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Abstract

Prior studies attribute analysts’ forecast superiority over time-series forecasting mod-
els to their access to a large set of firm, industry, and macroeconomic information (an
information advantage), which they use to update their forecasts on a daily, weekly
or monthly basis (a timing advantage). This study leverages recently developed mixed
data sampling (MIDAS) regression methods to synthesize a broad spectrum of high
frequency data to construct forecasts of firm-level earnings. We compare the accuracy
of these forecasts to those of analysts at short horizons of one quarter or less. We find
that our MIDAS forecasts are more accurate and have forecast errors that are smaller
than analysts’ when forecast dispersion is high and when the firm size is smaller. In
addition, we find that combining our MIDAS forecasts with analysts’ forecasts system-
atically outperforms analysts alone, which indicates that our MIDAS models provide
information orthogonal to analysts. Our results provide preliminary support for the
potential to automate the process of forecasting firm-level earnings, or other accounting
performance measures, on a high-frequency basis.
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1 Introduction

Corporate earnings are a key input of asset pricing models and a primary indicator of

companies’ current and future financial health. Therefore, it is not surprising that com-

pany stakeholders (e.g., managers, investors, regulators, banks, analysts, the media) devote

significant resources to producing timely and accurate forecasts of future earnings.

A large body of prior research has examined the forecast accuracy of regression-based

time-series models and generally concludes that they cannot match the forecast performance

of professional analysts, especially at short forecast horizons of one quarter or less.1 The

empirical evidence for the superiority of analysts’ forecasts suggests that analysts perform

better because they have access to a broader spectrum of information that is frequently

observed (i.e., they have both an informational and a timing advantage).

From a simple random walk to more complex ARIMA models, time-series models com-

monly used to forecast quarterly earnings generally rely on past earnings and/or other quar-

terly accounting measures (e.g., change in inventory levels or sales growth) as predictor vari-

ables. This restricts their ability to compete with analysts because of the limited frequency

and scope of information employed. Because these models condition quarterly earnings fore-

casts on past time series of quarterly accounting data, forecasts for a given quarter can be

updated only once each quarter and therefore will not change within short forecast horizons

of one quarter or less. In addition, the regression-based nature of time-series models and

a limited history of quarterly data significantly restricts the scope of information included

in the forecasting model. In contrast, analysts have access to all available public (and po-

tentially to private) information from a wide range of sources that are frequently updated

(e.g., daily, weekly, monthly). This permits analysts to update their forecasts within short

1 Representative studies in this area include Brown and Rozeff (1978), Collins and Hopwood (1980), Fried
and Givoly (1982), Brown et al. (1987), O’Brien (1988), and Bradshaw et al. (2012). Bradshaw et al. (2012)
find that earnings per share forecasts from a simple random walk model are more accurate than analyst
forecasts over longer horizons, for smaller or younger firms, and when analysts forecast negative or large
changes in earnings per share. For this reason, we focus on forecasts at the more challenging horizon of one
quarter or less.



forecast horizons of one quarter or less.2

In this paper, we level the playing field by infusing a broader scope of high-frequency in-

formation into a time-series forecasting model.3 We address three important issues: (1) does

a richer time-series forecasting model improve performance relative to a basic autoregressive

model, (2) can a richer time-series forecasting model beat analysts at short horizons of one

fiscal quarter or less, and (3) if it cannot, then does combining the richer time-series model

with analyst forecasts conquer analysts by themselves? Consider an analogy to the profound

changes now taking place in the car industry. Some companies, like Ford and Google, are

designing fully automated, driverless cars that do not rely on human intervention. Other

manufacturers, notably General Motors, are betting on a less ambitious technology that

complements and assists an actively engaged driver. This fundamental distinction parallels

the two issues we address in the context of earnings forecasts. On one end of the spec-

trum is the first issue: whether we can fully automate earnings forecasts by making them

computer-driven without input from analysts. At the other end is the second issue: whether

model-based earnings forecasts provide complementary information to analysts, thereby im-

proving the overall quality of earnings forecasts. In addition to prior quarterly earnings and

five accounting-based fundamental signals considered by prior time-series forecasting models

(e.g., Lev and Thiagarajan, 1993; Abarbanell and Bushee, 1997), we consider two firm-level

stock return variables and six macroeconomic variables as predictors of quarterly earnings.

Including these additional predictor variables is a key aspect of our study because they

are observable at high frequencies, which facilitates real-time updating for our time-series

forecasts.

We leverage two new econometric developments to overcome the challenges of using large

amounts of high-frequency data in a regression-based time-series model. First, we use mixed

2Evidence exists that analysts fail to fully incorporate all available information from timely sources (e.g.,
stock returns). For example, Abarbanell (1991) finds that analysts do not fully incorporate information that
past stock prices reflect.

3Throughout this paper, we describe the frequency of data in relative terms. Specifically, we use the
terms “low” or “lower” to describe data that are observable on a quarterly basis (at best) and “high” or
“higher” to describe data observable more frequently than quarterly (e.g., daily, weekly, monthly).
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data sampling (MIDAS) regressions to build our time-series models.4 The key feature of

MIDAS models is that they permit high-frequency regressors (e.g., monthly stock returns)

to enter a regression with a lower-frequency dependent variable (e.g., quarterly earnings).

This critical feature permits our time-series model to include more timely information from

firm-level monthly stock returns and monthly macroeconomic data, in a manner similar to

analysts.

Second, we estimate a separate forecasting model for each of the thirteen predictor vari-

ables, which accommodates the large amount of information we consider. For a given firm,

quarter and forecast horizon, this results in thirteen different forecasts of the same quarterly

earnings number. We use a forecast combination method, based on the historical forecasting

accuracy of each predictor variable, to distill a (potentially) diverse set of thirteen forecasts

into one composite forecast, which we refer to as a MIDAS-combination forecast. We then

evaluate the out-of-sample performance of these forecasts relative to the accuracy of an au-

toregressive time-series model examined in prior studies (e.g., Brown and Rozeff, 1978; Brown

et al., 1987; O’Brien, 1988; Bradshaw et al., 2012) and analysts’ consensus forecasts.

By using more frequent observations and a broader information set within a new class

of time-series models, we find that our MIDAS-combination forecasts errors are economi-

cally and statistically smaller that those produced by a traditional autoregressive time-series

model. Specifically, at the beginning of the quarter for which we forecast earnings (here-

after, the target quarter), we find that MIDAS-combination forecast errors are 30% lower

than forecast errors from the benchmark autoregressive model. The performance of MIDAS-

combination forecasts increases to 36% at the shorter forecast horizon at the end of the target

quarter. Overall, these results underscore the importance of considering a broad scope and

frequency of information in regression-based forecasting models.

Our second set of results compares the forecast errors from the MIDAS-combination

model to those of analysts. We find that the MIDAS-combination model produces forecast

4See Andreou, Ghysels and Kourtellos (2011) and Armesto, Engemann and Owyang (2010) for recent
surveys of MIDAS regression methods.

3



errors that are 10% smaller than analysts’ forecast errors at the beginning of the target

quarter. More importantly, the superiority of the MIDAS-combination forecasts is most

pronounced in observations with high analyst disagreement (i.e., dispersion), in smaller firms,

and in specific industries such as Manufacturing and High Technology. These gains are

significant only at the longer forecast horizon at the beginning of the target quarter.

Our last set of results compares the relative performance of a unique combination of ana-

lysts and MIDAS-combination forecasts to predictions from analysts alone. Our findings are

surprisingly sharp as we find that we are always better off combining MIDAS-combination

forecasts with those of analysts.5 At the beginning (end) of the target quarter, the combina-

tion of model-based and analyst forecasts reduced the forecast error by 21% (11%) relative

to analysts forecasts alone. This means that the MIDAS and analyst forecasts feature com-

plementary information.

This study contributes to a large body of research that generally concludes that analysts’

forecasts are superior to those of time-series models because of their information and timing

advantages (e.g., Brown and Rozeff, 1978; Brown et al., 1987; Bradshaw et al., 2012).6

A technique commonly employed in these studies is to level the playing field by reducing

analysts’ information and timing advantages by considering only the forecasts issued before

the release of prior financial statement information. In contrast, our research design levels

the playing field by increasing the amount and frequency of information used in time-series

models to a level consistent with the information used by analysts to compare forecasting

accuracy at short horizons. This is an important distinction because the higher performance

of MIDAS-combination forecasts at short forecast horizons implies that they can be used

to estimate earnings expectations that are updated relatively frequently in settings where

analysts do not provide coverage (e.g., small public firms, most private firms, international

settings). In addition, our MIDAS-combination method can be extended to forecasts of other

5This finding indicates that analysts, like car drivers, significantly benefit from technological intervention.
6In a review of capital markets research in accounting, Kothari (2001) states, “in recent years it is common

practice to (implicitly) assume that analysts’ forecasts are a better surrogate for market’s expectations than
time-series forecasts.”
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financial statement performance measures (e.g., sales, cost of goods sold, income taxes, cash

flows, accounting accruals) that are not covered by analysts.

We also contribute to a burgeoning literature on MIDAS-based forecasting by providing

the first application to forecast a firm-level financial statement performance measure (i.e.,

quarterly earnings).7 In contrast, the MIDAS regression framework was first applied to

forecasting market-level return volatility (Ghysels, Santa-Clara and Valkanov, 2005) and a

large number of subsequent studies have focused primarily on applications involving forecasts

of macroeconomic variables (e.g., Clements, Galvão and Kim, 2008; Armesto et al., 2009;

Andreou, Ghysels and Kourtellos, 2013). Overall, the inherently low-frequency nature of

firm-level financial statement data (i.e., quarterly or annual), the availability of other high-

frequency firm- and market-level data (e.g., daily stock return, monthly GDP), and the

results of our study illustrate the applicability of MIDAS regressions to capital markets

research in accounting.

The remainder of the paper is organized as follows. Section 2 describes the data sources

and measurements of the dependent variable (quarterly earnings) and thirteen firm-level

and macroeconomic predictor variables used in our time-series models. Section 3 describes

the MIDAS forecasting model, the forecast combination technique, the forecast accuracy

evaluation method and three empirical tests. Section 4 presents the empirical results, and

section 5 concludes.

7Ball and Easton (2013) use MIDAS regressions to identify two distinct elements of the accounting system
by examining how the contemporaneous association between high-frequency daily returns and low-frequency
annual earnings changes within the fiscal year. In contrast, our study uses MIDAS regressions to assess the
accuracy of out-of-sample forecasts of firm-level earnings.
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2 Data

2.1 Definition of variables

We forecast firm-level quarterly earnings per share (EPS) using low-frequency quarterly

accounting data and high-frequency monthly firm-level stock market and macroeconomic

data as predictor variables. Throughout, we distinguish these predictor variables by an

index k. The following subsections describe all variables, and Table 1 details their category,

frequency, and measurement.

2.1.1 Quarterly firm-level earnings and other accounting predictor variables

The primary variable of interest is firm-level quarterly EPS, ∆Eq, which is collected

from I/B/E/S and first-differenced to account for potential non-stationarity. Specifically,

we compute the difference between the I/B/E/S actual quarterly EPS values in the current

quarter q and the prior fiscal quarter (i.e., ∆Eq =Eq−Eq−1), which is described in Table 1,

panel A.8

In addition to quarterly earnings, we consider five quarterly accounting-based predictor

variables. We use quarterly changes in inventory (k=1), accounts receivable (k=2), capital

expenditures (k=3), gross margin (k=4), and selling, general and administrative (SG&A) ex-

penses (k=5), which have been examined by previous studies that forecast quarterly earnings

(e.g., Lev and Thiagarajan, 1993; Abarbanell and Bushee, 1997).

2.1.2 Monthly firm-level stock market predictor variables

We also consider eight additional high-frequency predictor variables: two firm-level stock

market variables and six macroeconomic variables. These monthly variables expand the

scope of information contained in our forecast model and facilitate real-time updating at

short forecast horizons.

8Prior actual EPS values are share-adjusted to account for interim stock splits, which facilitates compa-
rability with EPS in the current quarter.
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The two firm-level stock market predictor variables, excess stock returns and return

volatility, are constructed from daily and monthly data available on CRSP. Excess stock

return (k=6) is equal to the monthly return of the firm less the monthly same-industry

portfolio return.9 Return volatility (k=7) is computed as the average of squared daily stock

return during a given month.

These two predictor variables are intended to capture investors’ expectations and uncer-

tainty about the firm’s future earnings. In addition, they are more forward-looking and are

updated more frequently than accounting-based fundamental signals. Therefore, these two

predictors potentially incorporate timely information in our time-series regression forecasting

models.

2.1.3 Monthly macroeconomic predictor variables

We include six monthly macroeconomic predictor variables: industrial production, infla-

tion, oil prices, Treasury bill (T-bill) yields, the term spread and the default spread. All six

variables are constructed from data retrieved from Federal Reserve Economic Data (FRED),

which is maintained by the Federal Reserve Bank of St. Louis.

We include these variables because they reflect the overall state of the economy and

aggregate demand conditions. They may also capture meaningful variation in firm-level

earnings because of fluctuations in the business cycle. Industrial production(k=8) is a leading

business cycle indicator. Rising industrial production often signals economic expansion,

which can provide a signal about future earnings. Inflation (k=9) is a predictor variable that

provides a complex signal about future earnings. Because firm-level earnings are reported in

nominal dollars, high inflationary periods could signal stronger profits through higher prices

and, therefore, higher reported revenues in future periods while many fixed costs, notably

depreciation and amortization, are based on historical values.

Oil prices (k=10) provide a signal about future earnings through two potential channels.

9Industry affiliation is based on the Fama-French 10-industry classification, and monthly industry portfolio
returns come from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

7



Rising oil prices often signal economic prosperity, which would indicate increased earnings

through a demand channel. From a supply perspective, oil prices and derivative products are

often used as raw materials for production in many industries, which suggests that rising oil

prices could signal lower future earnings by increasing the firm’s expenses. T-bill rates (k=11)

represent the cost of short-term borrowing. An increase in T-bill rates may signal increased

interest expense, which would lower future earnings. From a business cycle perspective,

higher T-bill rates may reflect a growing demand for funds during an expansionary period

and, therefore, signal higher future earnings. The term spread (k=12) is the difference

between the yields on a ten-year Treasury bond and a three-month T-bill and is often used

a leading indicator of output growth and recessions (Wheelock and Wohar, 2009). Also,

because firms are on average net borrowers of long-term funds, an increase in term spread

can signal lower future earnings because of increased future interest payments.

Finally, the default spread (k=13) is the difference between yields on ten-year AAA-rated

and BAA-rated corporate bonds. An increase in default spread could signal increased overall

risk in the economy and a deterioration of credit quality. This would imply that firms are

saddled with less favorable macroeconomic conditions and higher borrowing costs, which

could stunt earnings growth.

