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Abstract

This paper develops a tractable asset pricing framework based on
an Arrow Debreu economy with heterogeneous agents. In this setting,
market payoffs, not aggregate consumption, is the appropriate covariate
to price assets. To test the model, I use data of several developed
economies from Campbell (2003, 2017) to find a median value of relative
risk aversion of 1.57 and a time preference rate of 4.58%. The paper
develops a formula for expected individual security returns similar to
the CAPM.
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puzzle, risk free rate puzzle. JEL D53, E10, E21, G12, G13, G30, G32.

1 Introduction

Consumption based asset pricing (CBAP), pioneered by Rubinstein (1976)
and Breeden (1979), is an extensively used framework in finance and macroe-
conomics. It has two appealing features: the first is its dynamic focus. The

⇤I would like to thank Prof. John Campbell for sharing data on aggregate dividends. All
errors are of course my responsibility
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second is its use of a representative agent framework, which allows economists
to study and measure variables of great interest, such as the risk aversion and
impatience of agents. In this regard, Mehra and Prescott (1985) found that in
a CBAP framework, the relative risk aversion parameters needed to justify the
observed equity risk premium were unreasonably large. Weil (1989) found a
similar result about the time preference rates consistent with observed risk free
yields. A large literature emerged to verify and explain the equity premium
and risk free rate puzzles. One point of consensus in this area is that aggregate
consumption is too smooth to explain the observed returns. The interested
reader is referred to Campbell (2003, 2017) for an in depth explanation of the
different models involved in that research program.

Consumption based asset pricing has rarely been used to predict expected
returns of individual securities. Instead, that field of empirical asset pricing
has looked for factors that affect the cross section of returns. Harvey et al.
(2016) provide an extensive recount of the hundreds of articles written on this
topic.

This paper develops a tractable framework based on an Arrow Debreu
economy with heterogeneous agent types. Why focus on heterogeneity? Wolff
(2014) has documented that about half of U.S. households have no direct or
indirect stock holdings, and that the top 10% of households own about 80%
of outstanding stocks1 . These findings suggest that a representative agent
model may not be a useful simplifying assumption. Intuitively, it seems that
the consumption of the 90% of households with very little stock has almost
no impact on asset prices. To operationalize this intuition, I develop a model
that has agents with tradable endowments, and agents who live autarkically.
The framework allows for investor aggregation, and supposes log-normally
distributed total endowments. With these assumptions, I reproduce some
theoretical results found in the literature, namely a formula for the risk free
rate. This model also yields a simple formula for the expected market return
and equity premium.

I use data from Campbell (2003, 2017) to recalculate the relative risk aver-
1Wolff (2014), Table 2b and Table 3a
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sions and time preference rates for several economies. I find consistent and
reasonable results, with a median relative risk aversion parameter of 1.57 and
a median time preference rate of 4.58%. These estimates are much closer to
the results found in experimental data by Holt and Laury (2002), Andersen et
al. (2008), and studies using option prices by Bliss and Panigirtzoglou (2004),
suggesting that the results from small stake experiments do not in practice
blow out of proportion, as argued by Rabin (2000).

The pricing framework here can also be used to value individual securities.
I find that for a class of cash flows, one can reproduce a non-linear version of the
CAPM. In this result, it becomes clear that the appropriate stochastic discount
factor are the market payoffs, modulated by the risk aversion and impatience
of investors. The results of this model combine the original CAPM emphasis
on the market portfolio with the CBAP analysis of investor preferences (risk
aversion and impatience) to value assets.

Surprisingly, the extension of the model to a multi-period framework is a
very simple one. With some assumptions about the behavior of endowment
growth, one can develop a simple yield curve.

This article is structured as follows: section 2 develops the complete mar-
kets model. Section 3 derives the formulas for the risk free rate and the
expected market return. These formulas are used to estimate the relative risk
aversion and time preference rate parameters. The fourth section develops a
pricing framework for individual securities, and looks at a special class of cash
flows. In that framework, a modified version of the CAPM emerges. The fifth
section extends the model in a multi period framework, and the sixth section
concludes.

