
Biases in Arithmetic and Geometric Averages as Estimates of Long-Run Expected Returns and
Risk Premia
Author(s): Daniel C. Indro and Wayne Y. Lee
Source: Financial Management, Vol. 26, No. 4 (Winter, 1997), pp. 81-90
Published by: Wiley on behalf of the Financial Management Association International
Stable URL: http://www.jstor.org/stable/3666130 .

Accessed: 22/10/2013 10:25

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Wiley and Financial Management Association International are collaborating with JSTOR to digitize, preserve
and extend access to Financial Management.

http://www.jstor.org 

This content downloaded from 128.118.207.145 on Tue, 22 Oct 2013 10:25:51 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=fma
http://www.jstor.org/stable/3666130?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Note 

Biases in Arithmetic and Geometric 

Averages as Estimates of Long-Run 
Expected Returns and Risk Premia 

Daniel C. Indro and Wayne Y. Lee 

Daniel C. Indro is an Assistant 
Professor of Finance and Wayne 

Y. Lee is Firestone Professor of 
Corporate Finance at Kent State 
University. 

The empirically documented presence of negative autocorrelation in 
long-horizon common stock returns magnifies the upward (downward) 
bias inherent in the use of arithmetic (geometric) averages as estimates 
of long-run expected returns and risk premia. Failure to account for this 
autocorrelation can lead to incorrect project accept/reject decisions. 
Through simulations, we show that a horizon-weighted average of the 
arithmetic and geometric averages contains a smaller bias and is a more 
efficient estimator of long-run expected returns. 

n Consider an investment project with an average life 
(duration) of N months. What rate should be used to 
discount this project's expected cash flows? In 

particular, suppose the required return on the N-month 
investment project is based on a market equity-risk 
premium, that is, the difference between the future 
expected return on the market index and the risk-free 
rate of interest. Since risk premia are not constant 
(Brigham, Shome, and Vinson, 1985; Harris, 1986; 
Harris and Marston, 1992; Maddox, Pippert, and 
Sullivan, 1995; and Brennan, 1997) and can depend on 
the choice of measurement period, averaging method, 
or portfolio weighting (Carleton and Lakonishok, 1985), 
how should the historical monthly market return data 
be used to compute the risk premium? In practice, the 
arithmetic and geometric average of monthly returns 
are used as a proxy for determining the future expected 
N-month market return.' 

Brealey and Myers (1991) argue that if monthly 
returns are identically and independently distributed, 
then the arithmetic average of monthly returns should 
be used to estimate the long-run expected return. 
However, the empirical evidence from Fama and French 
(1988a, 1988b), Lo and MacKinlay (1988), and 
Poterba and Summers (1988) suggests that there is 
significant long-term negative autocorrelation in 
equity returns and that historical monthly returns are 
not independent draws from a stationary distribution. 
Based on this evidence, Copeland, Koller, and Murrin 
(1994) argue that the geometric average is a better 
estimate of the long-run expected return. Thus, as 
noted by Fama (1996), when expected returns are 
autocorrelated, compounding a sequence of one- 
period returns is problematic for project valuation. 

In this paper, we examine the biases obtained by 
using the arithmetic or geometric sample averages of 
single-period returns to assess the long-run expected 
rates of return when there is both a time-varying and 
a stationary component in those returns. To do this, 
we adopt the analytical framework outlined in Blume 
(1974). We find that for long-run expected return and 
risk premium, the arithmetic average produces an 

We wish to thank Michael Hu, the Editors, and especially the 
referee whose comments and suggestions greatly improved 
the paper's expositions. We are responsible for any remaining 
errors. 

'Alternatively, in deriving the cost of equity estimates, Harris 
(1986) and Harris and Marston (1992) employ the Discounted 
Cash Flow (DCF) model, which uses a consensus measure of 
financial analysts' forecasts of earnings growth as a proxy for 
investor expectations. Although this alternative is appealing, 
Timme and Eisemann (1989) caution that it requires a judicious 
choice of the weight assigned to each forecast to construct 

the consensus forecast. Otherwise, the DCF model can 
generate a risk-adjusted discount rate that contains estimation 
risk and requires an adjustment such as that outlined in Butler 
and Schachter (1989). 

Financial Management, Vol. 26, No. 4, Winter 1997, pages 81 - 90 

This content downloaded from 128.118.207.145 on Tue, 22 Oct 2013 10:25:51 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


82 FINANCIAL MANAGEMENT / WINTER 1997 

estimate that is too high relative to the true mean, 
and that the geometric average produces an estimate 
that is too low. The magnitude of upward and 
downward bias is proportional to the total variance 
underlying the asset's return, and to the length of 
the investment horizon (N months) relative to the 
length of the historical sample period (T ? N >1). In 
addition, we confirm Blume's finding that there are 
significant biases associated with the use of the 
arithmetic and geometric averages, even when returns 
are independently and identically distributed each 
period. Finally, simulation results show that the 
horizon-weighted average of the arithmetic and 
geometric averages proposed by Blume is less biased 
and more efficient than alternative estimates. 

