 100 MW is 30 percent, and another 100 MW is 28 percent. Avista does not assume any Montana wind beyond 400 MW.

<sup>&</sup>lt;sup>12</sup> This assumes the storage resource may only charge with solar. This specific option was not modeled within the PRS and is shown as a reference only. Avista only modeled solar plus storage where the storage resource could be charged with non-solar as well to reflect long-term utility operations.

<sup>&</sup>lt;sup>13</sup> Avista limited solar plus storage to these two scenarios; many other options are likely including different durations and storage to solar ratios. Specific configurations would need to be studied to validate peak credits for those configurations.

#### **Contingency Reserves – Washington**

Cost of regional obligation to hold capacity in the case of generation outages

- Avista holds 3% of all generation on its grid, irrespective of technology type or ownership
- Charge compensates for this cost
- For published rates, a reduction equal to:
  - Peaking Capacity Value \* QF nameplate capacity
- For published rates, billed as a reduction to Peak Capacity Value equal to:
   Delivered energy (MWh) \* Contingency Reserve charge



#### **Clean Energy Premium Value – Washington** Value of providing electricity to the grid that does not contain CO2e

- Latest-approved IRP total resource value less Energy less Peaking Capacity Values
- For published rates, value is added to the commodity energy schedule



#### Other Value Streams Washington

- QF payments are based on generic resource type
- Some resources might have values above the generic assumptions
  - e.g., dispatch flexibility, storage, interruption rights, local distribution benefits
  - It is not expected these values will be large for most resources, especially if small in size (i.e., < 5 MW)</li>
- Avista must be able to confirm additional values before a payment is defined



## **Idaho State Avoided Costs**

(SAR-Based Methodology)



#### Surrogate Avoided Rates (SAR) Idaho

- Published rate based on IPUC-managed model
  - Based on the fixed and variable costs of a combined-cycle gas turbine
  - Natural gas fuel price updated annually using an EIA gas price forecast
- Different pricing by resource type
  - Wind, solar, hydro, non-seasonal hydro, and other
- On- and off-peak production rates for two seasons of the year
  - Energy and capacity value combined into one figure
  - VER discount per 2007 wind integration study (to be updated with new study)



### Surrogate Avoided Rates (SAR), Continued Idaho

- Note on capacity payments
  - Renewed contracts receive full capacity payment as part of production rate
  - New contracts receive capacity payment starting with first year the utility is capacity deficit
- Renewable energy credits are kept by the QF



# **Idaho State Avoided Costs**

(IRP-Based Methodology)



### **Differences between Idaho and Washington QF Rates**

- Idaho has its own and varying size limits for published QF rates
  - Wind and solar projects <= 100 kW</li>
  - Non-wind, non-solar <= 10 aMW
- Projects ineligible for published rates receive IRP-Methodology rates
  - Same methodology as described for Washington, EXCEPT
  - Peaking capacity value based on portfolio capacity cost rather than a single peaking resource technology
    - Calculated as the difference between PRS and PRS absent the energy and capacity constraints
  - Peaking capacity value is paid on a per-MW rather than per-MWh basis
  - VER charge is billed on a nameplate per-MW basis
  - Large QFs retain 50% of renewable energy credits



# **Thank You**





AVISTA

| <b>Topic</b><br>Introductions                                         | <b>Time</b><br>12:30 | <b>Staff</b><br>John Lyons |
|-----------------------------------------------------------------------|----------------------|----------------------------|
| Supply Side Resource Cost Assumptions, including DER                  | 12:40                | IRP Team                   |
| Variable Energy Resource Integration Study Update,                    | 1:45                 | Lori Hermanson             |
| Break                                                                 |                      |                            |
| All-Source RFP Update                                                 | 2:30                 | Chris Drake                |
| Global Climate Change Studies, Impacts to Avista<br>Loads & Resources | 2:45                 | Mike Hermanson             |
| Adjourn                                                               | 4:00                 |                            |



# **IRP Introduction**

2023 Avista Electric IRP

TAC 6 – September 28, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

## **Meeting Guidelines**

- IRP team is working remotely and is available for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- IRP data posted to web site updated descriptions and navigation are in development
- Virtual IRP meetings on Microsoft Teams until able to hold large meetings again
- TAC presentations and meeting notes posted on IRP page
- This meeting is being recorded and an automated transcript made



## **Virtual TAC Meeting Reminders**

- Please mute mics unless commenting or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting
- Public advisory meeting comments will be documented and recorded



### **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



## **Technical Advisory Committee**

- Public process of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Please ask questions
  - Always soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for new studies or different modeling assumptions.
- Available by email or phone for questions or comments between meetings
- Due date for study requests from TAC members October 1, 2022
- External IRP draft released to TAC March 17, 2023, public comments due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023

### **Remaining 2023 Electric IRP TAC Meeting Schedule**

- TAC 7: October 11, 2022, 9 am 3:30 pm
- Technical Modeling Workshop: October 20, 2022
- Washington Progress Report Workshop: December 14, 2022
- TAC 8: February 16, 2023
- Public Meeting Gas & Electric IRPs: March 8, 2023
- TAC 9: March 22, 2023



## **Today's Agenda**

- 12:30 Introductions, John Lyons
- 12:40 Supply Side Resource Cost Assumptions, Avista IRP Team
- 1:45 Variable Energy Resource Integration Study Update, Lori Hermanson

Break

- 2:30 All-Source RFP Update, Chris Drake
- 2:45 Global Climate Change Studies, Impacts to Avista Loads & Resources, Mike Hermanson

4:00 Adjourn





### Supply Side Resource Options Resources Considered

Avista IRP Team Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022



### **Inflation Reduction Act**

Tom Pardee, Natural Gas Planning Manager Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022

### **IRA Overview**

- Signed August 16, 2022, and became Public Law No: 117-169
- New "technology-neutral" clean electricity production and investment credits
- Extension and expansion of the renewable electricity production tax credit (PTC) and energy tax credit (ETC)
- Zero-emissions nuclear power production credit
- Clean hydrogen production credit
- Expansion of the credit for carbon capture and storage
- Energy manufacturing credits



- \$14,000 in direct consumer rebates for heat pumps or other energy efficient home appliances (\$2,000 annual credit against tax liability)
- Up to \$7,500 in tax credits for new electric vehicles and \$4,000 for used electric vehicles
- Production Tax Credits
  - (Geothermal, Wind and Biomass)
  - \$0.026 per kWh tax credit
  - Nuclear
  - \$0.015 per kWh tax credit plus \$0.003 base credit (\$0.018 total per kWh credit)
- Investment Tax Credit (Battery Storage, Pumped Hydro, Solar)
  - Costs incurred in 2022 and 2032 qualify for a 30% tax credit
  - Credit falls to 26% in 2033, 22% in 2034, 10% in 2035/2036, and 0% in 2037
  - Extends to battery storage
  - Additional 10% low-income tax credit
  - Domestic production at 10%

## **Not Modeled**

- Renewable Natural Gas (RNG)
- Carbon Capture
- Synthetic Methane
- Biodiesel
- Non-Commercial Technologies

# **Modeled But Covered in TAC 7**

- Ammonia
- Hydrogen



### Supply Side Resource Options Resources Considered

Michael Brutocao, Natural Gas Analyst Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022

### **Overview & Considerations**

- The assumptions discussed are "today's" estimates likely to be periodically revised.
- IRP supply-side resources are commercially available technologies with potential for development within or near Avista service territory.
- Resource costs vary depending on location, equipment, fuel prices and ownership; while IRPs use point estimates, actual costs will be different.
- Certain resources will be modeled as purchase power agreements (PPA) while others will be modeled as Avista "owned". These assumptions do not mean they are the only means of resource acquisition.
- No transmission or interconnection costs are included at this time.
  - Interconnect included for off-system resources.
- An Excel file has been distributed with all resources, assumptions and cost calculations for TAC members to review and provide feedback.

## **Proposed Natural Gas Resource Options**

#### Peakers

- Simple Cycle Combustion Turbine (CT)
  - CT Frame
  - 180 MW
- Reciprocating Engines
  - 185 MW

#### Baseload

- Combined Cycle CT (CCCT)
  - 312 MW (1x1 w/DF)

Natural gas turbines are modeled using a 30-year life with Avista ownership

## **Renewable Resource Options - Solar**

All Purchase Power Agreement (PPA) Options

#### Solar

- Residential (6 kW AC)
  - New & existing
  - With & without battery
- Commercial (1 MW AC)
  - With & without battery
- Fixed PV Array (5 MW AC)
  - With & without battery

- On-System Single Axis Tracking Array (100 MW AC)
  - With & without 100 MW 4-hour lithium-ion battery
  - With 100 MW 2-hour lithium-ion battery
  - With 50 MW 4-hour lithium-ion battery
- Off-system Single Axis Tracking Array (100 MW AC) located in southern PNW

## **Renewable Resource Options - Wind**

All Purchase Power Agreement (PPA) Options

#### Wind

- On-system wind (100 MW)
- Off-system wind (100 MW)
- Montana wind (100 MW)
- Offshore wind (100 MW)
  - Share of a larger project

## **Other "Clean" Resource Options**

- Geothermal PPA (20 MW)
  - Off-system PPA
- Biomass (58 MW)
  - i.e. Kettle Falls 3 or other
- Nuclear PPA (100 MW)
  - Off-system PPA share of a mid-size facility
- Renewable Hydrogen
  - Fuel Cell (25 MW)
- Ammonia (74 MW)
  - Natural Gas Turbine

# **Storage Technologies**

#### Lithium-lon

- Assumes: 86% round trip efficiency (RTE), 15year operating life
- Assumes Avista ownership
- 5 MW Distribution Level
  - 4 hours (20 MWh)
  - 8 hours (40 MWh)
- 25 MW Transmission Level
  - 4 hours (100 MWh)
  - 8 hours (200 MWh)
  - 16 hours (400 MWh)

#### **Other Storage Options**

- Assumes Avista ownership
- 25 MW Vanadium Flow (70% RTE)
  - 4 hours (100 MWh)
- 25 MW Zinc Bromide Flow (67% RTE)
  - 4 hours (100 MWh)
- 25 MW Liquid Air (65% RTE)
  - 8 hours (400 MWh)
- 100 MW Iron Oxide (65% RTE)
  - 100 hours
- 100 MW Pumped Hydro
  - 16/24 hours (1,600/2,400 MWh)

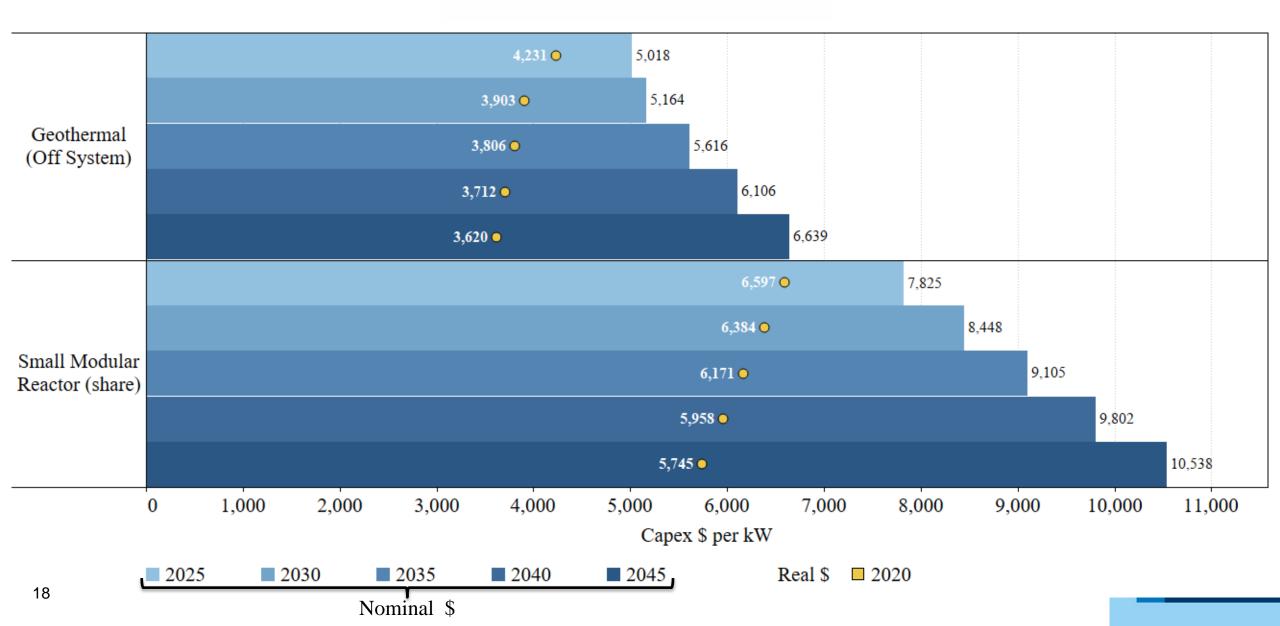
ANISTA

- 400 MW Pumped Hydro
  - 8.5 hours (3,400 MWh)

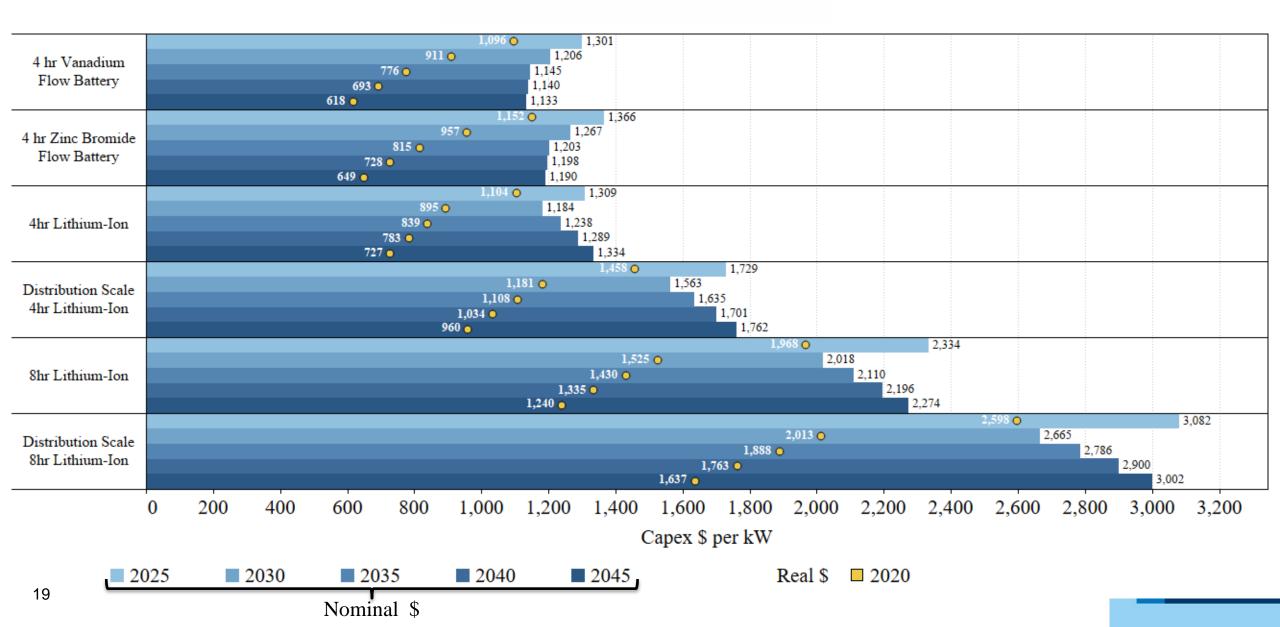
## **Resource Upgrades**

- Rathdrum CT [natural gas peaker]
  - 5 MW by 2055 uprates
  - 10 MW Inlet Evaporation

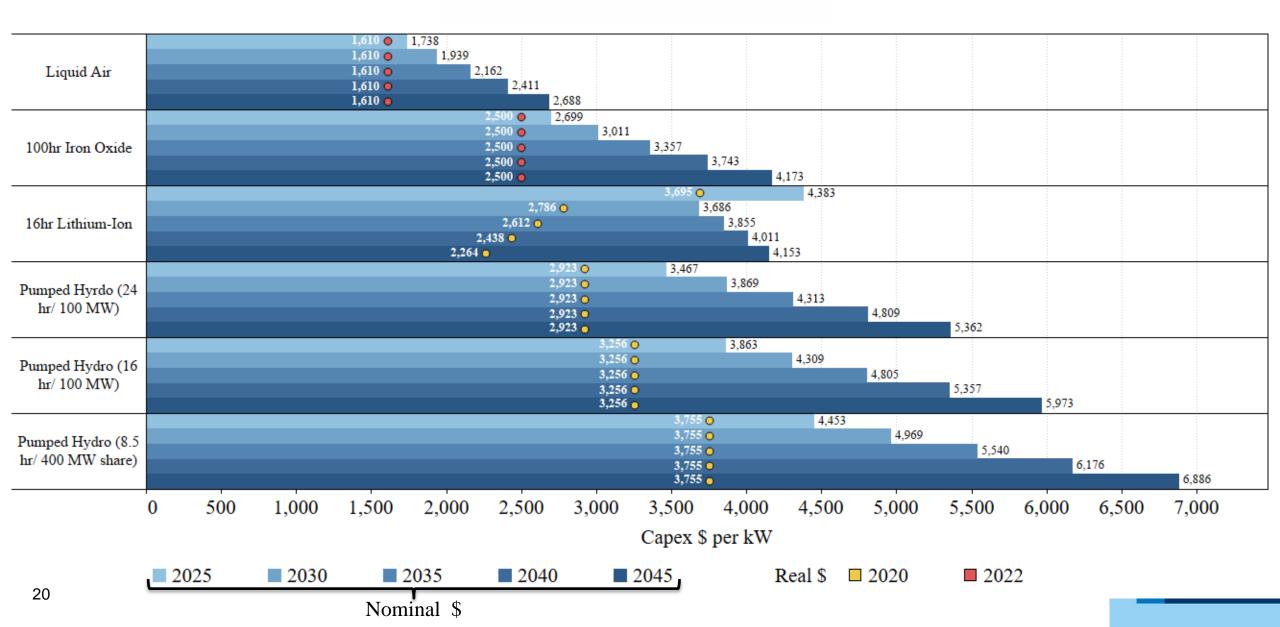



### Supply Side Resource Options Capital Costs

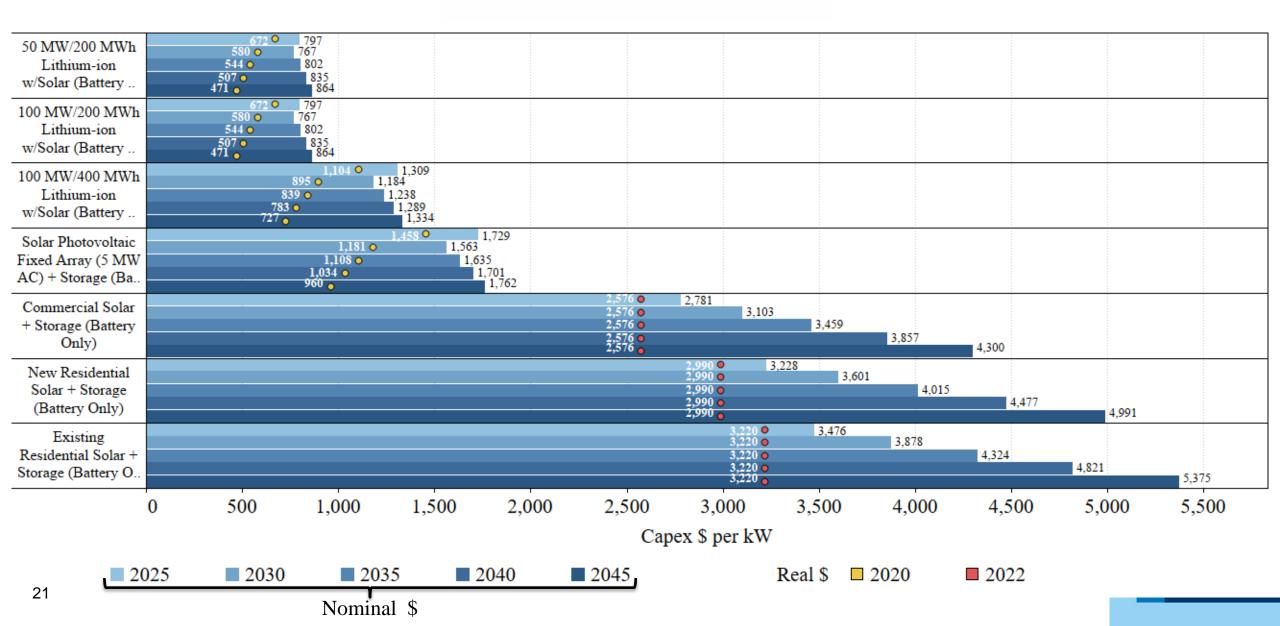
Michael Brutocao, Natural Gas Analyst Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022


### **Fueled Generation**

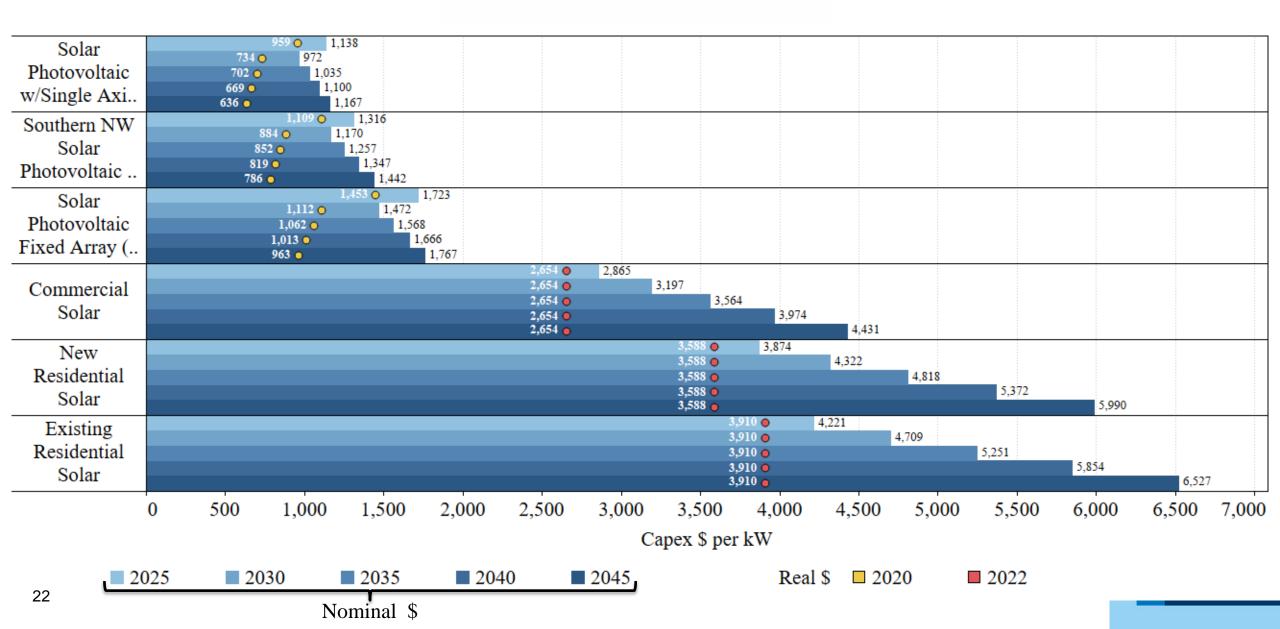
| 7F.04 CT Frame<br>Greenfield                       | 744 •<br>744 •<br>744 •<br>744 •<br>744 • | 897<br>1,000<br>1,115<br>1,243                          |       |       |       |                                                                |         |       |       |       |        |
|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------|-------|-------|-------|----------------------------------------------------------------|---------|-------|-------|-------|--------|
| 7F.04 CT Frame<br>Greenfield +<br>amonia + storage | 855 (<br>855 (<br>855 (<br>855 (          | <ul> <li>1,281</li> <li>1,428</li> </ul>                | 8     |       |       |                                                                |         |       |       |       |        |
| Reciprocating<br>Engine (ICE)<br>Machine           | 1,<br>1,<br>1,<br>1,                      | ,139 🛛                                                  |       |       |       |                                                                |         |       |       |       |        |
| NG CCCT (1x1<br>w/DF)                              | 1,<br>1,<br>1,                            | ,139 • 1,230<br>,139 • 1,372<br>,139 • 1,55<br>,139 • 2 |       |       |       |                                                                |         |       |       |       |        |
| Hydrogen Fuel Cell<br>with 40 hrs Storage          |                                           |                                                         |       |       |       | 5,356 O<br>5,356 O<br>5,356 O<br>5,356 O<br>5,356 O<br>5,356 O | 6,353   | 7,088 | 7,903 | 8,811 | 9,824  |
|                                                    | 0 1                                       | 1,000                                                   | 2,000 | 3,000 | 4,000 | 5,000                                                          | 6,000   | 7,000 | 8,000 | 9,000 | 10,000 |
|                                                    |                                           |                                                         |       |       |       | Capex \$ pe                                                    | er kW   |       |       |       |        |
|                                                    | 2025                                      | 2030                                                    | 203   | 35    | 2040  | 2045                                                           | Real \$ | 2020  |       | 2022  |        |
| 17                                                 | Nominal \$                                |                                                         |       |       |       |                                                                |         |       |       |       |        |


### **Geothermal & Nuclear**

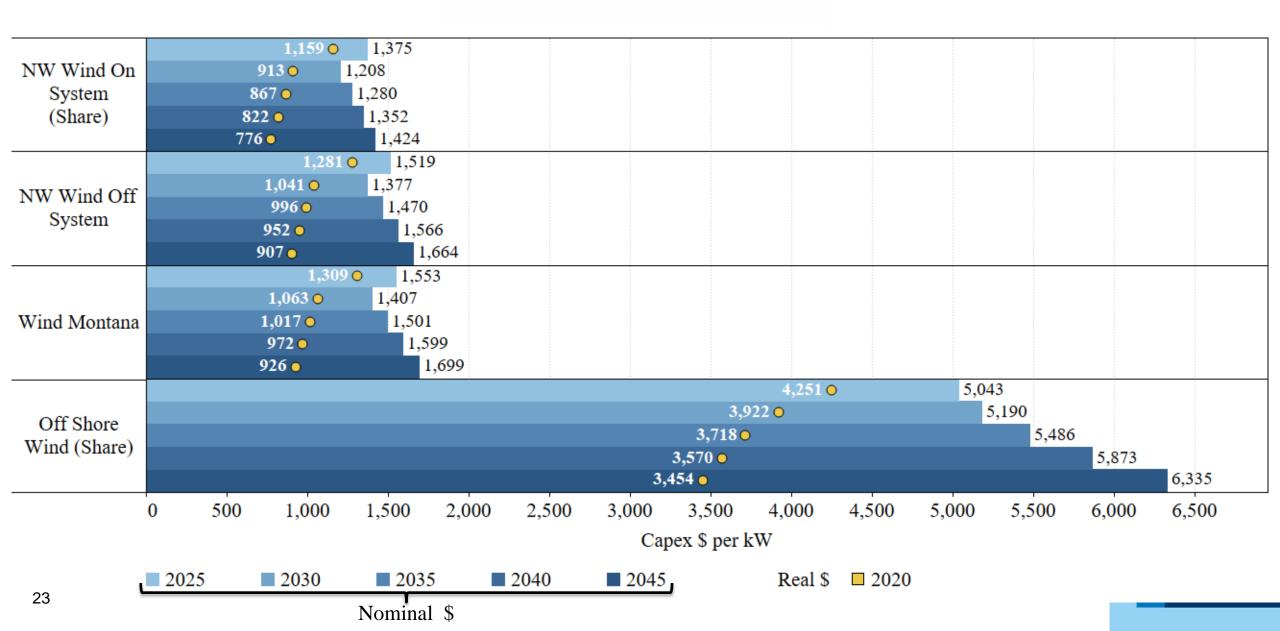




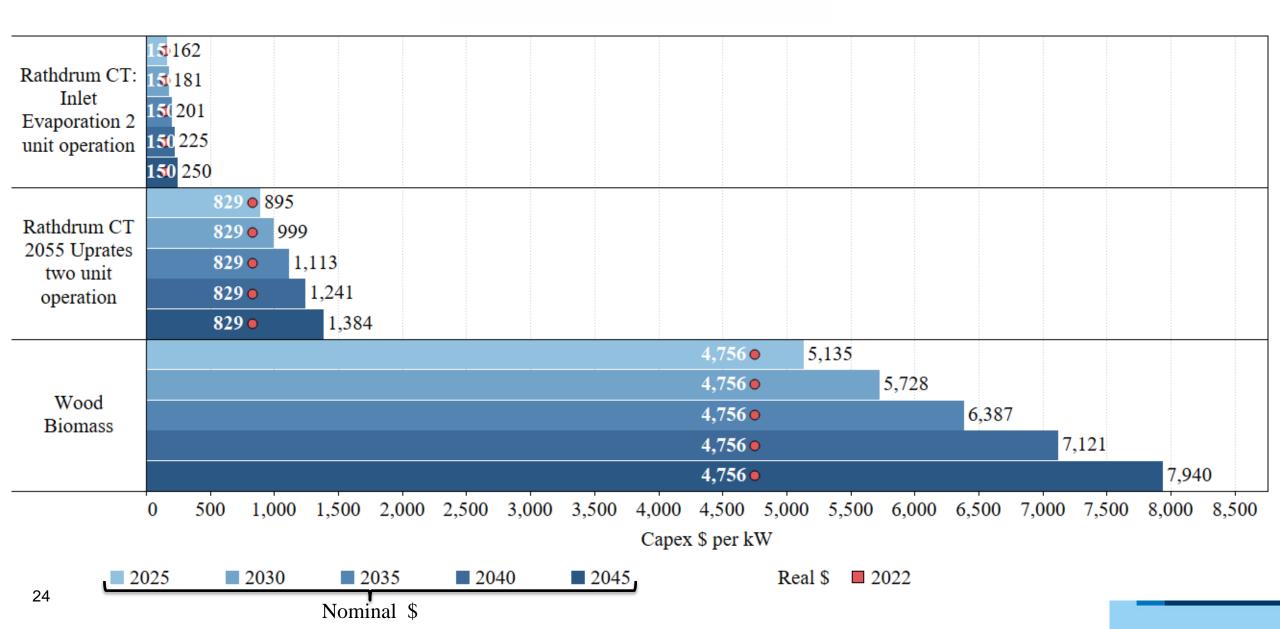




### **Storage Continued**




### **Solar + Storage**



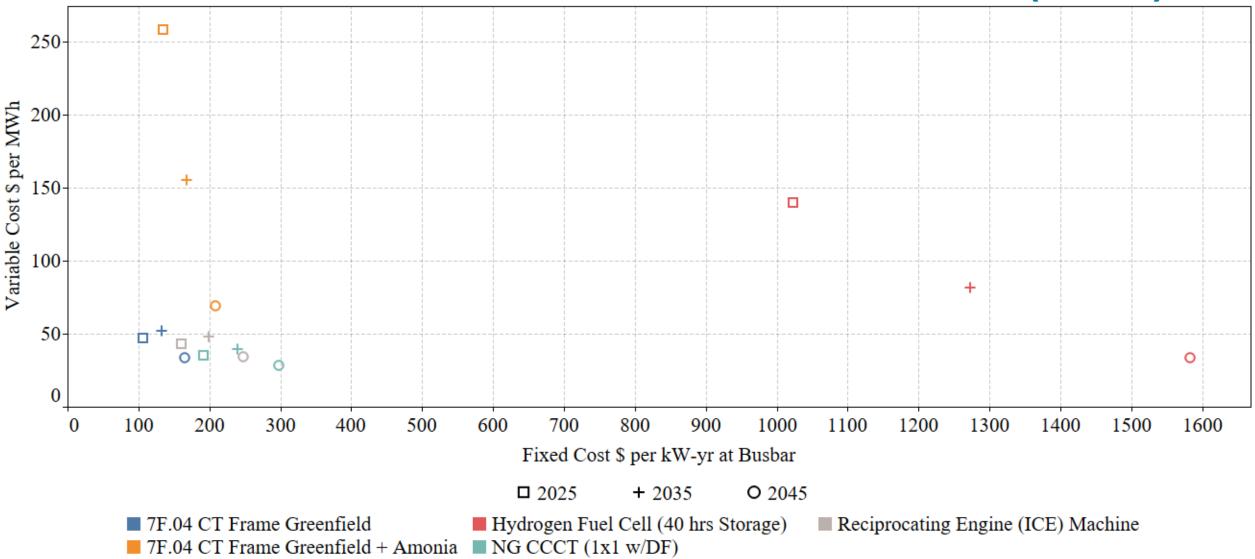




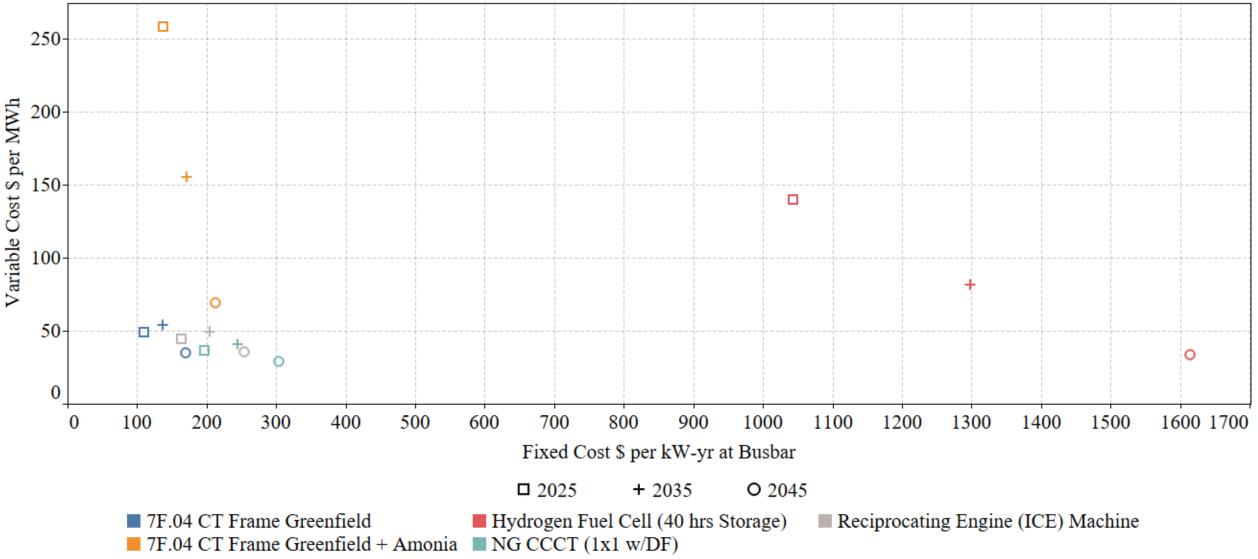




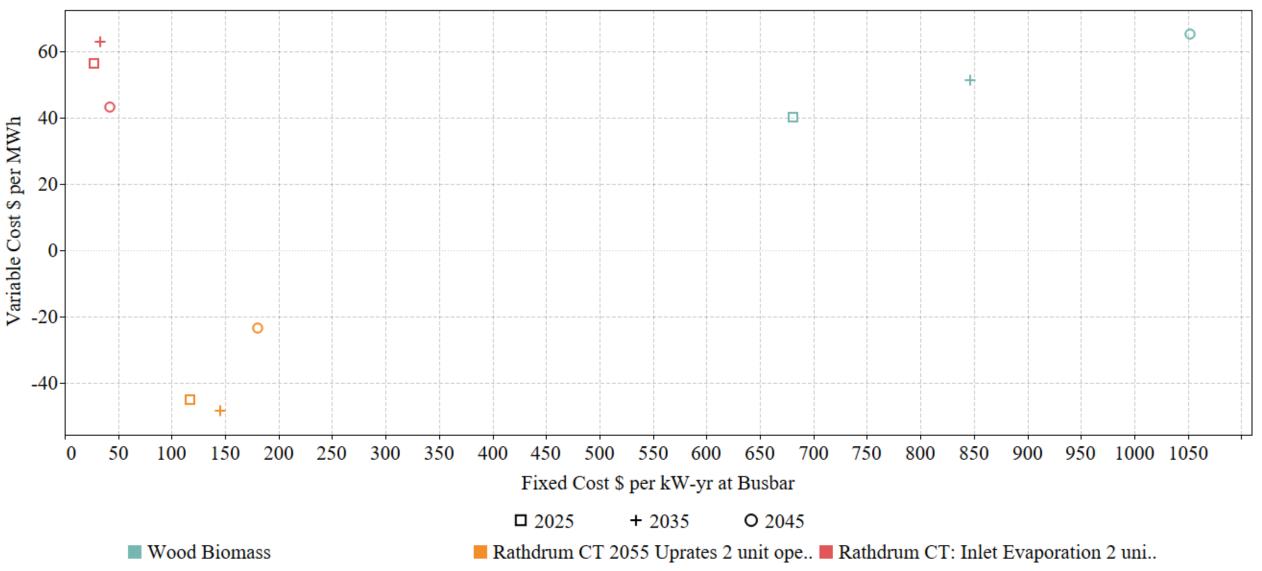

### **Upgrades & Biomass**



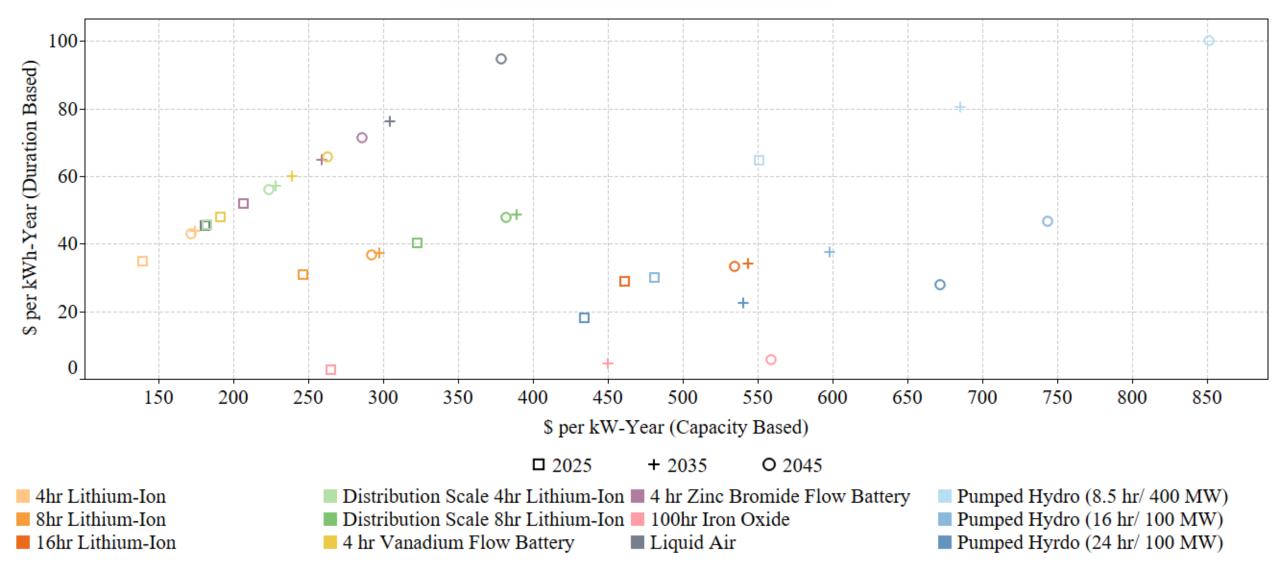




### Supply Side Resource Options Levelized Costs

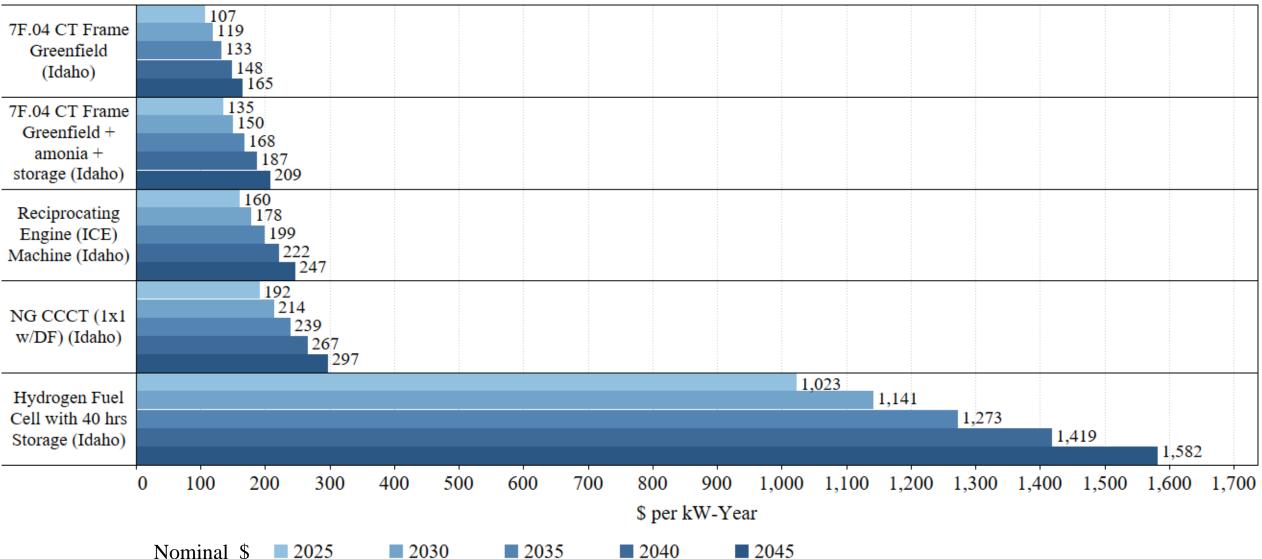
Michael Brutocao, Natural Gas Analyst Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022