2.2 Sample Description

Our sample contains firm-level observations between 1984 and 2014 with required data

from I/B/E/S, Compustat and CRSP to compute quarterly earnings and all thirteen pre-

dictor variables.10 In order to ensure a sufficient number of observations to estimate the

time-series regression models described in the next section, we exclude firms with fewer

than forty-nine consecutive quarters of available data to compute earnings and all thirteen

predictor variables. This restriction biases our sample towards larger and more successful

firms.

10The availability of macroeconomic predictor variables are readily available on FRED throughout our
sample period and, therefore, does not impose a restriction on our sample.
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Our final sample contains 1,057 firms. Table 2 reports the number of firms by industry

affiliation based on the Fama-French 10-industry classification. Manufacturing (MANUF)

and high-technology (HITEC) industries represent the largest fractions (24.9% and 23.8%,

respectively) of firms in the sample.

3 Econometric methods

This section outlines the econometric methods used to estimate and evaluate out-of-

sample forecasts of firm-level quarterly earnings at horizons of zero and three months prior to

the end of the fiscal quarter. Throughout, we identify a firm by the subscript f, a fiscal quarter

by the subscript q, and a forecast horizon by the subscript h. Observations are identified by a

unique combination of f, q, and h. Within each unique observation, we construct a number of

out-of-sample forecasts from time-series regression models and analysts’ consensus estimates.

Section 3.1 describes our two benchmark forecasting models based on analysts’ consensus

estimates and an autoregressive time-series regression. These benchmark forecasts are used

to evaluate the performance of our MIDAS-combination forecasts, which are developed in

section 3.2. Finally, section 3.3 describes the forecast evaluation methods we use in the three

empirical tests we perform.

3.1 Benchmark forecasts

The first benchmark model is based on a consensus of analysts’ forecasts. For a given firm

f, quarter q, and forecast horizon h prior to the end of fiscal quarter q, we use the median of

all individual analysts’ quarterly EPS estimates collected from I/B/E/S and first-difference

it to maintain consistency with the definition of ∆Eq (see section 2.1.1).11 Specifically, the

11We use the median forecast as the analysts’ consensus benchmark because it is often used in the ac-
counting and finance literature, as well as in practice. In addition, the median consensus forecast reflects
a combination of individual analysts’ forecasts (i.e., a non-parametric “average”) that parallels the fore-
cast combination method we employ to aggregate individual regression-based forecasts (see section 3.2.3).
However, the median forecast benchmark does not necessarily reflect the “best” combination of individual
analysts’ forecasts. Therefore, the results of this study, which focuses on the out-of-sample performance of
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analysts’ consensus benchmark forecast, ∆ÊAnalyst
f,q,h , is equal to the median value, ÊAnalyst

f,q,h ,

of all analysts’ most recent EPS estimates of firm f ’s quarter q EPS that were issued prior

to the date on which the consensus forecast is formed (h months prior to the end of fiscal

quarter q) minus the split-adjusted actual quarterly EPS values reported in I/B/E/S for the

prior fiscal quarter (i.e., ∆ÊAnalyst
f,q,h = ÊAnalyst

f,q,h −Eq−1).12 Throughout the paper, we focus on

two forecast horizons: h=3 months prior to the end the target quarter and h=0 (i.e., the

end of the target quarter). In other words, we examine forecasts made at the end of quarter

q−1 for quarter q, and we forecast for the same target quarter but with the advantage of

having all the monthly data released during the quarter.

Our second benchmark forecast is constructed from a basic autoregressive (AR) time-

series regression model used in a number of prior studies (e.g., Brown et al., 1987; Bradshaw

et al., 2012), as follows:

∆Eq = α +
I∗∑

i=1+h
3

φi ·∆Eq−i + εq, (AR model)

where ∆Eq is the difference between EPS in the current quarter, q, and EPS in the prior

quarter, q−1; α and φi are model parameters; and I∗ is the number of lags of ∆Eq included

in the model and is selected using the Bayesian Information Criterion (BIC).

The lagged values of ∆Eq−i begin at i=1+h
3
, which accounts for the fact that firms

typically release quarterly accounting information one or two months after the end of the

fiscal quarter. Therefore, if the AR forecast is constructed at a horizon of h=0 months prior

to the end of the fiscal quarter, then the lag index begins at i=1+0
3
=1, and EPS from the

prior fiscal quarter, q−1, is included in the model because it was observable at the time of

an optimal combination of regression-based forecasts, should be interpreted relative to the median analysts’
consensus and not relative to the “best” consensus. The determinants of the “best” analysts’ forecast, which
is not known ex ante, are outside the scope of this paper and are left for future research.

12For example, consider Walmart’s third fiscal quarter (Q3) ending on October 31, 2012. If the forecast
horizon is h=3 months prior to the end of Q3 (i.e., July 31, 2012), then the median analysts’ consensus
benchmark forecast would be based on all of the most recent individual analysts’ forecasts that were issued
on or prior to July 31, 2012. Similarly, if the forecast horizon is h=0 months prior to the end of Q3 (i.e.,
October 31, 2012), then the median analysts’ consensus benchmark forecast would be based on all of the
most recent individual analysts’ forecasts that were issued on or prior to October 31, 2012.
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the forecast. In contrast, if the AR forecast is constructed at a horizon of h=3 months prior

to the end of the fiscal quarter, then the lag index begins at i=1+3
3
=2, and EPS from the

prior fiscal quarter, q−1, is not included in the model because it was not observable at the

time of the forecast.

For each unique observation (firm f, quarter q, and forecast horizon h), we estimate AR

model parameters via OLS using a rolling-window sample of data from the firm’s 40 most

recent fiscal quarters. The AR benchmark forecast, ∆ÊAR
f,q,h, is equal to the out-of-sample

predicted value in quarter q from the estimated model.

3.2 MIDAS-combination forecasts

This section describes the two-step procedure we use to construct MIDAS-combination

forecasts. The first step estimates regression-based forecasts based on one of two different

types of time-series models that are separately estimated for each of our thirteen predictor

variables. The two models, described in sections 3.2.1 and 3.2.2, are distinguished by whether

the predictor variables are available at a relatively low quarterly frequency or a relatively high

monthly frequency. The second step, described in section 3.2.3, uses a forecast combination

technique to aggregate the individual time-series model forecasts into one composite forecast,

which we term a MIDAS-combination forecast.

3.2.1 Augmented distributed lag forecast model

The first model used to construct regression-based forecasts is an augmented distributed

lag (ADL) model, which augments the AR model with one low -frequency predictor variable

as follows:

∆Eq = α +
I∗∑

i=1+h
3

φi ·∆Eq−i +
J∗∑

j=1+h
3

βj ·Xk
q−j + εq, (ADL model)
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where ∆Eq is the difference between EPS in the current quarter, q, and EPS in the prior

quarter, q−1; Xk
q is one of five accounting-based predictor variables (1 ≤ k ≤ 5) in fiscal

quarter q;13 α, φi and βj are model parameters; and I∗ and J∗ are the number of lags of

∆Eq and Xk
q , respectively, included in the model, and both are selected using the Bayesian

Information Criterion (BIC). As in the AR model described in section 3.1, the first lagged

values of ∆Eq−i and Xk
q included in the ADL model depend on the forecast horizon h (i.e., i

=j =1+h
3
) to account for any delay in the release of quarterly accounting-based information.

We separately estimate ADL model parameters via OLS for each accounting-based predic-

tor variable (1 ≤ k ≤ 5) and each unique observation (firm f, quarter q, and forecast horizon

h) using a rolling-window sample of data from the firm’s 40 most recent fiscal quarters. The

resulting ADL forecast, ∆Êk
f,q,h, is equal to the out-of-sample predicted value in quarter q

from the estimated model.

In principle, the ADL model could also be applied to the eight remaining stock market and

macroeconomic predictor variables (i.e., 6 ≤ k ≤ 13), which are more frequently observable.

However, estimating the ADL model would require temporally aggregating (daily or) monthly

values to a quarterly observation that coincides with the fiscal quarter of the firm. This

method has two important drawbacks. First, temporal aggregation limits the ability of

the time-series model to optimally use the real-time flow of information throughout the

quarter, which is useful for providing updated real-time forecasts at short horizons within

the fiscal quarter. Second, using quarterly regressors based on aggregated high-frequency

data implicitly restricts the regression parameters, βj, to be temporally constant throughout

the fiscal quarter. If some months within the quarter contain more relevant forecasting

information than others, then that information will be lost in the process of aggregating the

high-frequency data.14

13As described in Table 1, panel B and section 2.1.1, the five accounting-based predictor variables are
inventory (k=1), accounts receivable (k=2), capital expenditures (k=3), gross margin (k=4), and SG&A
expense (k=5).

14For example, Ball and Easton (2013) hypothesize and provide evidence that properties of the accounting
system result in a higher association between earnings and daily returns at the beginning of the fiscal period
than at the end of the fiscal period.
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3.2.2 ADL-Mixed data sampling forecast model

The second model used to construct regression-based forecasts employs a mixed data

sampling (MIDAS) framework, which is designed to exploit high-frequency information em-

bedded in the eight remaining stock market and macroeconomic predictor variables.15 Specif-

ically, we augment the AR model with a MIDAS specification (ADL-MIDAS) that utilizes

one high-frequency predictor variable as follows:

∆Eq = α +
I∗∑

i=1+h
3

φi ·∆Eq−i +
J∗∑
j=h

3

3∑
m=1

θq−j,m · xkq−j,m + εq, (ADL-MIDAS model)

where ∆Eq is the difference between EPS in the current quarter, q, and EPS in the prior

quarter, q−1; xkq,m is one of eight firm-level stock market and macroeconomic predictor vari-

ables (6 ≤ k ≤ 13) in month m within fiscal quarter q ; α, φi and θq,m are model parameters;

and I∗ and J∗ are the number of lagged quarters of ∆Eq and xkq,m, respectively, included in

the model, and both are selected using the Bayesian Information Criterion (BIC).16

As in the AR model, the first lagged value of ∆Eq−i included in the ADL-MIDAS model

depends on the forecast horizon h (i.e., i=1+h
3
) in order to account for any delay in the

release of quarterly accounting-based information. In contrast, the high-frequency stock

market and macroeconomic predictor variables are readily observable, so information up to

the forecast date is included in the model by specifying the beginning lag index as j= h
3
.17

15MIDAS regressions are a class of forecasting models, developed by Ghysels, Santa-Clara and Valkanov
(2006), Ghysels and Wright (2009), Andreou, Ghysels and Kourtellos (2010) and Chen and Ghysels (N.d.),
that are designed to directly exploit real-time, high-frequency data. Recent studies find that MIDAS models
using daily and monthly data significantly improve out-of-sample forecasts of quarterly macroeconomic
variables (e.g., Schumacher and Breitung, 2008; Clements, Galvão and Kim, 2008; Armesto et al., 2009;
Kuzin, Marcellino and Schumacher, 2011; Andreou, Ghysels and Kourtellos, 2013).

16The two monthly firm-level stock market predictor variables (see Table 1, panel C and section 2.1.2) are
excess stock return (k=6) and return volatility (k=7). The six monthly macroeconomic predictor variables
(see Table 1, panel D and section 2.1.3) are industrial production (k=8), inflation (k=9), oil prices (k=10),
T-bill yields (k=11), the term spread (k=12), and the default spread (k=13).

17The six monthly macroeconomic predictor variables are measured with a lag of one month in order to
account for any delay in the release of the information (see Table 1, panel D and section 2.1.3). Therefore,
the lag structure in the ADL-MIDAS model does not directly account for any delay in the release of this
information because it is already embedded in the variable definition. The two monthly stock market
predictor variables do not need to be adjusted because they are observable in real time.
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For example, if the ADL-MIDAS forecast is constructed at a horizon of h=0 months

prior to the end of the fiscal quarter, then the lag index begins at j= 0
3
=0, and the model

includes high-frequency data from all three months within the current fiscal quarter, q, as

well as earlier quarters, q−j. If the ADL-MIDAS forecast is constructed at a horizon of h=3

months prior to the end of the fiscal quarter, then the lag index begins at j= 3
3

= 1, and the

model begins with high-frequency data from all three months within the prior fiscal quarter,

q−1, as well as earlier quarters, q−j , but not from the current fiscal quarter, q.

We separately estimate ADL-MIDAS model parameters via OLS for each stock market

and macroeconomic predictor variable (6 ≤ k ≤ 13) and each unique observation (firm f,

quarter q, and forecast horizon h) using a rolling-window sample of data from the firm’s

40 most recent fiscal quarters. The resulting ADL-MIDAS forecast, ∆Êk
f,q,h, is equal to the

out-of-sample predicted value in quarter q from the estimated model.18

3.2.3 Forecast Combinations

For each unique observation (firm f, quarter q, and forecast horizon h) with at least 40

prior quarters of available data, we separately estimate the ADL and ADL-MIDAS models

for each of the thirteen predictor variables, which results in thirteen out-of-sample forecasts,

∆Êk
f,q,h, where 1 ≤ k ≤ 13. In addition, a consensus analyst benchmark forecast, ∆ÊAnalyst

f,q,h ,

and an AR model benchmark forecast, ∆ÊAR
f,q,h, are computed for total of fifteen out-of-

sample forecasts available for each unique observation. This section describes two forecast

combination schemes that we use to aggregate these individual forecasts to produce a single

composite forecast.

Forecast combination methods offer an effective way to summarize a large amount of

information provided by many predictors. In a survey of the literature, Timmermann (2006)

points out that estimating a separate regression for each predictor and then using forecast

combination methods is more robust to model misspecification and measurement error than

18Technically speaking, this approach involving OLS estimation is called U-MIDAS. See Foroni, Marcellino
and Schumacher (2015) for further details.
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estimating a single forecasting model that includes all predictors. In addition, combination

methods have better out-of-sample forecasting performance than the best-performing indi-

vidual model (e.g., Makridakis and Winkler, 1983; Gupta and Wilton, 1987; Hendry and

Clements, 2004).

Our first combination scheme constructs a MIDAS-composite (MC) forecast, ∆ÊMC
f,q,h, for

each unique observation based on a weighted-average of all thirteen ADL and ADL-MIDAS

regression-based forecasts, ∆Êk
f,q,h (1 ≤ k ≤ 13). The MC forecast is computed as follows:

∆ÊMC
f,q,h =

13∑
k=1

ωk
f,q,h ·∆Êk

f,q,h, (1)

where ωk
f,q,h is the weight applied to the forecast based on predictor variable k (i.e,. ∆Êk

f,q,h),

which is computed for firm f at a forecast horizon of h months prior to the end of fiscal

quarter q.