I. The Bias in the Arithmetic and 
Geometric Averages 

Here, we describe the return generating process and 
derive the biases in the arithmetic and geometric 
averages. 

A. Return Generating Process 

Let Rt denote a one-period total return over a time 
interval of length dt. Specifically, 

Rt = 1 + rtdt = 1 + gldt + 

tFdt 
(1) 

where 
rtdt 

is the net return for period t = 1,2,....,T; 
ttdt is the conditional mean, and the deviations from the 

conditional mean, e dt are independently and 
identically distributed over time with mean zero and 
variance 02 dt. Further, assume that the conditional 
mean 

.ttdt 
is distributed as follows. For t = 1, the 

conditional mean is 

?t1dt = tdt + rlqldt (2) 

where gdt is the unconditional mean. For t = 2,3,....,T, 
the conditional mean follows a mean-reverting process 
around the unconditional mean: 

ct+•dt 

= gdt + p(ldt - Idt) + 
rlt 

t = (1 - p) gdt 
+ 

ptdt 
+ 

rt+jdt 
= gdt + 

-=l 
pt' m' 

djt 
(3) 

where the single-period autocorrelation between 
conditional means, p< 0, captures the time variation in 
expected returns, and rl)dtt are independently and 
identically distributed random variables with mean zero 
and variance cr2 dt. From Equations (1) through (3) it 
follows that 

rtdt= 
tdidt 

+ 

•_t-rt 
i4=dt= •dt 

+ 
vtdt 

(4) 

for all t. The return generating process described by 
Equation (4) is consistent with that used by Fama and 
French (1988a) to document significant negative 
autocorrelations in long-horizon returns.2 The 
unconditional mean, E(rtdt), is gdt. The unconditional 
variance, Var(rtdt), is [(1-p2T)/(1-p2)]odt + 02cdt for a 
finite T, and 

[1/(1-p2)]•2dt 
+ 02dt as T -- oo. 

B. The Bias in the Arithmetic Average 
From a sample of T observations, we compute the 

arithmetic average, RA, as: 

T RA =+ rAdt =1 + dt + 

T-~Xt=vttdt 
(5) 

and the estimated N-period return, RN = (1 + rAdt)N, 

RN = (1+ gdt + 
T-1tvt 

dt)" (6) 

In addition, applying the expected value operators to 
Equation (6) yields: 

E(RN )= E(1 + gdt + 
T-11T=1_t 

dt)N (7) 

Since (1 + dt + 
T--ti=ytdt)N 

is a convex function of 

T-1•vt~v jdt, it follows by Jensen's inequality that for 
N > 1, the arithmetic average is biased upward: 

E (RN) > (1 + gdt + E(T- I T~=ydt))N > (1 + Iidt)N (8) 

Further, by taking a Taylor series expansion of E (RN) 
around (1 + gdt), the extent of the bias is given by:3 

E (RN ) = (1 + dt)N [1 + ( (1 + gdt)-2 
2 
dt] 

+ O(dt2) 2(9) 

2Specifically, in Fama and French (1988a), p(t), the natural 
log of a stock price at time t, is the sum of a random walk, 
q(t), and a stationary component, z(t): 

p(t) = q(t) + z(t) and q(t) = q(t-1) + [t + e(t) (3a) 

where g is expected drift and e(t) is white noise. z(t) follows a 
first-order autoregression (AR1) process: 

z(t) = pz(t-1) + r7(t) (3b) 

where rl(t) is white noise and 0 is less than 1. From Equations 
(3a) and (3b), we compute a continuously compounded return: 

p(t) - p(t-1) = [q(t) - q(t-1)] + [z(t) - z(t-1)] 
= t + E(t) + l(t) + (-l1)z(t-1) (3c) 

Through successive substitutions for z(.) from Equations (3b) 
into (3c), the consistency between our formulation and that 
of Fama and French (1988a) follows from a comparison of 
Equations (3c) and (3). 
3Derivations of the extent of biases in the arithmetic and 
geometric averages are available from the authors on request. 
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where O(dt2) denotes an order of no greater than 
dt2, limO(dt2) - 0 as dt - 0. From Equation (5), 

(/dt = 
T-1T ITt•jdt, 

and 

C2dt = E[(?Idt)2] = 
T-2(To•dt 

+ -i (T- i)p2i=,dt) 
+ T-2(Tcy2dt) = T-l(cadt + cr2dt) 
+ T-(T p21)p1~pTo2dt 

(10) 

since by the mean value theorem there exists a t, T > 
I > 1 such that 2t= 1(T- i)p2i= (T- i)2 