### Natural Gas Fixed & Variable Costs – nominal \$ (Idaho)

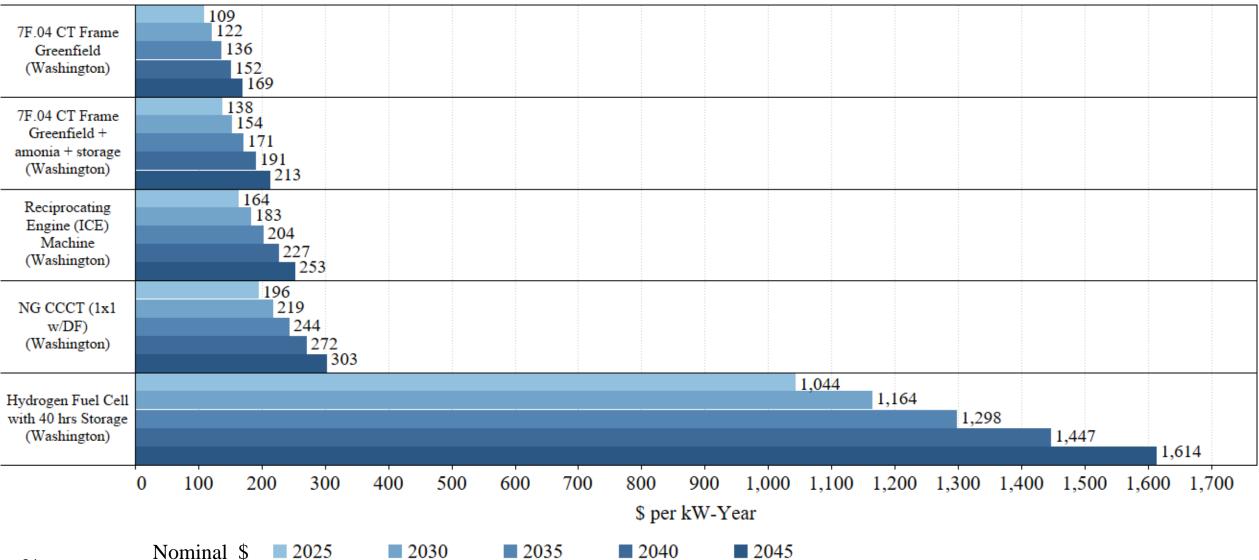



## Natural Gas Fixed & Variable Costs – nominal \$ (Washington)

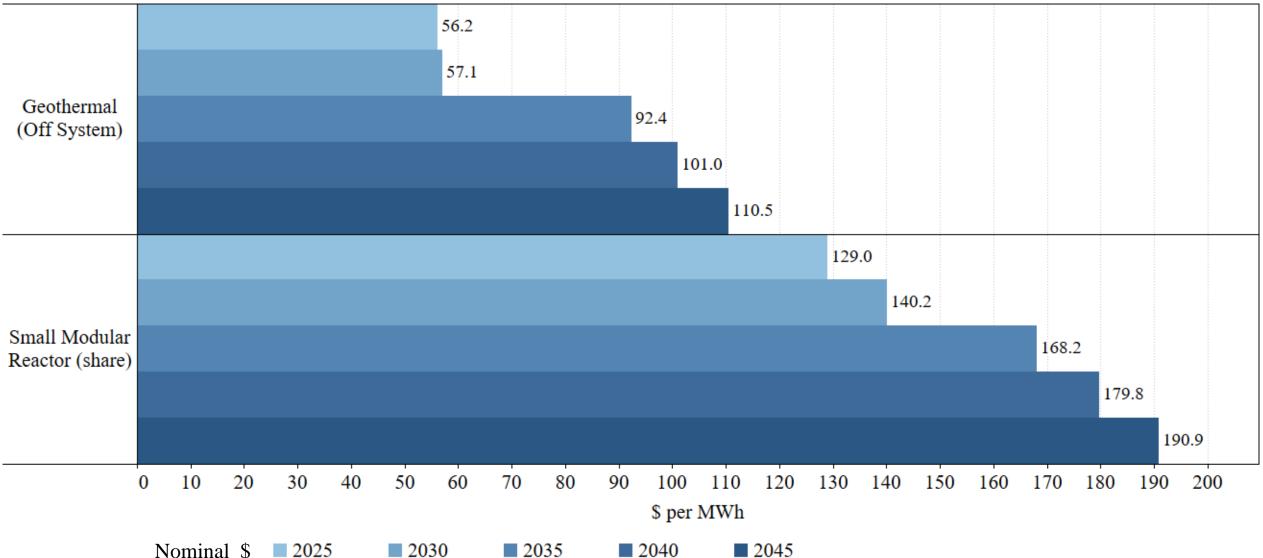



#### Facility Upgrade Cost Analysis – nominal \$

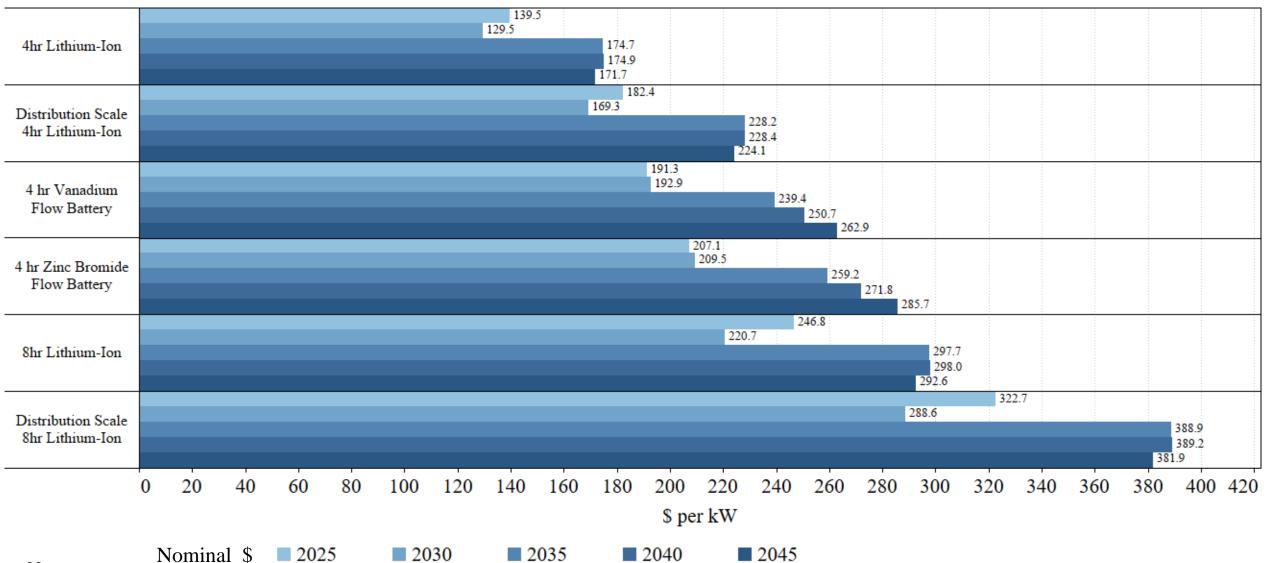



#### **Storage Cost Analysis – nominal \$**

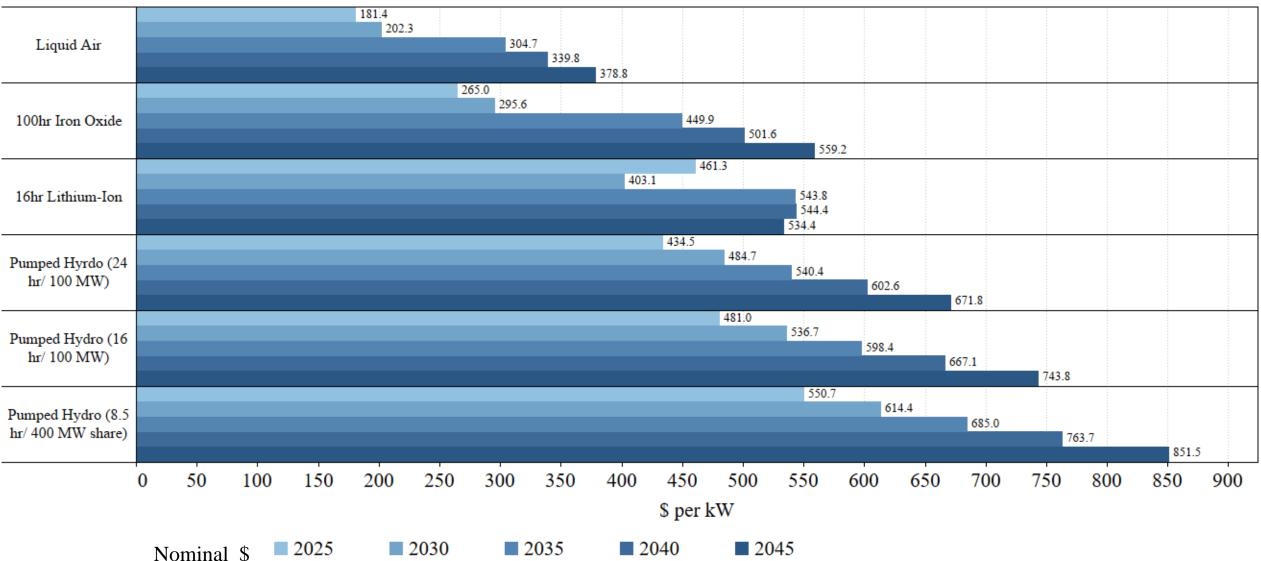



#### **Fueled Generation Fixed Cost (Levelized) - Idaho**

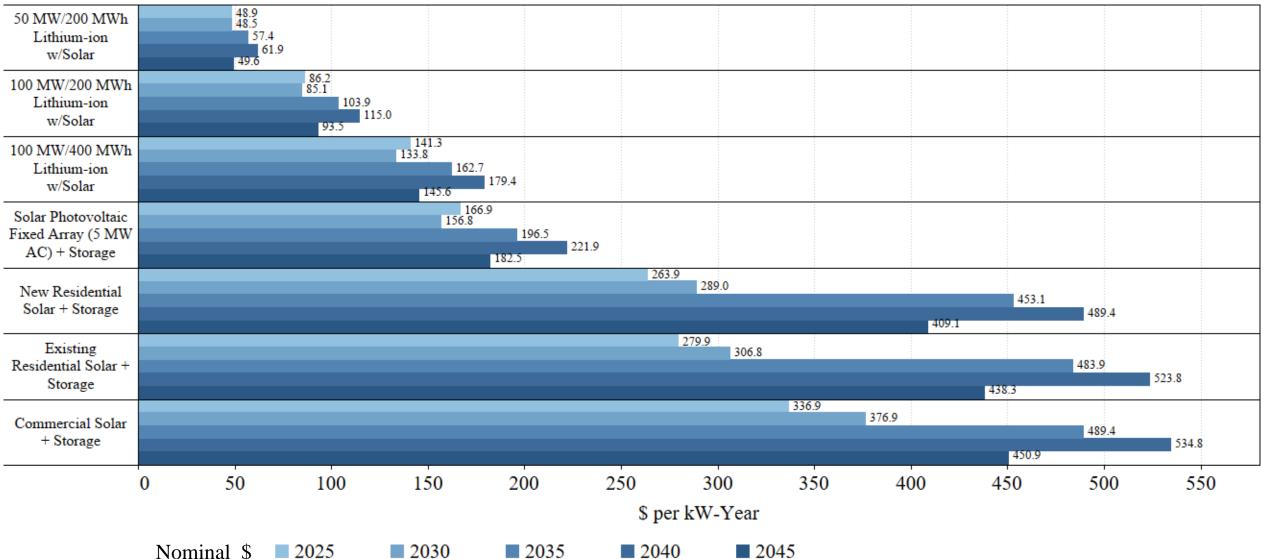



#### **Fueled Generation Fixed Cost (Levelized) - Washington**

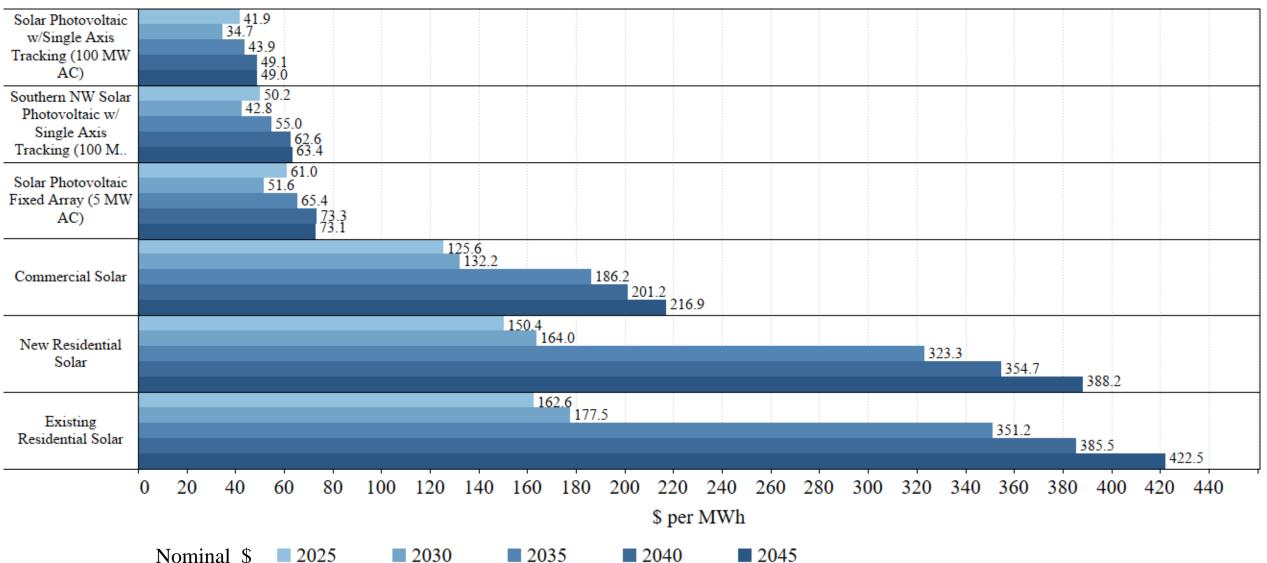



#### **Geothermal/Nuclear Implied Energy Payment (Levelized)**

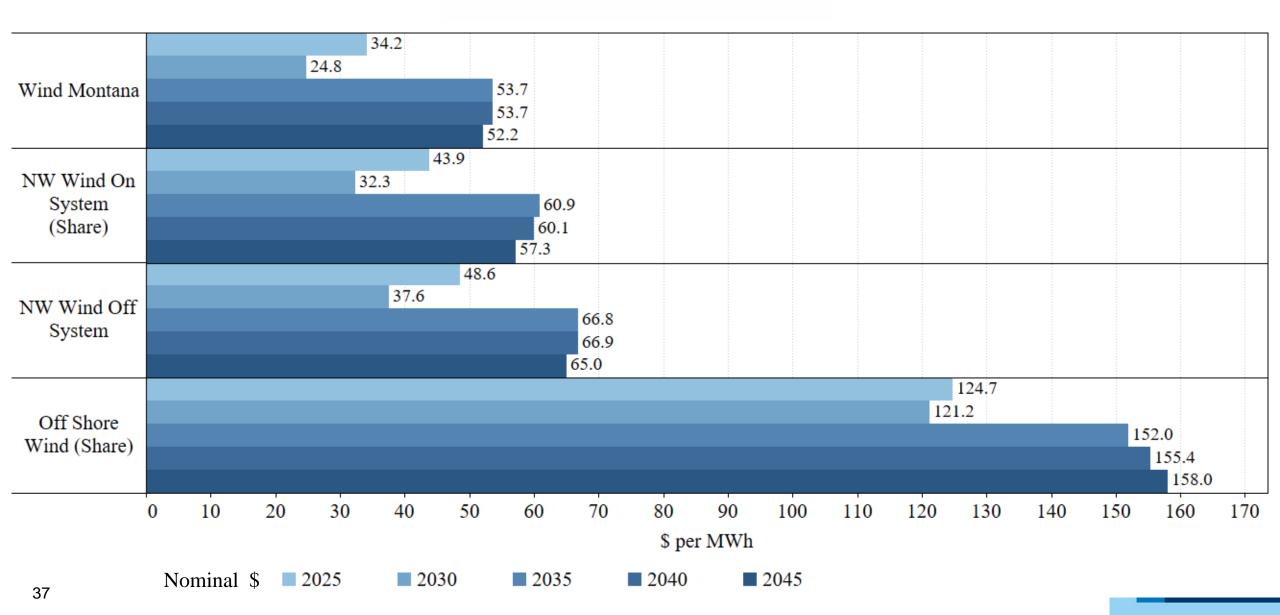



#### **Storage Fixed Cost (Levelized)**

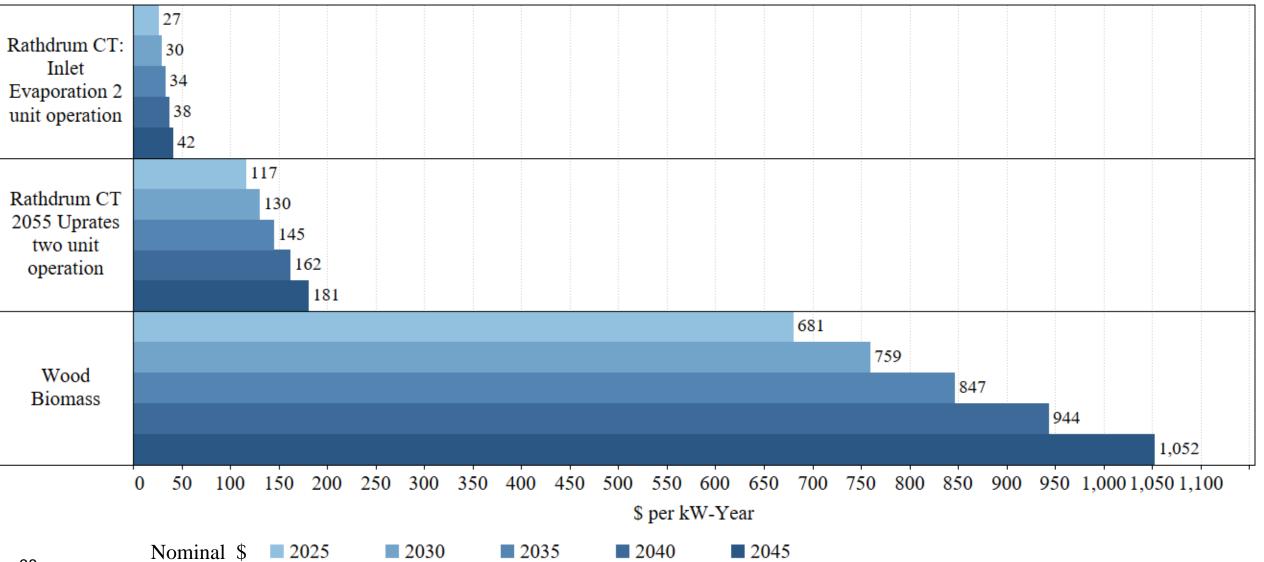



#### Storage Fixed Cost (Levelized) Continued...




#### **Storage Implied Capacity Payment (Levelized)**




#### Solar PPA Price/Implied Energy Payment (Levelized)



#### Wind PPA Price/Implied Energy Payment (Levelized)



#### **Upgrades & Biomass Fixed Cost (Levelized)**





#### Supply Side Resource Options Excel Workbook – Methodology and Navigation

Michael Brutocao, Natural Gas Analyst Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022



# Variable Energy Resources Integration Study Update

2023 Avista Electric IRP

TAC 6 – September 28, 2022

Lori Hermanson, Senior Power Supply Analyst

#### **VER Integration Study – Purpose and Overview**

- Consistent application supporting varying analyses
  - Integrated Resource Planning
  - Resource acquisition processes (e.g., RFP)
  - Transmission tariff rates
  - PURPA avoided cost calculations
- Define "Consumptive Capacity" (CC) associated with incremental variable energy resources
- Determine Costs
  - Current costs under varying scenarios
  - Projected future costs under IRP Preferred Resource Strategy



## **VER Integration Study Scope**

- Included
  - Consumptive capacity and its costs
  - Impacts of EIM ("fast") markets
  - Potential future portfolio VER buildouts
  - Sensitivity scenarios
- Not included
  - Alternative capacity resources (e.g. batteries)
  - New utility-controlled storage
  - VER-driven investments in existing infrastructure
  - Distributed generation or response beyond what's in IRP



#### **Assumptions for ADSS Modeling**

- Base case assumptions for all portfolio mixes (2-4 hours per run)
  - 13 VER portfolios (base + 12)
  - Include EIM regional diversity
  - Include carbon costs (CCA)

- Modeling sensitivities for 400 MW wind case
  - Addresses next 10+ years of PRS
  - Hydro (low/base/high)
  - Market prices (low/base/high)



## **VER Study Workplan Overview**

- Phase I Results Energy Strategies
  - VER scenarios and profiles *completed*
  - VER reserve analysis *completed*
  - VER Work group presentation- *completed*
  - Slides and recording of presentation on IRP website
- Production Cost Modeling (Avista ADSS) 1Q23
- Phase II Deliverables (ES) 2Q23
  - Finalize calculation of integration costs
  - Presentation and report with full analysis and results
  - Tool to calculate reserves for future scenarios/mixes

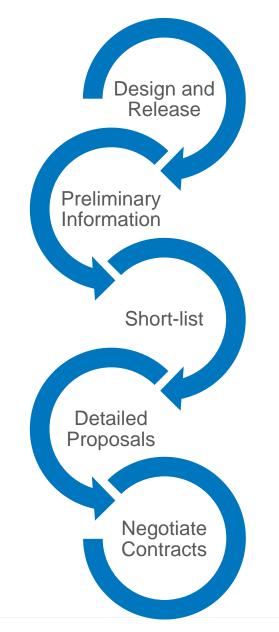


#### **Phase I Results – Reserves**








# Avista Utilities IRP TAC - RFP Update

2023 Electric IRP 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022

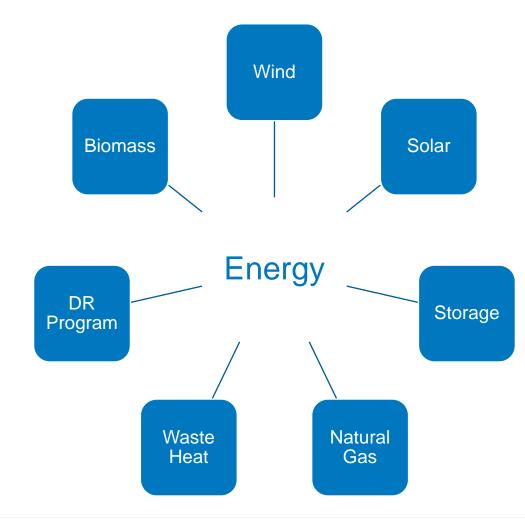
Chris Drake, Wholesale Marketing Manager

## **2022 All Source RFP Target Timeline**

- February 18, 2022 Avista releases All Source RFP
- February 28, 2022 Bidders' conference
- March 25, 2022 RFP bids due
- April 25, 2022 Summary of Proposals posted
- June 10, 2022 Short-listed Bid selection/notification
- July 18, 2022 Detailed proposals due from Shortlisted Bidders
- Sep 2, 2022 Final price refresh request from Shortlisted Bidders
- Oct 2022 Proposal(s) selected for negotiations
- Nov/Dec 2022 IE report to commission






#### **2022 All Source RFP and Proposal Highlights**

#### Request for Proposals

- Shortfalls in 2026 (flexible CODs)
- 162 MW winter capacity
- 127 MW summer capacity
- Renewable and monthly energy resources also required

#### Responses

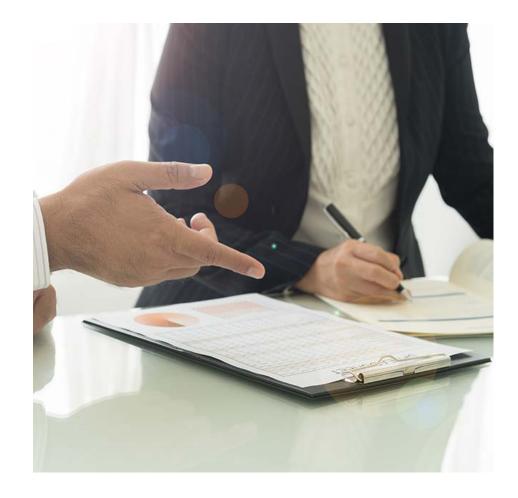
- 21 developers
- 11 technology types
- 32 proposals with options
- 56 total projects to analyze
- Avista and Sapere analysis completed mid-June to identify short list



#### 2022 RFP Responses

Number of Proposals and Capacity by Type

| Resource | Туре                      | # of Proposals | Total Capacity (MW) <sup>1</sup> |
|----------|---------------------------|----------------|----------------------------------|
| Wind     | Wind                      | 12             | 1804.7                           |
|          | Wind + Storage            | 6              | 856.2                            |
|          | Wind + Solar              | 1              | 404                              |
|          | Wind + Solar +<br>Storage | 4              | 2159.8                           |
| Solar    | Solar                     | 6              | 749.9                            |
|          | Solar + Storage           | 7              | 660                              |
| Storage  | Battery                   | 6              | 643                              |
|          | Pumped Storage<br>Hydro   | 3              | 393.3                            |
| Other    | Biomass                   | 2              | 226                              |
|          | Waste Heat                | 1              | 9.9                              |
|          | Geothermal                | 1              | 8                                |
|          | Hydro                     | 1              | 38.7                             |
|          | Demand Response           | 3              | 25.84                            |
|          | Natural Gas               | 3              | 280                              |


<sup>1</sup> Some bidders provided multiple bids or capacity options. Within each type only the initial capacity is

4 included. Posted at <u>www.myavista.com/AllSourceRFP</u>.



## Independent Evaluator (IE) – Sapere Consulting

- IE's role includes, but not limited to, the following:
  - Professional assistance in design and evaluation
  - Ensure RFP is conducted in accordance with Idaho and Washington resource acquisition rules
  - Ensure process is fair and transparent
  - Assess Avista's process of scoring bids and selection of shortlists is reasonable
  - Review all third party and Avista proposals
    - Non-Financial Scoring
    - Financial Modeling and Scoring





#### **Evaluation Process – Short List Selection**

#### **Initial Screen Evaluation Scoring Matrix**

| Weighting                                              |                                           |                                                                                             |                                                    |                                                                         |                                                                                         |             |  |  |  |
|--------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|--|--|--|
| 20%                                                    | 40%                                       | 5%                                                                                          | 20%                                                | 10%                                                                     | 5%                                                                                      | 100%        |  |  |  |
| Risk<br>Management                                     | Financial Energy<br>Impact <sup>1,2</sup> | Price Risk                                                                                  | Electric Factors                                   | Environmental <sup>2</sup>                                              | Non-Energy<br>Impact <sup>2</sup>                                                       | Total Score |  |  |  |
| Developer<br>Experience,<br>Proven<br>Technology, etc. | • •                                       | Potential for<br>change in costs,<br>fixed vs variable<br>pricing, variable<br>energy, etc. | Interconnection<br>status and<br>transmission plan | Permitting such as<br>Conditional Use<br>Permit, SEPA,<br>Studies, etc. | Energy security,<br>benefit to service<br>territory, named<br>communities,<br>DEI, etc. |             |  |  |  |

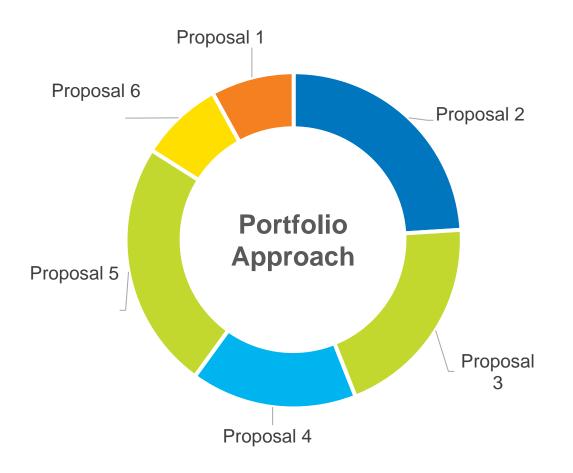
<sup>1</sup>*Financial evaluation based on highest score of Capacity or Energy.* 

<sup>2</sup>Clean Energy Implementation Plan Customer Benefit Indicators (where applicable) are included in Non-Energy Impact as well as Financial Energy Impact and Environmental criteria.



## **Equity Considerations**

Develop, strengthen, and support policies and procedures that distribute and prioritize resources to historically and currently marginalized customers, including tribes.


#### RFP Stakeholder Input

- Draft RFP filed with Washington Utilities and Transportation Commission (UTC) and shared with Idaho Public Utilities Commission (PUC), Avista's IRP TAC and Equity Advisory Group among others
- RFP document including preliminary information requested from bidders, evaluation methodology and scoring incorporated stakeholder feedback
- Final RFP approved by UTC
- Scoring matric included Customer Benefit Indicators (CBI)
  - <u>Non-Energy Impacts</u> Energy resiliency, security, diversity, labor and location in named community
  - <u>Financial Impacts</u> consideration for quantifiable cost impacts of economic, public health and safety
  - <u>Environmental Factors</u> such as air quality impacts





#### **Evaluation Process – Detailed Proposals**



- Short list identified based on natural break points in scoring matrix
  - June 10, 2022
- Detailed proposals due from Short-listed Bidders
  - July 18, 2022
- Price refresh after Inflation Reduction Act
  - September 2, 2022
- Financial modeling
  - Portfolio approach (one or many resources selected)
  - Several scenarios to be modeled



#### Thank you...



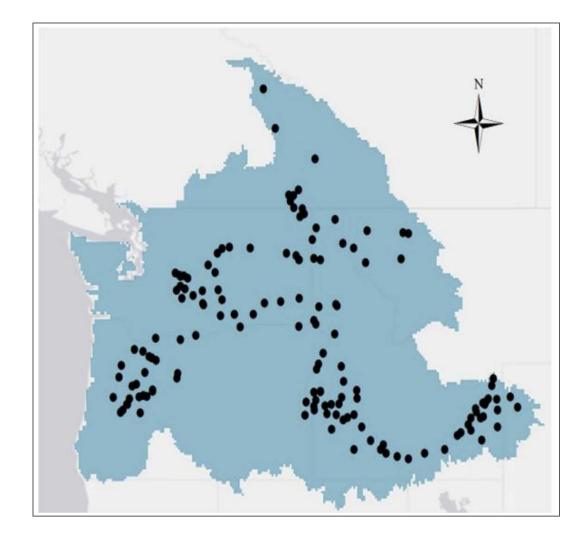




# **IRP Climate Change Analysis**

Impact of forecasted streamflow and temperature changes on hydrogeneration and load

Mike Hermanson, Senior Power Supply Analyst Electric IRP, 6<sup>th</sup> Technical Advisory Committee Meeting September 28, 2022

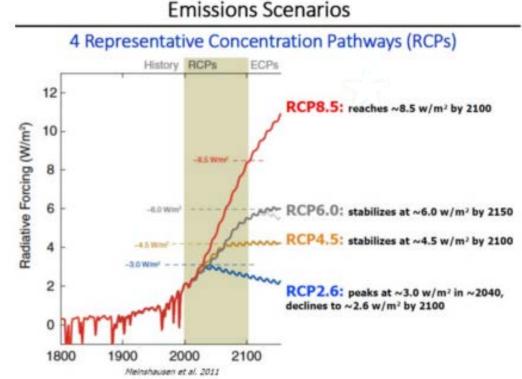

#### **Overview**

- Data sources and methodology
- Hydrogeneration
- Load forecast
- Peak load forecast
- Use in IRP Modeling



#### **Data Sources**

- Climate and Hydrology Datasets for RMJOC Long-Term Planning Studies: Second Edition
  - River Management Joint Operating Committee (RMJOC)
    - BPA, US Army Corps of Engineers, US Bureau of Reclamation
  - Research Team
    - University of Washington, Oregon State University
- Part I Unregulated stream flows
- Part II Reservoir Regulation and Operations






#### **Global Climate Models**

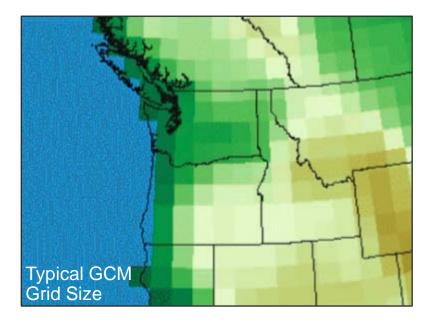
- Global Climate Models (GCMs)
  - Coarse resolution ranging from 75 to 300 km grid size
  - Provides projections of temperature and precipitation
  - Multiple Representative Concentration Pathways (RCP 4.5, RCP 6, RCP 8.5)
  - 10 GCM models used in study
    - CanESM2 (Canada)
    - CCSM4 (US)
    - CNRM-CM5 (France)
    - CSIRO-Mk3-6-0 (Australia)
    - GFDL-ESM2M (US)
    - HadGEM2-CC (UK)
    - HadGEM2-ES (UK)
    - inmcm4 (Russia)
    - IPSL-CM5-MR (France)
  - MIROC5 (Japan)

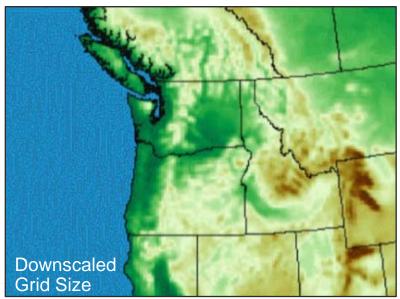
4





#### **Representative Concentration Pathways**

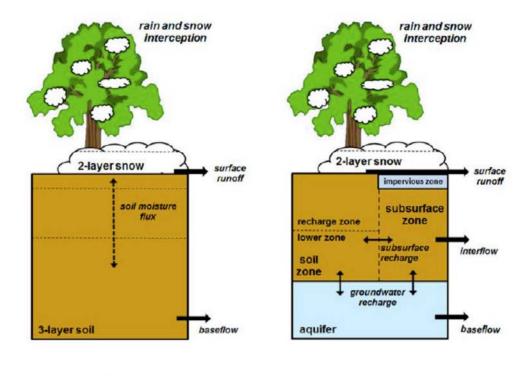

- Description by Intergovernmental Panel on Climate Change (IPCC)
  - RCP2.6 stringent mitigation scenario
  - RCP4.5 & RCP6.0 intermediate scenarios
  - RCP8.5 very high GHG emissions
- RMJOCII Study evaluated RCP4.5 and RCP8.5
- RCP4.5 and RCP6.0 similar within the IRP planning horizon


|                                                      | Scenario | 2046 | -2065        | 2081-2100 |              |
|------------------------------------------------------|----------|------|--------------|-----------|--------------|
|                                                      |          | Mean | Likely range | Mean      | Likely range |
| Global Mean<br>Surface<br>Temperature<br>Change (C°) | RCP2.6   | 1.0  | 0.4 to 1.6   | 1.0       | 0.3 to 1.7   |
|                                                      | RCP4.5   | 1.4  | 0.9 to 2.0   | 1.8       | 1.1 to 2.6   |
|                                                      | RCP6.0   | 1.3  | 0.8 to 1.8   | 2.2       | 1.4 to 3.1   |
|                                                      | RCP8.5   | 2.0  | 1.4 to 2.6   | 3.7       | 2.6 to 4.8   |



#### **Downscaling Techniques**

- Downscale GCM data to finer resolution necessary to model hydrology
  - Statistical methods to represent variation within large grid size
  - Two methods used (BCSD, MACA)
    - Bias Corrected Spatial Disaggregation
    - Multivariate Adaptive Constructed Analog

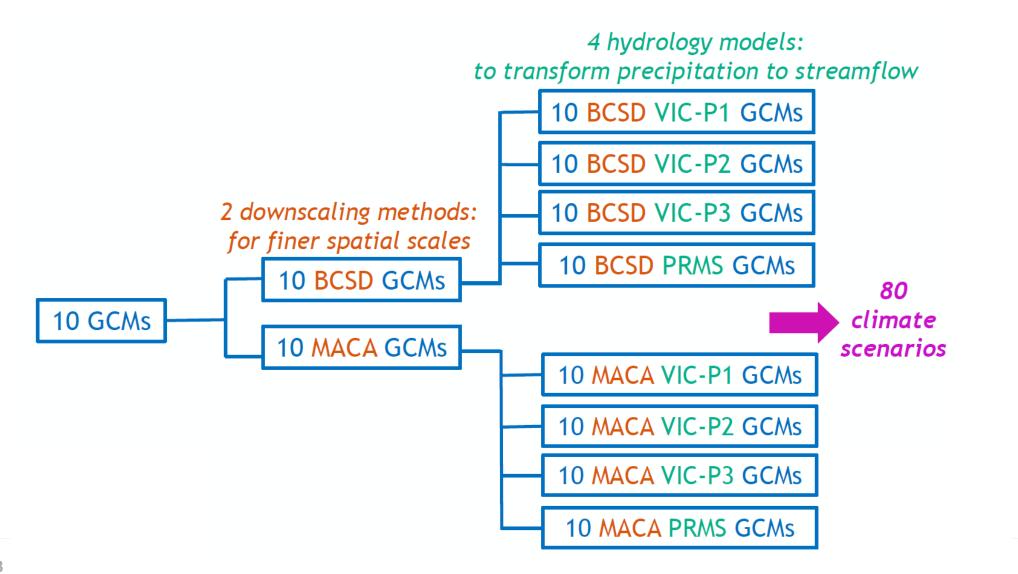







## **Modeling Climate Change Impacts on Hydrogeneration**

- Hydrologic models
  - Downscaled temperature and precipitation is input to hydrologic models.
  - Hydrologic models use soil, geology, slope, vegetation, aspect, snow cover, etc. to model how precipitation translates into runoff and streamflow.
  - 2 different hydrology models used.
    - 1 version of PRMS model
    - 3 versions of VIC model
- Hydro regulation models
  - Unregulated streamflow is input to reservoir models of Columbia River system to generate regulated flows.




VIC

PRMS



#### **Modeling Climate Change Impacts on Hydrogeneration**



#### **Modeling Climate Change Impacts on Hydrogeneration**

- Comparison of hydrogeneration used for previous IRP to estimated hydrogeneration based on stream flows from climate change modeling.
- Previous IRP utilized modeled regulated flows for water years 1929-2008 provided by BPA.
- BPA selected 19 of the 80 scenarios that encompass a sufficient range of uncertainty.
- Streamflows for 19 scenarios for the period of 2019-2049 were used to develop estimates of generation.
- Regression models based on relationship of baseline flows to generation for Avista projects.
- Mid-C generation from BPA Hydsim model of climate change scenarios.

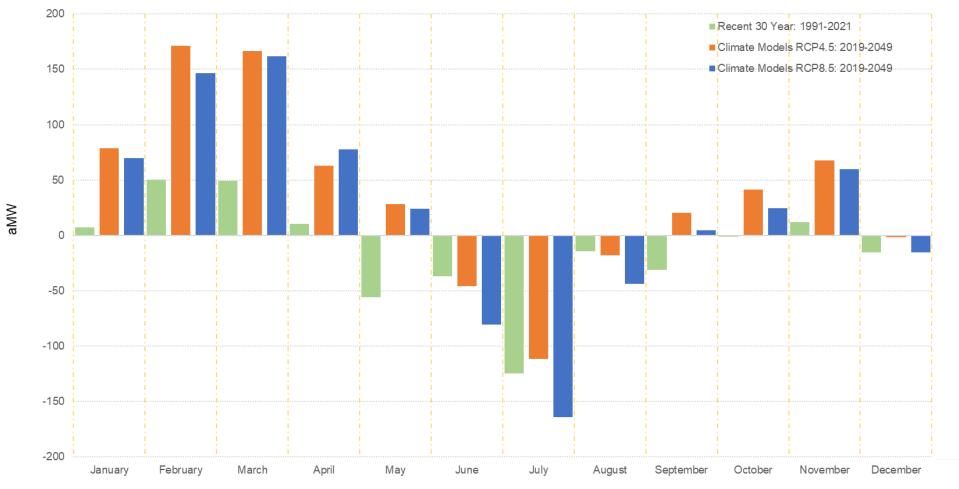


### **Modeling Recent 30-Year Hydrogeneration**

- BPA is moving to using recent 30-year period for planning purposes.
- BPA is finalizing 90-year (1928-2018) regulated flow data set and is not yet available.
- Utilized actual river flow data for 2009-2021 in regression models utilized for climate change modeling to add to the current 80-year record and create a recent 30-year dataset.
- Used actual 2009-2021 Mid-C generation.