Our weighting scheme depends on the relative historical performance of the thirteen

individual predictor variables. Specifically, we compute weights using a discounted mean

squared forecast error (DMSFE) weighting scheme, which depends on the historical accuracy

of forecast variable k relative to the historical accuracy of all forecasts. In addition, forecast

errors from the distant past are discounted relative to more recent forecast errors (e.g.,

Diebold and Pauly, 1987; Stock and Watson, 2004). For each unique observation, the weight

applied to an individual forecast based on predictor variable k, ωk
f,q,h, is calculated as follows:

ωk
f,q,h =

(mk
f,q,h)−1∑13

n=1(mn
f,q,h)−1

, (2)

where mk
f,q,h =

∑8
s=1 δ

s (FE k
f,q−s,h)2 is the DMSFE, with discount factor δ=0.95, and FE k

f,q−s,h

is the historical forecast error from fiscal quarter q−s, which is equal to the difference between

the actual and forecasted EPS values (i.e., ∆Ef,q−s − ∆Êk
f,q−s,h). We compute weights for

each of the thirteen predictor variables (1 ≤ k ≤ 13) using forecast errors from the eight most
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recent prior quarters (1 ≤ s ≤ 8).

Our second combination scheme constructs a composite forecast, ∆ÊMC–An
f,q,h , for each

unique observation based on the weighted average of the analysts’ consensus forecast, ∆ÊAnalyst
f,q,h ,

and all thirteen ADL and ADL-MIDAS regression-based forecasts, ∆Êk
f,q,h (1 ≤ k ≤ 13). the

composite forecast is computed as follows:

∆ÊMC–An
f,q,h = ωAnalyst

f,q,h ·∆ÊAnalyst
f,q,h +

13∑
k=1

ωk
f,q,h ·∆Êk

f,q,h, (3)

where ωAnalyst
f,q,h is the weight applied to the analysts’ consensus forecast, and ωk

f,q,h is the

weight applied to the forecast based on predictor variable k.

As in the first combination scheme, we compute the weights applied to the thirteen

regression-based forecasts, ωk
f,q,h (1 ≤ k ≤ 13), and the analysts’ consensus forecast, ωAnalyst

f,q,h ,

for each unique observation as follows:

ωk
f,q,h =

(mk
f,q,h)−1

13× (mAnalyst
f,q,h )−1 +

∑13
n=1(mn

f,q,h)−1
, (4)

and:

ωAnalyst
f,q,h =

13× (mAn
f,q,h)−1

13× (mAnalyst
f,q,h )−1 +

∑13
n=1(mn

f,q,h)−1
, (5)

wheremAnalyst
f,q,h =

∑8
s=1 δ

s (FE Analyst
f,q−s,h )2 is the DMSFE with discount factor δ=0.95, and FE Analyst

f,q−s,h

is the historical analysts’ consensus forecast error from fiscal quarter q−s, which is equal to

the difference between the actual and forecasted EPS values (i.e., ∆Ef,q−s −∆ÊAnalyst
f,q−s,h ). In

constructing the weights for this second scheme, we multiply the analyst consensus forecast

by a value of 13 (i.e., the number of regression-based forecasts) such that if all forecasts

get an equal amount of weight, then one-half of the weight will be applied to the analysts’

consensus forecast and the other one-half applied to the collective regression-based forecasts.
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3.3 Forecast performance evaluation and three empirical tests

We use the median absolute error ratio (MABER) to evaluate the out-of-sample per-

formance of the combination forecast of interest relative to a benchmark forecast in three

empirical tests. Our choice of an absolute-deviation loss function is driven by two factors.

First, Basu and Markov (2004) argue and provide evidence that analysts have a linear (or

absolute-deviation) loss function. Second, the absolute-deviation loss function is more robust

in the presence of outliers in the distribution. Abarbanell and Lehavy (2003) find instances of

extreme negative values in the distribution of analysts’ forecast errors, which they attribute

to firms’ recognition of unexpected accruals.

For all three empirical tests, we compute MABER values at a portfolio level, rather than

a firm level, because the sample of MIDAS-combination forecasts is limited to firms with

at least 49 consecutive quarterly observations of all thirteen predictor variables.19 For a

given forecast horizon, h, we form portfolios by pooling firm-quarter observations based on

observable characteristics (e.g., industry, size, calendar year).

Our first test examines whether MIDAS-combination forecasts, which incorporate a

broader scope of real-time data, improve the out-of-sample performance relative to a basic

AR model, which incorporates only a limited amount of lagged low-frequency information.

We call this the improve test. For a given forecast horizon, h, and portfolio, p, of firm-quarter

observations, we evaluate the improve test by computing a MABER, λimprove
p,h , that compares

MIDAS-combination forecasts to AR model forecasts as follows:

λimprove
p,h ≡

median
( ∣∣∣∆Ef,q −∆ÊMC

f,q,h

∣∣∣ )
median

( ∣∣∣∆Ef,q −∆ÊAR
f,q,h

∣∣∣ ) ∀ (f, q) ⊂ p, (6)

where ∆Ef,q−∆ÊMC
f,q,h and ∆Ef,q−∆ÊAR

f,q,h are the MIDAS-combination and AR model fore-

cast errors, respectively. A value of λimprove
p,h less than (greater than or equal to) 1.0 indicates

19Specifically, 40 prior quarters are required to estimate the ADL or ADL-MIDAS regression models,
8 prior quarters are needed to compute forecast combination weights, and 1 prior quarter is needed to
measure MIDAS-combination forecast performance.
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that MIDAS-combination forecasts improve (do not improve) out-of-sample performance

relative to basic AR model forecasts.

We implement a bootstrap procedure to assess the statistical significance of λimprove
p,h esti-

mates. Let Np,h equal the number of firm-quarter forecasts in portfolio p for forecast horizon

h. We randomly draw, with replacement, a total of Np,h pairs (∆ÊMC
f,q,h, ∆ÊAR

f,q,h) from all firm-

quarter observations in portfolio p with a given forecast horizon h and re-compute λimprove
p,h

for this bootstrapped sample. We repeat this process 10,000 times to obtain a bootstrapped

distribution of λimprove
p,h . The p-value for λimprove

p,h is equal to the percentage of bootstrapped

values that are not less than one.20 If λimprove
p,h is less than one, then we conclude that MIDAS

combination forecasts do improve out-of-sample performance relative to basic AR model

forecasts at a level of statistical significance equal to the bootstrapped p-value.

Our second test examines whether MIDAS-combination forecasts beat analysts’ consensus

forecast in out-of-sample performance. We call this the beat test. For a given forecast horizon,

h, and portfolio, p, of firm-quarter observations, we evaluate the beat test by computing

the following MABER, λbeatp,h , which compares MIDAS-combination forecasts to analysts’

consensus forecasts:

λbeatp,h ≡
median

( ∣∣∣∆Ef,q −∆ÊMC
f,q,h

∣∣∣ )
median

( ∣∣∣∆Ef,q −∆ÊAnalysts
f,q,h

∣∣∣ ) ∀ (f, q) ⊂ p, (7)

where ∆Ef,q−∆ÊMC
f,q,h and ∆Ef,q−∆ÊAnalysts

f,q,h are the MIDAS-combination forecast errors

and analysts’ consensus forecast errors, respectively. A value of λbeatp,h less than (greater than

or equal to) 1.0 indicates that MIDAS-combination forecasts beat (do not beat) analysts’

consensus forecasts in out-of-sample performance.

We implement the bootstrap procedure from the previous improve test to evaluate the

20We use the original percentile bootstrap developed by Efron (1979). We expect some time-series as
well as cross-sectional dependence, since, for example, we draw firms across time in the same industry. The
unbalanced panel data dependence is rather complex, however, and therefore could not be easily handled
with, say, a stationary bootstrap scheme (e.g., Politis and Romano, 1994), which applies to a pure time-series
setting.
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statistical significance of λbeatp,h , but we construct the bootstrapped sample from Np,h random

draws, with replacement, of pairs (∆ÊMC
f,q,h, ∆ÊAnalyst

f,q,h ). If λbeatp,h is less than one, then we

conclude that MIDAS combination forecasts beat analysts’ consensus forecasts at a level of

statistical significance equal to the bootstrapped p-value.

Our third and final empirical test determines whether a combination of analysts’ consen-

sus forecasts and MIDAS-combination forecasts is able to conquer the out-of-sample perfor-

mance of analysts’ consensus forecasts alone. For a given forecast horizon, h, and portfolio,

p, of firm-quarter observations, we evaluate the conquer test by computing the MABER,

λconquerp,h , as follows:

λconquerp,h ≡
median

( ∣∣∣∆Ef,q −∆ÊMC−An
f,q,h

∣∣∣ )
median

( ∣∣∣∆Ef,q −∆ÊAnalysts
f,q,h

∣∣∣ ) ∀ (f, q) ⊂ p, (8)

where ∆Ef,q−∆ÊMC−An
f,q,h is the combined analysts’ consensus and MIDAS-combination fore-

cast error, and ∆Ef,q−∆ÊAnalysts
f,q,h is the analysts’ consensus forecast error. A value of λbeatp,h

less than (greater than or equal to) 1.0 indicates that a combination of analysts’ consensus

forecasts and MIDAS-combination forecasts conquers (does not conquer) analysts’ consensus

forecasts in out-of-sample performance.

We implement the bootstrap procedure from the previous two tests to evaluate the sta-

tistical significance of λconquerp,h , but we construct the bootstrapped sample from Np,h random

draws, with replacement, of pairs (∆ÊMC−An
f,q,h , ∆ÊAnalyst

f,q,h ). If λconquerp,h is less than one, then we

conclude that MIDAS-combination forecasts complement analysts’ forecasts by combining

to conquer analysts’ consensus forecasts alone at a level of statistical significance equal to

the bootstrapped p-value.
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4 Empirical results

This section summarizes our study’s key empirical results. Sections 4.1, 4.2, and 4.3

present results from the improve, beat, and conquer tests, respectively. Section 4.4 explores

whether our results are driven by informational efficiencies or reduced biases.

4.1 Improve test results

Columns 1 and 2 of Table 3 present λimprove
p,h estimates for all firm-quarter observations

and by industry portfolios for forecast horizons of h=0 and h=3 months prior to end of

the fiscal quarter. At the shorter forecast horizon of h=0 months (reported in column 1),

the estimated λimprove
p,0 for the full sample is 0.645, which is less than 1.0 at a 1% level of

statistical significance. This indicates that MIDAS-combination forecasts reduce the median

forecast error magnitude by 35.5% relative to AR model forecasts. Across industry portfolios,

λimprove
p,0 is always less than one with values ranging from 0.509 in the NODUR industry (an

improvement of 49.1%), to 0.865 in the TELCM industry (an improvement of 13.5%). All

values are less than 1.0 at a 1% level of statistical significance except for the TELCM industry,

which has a 5% level of statistical significance.

Similar results are obtained at the longer forecast horizon of h=3 months (reported in

column 2). For the full sample of firm-quarter observations, the estimated value of λimprove
p,3

is 0.708 (29.2% improvement) and is less than 1.0 at a 1% level of statistical significance.

λimprove
p,3 is less than one in all ten industry portfolios, with values ranging from 0.504 (49.6%

improvement) in the NODUR industry to 0.892 (10.8% improvement) in the ENRGY indus-

try. All industry portfolio values are less than 1.0 at a 1% level of statistical significance,

with the exception of the TELCM (5% level) and ENRGY (10% level) industries.

Columns 1 and 2 of Table 4 provide λimprove
p,h estimates by calendar-year portfolios for

forecast horizons of h=0 (column 1) and h=3 (column 2). For both forecast horizons and

across all calendar-year portfolios, λimprove
p,h estimates are less than 1.0 at a 1% level of statis-
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tical significance with values ranging between a low of 0.597 (40.3% improvement) in 2011

(h=0) to a high of 0.812 (18.8% improvement) in 2006 (h=3).

Overall, these results of the improve tests provide strong and clear evidence that our

MIDAS-combination forecasts provide an economically and statistically significant improve-

ment over AR model forecasts. In addition, these results provide a strong foundation to

support the subsequent beat and conquer tests, which we discuss in the next two sections.

4.2 Beat test results

This section presents results from the beat test, which directly compares the out-of-

sample performance of our MIDAS-combination forecasts to analysts’ consensus forecasts.

The third columns of Tables 3 and 4 present λbeatp,0 estimates by industry portfolios and

calendar-year portfolios, respectively, at the shorter forecast horizon of h=0 months prior to

end of the fiscal quarter. λbeatp,0 estimated for the overall sample is 1.251, which indicates that

our MIDAS-combination forecasts do not unconditionally beat analysts. Across industry

and calendar-year portfolios, λbeatp,0 is always greater than 1.0 with the exception of the 0.943

estimated for the UTILS industry, which is not statistically significant.

When the forecast horizon is h=3 months, the results (reported in column 4 of Tables 3

and 4) indicate a significant improvement in MIDAS-combination forecasts relative to analyst

benchmark forecasts. For example, λbeatp,3 estimated for all firm-quarter observations is 0.931,

which is less than 1.0 at a 1% level of statistical significance. This indicates that MIDAS-

combination forecasts do outperform analysts’ consensus forecasts by 6.9% at an h=3 month

forecast horizon. Across industries, values are less than 1.0 in all but two industries (NODUR

and SHOPS). Similar results are obtained across calendar-year portfolios.

Overall, these results provide modest evidence that MIDAS-combination forecasts can

unconditionally beat analysts’ consensus forecasts at the longer forecast horizon of h=3

months. In order to provide more clarity, we evaluate λbeatp,3 estimates for two additional

portfolios based on the dispersion among analysts’ forecasts and for portfolios based on the
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size of the firm.21

The left panel of Figure 1 illustrates λbeatp,3 estimates (indicated by the blue-shaded bars)

for five analyst dispersion portfolios. When analysts agree (i.e., low dispersion), analysts’

forecasts clearly have an advantage over MIDAS-combination forecasts as indicated by λbeatp,3

estimates greater than one. However, this advantage quickly wanes as disagreement among

analysts increases. For example, the λbeatp,3 estimates in the second- and first-highest dispersion

portfolios are 0.874 (beat by 12.6%) and 0.779 (beat by 22.1%), respectively, which indicates

that our MIDAS-combination forecasts beat analysts with a statistical significance of 1%.22

Figure 2 illustrates λbeatp,3 estimates (indicated by the blue-shaded bars) for five size port-

folios. Our MIDAS-combination forecasts have an advantage over analysts in all but the

largest size portfolio. For example, the λbeatp,3 estimate for the portfolio with the smallest

firms is 0.863, which reflects a 15.7% reduction in the magnitude of the MIDAS-combination

forecast errors relative to analysts’ forecast errors, and is less than 1.0 at a 1% level of

statistical significance.

Smaller firms tend to be characterized by a weaker information environment and covered

by fewer analysts (e.g., Bushman, Piotroski and Smith, 2005). Therefore, the strong perfor-

mance of our MIDAS-combination forecasts for smaller firms is important and encouraging

because it provides preliminary support for future applications of MIDAS-combination fore-

casts for smaller firms that are not covered by analysts. Overall, the results from the beat

test applied to dispersion and size portfolios indicate that our MIDAS-combination forecasts

are well-equipped to beat analysts’ consensus forecasts for small firms (potentially those not

covered by analysts) and firms with a high amount of disagreement among analysts.