For p = 0 and fixed N, it is clear that the estimator R N 

is asymptotically unbiased and consistent as T -- oo, 
but for a finite and small T, is upward-biased for N > 1 
by an amount proportional to the number of periods, 
[N(N-1)/2], and variance, T-'(o dt + y2 dt). 
Furthermore, for p < 0 and fixed N, the estimator RN 
is asymptotically unbiased and consistent only for 
N = 1. For N > 1, the amount of upward bias is 
proportional to the number of periods, [N(N-1)/2], 
and either the variance V2p2'"Tndt for T -- oo, or the 
variance T-l(oadt + c2dt) + T-'[(T+1)/2]p2,Codt for a 
finite and small T. Compounding the single-period 
arithmetic return tends to produce an estimated long- 
run return, and thus a risk premium, that is too high 
relative to the true mean (1 + gdt)N. 

C. The Bias in the Geometric Average 
From a sample of T observations, the geometric 

average, RG, is computed as: 

RG = 1 (11) 

and the estimated N-period return, R N, as: 

R= ( R exp t ,ln R}t (12) 

Hence, for a fixed N and T ---> oo, it is clear from Equation 
(12) that 

N T 

p lim RN= exp p lim Tt In Rt = exp{NE[ln Rt]} 

< exp {N In [E(Rt)]} < 1 + gdt) (13) 

The geometric average is asymptotically biased 
downwards and thus is an inconsistent estimator of 
the long-run expected return. 

To examine the bias for a fixed N and finite T, we 
rewrite the geometric average as: 

RN= 
-(I:rRT= 

P 
l,1 (1 + pdt + 

vt/d-t)N" = [( 1 + gdt)T + W/dt]NT (14) 

where 

Qldt = iT , (1 + gdt + vtdt) - (1 + gdt)T (15) 

Taking the expectation of Equation (14) and a Taylor 
series expansion around (1 + gdt)T yields: 

E (RN) = E[(1 + gdt)T + \/dt]N/T = (1 + 
tdt)N 

+ (1 + 
Igdt)NT E(C 

-+dt) 

+ ( - 

(1 + gdt)N-2T E(/\dt)2 + O(dt2) (16) 

where 

E(r 'dt) = (1+ ~Ldt)T-2[ 2iT-jT-i-j]odt + O(dt2) 
(17) 

and 
E(?idt)2 = (1+ gdt)2(T-)[T(o2dt + o2dt) + p2cr2dt 

i-(T-i)pi+ 2 2idt T 2i - 1 -' jjT-i-j] 

+O(dt2) (18) 

Observe that for p=0, 

E(R) = (1 + dt)N { 1 + (1 + gdt)-2 (N -1[T(cydt 
+ C2 dt)]} T (19) 

the geometric average is downward-biased for N < T 
but unbiased as N -- T. For p < 0, 

E (RN) = (1 +gdt)N { 1 +((1 + 
1gdt)-2 [E(?1dt) 

+ (-l)E ((dt)2] } (20) 

By definition, E(Qldt)2 = Var(?' dt) > 0, and it can be 
shown that E(?idt)< 0 for p 

_ 
0.4 Hence, from Equation 

(20), the geometric average is always biased downward 
for p < 0, even as N --> T. It is also clear from Equation 
(20) that an increase in the stationary variance oR2 dt 
raises the magnitude of the downward bias. The 
effect on the bias of changes in the parameters 
governing the temporal variation in expected returns, 
namely, p and cy2dt, is generally ambiguous. However, 
when N -- T, 

E(R) = (1 + gdt)N { 1 + (1 + gdt)-2[1 + (T - 2)p]po 2dt 

+ O(p3)oG2dt} (21) 

the downward bias at the limit is an increasing function 
of p and ca2dt. 

4The sketch of the proof is as follows. Let T = 5. Compute and 
sum the five variances and ten covariances of vt dt. Examining 
the covariance sum for p ? 0 results in E(( dt) < 0. The 
general result is obtained by induction. The formal derivation 
is available from the authors on request. 
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II. Simulation Results 

We use simulations to assess the severity of the 
biases in the arithmetic and geometric averages. In 
addition, we present two other estimates of expected 
return, as suggested in Blume (1974): a weighted 
average and an overlapping average. 

We calculate the weighted average as a horizon- 

weighted average of the arithmetic and geometric 
averages: 

T-N N-1__ E(WN)= RA + N- RN (22) 
T-1 T-1 

G 

where the weights sum to one. When N=1, the 
arithmetic average receives all the weight. As N -- T, 
more weight is given to the geometric average. 