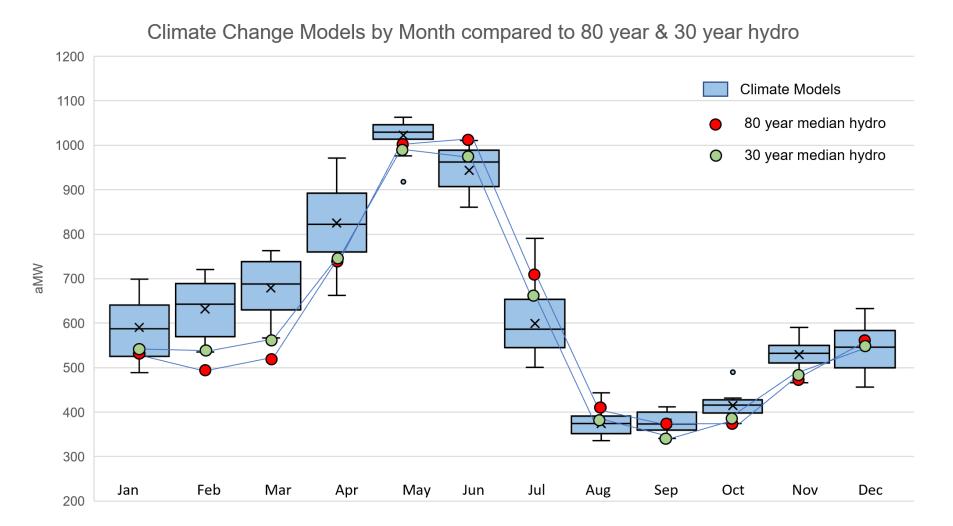


#### **Comparison of Annual (aMW)**


|                                | 80-Year Hydro<br>(1929-2008) | Recent 30-Year<br>(1991-2021) | Climate Change<br>RCP8.5<br>(2019-2049) | Climate Change<br>RCP4.5<br>(2019-2049) |
|--------------------------------|------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|
| Mean                           | 598                          | 595                           | 628                                     | 645                                     |
| Median                         | 597                          | 585                           | 620                                     | 636                                     |
| Standard<br>Deviation          | 142                          | 137                           | 149                                     | 169                                     |
| 10 <sup>th</sup><br>Percentile | 424                          | 437                           | 454                                     | 447                                     |

- Recent 30-year shows slight decrease in annual energy
- Climate change scenarios show an increase in annual energy consistent with the projection of overall increase in precipitation in the Northwest

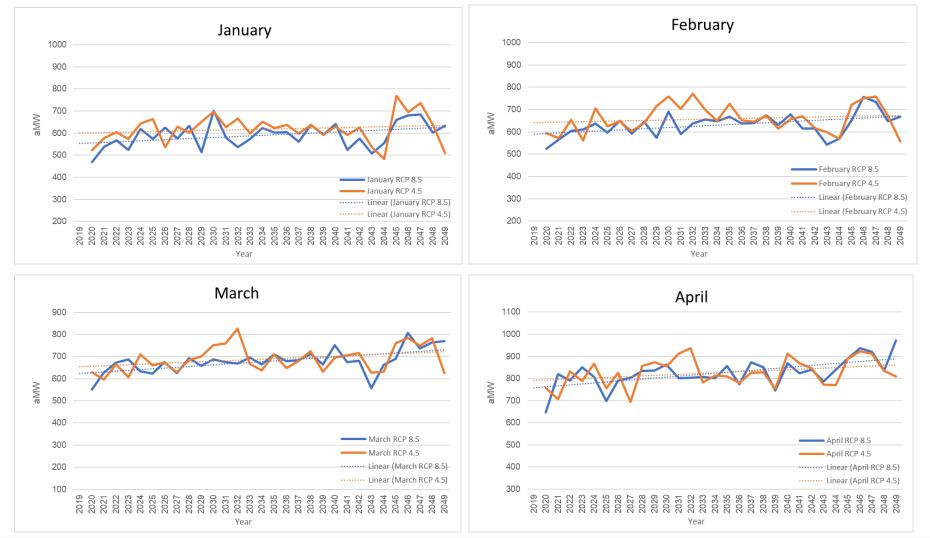



#### **Comparison of Monthly (aMW)**

Impact of Climate Change Forecasted River Flows on Monthly Median Avista Hydro Generation

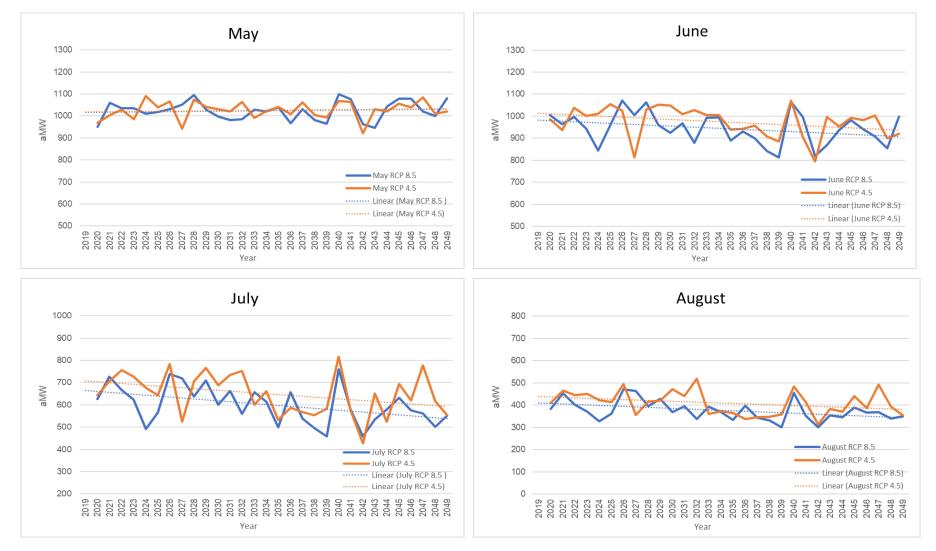





#### **Variability of Climate Models**

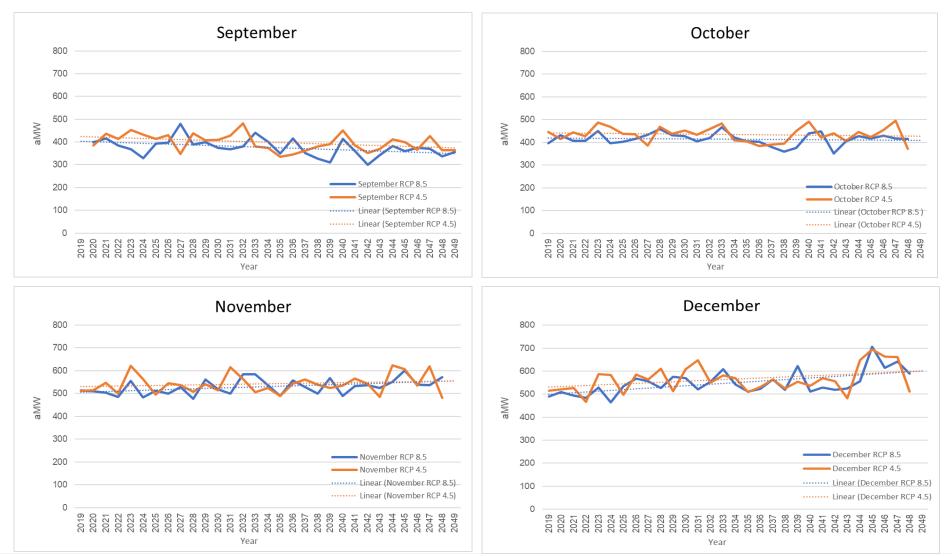





13

#### 2019-2049 Trend

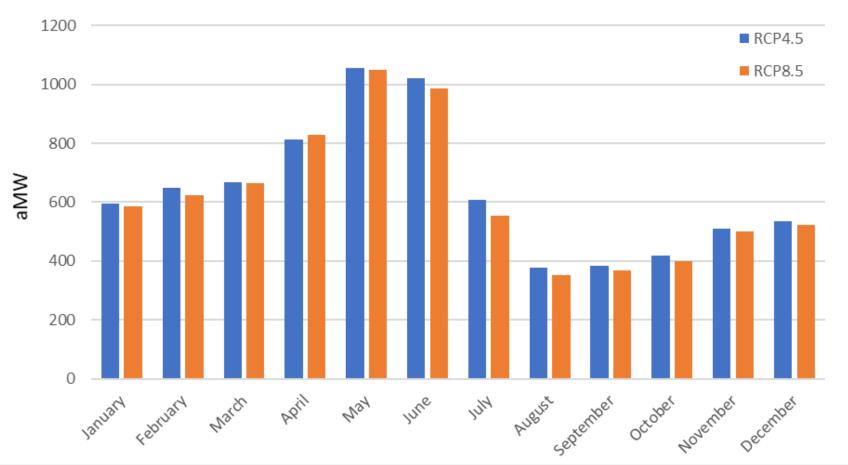





#### 2019-2049 Trend





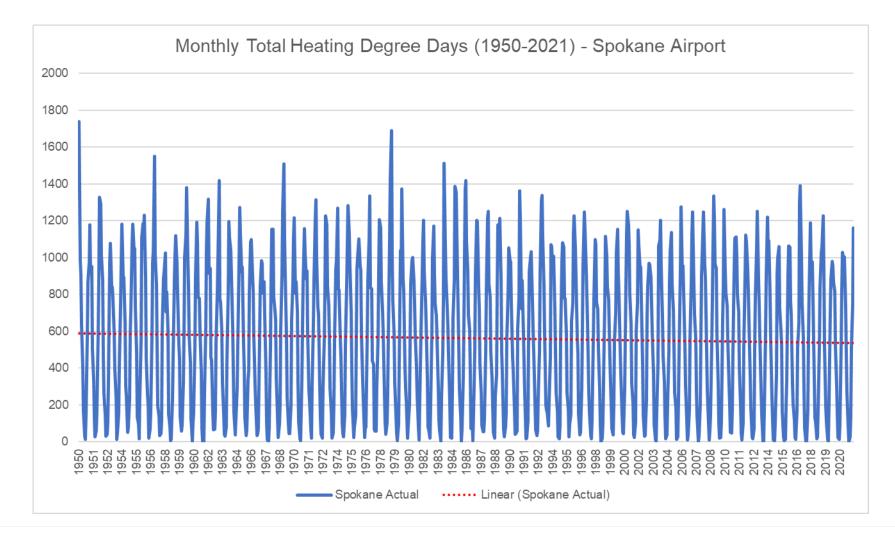

#### 2019-2049 Trend



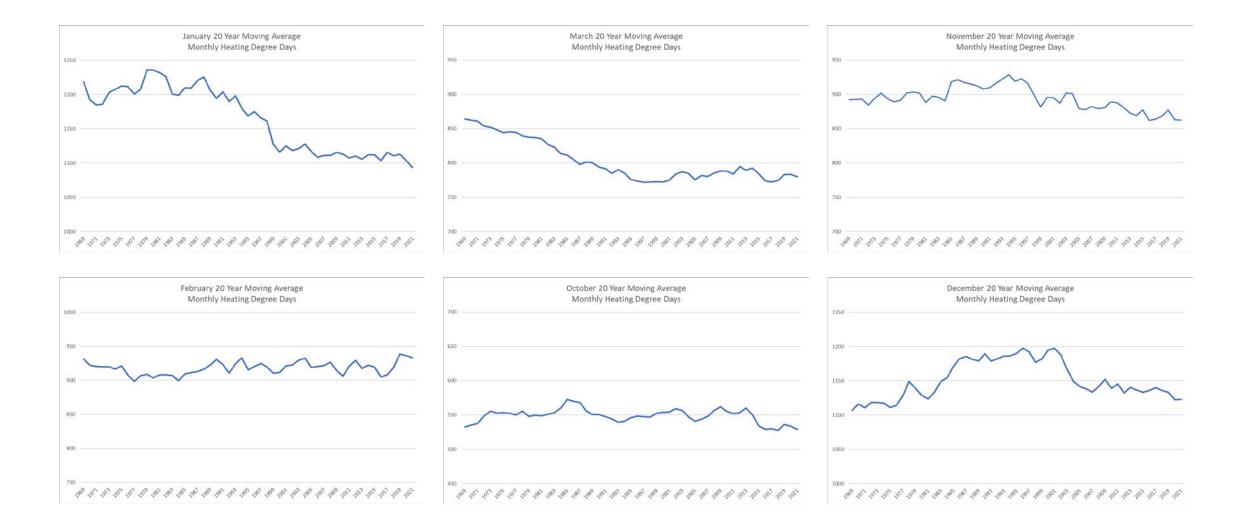


#### Comparison of RCP4.5 and RCP8.5 for 2019-2049

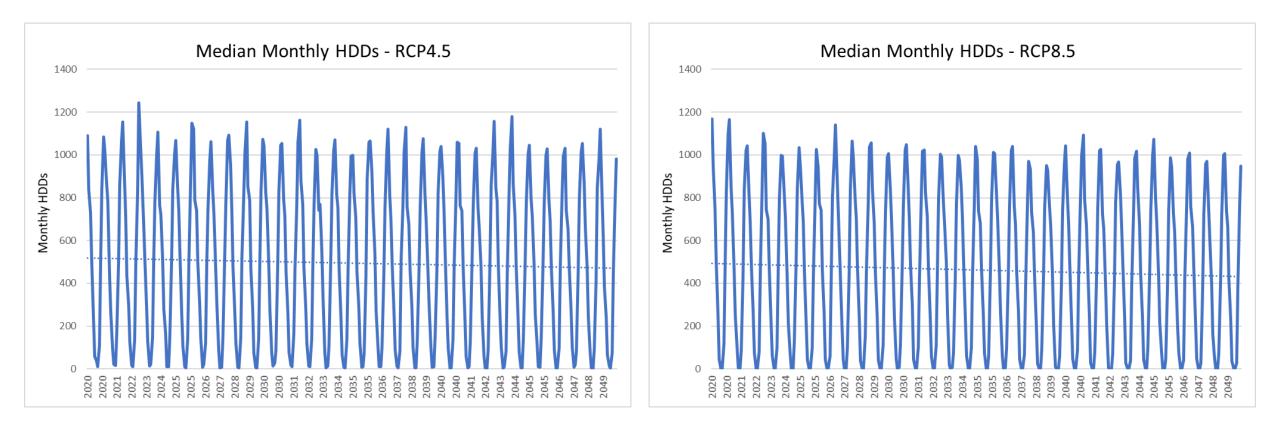
Avista Hydrogeneration - Compairson of Emission Scenarios





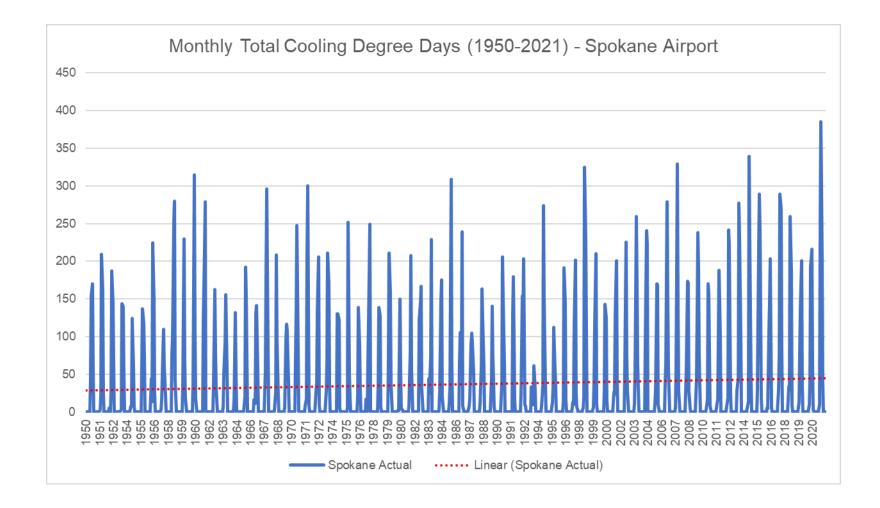


- Daily max and min temperature for Spokane airport through 2049 that correspond to the 19 BPA scenarios.
- Load forecasting model utilizes monthly heating degree days (HDDs) and cooling degree days (CDDs) as inputs to econometric model.
- Utilized the median average daily temperature of the climate models to calculate daily HDDs and CDDs and then summed monthly.
- Load forecast utilizes a 20-year moving average.




 Heating Degree Days Baseline Data



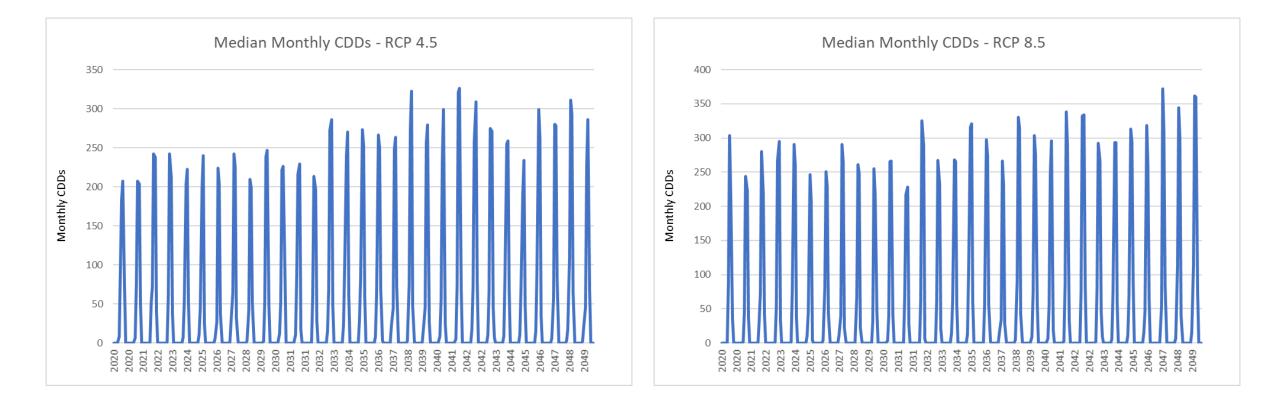








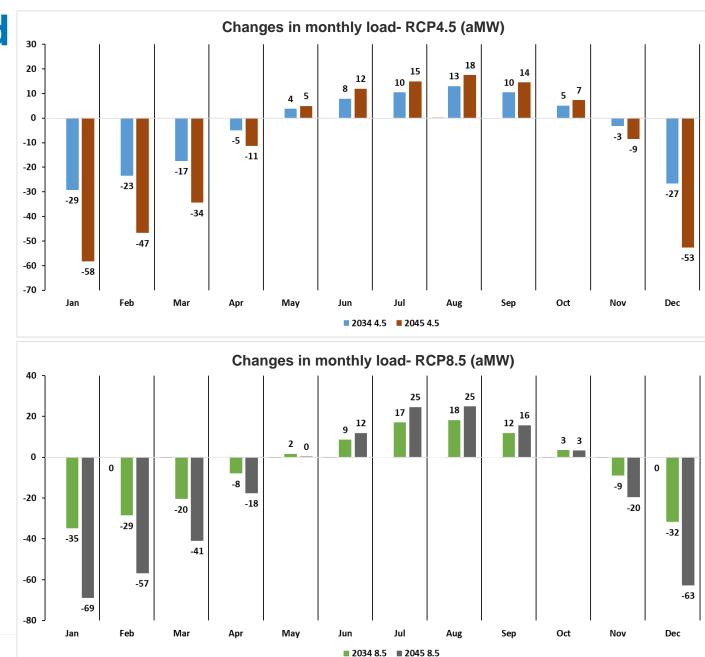




 Cooling Degree Days Baseline Data





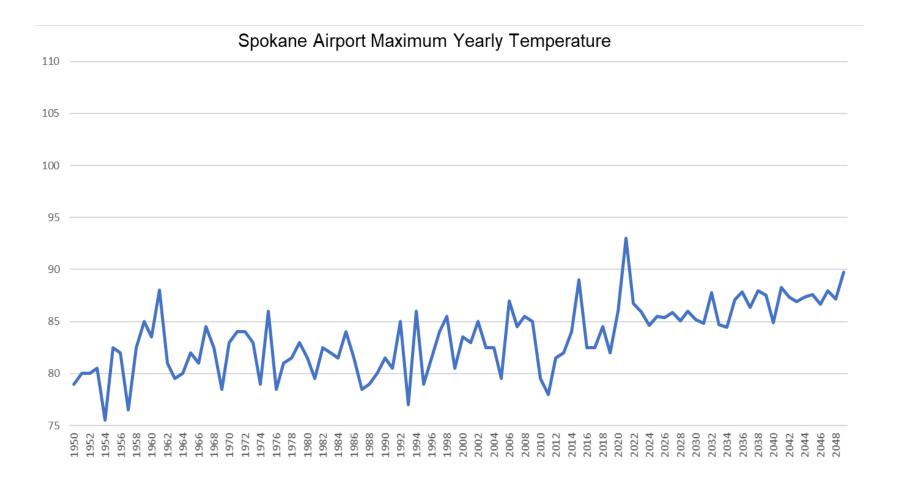




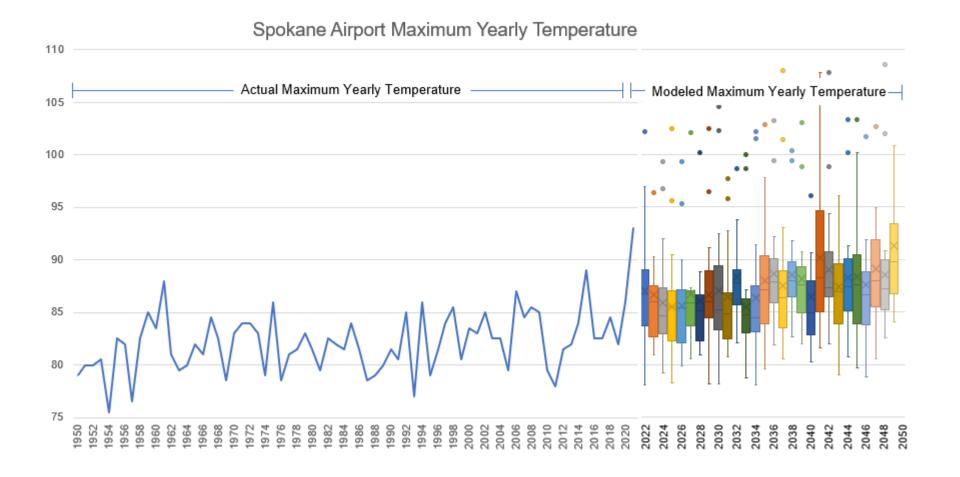




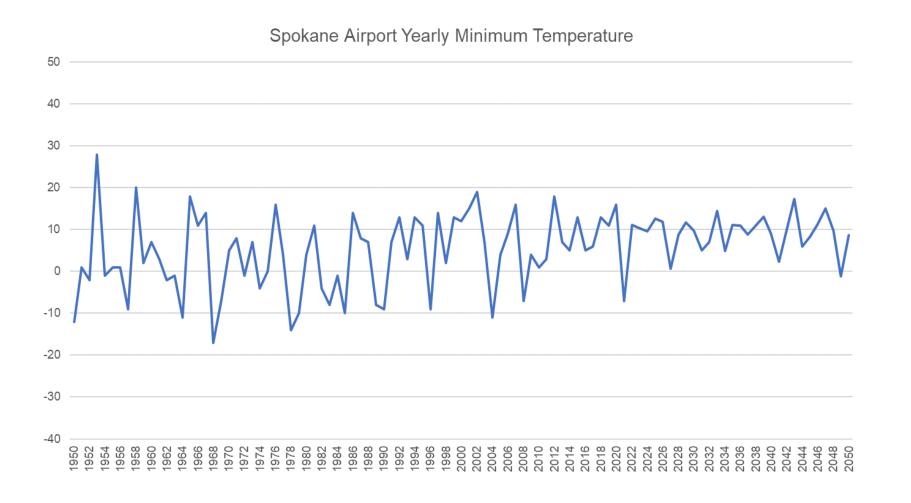

#### **Impacts to Load**


 Load forecast utilizes 20-year rolling average which phases into the climate change forecast.

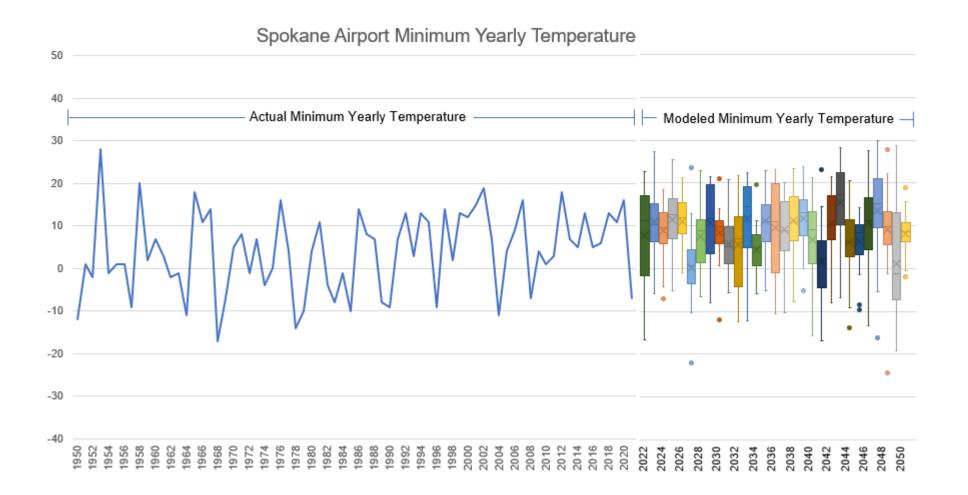




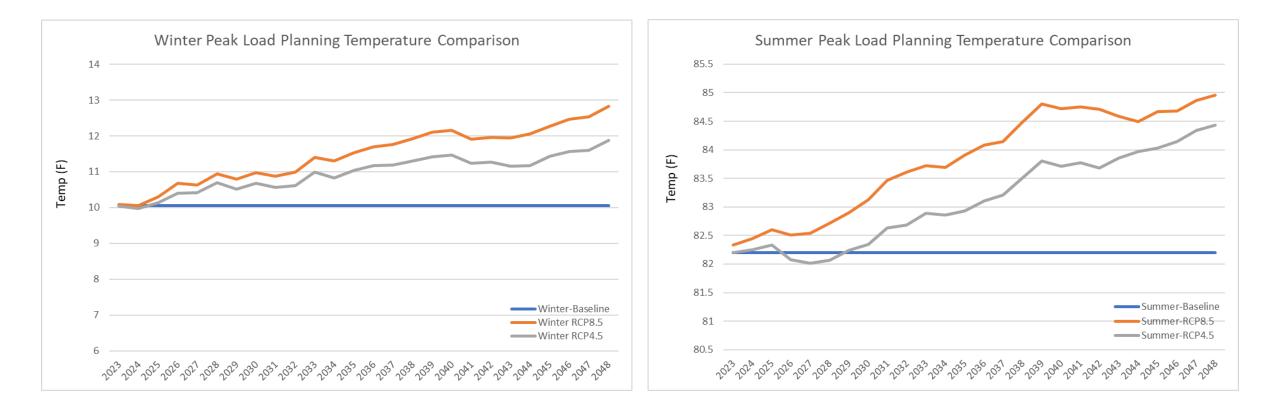

- Peak load model utilizes minimum/maximum daily average temperature for each month.
- Median of minimum/maximum average daily temperature for each month of all models.
- Summer and winter peak is the highest/lowest for each time period.
- Winter peak is based on a 76-year\* moving average, summer peak is based on a 20-year moving average.



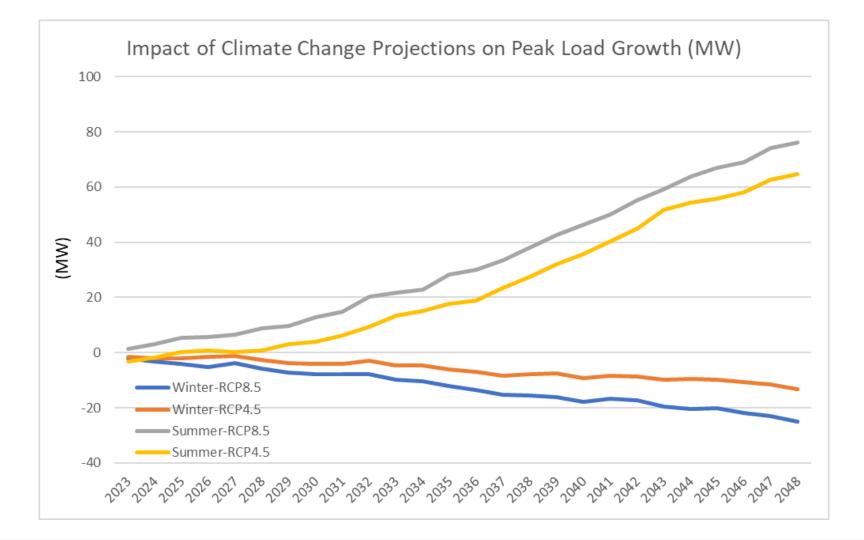


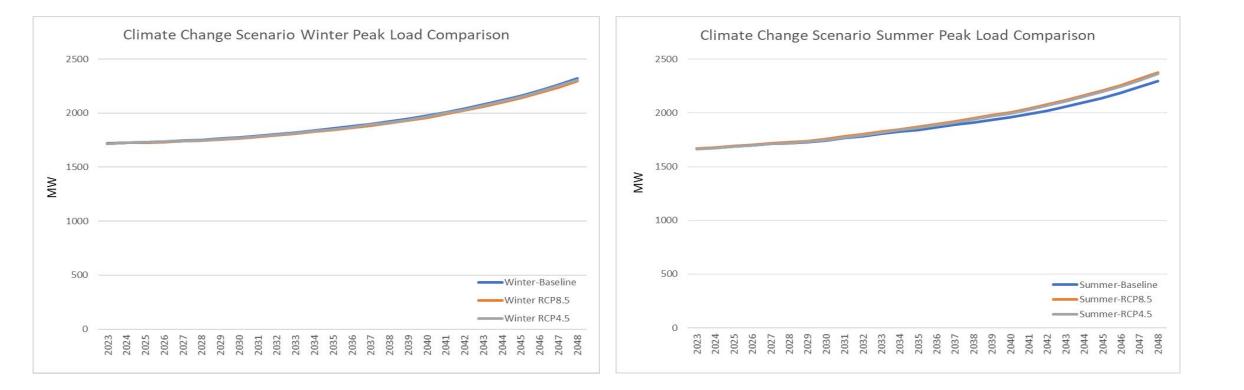




**VISTA** 



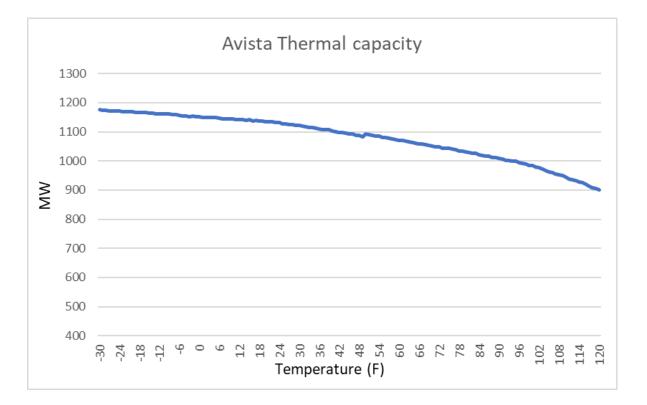






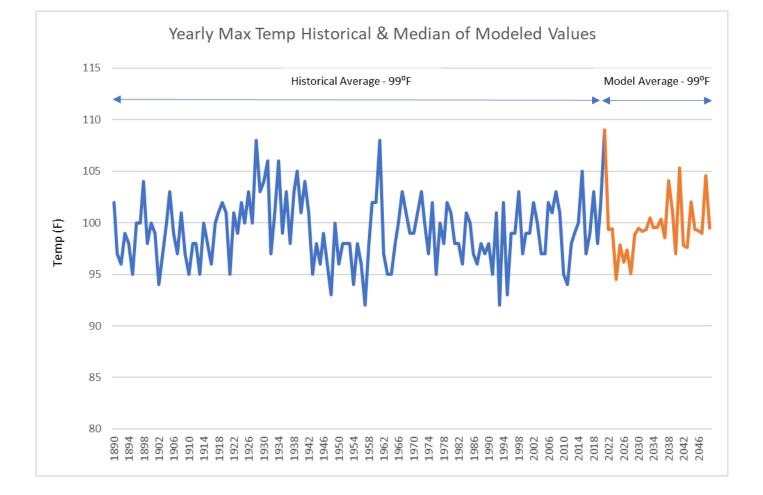




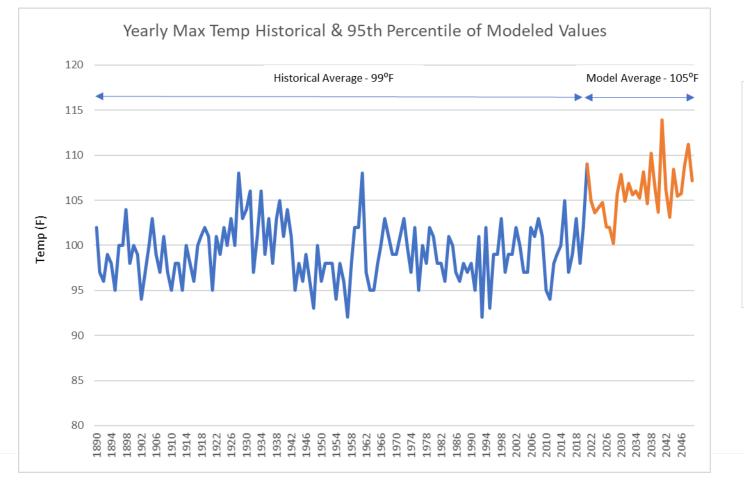


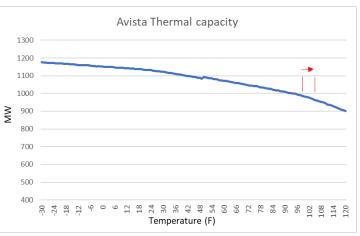




• Capacity of gas turbines decreases as temperature increases.



• Will increased maximum temperatures reduce capacity during extreme heat events?





- Historical yearly maximum temperatures similar to median yearly maximum modeled temperatures
- No difference in thermal capacity when comparing historical data to median of climate models

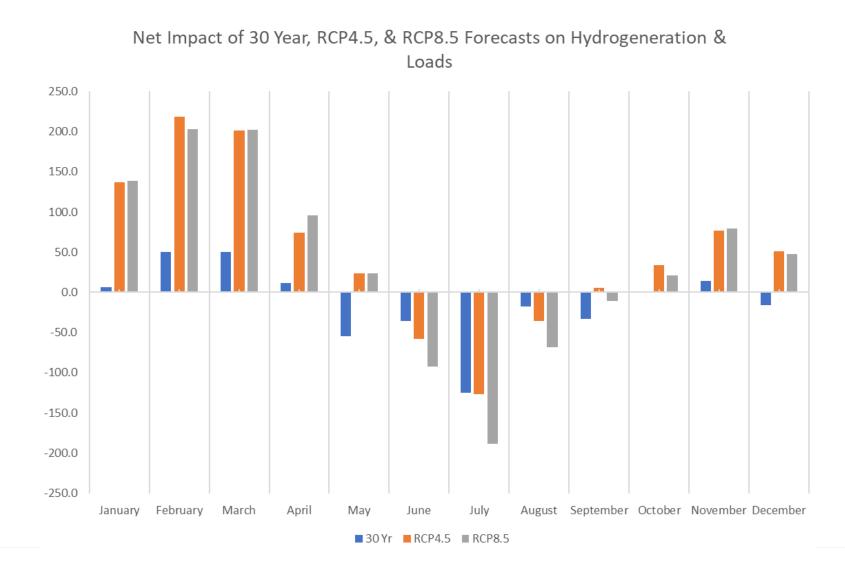




 Thermal capacity is reduced by 22 MW at the 95<sup>th</sup> percentile of yearly maximum, maximum temperatures

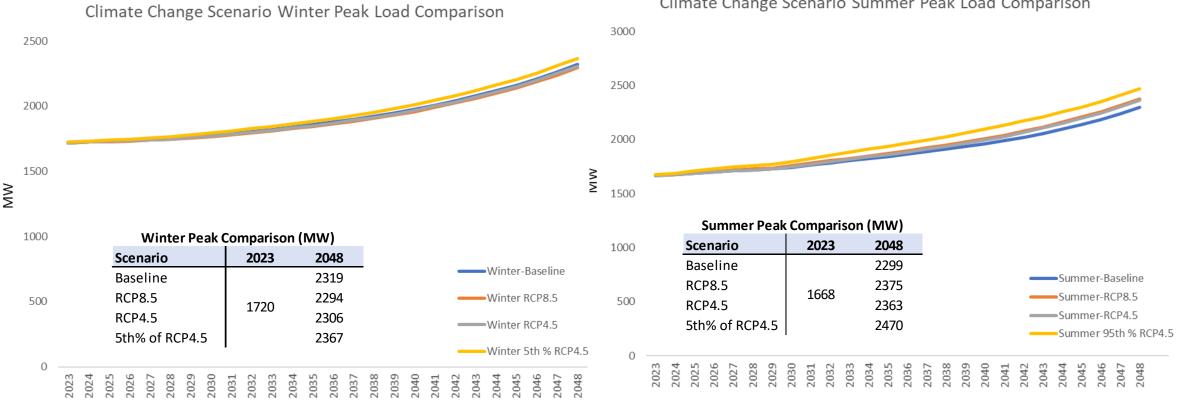





### **Climate Modeling and Peak Load Risk**

- Capacity risk is addressed with the planning reserve margin.
- Given the variance of the climate change models, what is the risk associated with climate change at the extremes of the modeling, and does that risk increase over the planning horizon?