2 The Model

The model uses a complete markets framework developed by Arrow (1964)
and Debreu (1959). The specific assumptions here are:

1. An exchange economy with exogenous individual endowments.
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2. The economy has two periods, t = 0, 1, with uncertainty in period t = 1.
This is extended to a multi-period framework in the last section of this
article.

3. In period t = 1 there are a number states of nature, that can be ei-
ther finite or continuous. The set of states of nature is S. Any given
state of nature is called s✏S. Agents have homogeneous beliefs about
the probability of a state s, defined as ⇡

s

. For discrete states, ⇡
s

is a
simple probability, while if there are continuous states, ⇡

s

is a density
function. The price of an Arrow-Debreu security is p

s

for s✏S. I will
define everything in terms of the goods at time t = 0, that is p0 ⌘ 1.
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5. There are another K autarkic agents who receive wages w
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periods for i = I + 1, ...I +K. The fixed aggregate value of these wages
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6. There are J complex securities with a value V
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continuous states.
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The decentralized equilibrium is found by solving the individuals’ maximiza-
tion, that is:
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prices and probabilities. To estimate equilibrium prices and returns based
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2No such assumption is needed for agents i = I + 1, ..I +K.
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State prices rise with a fall in � and E

s

. p

s

go up with increases in ⇡

s

and E0. For states of nature, that is E

s

E0
< 1, p

s

increases as � rises, while for
abundant resources the opposite is true. If we assume that E

s
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has a log-normal

distribution, with ln
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3 Prices and expected returns of two fundamen-
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Taking the natural logarithm and re-arranging terms, we obtain a formula
for the continuously compounded risk free rate:

r

f

= � + �µ� 1

2
�

2
�

2 (2)

This is identical to the formula developed in standard consumption based
asset pricing, as in Campbell (2017). The continuously compounded risk free
rate increases as the time preference rate � rises, and as expected growth µ

increases. The effect of expected growth on r

f

is greater in economies with
high risk aversion. Expected volatility lowers the risk free rate, as it depresses
p

s

generally. This effect is again stronger for economies with highly risk averse
agents. Finally, risk aversion has an ambiguous effect on r
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, as @r
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2 . We will find with the data
in section 3 that all of the economies studied there fall under the second case.
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found in equation
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This last equation is key in understanding the difference between a con-
sumption based asset pricing framework and this model, since the variance of
the endowments is equal to the variance of the market returns. On the other
hand, aggregate consumption growth in this model is:
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If one wishes to use a proxy for the volatility of endowments, the closest in this
model is the volatility of the log change of aggregate dividends3. The expected
value of the continuously compounded market return is:

E(r
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To study the market return in other contexts, it is useful to define the
simple market returns are er
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ms � 1, with an expected value of E(er
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) =

exp(r
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2) � 1. We can also define a discount factor r̂

m

as the rate at
which we bring the expected market cash flows to its current value, i.e. V
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E (cf
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), which in this case would be r̂
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= ln(1+E(er
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)) = E(r
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)+ �

2

2 .
As can be seen, the same factors that affect the risk free rate will also

change the expected market return, with some subtle differences. The ex-
pected market return increases with a rise in the time preference rate � of
investors, with the expected growth rate of endowments µ. An increase in

3After the early 1980s, this became a worse proxy, as share buybacks became an impor-
tant source of income for investors
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relative risk aversion and volatility raises the expected simple market return
E(er

ms

). Equation (3) can be re-written to estimate the relative risk aversion:

� =
E(r

m

)� r

f

�

2
+

1

2
(4)

We can further simplify this estimate as � = r̂

m

�r

f

�

2
m

= ŜR

m

�

m

, i.e., a continu-
ously compounded version of the Sharpe Ratio divided by the market standard
deviation. Compare equation (4) with the standard CBAP implementation:

�
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=
E(r
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)� r

f
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2
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2
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The complete market framework takes the CBAP to this implacable con-
clusion: general equilibrium implies that for those agents who determine the
price of securities, their consumption has in fact the property that �

cm

= �

2
m

.