We construct the overlapping average as follows. 
We compute an N-period total return, T-N+ 1 in number, 
by multiplying the first through the Nth one-period total 
returns together, the second through the (N+ 1)t one- 

period returns together, and so on. We then average 
the overlapped total returns. 

To examine the empirical properties of each estimator, 
we use the return generating process described in 

Equation (3). For a benchmark monthly return, [t = 0.01, 
and alternative values of autocorrelations p = 0, -0.05, 
-0.25, we draw a total of 250,000 random values of tydt 
and ryldt from zero mean normal variates with 
variances ranging from zero to 0.0081 for 02 and zero 
to 0.0045 for 

Ca, respectively. We then partition the 
250,000 returns into 1,000 samples of 250 observations 
(T =250), and calculate the values of the four estimators 
for horizons N = 12,24,60,84,120. 

Table 1 presents the simulation results when the 
autocorrelation and time-varying variance components 
are absent, i.e., p = 0 and o2 = 0. Simulation results in 
the presence of both time-varying and stationary 
variance as well as negative autocorrelation 
components appear in Table 2 (p =-0.05) and Table 3 (p 
= -0.25). 

For the four estimators, the patterns of bias (direction 
and magnitude) and efficiency (standard deviation or 
the 0.05-0.95 fractile values) that appear in Table 1 are 
similar to those found in Blume (1974). Notice from 
Table 1 that for any investment horizon and stationary 
variance, the geometric average is always biased 
downward. For longer horizons N (=60,84,120), the 
arithmetic average is upward-biased, regardless of the 
stationary variance. For shorter horizons, N (=12,24), 
the arithmetic average is downward-biased for a small 
value of stationary variance, o2 (= 0.0036), but upward- 
biased for a large value of stationary variance, c2 (= 
0.0081). For a small value of stationary variance, CY (= 
0.0036), the overlapping estimator is downward-biased 
for any horizon, but for a large value of stationary 

variance, a0 (= 0.0081), the estimator is upward-biased 
for shorter horizons, N (=12,24), and downward-biased 
for longer horizons, N (=60,84,120). Finally, for any 
horizon, the weighted average estimator is downward- 
biased for a small value of stationary variance, 02 (= 
0.0036),and upward-biased for a large value of 
stationary variance, 02 (= 0.0081). 

The magnitude of the bias is the largest for the 
geometric average. In addition, observe that for the 
smaller value of stationary variance, 02 (= 0.0036), the 
arithmetic average has the least bias for shorter 
horizons, N (= 12,24), and the overlapping average the 
least bias for longer horizons, N (= 60,84,120). For the 
large value of stationary variance, 02 (= 0.0081), and 
any horizon, the weighted and overlapping averages 
have less bias than the arithmetic and geometric 
averages. Overall, the geometric average is the most 
efficient estimator, and the overlapping average is the 
least efficient. The weighted average is consistently 
more efficient than the arithmetic and overlapping 
averages. 

If we compare both Panel A's in Tables 1 and 2, 
we see that the arithmetic and geometric averages 
are more upward- and less downward-biased, 
respectively, and that both averages are less 
efficient. This represents the combined effect of a 
small negative autocorrelation (p = -0.05) and time- 
varying variance (y2 = 0.0036),which is greater than 
that of 2 alone. Moreover, although the bias for all 
estimators increases with N, the weighted average is 
not only the least biased, but is also more efficient 
than the overlapping average. 

Similarly, if we compare Panels A and B of Table 2, 
introducing Ca (= 0.0045) to a small negative 
autocorrelation (p = -0.05) and time-varying variance 

(oa = 0.0036) magnifies the magnitude of bias for all 
estimators. The overlapping average is the least biased, 
but least efficient, estimator. The weighted average is 
only slightly more biased, but is more efficient than 
the overlapping average. 

Finally, the relative impact of 
•2 

and on2 is evident 
when we compare Panels B and C of Table 2. When C2 

> 2, the weighted average contains consistently 
smaller biases than when a 2< 2, and its efficiency 
improves as N increases. Although the overlapping 
average is still the least biased, it is also the least 
efficient estimator. The weighted average is only 
slightly more biased, but is more efficient, than the 
overlapping average. 

In general, the direction and magnitude of the biases 
reported in Table 2 are also observed in Table 3. In the 
majority of the cases reported in Table 3, however, the 
weighted average is the least biased of all estimators, 
although this improvement is achieved at the expense 
of efficiency. If we compare Panels A and C, we also 
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Table 1. Simulation Results in the Absence of Autocorrelation and Time-Varying Variance, 
p = 0 and o2 =0 

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average 
of the arithmetic and geometric averages. Overlap is the overlapping average. 

