Public Utility Beta Adjustment and Biased Costs of Capital in Public Utility Rate Proceedings

The Capital Asset Pricing Model (CAPM) is commonly used in public utility rate proceedings to estimate the cost of capital and allowed rate of return. The beta in the CAPM associates risk with estimated return. However, an empirical analysis suggests that the commonly used Blume CAPM beta adjustment is not appropriate for electric and electric and gas public utility betas, and may bias the cost of common equity capital in public utility rate proceedings.

Richard A. Michelfelder and Panayiotis Theodossiou

I. Introduction

Regulators, public utilities, and other financial practitioners of utility rate setting in the United States and other countries often use the Capital Asset Pricing Model (CAPM) to estimate the rate of return on common equity (cost of common equity). Typically, the ordinary least squares method (OLS) is the preferred estimation method for the CAPM betas of public utilities. Although the CAPM model has been widely criticized regarding its validity and predictability in the literature, as summarized by Professors Fama and French in 2005, many firms and practitioners extensively use it to obtain cost of common equity estimates; e.g., such as shown by Bruser et al. in 1998, Graham and Harvey in 2001, and Gray, et al. in 2005. Michelfelder, et al. in 2013 in this...
journal presents a new model, i.e., the Predictive Risk Premium Model, to estimate the cost of common equity capital and compare and contrast the poor results of the CAPM to that model and the discounted cash flow model.

Major vendors of betas include, but are not limited to, Merrill Lynch, Value Line Investment Services (Value Line), and Bloomberg. These companies use Blume’s 1971 and 1975 beta adjustment equation to adjust OLS betas to be used in the estimation of the cost of common equity for public utilities and other companies.

The premise behind the Blume adjustment is that estimated betas exhibit mean reversion toward one over time; that is, betas greater or less than 1 are expected to revert to 1. There are various explanations for the phenomenon first discussed in Blume’s pioneering papers. One explanation is that the tendency of betas toward one is a by-product of management’s efforts to keep the level of firm’s systematic risk close to that of the market. Another explanation relates to the diversification effect of projects undertaken by a firm.6

While this may be the case for non-regulated stocks, regulation affects the risk of public utility stocks and therefore the risk reflected in beta may not follow a time path toward one as suggested by Peltzman in 1976, Binder and Norton in 1999, Kolbe and Tye in 1990, Davidson, Rangan, and Rosenstein in 1997, and Nwaeze in 2000.7 Being natural monopolies in their own geographic areas, public utilities have more influence on the prices of their product (gas and electricity) than other firms. The rate setting process provides public utilities with the opportunity to adjust prices of gas and electricity to recover the rising costs of fuel and other materials used in the transmission and distribution of electricity and gas. Companies operating in competitive markets do not have this ability. In this respect, the perceived systematic risk associated with the common stock of a public utility may be lower than that of a non-public utility. Therefore, forcing the beta of a utility stock toward one may not be appropriate, at least on a conceptual basis.

The explanations provided by Blume and others to justify the latter tendency are hardly applicable to public utilities. Unlike other companies, utilities can and do possess monopolistic power over the markets for their products. This power impacts the “negotiation process” for setting electric and gas prices.

Furthermore, it provides them with the opportunity to raise prices to recover increases in operating costs without regard to competitive market pressure. Such price influence is rarely available to companies operating in competitive market environments for their products. In that respect, macroeconomic factors will have a greater impact on the earnings and stock prices of the non-utility companies resulting in larger systematic risk or betas.

The application of Blume’s equation to public utility stocks generally results in larger betas, since most raw utility betas are less than 1. Therefore, applications of these betas to estimate the cost of capital and an allowed rate of return on common equity possibly biases the required rate of return or cost of common equity, leading to an over-investment of capital as predicted by Averch and Johnson in 1962,8 which preceded the trend in prudency reviews that began to occur in the 1980s. Although reported public utility betas may have been biased upward by the vendors of beta that applied Blume’s adjustment to public utility betas, ex post prudency reviews of “used and useful” assets defined and supported by the Duquesne 1989 US Supreme Court decision9 resulted in an underinvestment of capital in generation and transmission assets, leading to electric brownouts and blackouts. This article examines the behavior of the betas of the population of publicly traded U.S. energy utilities. In...
addition to evaluating the stability of these betas over the period from the January 1962 to December 2007, we also test whether or not public utility betas are stationary or mean reverting toward 1 or perhaps a different level.