Finally, Figure 3 illustrates λbeatp,3 estimates (indicated by the blue-shaded bars) by calendar-

year portfolios within the HITEC industry.23 A majority of the λbeatp,3 estimates across

21Dispersion among analysts’ forecasts is defined as the cross-sectional standard deviation of individual
analyst EPS estimates for a given firm f, fiscal quarter q, and forecast horizon h. The size of the firm is
defined as the market value of equity at the end of the prior fiscal quarter, q−1.

22Bootstrapped distributions used to determine p-values for all analyses in this study are reported in
Tables OA.1 to OA.10 of the Online Appendix.

23The HITEC industry contains forecasts from 252 firms and represents one of the largest constituents of
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calendar-year portfolios are either strictly less than 1.0 or slightly above one, which im-

plies that the MIDAS-combination forecasts quite often beat analysts. In particular, our

MIDAS-combination forecasts outperform analysts by over 25% in 2001, which coincides

with the end of the “dot-com bubble.” In contrast, the onset of the financial crisis in 2007

and 2008 posed a significant challenge for the regression-based forecasts.

4.3 Conquer test results

This section presents results from the conquer test, which compares the out-of-sample

performance of a combination of analysts’ consensus forecasts and MIDAS-combination fore-

casts to analysts’ consensus forecasts alone. The fifth column of Tables 3 and 4 present

λconquerp,0 estimates by industry portfolios and calendar-year portfolios, respectively, at the

shorter forecast horizon of h=0 months prior to end of the fiscal quarter. λconquerp,0 for the

overall sample is 0.898, which reflects an improvement of 11.2% and is less than 1.0 at a 1%

level of statistical significance. In addition, λconquerp,0 is consistently less than one across all

industry portfolios (Table 3) and calendar-year portfolios (Table 4).

Results for the longer forecast horizon of h=3 months are reported in column 6 of Tables 3

and 4. These results are even stronger. For the overall sample, λconquerp,3 is 0.792 (20.8%

improvement) and is less than 1.0 at a 1% level of statistical significance. In addition,

λconquerp,3 is consistently less than 1.0 and statistically significant across all industry portfolios

(Table 3) as well as all calendar-year portfolios (Table 4). Overall, these results provide

surprisingly strong evidence that our MIDAS-combination forecasts complement analysts’

consensus forecasts by providing additional information that analysts have effectively “left on

the table.” Thus, despite the general forecasting inferiority of MIDAS-combination forecasts

documented in the beat test in the previous section, they do provide value by complementing

analysts’ consensus forecasts and improving overall performance.

We also estimate and test λconquerp,3 for portfolios based on dispersion among analysts’ fore-

our sample (see Table 2).
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casts and firm size. The left panel of Figure 1 illustrates λconquerp,3 estimates (indicated by the

red-shaded bars) for five analyst dispersion portfolios, which indicate significant gains in per-

formance for all portfolios. When analysts agree (i.e., low dispersion), combining analysts’

forecasts and regression-based forecasts results in a λconquerp,3 estimate of 0.903, which repre-

sents a 9.7% improvement over analysts’ forecasts alone. In this case, MIDAS-combination

forecasts clearly provide complementary information to analysts’ consensus forecasts

The same is also true in the high dispersion portfolio where the λconquerp,3 estimate is 0.753,

which represents a 24.7% improvement in forecast performance from integrating MIDAS-

combination forecasts with analysts’ consensus forecasts. However, the converse is not true

because λconquerp,3 is only 3.3% smaller than λbeatp,3 (the blue-shaded bar) for this portfolio,

which indicates that adding analysts’ forecasts to MIDAS-combination forecasts does not

offer much of an increase in performance relative to MIDAS-combination forecasts alone.24

In other words, when MIDAS-combination forecasts perform poorly relative to analysts

(e.g., analyst dispersion is low), they still provide complementary information to analysts

and therefore yield improved combined forecasts. In contrast, when analysts perform poorly

relative to MIDAS-combination forecasts (e.g., analyst dispersion is high), analysts provide

very little additional information to improve forecast performance.

The left panel of Figure 1 tells us that forecast combinations always outperform ana-

lysts. Even when dispersion is low (i.e., when there is very little disagreement among ana-

lysts), combining analyst consensus forecasts with regression-based earnings forecasts yields

MABER improvements of 10%, a huge improvement over using regression-based forecasts

alone (the dark/blue bars discussed in the previous subsection). Hence, the information con-

tent of regression-based model forecasts is clearly complementary to analysts’ forecasts, since

the former are clearly inferior in this case but nevertheless useful in a combination scheme.

24We estimate the incremental effect of adding analysts to MIDAS-combination forecasts by computing
the percentage difference between λconquerp,3 and λbeatp,3 as follows:

[λ
conquer
p,3 /λbeat

p,3 ]− 1 =
[
median( |∆Ef,q−∆ÊMC−An

f,q,h | )/median( |∆Ef,q−∆ÊMC
f,q,h| )

]
− 1

based on the definitions in equations 8 and 9, respectively.

24



Note also that with high dispersion, there is only a modest improvement attributable to

forecast combinations, and model-based earnings predictions imply a more than 20% loss in

terms of MABER. This is therefore a case where models are superior and analysts do not

bring much additional information to improve the forecast.

Looking at the right panel of Figure 1, we note that the median weight for the lowest

dispersion portfolio is above 0.50, while the inter-quartile range spans from 0.7 to 0.4. At

the other end of the dispersion ranking, we see a median significantly below 0.50 and the

bulk of the distribution below 0.50 as well.

For the size-sorted portfolios reported in Figure 2, we find a similar pattern: combinations

always dominate. All the improvements are again statistically significant (detailed results

appear in Table OA.1 of the Online Appendix). The right panel also indicates that across

the size spectrum, the weights are centered at around one half.

The right columns in both panels of Table 4 also tell us that the combination scheme

is dominant across time and for both short and long horizons. This is again a striking and

strong result in favor of combination strategies. This results holds before, during and after

the recent financial crisis–quite a remarkable finding as well.

Next we turn to specific industries, reporting the HITEC industry in Figure 3 as before.

The same conclusions emerge: forecast combinations improve about 15% on average. The

median weights on analysts are also persistently below 0.50. Table 3 tells us that this is true

across all industries for h=3, and the gains are more than 20% for many industries. Sur-

prisingly, also for the short horizon h=0, we find that combination schemes outperform the

others for a majority of industries, and the difference is statistically significant. Exceptions

are ENRGY and TLCOM. The gains are smaller, yet sometimes more than 10%.

Finally, we turn our attention to Table 5, which displays the means and standard devia-

tions of forecast combination weights pooled across the three main categories of regressors:

(1) accounting variables, (2) stock market variables and (3) macroeconomic variables dis-

cussed, respectively, in the first, second and third subsection of Section 2. The entries in the
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Benchmark column correspond to equal weights (i.e., 50% are attributed to regression-based

models and 50% to analysts, and within the former group 1/13 are attributed to each of

the predictors). Consider the dispersion-sorted portfolios in the top left panel. Using the

benchmark equal weight standard, we see that with low dispersion there is almost a 56%

weight on analysts, whereas with high dispersion it is only 44%. Recall that with high dis-

persion, the models did well and outperformed analysts. This is reflected in the weights, as

there is a more than 10% drop from low to high. Among the predictors, the macroeconomic

variables have the largest increase in weight from 20% to almost 26%. Accounting variables

are next, and only a small weight is put on stock market variables. The right top panel

tells us that for size-sorted portfolios there is similar pattern: for small firms more weight

is put on regression models, while for large firms the reverse is true, with macroeconomic

variables again taking the lead among the regressors. The lower panel of Table 5 shows some

heterogeneity of the weight on analysts across the various industries, which ranges from 47%

for DURBL to 59% for NODUR. Not surprisingly, macroeconomic variables are again the

most important.

The aforementioned results suggest that incorporating macroeconomic news is the strongest

driver of our findings. While it is beyond the scope of the paper to perform an elaborate

test of that hypothesis, it seems intuitively plausible that macroeconomic data are key to

the forecasting success. Indeed, as business cycle conditions are the fundamental source of

earnings fluctuations, we do expect that judiciously incorporating such information in real

time is important. The burgeoning literature on real-time macroeconomic forecasting shows

that there are substantial gains to be made by properly incorporating the flow of macroeco-

nomic information into forecasting business cycle conditions (e.g., Nunes, 2005; Giannone,

Reichlin and Small, 2008; Andreou, Ghysels and Kourtellos, 2013; Kuzin, Marcellino and

Schumacher, 2013).

The overall conclusion is “combine and conquer.” There is surprisingly strong evidence

in favor of combining analyst forecasts with model-based regression predictions. Both ana-
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lysts’ forecasts and regression-based forecasts assume approximately 50% of the combination

weights. This is true across time, forecast horizons and industries.

Ball and Brown (1968) and more recently Ball, Sadka and Sadka (2009)–among others–

document that between 17% and 60% of the variation in firm-level earnings is explained

by contemporaneous macroeconomic conditions. Yet Carabias (2014) shows that macroeco-

nomic news is not fully incorporated into analyst earnings expectations. Thus, analysts leave

money on the table by not fully taking into account aggregate economy information. The

methods described in this subsection achieve precisely the task of combining the information

in analysts’ forecasts with that provided by mixed frequency data models, with the latter

providing succinct proxies for the macroeconomic environment.

4.4 Is it all about biases or about information efficiency?

While the results in the previous subsection allude to information inefficiencies, we need

to explore another possible explanation for our findings. There is ample evidence that ana-

lysts’ recommendations may be overly optimistic and driven by career concerns (e.g., Hong

and Kubik, 2003). One may therefore wonder whether our results are simply driven by the

tendency of analyst consensus forecasts to be biased. We thus repeat our analysis using

instead bias-corrected analyst forecasts. While there are several possible bias correction

schemes, we consider the following two approaches. Since the forecast combination schemes

discussed in subsection 3.2.3 are based on the last eight quarters, we use that same infor-

mation to compute either a mean or a median bias, which is then applied to augment the

analyst forecast. Hence, bias corrections are firm-specific and vary through time. We report

the bias-corrected results in the Online Appendix Tables OA.6 through OA.10.25 Generally

speaking, the results do not change dramatically. At horizon h=3, we note in Table OA.8

that the TELCM industry is no longer significant at 10%. Overall, some of the ratios are

smaller, while others are larger. Likewise, for h=0, we observe that the results for the

25The mean bias corrections are essentially similar to the median bias corrections and are available upon
request.
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NODUR, SHOPS, HLTH, and UTILS industries are all worse. Across time, similar results

emerge (with notably weaker results for h=0), but the main conclusions remain. Thus, our

findings are not driven by the potential bias of analysts’ forecasts.

Recall that prior research concludes that regression-based forecasts cannot match the

forecast performance of professional analysts at short forecast horizons of one quarter or

less. Why then does our approach make short horizon forecasts so much better? We believe

the answer lies in the weighting schemes. The MIDAS regressions level the playing field by

infusing a broader scope of high-frequency information into a time-series forecasting model.

The fact that macroeconomic series in our mix of high-frequency series receive the highest

weights–whether in terms of stand-alone regressions or in combination with analyst forecasts–

implies that analysts do not take into account the general state of the economy when making

earning forecasts. Perhaps it is fair to say that analysts are too myopic in their focus on

a specific stock and tend not to fully consider/account for the overall economic conditions.

Our results also show that this is not a business cycle phenomenon in that the advantages we

identify apply uniformly across time (recall Table 4). Also, MIDAS regression-based models

outperform analysts for firms in specific industries such as MANUF and HITEC. The gains

are significant only at longer horizons (i.e., at the start of the target quarter for earnings

forecasts).

5 Conclusions

The results of our study are promising for MIDAS forecasting models, which facilitate

the use of information that is broader in scope and more frequently observed in order to

level the playing field against analysts. At short forecast horizons, we find that our MIDAS

forecasts are more accurate and have forecast errors that are smaller than analysts’ when

dispersion of analysts’ forecasts is high and when the firm size is smaller. In addition, we

find that combining our MIDAS forecasts with analysts forecasts systematically outperforms
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analysts alone, which indicates that our MIDAS models provide information complementary

to analysts.

Overall, our results offer evidence that the process of forecasting firm-level earnings on

a high-frequency basis can be automated. The question of whether this process can be

automated fully or used to complement analysts’ forecasts parallels the profound changes

currently taking place in the car industry. On one hand, the beat test and results from

comparing MIDAS-combination forecasts directly to analysts’ consensus forecasts parallels

a performance comparison between a fully autonomous car and a car driven by a human

being. On the other hand, the conquer test and results, which evaluates a combination of

analysts’ consensus forecasts and MIDAS-combination forecasts, is analogous to evaluating

technology-assisted cars driven by human beings.

The implications of our study, however, are more practical in nature. Our results shed

light on the potential to provide high-frequency earnings expectations that are relevant for

event studies and applicable to settings with reliable public data, but no analyst coverage

(e.g., small public firms, most private firms, developing economies). In addition, it provides

direction for future research to explore the application of MIDAS forecasting models to other

financial statement performance measures, such as predicting revenue growth or constructing

an expectation of accounting accruals useful in detecting earnings management.

29



References

Abarbanell, Jeffery. 1991. “Do analysts’ earnings forecasts incorporate information in prior
stock price changes?” Journal of Accounting and Economics 14:147–165.

Abarbanell, Jeffery and Brian Bushee. 1997. “Fundamental analysis, future earnings, and
stock prices.” Journal of Accounting Research 35:1–24.

Abarbanell, Jeffery and Reuven Lehavy. 2003. “Biased forecasts or biased earnings? The
role of reported earnings in explaining apparent bias and over/underreaction in analysts’
earnings forecasts.” Journal of Accounting and Economics 36:105–146.

Andreou, Elena, Eric Ghysels and Andros Kourtellos. 2010. “Regression models With mixed
sampling frequencies.” Journal of Econometrics 158:246–261.

Andreou, Elena, Eric Ghysels and Andros Kourtellos. 2011. Forecasting with mixed-
frequency data. In Oxford Handbook of Economic Forecasting, ed. Michael Clements
and David Hendry. pp. 225–245.

Andreou, Elena, Eric Ghysels and Andros Kourtellos. 2013. “Should macroeconomic fore-
casters use daily financial data and how?” Journal of Business and Economic Statistics
31:240–251.

Armesto, Michelle, Kristie Engemann and Michael Owyang. 2010. “Forecasting with mixed
frequencies.” Federal Reserve Bank of St. Louis Review 92:521–536.

Armesto, Michelle, Rubén Hernández-Murillo, Michael Owyang and Jeremy Piger. 2009.
“Measuring the information content of the beige book: A mixed data sampling ap-
proach.” Journal of Money, Credit and Banking 41:35–55.