Panel A. p = 0, = 0,2= 0.0036 

Fractiles 
Benchmk Standard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1254 0.0507 1.0427 1.1246 1.2076 

Geometric 1.1018 0.0499 1.0209 1.1013 1.1831 
Wt. Ave. 1.1243 0.0507 1.0417 1.1237 1.2064 

Overlap 1.1251 0.0516 1.0427 1.1248 1.2090 
Arithmetic 24 1.2697 1.2691 0.1146 1.0872 1.2648 1.4582 
Geometric 1.2165 0.1104 1.0422 1.2128 1.3998 
Wt. Ave. 1.2640 0.1142 1.0831 1.2604 1.4526 

Overlap 1.2657 0.1191 1.0786 1.2610 1.4682 
Arithmetic 60 1.8167 1.8422 0.4198 1.2325 1.7990 2.5677 
Geometric 1.6575 0.3796 1.1088 1.6198 2.3181 
Wt. Ave. 1.7966 0.4098 1.2036 1.7567 2.5050 

Overlap 1.8022 0.4725 1.1562 1.7383 2.6531 
Arithmetic 84 2.3067 2.3858 0.7693 1.3400 2.2752 3.7442 
Geometric 2.0580 0.6672 1.1556 1.9645 3.2448 
Wt. Ave. 2.2719 0.7337 1.2796 2.1701 3.5650 

Overlap 2.2851 0.8909 1.1991 2.1236 3.9425 
Arithmetic 120 3.3004 3.5698 1.6822 1.5190 3.2362 6.5931 
Geometric 2.8912 1.3714 1.2295 2.6239 5.3736 
Wt. Ave. 3.2319 1.5270 1.3830 2.9328 5.9712 

Overlap 3.2528 1.9440 1.2160 2.7965 6.8591 

Panel B. p- 0, 2= 0,c= 0.0081 

Fractiles 
Benchmk Standard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1306 0.0760 1.0079 1.1284 1.2583 

Geometric 1.0774 0.0730 0.9599 1.0745 1.2022 

Wt. Ave. 1.1281 0.0758 1.0059 1.1261 1.2556 

Overlap 1.1283 0.0780 1.0047 1.1260 1.2605 

Arithmetic 24 1.2697 1.2839 0.1727 1.0159 1.2734 15 833 
Geometric 1.1662 0.1581 0.9214 1.1544 1.4452 
Wt. Ave. 1.2726 0.1713 1.0071 1.2624 1.5697 

Overlap 1.2703 0.1791 0.9944 1.2607 1.5759 
Arithmetic 60 1.8167 1.9316 0.6610 1.0403 1.8298 3.1544 
Geometric 1.5195 0.5241 0.8149 1.4320 2.5107 
Wt. Ave. 1.8299 0.6269 0.9857 1.7 356 2.9926 

Overlap 1.8074 0.6846 0.8913 1.6954 3.1078 
Arithmetic 84 2.3067 2.5929 1.2706 1.0569 2.3301 4.9944 
Geometric 1.8540 0.9167 0.7508 1.6531 3.6284 

Wt. Ave. 2.3363 1.1471 0.9532 2.1020 4.5182 

Overlap 2.2787 1.2826 0.7824 2.0096 4.7529 

Arithmetic 120 3.3004 4.1676 3.0671 1.0823 3.3482 9.9503 

Geometric 2.5834 1.9241 0.6640 2.0506 6.3036 

Wt. Ave. 3.3788 2.4961 0.8798 2.7156 8.1821 

Overlap 3.2201 2.7834 0.6314 2.4351 8.7221 
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Table 2. Simulation Results with a Small Autocorrelation p = -0.05 
Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average 
of the arithmetic and geometric averages. Overlap is the overlapping average. 

Panel A. p = -0.05, cr0= 0.036 c= 0 

Fractiles 
Benchmk Standard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1269 0.0515 1.0446 1.1237 1.2166 