3.3 Numerical estimation of the equity risk premium

I estimate various utility parameters using two proxies for aggregate endow-
ment volatility: stock market volatility, denoted �

m

, and the variance of log
dividend growth, called here �

d

.
Table 1 shows data from Campbell (2003, 2017), in addition to the av-

erage log dividend average growth and volatility4. I have also transcribed
the volatility of aggregate log consumption growth �

c

. Table 2 presents the
different estimates for � and �.

The first four columns of Table 2 calculate the relative risk aversion param-
eter �. �

m

uses �

m

, while �

d

uses �

d

as a proxy for log aggregate endowment
growth volatility �. The third and fourth columns show the estimates of �

using the consumption based asset pricing (CBAP) framework as reported by
Campbell (2003, 2017) for two cases: �

CBAP

where �

cm

is directly used, and
4Which I have updated with data kindly obtained from John Campbell. I calculated

annual real dividends from this data, and taken log growth rates, calculating µd and �d

from 1970 to 2011. The annual data is chosen because of strong seasonality in almost all the
economies shown here. The data for µd and �d for the last three rows, comes from Campbell
(2003).
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Table 1: Source data of returns, volatilities, and growth rates
Country Range rm rf �

m

�d �c µd

AUL 1970.1-2011.2 3.840 2.000 20.750 11.890 1.770 1.654
CAN 1970.1-2011.2 5.470 2.070 17.850 8.848 1.930 1.548
FR 1973.2-2011.2 7.060 2.080 23.100 12.561 1.800 2.081

GER 1978.4-2011.2 7.540 2.380 23.850 13.971 4.190 2.174
ITA 1971.2-2011.2 1.510 1.860 25.740 23.667 2.230 -1.184
JAP 1970.2-2011.2 2.700 1.030 21.410 11.053 2.920 -0.249
NTH 1977.2-2011.2 8.570 2.290 19.760 12.687 2.210 1.112
SWT 1982.2-2011.2 8.140 0.870 20.050 12.312 1.300 3.652

SWD 1920-1998 7.084 2.209 18.641 12.894 2.816 1.551
UK 1919-1998 7.713 1.255 22.170 7.824 2.886 1.990
USA 1891-1998 7.169 2.020 18.599 14.019 3.218 1.516

Median 7.084 2.020 20.750 12.561 2.230 1.551
Numbers stated in percentage points. Here d ⌘ ln

⇣
DIVt

DIVt�1

⌘
and c ⌘ ln

⇣
Ct

Ct�1

⌘
. The

variables are rm: average of the log return for the market. rf log return for a short term
risk free asset, �m standard deviation of the log market return. �c standard deviation for
the log growth in aggregate consumption. Source: Campbell (2003), Tables 1 and 2 and
Campbell (2017), table 6.1. For the other variables, we have �d as the standard deviation
for the log growth in annual aggregate dividends, µd average of the log growth in annual
dividends. Source: author calculations from Campbell data for all countries except Sweden,
UK, and USA, which come from Campbell (2003).

�2CBAP

where the correlation between aggregate consumption and market re-
turns is set to one, so �

cm

= �

m

�

c

. The second parameter of interest is the
time preference rate �, shown in the last three columns of table 2. � would be
the risk free rate under risk neutrality.

When I use market volatility as the proxy for log endowment volatility, I get
positive, stable, and reasonable relative risk aversion parameters, ranging from
˙0.437 in Italy to 2.308 for Switzerland, with a median value of 1.567. When

I use the volatility of the log change in aggregate dividends, the estimate for
� increases in all but one country (Italy), and the median value is 3.432. �

m

,
which uses �

m

has a median value of 4.58%. Meanwhile, �
d

which uses �
d

, has
a median value of 5.02%. I also calculate the effect of increasing risk aversion
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Table 2: Parameter Estimates of Complete Markets Model vs. CBAP
Variable �

m

�
d

�
CPAB

�2CPAB

�
m

�
d

�2CBAP

% % %
Country Period

AUL 1970.1-2011.2 0.927 1.802 <0 10.890 2.32 1.31 -15.93
CAN 1970.1-2011.2 1.567 4.843 166.97 14.510 3.56 3.76 -18.55
FR 1973.2-2011.2 1.433 3.656 <0 18.340 4.58 5.02 17.80