II. Background

Investor-owned public utility regulatory proceedings to change rates for service almost always involve contentious litigation on the fair rate of return or cost of common equity. Since the cost of common equity is not observable, it must be inferred from market valuation models of common equity. The differences in the recommended allowed rates of return resulting from necessary subjective judgments in the application of cost of common equity models can easily mean 500 basis points or more in the estimate. Therefore, both the impact on customer rates for utility service and the profits of the utilities are very sensitive to the methods used to estimate the cost of common equity and allowed rate of return. The two most commonly used models are the Dividend Discount Model (DDM) and the CAPM. We discuss the use of CAPM for estimating the cost of common equity for public utilities. Our focus is on the use of market-influential betas from the major vendors of betas: Merrill Lynch, Value Line, and Bloomberg. These vendors apply Blume’s adjustment to raw betas to estimate forward-looking betas. Blume10 performed an empirical investigation, finding that beta is non-stationary and has a tendency to converge to 1. Bey in 1983 and Gombola and Kahl in 199011 found that utility betas are non-stationary and concluded that each utility beta’s non-stationarity must be viewed on an individual stock basis, unlike the recommendation of Blume which adjusts all betas for their tendency to approach 1. Similarly with Gombola and Kahl, we find that public utility betas have a tendency to be less than 1. They investigated the time series properties of public utility betas for their ability to be forecasted whereas we are concerned with the institutional reasons for the trends in beta, the bias instilled in cost of capital estimates assuming that utility betas converge to one and the widespread use and applicability of the Blume adjustment to public utility betas. McDonald, Michelfelder and Theodossiou in 201012 show that use of OLS is problematic itself for estimating betas as the nonnormal nature of stock returns result in beta estimates that are statistically inefficient and possibly biased. Blume’s equation is:

$$\beta_{t+1} = 0.343 + 0.677\beta_t$$ \hspace{1cm} (1)

where β_{t+1} is the forecasted or projected beta for stock i based on the most recent OLS estimate of firm’s beta β_t. For example if β_t is estimated using historical returns from the most recent five years, then the projected β_{t+1} may be viewed as a forecast of the beta to prevail during the next five years. As mentioned earlier, Blume’s equation implies a long-run mean reversion of betas toward 1. The long-run tendency of betas implied by Blume’s equation can be computed using the equation:

$$\bar{\beta} = \frac{0.343}{1 - 0.677} = 1.0619 \approx 1$$ \hspace{1cm} (2)

The same result can be obtained by recursively predicting beta until it converges to a final value. This can only be appropriate for stocks with average betas, as a group, close to one. This is, however, hardly the case for public utility betas that are generally less than 1 (as discussed in detail below).

The magnitude of adjustment for Blume’s beta equation is initially large and declines dramatically as the adjusted beta approaches 1 either from below (for betas lower than 1) or from above (for betas greater than 1). In this respect, the beta adjustment step (size) will be larger for betas further away from 1.

As we will see in the next section, the median beta of the public utilities studied ranges between 0.08 and 0.74 over time.
depending upon the period used. Under the assumption that betas for public utilities are consistent with Blume’s equation, the next period beta for a stock with a current beta of 0.5, will be
\[\beta_{t+1} = 0.343 + 0.677 (0.5) = 0.6815, \]
implying a 36.3 percent (0.6815/0.5) upward adjustment. On the other hand a beta of 0.4 will be adjusted to
\[\beta_{t+1} = 0.343 + 0.677 (0.4) = 0.6138 \]
which constitutes a 53.5 percent upward adjustment and a beta of 0.3 will be adjusted to 0.5461 or by 82.0 percent.

The beta adjustment method most widely disseminated by the major beta vendors is the Blume adjustment. Therefore, our focus is on the Blume adjustment for public utility betas and the public utility cost of common equity capital. Occasionally, an expert witness in a public utility rate case estimates their own betas, but they are quickly repudiated in rate proceedings since these betas are not disseminated by influential stock analysts and presumed not to be reflected in the stock price. Section III discusses the data and empirical analysis of the Blume adjustment and its impact on the cost of common equity for public utilities.

III. Data and Empirical Analysis

The data include monthly holding period total returns for 57 publicly traded U.S. public utilities for the period from January 1962 to December 2007 obtained from the University of Chicago’s Center for Research in Security Prices (CRSP) database. The sample includes all publicly traded electric and electric and gas combination public utilities with SIC codes 4911 and 4931 listed in the CRSP database. All non-U.S. public utilities traded in the U.S. and non-utility stocks were not included in the dataset. The monthly holding period total returns for each stock as calculated in the CRSP database were used for estimating betas of varying periods. The monthly market total return is the CRSP value-weighted total return.