Geometric 1.1032 0.0506 1.0246 1.1003 1.1917 

Wt. Ave. 1.1258 0.0515 1.0437 1.1226 1.2156 

Overlap 1.1236 0.0527 1.0383 1.1221 1.2165 

Arithmetic 24 1.2697 1.2724 0.1171 1.0913 1.2627 1.4801 

Geometric 1.2195 0.1125 1.0499 1.2107 1.4201 

Wt. Ave. 1.2674 0.1167 1.0872 1.2574 1.4748 

Overlap 1.2621 0.1216 1.0743 1.2546 1.4707 

Arithmetic 60 1.8167 1.8556 0.4393 1.2440 1.7918 2.6651 

Geometric 1.6687 0.3962 1.1294 1.6127 2.4032 

Wt. Ave. 1.8095 0.4286 1.2159 1.7476 2.6018 

Overlap 1.7869 0.4676 1.1393 1.7179 2.6344 

Arithmetic 84 2.3067 2.4123 0.8214 1.3575 2.2626 3.9446 

Geometric 2.0793 0.7102 1.1858 1.9524 3.4127 

Wt. Ave. 2.2966 0.7826 1.2986 2.1572 3.7665 

Overlap 2.2608 0.8839 1.1510 2.1064 4.0036 

Arithmetic 120 3.3004 3.6361 1.8669 1.5475 3.2106 7.1027 

Geometric 2.9415 1.5153 1.2756 2.6007 5.7753 

Wt. Ave. 3.2902 1.6915 1.4119 2.9204 6.4632 

Overlap 3.2330 1.9575 1.1754 2.7698 6.8499 

Panel B. p = -0.05, c2 = 0.036, c2= 0.0045 

Fractiles 

Benchmk Standard 
Estimator Horizon Return Average Error 0.05 0.50 0.95 

Arithmetic 12 1.1268 1.1319 0.0748 1.0164 1.1283 1.2568 

Geometric 1.0786 0.0720 0.9662 1.0763 1.1971 

Wt. Ave. 1.1294 0.0747 1.0143 1.1259 1.2544 

Overlap 1.1278 0.0771 1.0077 1.1238 1.2610 

Arithmetic 24 1.2697 1.2867 0.1713 1.0331 1.2732 1.5796 

Geometric 1.1686 0.1571 0.9335 1.1585 1.4330 

Wt. Ave. 1.2754 0.1669 1.0239 1.2617 1.5668 

Overlap 1.2720 0.1819 1.0056 1.2590 1.6056 

Arithmetic 60 1.8167 1.9412 0.6685 1.0847 1.8290 3.1359 

Geometric 1.5266 0.5307 0.8419 1.4446 2.4583 

Wt. Ave. 1.8388 0.6343 1.0243 1.7300 2.9745 

Overlap 1.8159 0.7385 0.9271 1.6760 3.1844 

Arithmetic 84 2.3067 2.6111 1.3023 1.1206 2.3285 4.9536 

Geometric 1.8663 0.9401 0.785 9 1.673 6 3.5 22 7 

Wt. Ave. 2.3524 1.1760 1.0025 2.0926 4.4684 

Overlap 2.3005 1.4391 0.8698 1.9396 4.7906 

Arithmetic 120 3.3004 4.2146 3.2132 1.1767 3.3451 9.8342 

Geometric 2.6119 2.0128 0.7088 2.0869 6.0431 

Wt. Ave. 3.4166 2.6141 0.9468 2.6988 7.9694 

Overlap 3.3191 3.4287 0.7108 2.3538 8.5702 
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Table 2. Simulation Results with a Small Autocorrelation p = -0.05 (Continued) 
Panel C. p = -0.05, 2 = 0.0045 c2= 0.0036 

Fractiles 
Ben chm k Standard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1306 0.0749 1.0085 1.1289 1.2550 
Geometric 1.0779 0.0720 0.9603 1.0771 1.1963 
Wt. Ave. 1.1282 0.0747 1.0064 1.1265 1.2522 

Overlap 1.1266 0.0779 0.9985 1.1242 1.2583 
Arithmetic 24 1.2697 1.2839 0.1701 1.0172 1.2744 1.5750 
Geometric 1.1670 0.1559 0.9223 1.1602 1.4312 
Wt. Ave. 1.2727 0.1687 1.0084 1.2632 1.5609 

Overlap 1.2689 0.1828 0.9850 1.2568 1.5954 
Arithmetic 60 1.8167 1.9297 0.6472 1.0435 1.8333 3.1133 
Geometric 1.5206 0.5141 0.8168 1.4500 2.4503 
Wt. Ave. 1.8287 0.6141 0.9896 1.7368 2.9461 

Overlap 1.8123 0.7192 0.8688 1.6657 3.1331 
Arithmetic 84 2.3067 2.5865 1.2395 1.0614 2.3363 4.9036 
Geometric 1.8538 0.8962 0.7533 1.6824 3.5067 
Wt. Ave. 2.3320 1.1197 0.9580 2.1085 4.4085 

Overlap 2.2913 1.3224 0.7811 1.9445 4.7278 
Arithmetic 120 3.3004 4.1422 2.9827 1.0888 3.3611 9.6930 
Geometric 2.5764 1.8779 0.6672 2.1025 6.0039 
Wt. Ave. 3.3626 2.4308 0.8854 2.7379 7.8210 

Overlap 3.2489 2.8583 0.6348 2.3838 8.1933 

Table 3. Simulation Results with a Large Autocorrelation p = -0.25 

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average 
of the arithmetic and geometric averages. Overlap is the overlapping average. 