Ball, Ray, Gil Sadka and Ronnie Sadka. 2009. “Aggregate earnings and asset prices.” Journal
of Accounting Research 47:1097–1133.

Ball, Ray and Philip Brown. 1968. “An empirical evaluation of accounting income numbers.”
Journal of Accounting Research 6:159–178.

Ball, Ryan T. and Peter Easton. 2013. “Dissecting earnings recognition timeliness.” Journal
of Accounting Research 51:1099–1132.

Basu, Sudipta and Stanimir Markov. 2004. “Loss function assumptions in rational expec-
tations tests on financial analysts’ earnings forecasts.” Journal of Accounting and Eco-
nomics 38:171–203.

Bradshaw, Mark, Michael Drake, James Myers and Linda Myers. 2012. “A re-examination of
analysts’ superiority over time-series forecasts of annual earnings.” Review of Accounting
Studies 17:944–968.

Brown, Lawrence and Michael Rozeff. 1978. “The superiority of analyst forecasts as a
measure of expectations: Evidence from earnings.” Journal of Finance 33:1–16.

30



Brown, Lawrence, Robert Hagerman, Paul Griffin and Mark Zmijewski. 1987. “An evaluation
of alternative proxies for the market’s assessment of unexpected earnings.” Journal of
Accounting and Economics 9:159–193.

Bushman, Robert M., Joseph D. Piotroski and Abbie J. Smith. 2005. “Insider trading
restrictions and analysts’ incentives to follow firms.” Journal of Finance 60:35–66.

Carabias, Jose M. 2014. “The real-time information content of macroeconomic news: Im-
plications for firm-level earnings expectations.” Discussion Paper, London School of
Economics, available at SSRN 2358454.

Chen, Xilong and Eric Ghysels. N.d. “News—good or bad—and its impact on volatility
predictions over multiple horizons.” Review of Financial Studies. Forthcoming.

Clements, Michael, Ana Beatriz Galvão and Jae Kim. 2008. “Quantile forecasts of daily
exchange rate returns from forecasts of realized volatility.” Journal of Empirical Finance
15:729–750.

Collins, William and William Hopwood. 1980. “A multivariate analysis of annual earn-
ings generated from quarterly forecasts of financial analysts and univariate time-series
models.” Journal of Accounting Research 18:390–406.

Diebold, Francis X. and Peter Pauly. 1987. “Structural change and the combination of
forecasts.” Journal of Forecasting 6:21–40.

Efron, B. 1979. “Bootstrap methods: Another look at jackknife.” Annual Statistics 7:1–26.

Foroni, Claudia, Massimiliano Marcellino and Christian Schumacher. 2015. “Unrestricted
mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials.”
Journal of the Royal Statistical Society: Series A 178:57–82.

Fried, Dov and Dan Givoly. 1982. “Financial analysts’ forecasts of earnings: A better
surrogate for market expectations.” Journal of Accounting and Economics 4:85–107.

Ghysels, Eric and Jonathan Wright. 2009. “Forecasting professional forecasters.” Journal of
Business and Economic Statistics 27:504–516.

Ghysels, Eric, Pedro Santa-Clara and Rossen Valkanov. 2005. “There is a risk-return trade-
off after all.” Journal of Financial Economics 76:509–548.

Ghysels, Eric, Pedro Santa-Clara and Rossen Valkanov. 2006. “Predicting volatility: Getting
the most out of return data sampled at different frequencies.” Journal of Econometrics
131:59–95.

Giannone, Domenico, Lucrezia Reichlin and David Small. 2008. “Nowcasting: The real-
time informational content of macroeconomic data.” Journal of Monetary Economics
55:665–676.

Gupta, Sunil and Peter Wilton. 1987. “Combination forecasts: An extension.” Management
Science 33:356–372.

31



Hendry, David and Michael Clements. 2004. “Pooling of forecasts.” The Econometrics Jour-
nal 7:1–31.

Hong, Harrison and Jeffrey D. Kubik. 2003. “Analyzing the analysts: Career concerns and
biased earnings forecasts.” Journal of Finance 58:313–351.

Kothari, S.P. 2001. “Capital markets research in accounting.” Journal of Accounting and
Economics 31:105–231.

Kuzin, Vladimir, Massimiliano Marcellino and Christian Schumacher. 2011. “MIDAS vs.
mixed-frequency VAR: Nowcasting GDP in the Euro Area.” International Journal of
Forecasting 27:529–542.

Kuzin, Vladimir, Massimiliano Marcellino and Christian Schumacher. 2013. “Pooling versus
model selection for nowcasting GDP with many predictors: Empirical evidence for six
industrialized countries.” Journal of Applied Econometrics 28:392–411.

Lev, Baruch and S. Ramu Thiagarajan. 1993. “Fundamental information analysis.” Journal
of Accounting Research 31:190–215.

Makridakis, Spyros and Robert Winkler. 1983. “Averages of forecasts: Some empirical
results.” Management Science 29:987–996.

Nunes, Luis C. 2005. “Nowcasting quarterly GDP growth in a monthly coincident indicator
model.” Journal of Forecasting 24:575–592.

O’Brien, Patricia. 1988. “Analysts’ forecasts as earnings expectations.” Journal of Account-
ing and Economics 10:53–83.

Politis, Dimitris and Joseph Romano. 1994. “The stationary bootstrap.” Journal of the
American Statistical Association 89:1303–1313.

Schumacher, Christian and Jörg Breitung. 2008. “Real-time forecasting of German GDP
based on a large factor model with monthly and quarterly data.” International Journal
of Forecasting 24:386–398.

Stock, James and Mark Watson. 2004. “Combination forecasts of output growth in a seven-
country data set.” Journal of Forecasting 23:405–430.

Timmermann, Allan. 2006. Forecast combinations. In Handbook of Economic Forecasting.
pp. 135–196.

Wheelock, David and Mark Wohar. 2009. “Can the term spread predict output growth
and recessions? A survey of the literature.” Federal Reserve Bank of St. Louis Review
91:419–440.

32



Table 1: Definitions of Variables

Index, k Description Measurement

Panel A: Quarterly dependent variable

– Earnings per share (∆Eq) First-differenced quarterly earnings per share (EPS) from I/B/E/S, which is equal to actual EPS
for fiscal quarter q, minus actual EPS for the prior fiscal quarter, q−1.

Panel B: Quarterly firm-level accounting predictor variables†

1 Inventory ∆Inventoryq (INVTQ) − ∆Salesq (REVTQ)

2 Accounts receivable ∆Accounts Receivableq (RECTQ) − ∆Salesq

3 Capital expenditures ∆Industry CAPXq − ∆Firm CAPXq (CAPXQ)

4 Gross margin ∆Salesq − ∆Gross Marginq (REVTQ − COGSQ)

5 SG&A expenses ∆SG&Aq (XSGAQ) − ∆Salesq

Panel C: Monthly firm-level stock market predictor variables

6 Abnormal stock return Firm-specific stock return from CRSP during month m less the same-industry portfolio return in
month m, where industry classifications are based on Fama-French 10-industry definitions.

7 Return volatility Average of squared daily firm-level stock returns from CRSP during month m.

Panel D: Monthly macroeconomic predictor variables‡

8 Industrial production Year-over-year growth rate of seasonally adjusted monthly industrial production index that is observed
at the end of month m, which is equal to: (INDPROm−1/INDPROm−13)− 1.

9 Inflation Year-over-year growth rate of seasonally adjusted monthly consumer price index that is observed at the
end of month m, which is equal to: (CPIAUCSLm−1/CPIAUCSLm−13)− 1.

10 Oil prices Year-over-year growth rate of monthly crude oil prices that is observed at the end of month m, which
is equal to: (MCOILWTICOm−1/MCOILWTICOm−13)− 1.

11 T-bill yield Monthly change in yields on 3-month treasury bills that is observed at the end of month m, which is
equal to: TB3MSm−1 − TB3MSm−2.

12 Term spread Monthly change in the yield spread between 10-year treasury bonds and 3-month treasury bills that is
observed at the end of month m, which is equal to: (GS10m−1 − TB3m−1)− (GS10m−2 − TB3m−2).

13 Default spread Monthly change in the yield spread between BAA corporate bonds and AAA corporate bonds that is
observed at the end of month m, which is equal to: (BAAm−1 −AAAm−1)− (BAAm−2 −AAAm−2).

† All predictor variables in panel B use firm-quarter data from Compustat. Mnemonic variable names provided in Compustat are indicated by italicized capital letters within
parentheses. The ∆ operator represents a one-quarter percentage change in the variable. For example, ∆Inventoryq = (INVTQq − INVTQq−1) / INVTQq .
‡ All predictor variables in panel D use Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of St. Louis. Mnemonic variable names provided in

FRED are indicated by italicized capital letters. All variables are measured with a one-month lag to account for any delay in the release of the information.
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Table 2: Number of Sampled Firms by Industry Affiliation

Fama-French 10-Industry Classifications
Number

Number Name Description of Firms

1 NODUR Consumer NonDurables (e.g., Food, Tobacco, Textiles, Apparel, Leather, Toys) 93

2 DURBL Consumer Durables (e.g., Cars, TVs, Furniture, Household Appliances) 53

3 MANUF Manufacturing (e.g., Machinery, Trucks, Planes, Chemicals, Off Furn, Paper, Com Printing) 263

4 ENRGY Oil, Gas, and Coal Extraction and Products 42

5 HITEC Business Equipment (e.g., Computers, Software, Electronic Equipment) 252

6 TELCM Telephone and Television Transmission 5

7 SHOPS Wholesale, Retail, and Some Services (e.g., Laundries, Repair Shops) 170

8 HLTH Healthcare, Medical Equipment, and Drugs 80

9 UTILS Utilities 5

10 OTHER Other (e.g., Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance) 88
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Table 3: Out-of-sample Forecast Performance by Industry Portfolio, p, and Forecast Horizon, h

λimprove
p,h λbeatp,h λconquerp,h

Industry h = 0 h = 3 h = 0 h = 3 h = 0 h = 3
Portfolio, p (1) (2) (3) (4) (5) (6)

NODUR 0.509∗∗∗ 0.504∗∗∗ 1.681 1.249 0.898∗∗∗ 0.844∗∗∗

DURBL 0.578∗∗∗ 0.655∗∗∗ 1.242 0.911 0.923∗∗ 0.809∗∗∗

MANUF 0.677∗∗∗ 0.756∗∗∗ 1.294 0.904∗∗∗ 0.921∗∗∗ 0.785∗∗∗

ENRGY 0.820∗∗∗ 0.892∗ 1.221 0.912∗∗ 0.978 0.851∗∗∗

HITEC 0.798∗∗∗ 0.811∗∗∗ 1.133 0.866∗∗∗ 0.882∗∗∗ 0.786∗∗∗

TELCM 0.865∗∗ 0.840∗∗ 1.196 0.870 0.932 0.782∗

SHOPS 0.474∗∗∗ 0.574∗∗∗ 1.380 1.024 0.896∗∗∗ 0.815∗∗∗

HLTH 0.720∗∗∗ 0.650∗∗∗ 1.157 0.914∗∗ 0.834∗∗∗ 0.798∗∗∗

UTILS 0.736∗∗∗ 0.829∗∗∗ 0.943 0.839 0.737∗∗∗ 0.774∗∗∗

OTHER 0.632∗∗∗ 0.696∗∗∗ 1.277 0.917∗∗ 0.916∗∗∗ 0.810∗∗∗

All 0.645∗∗∗ 0.708∗∗∗ 1.251 0.931∗∗∗ 0.898∗∗∗ 0.792∗∗∗

This table presents three median absolute error ratio (MABER) estimates by forecast horizon, h, and industry portfolio, p, of firm-quarter
observations. Columns (1) and (2) contain estimated values of λimprove

p,h (see equation 6 in section 3.3), which is equal to the ratio of
the median MIDAS-combination forecast error to the median AR model forecast error for all firm-quarter observations within industry
portfolio p with a forecast horizon of h months prior to the end of the fiscal quarter. Columns (3) and (4) contain estimated values of
λbeatp,h (see equation 9 in section 3.3), which is equal to the ratio of the median MIDAS-combination forecast error to the median analysts’
consensus forecast error for all firm-quarter observations within industry portfolio p with a forecast horizon of h months prior to the end
of the fiscal quarter. Columns (5) and (6) contain estimated values of λconquerp,h (see equation 8 in section 3.3), which is equal to the ratio of
the median combined analysts’ consensus and MIDAS-combination forecast errors to the median analysts’ consensus forecast error for all
firm-quarter observations within industry portfolio p with a forecast horizon of h months prior to the end of the fiscal quarter. Estimates
in odd-numbered (even-numbered) columns are based on the shortest (longest) forecast horizon of h=0 (h=3) months prior to the end
of the fiscal quarter for which earnings per share is forecasted. ***, **, and * indicate that the estimated MABER value is less than
1.0 at a 1%, 5%, and 10% level of statistical significance, respectively, based on p-values from the bootstrap procedure defined in section 3.3.
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Table 4: Out-of-sample Forecast Performance by Calendar-year Portfolio, p, and Forecast Horizon, h

λimprove
p,h λbeatp,h λconquerp,h

Calendar-year h = 0 h = 3 h = 0 h = 3 h = 0 h = 3
Portfolio, p (1) (2) (3) (4) (5) (6)