The computation of the betas is based on the single index model, also used in Blume:

\[R_{i,t} = \alpha_i + \beta_i R_{m,t} + e_{i,t}, \]

where \(R_{i,t} \) and \(R_{m,t} \) are total returns for stock \(i \) and the market during month \(t \), \(\alpha_i \) and \(\beta_i \) are the intercept and beta for stock \(i \) and \(e_{i,t} \) is a regression error term for stock \(i \). As previously mentioned, OLS is the typical estimation method used by many vendors of beta and is used in this investigation.

Table 1 presents the mean and median OLS beta estimates for the 57 utilities using 60, 84, 96, and 108 monthly returns respectively over five different non-lapping periods between December 1962 and December 2007. We also performed the same empirical analysis for periods of 4, 6, 10, 11, 12 and 13 years and the results were similar; the results are not shown for brevity but available upon request. We used non-overlapping periods to avoid serial correlation and unit roots. If we take, for example, 360 months of time series of returns for a stock and estimate 60-month rolling betas moving one month forward for each beta, this would result in 300 betas. Since only two of 60 observations would be unique due to overlapping periods, the error term would be highly serially correlated. A Blume-type regression of these betas would have a unit root, a coefficient of one and an intercept near 0, and therefore appear to follow a random walk. Therefore, the empirical nature of beta requires that lags in the Blume equation involve no overlapping time periods.

The mean and median betas in Table 1 not only do not rise toward 1 as the time period moves forward; the betas generally decline. Table 2 includes OLS regressions of the Blume equation for the 5-, 7-, 8-, and 9-year betas. We estimated five sets of 4- through 13-year betas inclusively for each public utility then

T

The mean and median betas in Table 1 not only do not rise toward 1 as the time period moves forward; the betas generally decline. Table 2 includes OLS regressions of the Blume equation for the 5-, 7-, 8-, and 9-year betas. We estimated five sets of 4- through 13-year betas inclusively for each public utility then
regressed the latter beta on the previous period betas. The 5-, 7-, 8-, and 9-year equations are shown for brevity. The diagnostic statistics strongly refute the validity of the Blume equation for public utility stocks. Most of the R^2's are equal to or close to 0.00 and the largest is 0.09. Only one F-statistic (tests the significance of the equation estimation) is significant and all but two slopes are insignificant. Also shown is the long-run beta implied from each Blume model as shown in equation (2). They range from 0.08 to 0.59. Only one estimate, the first-period 9-year Blume equation, includes a positive and statistically significant slope and intercept. The implied long-term beta of that equation is 0.59, which is substantially below one and the largest value of all estimates. As a final and visual review of the trends in betas, we developed and plotted probability distribution box plots developed by Tukey in 1977 for the 4- through 13-year public utility betas. We have shown only the 4- and 5-year beta box plots as shown in Figures 1 and 2 for brevity (the 6- to 13-year plots are available upon request). Tukey box plots show the 25th and 75th percentiles (the box height), the 10th and 90th percentiles (the whiskers), the median (the line inside the box), and the dispersion of the outlying betas. The box plots should be viewed as looking down on the distributions of the betas. We developed 4- through 13-year beta box plots to review the trend in shorter-term versus longer-term betas. None of the 51 beta probability distributions display any tendency for betas to drift toward one. The 5-, 6- and 7-year betas have higher variances in the last period relative to all other periods. A few outlying betas are greater than 2.0. This pattern is consistent with the notion that utility holding companies are investing in risky ventures of affiliates that can retain excess returns should they be realized. Note that the mean beta in Figures 1 and 2 show the cyclical nature of short-term utility betas with a severe downturn in the late 1990s and a severe upswing in the early 2000s. Generally, the box plots show a long-term downward trend in public utility betas.