GER 1978.4-2011.2 1.407 3.144 <0 8.010 4.95 5.19 -5.97
ITA 1971.2-2011.2 0.447 0.438 66.96 5.150 3.05 2.91 -8.73
JAP 1970.2-2011.2 0.864 1.867 118.09 6.320 2.96 3.62 -8.15
NTH 1977.2-2011.2 2.108 4.402 141.29 18.900 8.62 12.99 -8.86
SWT 1982.2-2011.2 2.308 5.296 483.74 35.600 3.15 2.79 -15.24

SWD 1920-1998 1.903 3.432 74.062 12.400 5.55 6.68 -13.17
UK 1919-1998 1.814 11.050 41.233 14.483 5.73 16.64 -11.75
USA 1891-1998 1.988 3.120 22.827 11.293 5.84 6.86 -11.25

Median value 1.567 3.432 96.08 12.400 4.58 5.02 -11.25

�m = E(rm)�rf
�2
m

+ 1
2 , �d = E(rm)�rf

�2
d

+ 1
2 , and �CBAP =

E(rm)�rf+
�2
m
2

�c�m
is RRA 1

�2CBAP =
E(rm)�rf+

�2
m
2

�c�m
is RRA2 in Campbell (2003, Table 4) and Campbell (2017, Table

6.2). TPRc ⌘ �c = rf � �cµd +
1
2�

2
c�

2
m,TPRd ⌘ �d = rf � �dµd +

1
2�

2
d�

2
m, �CBAP is TPR1

TPR2CBAP is TPR2 in Table 5 from Campbell (2003) and Campbell (2017), Table 6.3.

on the risk free rate, with the general result that an increase in � lowers the
risk free rate. It is useful to compare these results to other studies, either
experimental or ones that use option prices, as summarized in the Table 3:

Although the methods used in the above papers are very different from the
one used here, they produce results that at least overlap, in stark contradiction
to the CBAP approach. The results in Table 2 also shed some light into
the critique by Rabin (2000), that a small risk aversion for small bets would
translate into absurdly large levels of risk aversion for large bets.
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Table 3: � and � estimates in other studies
Study � �

Holt and Laury (2002) 0.69� 0.97
Bliss and Panigirtzoglou (2004) 1.97� 3.37

Andersen et al. (2008) 0.74 10.1
Sources: Holt and Laury (2002) Tables 3 and 4, for 90x high real choices, Bliss and Pani-
girtzoglou (2004) Table V, 6 week forecast horizon, FTSE and S&P 500 Options. Andersen
et al. (2008), Table III

4 Pricing and returns of individual securities

With the estimates of the preference parameters, we could recalculate the
Arrow-Debreu state prices. For example, using the U.S. data, we have:

p

s

= ⇡

s
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f

� 1.976�2 � 1.988�s
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One could use readily observable forward looking market information such
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and V IX. Any arbitrary asset with cash flows cf
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ds. This valuation method, while mathematically straightforward and
completely general in nature, lacks a good deal of economic intuition. To
study one specific case of interest, consider a corporation j that produces the
following cash flows:
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is an idiosyncratic risk that is uncorrelated to the stochastic
discount factor, i.e., has E("
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) = 0. I will show that while it
is very easy to price this asset, it is more complicated to state its expected
returns. Let us begin by looking at the value of the complex security:

V

j

= a

j

e

��

E

"✓
E

s

E0

◆��

#
+ b

j

E

�

j

0 e

��

E

"✓
E

s

E0

◆
�

j

��

#
+

e

��

E

��

0

E

⇥
"

js

E

��

s

⇤

V

j

= a

j

e

����µ+ �

2
�

2

2 + b

j

E

�

j

0 e

��

e

(�
j

��)µ+1
2 (�

j

��)2�2

12



V

j

= a

j

e

�r

f + b

j

E

�

j

0 e

��

e

(�
j

��)µ+1
2 (�

j

��)2�2

⌘ V

dj

+ V

ej

This equation exploits the fact that the a

j

(which can be negative) cash

flows look like a riskless zero coupon bond, that ln
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E