2000 0.645∗∗∗ 0.597∗∗∗ 1.411 1.030 0.910∗∗ 0.811∗∗∗

2001 0.645∗∗∗ 0.608∗∗∗ 1.375 0.729∗∗∗ 0.961∗ 0.709∗∗∗

2002 0.629∗∗∗ 0.606∗∗∗ 1.375 0.914 0.925∗∗ 0.775∗∗∗

2003 0.643∗∗∗ 0.600∗∗∗ 1.463 0.929∗ 0.960 0.767∗∗∗

2004 0.694∗∗∗ 0.645∗∗∗ 1.383 1.019 0.904∗∗∗ 0.824∗∗∗

2005 0.666∗∗∗ 0.698∗∗∗ 1.243 0.987 0.821∗∗∗ 0.811∗∗∗

2006 0.646∗∗∗ 0.812∗∗∗ 1.194 0.982 0.880∗∗∗ 0.832∗∗∗

2007 0.678∗∗∗ 0.712∗∗∗ 1.240 1.041 0.870∗∗∗ 0.872∗∗∗

2008 0.677∗∗∗ 0.660∗∗∗ 1.165 0.967 0.884∗∗∗ 0.843∗∗∗

2009 0.696∗∗∗ 0.712∗∗∗ 1.148 0.796∗∗∗ 0.915∗∗∗ 0.779∗∗∗

2010 0.630∗∗∗ 0.729∗∗∗ 1.105 0.890∗∗∗ 0.916∗∗∗ 0.821∗∗∗

2011 0.597∗∗∗ 0.743∗∗∗ 1.177 0.948 0.921∗∗∗ 0.790∗∗∗

2012 0.608∗∗∗ 0.745∗∗∗ 1.192 0.970 0.879∗∗∗ 0.820∗∗∗

2013 0.606∗∗∗ 0.706∗∗∗ 1.210 1.005 0.875∗∗∗ 0.796∗∗∗

2014 0.600∗∗∗ 0.771∗∗∗ 1.239 0.983 0.872∗∗∗ 0.844∗∗∗

This table presents three median absolute error ratio (MABER) estimates by forecast horizon, h, and calendar-year portfolio, p, of
firm-quarter observations. Columns (1) and (2) contain estimated values of λimprove

p,h (see equation 6 in section 3.3), which is equal to the
ratio of the median MIDAS-combination forecast error to the median AR model forecast error for all firm-quarter observations within
calendar-year portfolio p with a forecast horizon of h months prior to the end of the fiscal quarter. Columns (3) and (4) contain estimated
values of λbeatp,h (see equation 9 in section 3.3), which is equal to the ratio of the median MIDAS-combination forecast error to the median
analysts’ consensus forecast error for all firm-quarter observations within calendar-year portfolio p with a forecast horizon of h months prior
to the end of the fiscal quarter. Columns (5) and (6) contain estimated values of λconquerp,h (see equation 8 in section 3.3), which is equal to the
ratio of the median combined analysts’ consensus and MIDAS-combination forecast errors to the median analysts’ consensus forecast error
for all firm-quarter observations within calendar-year portfolio p with a forecast horizon of h months prior to the end of the fiscal quarter.
Estimates in odd-numbered (even-numbered) columns are based on the shortest (longest) forecast horizon of h=0 (h=3) months prior to
the end of the fiscal quarter for which earnings per share is forecasted. ***, **, and * indicate that the estimated MABER value is less than
1.0 at a 1%, 5%, and 10% level of statistical significance, respectively, based on p-values from the bootstrap procedure defined in section 3.3.
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Table 5: Estimated Weights by Dispersion, Size and Industry Portfolios with a Forecast Horizon of h=3 Months

Dispersion portfolio, p Size portfolio, p

Benchmark 1 (Low) 2 3 4 5 (High) 1 (Small) 2 3 4 5 (Big)

Accounting
variables

mean 0.192 0.170 0.184 0.188 0.200 0.214 0.208 0.192 0.191 0.189 0.177
s.d. 0.086 0.081 0.077 0.074 0.074 0.080 0.079 0.078 0.080 0.079

Stock market
variables

mean 0.077 0.068 0.073 0.074 0.080 0.087 0.081 0.076 0.076 0.077 0.071
s.d. 0.036 0.034 0.032 0.033 0.035 0.035 0.034 0.033 0.036 0.034

Macroeconomic
variables

mean 0.231 0.203 0.219 0.223 0.238 0.257 0.246 0.229 0.226 0.228 0.212
s.d. 0.103 0.097 0.092 0.087 0.090 0.095 0.096 0.091 0.098 0.095

All predictor
variables

mean 0.500 0.441 0.476 0.485 0.518 0.558 0.535 0.498 0.493 0.494 0.460
s.d. 0.221 0.208 0.196 0.186 0.189 0.202 0.203 0.196 0.209 0.204

Analysts mean 0.500 0.559 0.524 0.515 0.482 0.442 0.465 0.502 0.507 0.506 0.540
s.d. 0.221 0.208 0.196 0.186 0.189 0.202 0.203 0.196 0.209 0.204

Industry portfolio, p

Benchmark NODUR DURBL MANUF ENRGY HITEC TELCM SHOPS HLTH UTILS OTHER ALL

Accounting
variables

mean 0.192 0.156 0.203 0.198 0.197 0.208 0.194 0.177 0.184 0.187 0.188 0.191
s.d 0.087 0.075 0.077 0.064 0.073 0.053 0.086 0.082 0.057 0.077 0.080

Stock market
variables

mean 0.077 0.061 0.081 0.079 0.085 0.083 0.073 0.070 0.072 0.086 0.075 0.076
s.d. 0.036 0.033 0.033 0.033 0.033 0.020 0.036 0.034 0.041 0.033 0.034

Macroeconomic
variables

mean 0.231 0.185 0.243 0.237 0.249 0.246 0.203 0.211 0.217 0.229 0.223 0.228
s.d. 0.105 0.093 0.092 0.080 0.087 0.050 0.103 0.097 0.075 0.091 0.096

All predictor
variables

mean 0.500 0.402 0.527 0.514 0.531 0.537 0.470 0.458 0.473 0.502 0.486 0.496
s.d. 0.225 0.196 0.196 0.168 0.183 0.117 0.222 0.211 0.164 0.195 0.204

Analysts mean 0.500 0.598 0.473 0.486 0.469 0.463 0.530 0.542 0.527 0.498 0.514 0.504
s.d. 0.225 0.196 0.196 0.168 0.183 0.117 0.222 0.211 0.164 0.195 0.204

This table presents the mean and standard deviation (s.d.) of estimated forecast combination weights for all regression-based forecasts and analysts’
consensus forecasts (see equations 4 and 5 in section 3.2.3) for all portfolios of firm-quarter observations with a forecast horizon of h=3 months prior
to the end of the fiscal quarter. Portfolios are formed based on one of the following three firm-quarter characteristics: (1) dispersion of analysts’
forecasts, (2) firm size measured by the market value of equity at the end of the prior fiscal quarter, or (3) industry affiliation based on Fama-French
10-industry classifications.
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Figure 1: Out-of-sample Forecast Performance by Dispersion Portfolios with a Forecast Horizon of h=3 Months
16:12 Wednesday, April 27, 2016 116:12 Wednesday, April 27, 2016 1

Figure 1a: DISPERSION portfolio classifications MABER ratios (Beg. TQ, h=3)

RATIO_TYPE median(R) / median(An) median(R+An) / median(An)
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Figure 1b: Weight on Analysts by DISPERSION portfolio (Beg. TQ, h=3)
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(a) Median absolute forecast error ratio (b) Weight on analysts’ consensus forecast

This figure plots the median absolute forecast error ratio (left panel) and the weight placed on analysts’ consensus forecasts (right panel), at a forecast
horizon of h=3 months prior to the end of the fiscal quarter, for five portfolios of firm-quarter observations based on dispersion of analysts’ forecasts.
The left panel reports values for two median absolute forecast error ratios: λbeatp,h=3 (see equation 9 in section 3.3) and λconquerp,h=3 (see equation 8 in
section 3.3). Formal test results are reported in Table OA.1, panels A and C of the Online Appendix. The left panel reports the weights applied

to analysts’ consensus forecasts, ωAnalystf,q,h=3 (see equation 5 in section 3.3) for all firm-quarter observations within a given dispersion portfolio, p,
and forecast horizon h=3. The benchmark value of 0.50 corresponds to an even weight split between MIDAS-combination forecasts and analysts’
consensus forecasts.
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Figure 2: Out-of-sample Forecast Performance by Size Portfolios with a Forecast Horizon of h=3 Months
16:12 Wednesday, April 27, 2016 316:12 Wednesday, April 27, 2016 3

Figure 1c: SIZE portfolio classifications MABER ratios (Beg. TQ, h=3)

RATIO_TYPE median(R) / median(An) median(R+An) / median(An)
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Figure 1d: Weight on Analysts by SIZE portfolio (Beg. TQ, h=3)
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(a) Median absolute forecast error ratio (b) Weight on analysts’ consensus forecast

This figure plots the median absolute forecast error ratio (left panel) and the weight placed on analysts’ consensus forecasts (right panel), at a
forecast horizon of h=3 months prior to the end of the fiscal quarter, for five portfolios of firm-quarter observations based on firm size. The left
panel reports values for two median absolute forecast error ratios: λbeatp,h=3 (see equation 9 in section 3.3) and λconquerp,h=3 (see equation 8 in section 3.3).
Formal test results are reported in Table OA.1, panels B and D of the Online Appendix. The left panel reports the weights applied to analysts’
consensus forecasts, ωAnalystf,q,h=3 (see equation 5 in section 3.2.3) for all firm-quarter observations within a given firm size portfolio, p, and forecast
horizon h=3. The benchmark value of 0.50 corresponds to an even weight split between MIDAS-combination forecasts and analysts’ consensus forecasts.
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Figure 3: HITEC Out-of-sample Forecast Performance by Calendar-year Portfolios with a Forecast Horizon of h=3 Months
16:12 Wednesday, April 27, 2016 916:12 Wednesday, April 27, 2016 9

Figure 2e: High-Tech (HITEC) MABER Ratios (Beg. TQ, h=3)
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Figure 2f: High-Tech (HITEC) Weight on Analysts (Beg. TQ, h=3)
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(a) Median absolute forecast error ratio (b) Weight on analysts’ consensus forecast

This figure plots the median absolute forecast error ratio (left panel) and the weight placed on analysts’ consensus forecasts (right panel), at a
forecast horizon of h=3 months prior to the end of the fiscal quarter, for calendar-year portfolios of firm-quarter observations in the HITEC industry
(see industry description in Table 2). The left panel reports values for two median absolute forecast error ratios: λbeatp,h=3 (see equation 9 in section 3.3)

and λconquerp,h=3 (see equation 8 in section 3.3). The left panel reports the weights applied to analysts’ consensus forecasts, ωAnalystf,q,h=3 (see equation 5 in
section 3.2.3) for all firm-quarter observations within a given given HITEC calendar-year portfolio, p, and forecast horizon h=3. The benchmark
value of 0.50 corresponds to an even weight split between MIDAS-combination forecasts and analysts’ consensus forecasts.
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Table OA.1: λbeat
p,h and λconquer

p,h Bootstrap Distributions by Dispersion and Size Portfolios with a Forecast Horizon of h=3 Months

Bootstrap Distribution

Portfolio, p λbeatp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: λbeatp,h for dispersion portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Low) 1.234 (1.00) 1.154 1.176 1.184 1.204 1.229 1.252 1.278 1.294 1.320
2 1.084 (1.00) 1.014 1.039 1.046 1.063 1.086 1.104 1.124 1.133 1.155
3 1.032 (0.95) 0.978 1.000 1.007 1.017 1.034 1.048 1.062 1.075 1.101
4 0.874∗∗∗ (0.00) 0.820 0.832 0.840 0.861 0.871 0.887 0.896 0.904 0.919
5 (High) 0.779∗∗∗ (0.00) 0.733 0.744 0.753 0.765 0.780 0.792 0.805 0.816 0.831

Panel B: λbeatp,h for size portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Small) 0.863∗∗∗ (0.00) 0.812 0.819 0.832 0.846 0.863 0.879 0.894 0.901 0.920
2 0.976 (0.18) 0.920 0.938 0.947 0.961 0.973 0.993 1.011 1.022 1.038
3 0.975 (0.18) 0.919 0.933 0.945 0.959 0.977 0.996 1.006 1.013 1.023
4 0.935∗∗∗ (0.00) 0.865 0.885 0.894 0.910 0.929 0.948 0.961 0.971 0.988
5 (Large) 1.015 (0.72) 0.949 0.967 0.977 0.997 1.019 1.050 1.065 1.079 1.105

Bootstrap Distribution

Portfolio, p λconquerp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel C: λconquerp,h for dispersion portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Low) 0.903∗∗∗ (0.00) 0.863 0.872 0.879 0.890 0.904 0.916 0.928 0.935 0.953
2 0.883∗∗∗ (0.00) 0.838 0.852 0.857 0.868 0.879 0.892 0.904 0.907 0.923
3 0.880∗∗∗ (0.00) 0.847 0.855 0.860 0.869 0.878 0.888 0.901 0.907 0.920
4 0.809∗∗∗ (0.00) 0.773 0.782 0.788 0.797 0.808 0.819 0.827 0.831 0.841
5 (High) 0.753∗∗∗ (0.00) 0.717 0.724 0.729 0.739 0.751 0.764 0.770 0.774 0.791

Panel D: λconquerp,h for size portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Small) 0.759∗∗∗ (0.00) 0.721 0.734 0.739 0.748 0.762 0.773 0.780 0.787 0.792
2 0.838∗∗∗ (0.00) 0.799 0.811 0.817 0.828 0.837 0.849 0.858 0.865 0.878
3 0.821∗∗∗ (0.00) 0.781 0.796 0.805 0.813 0.824 0.835 0.844 0.847 0.857
4 0.779∗∗∗ (0.00) 0.744 0.751 0.759 0.768 0.778 0.790 0.801 0.807 0.816
5 (Large) 0.815∗∗∗ (0.00) 0.774 0.785 0.796 0.807 0.819 0.830 0.844 0.853 0.871
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Table OA.2: λbeat
p,h Bootstrap Distributions by Industry Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Industry
Portfolio, p λbeatp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: λbeatp,h for industry portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

NODUR 1.681 (1.00) 1.514 1.563 1.590 1.632 1.682 1.734 1.791 1.826 1.892

DURBL 1.242 (1.00) 1.069 1.118 1.145 1.185 1.232 1.279 1.325 1.350 1.400

MANUF 1.294 (1.00) 1.224 1.245 1.255 1.273 1.292 1.311 1.326 1.335 1.353

ENRGY 1.221 (1.00) 1.100 1.134 1.153 1.186 1.228 1.268 1.309 1.333 1.385

HITEC 1.133 (1.00) 1.067 1.086 1.096 1.112 1.131 1.150 1.166 1.177 1.198

TELCM 1.196 (0.88) 0.803 0.927 0.981 1.090 1.219 1.373 1.565 1.673 1.921

SHOPS 1.380 (1.00) 1.289 1.313 1.326 1.351 1.377 1.404 1.428 1.443 1.470

HLTH 1.157 (1.00) 1.052 1.081 1.097 1.127 1.161 1.197 1.229 1.250 1.287

UTILS 0.943 (0.36) 0.805 0.862 0.881 0.917 0.967 1.021 1.066 1.100 1.183

OTHER 1.277 (1.00) 1.145 1.182 1.202 1.235 1.270 1.307 1.339 1.358 1.393

All 1.251 (1.00) 1.217 1.226 1.231 1.240 1.250 1.261 1.270 1.276 1.286

Panel B: λbeatp,h for industry portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

NODUR 1.249 (1.00) 1.123 1.154 1.173 1.207 1.247 1.294 1.338 1.363 1.414

DURBL 0.911 (0.12) 0.778 0.813 0.834 0.870 0.912 0.961 1.005 1.031 1.083

MANUF 0.904∗∗∗ (0.00) 0.863 0.875 0.882 0.893 0.906 0.919 0.933 0.942 0.958

ENRGY 0.912∗∗ (0.05) 0.785 0.816 0.835 0.868 0.903 0.942 0.978 1.000 1.042

HITEC 0.866∗∗∗ (0.00) 0.816 0.829 0.836 0.849 0.863 0.877 0.891 0.899 0.914

TELCM 0.870 (0.25) 0.393 0.532 0.635 0.734 0.854 0.995 1.181 1.366 1.650

SHOPS 1.024 (0.77) 0.949 0.970 0.982 1.003 1.028 1.052 1.076 1.089 1.115

HLTH 0.914∗∗ (0.03) 0.812 0.836 0.851 0.879 0.911 0.944 0.973 0.990 1.025

UTILS 0.839 (0.15) 0.648 0.701 0.727 0.792 0.864 0.944 1.030 1.079 1.182

OTHER 0.917∗∗ (0.02) 0.837 0.860 0.874 0.895 0.918 0.943 0.966 0.981 1.014

All 0.931∗∗∗ (0.00) 0.906 0.914 0.918 0.924 0.932 0.939 0.946 0.951 0.959
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Table OA.3: λconquer
p,h Bootstrap Distributions by Industry Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Industry
Portfolio, p λconquerp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: λconquerp,h for industry portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