It is interesting to note that the drop in beta occurred just after

Table 1: Mean and Median Betas for Varying Time Periods.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9-Year Periods</td>
<td>Mean 0.69</td>
<td>0.60</td>
<td>0.41</td>
<td>0.40</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Median 0.68</td>
<td>0.57</td>
<td>0.40</td>
<td>0.36</td>
<td>0.22</td>
</tr>
<tr>
<td>8-Year Periods</td>
<td>Mean 0.76</td>
<td>0.39</td>
<td>0.45</td>
<td>0.27</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Median 0.74</td>
<td>0.37</td>
<td>0.43</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>7-Year Periods</td>
<td>Mean 0.68</td>
<td>0.40</td>
<td>0.40</td>
<td>0.09</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Median 0.65</td>
<td>0.39</td>
<td>0.38</td>
<td>0.06</td>
<td>0.47</td>
</tr>
<tr>
<td>5-Year Periods</td>
<td>Mean 0.36</td>
<td>0.38</td>
<td>0.53</td>
<td>0.49</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Median 0.35</td>
<td>0.38</td>
<td>0.50</td>
<td>0.45</td>
<td>0.08</td>
</tr>
</tbody>
</table>

The following model was estimated for the sample of public utility stocks for five 60-, 84-, 96-, and 108-month non-overlapping periods. The ordinary least squares method was used to estimate the parameters of the single index model: $R_{it} = \alpha_i + \beta_i R_{m,t} + \epsilon_{it}$

where R_{it} and $R_{m,t}$ are total returns for stock i and the market during month t, α_i and β_i is the intercept and capital asset pricing model beta for stock i, respectively, and ϵ_{it} is a regression error term for stock i. The entire data series ranges from December 1962 to December 2007. The stock returns are the monthly holding period total returns from the CRSP database. The market returns are the CRSP market value-weighted total returns.
Table 2: Public Utility Blume Equation Estimates.

<table>
<thead>
<tr>
<th>9-Year Betas</th>
<th>$\beta_2 = \hat{f}(\beta_1)$</th>
<th>$\beta_3 = \hat{f}(\beta_2)$</th>
<th>$\beta_4 = \hat{f}(\beta_3)$</th>
<th>$\beta_5 = \hat{f}(\beta_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0.463**</td>
<td>0.318**</td>
<td>0.480**</td>
<td>0.235**</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.062)</td>
<td>(0.096)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.214**</td>
<td>0.153</td>
<td>-0.186</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.099)</td>
<td>(0.227)</td>
<td>(0.179)</td>
</tr>
<tr>
<td>Long Run β</td>
<td>0.59</td>
<td>0.38</td>
<td>0.41</td>
<td>0.26</td>
</tr>
<tr>
<td>R^2</td>
<td>0.09</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>4.43**</td>
<td>2.36</td>
<td>0.67</td>
<td>0.20</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.04</td>
<td>0.13</td>
<td>0.42</td>
<td>0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8-Year Betas</th>
<th>$\beta_2 = \hat{f}(\beta_1)$</th>
<th>$\beta_3 = \hat{f}(\beta_2)$</th>
<th>$\beta_4 = \hat{f}(\beta_3)$</th>
<th>$\beta_5 = \hat{f}(\beta_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0.341***</td>
<td>0.464***</td>
<td>0.184**</td>
<td>0.321***</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.047)</td>
<td>(0.088)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.058</td>
<td>-0.034</td>
<td>0.193</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.115)</td>
<td>(0.189)</td>
<td>(0.220)</td>
</tr>
<tr>
<td>Long Run β</td>
<td>0.36</td>
<td>0.45</td>
<td>0.23</td>
<td>0.33</td>
</tr>
<tr>
<td>R^2</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>0.30</td>
<td>0.09</td>
<td>1.04</td>
<td>0.02</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.58</td>
<td>0.76</td>
<td>0.31</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7-Year Betas</th>
<th>$\beta_2 = \hat{f}(\beta_1)$</th>
<th>$\beta_3 = \hat{f}(\beta_2)$</th>
<th>$\beta_4 = \hat{f}(\beta_3)$</th>
<th>$\beta_5 = \hat{f}(\beta_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0.375***</td>
<td>0.375***</td>
<td>0.074</td>
<td>0.491***</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.052)</td>
<td>(0.075)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.048</td>
<td>0.059</td>
<td>0.036</td>
<td>0.128</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.122)</td>
<td>(0.179)</td>
<td>(0.259)</td>
</tr>
<tr>
<td>Long Run β</td>
<td>0.39</td>
<td>0.40</td>
<td>0.08</td>
<td>0.56</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>0.17</td>
<td>0.23</td>
<td>0.04</td>
<td>0.24</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.68</td>
<td>0.63</td>
<td>0.84</td>
<td>0.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-Year Betas</th>
<th>$\beta_2 = \hat{f}(\beta_1)$</th>
<th>$\beta_3 = \hat{f}(\beta_2)$</th>
<th>$\beta_4 = \hat{f}(\beta_3)$</th>
<th>$\beta_5 = \hat{f}(\beta_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0.329**</td>
<td>0.474***</td>
<td>0.321***</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.086)</td>
<td>(0.088)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.151</td>
<td>0.137</td>
<td>0.316**</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.213)</td>
<td>(0.157)</td>
<td>(0.111)</td>
</tr>
<tr>
<td>Long Run β</td>
<td>0.39</td>
<td>0.55</td>
<td>0.47</td>
<td>0.11</td>
</tr>
<tr>
<td>R^2</td>
<td>0.03</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>1.62</td>
<td>0.41</td>
<td>4.07</td>
<td>0.03</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.21</td>
<td>0.52</td>
<td>0.05</td>
<td>0.87</td>
</tr>
</tbody>
</table>