��

s

) = 0. This last result
means that the economy does not subtract value from idiosyncratic risks, just
as in the standard CAPM model by Sharpe (1964). The value V

j

can be par-
titioned into a riskless debt component worth V

dj

and an equity component
worth V

ej

. The expected simple rate of return for security j is E(er
j

), and it
looks like a weighted average cost of capital, i.e.:

E(er
js

) =
V

dj

V

j

er
f

+
V

ej

V

j

E[er
ejs

]

Where er
f

= e

r

f � 1. It is a well known result by Stiglitz (1969) that in a
complete market with no bankruptcy costs, the Modigliani Miller proposition I
holds, i.e. the enterprise value does not vary with changes in capital structure,
even with risky debt. This implies that the Modigliani Miller proposition II
also holds, i.e. that E(er

j

) is invariant to changes in capital structure. Hence, it
is valid to look at this specific capital structure to obtain the expected return
on security j. I will now focus on the equity-like part of the cash flows, and
look at the simple systematic returns:

er
ejs

=
b

j

E

�

j

s

V

ej

� 1 =
b

j

E

�

j

0

⇣
E

s

E0

⌘
�

j

b

j

E

�

j

0 e

��

e

(�
j

��)µ+1
2 (�

j

��)2�2 � 1

For the following calculations it is easier to work with continuously com-
pounded rates of return:

r

ejs

⌘ ln(1 + er
ejs

) = � � (�
j

� �)µ� 1

2
(�

j

� �)2�2 + �

j

µ+ �

j

�s

This equation can be simplified using equations (2) and (3) to obtain the
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following result:

r

ejs

= r

f

+ �

j

(r
ms

� r

f

) +
�

2

2
�

j

(1� �

j

)

In expected returns, the above equation would yield:

E(r
ejs

) = r

f

+
�

2

2
�

j

(1� �

j

) + �

j

[E(r
ms

)� r

f

] (5)

If we define excess expected returns as z

s

⌘ r

s

� r

f

, the above equation
becomes:

E(z
ejs

) =
�

2

2
�

j

(1� �

j

) + �

j

E(z
ms

) ⌘ ↵

j

+ �

j

E(z
ms

)

Where ↵

j

⌘ �

2

2 �j

(1 � �

j

) and �

2 is the market volatility. This equation
implies that for �

j

< 1 then ↵

j

> 0, and for �

j

> 1, then ↵

j

< 0. This
theoretical prediction is similar to the CAPM in Black (1972), Merton (1973),
and found in the earliest empirical studies of the model, such as Black, Jensen,
and Scholes (1972). However, in our case, this is due to the log-normality of
returns. To obtain the expected simple rate of return, re-arrange equation (5)
as follows:

E(r
ejs

) +
�

2
j

�

2

2
= r

f

+ �

j


E(r

ms

) +
�

2

2
� r

f

�

remember that for a continuously compounded rate r

xs

⇠ N(µ
x

,�2
x

), then
its simple counterpart has E(1 + er

xs

) = 1 + E[er
xs

] = E(erxs) = e

µ

x

+
�

2
x

2 , and
ln (1 + E[er

xs

]) = µ

x

+ �

2
x

2 , hence

ln(1 + E[er
ejs

]) = ln(1 + er
f

) + �

j

[ln (1 + E[er
ms

])� ln(1 + er
f

)] (6)

Where �

j

= cov(r
ejs

,r

ms

)
var(r

ms

) with the continuously compounded returns. This
logarithmic CAPM can be viewed in several ways:

1. The exponential of equation (6) yields:
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1 + E[er
ejs

] = (1 + er
f

)

✓
1 + E[er

ms

]

1 + er
f

◆
�

j

2. If we define a discount factor rate r̂

x

= ln(1 +E[er
xs

]) as one that estab-
lishes the present value of an expected cash flow, i.e. V

x

= e

�r̂

x

E(cf
x

),
then equation 6) becomes:

r̂

ej

= r

f

+ �

j

(r̂
m

� r

f

)

Where r̂

m

= E(r
ms

) + �

2

2 = r

f

+ ��

2.