#### **Climate Change – Net Impact**



| Difference from current<br>80 year hydro record |       |        |               |  |  |  |
|-------------------------------------------------|-------|--------|---------------|--|--|--|
| Month                                           | 30 Yr | RCP4.5 | <b>RCP8.5</b> |  |  |  |
| January                                         | 6     | 137    | 139           |  |  |  |
| February                                        | 50    | 218    | 203           |  |  |  |
| March                                           | 50    | 201    | 202           |  |  |  |
| April                                           | 11    | 74     | 96            |  |  |  |
| May                                             | -54   | 23     | 24            |  |  |  |
| June                                            | -36   | -58    | -92           |  |  |  |
| July                                            | -125  | -127   | -189          |  |  |  |
| August                                          | -17   | -36    | -69           |  |  |  |
| September                                       | -33   | 6      | -11           |  |  |  |
| October                                         | 0     | 34     | 21            |  |  |  |
| November                                        | 14    | 76     | 80            |  |  |  |
| December                                        | -16   | 51     | 48            |  |  |  |

# **Climate Change – Net Impact**



#### Climate Change Scenario Summer Peak Load Comparison



# **IRP Climate Change Approach**

- Use RCP4.5 Scenario
  - Description by Intergovernmental Panel on Climate Change (IPCC)
    - RCP2.6 stringent mitigation scenario
    - RCP4.5 & RCP6.0 intermediate scenarios
    - RCP8.5 very high GHG emissions
  - RCP4.5 & RCP6.0 are similar in IRP planning horizon
- Hydrogeneration Move from median of 80-year (1929-2008) to median of previous 30 years throughout planning horizon
- Energy Load Forecast move from static assumed temperature to moving average of previous 20 years throughout planning horizon
- Peak Load Forecast move from static assumed temperature to moving average of previous 20 years (summer peak) and 76 years (winter peak)



#### 2023 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 7 Agenda Tuesday, October 11, 2022 Microsoft Teams Virtual Meeting With an in-Person Option

AVISTA

| <b>Topic</b><br>Introductions                                                                      | <b>Time</b><br>9:00 | <b>Staff</b><br>John Lyons      |
|----------------------------------------------------------------------------------------------------|---------------------|---------------------------------|
| DER Potential Study Scope                                                                          | 9:15                | James Gall                      |
| Load Forecast Update                                                                               | 9:45                | Grant Forsyth                   |
| Break                                                                                              | 10:30               |                                 |
| Load & Resource Balance (Resource Need)                                                            | 10:40               | Lori Hermanson                  |
| Natural Gas Market Dynamics                                                                        | 11:00               | Tom Pardee/<br>Michael Brutocao |
| Lunch                                                                                              | 11:30               |                                 |
| Wholesale Electric Price Forecast                                                                  | 12:30               | Lori Hermanson                  |
| WRAP Update                                                                                        | 1:00                | James Gall                      |
| Clean Energy Implementation Plan (CEIP) Update & Customer Benefit Indicator's (CBI) use in the IRP | 1:30                | Annette Brandon                 |
| Break                                                                                              | 2:30                |                                 |
| Portfolio & Market Scenario Options                                                                | 2:40                | James Gall                      |
| Adjourn                                                                                            | 3:30                |                                 |



# **IRP Introduction**

2023 Avista Electric IRP

TAC 7 – October 11, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

# **Meeting Guidelines**

- IRP team is working remotely and is available for questions and comments
- Stakeholder feedback form
  - Responses shared with TAC at meetings, by email and in Appendix
  - Would a form and/or section on the web site be helpful?
- IRP data posted to web site updated descriptions and navigation are in development
- Virtual IRP meetings on Microsoft Teams until able to hold large meetings again
- TAC presentations and meeting notes posted on IRP page
- This meeting is being recorded and an automated transcript made



### **Virtual TAC Meeting Reminders**

- Please mute mics unless commenting or asking a question
- Raise hand or use the chat box for questions or comments
- Respect the pause
- Please try not to speak over the presenter or a speaker
- Please state your name before commenting
- Public advisory meeting comments will be documented and recorded



## **Integrated Resource Planning**

The Integrated Resource Plan (IRP):

- Required by Idaho and Washington\* every other year
  - Washington requires IRP every four years and update at two years
- Guides resource strategy over the next twenty + years
- Current and projected load & resource position
- Resource strategies under different future policies
  - Generation resource choices
  - Conservation / demand response
  - Transmission and distribution integration
  - Avoided costs
- Market and portfolio scenarios for uncertain future events and issues



## **Technical Advisory Committee**

- Public process of the IRP input on what to study, how to study, and review of assumptions and results
- Wide range of participants involved in all or parts of the process
  - Please ask questions
  - Always soliciting new TAC members
- Open forum while balancing need to get through topics
- Welcome requests for new studies or different modeling assumptions.
- Available by email or phone for questions or comments between meetings
- Due date for study requests from TAC members October 1, 2022
- External IRP draft released to TAC March 17, 2023, public comments due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023

### **Remaining 2023 Electric IRP TAC Meeting Schedule**

- Technical Modeling Workshop: October 20, 2022 (9 am to 12 pm PST)
- Washington Progress Report Workshop: December 14, 2022 (9 am to 10:30 am PST)
- TAC 8: February 16, 2023 (9 am to 4 pm PST)
- Virtual Public Meeting Gas & Electric IRPs: March 8, 2023 (12 to 1 pm and 5:30 to 6:30 pm PST)
- TAC 9: March 22, 2023 (9 am to 4 pm PST)



## **Today's Agenda**

| 9:00  | Introductions, John Lyons                                                                      |
|-------|------------------------------------------------------------------------------------------------|
| 9:15  | DER Potential Study Scope, James Gall                                                          |
| 9:45  | Load forecast Update, Grant Forsyth                                                            |
| 10:30 | Break                                                                                          |
| 10:40 | Load & Resource Balance (Resource Need), Lori Hermanson                                        |
| 11:00 | Wholesale Price Forecast Natural Gas & Electric, Avista IRP Team                               |
| 11:30 | Lunch                                                                                          |
| 12:30 | Wholesale Price Forecast Natural Gas & Electric (continued)                                    |
| 1:00  | WRAP Update                                                                                    |
| 1:30  | Clean Energy Implementation Plan Update & Customer Benefit Indicator's Use in the IRP, Annette |
|       | Brandon                                                                                        |
| 2:30  | Break                                                                                          |
| 2:40  | Portfolio & Market Scenario Options, James Gall                                                |
| 3:30  | Adjourn                                                                                        |
|       |                                                                                                |





### **Distributed Energy Resource Potential Study**

James Gall, Integrated Resource Planning Manager Electric IRP, Seventh Technical Advisory Committee Meeting October 11, 2022

## **CEIP Commitment #14**

- Avista will include a Distributed Energy Resources (DERs) potential assessment for each distribution feeder no later than its 2025 electric IRP.
- Avista will develop a scope of work for this project no later than the end of 2022, including input from the IRP TAC, EEAG, and DPAG.
- The assessment will include a low-income DER potential assessment.
- Avista will document its DER potential assessment work in the Company's 2023 IRP Progress Report in the form of a project plan, including project schedule, interim milestones, and explanations of how these efforts address WAC 480-100-620(3)(b)(iii) and (iv).

WAC 480-100-620(3)(b)(iii) and (iv).

(iii) Energy assistance potential assessment – The IRP must include distributed energy programs and mechanisms identified pursuant to RCW <u>19.405.120</u>, which pertains to energy assistance and progress toward meeting energy assistance need; and

(iv) Other distributed energy resource potential assessments – The IRP must assess other distributed energy resources that may be installed by the utility or the utility's customers including, but not limited to, energy storage, electric vehicles, and photovoltaics. Any such assessment must include the effect of distributed energy resources on the utility's load and operations.

## **Distributed Energy Resource**

- Forecast for each distribution feeder (361 originating in Washington)
- Washington only study
- New Generation & Storage
  - Residential and Commercial Solar
  - Residential and Commercial Storage
  - Other Renewables (i.e. wind, small hydro, fuel cell, ICE)
- Load Management
  - Energy Efficiency
  - Demand Response
    - Includes electric vehicles
    - Should we conduct a study future locations for electric vehicles (MDV, HDV, LDV)?

## **New Generation & Storage**

- Potential assessment for each option for each year between 2025 and 2045
  - Forecast should consider existing policies and cost/pricing outlooks for the customer demographics and building potential.
  - A scenario for future customer electrification impacting its demand should be included to the extent it could affect generation.
- The analysis shall include a scenario for feeders within Highly Impacted or Vulnerable Population area identifying the upper bound limits excluding financial limitations of the customer.

## **Load Management**

- Uses current potential assessment for energy efficiency and demand response.
  - Low-income efficiency is addressed in the energy efficiency CPAs.
- Requirement is a geographic dispersion assessment by feeder for each calendar year for each load management resource type.
- Building space and water heating electrification scenario.

## **Schedule and Tasks**

#### Task 1: July 2023

- A survey of other utility or other entity efforts to conduct similar DER potential studies. The study shall include comparison of the other utility's size, rates, climate, and customer demographics.
- A summary of best practices for development of future adoption of new DER technologies.
- An overview of Avista's current DER resources (i.e., 2022 baseline).

#### Task 2: September 2023

• A description of the methodology used to develop the estimates for each DER and related scenarios.

#### Task 3: Draft March 2024 and Final May 2024

 Matrix including each feeder and the amount of DER resources in kW and/or kWh for each resource type by year and customer class.

#### Task 4: 2024 Q2

• Present draft results of study to Electric and Natural Gas Integrated Resource Planning Technical Advisory Committee, Energy Efficiency Advisory Group, and the Distribution Planning Advisory Group.

#### Task 5: Draft April 2024, Final Report June 2024

- Final report including tasks 1 through 4.
- Summary of comments and suggestions from non-Avista parties and how they are addressed in the final report.
- Recommendations for future studies.
- Documentation of methods and procedures to transition Avista to be able to update these forecasts for future use.



TAC Meeting October 11, 2022

## 2023 IRP: Updated Energy and Peak Forecasts

Grant Forsyth, Ph.D. Chief Economist Grant.Forsyth@avistacorp.com



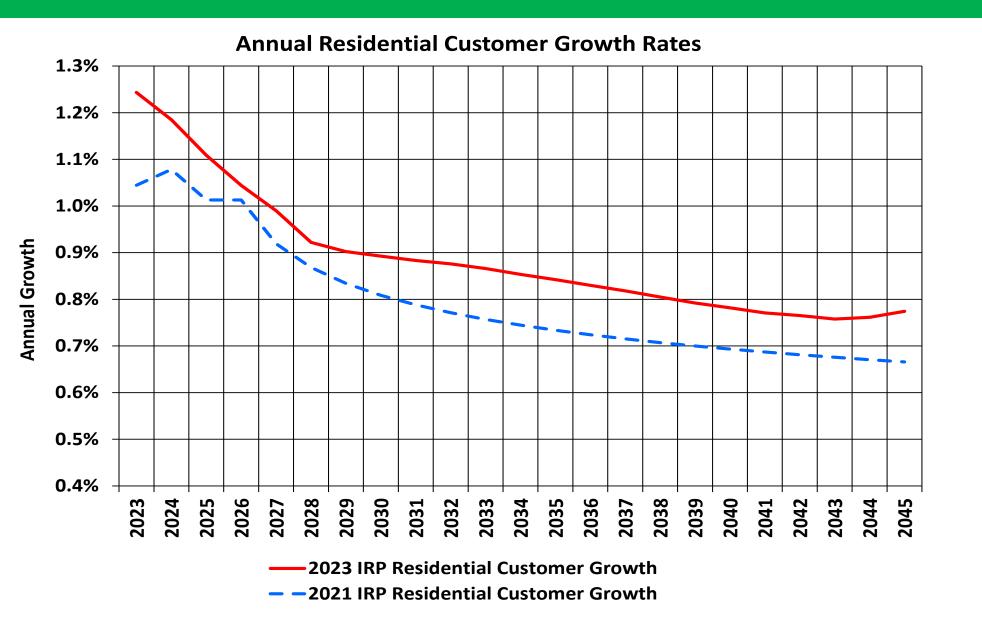


Long-run Energy Forecast Update



The world since February 2020:

"...all are punish'd."


The Prince, Romeo and Juliet, Act 5, Scene 3



## **Significant Model Updates**

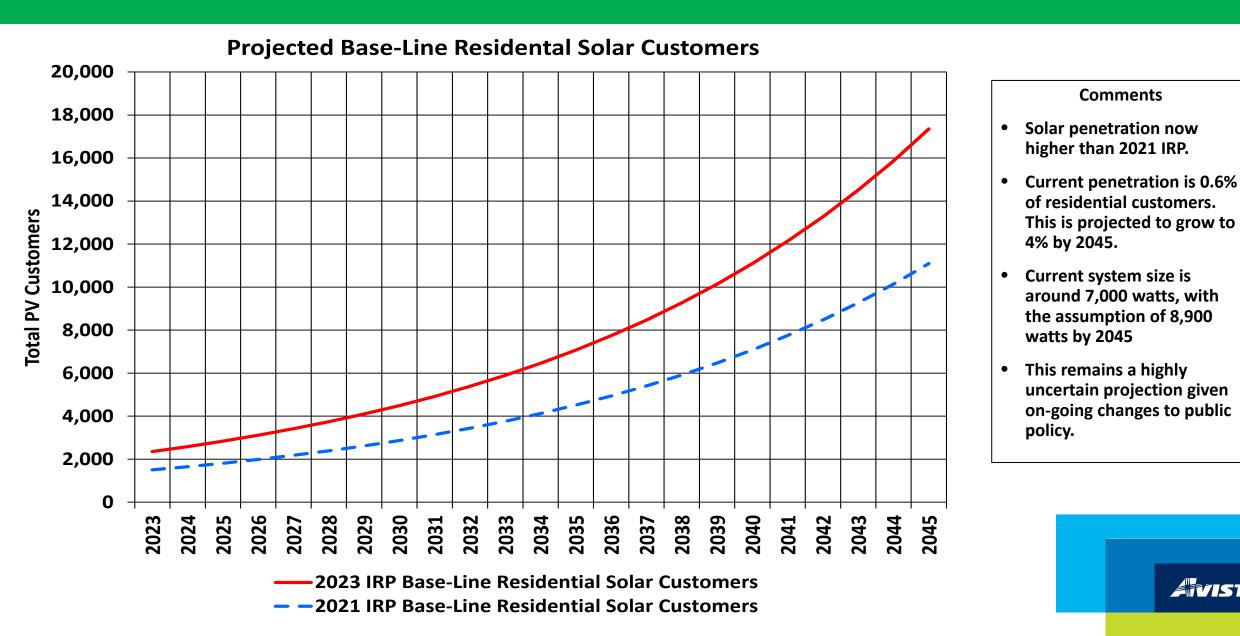
- More aggressive EV forecast with an explicit separation between residential and commercial schedules.
- LDV EV forecast out to 2030/31 lines up with Avista's EV transportation plan in terms of forecasted percent of sales. Assumes WA-ID combined reaches 15% of sales by 2030/31 and 38% by 2045.
- MDV forecast for commercial assumes WA-ID combined reaches 25% of sales by 2045.
- More aggressive solar forecast with an explicit separation of residential and commercial solar customers.
- Climate change is in the base-line energy and peak forecasts using RCP 4.5.
- Energy and peak adjustments for WA's newly announced restrictions on commercial gas connects.
- Long-term GDP growth is an explicit choice variable after 2026.
- o Improved treatment of energy load profiles for climate, solar, EVs, and gas restriction impacts.
- Higher residential customer growth for the 2023-2028 period.

## Long-term Energy Forecast: Residential Customer Growth



| IRP      | Avg. Annual<br>Growth |
|----------|-----------------------|
| 2021 IRP | 0.80%                 |
| 2023 IRP | 0.89%                 |
| 2023 WA  | 0.69%                 |
| 2023 ID  | 1.25%                 |

Comments


- From 2027 on, the timepath reflects IHS population forecasts.
- The higher growth rate in this IRP reflects higher forecasted growth in ID.

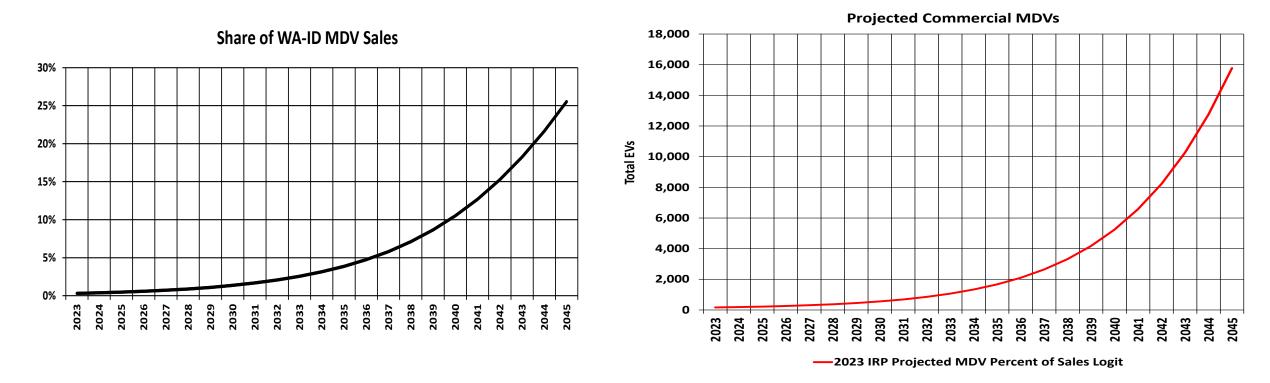
AVISTA

## Long-term Energy Forecast: Residential Solar Penetration

**Comments** 

ANISTA

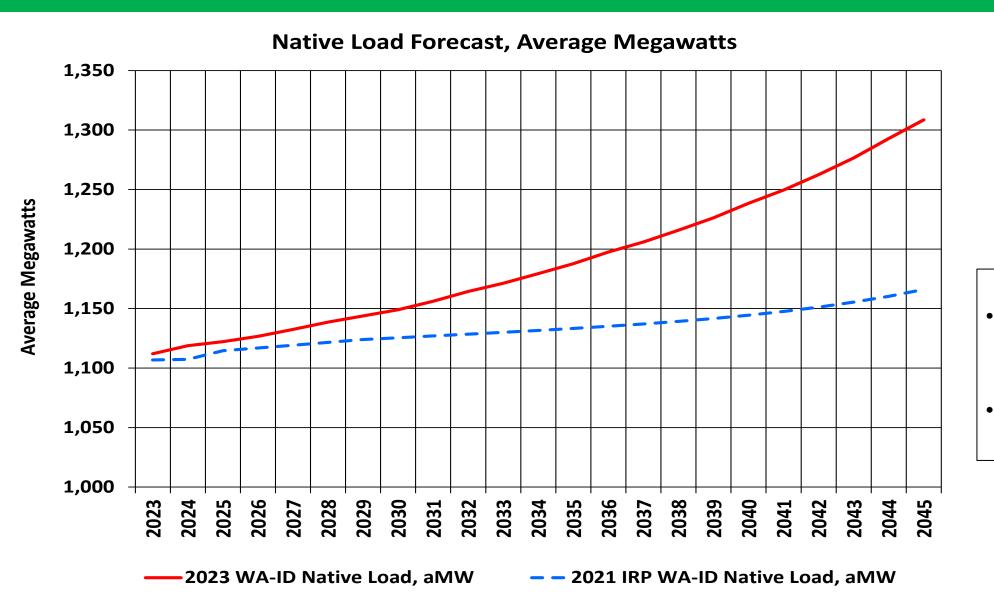



## Long-term Energy Forecast: Light Duty EVs, 2023-2045



ANISTA

- Current light duty EVs are around 3,900. This is projected to grow to 342,000 by 2045—nearly 40% of all LDV sales.
- Current penetration is 0.5% of household vehicles. This is projected to grow to 27% by 2045.
- This remains a highly uncertain forecast given on-going changes in the EV industry and public policy.

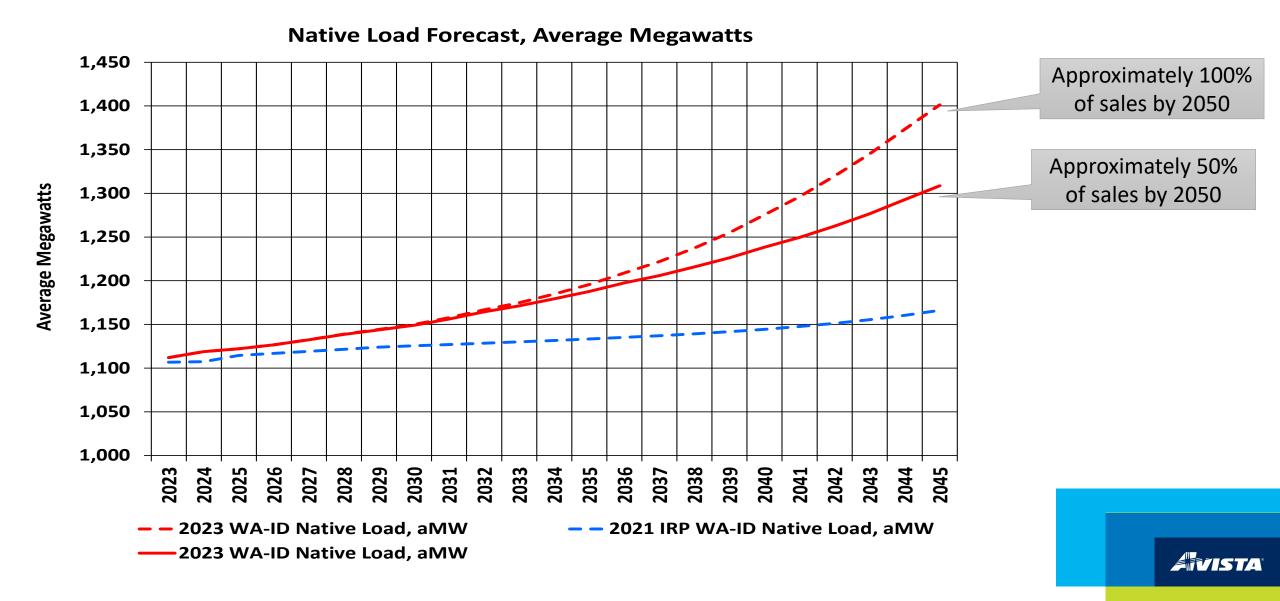

## Long-term Energy Forecast: Medium Duty EVs, 2023-2045



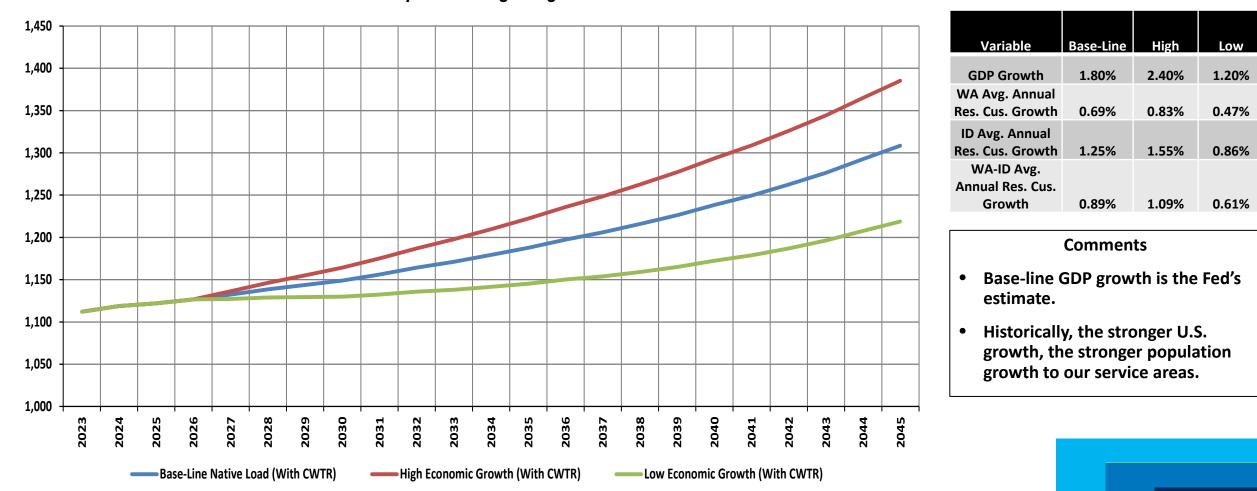
AVISTA

- Current medium EVs are approximately 170 (very rough estimate). This is projected to grow to over 15,000 by 2045—just over 25% of all MDV sales.
- Current penetration is 0.25% of all commercial vehicles (very rough estimate). This is projected to grow to 13% by 2045.
- Even more so than LDV, the MDV forecast is highly uncertain given on-going changes in the EV industry and public policy.

## Long-term Energy Forecast: Native Load



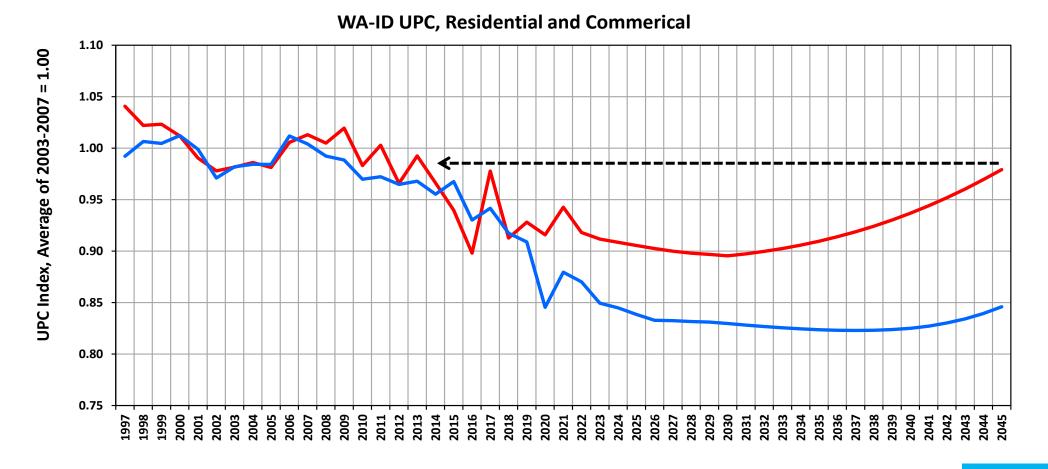

| IRP      | Avg. Annual<br>Growth |
|----------|-----------------------|
| 2021 IRP | 0.24%                 |
| 2023 IRP | 0.74%                 |
| 2023 WA  | 0.72%                 |
| 2023 ID  | 0.77%                 |


- Higher load because of stronger customer growth, a lot more EVs, and adjustments for gas.
- Most of the change reflects EVs



## Long-term Energy Forecast: Native Load with MDV EVs

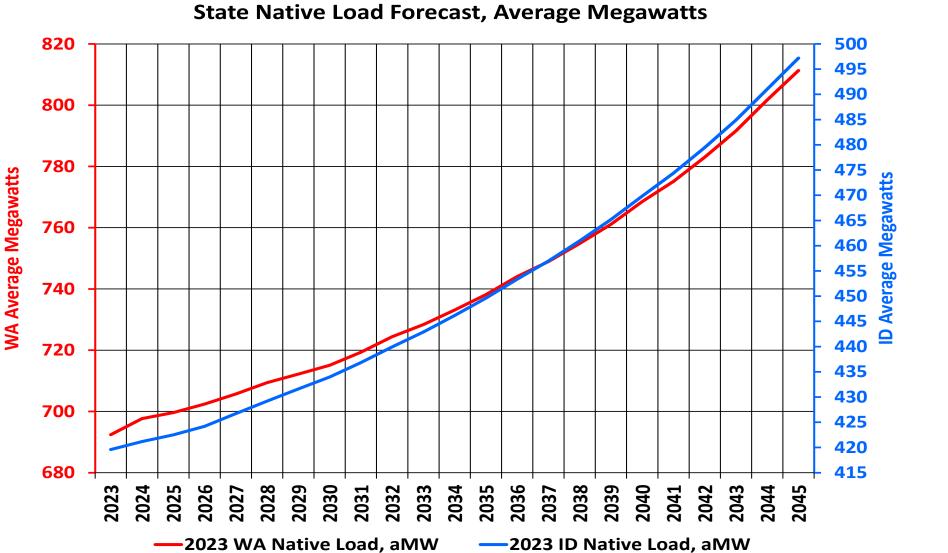



## Long-term Energy Forecast: High-Low Based on Economics



#### WA-ID System Average Megawatts

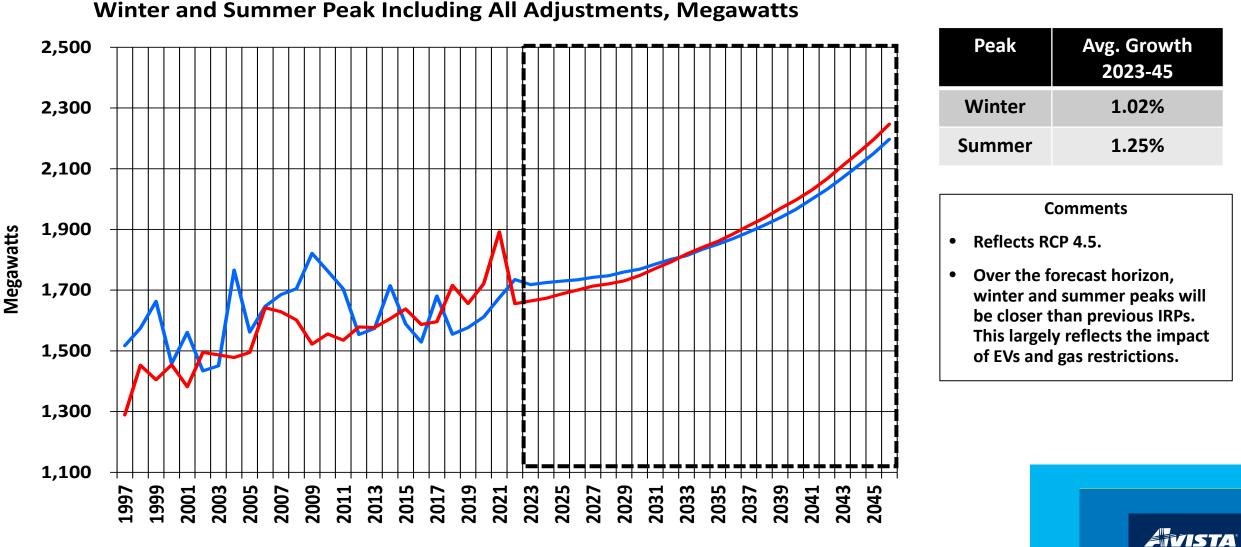
**A**VISTA


## Long-term Energy Forecast: UPC Trends



—WAIDTOTALUPC.r — WAIDTOTALUPC.c

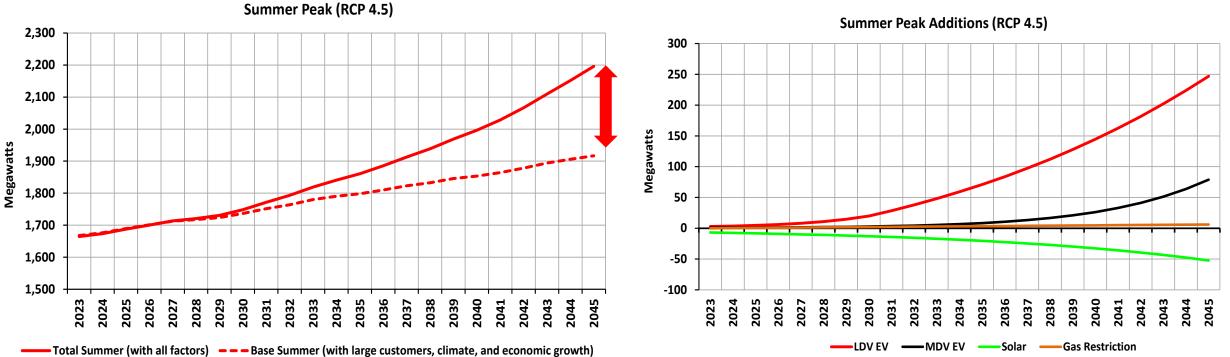



### Long-term Energy Forecast: State Native Load



| IRP      | Avg. Annual<br>Growth |
|----------|-----------------------|
| 2023 IRP | 0.74%                 |
| 2023 WA  | 0.72%                 |
| 2023 ID  | 0.77%                 |

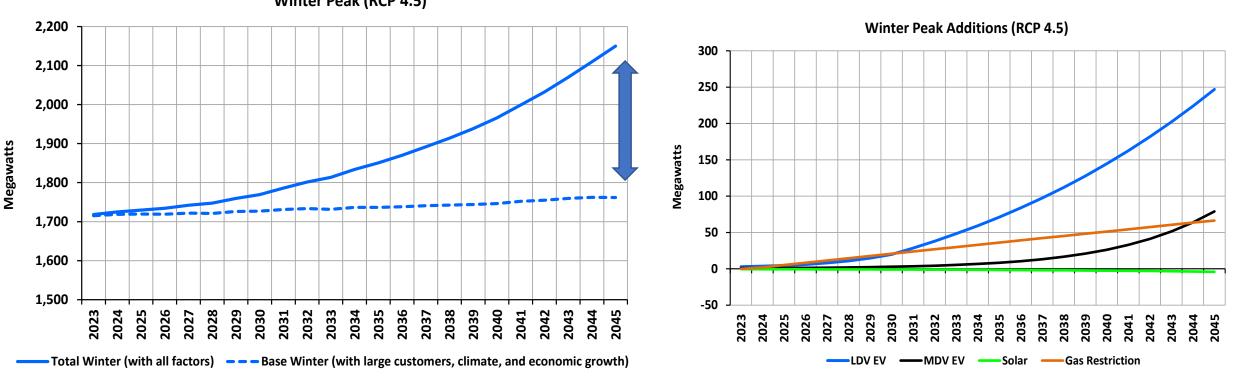
**A**VISTA


## **Peak Load Forecast: Winter and Summer Forecast**



----Winter Peak

—Summer Peak

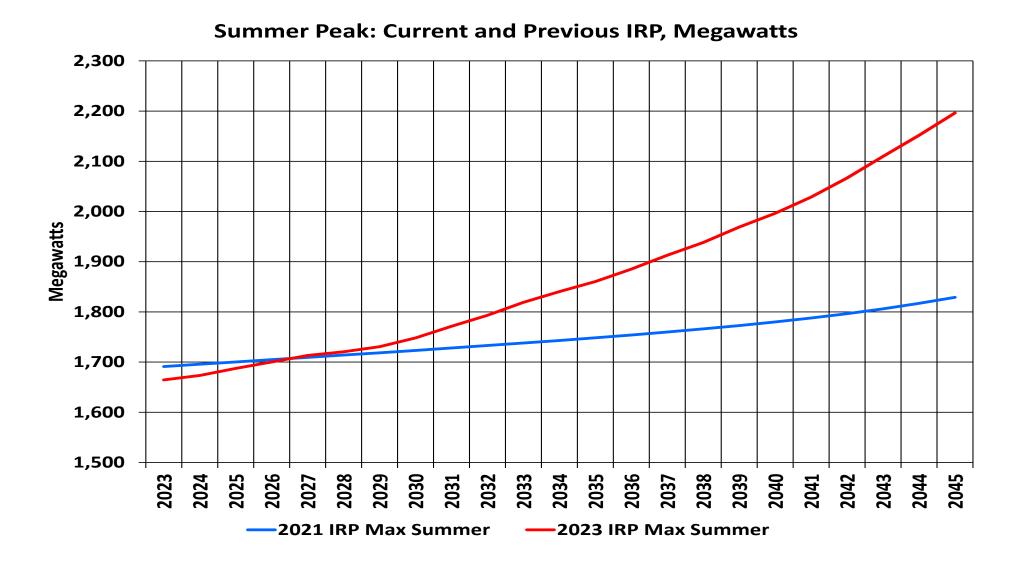

## Peak Load Forecast: Change in IRP Summer Peak



AVISTA

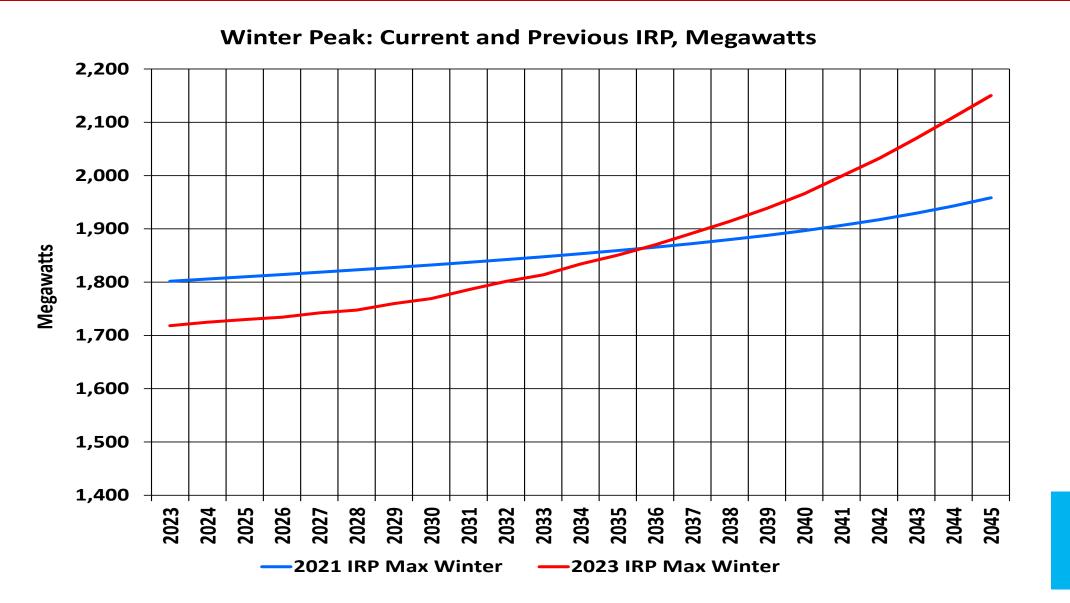
- Economic growth and climate impacts are being dominated by EV additions. ٠
- By 2045, 117% of additions over the base summer peak are from EVs (both LDVs and MDVs). The ٠ 117% reflects a significant negative impact from solar by 2045.
- Gas restriction impacts are modest and solar is not significant late 2030s. ٠

## **Peak Load Forecast: Change in IRP Winter Peak**




ANISTA

Winter Peak (RCP 4.5)


- Economic growth and climate impacts are being dominated by EV additions. ٠
- By 2045, 84% of additions over the base winter peak are from EVs (both LDVs and MDVs). ۰
- Gas restriction impacts are significant by early 2030s, and solar is never significant. ٠

### Peak Load Forecast: Change in IRP Summer Peak



**AVISTA** 

## Peak Load Forecast: Change in IRP Winter Peak



**AIVISTA** 

# **Questions?**





## Loads & Resources Update

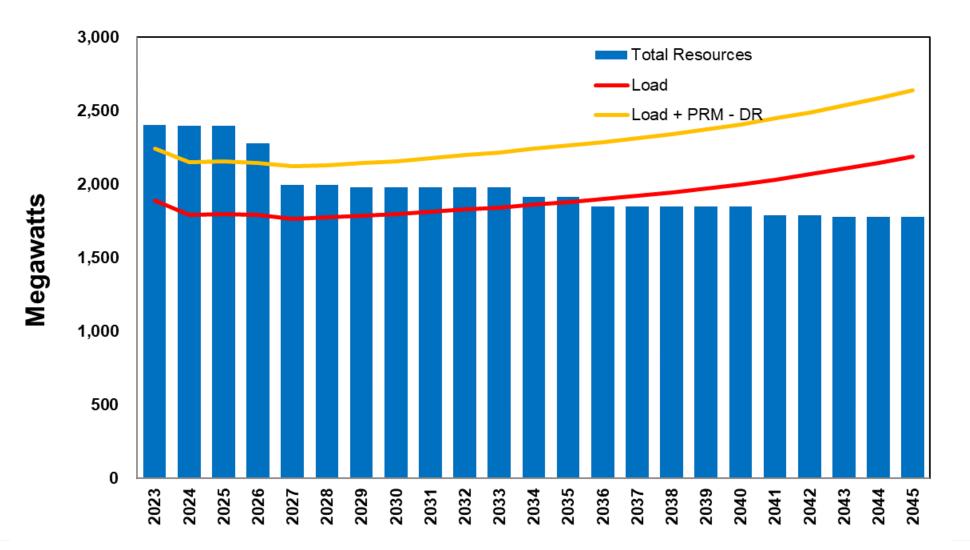
2023 Avista Electric IRP

TAC 7 – October 11, 2022

Lori Hermanson, Senior Power Supply Analyst

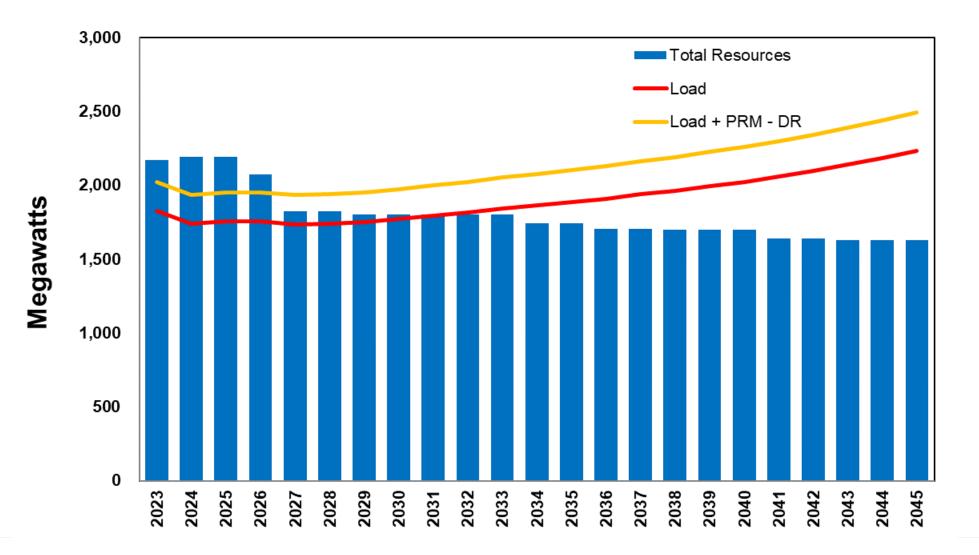
## Major L&R Changes Since 2021 IRP

- Load forecast
- Incorporates climate change impacts hydro & loads
- Used WRAP QCCs for peak capacity contributions
- 30 MW industrial demand response (Washington Rate Case Settlement)
- Chelan County PUD purchase
- Assumed retirement dates for Colstrip (2025), Northeast (2035), Boulder Park and Kettle Falls CT (2040)
- Additional RFP resources not included