Panel A. p = -0.25, a2 = 0.00108 
c-= 

0.00252 17 

Fractiles 
Benchm k Standard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1262 0.0487 1.0448 1.1266 1.2077 

Geometric 1.1021 0.0478 1.0213 1.1024 1.1816 

Wt. Ave. 1.1251 0.0486 1.0437 1.1254 1.2065 

Overlap 1.1225 0.0494 1.0386 1.1221 1.2011 

Arithmetic 24 1.2697 1.2708 0.1097 1.0915 1.2692 1.4585 

Geometric 1.2169 0.1054 1.0431 1.2152 1.396 2 

Wt. Ave. 1.2656 0.1092 1.0869 1.2638 1.4527 

Overlap 1.2603 0.1136 1.0728 1.2567 1.4536 

Arithmetic 60 1.8167 1.845 8 0.3996 1.2447 1.8149 2.5 689 

Geometric 1.6565 0.3602 1.1113 1.6280 2.3034 

Wt. Ave. 1.7991 0.3898 1.2134 1.7704 2.5056 

Overlap 1.7895 0.4342 1.1623 1.7311 2.5611 

Arithmetic 84 2.3067 2.3891 0.7302 1.3586 2.3035 3.7467 

Geometric 2.0536 0.6308 1.1592 1.9784 3.2159 

Wt. Ave. 2.2726 0.6955 1.2935 2.1953 3.5686 

Overlap 2.2606 0.7989 1.1846 2.1236 3.7313 

Arithmetic 120 3.3004 3.5665 1.5918 1.5493 3.2937 6.5994 

Geometric 2.8738 1.2908 1.2349 2.6504 5.3055 

Wt. Ave. 3.2216 1.4415 1.3994 2.9794 5.9669 

Overlap 3.2091 1.6643 1.1889 2.8265 6.4095 
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Table 3. Simulation Results with a Large Autocorrelation p = -0.25 (Continued) 

Panel B. p= -0.25, u2= 0.000405 o2= 0.007695 
17 11 

Fractiles 
Benchm k Stan dard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1299 0.0785 1.0006 1.1268 1.2676 

Geometric 1.0768 0.0756 0.9512 1.0737 1.2076 

Wt. Ave. 1.1275 0.0783 0.9980 1.1244 1.2646 

Overlap 1.1264 0.0812 0.9936 1.1230 1.2652 

Arithmetic 24 1.2697 1.2829 0.1789 1.0011 1.2696 1.6069 

Geometric 1.1652 0.1643 0.9049 1.1528 1.4583 

Wt. Ave. 1.2715 0.1775 0.9908 1.2584 1.5910 

Overlap 1.2679 0.1898 0.9755 1.2511 1.5983 

Arithmetic 60 1.8167 1.9326 0.6969 1.0028 1.8162 3.2732 

Geometric 1.5208 0.5546 0.778 8 1.4267 2.5679 

Wt. Ave. 1.8309 0.6615 0.9445 1.7202 3.0817 

Overlap 1.8186 0.7458 0.8661 1.6569 3.2862 

Arithmetic 84 2.3067 2.6022 1.3673 1.0040 2.3058 5.2596 

Geometric 1.8619 0.9902 0.7047 1.6447 3.7447 

Wt. Ave. 2.345 1 1.2358 0.8964 2.0758 4.6840 

Overlap 2.3242 1.4276 0.7 842 1.9571 5.1075 

Arithmetic 120 3.3004 4.2200 3.4602 1.0057 3.2985 10.7135 

Geometric 2.6200 2.1793 0.6066 2.0356 6.5943 

Wt. Ave. 3.4233 2.8 210 0.8030 2.6675 8.5390 

Overlap 3.3601 3.1676 0.6356 2.3754 9.7576 

Panel C. p = -0.25, c2 = 0.00243 = 0.00567 

Fractiles 
Benchm k Standard 

Estimator Horizon Return Average Error 0.05 0.50 0.95 
Arithmetic 12 1.1268 1.1294 0.0721 1.0199 1.1252 1.2561 