NODUR 0.898∗∗∗ (0.00) 0.835 0.855 0.864 0.883 0.902 0.924 0.945 0.958 0.985

DURBL 0.923∗∗ (0.02) 0.840 0.861 0.873 0.895 0.920 0.947 0.971 0.984 1.007

MANUF 0.921∗∗∗ (0.00) 0.882 0.892 0.898 0.908 0.920 0.933 0.944 0.951 0.962

ENRGY 0.978 (0.29) 0.910 0.929 0.939 0.959 0.982 1.004 1.024 1.038 1.063

HITEC 0.882∗∗∗ (0.00) 0.845 0.855 0.860 0.869 0.880 0.891 0.900 0.905 0.916

TELCM 0.932 (0.31) 0.658 0.749 0.798 0.881 0.950 1.021 1.088 1.171 1.321

SHOPS 0.896∗∗∗ (0.00) 0.855 0.867 0.874 0.884 0.897 0.909 0.921 0.929 0.942

HLTH 0.834∗∗∗ (0.00) 0.774 0.792 0.802 0.819 0.837 0.858 0.876 0.887 0.908

UTILS 0.737∗∗∗ (0.00) 0.643 0.672 0.689 0.717 0.749 0.778 0.817 0.838 0.890

OTHER 0.916∗∗∗ (0.00) 0.849 0.868 0.878 0.894 0.913 0.932 0.949 0.958 0.978

All 0.898∗∗∗ (0.00) 0.878 0.884 0.887 0.892 0.897 0.903 0.908 0.911 0.917

Panel B: λconquerp,h for industry portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

NODUR 0.844∗∗∗ (0.00) 0.777 0.794 0.804 0.821 0.839 0.859 0.875 0.886 0.909

DURBL 0.809∗∗∗ (0.00) 0.724 0.748 0.761 0.783 0.809 0.834 0.859 0.874 0.901

MANUF 0.785∗∗∗ (0.00) 0.747 0.757 0.763 0.773 0.783 0.792 0.801 0.806 0.817

ENRGY 0.851∗∗∗ (0.00) 0.764 0.787 0.801 0.827 0.857 0.888 0.915 0.932 0.965

HITEC 0.786∗∗∗ (0.00) 0.751 0.761 0.766 0.775 0.785 0.796 0.807 0.814 0.826

TELCM 0.782∗ (0.07) 0.357 0.487 0.544 0.644 0.747 0.851 0.929 1.042 1.219

SHOPS 0.815∗∗∗ (0.00) 0.769 0.782 0.789 0.802 0.817 0.831 0.844 0.853 0.870

HLTH 0.798∗∗∗ (0.00) 0.723 0.743 0.753 0.773 0.796 0.818 0.839 0.851 0.871

UTILS 0.774∗∗∗ (0.00) 0.637 0.673 0.694 0.736 0.781 0.831 0.879 0.912 0.976

OTHER 0.810∗∗∗ (0.00) 0.745 0.764 0.773 0.790 0.809 0.829 0.847 0.858 0.881

All 0.792∗∗∗ (0.00) 0.774 0.779 0.782 0.787 0.793 0.799 0.804 0.807 0.814
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Table OA.4: λbeat
p,h Bootstrap Distributions by Calendar-year Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Calendar-year
Portfolio, p λbeatp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: λbeatp,h for calendar-year portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

2000 1.411 (1.00) 1.225 1.280 1.307 1.357 1.411 1.470 1.524 1.563 1.641
2001 1.375 (1.00) 1.189 1.244 1.273 1.324 1.378 1.428 1.478 1.509 1.561
2002 1.375 (1.00) 1.244 1.283 1.304 1.338 1.381 1.434 1.487 1.521 1.598
2003 1.463 (1.00) 1.274 1.328 1.360 1.404 1.458 1.513 1.564 1.596 1.651
2004 1.383 (1.00) 1.231 1.275 1.296 1.338 1.389 1.442 1.493 1.519 1.575
2005 1.243 (1.00) 1.124 1.160 1.179 1.209 1.246 1.288 1.331 1.357 1.405
2006 1.194 (1.00) 1.090 1.123 1.139 1.164 1.194 1.230 1.265 1.287 1.329
2007 1.240 (1.00) 1.112 1.150 1.169 1.202 1.242 1.281 1.317 1.342 1.389
2008 1.165 (1.00) 1.056 1.085 1.101 1.130 1.165 1.200 1.232 1.253 1.292
2009 1.148 (1.00) 1.021 1.055 1.073 1.106 1.144 1.183 1.220 1.242 1.280
2010 1.105 (0.99) 1.001 1.033 1.049 1.075 1.106 1.136 1.166 1.184 1.219
2011 1.177 (1.00) 1.069 1.102 1.118 1.147 1.177 1.208 1.235 1.253 1.286
2012 1.192 (1.00) 1.071 1.107 1.127 1.161 1.196 1.233 1.265 1.283 1.323
2013 1.210 (1.00) 1.112 1.141 1.157 1.182 1.210 1.239 1.268 1.285 1.320
2014 1.239 (1.00) 1.147 1.174 1.189 1.215 1.242 1.271 1.301 1.320 1.356

Panel B: λbeatp,h for calendar-year portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

2000 1.030 (0.67) 0.862 0.905 0.934 0.981 1.031 1.083 1.132 1.159 1.213
2001 0.729∗∗∗ (0.00) 0.611 0.642 0.661 0.694 0.726 0.755 0.786 0.811 0.865
2002 0.914 (0.15) 0.747 0.792 0.818 0.865 0.913 0.970 1.019 1.049 1.100
2003 0.929∗ (0.10) 0.814 0.848 0.865 0.895 0.929 0.964 0.998 1.020 1.060
2004 1.019 (0.68) 0.891 0.929 0.948 0.989 1.033 1.079 1.128 1.149 1.201
2005 0.987 (0.34) 0.853 0.892 0.909 0.941 0.978 1.014 1.047 1.068 1.108
2006 0.982 (0.39) 0.879 0.909 0.926 0.953 0.985 1.021 1.052 1.070 1.106
2007 1.041 (0.76) 0.899 0.942 0.964 1.001 1.041 1.083 1.121 1.145 1.184
2008 0.967 (0.24) 0.869 0.897 0.913 0.940 0.967 0.998 1.028 1.045 1.074
2009 0.796∗∗∗ (0.00) 0.721 0.741 0.752 0.774 0.797 0.824 0.848 0.863 0.892
2010 0.890∗∗∗ (0.00) 0.790 0.815 0.833 0.856 0.883 0.910 0.934 0.948 0.972
2011 0.948 (0.12) 0.851 0.882 0.897 0.921 0.949 0.978 1.004 1.019 1.047
2012 0.970 (0.17) 0.884 0.907 0.920 0.941 0.966 0.991 1.012 1.024 1.052
2013 1.005 (0.47) 0.899 0.927 0.943 0.968 0.996 1.026 1.052 1.067 1.096
2014 0.983 (0.35) 0.896 0.922 0.935 0.959 0.985 1.011 1.037 1.055 1.088
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Table OA.5: λconquer
p,h Bootstrap Distributions by Calendar-year Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Calendar-year
Portfolio, p λconquerp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: λconquerp,h for calendar-year portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

2000 0.910∗∗ (0.02) 0.788 0.826 0.844 0.874 0.903 0.934 0.962 0.978 1.012
2001 0.961∗ (0.09) 0.859 0.888 0.901 0.923 0.950 0.977 0.999 1.010 1.037
2002 0.925∗∗ (0.03) 0.818 0.844 0.858 0.888 0.921 0.949 0.973 0.992 1.028
2003 0.960 (0.10) 0.859 0.884 0.895 0.920 0.949 0.978 1.000 1.017 1.053
2004 0.904∗∗∗ (0.00) 0.839 0.858 0.868 0.886 0.905 0.925 0.944 0.956 0.978
2005 0.821∗∗∗ (0.00) 0.765 0.783 0.793 0.808 0.828 0.850 0.870 0.882 0.907
2006 0.880∗∗∗ (0.00) 0.814 0.831 0.841 0.857 0.876 0.895 0.912 0.923 0.944
2007 0.870∗∗∗ (0.00) 0.795 0.815 0.826 0.848 0.868 0.891 0.910 0.923 0.948
2008 0.884∗∗∗ (0.00) 0.801 0.823 0.835 0.853 0.874 0.895 0.915 0.926 0.947
2009 0.915∗∗∗ (0.00) 0.843 0.863 0.873 0.891 0.912 0.932 0.951 0.962 0.983
2010 0.916∗∗∗ (0.00) 0.842 0.860 0.871 0.888 0.910 0.930 0.948 0.958 0.976
2011 0.921∗∗∗ (0.00) 0.849 0.869 0.881 0.898 0.919 0.939 0.958 0.967 0.987
2012 0.879∗∗∗ (0.00) 0.825 0.842 0.851 0.867 0.886 0.905 0.924 0.934 0.954
2013 0.875∗∗∗ (0.00) 0.813 0.831 0.840 0.854 0.873 0.891 0.908 0.917 0.934
2014 0.872∗∗∗ (0.00) 0.824 0.841 0.848 0.860 0.873 0.886 0.898 0.907 0.925

Panel B: λconquerp,h for calendar-year portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

2000 0.811∗∗∗ (0.00) 0.686 0.718 0.738 0.769 0.804 0.838 0.869 0.886 0.925
2001 0.709∗∗∗ (0.00) 0.641 0.660 0.672 0.689 0.710 0.733 0.761 0.780 0.812
2002 0.775∗∗∗ (0.00) 0.667 0.701 0.716 0.748 0.784 0.821 0.857 0.878 0.914
2003 0.767∗∗∗ (0.00) 0.669 0.699 0.715 0.742 0.769 0.799 0.826 0.843 0.880
2004 0.824∗∗∗ (0.00) 0.740 0.768 0.783 0.811 0.837 0.867 0.896 0.919 0.947
2005 0.811∗∗∗ (0.00) 0.737 0.759 0.770 0.791 0.813 0.836 0.858 0.871 0.896
2006 0.832∗∗∗ (0.00) 0.759 0.782 0.795 0.815 0.839 0.863 0.886 0.899 0.924
2007 0.872∗∗∗ (0.00) 0.767 0.798 0.814 0.838 0.865 0.890 0.914 0.926 0.948
2008 0.843∗∗∗ (0.00) 0.768 0.792 0.803 0.822 0.841 0.862 0.881 0.892 0.915
2009 0.779∗∗∗ (0.00) 0.707 0.727 0.738 0.756 0.775 0.797 0.815 0.826 0.847
2010 0.821∗∗∗ (0.00) 0.743 0.764 0.774 0.790 0.810 0.829 0.846 0.856 0.874
2011 0.790∗∗∗ (0.00) 0.718 0.737 0.748 0.768 0.789 0.810 0.828 0.840 0.860
2012 0.820∗∗∗ (0.00) 0.757 0.774 0.784 0.800 0.818 0.836 0.854 0.866 0.888
2013 0.796∗∗∗ (0.00) 0.727 0.746 0.755 0.771 0.788 0.805 0.820 0.830 0.847
2014 0.844∗∗∗ (0.00) 0.785 0.801 0.810 0.826 0.844 0.861 0.877 0.887 0.908
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Table OA.6: Bias-corrected λbeat
p,h and λconquer

p,h Bootstrap Distributions by Dispersion and Size Portfolios with h=3 Months

Bootstrap Distribution

Portfolio, p λbeatp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Bias-corrected λbeatp,h for dispersion portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Low) 1.083 (0.99) 0.998 1.020 1.033 1.053 1.077 1.101 1.122 1.134 1.156
2 0.929∗∗∗ (0.01) 0.876 0.892 0.901 0.914 0.929 0.946 0.963 0.977 0.999
3 0.862∗∗∗ (0.00) 0.814 0.829 0.837 0.849 0.863 0.878 0.893 0.902 0.919
4 0.763∗∗∗ (0.00) 0.715 0.729 0.736 0.749 0.763 0.776 0.788 0.794 0.808
5 (High) 0.741∗∗∗ (0.00) 0.699 0.711 0.718 0.730 0.743 0.756 0.768 0.776 0.790

Panel B: Bias-corrected λbeatp,h for size portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Small) 0.776∗∗∗ (0.00) 0.716 0.731 0.740 0.755 0.772 0.790 0.805 0.814 0.832
2 0.851∗∗∗ (0.00) 0.800 0.817 0.825 0.839 0.853 0.868 0.882 0.890 0.905
3 0.837∗∗∗ (0.00) 0.787 0.802 0.810 0.823 0.839 0.854 0.868 0.876 0.893
4 0.872∗∗∗ (0.00) 0.806 0.824 0.835 0.852 0.871 0.891 0.908 0.919 0.940
5 (Large) 0.978 (0.24) 0.909 0.931 0.943 0.960 0.980 0.999 1.017 1.028 1.048

Bootstrap Distribution

Portfolio, p λconquerp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel C: Bias-corrected λconquerp,h for dispersion portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Low) 0.840∗∗∗ (0.00) 0.794 0.805 0.812 0.823 0.837 0.849 0.861 0.867 0.878
2 0.805∗∗∗ (0.00) 0.766 0.776 0.781 0.791 0.802 0.813 0.822 0.828 0.840
3 0.806∗∗∗ (0.00) 0.774 0.784 0.789 0.798 0.808 0.818 0.827 0.833 0.845
4 0.740∗∗∗ (0.00) 0.707 0.718 0.723 0.732 0.742 0.752 0.762 0.768 0.778
5 (High) 0.722∗∗∗ (0.00) 0.691 0.700 0.705 0.714 0.725 0.736 0.747 0.754 0.766

Panel D: Bias-corrected λconquerp,h for size portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