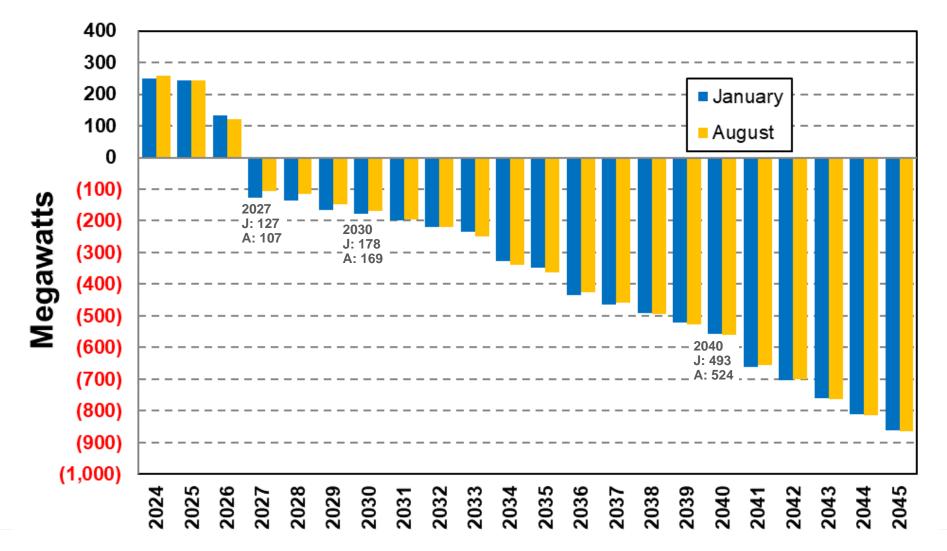

## **Peak Planning Assumptions**

- Peak load forecast
- Planning reserve margins
  - Winter 22%
  - Summer 13%
- Regulation 16 MW
- Operating reserves for borderline contracts average 16 MW (varies by month)
- Use WRAP's Qualifying Capacity Credits (QCC) for generation and demand response resources
  - Not incorporating the WRAP's planning reserve margins, but will share the impacts of these PRMs (slide 7)




## Winter Peak Load & Resource Balance

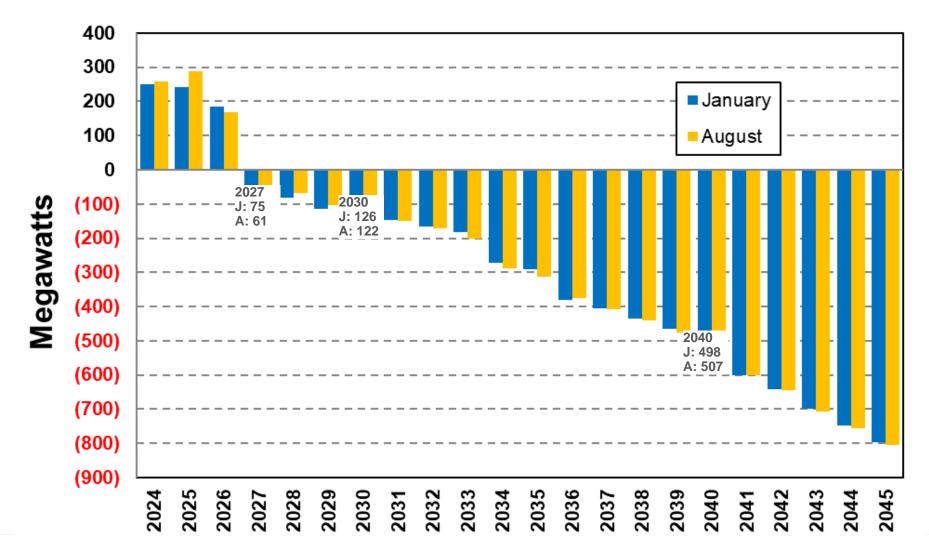



**AIVISTA** 

## **Summer Peak Load & Resource Balance**



**A**VISTA


### System Peak Capacity Position Using historical peak planning criteria





## **System Capacity Position**

Using Western Resource Adequacy Program Planning Reserve Margins





## **Energy Planning**

- Expected energy load forecast
- Production capability generation forecast
  - Normal weather conditions
  - Machine hour limits
  - Maintenance and forced outages
- Incorporates climate change impacts hydro & loads
- Includes contingency for changes in load and variable generations

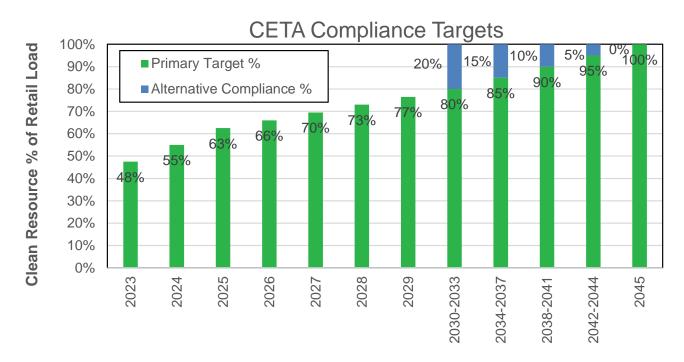
## **Energy Contingency**

- Difference between average generation and load conditions with extreme conditions.
- Previous IRP
  - Difference between 90<sup>th</sup> percentile of load and average load + difference between 10<sup>th</sup> percentile of hydro generation and average generation
- 2023 IRP
  - Developed a dataset of load and renewables generation (varying hydro, wind and solar) for the period 1948-2019
  - Used average minus 95<sup>th</sup> percentile of the net of load minus renewable generation

|              | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec | Avg |
|--------------|-----|-----|-----|-----|-----|------|------|-----|------|-----|-----|-----|-----|
| Previous IRP | 209 | 240 | 244 | 227 | 196 | 291  | 307  | 171 | 118  | 117 | 168 | 175 | 205 |
| 2023 IRP     | 227 | 216 | 211 | 253 | 186 | 320  | 306  | 170 | 118  | 120 | 170 | 125 | 202 |
| Change       | 18  | -24 | -33 | 26  | -10 | 29   | -1   | -1  | 0    | 3   | 2   | -50 | -3  |

#### Energy Contingency for Load and Renewable Variability 2023 (aMW)



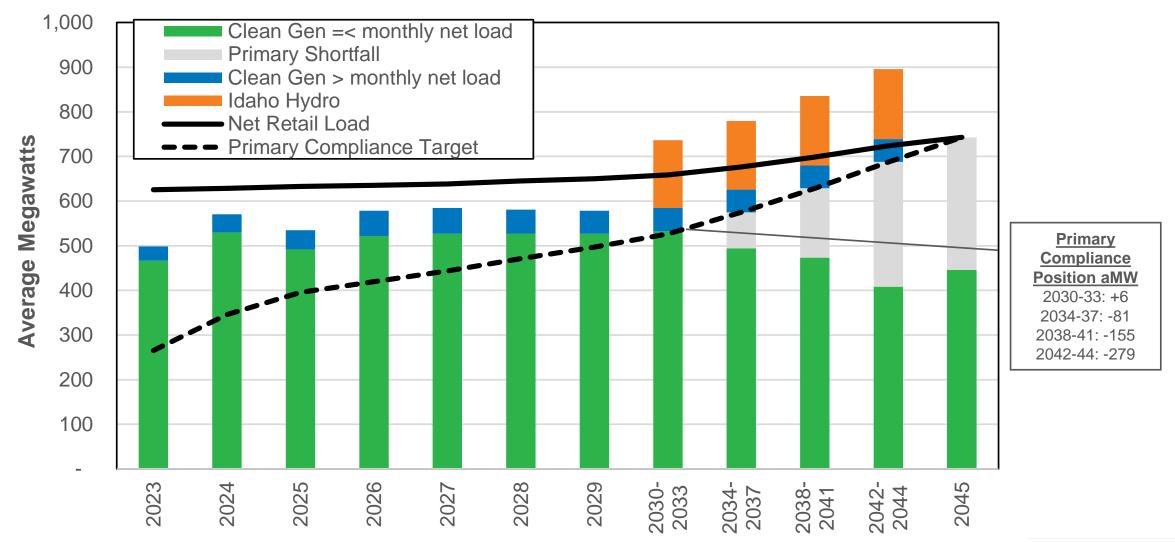

# DRAFT

## **System Planning Energy Position – Monthly (aMW)**

|      | Jan   | Feb   | Mar  | Apr | May | Jun | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |
|------|-------|-------|------|-----|-----|-----|-------|-------|-------|-------|-------|-------|
| 2024 | 204   | 185   | 347  | 429 | 422 | 485 | 292   | 176   | 276   | 290   | 259   | 292   |
| 2025 | 212   | 207   | 360  | 375 | 507 | 590 | 298   | 175   | 275   | 286   | 259   | 293   |
| 2026 | 91    | 59    | 208  | 332 | 355 | 397 | 126   | 28    | 113   | 131   | (130) | (120) |
| 2027 | (197) | (204) | (53) | 149 | 296 | 299 | (117) | (215) | (137) | (119) | (149) | (141) |
| 2028 | (203) | (221) | (57) | 123 | 288 | 286 | (139) | (229) | (140) | (131) | (163) | (159) |
| 2029 | (202) | (204) | (39) | 138 | 334 | 273 | (150) | (249) | (151) | (132) | (164) | (151) |
| 2030 | (204) | (208) | (30) | 136 | 220 | 267 | (158) | (259) | (158) | (133) | (169) | (158) |
| 2031 | (211) | (208) | (22) | 123 | 291 | 268 | (150) | (261) | (154) | (136) | (176) | (163) |
| 2032 | (203) | (218) | (22) | 118 | 307 | 271 | (146) | (262) | (156) | (139) | (181) | (167) |
| 2033 | (209) | (211) | (22) | 126 | 359 | 260 | (157) | (272) | (156) | (145) | (179) | (170) |

## **Proposed CETA Compliance Methodology**

- CEIP outlines 2023-2025 clean energy targets
- 2026-2029 target continue trend to 2030
- "Use" rules for CETA compliance not complete
  - If clean generation exceeds monthly "net" retail sales, it qualifies as alterative compliance after 2030
  - Renewable energy can be sourced from allocated Washington share or purchased from Idaho customers (wind/new PPA hydro)
  - Assumes Idaho allocated hydro available after 2030 for alternative compliance




Production/Load risk still needs to be accounted for with compliance windows



# DRAFT

## **Washington Clean Energy Position**



**AIVISTA** 



# Natural Gas Market Dynamics and Prices

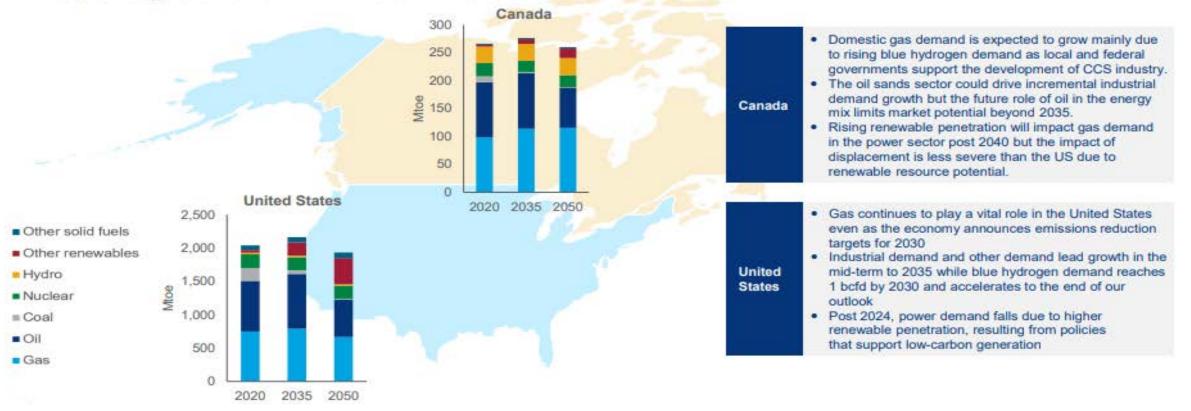
Michael Brutocao

**Tom Pardee** 

DRAFT

#### Wood Mackenzie – Legal Disclaimer

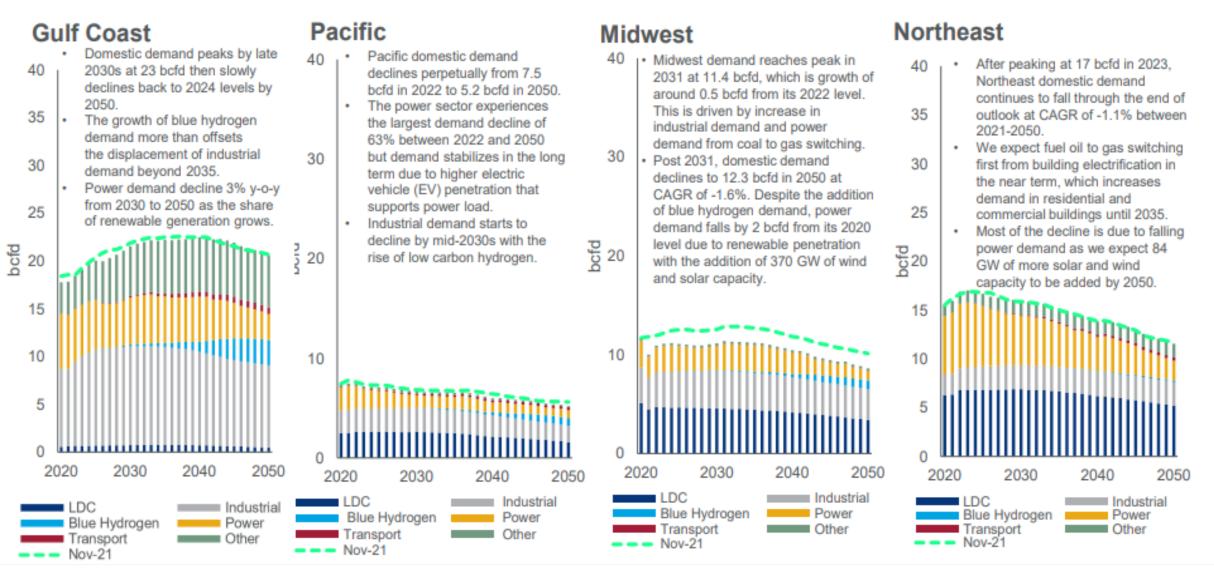
The foregoing [chart/graph/table/information] was obtained from the North America Gas Service<sup>™</sup>, a product of Wood Mackenzie." Any Information disclosed pursuant to this agreement shall further include the following disclaimer: "The data and information provided by Wood Mackenzie should not be interpreted as advice and you should not rely on it for any purpose. You may not copy or use this data and information except as expressly permitted by Wood Mackenzie in writing. To the fullest extent permitted by law, Wood Mackenzie accepts no responsibility for your use of this data and information except as specified in a written agreement you have entered into with Wood Mackenzie for the provision of such of such data and information."






# Natural gas remains strategically important in North America as it represents at least a third of total energy demand over the next 30 years The pace of energy transition threatens gas demand growth as fossil fuel demand wanes in

#### the long term

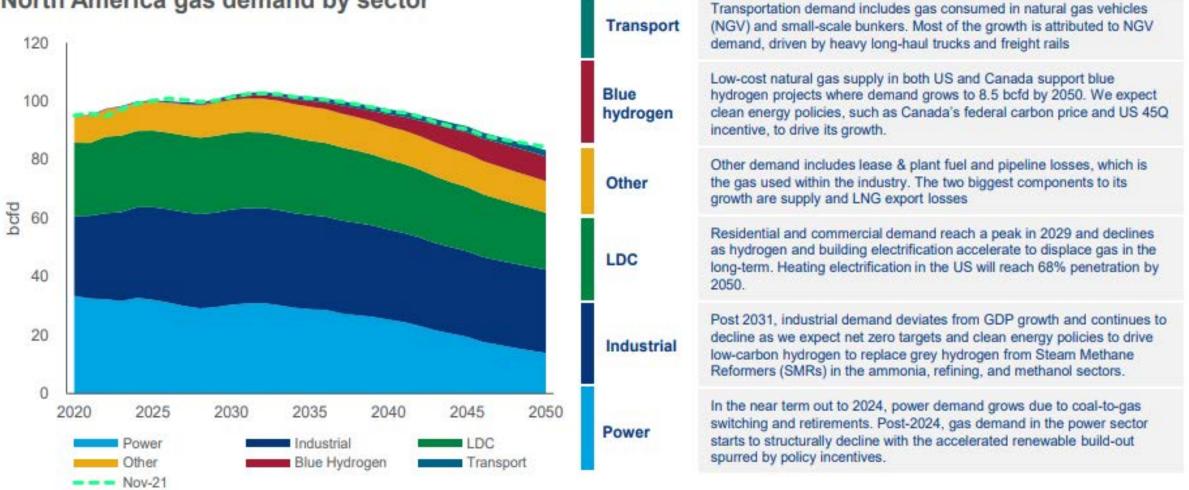

Primary energy demand mix in North America





₹C

# US regional demand: the Gulf Coast stands out as domestic demand increases despite peaking in late 2030s



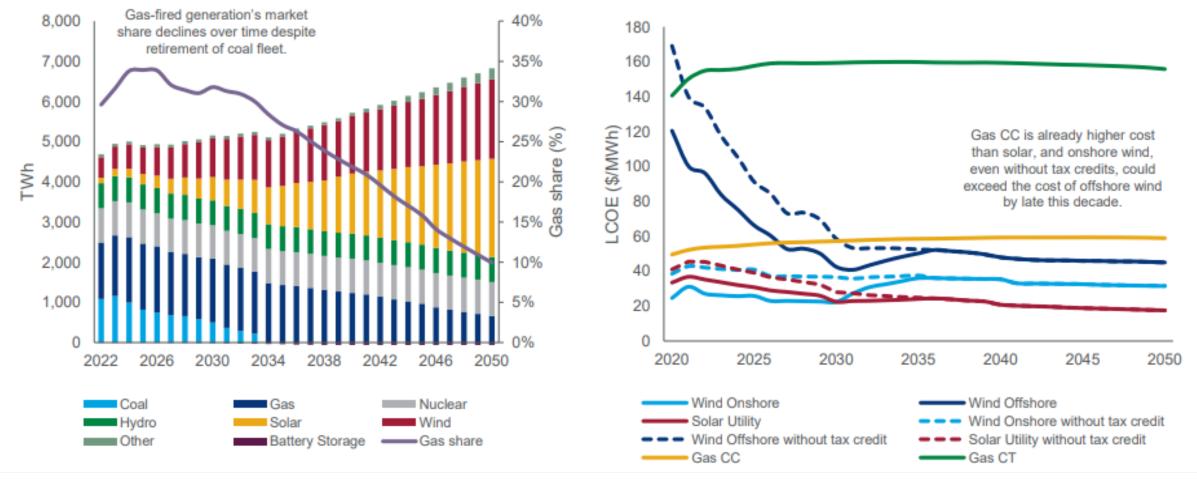





#### North American domestic demand reaches its peak in the early 2030s; longer term growth only from blue hydrogen and transport sectors Energy transition impacts power demand the most with demand falling by almost two thirds between 2022 and 2050

North America gas demand by sector





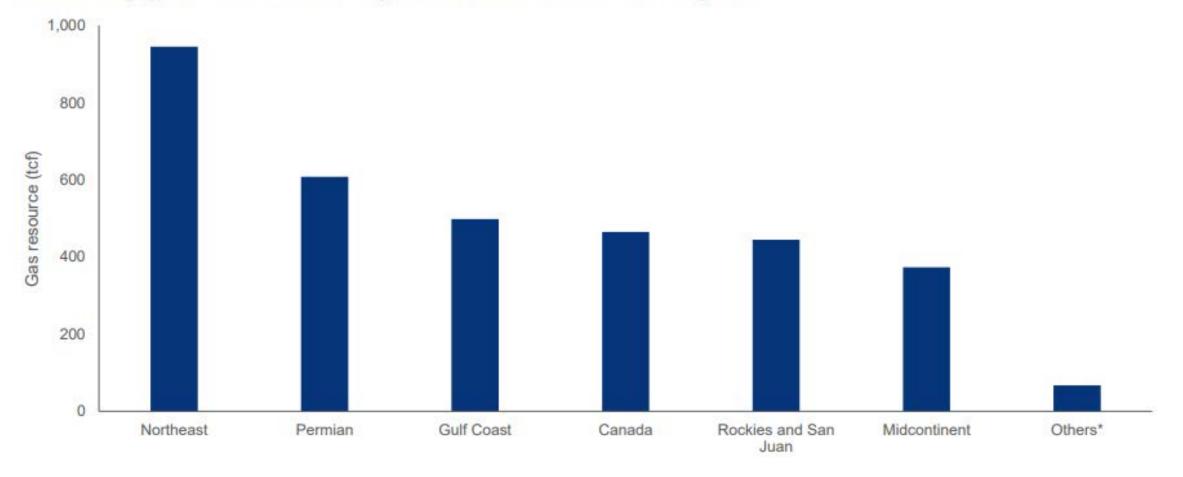

#### woodmac.com

# Accelerated coal retirements allows for more coal-to-gas switching in the 2020s but gas burns decline over time with higher renewable penetration Power load has been revised higher mostly in the late 2040s due to higher EV conversion, heating electrification and stronger industrial requirements

North America power generation by type

Levelized cost of energy (LCOE)



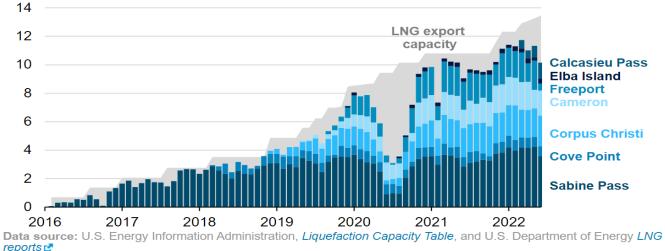



#### Supply

#### North America has large quantities of gas resources available

In addition to commodity prices, factors such as well economics, infrastructure development, and investor sentiment will dictate how much resource is ultimately produced

Remaining gas resources for key onshore North America regions






## **LNG Exports**

## The United States became the world's largest LNG exporter in the first half of 2022

Monthly U.S. liquefied natural gas (LNG) exports (Jan 2016–Jun 2022) billion cubic feet per day





US exports more LNG to Europe, less to Asia, Brazil, Mexico.

Exports of U.S. liquified natural gas, first half 2021 vs. first half 2022.

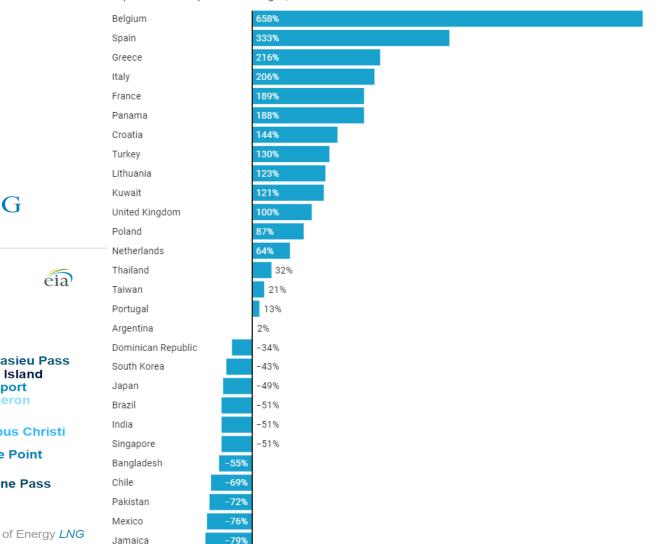
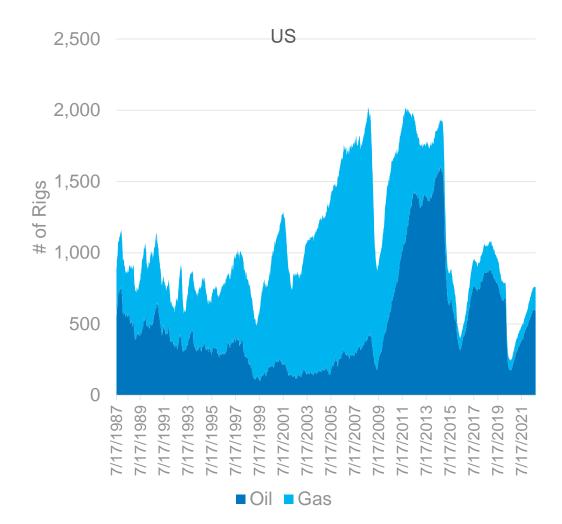
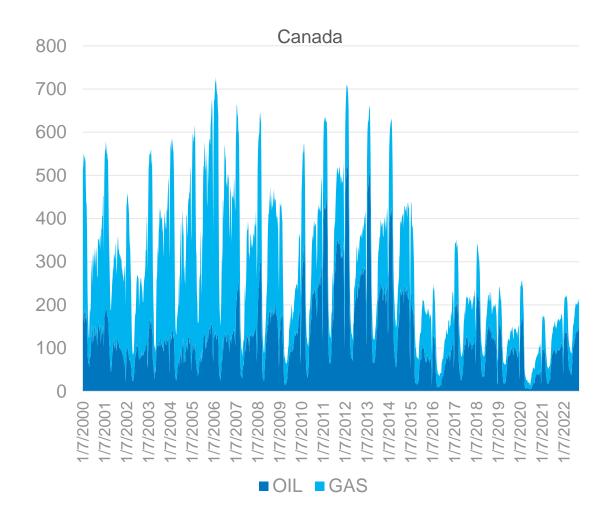
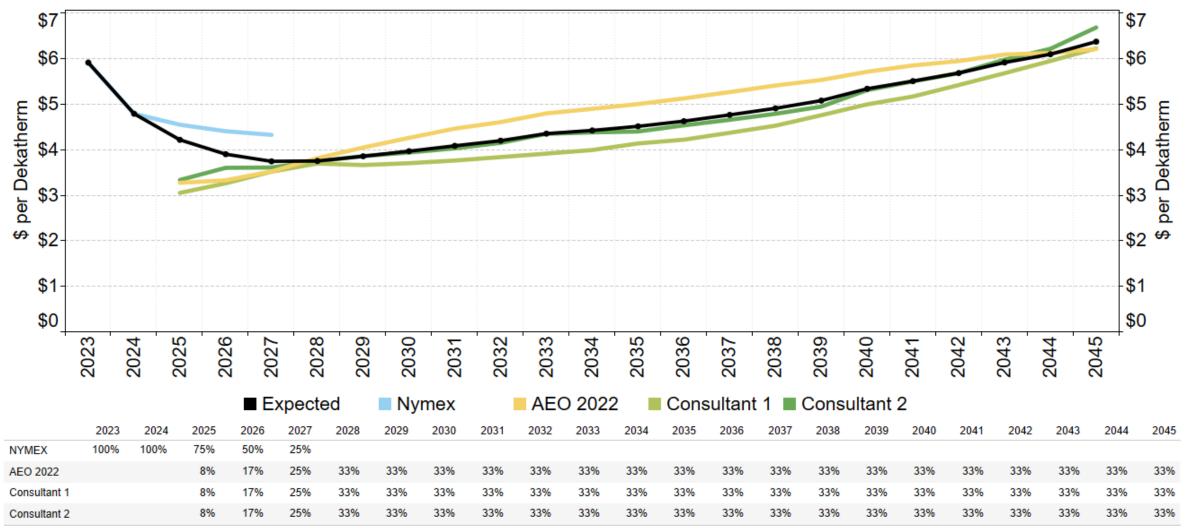





Chart: Reuters staff • Source: Refinitiv • Get the data

## **North American Rig Count**

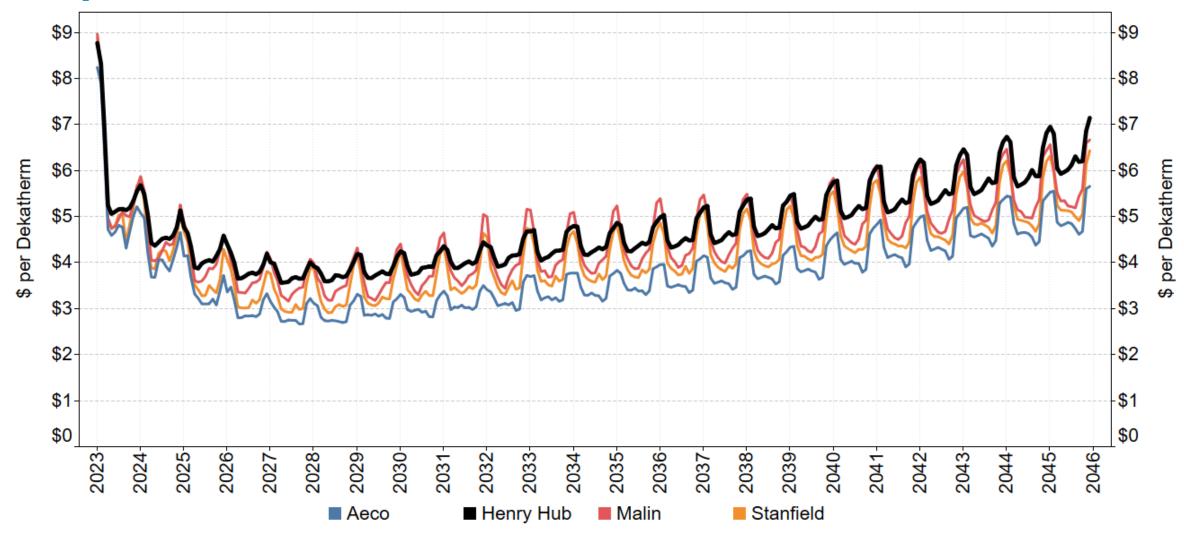





#### **Forward Prices (9/23/2022)**

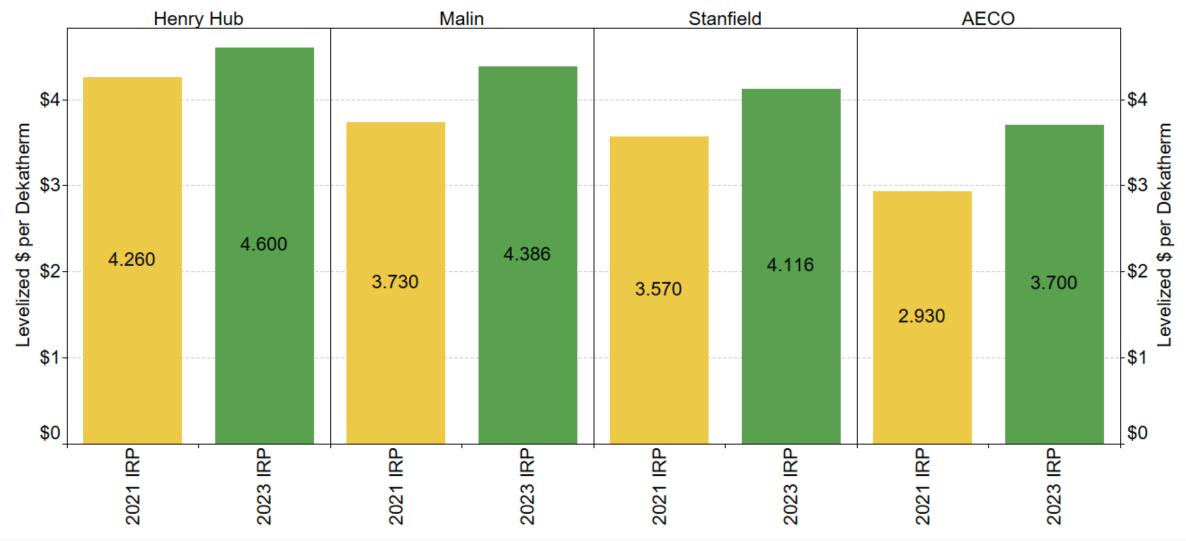





DRAFT

#### **Price Forecast Blending**






#### **Expected Case Price Forecasts**



**AVISTA** 

## Levelized Costs (2023 – 2045)



**AVISTA** 

#### **PLEXOS Stochastics**

#### 4.3.1. Autocorrelation Model

In the autocorrelation model, the differential equation is:

 $e_t = a \times e_{t-1} + (1-a) \times r_t \times P_t \times S$ 

where:

 $e_t$  is the error for time period t

a is the autocorrelation parameter (between 0 and 1)

- $r_t$  is a normal distributed random number
- $P_t$  is the expected value (profile value) in period t
- S is the error standard deviation

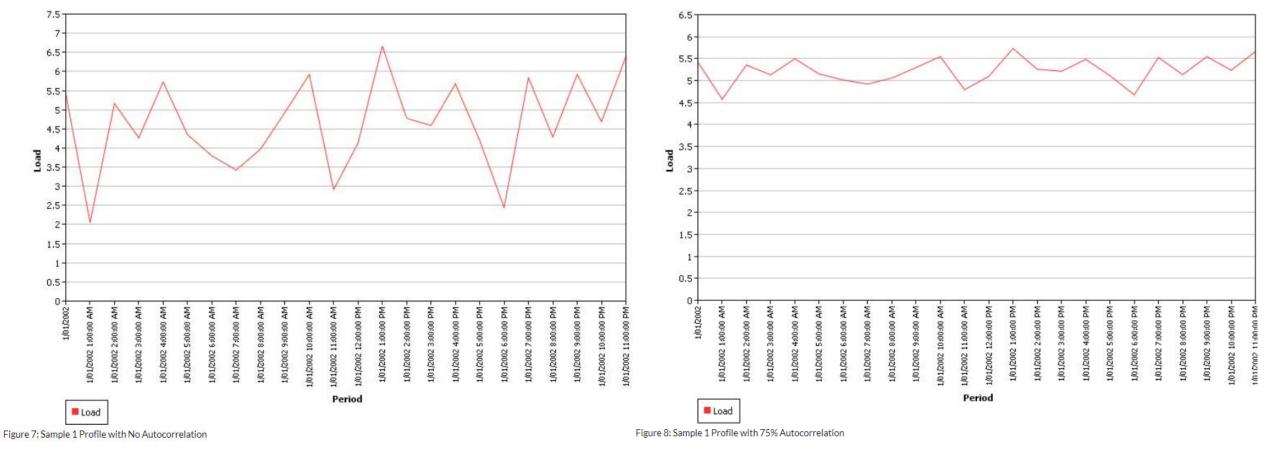
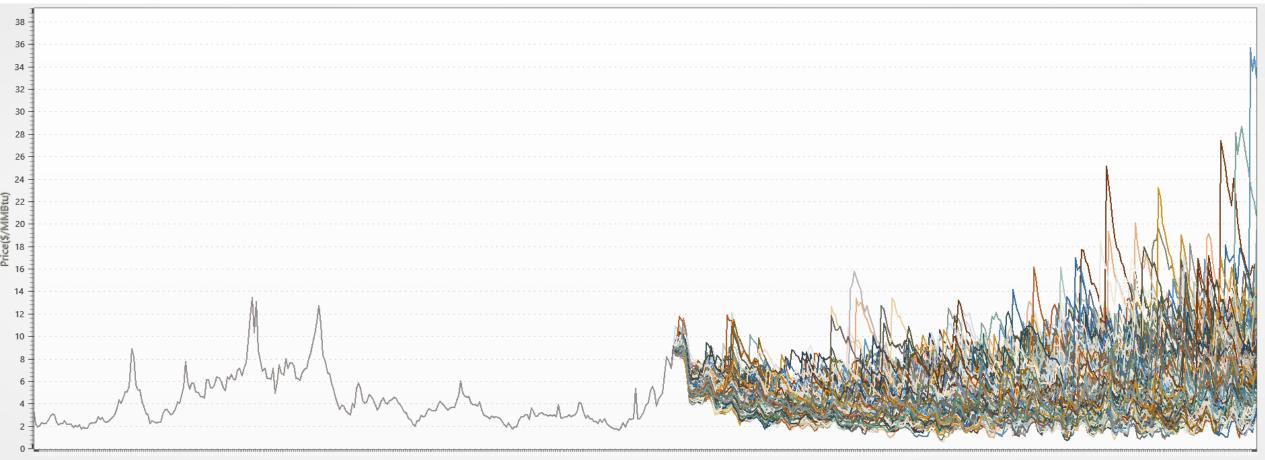

The input parameters here are the Autocorrelation and the Error Std Dev (alternatively Abs Error Std Dev. Autocorrelation is expressed as percentage value (between 0 and 100). The higher the autocorrelation, the more the 'randomness' of the errors is dampened and smoothed out over time. The higher the standard deviation, the greater the volatility of the errors. Because the error function can produce any positive or negative value (at least in theory) it is often necessary to bound the profile sample values produced by this method. The Variable properties Min Value and Max Value are used for this purpose. The actual sample value used at any time is simply the sum of the profile value and the error (which may be positive or negative) bounded by the min and max values.

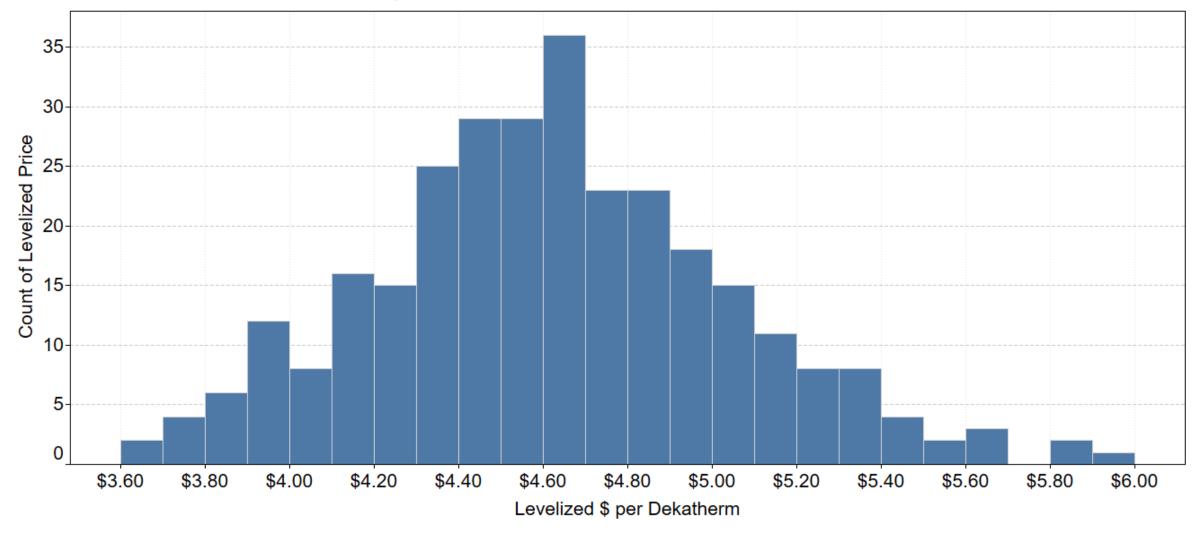
Table 2 shows some simple example input where the profile value is static but has an error function with standard deviation of 28%. In a real application the profile value would change across time *e.g.* read from a flat file. Figure 6 shows the resulting distribution of sample values from 1000 samples, which follows a normal distribution. Figures 7 and 8 shows the output sample 1 profiles with the autocorrelation parameter set to 0% and 75% respectively. Note that the overall distribution of the sample values is still normal as in Figure 6, but the individual sample volatility is damped.