3. If we replace the right hand side of the above equation with its funda-
mental formulas, found in section 3, we obtain:

r̂

ej

= � + �µ� 1

2
�

2
�

2 + �

j

��

2

4. If we linearize equation (6) with a Taylor expansion such that ln(a+x) t
ln(a)+ x

a

|
a=1= x, then Sharpe’s CAPM can be seen as an approximation

of equation (6):

E[er
ejs

] ⇡ er
f

+ �

j

(E[er
ms

]� r

f

)

I would like to end this section with a word of caution. For an empirical
examination of these results, we need to distinguish between fundamental as-
sumptions (used in sections 2 and 3) and auxiliary premises (used in this
section to specify the company cash flows cf

js

). The failure of any of these
types of assumptions would lead to an empirical falsification of equation (6).
Such a rejection would not be so damaging if I have simply mis-specified the
cash flows, but it would be more consequential if it is due to the failure of the
pricing from equation (1).

The proper formulation of corporate cash flows is an important area for
future research. Indeed, papers by Mclean and Pontiff (2016), Harvey et al.
(2016), and Hou et al. (2017) have shown that most of the ’factors’ discovered
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in empirical asset pricing are due to either data mining, or to market inefficien-
cies that are quickly corrected. There are, however, some factors that seem to
endure. It would be interesting to then look at the behavior of firms affected
by such relevant factors, to explore if their cash flows depart in a significant
way from the specification set forth here. If such a departure in cash flow
specification is true, then the framework developed in sections 2 and 3 could
still account for their pricing and expected returns.

5 A simple multi-period extension

A multi-period extension of the model in sections 2 and 3 can be done in
continuous or discrete time with periods up to T . Consider the following:
each investor i = 1, ..., I is given endowments e

ist

. Each period t > 0, there
is an aggregate endowment E

st

. Define the set of states of nature in period
t as S

t

, and any particular element as s

t

✏S

t

, with a probability ⇡

st

with the
condition that either

P
s

t

✏S

t

⇡

st

= 1 for discrete states and
R

s

t

✏S

t

⇡

st

ds

t

= 1 for

continuous states for every t. The generalized problem that each investor faces
is:

L

i

= u

i

(c
i0)+

TX

t=1

2

4
e

�t�

it

Z

s

t

✏S

t

⇡

st

u

i

(c
ist

)ds
t

3

5+�

i

2

4(e
i0 � c

i0) +
TX

t=1

Z

s

t

✏S

t

p

st

(e
ist

� c

ist

) ds
t

3

5

L
i

= u
i

(c
i0)+

Z
T

0

2

4e�t�

it

Z

s

t

✏S

t

⇡
st

u
i

(c
ist

)ds
t

3

5 dt+�
i

2

4(e
i0 � c

i0) +

Z
T

0

Z

s

t

✏S

t

p
st

(e
ist

� c
ist

) ds
t

dt

3

5

The problems are stated in discrete and continuous time setups, with con-
tinuous states of nature. For each period we have power utility functions as
in the two period case. I have allowed for the time preference rate �

it

to vary
with time. The pricing solution is straightforward by exploiting the aggrega-
tion that comes if �

it

= �

t

and �

i

= �, and the general equilibrium properties
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of the problem. State prices are:

p

st

= e

�t�

t

⇡

st

✓
E

st

E0

◆��

Any complex security j with cash flows cf
jst

is worth V

j

=
P

T

t=1

⇣R
s

t

✏S

s

p

st

cf

jst

⌘

for a discrete period framework, and V

j

=
R

T

0

⇣R
s

t

✏S

s

p

st

cf

jst

⌘
dt for its contin-

uous counterpart.
To establish the properties of

⇣
E

st

E0

⌘
, consider discrete time case. Suppose

that change in aggregate endowments, conditional on information at time zero,
has:

ln

✓
E

st

E

st�1
| F0

◆
= µ

t

+ �

t

s

t

Where s

t

⇠ N(0, 1) has a unit normal distribution. This implies that:

ln

✓
E

st

E0

◆
=

tX

⌧=1

ln

✓
E

s⌧

E

s⌧�1

◆
=

tX

⌧=1

(µ
⌧

+ �

⌧

s

⌧

)