1 (Small) 0.745∗∗∗ (0.00) 0.702 0.713 0.719 0.729 0.741 0.754 0.765 0.771 0.784
2 0.781∗∗∗ (0.00) 0.753 0.763 0.768 0.776 0.785 0.795 0.804 0.809 0.820
3 0.763∗∗∗ (0.00) 0.728 0.738 0.744 0.753 0.764 0.774 0.784 0.790 0.801
4 0.769∗∗∗ (0.00) 0.734 0.747 0.752 0.762 0.773 0.785 0.796 0.802 0.815
5 (Large) 0.805∗∗∗ (0.00) 0.761 0.776 0.783 0.793 0.805 0.817 0.828 0.834 0.846
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Table OA.7: Bias-corrected λbeat
p,h Bootstrap Distributions by Industry Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Industry
Portfolio, p λbeatp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Bias-corrected λbeatp,h for industry portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

NODUR 1.767 (1.00) 1.593 1.646 1.674 1.719 1.771 1.827 1.884 1.914 1.978

DURBL 1.172 (0.99) 1.008 1.051 1.076 1.115 1.161 1.209 1.250 1.275 1.320

MANUF 1.316 (1.00) 1.247 1.266 1.277 1.295 1.315 1.335 1.353 1.364 1.385

ENRGY 1.138 (0.99) 1.002 1.043 1.065 1.103 1.149 1.195 1.240 1.272 1.327

HITEC 1.174 (1.00) 1.111 1.128 1.138 1.154 1.174 1.194 1.212 1.223 1.246

TELCM 1.076 (0.71) 0.718 0.818 0.874 0.979 1.120 1.304 1.509 1.640 2.012

SHOPS 1.477 (1.00) 1.368 1.399 1.415 1.441 1.473 1.502 1.528 1.547 1.582

HLTH 1.505 (1.00) 1.371 1.414 1.436 1.474 1.515 1.554 1.592 1.613 1.659

UTILS 1.152 (0.94) 0.914 0.990 1.026 1.092 1.166 1.251 1.332 1.390 1.495

OTHER 1.200 (1.00) 1.089 1.122 1.141 1.169 1.203 1.239 1.278 1.299 1.344

All 1.309 (1.00) 1.270 1.282 1.288 1.298 1.308 1.319 1.329 1.335 1.346

Panel B: Bias-corrected λbeatp,h for industry portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

NODUR 0.841∗∗∗ (0.00) 0.792 0.804 0.812 0.825 0.839 0.853 0.865 0.873 0.888

DURBL 0.773∗∗∗ (0.00) 0.667 0.694 0.711 0.735 0.764 0.792 0.822 0.838 0.866

MANUF 0.731∗∗∗ (0.00) 0.684 0.698 0.705 0.717 0.730 0.743 0.754 0.761 0.774

ENRGY 0.677 (0.25) 0.436 0.502 0.561 0.642 0.805 0.993 1.166 1.344 1.614

HITEC 0.985 (0.36) 0.915 0.936 0.948 0.967 0.987 1.011 1.032 1.044 1.067

TELCM 0.922∗∗ (0.04) 0.823 0.852 0.868 0.894 0.922 0.952 0.979 0.997 1.025

SHOPS 0.942 (0.36) 0.666 0.737 0.783 0.852 0.943 1.045 1.146 1.207 1.332

HLTH 0.825∗∗∗ (0.00) 0.749 0.774 0.787 0.806 0.826 0.848 0.871 0.885 0.911

UTILS 0.853∗∗∗ (0.00) 0.829 0.836 0.840 0.847 0.854 0.862 0.870 0.874 0.881

OTHER 0.0000 (0.00) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

All 0.0000 (0.00) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table OA.8: Bias-corrected λconquer
p,h Bootstrap Distributions by Industry Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Industry
Portfolio, p λconquerp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Bias-corrected λconquerp,h for industry portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

NODUR 1.001 (0.54) 0.924 0.946 0.959 0.980 1.004 1.027 1.048 1.061 1.088

DURBL 0.910∗∗∗ (0.01) 0.814 0.839 0.852 0.875 0.901 0.929 0.954 0.967 0.997

MANUF 0.968∗∗ (0.02) 0.932 0.943 0.949 0.958 0.969 0.979 0.988 0.994 1.006

ENRGY 0.961 (0.21) 0.878 0.900 0.915 0.940 0.966 0.995 1.021 1.038 1.068

HITEC 0.917∗∗∗ (0.00) 0.880 0.891 0.897 0.907 0.918 0.930 0.940 0.946 0.959

TELCM 0.973 (0.51) 0.710 0.794 0.836 0.919 1.002 1.103 1.224 1.309 1.502

SHOPS 0.969∗ (0.07) 0.914 0.930 0.938 0.953 0.968 0.983 0.996 1.004 1.019

HLTH 1.024 (0.72) 0.941 0.963 0.976 0.997 1.021 1.047 1.069 1.081 1.106

UTILS 0.875∗ (0.06) 0.722 0.768 0.790 0.835 0.875 0.927 0.970 1.004 1.067

OTHER 0.871∗∗∗ (0.00) 0.821 0.838 0.846 0.862 0.878 0.897 0.916 0.928 0.949

All 0.954∗∗∗ (0.00) 0.933 0.939 0.942 0.948 0.954 0.960 0.965 0.968 0.975

Panel B: Bias-corrected λconquerp,h for industry portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

NODUR 0.897∗∗∗ (0.00) 0.832 0.855 0.865 0.882 0.904 0.926 0.944 0.957 0.978

DURBL 0.708∗∗∗ (0.00) 0.654 0.670 0.680 0.696 0.716 0.739 0.759 0.770 0.795

MANUF 0.781∗∗∗ (0.00) 0.739 0.750 0.756 0.765 0.776 0.787 0.797 0.803 0.815

ENRGY 0.765∗∗∗ (0.00) 0.690 0.710 0.720 0.742 0.765 0.786 0.806 0.819 0.845

HITEC 0.720∗∗∗ (0.00) 0.685 0.695 0.700 0.709 0.719 0.729 0.738 0.743 0.754

TELCM 0.806 (0.29) 0.536 0.630 0.686 0.767 0.865 1.023 1.147 1.308 1.595

SHOPS 0.829∗∗∗ (0.00) 0.783 0.798 0.804 0.816 0.830 0.845 0.860 0.869 0.885

HLTH 0.843∗∗∗ (0.00) 0.770 0.791 0.802 0.820 0.841 0.863 0.881 0.892 0.915

UTILS 0.753∗∗∗ (0.01) 0.594 0.652 0.669 0.716 0.763 0.822 0.882 0.912 0.977

OTHER 0.779∗∗∗ (0.00) 0.716 0.733 0.743 0.760 0.778 0.796 0.814 0.826 0.845

All 0.780∗∗∗ (0.00) 0.763 0.768 0.771 0.776 0.781 0.787 0.792 0.795 0.801
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Table OA.9: Bias-corrected λbeat
p,h Bootstrap Distributions by Calendar-year Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Calendar-year
Portfolio, p λbeatp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Bias-corrected λbeatp,h for calendar-year portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

2000 1.421 (1.00) 1.227 1.275 1.304 1.353 1.416 1.481 1.556 1.603 1.687
2001 1.248 (1.00) 1.089 1.135 1.161 1.203 1.254 1.319 1.382 1.418 1.479
2002 1.231 (1.00) 1.076 1.121 1.144 1.188 1.241 1.296 1.345 1.376 1.438
2003 1.375 (1.00) 1.200 1.247 1.276 1.322 1.374 1.430 1.482 1.515 1.578
2004 1.613 (1.00) 1.380 1.444 1.482 1.546 1.612 1.682 1.749 1.787 1.852
2005 1.367 (1.00) 1.212 1.257 1.277 1.319 1.367 1.417 1.462 1.487 1.538
2006 1.347 (1.00) 1.217 1.261 1.282 1.317 1.355 1.398 1.443 1.472 1.525
2007 1.348 (1.00) 1.175 1.218 1.243 1.286 1.338 1.390 1.437 1.465 1.524
2008 1.295 (1.00) 1.162 1.198 1.220 1.254 1.294 1.334 1.371 1.393 1.433
2009 1.216 (1.00) 1.091 1.127 1.148 1.184 1.227 1.270 1.313 1.341 1.385
2010 1.211 (1.00) 1.092 1.123 1.140 1.173 1.212 1.256 1.295 1.322 1.368
2011 1.121 (1.00) 1.038 1.065 1.078 1.101 1.128 1.157 1.185 1.202 1.239
2012 1.277 (1.00) 1.146 1.184 1.207 1.243 1.284 1.325 1.363 1.386 1.433
2013 1.370 (1.00) 1.239 1.284 1.303 1.335 1.370 1.401 1.431 1.451 1.492
2014 1.327 (1.00) 1.217 1.251 1.270 1.302 1.333 1.366 1.397 1.418 1.459

Panel B: Bias-corrected λbeatp,h for calendar-year portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

2000 0.797∗∗∗ (0.00) 0.699 0.727 0.745 0.776 0.816 0.859 0.898 0.927 0.975
2001 0.705∗∗∗ (0.00) 0.588 0.620 0.638 0.669 0.700 0.734 0.768 0.787 0.822
2002 0.799∗∗∗ (0.00) 0.662 0.701 0.721 0.758 0.794 0.835 0.869 0.893 0.940
2003 0.855∗∗∗ (0.00) 0.736 0.771 0.792 0.821 0.853 0.885 0.914 0.931 0.965
2004 0.980 (0.33) 0.834 0.877 0.896 0.934 0.973 1.017 1.053 1.071 1.114
2005 0.974 (0.27) 0.817 0.858 0.880 0.917 0.961 1.004 1.039 1.063 1.114
2006 1.001 (0.42) 0.877 0.906 0.924 0.955 0.990 1.023 1.055 1.075 1.111
2007 0.861∗∗∗ (0.00) 0.750 0.782 0.799 0.827 0.860 0.893 0.924 0.943 0.982
2008 0.931∗ (0.08) 0.837 0.866 0.880 0.902 0.935 0.967 0.994 1.013 1.048
2009 0.814∗∗∗ (0.00) 0.723 0.747 0.761 0.785 0.813 0.841 0.867 0.885 0.915
2010 0.785∗∗∗ (0.00) 0.697 0.722 0.735 0.758 0.784 0.811 0.835 0.851 0.875
2011 0.756∗∗∗ (0.00) 0.668 0.692 0.705 0.727 0.751 0.776 0.799 0.812 0.837
2012 0.845∗∗∗ (0.00) 0.762 0.785 0.798 0.817 0.840 0.863 0.885 0.897 0.924
2013 0.905∗∗ (0.01) 0.809 0.837 0.851 0.876 0.905 0.933 0.959 0.974 1.001
2014 0.921∗∗ (0.04) 0.833 0.857 0.871 0.894 0.921 0.947 0.974 0.992 1.022
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Table OA.10: Bias-corrected λconquer
p,h Bootstrap Distributions by Calendar-year Portfolio, p, and Forecast Horizon, h

Bootstrap Distribution
Calendar-year
Portfolio, p λconquerp,h (p-value) 1% 5% 10% 25% 50% 75% 90% 95% 99%

Panel A: Bias-corrected λconquerp,h for calendar-year portfolios, p, with a forecast horizon of h=0 months prior to the end of the fiscal quarter

2000 0.984 (0.48) 0.895 0.922 0.937 0.964 0.997 1.033 1.070 1.093 1.135
2001 0.945 (0.15) 0.859 0.882 0.895 0.917 0.946 0.980 1.012 1.030 1.064
2002 0.872∗∗∗ (0.00) 0.781 0.808 0.823 0.846 0.873 0.903 0.929 0.944 0.974
2003 0.909∗∗ (0.02) 0.825 0.852 0.863 0.886 0.914 0.942 0.966 0.980 1.011
2004 1.037 (0.81) 0.933 0.965 0.982 1.010 1.040 1.070 1.096 1.115 1.155
2005 0.930∗∗ (0.03) 0.833 0.858 0.871 0.894 0.919 0.947 0.974 0.989 1.013
2006 0.981 (0.35) 0.894 0.921 0.935 0.957 0.985 1.012 1.037 1.051 1.082
2007 0.948 (0.11) 0.857 0.880 0.896 0.921 0.948 0.975 1.003 1.020 1.050
2008 0.956 (0.11) 0.877 0.901 0.912 0.932 0.956 0.979 1.001 1.015 1.044
2009 0.984 (0.42) 0.918 0.939 0.949 0.969 0.993 1.016 1.039 1.052 1.077
2010 0.970 (0.16) 0.889 0.911 0.923 0.941 0.964 0.989 1.012 1.027 1.053
2011 0.906∗∗∗ (0.00) 0.836 0.856 0.867 0.884 0.902 0.921 0.939 0.950 0.970
2012 0.939∗∗ (0.05) 0.880 0.898 0.909 0.927 0.947 0.968 0.987 0.999 1.024
2013 0.965 (0.11) 0.900 0.920 0.930 0.947 0.963 0.982 1.002 1.015 1.037
2014 0.973 (0.15) 0.908 0.927 0.937 0.954 0.972 0.990 1.006 1.017 1.034

Panel B: Bias-corrected λconquerp,h for calendar-year portfolios, p, with a forecast horizon of h=3 months prior to the end of the fiscal quarter

2000 0.720∗∗∗ (0.00) 0.636 0.663 0.676 0.705 0.735 0.766 0.794 0.813 0.847
2001 0.726∗∗∗ (0.00) 0.654 0.675 0.687 0.706 0.732 0.759 0.783 0.797 0.825
2002 0.745∗∗∗ (0.00) 0.660 0.687 0.700 0.722 0.747 0.775 0.802 0.821 0.858
2003 0.809∗∗∗ (0.00) 0.698 0.729 0.743 0.770 0.799 0.826 0.848 0.863 0.885
2004 0.829∗∗∗ (0.00) 0.731 0.753 0.769 0.793 0.818 0.845 0.867 0.882 0.912
2005 0.846∗∗∗ (0.00) 0.742 0.769 0.785 0.811 0.842 0.874 0.903 0.920 0.950
2006 0.889∗∗∗ (0.00) 0.793 0.819 0.832 0.855 0.881 0.909 0.935 0.949 0.981
2007 0.792∗∗∗ (0.00) 0.722 0.741 0.753 0.770 0.791 0.812 0.831 0.843 0.867
2008 0.828∗∗∗ (0.00) 0.769 0.786 0.795 0.811 0.828 0.846 0.864 0.874 0.896
2009 0.831∗∗∗ (0.00) 0.748 0.770 0.782 0.800 0.822 0.845 0.864 0.876 0.901
2010 0.766∗∗∗ (0.00) 0.709 0.727 0.736 0.752 0.770 0.788 0.806 0.816 0.837
2011 0.687∗∗∗ (0.00) 0.626 0.642 0.652 0.666 0.683 0.702 0.717 0.726 0.745
2012 0.749∗∗∗ (0.00) 0.687 0.704 0.713 0.729 0.748 0.765 0.780 0.791 0.810
2013 0.787∗∗∗ (0.00) 0.727 0.744 0.753 0.771 0.791 0.810 0.827 0.839 0.858
2014 0.825∗∗∗ (0.00) 0.763 0.781 0.790 0.807 0.824 0.844 0.861 0.872 0.893
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