#### **PLEXOS Stochastics Continued**


#### Without Autocorrelation

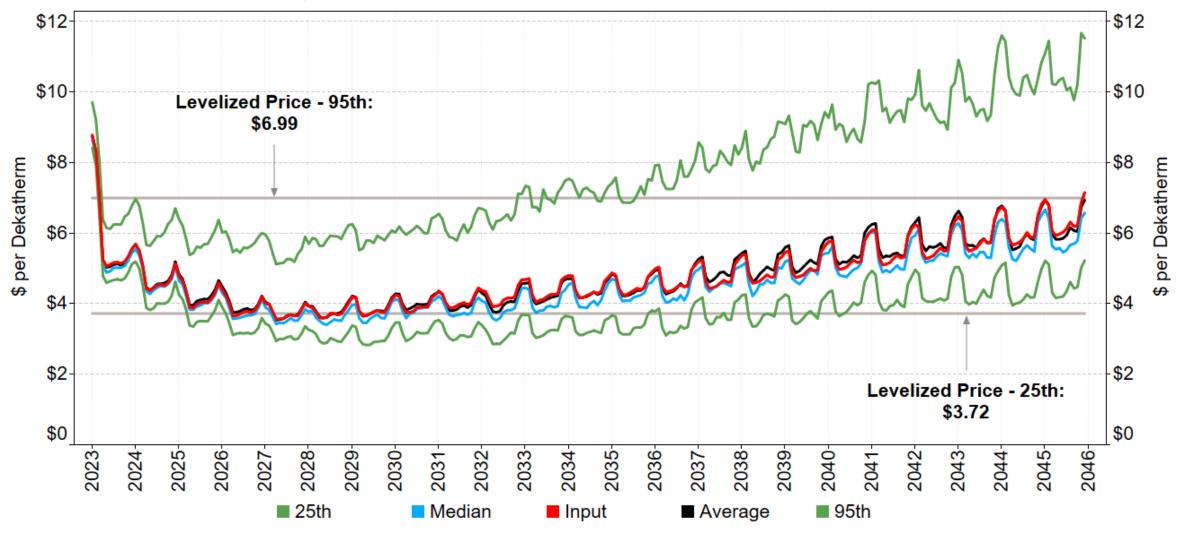
#### With Autocorrelation





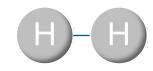

## **Stochastics: Henry Hub (300 Draws)**




January 1997 March 1999 March 2001 March 2003 March 2005 March 2007 March 2009 March 2013 March 2013 March 2017 March 2014 March 2014 March 2015 March 2017 March 2017 March 2023 March 2023 March 2027 March 2023 March 2033 March 2035 March 2037 March 2037 March 2041 March 2043 March 2045

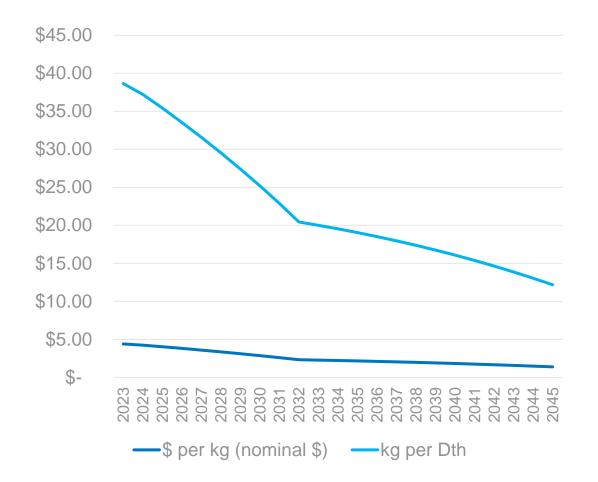
#### **Stochastics: Henry Hub Levelized Prices (300 Draws)**

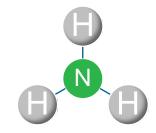





#### **Results: Henry Hub Stochastics (300 Draws)**

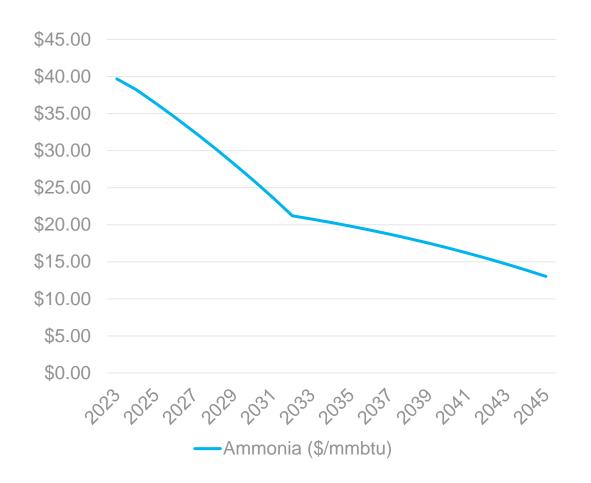



**VISTA** 


DRAFT



## **Green Hydrogen (H2)**


- Hydrogen is the most abundant element in the universe
- The lightest element and wants to escape making it harder to contain
- Highly combustible
- Tax credits from IRA assumed at a levelized credit for the full \$3 per kg incentive from green H2





## Ammonia

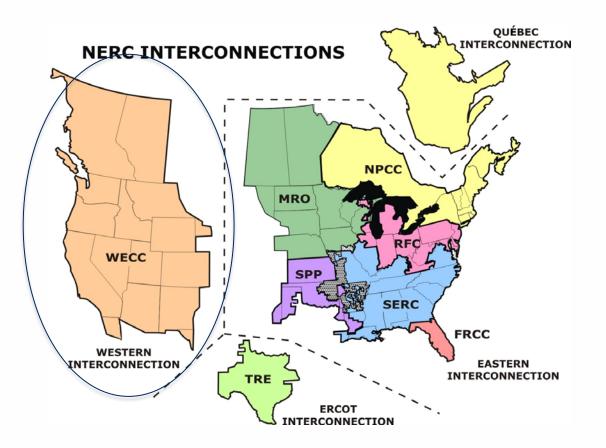
- One of the most produced chemicals in the United States
- Usually shipped as a compressed liquid in steel containers
- Not highly flammable
- Can be used as a fuel in emission-free fuel cells and turbines
- Can be made using green H2 from water electrolysis and nitrogen separated from the air
  - Fed into the "Haber Process" and combined at high temperatures and pressures to produce ammonia







#### **Electric Wholesale Market Price Forecast**


Lori Hermanson, Senior Resource Analyst Electric IRP, Seventh Technical Advisory Committee Meeting October 11, 2022

#### **Overview**

- This market price forecast will be used in the IRP
- Updated from draft price forecast presented in March
  - Loads
  - Climate impacts for hydro and loads
  - Natural gas and carbon prices
  - Consultant inputs
- Stochastics electric price modeling in process

#### **Market Price Forecast – Purpose**

- Estimate "market value" of resources options for the IRP
- Estimate dispatch of "dispatchable" resources
- Informs avoided costs
- May change resource selection if resource production is counter to needs of the wholesale market

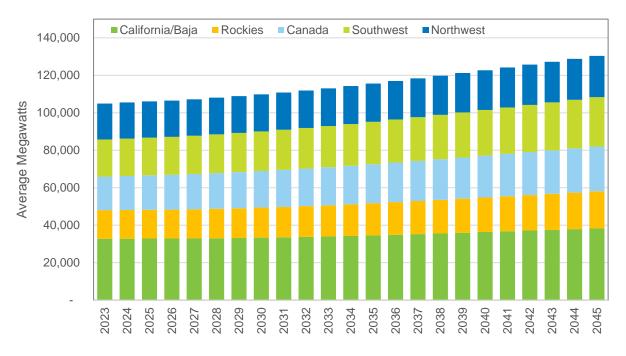


## **Methodology**

- 3<sup>rd</sup> party software Aurora by Energy Exemplar
- Electric market fundamentals production cost model
- Simulates generation dispatch to meet regional load
- Outputs:
  - Market prices (electric)
  - Regional energy mix
  - Transmission usage
  - Greenhouse gas emissions
  - Power plant margins, generation levels, fuel costs
  - Avista's variable power supply costs

## **Modeling Process**



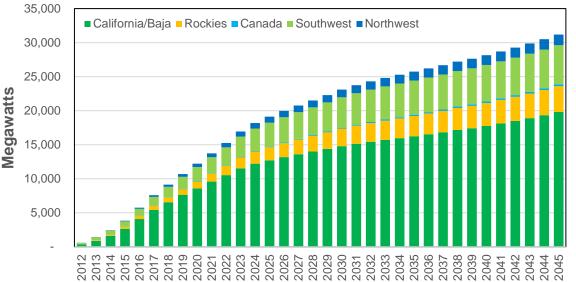

AVISTA'

#### Draft Forecast

ANSTA

#### **Load Forecast**

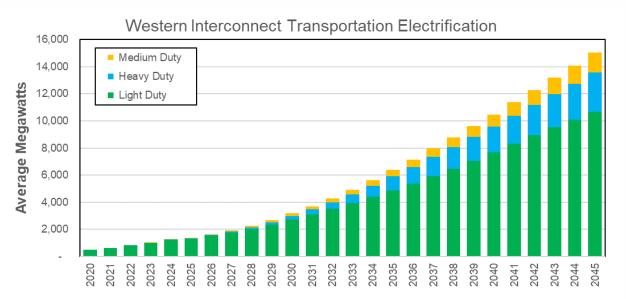
- Regional load forecast from IHS
  - Forecast includes energy efficiency
- Add net meter resource forecast
   Annual input with hourly shape
- Add electric vehicle forecast
  - Annual input with hourly shape
- Future load shape differs from today's load shape




#### Western Interconnect Annual Load

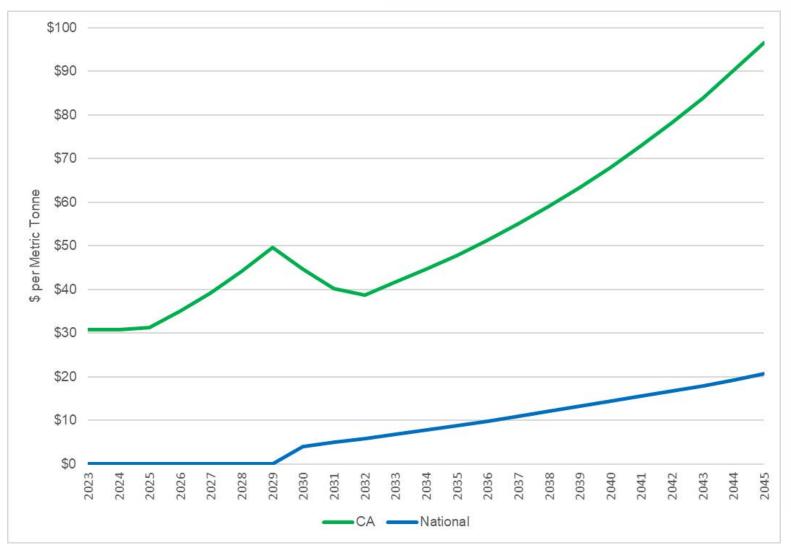
#### **Electric Vehicle and Solar Adjustments**

#### Roof Top Solar


- EIA existing estimates for history
- IHS regional growth rates



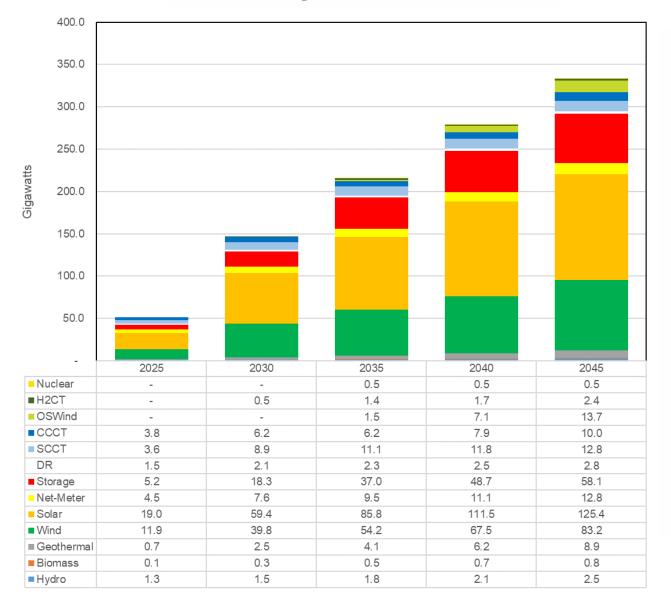
#### Western Interconnect Rooftop Solar Capability


#### **Electric Vehicles**

- Penetration rates increase each year
- 15-65% light duty (2040)
- 12-15% medium duty (2040)
- 5% heavy duty (2040)

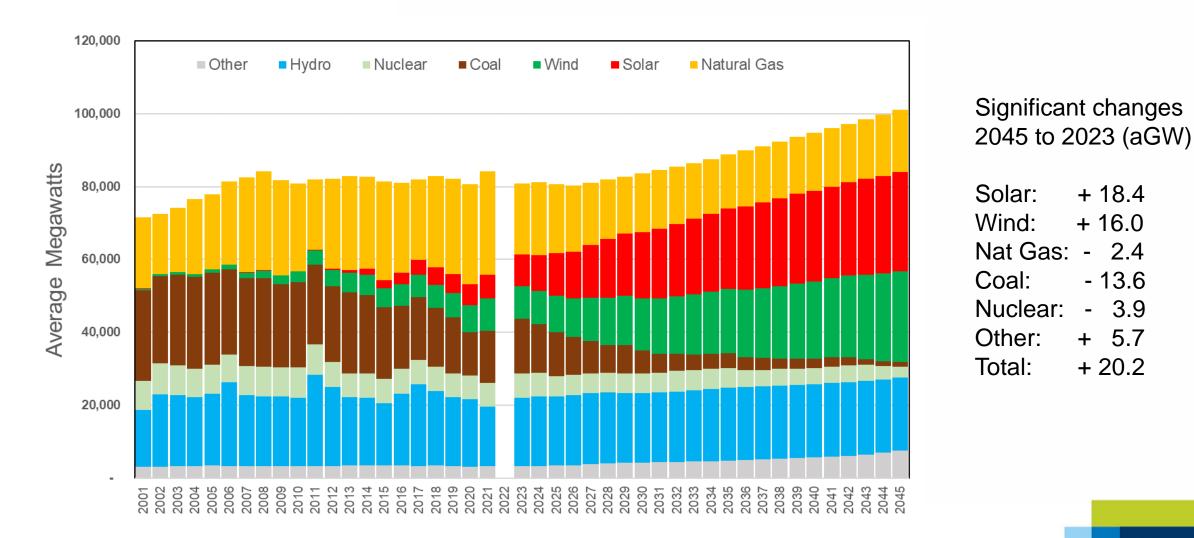


AVISTA


## **WECC Weighted GHG Emission Prices**

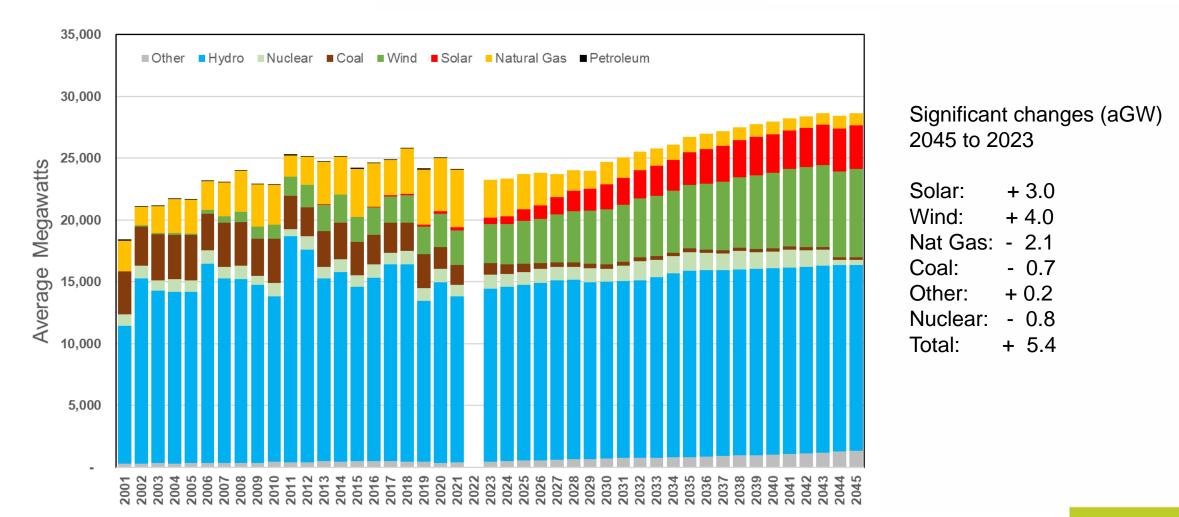


- CA current prices + 2030 national carbon price
- \$5.43 levelized per Metric Tonnes (WA)
- Revised 2019 IEPR Carbon Price Projections (CA) and national price estimate (consultant)
- To address imports, exporting region incurs a carbon price adder to transfer power
- CCA rules are not final; still determining the price forecast impact from CCA; will publicize final price forecast when complete


A VISTA

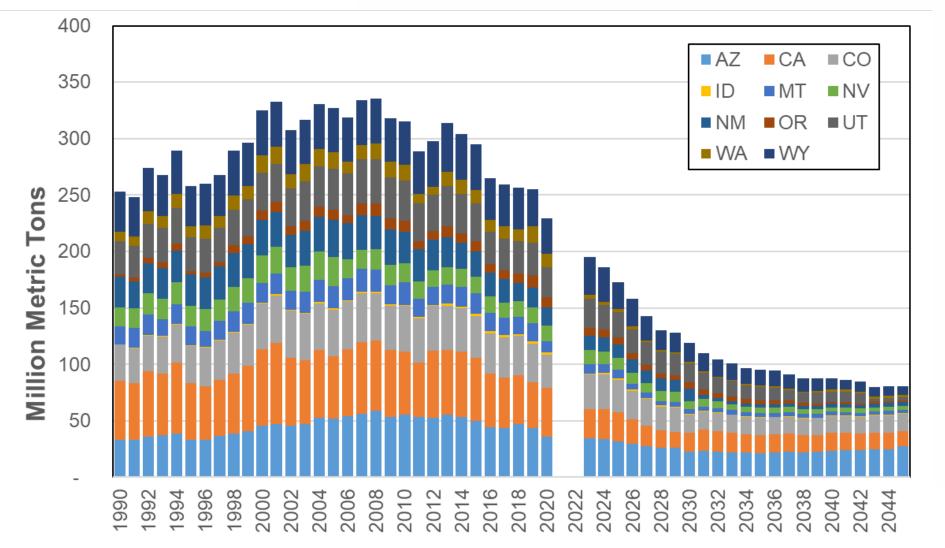
## New Resource Forecast (Western Interconnect) Draft Forecast




AIVISTA'

## **U.S. West Resource Type Forecast**

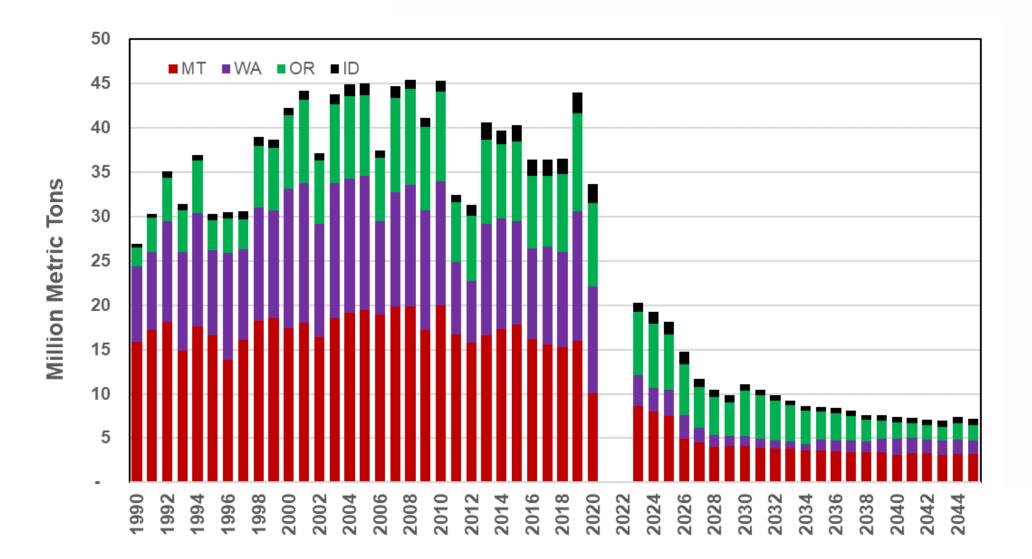



AVISTA

#### **Northwest Resource Type Forecast**



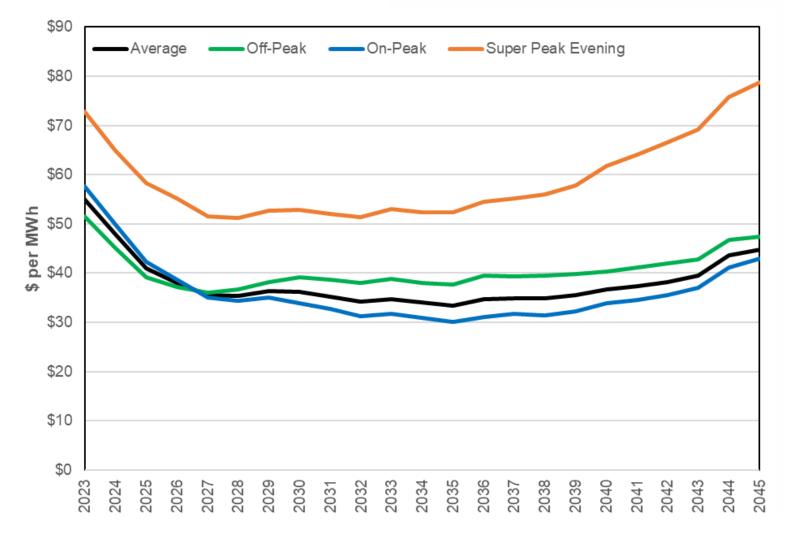
11


## **Greenhouse Gas Forecast U.S. Western Interconnect**



AVISTA

### Draft Forecast

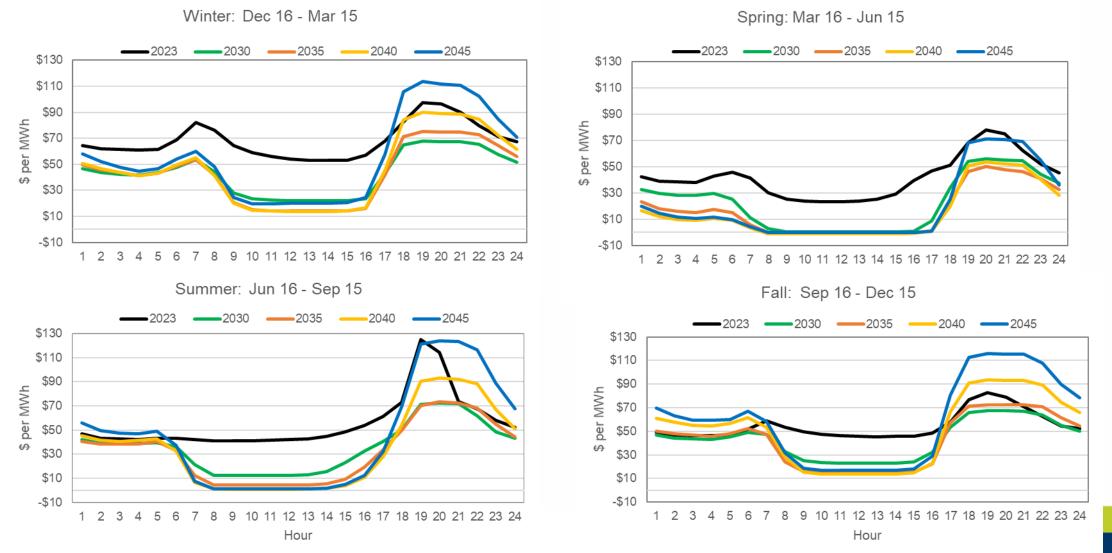

### **Greenhouse Gas Forecast Northwest States**



AVISTA

### Draft forecast

### **Mid-C Electric Price Forecast**




- Levelized Price:
  - 2023-45: \$38.16/MWh
- Off-peak prices overtake on-peak in 2027 on an annual basis
- Super peak evening (4pm-10pm) prices remain high

### Draft Forecast

Aivista<sup>·</sup>

### **Hourly Wholesale Mid-C Electric Price Shapes**



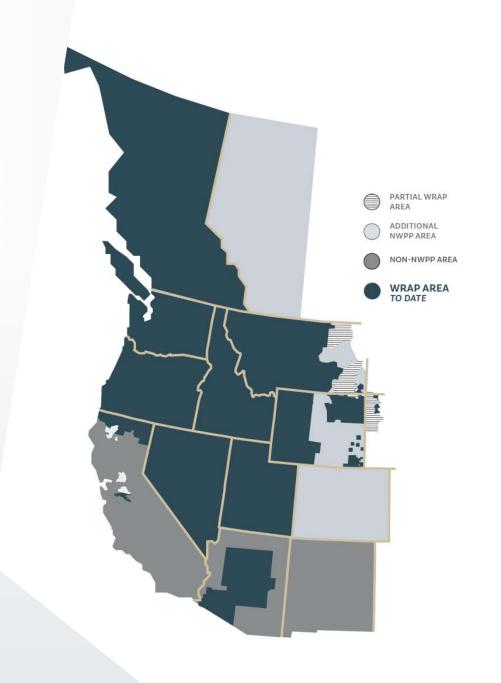
### **Data Availability**

### **Outputs**

- Expected Case: annual Mid-C prices by iteration
- Expected Case: hourly Mid-C prices
- Regional resource dispatch
- Regional GHG emissions



# WESTERN RESOURCE Adequacy Program


Review of preliminary, non-binding WRAP regional data for the current participating footprint

> Avista IRP TAC Meeting October 11, 2022

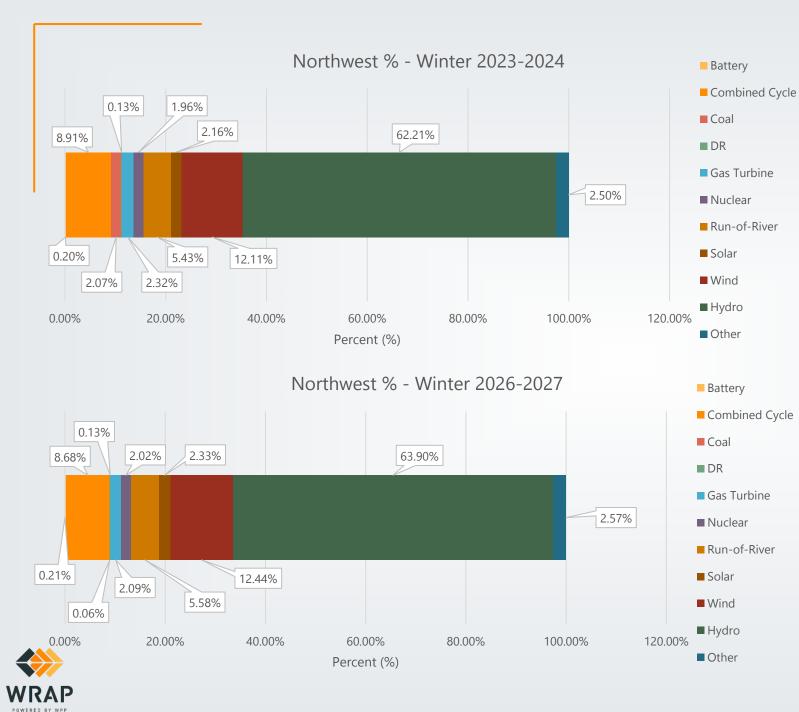
> > Link to public webinar

# **OVERVIEW**

- » *Reliability first!* Implementing a westwide resource adequacy program must be a priority for the region as the regions resource mix changes
- » Currently 26 utilities are participating in the WRAP non-binding program phase
- » Western Power Pool is the Program Administrator and filed a tariff with FERC seeking program approval by the end of the year
- » Southwest Power Pool is the Program Operator and performed all modeling and data analysis

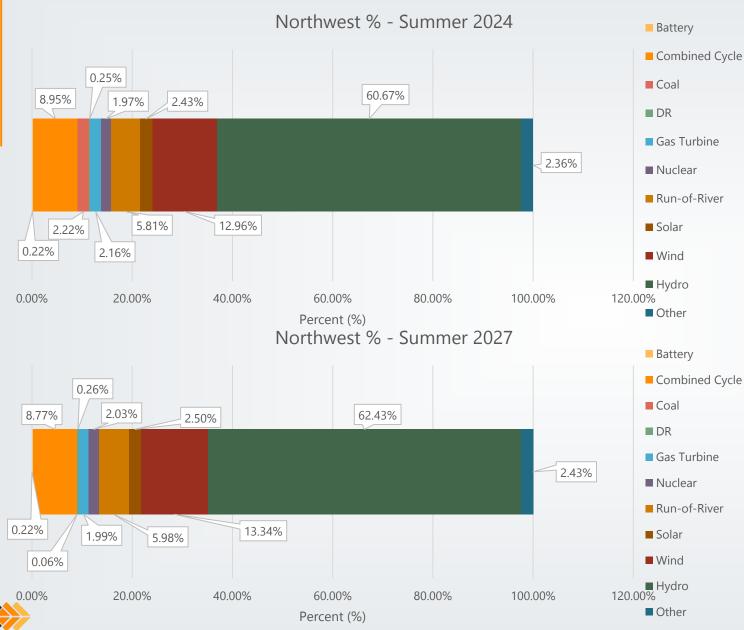





## **TODAY'S OBJECTIVES**

- Provide an overview of the loads and resources in the WRAP MW footprint
- » Provide and overview of installations and nameplate for wind and solar
- Provide an overview of the QCC and ELCC values for each resource class
- >> Provide an overview of Planning Reserve Margin values (PRM)




# **BEFORE WE BEGIN**

- » Modeling provided utilizes WRAP program design, assuming full binding implementation of the WRAP as designed
  - Metrics assume diversity benefit and a level of forward procurement on aggregate that is not presently expected without implementation of the WRAP
- » Modeling was performed based on the current footprint of participants
  - Changes to WRAP participation in future phases will impact these metrics
  - These assessments cannot account for adequacy needs or activities of non-participating load or resources
- » Be aware of the limits of drawing regional conclusions from aggregate information
  - Information is best applied at individual LREs; WRAP's scope does not include matching LREs in need
    of additional forward procurement with available resources
  - It cannot be assumed that all resources modeled in the loss of load expectation study will be available to the WRAP footprint



# NORTHWEST WINTERS

Percentage



POWERED BY WPP

| offibilited cycle |
|-------------------|
| oal               |
| R                 |
| as Turbine        |
| luclear           |
| un-of-River       |
| olar              |
| /ind              |
| lydro             |
| ther              |
| attery            |
| ombined Cycle     |
| oal               |
| R                 |
| as Turbine        |
| luclear           |
| un-of-River       |
| olar              |
| /ind              |
| lydro             |
|                   |

# **NORTHWEST SUMMERS**

Percentage

# Key Reminders

- » Not all resources shown in the preceding slides can be assumed to be available to the WRAP footprint for resource adequacy purposes
  - Planned outages are not considered; they will be managed by LREs from their surplus
  - Does not account for activities and needs of neighboring, non-participating regions or entities
  - Based on information and projections provided by participants
- » Aggregate information does not give insight into whether individual participants have enough supply
  - WRAP motivates participants to acquire the necessary capacity
  - Cannot assume this has yet happened or will happen without binding implementation of WRAP

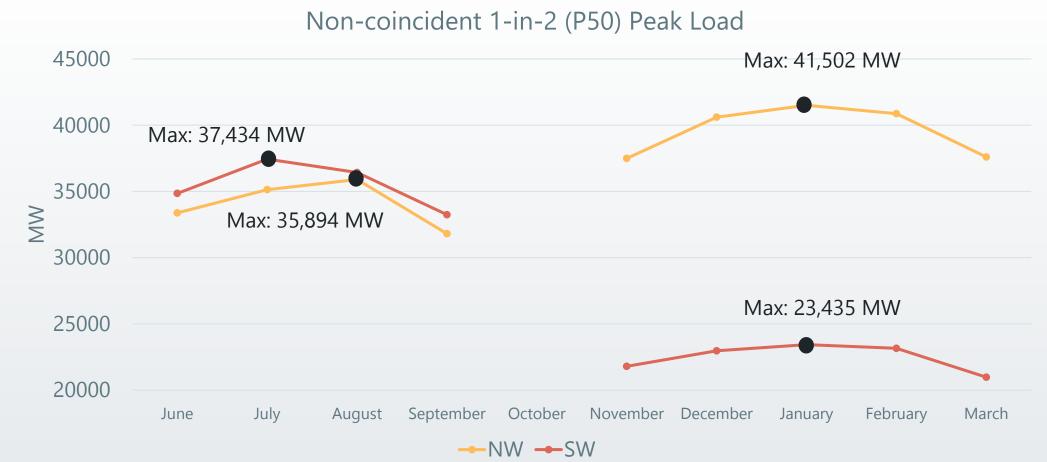




# WIND ZONES

| Zone      | # of Plants | Nameplate<br>Capacity (MW) |
|-----------|-------------|----------------------------|
| Wind VER1 | 54          | 5,734                      |
| Wind VER2 | 44          | 2,400                      |
| Wind VER3 | 23          | 1,378                      |
| Wind VER4 | 24          | 2,429                      |
| Wind VER5 | Aggregate   | 747                        |
| Total     | 146         | 12,688                     |

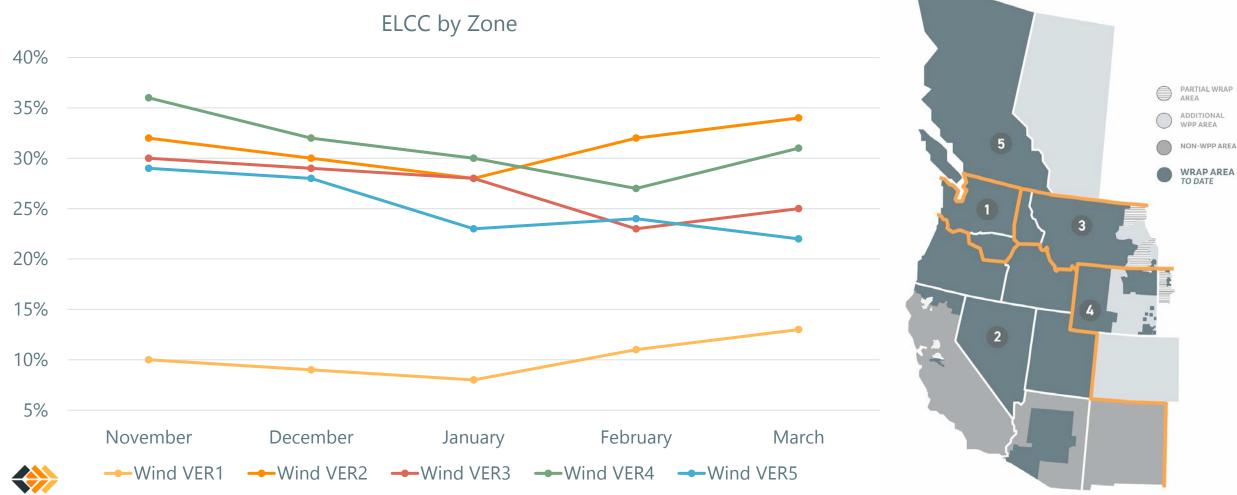





# **SOLAR ZONES**

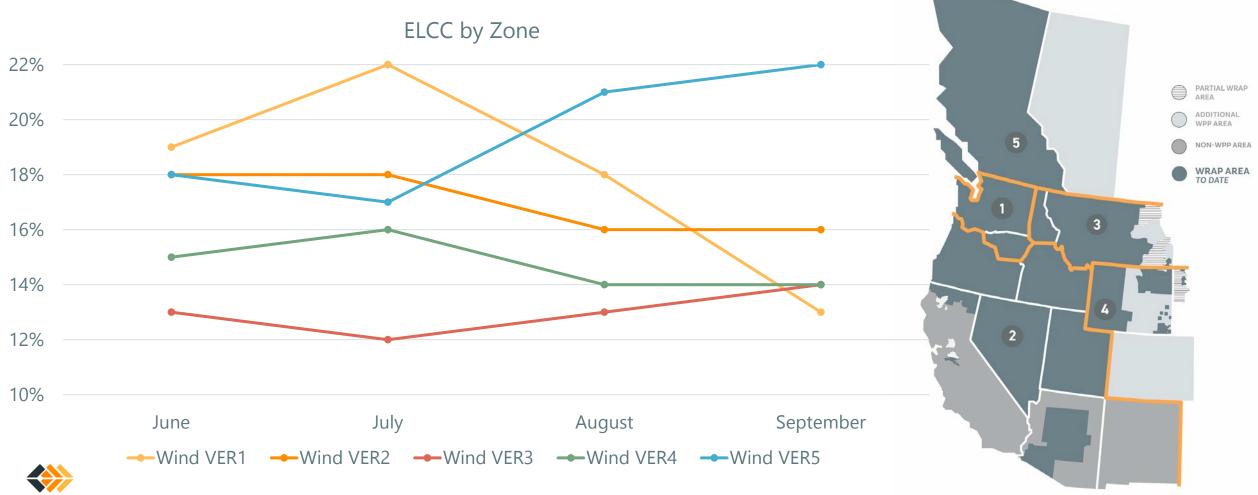
| Zone       | # of Plants | Nameplate<br>Capacity (MW) |
|------------|-------------|----------------------------|
| Solar VER1 | 159         | 2,138                      |
| Solar VER2 | 108         | 9,024                      |
| Total      | 267         | 11,162                     |