It is clear that E

st

E0
is log-normally distributed, given ln

⇣
E

st

E0

⌘
, the sum of

normal shocks, is normally distributed. To present the simplest result, consider
the situation where µ

t

= µ, �
t

= � and s

t

is independently distributed. In that
case E

h
ln

⇣
E

st

E0

⌘i
= tµ and var

h
ln

⇣
E

st

E0

⌘i
= t�

2. In summary, we have that

ln

⇣
E

st

E0

⌘
⇠ N(tµ, t�2). The continuously compounded risk free yield for a zero

coupon bond with maturity t is r

ft

. The price of such bond is V

r

ft

= e

�tr

ft ,
and using the results in equation (2) yields:

r

ft

= �

t

+ �µ� 1

2
�

2
�

2 (7)

The yield curve in this simple case would only depend on the shape of
�

t

, but this could of course be enriched by modeling more complex behaviors
for µ

t

, �

t

and auto correlations for s

t

. For the expected market discount rate
(expressed as per one unit of time), we would also obtain:
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E(r
mst

) = �

t

+ �µ� �

2

2
(� � 1)2 = r

ft

+ ��

2 � �

2

2
(8)

The market risk premium is constant in this very simple specification of
the multi-period model.

6 Conclusion

I have studied an Arrow Debreu economy with heterogeneous agents, additive
power utilities that allow for aggregation, and log-normal aggregate endow-
ments. These assumptions have been used before, but the approach here is to
calculate asset prices and returns directly, rather than first solving the optimal
consumption and investment decisions. Such an approach yields the following
simple yet powerful results:

The most important result is that the Arrow-Debreu securities have a price
given by p

s

= e

��

⇡

s

⇣
E

s

E0

⌘��

, where E

s

E0
are the aggregate endowments for

investors, which are then assumed to be log-normally distributed. Using this
formula, I find familiar and surprising results. The first familiar result is the
formula for the continuously compounded risk free rate, which is the same as
in consumption based models, i.e. r

f

= � + �µ� 1
2�

2
�

2.
The continuously compounded expected market return, on the other hand,

is E(r
ms

) = r

f

+ ��

2 � �

2

2 , and so the estimate for the coefficient of relative
risk aversion becomes � = E(r

ms

)�r

f

�

2 + 1
2 .The difference between the model

here and the consumption based asset pricing comes from general equilibrium
consideration of asset pricing. This implies that the volatility of the market
portfolio is identical to the volatility of the log change of the aggregate en-
dowments of those agents who determine security prices. I argue that using
aggregate consumption is misleading if there is a significant part of the wealth
that is not traded.

Using data from Campbell (2003, 2017) I obtain a median relative risk
aversion value of 1.567 and 3.432 depending on the proxy used for �. Using
the above calculations also yields a median time preference rate 4.58% and
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5.02%. These results re-unite research using financial data with experimental
studies on risk aversion and impatience, such as Holt and Laury (2002) and
Andersen et al. (2008).

In the case where the cash flows of an individual security can be written as
cf

js

= b

j

E

�

j

s

+ ✏

js

with E(✏
js

) = E(✏
js

E

��

s

) = 0, the expected return of that
security is ln(1+E[er

ejs

]) = ln(1+ er
f

)+ �

j

[ln(1 + E[er
ms

])� ln(1 + er
f

)], i.e. a
logarithmic CAPM.

The model is extended to a multi-period setting, yielding the same insights
as with the two period setup. This extension allows for a simple yield curve
that depends on the time preference rates, and on the behavior of short versus
long term expected endowment growth and volatility.

In addition to the above results, this model is easy to extend according
to the needs of the researcher, and so clarify even more the inner workings of
financial economics.
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