Geometric 1.0753 0.0694 0.9690 1.0721 1.1970 

Wt. Ave. 1.1269 0.0719 1.0174 1.1225 1.2533 

Overlap 1.1200 0.0738 1.0113 1.1146 1.2504 

Arithmetic 24 1.2697 1.2808 0.1641 1.0403 1.2661 1.5779 

Geometric 1.1611 0.1505 0.9390 1.1 493 1.4329 

Wt. Ave. 1.2693 0.1628 1.0296 1.2543 1.5632 

Overlap 1.2529 0.1700 1.0132 1.2368 1.5553 

Arithmetic 60 1.8167 1.9141 0.6252 1.1038 1.8038 3.1274 

Geometric 1.4987 0.4957 0.8545 1.4161 2.4576 

Wt. Ave. 1.8115 0.5930 1.0404 1.7044 2.9563 

Overlap 1.7524 0.6358 0.9180 1.6407 2.9633 

Arithmetic 84 2.3067 2.5532 1.1906 1.1483 2.2839 4.9347 

Geometric 1.8140 0.8578 0.8024 1.6276 3.5213 

Wt. Ave. 2.2965 1.0745 1.0309 2.0482 4.4316 

Overlap 2.1744 1.1431 0.8366 1.9151 4.4332 

Arithmetic 120 3.3004 4.0541 2.8088 1.2184 3.2539 9.7808 

Geometric 2.4915 1.7562 0.7301 2.0054 6.0396 

Wt. Ave. 3.2761 2.2832 0.9765 2.6212 7.8862 

Overlap 2.9808 2.3220 0.6750 2.2822 7.5861 
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Table 3. Simulation Results with a Large Autocorrelation p = -0.25 (Continued) 

Panel D. p = -0.25, cr2 = 0.0036 c2= 0.0045 

Fractiles 

Benchmk Standard 
Estimator Horizon Return Average Error 0.05 0.50 0.95 

Arithmetic 12 1.1268 1.1275 0.0709 1.0146 1.1272 1.2492 

Geometric 1.0730 0.0684 0.9633 1.0725 1.1 877 

Wt. Ave. 1.1250 0.0708 1.0125 1.1247 1.2467 

Overlap 1.1158 0.0724 1.0008 1.1168 1.2410 

Arithmetic 24 1.2697 1.2762 0.1605 1.0295 1.2705 1.5606 

Geometric 1.1560 0.1474 0.9280 1.1503 1.4107 

Wt. Ave. 1.2646 0.1592 1.0207 1.2593 1.5468 

Overlap 1.2446 0.1662 0.9894 1.2401 1.5459 

Arithmetic 60 1.8167 1.8947 0.6019 1.0754 1.8196 3.0423 

Geometric 1.4809 0.4767 0.8296 1.4190 2.3638 

Wt. Ave. 1.7925 0.5707 1.0183 1.7202 2.8760 

Overlap 1.7249 0.6193 0.8986 1.6286 2.9045 

Arithmetic 84 2.3067 2.5137 1.1352 1.1072 2.3119 4.7477 

Geometric 1.7 816 0.8146 0.7699 1.6323 3.3347 

Wt. Ave. 2.2595 1.0233 0.9959 2.0773 4.2567 

Overlap 2.1478 1.1423 0.8072 1.8783 4.4142 

Arithmetic 120 3.3004 3.9518 2.6400 1.1565 3.3109 9.2557 

Geometric 2.4201 1.6346 0.6883 2.0137 5.5876 

Wt. Ave. 3.1891 2.1377 0.9301 2.6705 7.4157 

Overlap 2.9632 2.3759 0.6444 2.2599 7.7379 

observe that when Coand aC2 both increase by the same 
proportion, the weighted average experiences a smaller 
bias relative to the other three estimators. Furthermore, 
we see from Panels B and C that a reduction in a2 that 
is offset by a corresponding increase in 2 improves 
the weighted average's efficiency. 

The effect of higher negative autocorrelation is 
evident when we compare Panel D in Table 3 with Panel 
B in Table 2. Even though we obtain a higher efficiency 
for all estimators, a higher negative autocorrelation p 
leads to a smaller bias in the arithmetic and weighted 
averages, but a larger bias for the geometric and 
overlapping averages. Moreover, although Table 3 
shows that the weighted average is the second most 
efficient estimator, it is overall the least biased when 
negative autocorrelation, time-varying, and stationary 
variance components are all present. 

Ill. Concluding Remarks 
We show that both the arithmetic and geometric 

averages are biased estimates of long-run expected 
returns, and the bias increases with the length of the 
investment horizons. The existence of negative 

autocorrelation in long-horizon returns documented 
by Fama and French (1988a, 1988b), Lo and MacKinlay 
(1988), and Poterba and Summers (1988) exacerbates 
the bias. The implication is that without making an 
adjustment, we are likely to obtain an estimate of long- 
run expected return (and risk premium) that is either 
too high or too low, and this can result in an 
inappropriate decision to reject a good project or accept 
a bad project. 

The horizon-weighted average of the arithmetic and 
geometric averages, proposed by Blume (1974), is an 
alternative estimate of long-run expected returns. Our 
simulation results indicate that in general, the horizon- 
weighted average contains the least bias. It is also 
more efficient than other estimators in the presence of 
negative autocorrelation, time-varying, and stationary 
variances. This conclusion contrasts with Blume's 
conjecture that "...if one cannot assume independence 
of successive one-period relatives or if there is even a 
slight chance that these relatives are dependent, the 
simple average of N-period relatives would appear 
preferable to the nonlinear estimators which, even 
under ideal conditions, yield only a modest increase 
in efficiency." U 
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