# PEAK LOAD






# WIND ELCC - WINTER

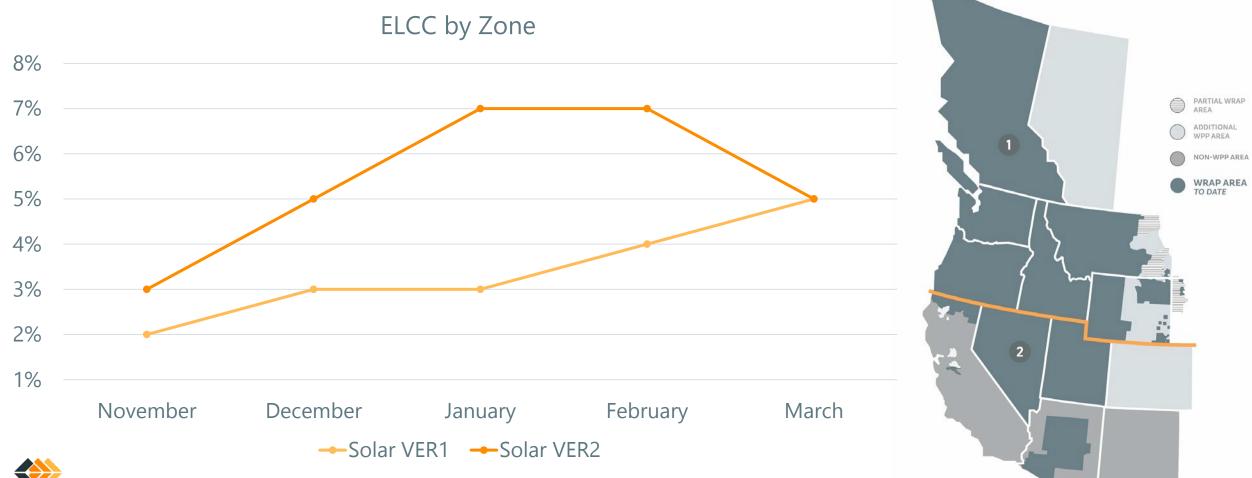
WRAP



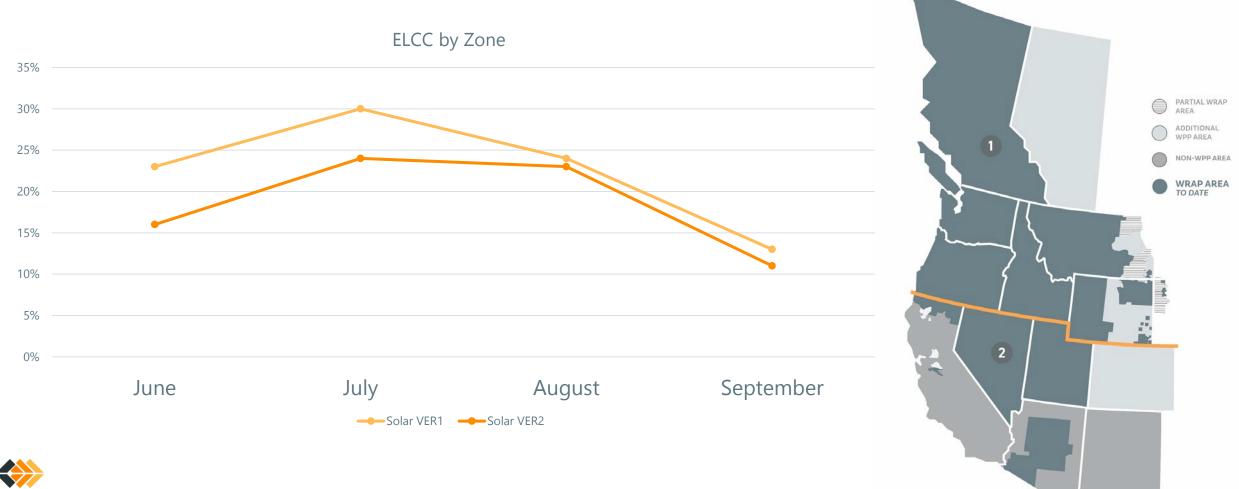
# WIND ELCC - SUMMER

WRAP




## WIND ELCC – Wind at Incremental GW Installations

Incremental GW Installations

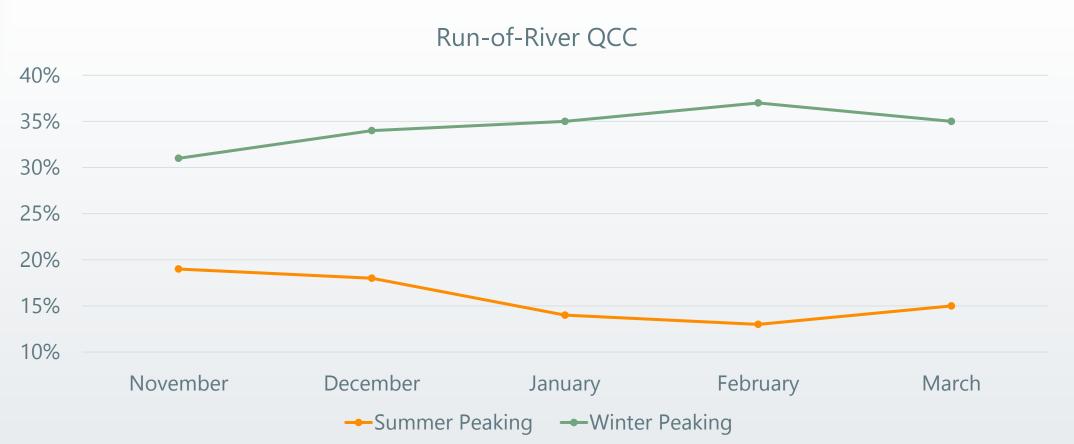





# **SOLAR ELCC - WINTER**

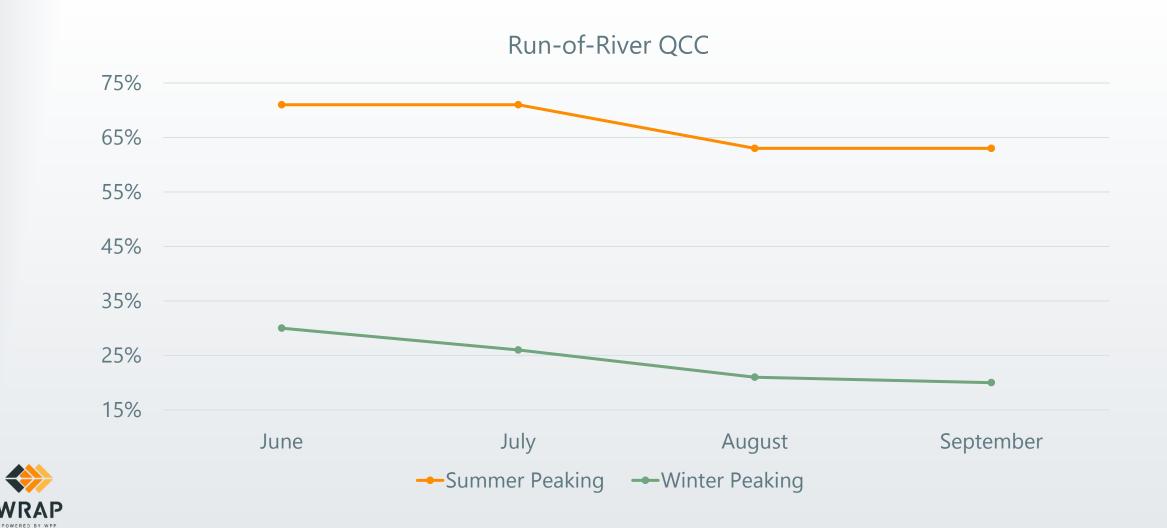


# **SOLAR ELCC - SUMMER**

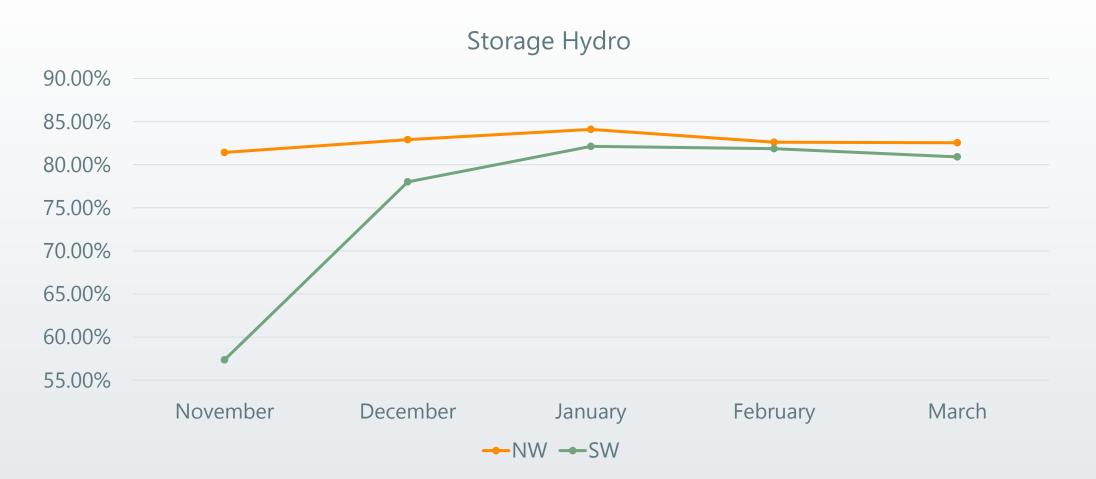



# SOLAR AT INCREMENTAL GW INSTALLATIONS

Incremental GW Installations

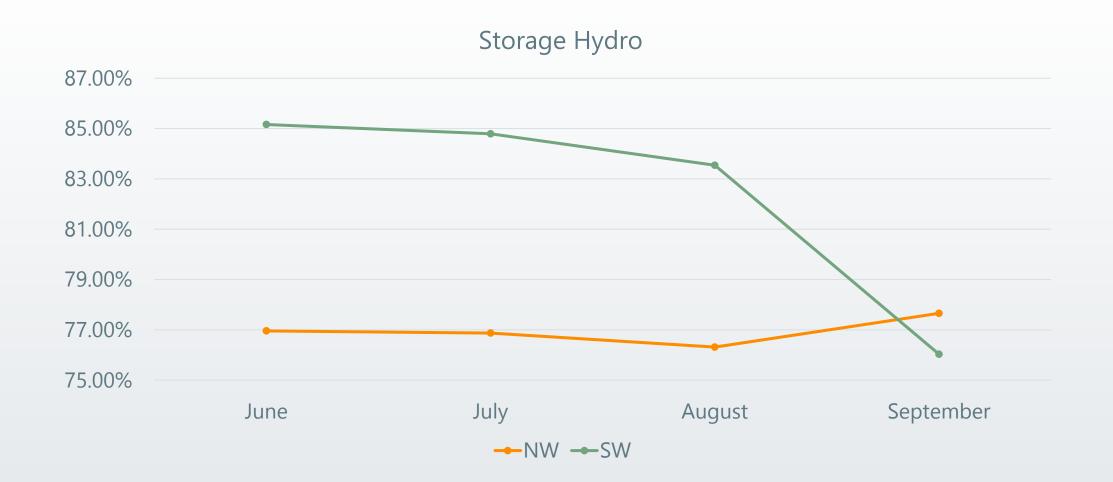



# RUN-OF-RIVER QCC



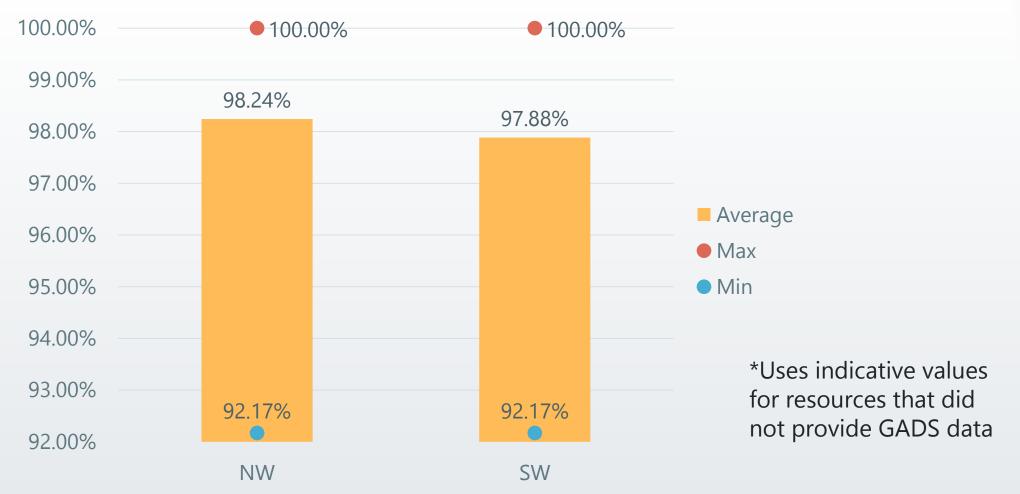



# RUN-OF-RIVER QCC *SUMMER*



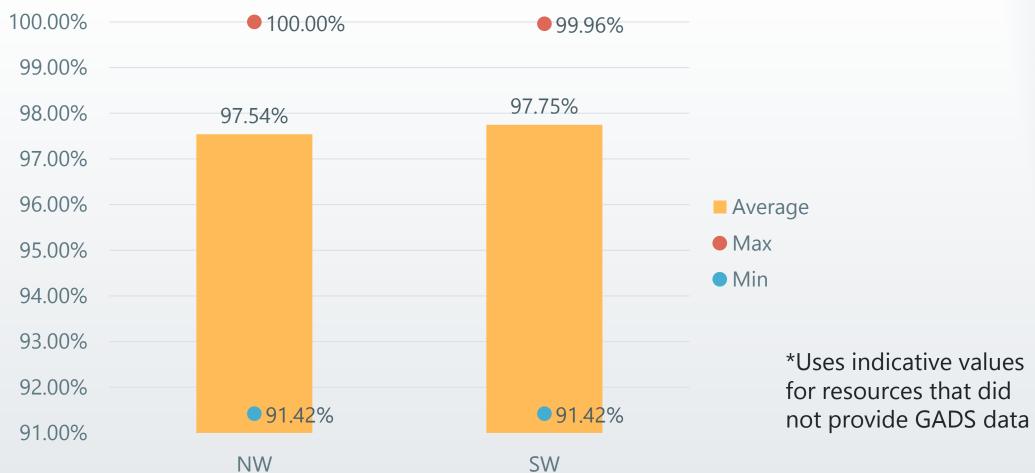

# **STORAGE HYDRO QCC - WINTER**





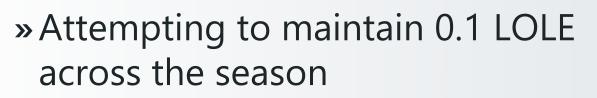

# **STORAGE HYDRO QCC - SUMMER**






# THERMAL QCC- WINTER






# THERMAL QCC- SUMMER






## PRM Considerations



- » Allow up to 0.01 LOLE in each individual month
- » Non-Coincidental Peak load for a given month is a significant factor in calculation of PRM (lower load months will have higher PRM value)



# PRM – NORTHWEST (UCAP)





# **CURRENT PHASE ACTIVITIES**

PO = Program Operator LOLE = Loss of Load Expectation ELCC = Expected Load Carrying Capacity





# WRAP – PHASED ROLL OUT

### **Non-Binding Forward Showing**

Winter 22-23, Summer 23, Winter 23-24, Summer 24, Winter 24-25

### Binding Program With Transition Provisions (FS and Ops)

Summer 25, Winter 25-26, Summer 26, Winter 26-27, Summer 27, Winter 27-28



### **Non-Binding Operations Program**

Summer 23 (trial – will include testing scenarios), Winter 23-24, Summer 24, Winter 24-25

### Binding Program Without Transition Provisions

Summer 28 and all seasons following



# THANK YOU

For general inquiries or to be added to our mailing list: wrap@westernpowerpool.org





# Washington Resource Selection & Customer Benefit Indicators

Annette Brandon, Wholesale Marketing Manager Electric IRP, Seventh Technical Advisory Committee Meeting October 11, 2022

### **CEIP Development**

Integrated Resource Plan (IRP) – Filed final April 30, 2021

20+ year resource planning identifying customer future resource needs

### Clean Energy Action Plan (CEAP) – Filed jointly with IRP

Sets <u>**10-Year targets**</u> for resources based on the lowest reasonable cost plan including; filed jointly with IRP

#### Public Participation Plan – May through September 2021

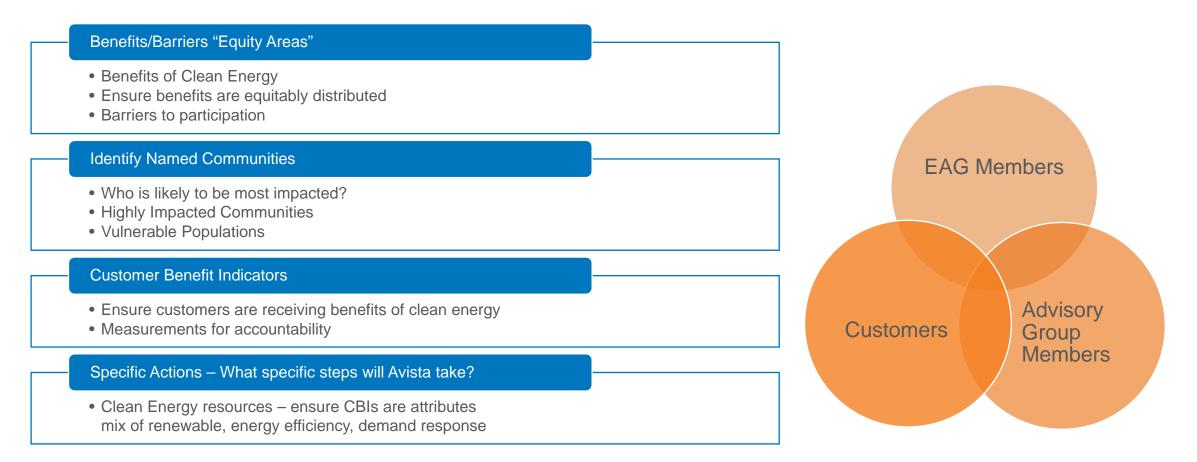
Provides <u>road map</u> for engagement and solicitation of input from customers, Equity Advisory Group, and existing Advisory Groups (including Stakeholders from public agencies)

#### Clean Energy Implementation Plan (CEIP) 2022-2025 – Filed October 1, 2021

CEIP establishes the <u>actions</u> the utility will take to comply with CETA goals over the next four years.

- Informed by Public Participation Process
- Identifies the projects, programs and investments
- Ensures Customer Benefit are attributes of those actions.
- Approved June 2022 with Conditions

### 2021 Clean Energy Implementation Plan






AWISTA

### **Public Participation Groups and Process**

Equity is at the core of the transition to clean energy. Company must ensure the "equitable distribution of energy and nonenergy benefits and reductions of burdens to vulnerable populations and highly impacted communities" in development of CEIP.





### What is a "Customer Benefit Indicator"?

"...is an attribute, either quantitative or qualitative, of resources or related distribution investments associated with customer benefits described in RCW 19.405.040(8)."

#### Equity

 Equitable distribution <u>of energy</u> and <u>non-energy</u> benefits and <u>reductions</u> of <u>burdens</u> (non-energy impacts) to vulnerable populations and highly impacted communities

#### Public Health / Environment

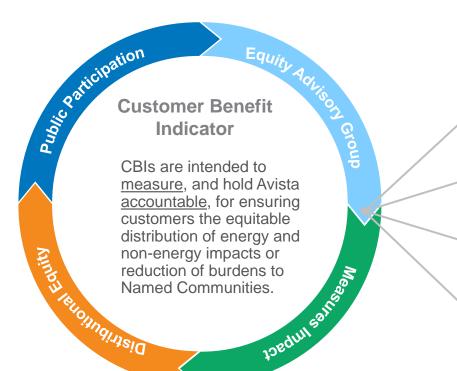
- Long-term and short-term public health and environmental benefits and reductions of costs and risks;
- Such as less air pollution which results in lower asthma rates

#### Energy Security and Resiliency

- Energy Security strategic objective to maintain energy services and protecting against disruption
- Energy Resiliency ability to adapt to challenging conditions from disruptions

#### Cost and Risk Reduction

- Lowers customer costs
- Reduces risk


How can we ensure our customers benefit from the clean energy implementation <u>actions</u> we are taking?

Which <u>resources</u> or investment could provide benefits to our customers?

How can we <u>measure</u> how we are doing?



### **Customer Benefit Indicator – Process**



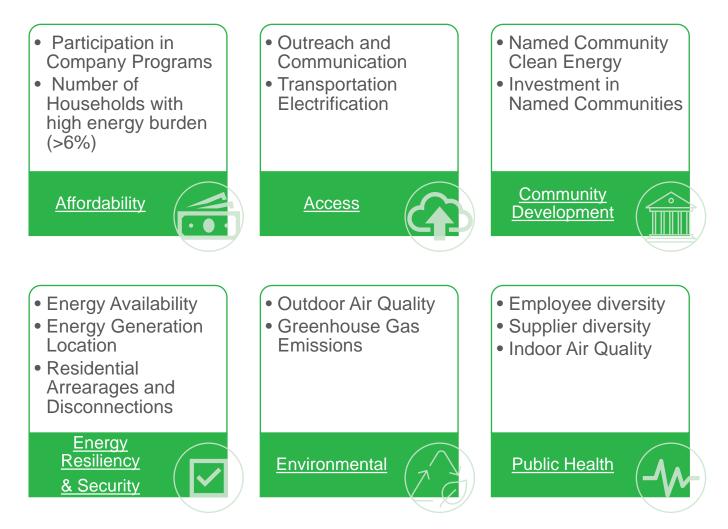
#### **Public Participation**

 Informed by a Public Participation Process in development of Clean Energy Implementation Plan

#### **Equity Advisory Group (EAG)**

 EAG provides equity lens applied to resources selection and CBIs part

#### **Measurable and Accountable**


- Each CBI will be compared against established base to ensure benefit of clean energy transition
- Initially Will be reported via Avista website quarterly

#### **Distributional Equity / Named Communities**

• Ensures that communities highly impacted by adverse socioeconomic conditions, pollution and climate change - or experience a disproportionate cumulative risk of environmental burdens benefit from of the clean energy transition.



## Approved Customer Benefit Indicator (CBI) by Equity Area



Several Impact multiple benefit areas:

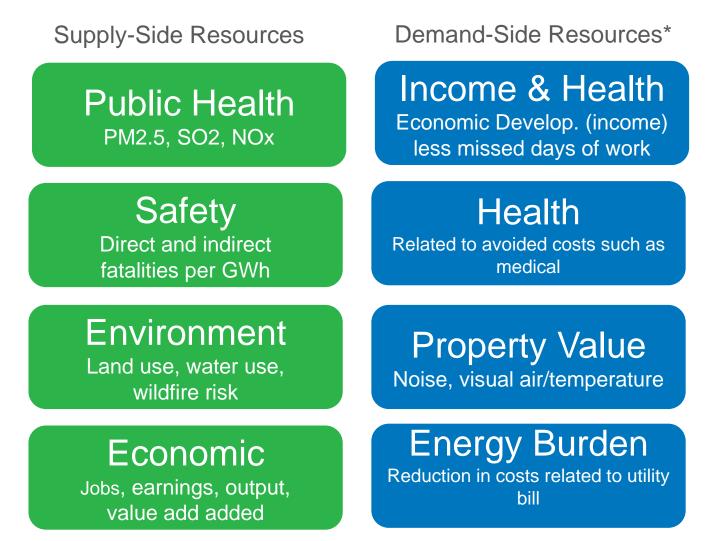
- Energy
- Non-energy
- Reduction of burdens
- Public Health and Environmental
- Energy Security and Resiliency
- Cost and Risk Reduction



## What is a Non-Energy Impact?

- NEIs are at the vital intersection of energy and equity and central part of the metrics of equity
- Non-energy impacts is a way to understand the total contribution of investments that goes beyond the simple energy and demandsavings
- These impacts (either positive or negative) can come in the form of economic, social, and/or personal ways.
- Non-energy impacts can be called many things, but they all mean the same thing: non- energy impacts (NEIs), NEBs, co-benefits, etc.

| Societal Benefits               |                      |  |  |  |
|---------------------------------|----------------------|--|--|--|
| Public Health                   | Economic Development |  |  |  |
| Improved Air Quality            | Increased Employment |  |  |  |
| Water quality and quantity      | Energy Security      |  |  |  |
| Benefits to Low Income families |                      |  |  |  |


#### Participant Benefits

| O & M Savings    | Employee Productivity<br>Increase   |
|------------------|-------------------------------------|
| Health Benefits  | Property Value Increase             |
| Comfort Increase | Benefits to Low Income<br>Customers |

| Utility Benefits                         |                        |  |  |
|------------------------------------------|------------------------|--|--|
| Peak Load Reduction                      | Less Debt Write Off    |  |  |
| Transmission and<br>Distribution Savings | Lower Collection Costs |  |  |
| Reduced arrearages                       | Fewer customer calls   |  |  |



## **Non-Energy Impacts in IRP**



#### **IRP Resource Selection**

- Non-energy impacts quantified from DNV (third party) analysis in economic potential.
- Non-energy impacts quantified from DNV (third party) analysis in supply-side resource selection as adder.
- Not all NEIs are able to be quantified due to lack of data or difficultly in obtaining data.
- Additional study may be performed for Supply side resources.
- Phase II Demand Side Resource NEI Study to occur in 2022.



#### **Customer Benefit Indicator and Non-Energy Impact Clean Energy Implementation Plan Condition #2**



- Avista will apply Non-Energy Impacts (NEIs) and Customer Benefit Indicators (CBIs) to all resource and program selections in determining its Washington resource strategy
- Avista agrees to engage and consult with its applicable advisory groups (IRP Technical Advisory Committee (TAC) and Energy Efficiency Advisory Group (EEAG)) regarding an appropriate methodology for including NEIs and CBIs in its resource selection.
- Avista will consult with its EAG after the development of this methodology to ensure the methodology does not result in inequitable results

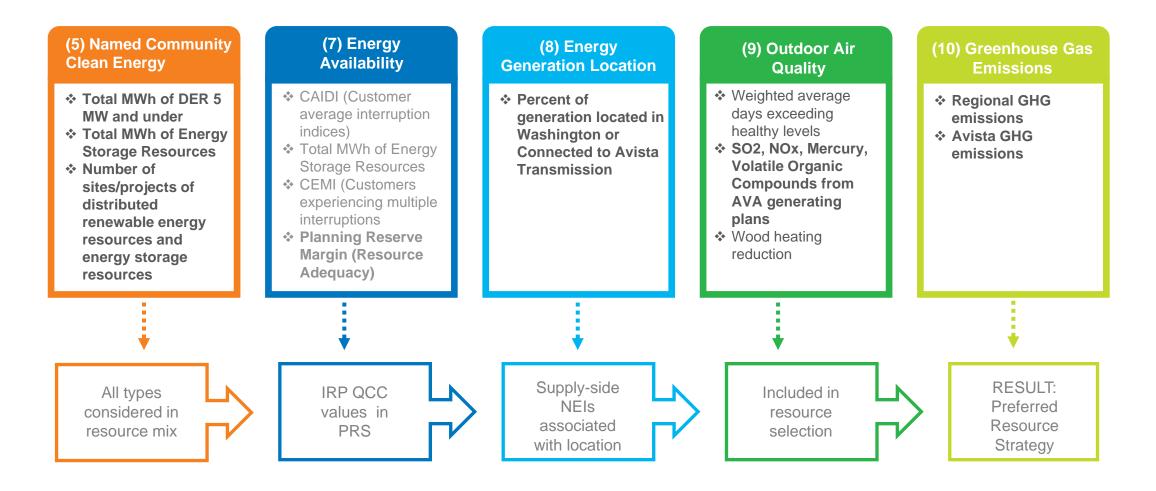


### **CBIs and Resource <u>Measurements</u> Not applicable to Resource Selection**

The following CBIs are measurement tools for implementation of various resources or to address qualitative inequities primarily in Named Communities

| (1) Participation in Company<br>Programs              | <ul> <li>Participation in Weatherization Programs</li> <li>Saturation rates for energy assistance</li> <li>Number of residential appliance and<br/>equipment rebates to Named Communities /<br/>rental units</li> </ul>                                              | <ul> <li>Measures impact of the success of execution of BCP</li> <li>Coordinated effort with CBI (3) Methods/Modes of Communication</li> <li>May be used in program prioritization</li> </ul>                |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2) Number of households with a high energy burden    | <ul> <li>Number of households with a high energy<br/>burden (&gt;6%) will be tracked separately for all<br/>electric customers, known low income, and<br/>Named communities</li> <li>Average Excess Burden per Household</li> </ul>                                  | <ul> <li>IRP will forecast total cost and indirectly impacts to energy burden</li> <li>Not measured directly for EE. Embedded with NEI for bad debt, O &amp; M (participant) and thermal comfort.</li> </ul> |
| (3) Availability of Methods/Modes<br>of Communication | <ul> <li>Number of contacts for each energy<br/>assistance and energy efficiency outreach<br/>event offered, and impressions from energy<br/>assistance and energy efficiency marketing</li> <li>Track increased availability of translation<br/>services</li> </ul> | <ul> <li>Intended to address barriers to<br/>participation/access; not selection<br/>criteria</li> </ul>                                                                                                     |

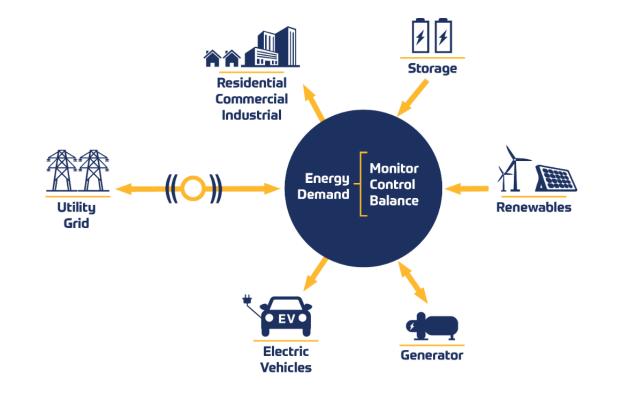



### **CBIs and Resource <u>Measurements</u>** Not applicable to Resource Selection Continued

| too | (4) Transportation Electrification                                | <ul> <li>Number of Trips provided by CBO</li> <li>Number of annual passenger miles provided by CBOs</li> <li>Number of Public Charging Stations located in Named Communities.</li> </ul>                                                                                  | <ul> <li>Measurement of plan<br/>implementation In accordance with<br/>TE Plan</li> </ul>                                                                                            |
|-----|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (6) Named Community<br>Investments                                | <ul> <li>Incremental annual spending of investments in<br/>Named Communities</li> <li>Annual number of customers and/or CBOs</li> <li>Quantification of annual energy and non-energy<br/>benefits from investments (if applicable)</li> </ul>                             | Results measurement of individual investments not identified in RFP                                                                                                                  |
|     | (11) Employee Diversity<br>(12) Supplier Diversity                | <ul> <li>11 – employee diversity equal to communities served by 2035</li> <li>12 – Supplier Diversity of 11% by 2035</li> </ul>                                                                                                                                           | <ul> <li>Intended to address "public health<br/>threat" or other historical/current<br/>inequities resulting from systemic<br/>racism (or other inequities)</li> </ul>               |
|     | (14) Residential Arrearages and<br>Disconnections for non-payment | <ul> <li>Number and percent of residential electric disconnections for non-payment per month</li> <li>Residential arrearages for residential electric data by month by known low income, vulnerable populations, highly impacted communities and all customers</li> </ul> | <ul> <li>Indirectly associated with access to clean energy or programs which may impact affordability and energy burden.</li> <li>Not directly related to specific action</li> </ul> |



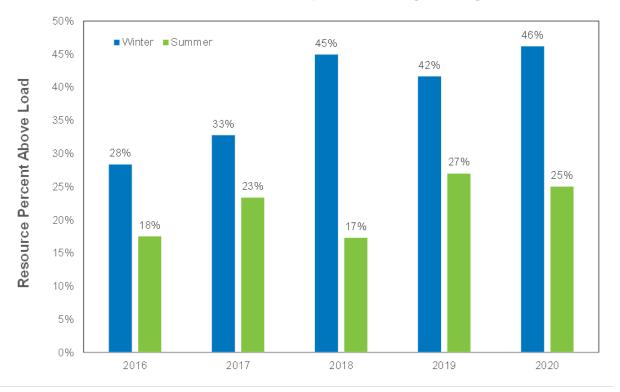
CBIs which can be quantified for use in the Integrated Resource Plan


May be applicable to one or more resource type








- Total MWh of DER 5 MW and under
- Total MWh of Energy Storage Resources
- Number of sites/projects of distributed renewable energy resources and energy storage resources
- ✓ DER and Energy Storage included as options in the preferred resource strategy analysis.
- ✓ Baseline in development.
- Named Community Investment Fund may be additional method for incorporating into overall Business strategy



13

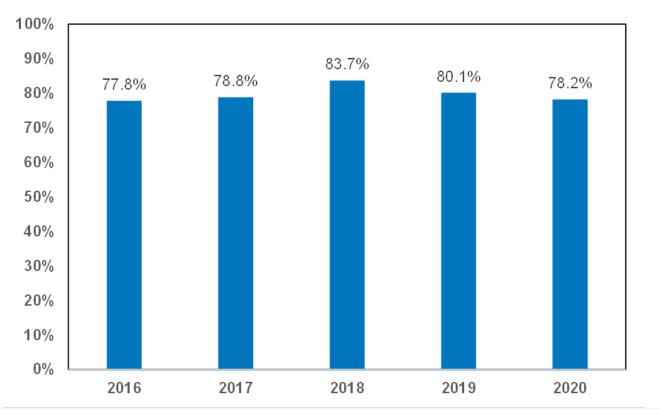


#### Baseline Resource Adequacy Planning Margin



#### (7) Energy Availability

- Customer Average Interruption Duration (CAIDI)
- Frequency of outages for all customers, vulnerable populations, highly impacted communities. Avista will measure using IIEE Index, Customers experiencing multiple outages (CEMI)
- Resource Adequacy Planning Reserve Margin


✓ CAIDI and CEMI reporting metrics

 Resource Adequacy – Avista will maintain its current planning margin targets of 22% winter and 13% summer until the Western Resource Adequacy Program (WRAP) is implemented

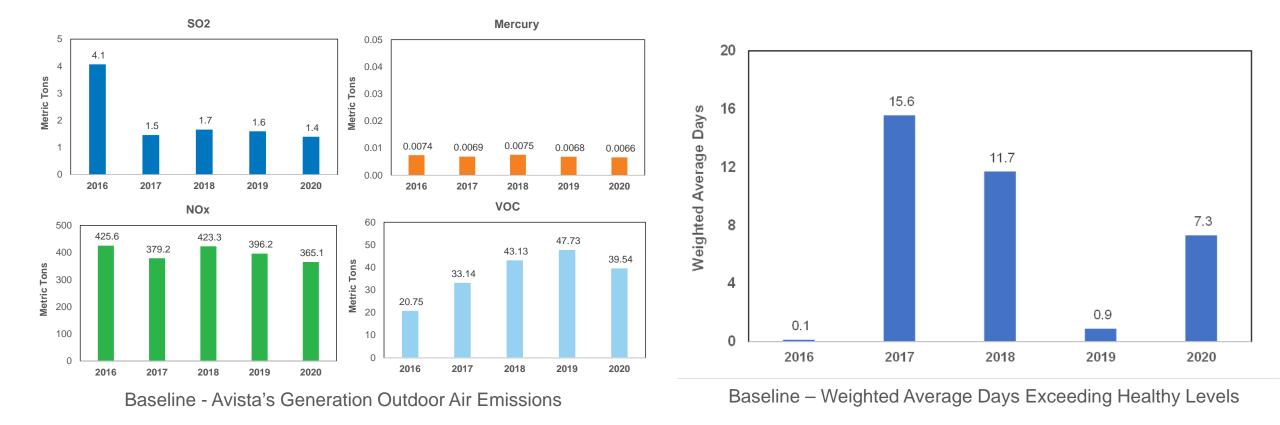


#### Baseline

Percent of Generation located in Washington or Connected to Avista Transmission System



(8) Energy Generation Location


% of Generation located in WA or AVA Transmission

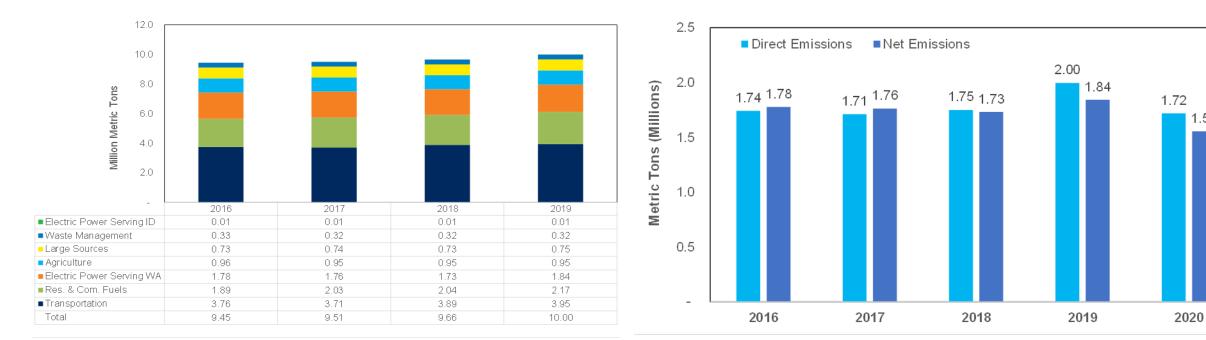
- Will track and have economic benefit of new resource options within Avista's service territory in IRP Selection Process
- Included in RFP Selection Criteria



NEI will help to account for the impact of air emissions in new resource selection

 (9) Outdoor Air Quality
 Weighted average days exceeding healthy levels
 SO2, NOx, Mercury, Volatile Organic Compounds from AVA generating plans
 Wood heating reduction






NEI will help to account for the impact of GHG Emissions

(10) Greenhouse Gas Emissions

Regional GHG emissions ✤ Avista GHG emissions

#### **Baseline - Avista GHG Emissions**



#### Baseline - Region GHG Emissions

1.56

### **CBI in IRP / Progress Report Resource Selection**







## Implementation

# Implementation – Resource and Program Selection and Prioritization

- Several CBIs, while not utilized in IRP, will be utilized in program selection and/or prioritization.
- Other CBIs are more applicable to measurement of success of Company efforts in areas such as:
  - Access to clean energy i.e. increased participation in programs
  - Overcoming barriers to participation i.e. increased translation services
  - Methods and modes of Communication

     i.e. reaching additional customers as
     measured in saturation rate for all and
     Named Communities







## **Named Community Investment Fund**

#### 40% or up to \$2.0 million

• Supplement and support energy efficiency efforts targeted to Named Communities

#### 20% or up to \$1.0 million

Investments in distribution resiliency efforts for Named Communities

#### 20% or up to \$1.0 million

 Incentives or grants to develop projects by local customers or third parties

#### 10% or up to \$500,000

• Used for newly developed targeted outreach and engagement efforts specifically for Named Communities.

#### 10% or up to \$500,000

• Used for other projects, programs or initiatives specific to Named Communities

May be used for:

- Distributed Energy Resources
- Economic Development
- Other as identified by EAG or other Named Community members



### **Evaluation Process – All Source RFP**

#### **Initial Screen Evaluation Scoring Matrix**

| Weighting                                              |                                                                                                                                  |                                                                                             |                  |                                                                         |                                                                                         |             |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|
| 20%                                                    | 40%                                                                                                                              | 5%                                                                                          | 20%              | 10% 5%                                                                  |                                                                                         | 100%        |
| Risk<br>Management                                     | Financial Energy<br>Impact*                                                                                                      | Price Risk                                                                                  | Electric Factors | Environmental                                                           | Non-Energy<br>Impact**                                                                  | Total Score |
| Developer<br>Experience,<br>Proven<br>Technology, etc. | Financial Analysis<br>of Price to include<br>PPA/Ownership,<br>capacity<br>costs/value,<br>transmission, cost<br>of carbon, etc. | Potential for<br>change in costs,<br>fixed vs variable<br>pricing, variable<br>energy, etc. |                  | Permitting such as<br>Conditional Use<br>Permit, SEPA,<br>Studies, etc. | Energy security,<br>benefit to service<br>territory, named<br>communities,<br>DEI, etc. |             |

\*Financial evaluation based on highest score of Capacity or Energy.

\*\* Non-Energy Impact includes impact of Clean Energy Implementation Plan Customer Benefit Indicators (where applicable).

## 1<sup>st</sup> Yr. Customer Benefit

Non-Energy Impact

| Measure                                      | Bill Savings | Energy<br>Burden (NEI<br>Only) | Air Quality | Named<br>Community<br>Investment | Total Benefit | NEI<br>contribution<br>to total<br>benefit |
|----------------------------------------------|--------------|--------------------------------|-------------|----------------------------------|---------------|--------------------------------------------|
| LI-Building Envelope-Windows*                | \$0.60       | \$0.69                         | \$1.95      | \$0.15                           | \$3.39        | 82%                                        |
| LI-Building Envelope-Energy Star Rated Doors | \$16.19      | \$17.61                        | \$48.63     | \$5.09                           | \$87.52       | 81%                                        |
| LI-Building Envelope-Attic Insulation*       | \$0.06       | \$0.03                         | \$0.05      | \$0.03                           | \$0.17        | 67%                                        |
| LI-Building Envelope-Air Infiltration        | \$63.10      | \$33.79                        | \$50.55     | \$23.92                          | \$171.36      | 63%                                        |
| LI-Building Envelope-Floor Insulation*       | \$0.12       | \$0.06                         | \$0.06      | \$0.06                           | \$0.29        | 60%                                        |
| LI-Building Envelope-Wall Insulation*        | \$0.14       | \$0.07                         | \$0.07      | \$0.07                           | \$0.35        | 60%                                        |
| LI-HVAC-Air Source Heat Pump                 | \$87.84      | \$35.64                        | \$35.59     | \$41.79                          | \$200.86      | 56%                                        |
| LI-HVAC-Ductless Heat Pump (w FAF)           | \$301.62     | \$133.65                       | \$72.54     | \$142.76                         | \$650.58      | 54%                                        |
| LI-HVAC-Duct Insulation*                     | \$0.27       | \$0.12                         | \$0.01      | \$0.12                           | \$0.52        | 48%                                        |
| LI-HVAC-Duct Sealing                         | \$70.99      | \$27.73                        | \$1.53      | \$21.86                          | \$122.12      | 42%                                        |
| LI-Hot Water-Heat Pump Water Heater          | \$58.73      | \$19.08                        | \$0.00      | \$17.23                          | \$95.04       | 38%                                        |
| LI-Lighting-Outreach/Direct Install LED      | \$0.10       | \$0.03                         | \$0.00      | \$0.02                           | \$0.16        | 35%                                        |

Energy

Impact





### **2023 IRP Scenario Analysis**

James Gall, Integrated Resource Planning Manager Electric IRP, Seventh Technical Advisory Committee Meeting October 11, 2022

### 2023 IRP vs 2023 Progress Report

- Washington Progress Report to be filed on January 3, 2023. This report includes only scenarios that estimate avoided costs.
  - Progress report will be based on a stochastic study of 300 potential futures with varying market drivers.
  - Due to the resource acquisition process, the progress report will have a "planning" portfolio based on IRP resource options to meet resource shortfalls rather then actual resources from the RFP.
- 2023 IRP will include the scenario analysis
  - 2023 IRP will have signed PPAs/projects from the RFP.
- 2023 IRP is an Idaho only filing, but due to portfolio impacts of Washington policy this IRP will consider scenarios related to Washington policy.

## **Proposed Market Scenarios**

- 300 Stochastics
  - Load, fuel prices, wind, hydro, inflation
- High natural gas prices
- Low natural gas prices
- National greenhouse gas price
- No Climate Commitment Act
- Climate Commitment Act (CCA) dispatch pricing options for thermal units outside Washington (2023-2025)
  - No CCA Pricing
  - PT Ratio CCA Pricing
  - Full CCA Pricing

## **Proposed Portfolio Scenarios**

#### Resource/Planning Margin Portfolios

- Idaho Colstrip exit selected by model
  - 1 or 2 units
  - PT ratio shares vs entire units
- WRAP planning reserve margin
- WRAP planning reserve margin + risk
- Market only (for avoided costs)
- No CETA (for avoided costs)
- No WA SCGHG (for avoided costs)
- Resource allocation (TBD)

#### Load Portfolios

- Low economic conditions
- High economic conditions
- Building electrification
  - Washington new residential construction only
  - All Washington customers transition by 2050
  - Space Heating Above 40 degree + Water Heat
- High transportation electrification

#### 2023 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 8 Agenda Wednesday, December 14, 2022 Microsoft Teams Virtual Meeting

AVISTA

| <b>Topic</b><br>Introductions                                                                                                                           | <b>Time</b><br>9:00 | <b>Staff</b><br>John Lyons |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
| Resource Acquisitions                                                                                                                                   | 9:05                | Chris Drake                |
| <ul> <li>Placeholder Resource Strategy</li> <li>Energy Efficiency</li> <li>Demand Response</li> <li>Resource Selection</li> <li>Avoided Cost</li> </ul> | 9:40                | James Gall                 |
| CBI Forecast                                                                                                                                            | 10:10               | Mike Hermanson             |
| Progress Report Outline                                                                                                                                 | 10:35               | Lori Hermanson             |
| Next Steps                                                                                                                                              | 10:50               | James Gall                 |
| Adjourn                                                                                                                                                 | 11:00               |                            |



## **IRP Introduction**

2023 Avista Electric IRP

TAC 8 – December 14, 2022

John Lyons, Ph.D. Senior Resource Policy Analyst

### **Remaining 2023 Electric IRP TAC Meeting Schedule**

- Virtual Public Meeting Gas & Electric IRPs: March 8, 2023 (12 to 1 pm and 5:30 to 6:30 pm PST)
- TAC 9: March 15, 2023 (9 am to 4 pm PST)

#### **Other Important Dates**

- Washington Progress Report January 3, 2023
- External IRP draft released to TAC March 31, 2023, public comments due May 12, 2023
- Final 2023 IRP submission to Commissions and TAC June 1, 2023



## Today's Agenda

- 9:00 Introductions, John Lyons
- 9:05 Resource Acquisitions, Chris Drake
- 9:40 Placeholder Resource Strategy, James Gall
  - Energy Efficiency
  - Demand Response
  - Resource Selection
  - Avoided Cost
- 10:10 CBI Forecast, Mike Hermanson
- 10:35 Progress Report Outline, Lori Hermanson
- 10:50 Next Steps, James Gall

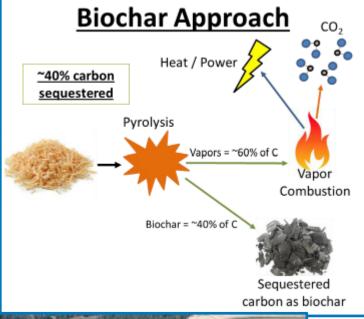
#### 11:00 Adjourn

DRAFT



#### **2022 RFP Resource Acquisitions**

Chris Drake, Manager of Resource Optimization and Marketing Technical Advisory Committee Meeting No. 8 December 14, 2022


## Avista's Kettle Falls Biomass upgrade

#### Capacity, Energy, Financial

- 11 MW net capacity increase
- 18 MW from 3<sup>rd</sup> party steam
- ~\$50 Levelized Cost of Energy over 20 years
- \$11.2 million incremental capital into KF

#### Environmental, Community

- ~100,000 CO<sub>2</sub>e sequestered annually
- ~30% reduction in annual NO<sub>X</sub> emissions, CO, and VOCs intensity
- Delay or eliminate need for ash disposal landfill (~\$10 million savings)
- Anticipated 15 new FTEs from biochar/steam contractor







# Columbia Basin Hydropower

#### **Irrigation Hydro**

- 23-year supply deal in total
- Projects ramping in between 2023 and 2030
- 100% of the output from 7 hydro projects throughout central Washington (3 BPA, 2 Grant, 2 Avista BAs)
- Approximately 145 MW of max generation.
- March–October generation shaped like solar generation with no hourly variability (and includes off-peak energy)

#### **Facilities**

- Main Canal Headworks
- Summer Falls
- Russell D. Smith
- Eltopia Branch Canal (EBC)
- Potholes East Canal (PEC)
- Potholes East Headworks (PEC Headworks)
- Quincy Chute









### **2023 Placeholder Resource Strategy**

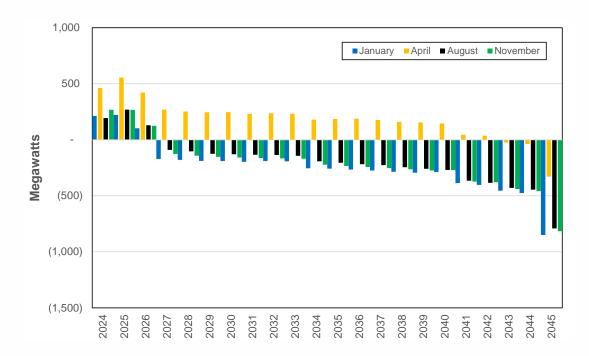
James Gall, Manager of Integrated Resource Planning Technical Advisory Committee Meeting No. 8 December 14, 2022

### **Safe Harbor Statement**

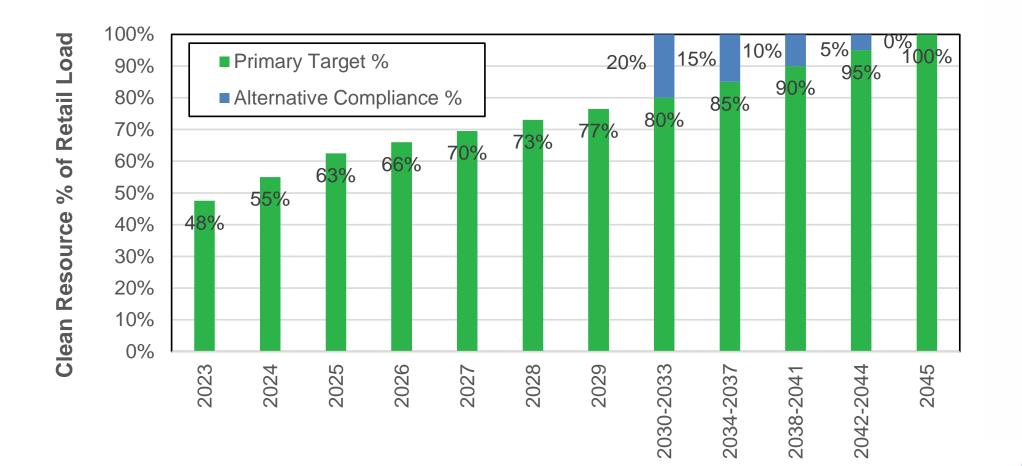
This document contains forward-looking statements. Such statements are subject to a variety of risks, uncertainties and other factors, most of which are beyond the Company's control, and many of which could have a significant impact on the Company's operations, results of operations and financial condition, and could cause actual results to differ materially from those anticipated.

For a further discussion of these factors and other important factors, please refer to the Company's reports filed with the Securities and Exchange Commission. The forward-looking statements contained in this document speak only as of the date hereof. The Company undertakes no obligation to update any forward-looking statement or statements to reflect events or circumstances that occur after the date on which such statement is made or to reflect the occurrence of unanticipated events. New risks, uncertainties and other factors emerge from time to time, and it is not possible for management to predict all of such factors, nor can it assess the impact of each such factor on the Company's business or the extent to which any such factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statement.

### **Other Caveats**


- Avista is negotiating with 2022 All-Source Request for Proposals (RFP) shortlist bidders. The Placeholder Resource Strategy <u>will</u> significantly change to include new resources after RFP negotiations conclude. Changes will be reflected in the June 2023 IRP Filing.
- IRP resource options are primarily "new" resource options RFP will determine if existing resources can be acquired at similar or lower cost than the assumed IRP options.
- Not all resources within an IRP option list are bid into RFPs, also costs are based on Bidder's pricing not generic estimates used in IRPs.
- Avista may not be able to physically retire or exit certain resources as the IRP PRiSM model determines because of contract limitations.
- No future state specific resource cost allocation agreement has been made.
- Forward looking rates include non-modeled power supply cost escalating at 3.8% per year-
  - THIS IS NOT A RATE FORECAST
  - This is for informational purposes only

### **Resource Needs Begin November 2026**


#### **Capacity Needs**

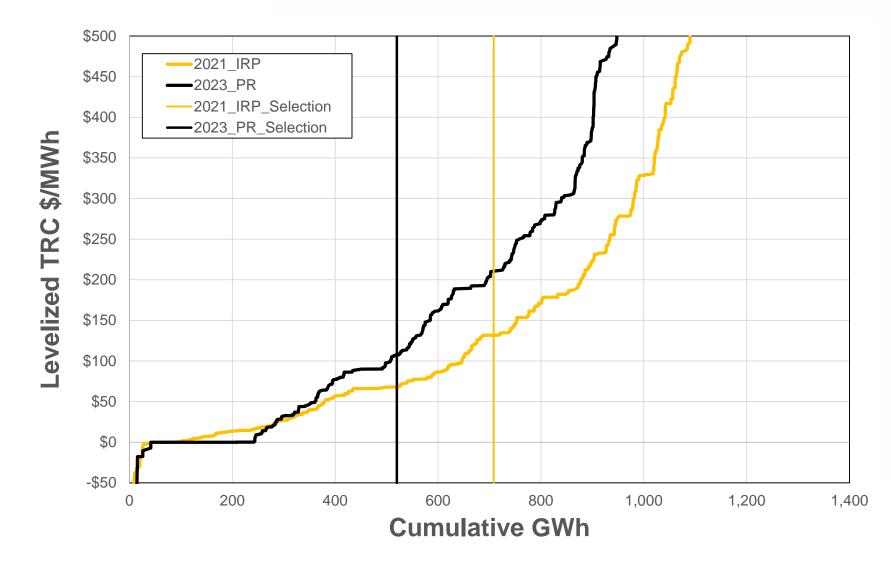


#### **Energy Needs**



### **CETA Renewable Energy Goal**




5



## **Named Community Investment Fund Projects**

- Methodology
  - Spending constraints
    - \$2 million annually in low-income energy efficiency beyond cost effective programs.
    - \$500k distributed energy resources (\$100k for program administration).
  - Results
    - 2.4 GWh additional EE though 2033 (0.7 percent increase).
    - 700 kW annual Low Income Community additions 2024 through 2033 with funding from state low-income community solar funding.
    - After 2034, 100 to 200 kW solar programs w/ storage.
    - Additional programs from the remaining funding will be included as projects are known.
      - (if they have an effect on power supply needs)

# 2024-2045 Cumulative Energy Efficiency Supply Curve Washington Jurisdiction Comparison between 2021 IRP



AVISTA

#### DRAFT

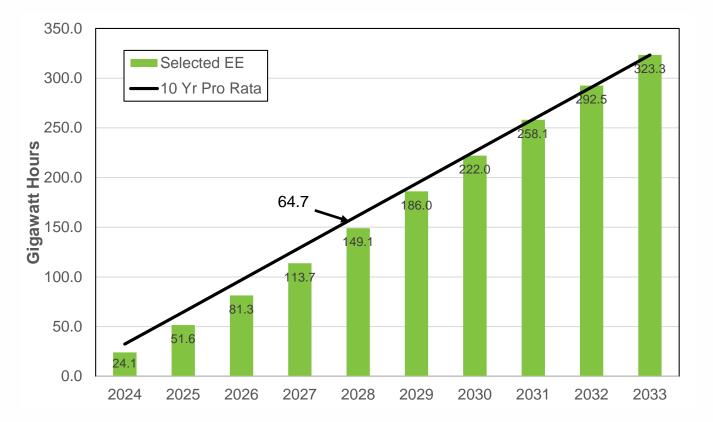
#### **Cumulative Energy Efficiency End Use Results (GWh)**

|                       | Wa   | shington |       |      | daho  |       |
|-----------------------|------|----------|-------|------|-------|-------|
| End Use               | 2024 | 2033     | 2045  | 2024 | 2033  | 2045  |
| Appliances            | 0.5  | 6.2      | 8.2   | 0.2  | 1.5   | 1.9   |
| Electronics           | 0.2  | 6.4      | 13.3  | 0.1  | 3.0   | 6.3   |
| Exterior Lighting     | 6.0  | 77.5     | 164.3 | 3.1  | 40.1  | 83.0  |
| Food Preparation      | 0.1  | 2.6      | 11.2  | 0.0  | 0.0   | 0.0   |
| Interior Lighting     | 0.2  | 1.4      | 1.7   | 0.1  | 1.9   | 2.0   |
| Miscellaneous         | 2.2  | 24.2     | 36.7  | 1.1  | 11.9  | 17.9  |
| Motors                | 3.9  | 59.5     | 60.2  | 0.0  | 0.3   | 0.4   |
| Office Equipment      | 0.1  | 6.9      | 14.6  | 0.0  | 1.5   | 2.7   |
| Process               | 1.4  | 18.8     | 22.0  | 1.1  | 14.3  | 16.1  |
| Refrigeration         | 2.6  | 17.7     | 19.0  | 1.9  | 19.7  | 21.1  |
| Ventilation           | 0.4  | 4.6      | 7.0   | 0.2  | 2.1   | 3.1   |
| Water Heating         | 1.3  | 16.8     | 25.5  | 0.9  | 10.2  | 16.5  |
| Space Heating/Cooling | 5.1  | 80.8     | 115.7 | 0.9  | 19.6  | 33.2  |
| Total                 | 24.1 | 323.3    | 499.3 | 9.6  | 125.8 | 204.2 |
| 2021 IRP equivelent   | 41.8 | 526.3    | 708.0 | 13.2 | 138.6 | 202.2 |

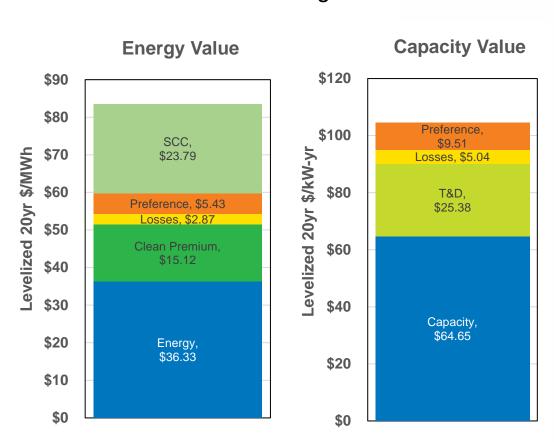
#### **Cumulative Energy Efficiency Segment Results (GWh)**

|                    | Wa   | ashingto | n     |      | Idaho |       |
|--------------------|------|----------|-------|------|-------|-------|
| Segment            | 2024 | 2033     | 2045  | 2024 | 2033  | 2045  |
| College            | 0.7  | 7.5      | 12.2  | 0.4  | 3.7   | 5.7   |
| Grocery            | 1.1  | 15.2     | 23.9  | 1.2  | 16.9  | 26.3  |
| Health             | 0.6  | 5.3      | 7.4   | 0.0  | 0.4   | 0.6   |
| Industrial         | 2.5  | 32.5     | 48.5  | 2.0  | 25.3  | 35.3  |
| Large Office       | 0.7  | 7.2      | 12.1  | 0.6  | 5.8   | 9.8   |
| LI - Mobile Home   | 0.3  | 5.0      | 8.4   | -    | -     | -     |
| LI - Multi-Family  | 0.9  | 14.1     | 21.0  | -    | -     | -     |
| LI - Single Family | 4.9  | 69.1     | 79.4  | -    | -     | -     |
| Lodging            | 1.1  | 8.9      | 14.2  | 0.5  | 5.0   | 6.8   |
| Miscellaneous      | 1.4  | 16.1     | 30.6  | 1.2  | 16.2  | 29.3  |
| Mobile Home        | 0.1  | 3.9      | 8.5   | -    | -     | -     |
| Multi-Family       | 0.0  | 1.6      | 2.7   | -    | -     | -     |
| Pumping            | 0.6  | 8.2      | 10.4  | 0.4  | 5.2   | 6.1   |
| Restaurant         | 1.1  | 14.6     | 21.9  | 0.7  | 9.1   | 13.6  |
| Retail             | 2.6  | 28.1     | 49.5  | 1.6  | 19.2  | 30.7  |
| School             | 1.1  | 14.9     | 28.2  | 0.1  | 0.9   | 1.7   |
| Single Family      | 1.8  | 37.7     | 57.7  | 0.3  | 11.0  | 25.5  |
| Small Office       | 1.2  | 16.7     | 32.2  | 0.3  | 3.2   | 6.2   |
| Warehouse          | 1.4  | 16.9     | 30.5  | 0.3  | 4.0   | 6.5   |
| Total              | 24.1 | 323.3    | 499.3 | 9.6  | 125.8 | 204.2 |

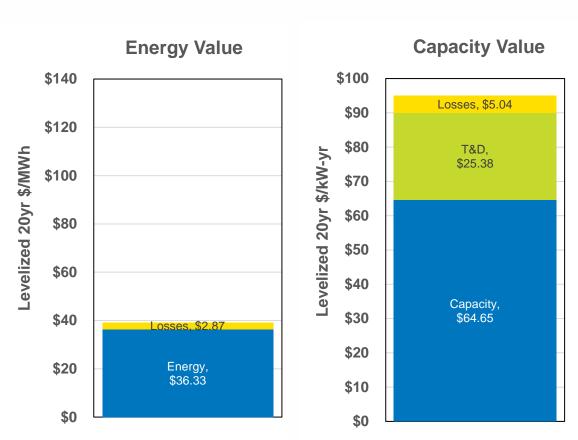
AVISTA


DRAFT




### Lower Washington Energy Efficiency Goals

**Lower Avoided Costs & Lower Potential** 


| 2024-2025 Biennial Conservation Target (I | MWh)    |
|-------------------------------------------|---------|
| CPA Pro-Rata Share                        | 64,667  |
| EIA Target                                | 64,667  |
| Decoupling Threshold                      | 3,233   |
| Total Utility Conservation Goal           | 67,900  |
| Excluded Programs (NEEA)                  | -10,162 |
| Utility Specific Conservation Goal        | 57,739  |
| Decoupling Threshold                      | -3,233  |
| EIA Penalty Threshold                     | 54,505  |



### 24-yr Levelized Avoided Cost for Energy Efficiency







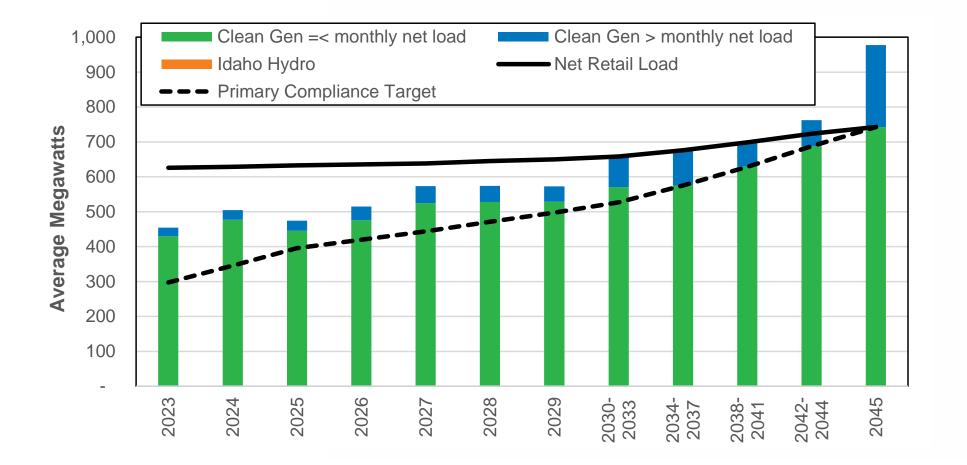
Idaho

#### **Demand Response**

- 30 MW of industrial demand response already contracted
- Avista is preparing 3 opt-in pilot programs:
  - Time of use rates
  - Peak time rebate
  - CTA-2045 water heaters
- 2023 IRP Progress Report Results
  - 2025 start date, only Washington programs selected (2045 cumulative savings shown)
    - Time of Use: 6.6 MW
    - Peak Time Rebate and Variable Peak Pricing is on the margin, but not selected.

#### "Placeholder" PRS Selection (MW)

|                                  |      |      |      | T     |      | T    |       | T    |       |      |      | T    |      | Ī    |      |      | Ī    |       | I     |      |       |       | 2024 | 2034  |
|----------------------------------|------|------|------|-------|------|------|-------|------|-------|------|------|------|------|------|------|------|------|-------|-------|------|-------|-------|------|-------|
|                                  | 2024 | 2025 | 2026 | 2027  | 2028 | 2029 | 2030  | 2031 | 2032  | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041  | 2042  | 2043 | 2044  | 2045  | 2033 |       |
| Washington                       |      |      |      |       |      |      |       |      |       |      |      |      |      |      |      |      |      |       |       |      |       |       |      |       |
| Demand Response                  | 0.0  | 6.8  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 7    | 0     |
| Natural Gas                      | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 3.3  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0    | 3     |
| Baseload Renewable               | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 20.0 | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 20.0  | 20   | 20    |
| Nuclear                          | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0    | 0     |
| NW Wind                          | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 150.0 | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 140.0 | 105.0 | 0.0  | 137.2 | 508.4 | 150  | 891   |
| Montana Wind                     | 0.0  | 0.0  | 0.0  | 125.1 | 0.0  | 0.0  | 0.0   | 0.0  | 174.9 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 300  | 0     |
| Off Shore Wind                   | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Distributed Solar/ wStorage      | 0.7  | 0.7  | 0.7  | 0.7   | 0.7  | 0.7  | 0.7   | 0.7  | 0.8   | 0.8  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2  | 0.2   | 0.2   | 0.2  | 0.2   | 0.2   | 7    | 2     |
| Utility Scale Solar              | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Short Duration Storage (<8hr)    | 0.0  | 0.0  | 0.0  | 25.0  | 0.0  | 35.7 | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 51.5 | 0.0   | 0.0   | 0.0  | 25.0  | 0.0   | 61   | . 76  |
| Medium Duration Storage (8-24hr) | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Long Duration Storage (>24hr)    | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 147.4 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 59.8 | 0.0  | 0.0  | 75.8  | 0.0   | 68.0 | 0.0   | 318.8 | 147  | 522   |
| Total                            | 0.7  | 7.4  | 0.7  | 150.8 | 0.7  | 36.4 | 150.7 | 20.7 | 323.1 | 0.8  | 0.2  | 0.2  | 3.5  | 0.2  | 60.0 | 0.2  | 51.7 | 216.0 | 105.2 | 68.2 | 162.4 | 847.4 | 692  | 1,515 |
|                                  |      |      |      |       |      |      |       |      |       |      |      |      |      |      |      |      |      |       |       |      |       |       |      |       |
| Idaho                            |      |      |      |       |      |      |       |      |       |      |      |      |      |      |      |      |      |       |       |      |       |       |      |       |
| Demand Response                  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Natural Gas                      | 0.0  | 0.0  | 0.0  | 186.2 | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 1.7  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 186  | i 2   |
| Baseload Renewable               | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0    | 0     |
| Nuclear                          | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0    | 0     |
| NW Wind                          | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0    | 0     |
| Montana Wind                     | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Off Shore Wind                   | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Distributed Solar/ wStorage      | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Utility Scale Solar              | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Short Duration Storage (<8hr)    | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 37.8  | 0.0  | 0.0   | 0.0   | (    | 38    |
| Medium Duration Storage (8-24hr) | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | (    | 0     |
| Long Duration Storage (>24hr)    | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 31.3 | 0.0  | 0.0  | 39.7  | 0.0   | 35.6 | 0.0   | 79.0  | (    | 185   |
| Total                            | 0.0  | 0.0  | 0.0  | 186.2 | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 1.7  | 0.0  | 31.3 | 0.0  | 0.0  | 39.7  | 37.8  | 35.6 | 0.0   | 79.0  | 186  | 225   |


Used for Energy Efficiency Potential Study Only- Will change after all RFP resources are added.

#### **Transmission Needs**

- Most generation selection is off-system or up to interconnection limits before major transmission upgrades needed.
- 2045 renewable & long-duration storage requirements will require significant build outs in Big-Bend and Rathdrum areas.
- Earlier construction may be necessary if low-cost interconnection resources are purchased by other utilities.



#### Washington CETA Clean Energy Comparison (aMW)



#### **CETA Cost Cap Analysis**

- Cost cap compares utility's strategy to an "Alternative Least Reasonable Cost Portfolio"
  - How do we define this portfolio?
  - When does "alternative" begin?
    - For example, should this portfolio exclude past decisions to acquire resources used to comply with CETA?
      - Without excluding these resources, the incremental cost will be too low over time as base cost will include higher priced resources.
    - Do we need to maintain a resource portfolio over time with "theorical" resources we would have acquired?
  - Should Preferred Resource Strategy reflect changes if cost cap is reached?

#### **CETA Cost Cap Analysis Example**

- Assumes No Columbia Basin Hydro. (Chelan PUD #2/#3 can be added for final IRP)
- Assumes CS2 available in 2045.
- Assumes no CETA compliance requirements.
- Includes Social Cost of Greenhouse Gas.
- Cost cap reached in final compliance period.

|                         | 2026-  | 2030-  | 2034-  | 2038-  | 2042-  |
|-------------------------|--------|--------|--------|--------|--------|
|                         | 2029   | 2033   | 2037   | 2041   | 2045   |
| Cost Cap Spending Limit | \$136m | \$159m | \$183m | \$210m | \$244m |
| PRS w NCF spending      | \$10m  | \$40m  | \$51m  | \$43m  | \$212m |
| Delta                   | \$125m | \$118m | \$133m | \$167m | \$31m  |



# **CBI Forecast**

Mike Hermanson, Senior Power Supply Analyst Electric IRP, 8<sup>th</sup> Technical Advisory Committee Meeting December 14, 2022

#### Background

 Customer Benefit Indicators (CBIs) are required to ensure equitable distribution of energy and non-energy benefits and reductions of burdens to highly impacted communities and vulnerable populations.

| Who?                                                                                           |                  | Benefits    |                   |                   |                          |            |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|------------------|-------------|-------------------|-------------------|--------------------------|------------|--|--|--|--|--|--|--|
| Highly impacted<br>communities and<br>vulnerable<br>populations                                | Energ            | gy Benefits | Non-Energ         | y Benefits        | its Reduction of Burdens |            |  |  |  |  |  |  |  |
| All Customers,<br>including highly<br>impacted<br>communities and<br>vulnerable<br>populations | Public<br>Health | Environment | Cost<br>Reduction | Risk<br>Reduction | Energy<br>Security       | Resiliency |  |  |  |  |  |  |  |



### Background

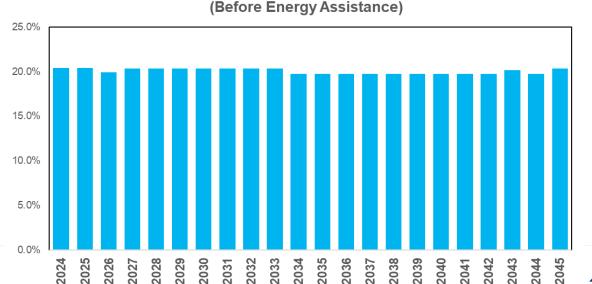
#### • CEIP includes 14 CBIs:

| 1. Participation in Company Programs                           | 8. Energy Generation Location                                   |
|----------------------------------------------------------------|-----------------------------------------------------------------|
| 2. Number of households with a High Energy Burden (>6%)        | 9. Outdoor Air Quality                                          |
| 3. Availability of Methods/Modes of Outreach and Communication | 10. Greenhouse Gas Emissions                                    |
| 4. Transportation Electrification                              | 11. Employee Diversity                                          |
| 5. Named Community Clean Energy                                | 12. Supplier Diversity                                          |
| 6. Investments in Named Communities                            | 13. Indoor Air Quality                                          |
| 7. Energy Availability                                         | 14. Residential Arrearages and Disconnections for<br>Nonpayment |

• 7 CBIs forecasted in IRP modeling.



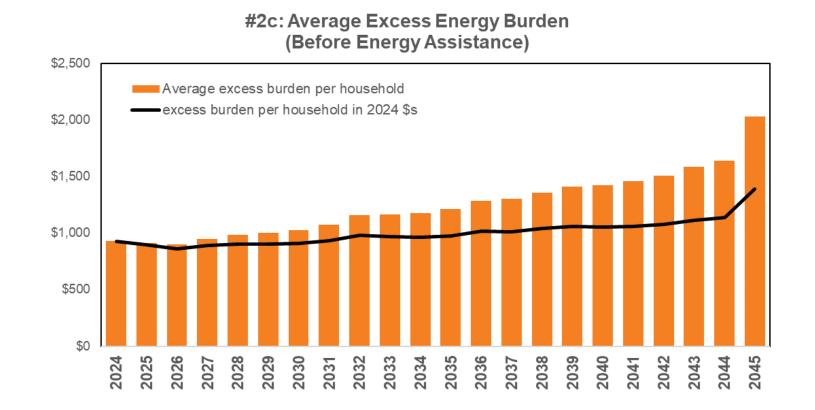
#### Number of households with a High Energy Burden (>6%)


- High energy burden is annual energy cost (electric & gas) greater than 6% of annual income.
- Forecasted by:

(PRS rates x annual energy usage)/annual income

- Forecast includes:
  - Reductions in energy usage from low-income energy efficiency programs selected by PRiSM.
  - Historic income increases for specific income groups projected forward.

#2a: WA Customers with Excess Energy Burden (Before Energy Assistance)

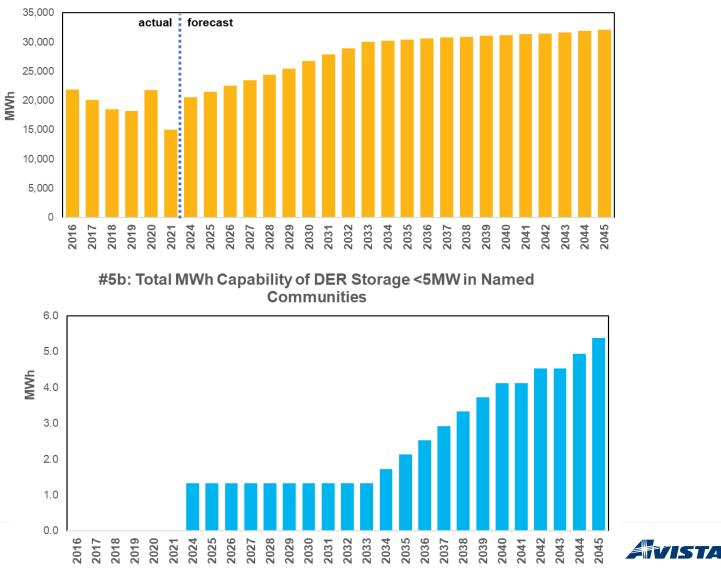





**VISTA** 

#### Number of households with a High Energy Burden (>6%)

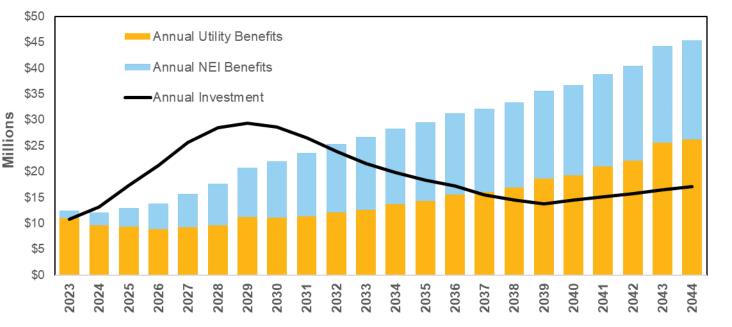
• Excess energy burden amount in excess of 6% of annual income.






## **Named Community Clean Energy**

- DER generation includes:
  - PURPA generation in named communities
  - Community solar
  - Customer net metering
- Community solar selected between 2024 – 2033 supported by tax incentives.
- Community solar with battery storage selected after 2034.


#5a: Total MWh of DER <5MW in Named Communities

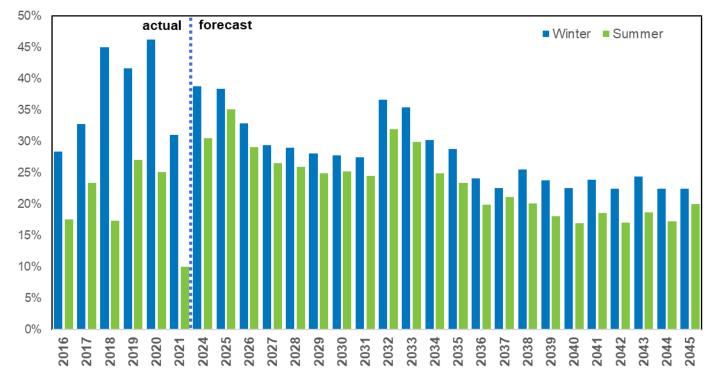


### **Investments in Named Communities**

- Includes low-income EE investment and likely named community demand response investment.
- Annual NEI and utility benefit is the market value or established NEI unit rate of energy associated with EE and named community demand response.
- Investment declines as EE opportunities decline over the planning horizon.

#### #6: Approximate Low Income/Named Community Investment and Benefits



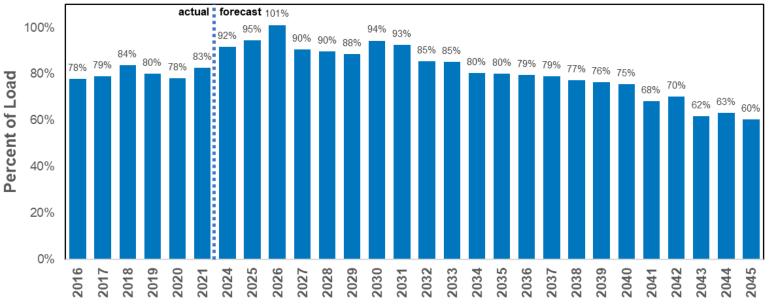

### **Energy Availability**

- Energy availability is related to energy resiliency.
- Planning margins:
  - Winter 22%
  - Summer 13%
- Energy needs drive selection so resources exceed the planning margin.

Resource Percent Above Peak Load

• After resource additions planning margin decreases but does not reach target.

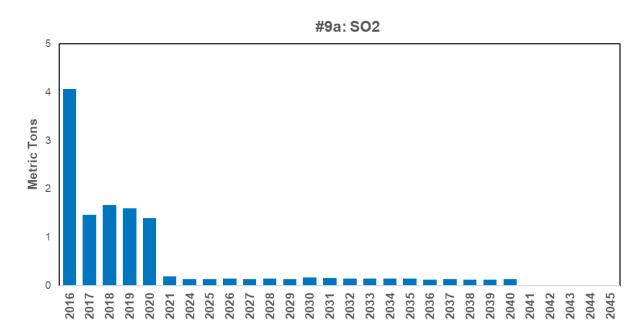
#7: Energy Availability- Planning Margin

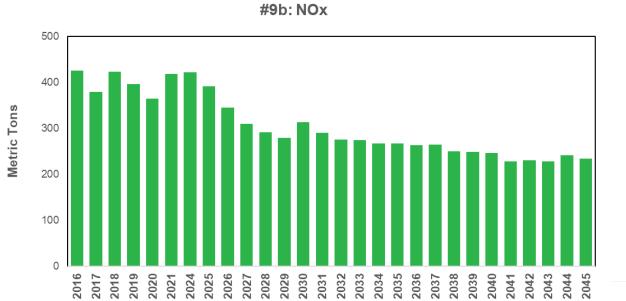





#### **Energy Generation Location**

- Energy generation location and connectivity is related to customer energy security.
- As a % of load, WA located and/or connected to Avista transmission system decreases as more off system wind generation is added over the planning horizon.

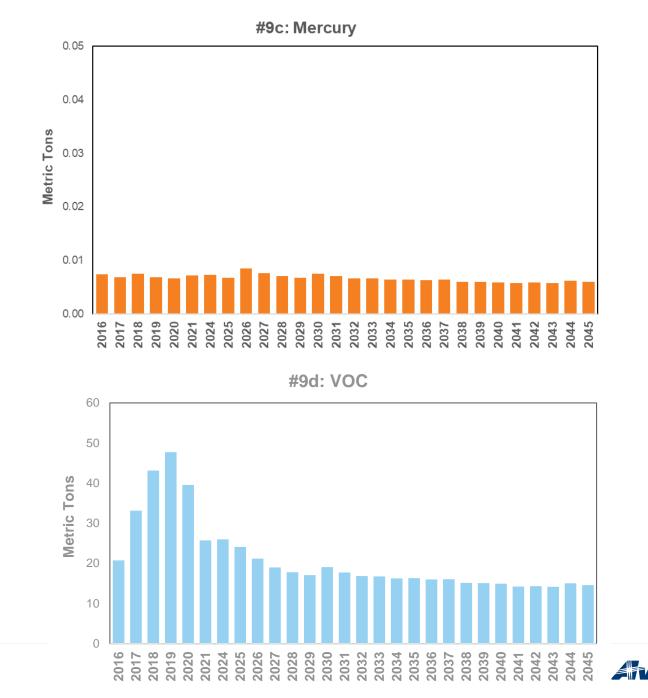

#### #8: Generation in WA and/or Connected Transmission System (as a Percent of System Load)





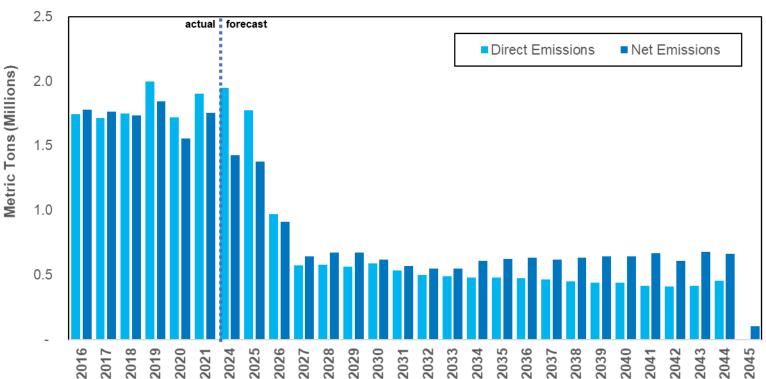

### **Outdoor Air Quality**

- Emissions related to thermal generation located in WA.
- SO<sub>2</sub> results related to nondetect field measurements. In the process of confirming results.
- NOx emissions reduce over time as a result of decreased emission rates from Kettle Falls upgrade and decreased dispatch of Kettle Falls.







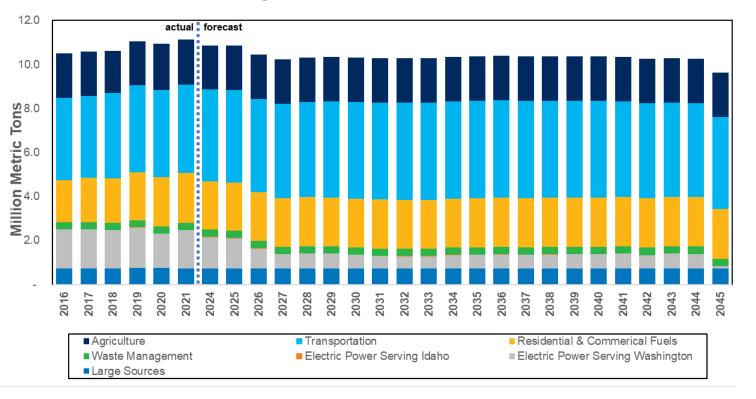


### **Outdoor Air Quality**

- Emissions related to thermal generation located in WA.
- Small reduction in Mercury emissions.
- VOC emissions reduce over time as a result of decreased emission rates from Kettle Falls upgrade and decreased dispatch of Kettle Falls.



### **Greenhouse Gas Emissions**

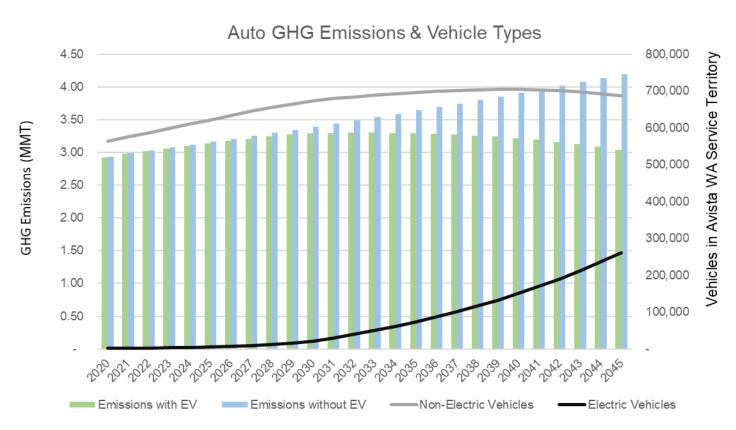
- Direct emissions are the WA portion of total system emissions.
- Net emissions are the WA portion of total system emissions net of market transactions.
- Significant reduction in 2025 from use of Colstrip for WA retail load.
- Net emissions begin to exceed direct emissions as more market purchases used to supply WA retail load.




#### #10a: Greenhouse Gas Emissions

#### **Greenhouse Gas Emissions**

- Agriculture & large sources held constant over forecast period.
- Electric power from IRP modeling.
- Waste Management increases in proportion to population.
- Residential & commercial fuels from Gas IRP forecast.
- Transportation:
  - Rail held constant
  - Air increases in proportion to population
  - Auto from EV forecast


#### #10b: Regional Greenhouse Gas Emissions





#### **Greenhouse Gas Emissions**

- Electric vehicle forecast from load forecast.
- In 2045 28.6% of vehicles are electric.
- Forecast includes increased gas efficiency over the planning horizon.
- 0.12 MMT increase over planning horizon.
- 1.16 reduction over no electric vehicle scenario.



\*Emission estimates do not include full life cycle carbon emissions associated with each vehicle type

DRAFT



#### **2023 Progress Report Outline**

Lori Hermanson, Senior Power Supply Analyst Technical Advisory Committee Meeting No. 8 December 14, 2022

#### **Progress Report Outline**

- Chapter 1 Progress Report Introduction
- Chapter 2 Economic and Load Forecast
- Chapter 3 Existing Supply-side Resources
- Chapter 4 Long-term Position
- Chapter 5 Distributed Energy Resources (includes EE and DR)
- Chapter 6 Supply-side Resource Options
- Chapter 7 Transmission & Distribution
- Chapter 8 Market Analysis
- Chapter 9 Placeholder Resource Strategy
- Chapter 10 Customer Impacts



DRAFT



#### Next Steps

James Gall, Manager of Integrated Resource Planning Technical Advisory Committee Meeting No. 8 December 14, 2022

#### **Next Steps**

- Washington Progress Report to be filed January 3, 2023
- Virtual Public Meetings on March 8, 2023
- Schedule Changes
  - Combines February and March meetings
    - Next TAC meeting March 15, 2023, 9am to 4pm (in person/ Teams)
  - Draft IRP release moved to March 31, 2023
- File final IRP on June 1, 2023
- Schedule may change subject to RFP negotiations