The following Blume equation was estimated using the betas of public utility stocks for five 60-, 84-, 96-, and 108-month non-overlapping periods. The ordinary least squares method was used to estimate the parameters of the following model:$\beta_{i,t+1} = \gamma_0 + \gamma_1 \beta_{i,t} + \gamma_2 f_{i,t}$

where $\beta_{i,t}$ is the OLS estimated CAPM beta for stock i, $\beta_{i,t}$ is the previous period beta for stock i, γ_0 and γ_1 are the intercept and slope of the Blume equation, and $f_{i,t}$ is the regression error term. The time subscripts on the betas refer to the time periods of estimation from Table 1. For example, $\beta_{i,t}$ in the 9 year panel refers to the beta estimated for each stock using the returns data from December 1998 to December 2007. The long-run β is $\gamma_0/(1 - \gamma_1)$. It can also be found by solving recursively for the next period beta until it converges on a final value. Newey-West autocorrelation and heteroskedasticity consistent standard errors are in parentheses.

Significance at 0.10 level.

Significance at 0.05 level.

Significance at 0.01 level.

deregulation of the wholesale electricity market in April 1996. This is inconsistent with the buffering theory of Peltzman and Binder and Norton who found that regulation buffers the volatility of cash flows of public utilities from the vicissitudes of competition and business cycles and therefore reduces their systematic risk. However, this is consistent with Koble and Tye’s 1990 theory of asymmetric regulation and the empirical findings of Michelfelder and Theodossiou in 2008, who found that asymmetric regulation is associated with down-market public utility betas greater than their up-market betas. Adverse asymmetric regulation began in the 1980s and resulted in an upper boundary for public utilities’ allowed rates of return equal to the cost of capital. If public utilities were granted an opportunity to earn their cost of common equity, regulators frequently would disallow specific investments ex post from earning the allowed rate of return if they were deemed “not used and useful,” even though they were deemed to be prudent when the decision was made to make these investments. The result was that utilities were not truly granted the opportunity to earn their allowed rate of return. If they happened to over-earn their allowed rate of return due to higher than anticipated demand forecasts, “excess” returns were taken away. This became known as regulatory risk, quantified as a risk premium in the cost of

Table 1: For example, final value. Newey-West autocorrelation and heteroskedasticity consistent standard errors are in parentheses.
common equity. Michelfelder and Theodossiou in 200817 also
concluded that public utility stocks are no longer defensive stocks
dampening the downward behavior of otherwise less diversified portfolio returns in
down markets.

Therefore, some suggest that deregulation may have “buffered” utility cash flows from
regulatory risk, i.e., the chance that regulation would impose disappointing allowed rates of return in the manner described above. The advent of generation
deregulation caused electric utilities with generating plants to no longer face regulatory risk on over 50 percent of their asset base. This
is consistent with falling betas after deregulation of electric generation. The Brattle Group in 200418 found the same result in a research project for the Edison Electric Institute, an electric utility trade and lobbying organization. They found that electric utility betas fell after deregulation.

We suggest that it may be due to the relief of deregulation from asymmetric regulation. In any case, we find that the Blume adjustment toward 1 is not supported by our empirical results. This adjustment suggests that in the long run, all public utilities (and all firms) would gravitate toward the same risk and return. Our results herein suggest that the Blume adjustment is inappropriate for public utilities as it assumes that public utility betas are moving toward one in the long run as are non-utility company betas.

We perform a simple calculation to show the impact of a biased beta on public utility revenues. We calculate the common equity risk premium on the market as the annual total return for the CRSP market return from 1926 to 2007 to be approximately 12 percent and the average return on a three-month T-Bill to be about 4 percent. The long-term common equity risk premium is 8 percent. The difference between a beta of 0.50 and a Blume adjusted beta of .67 would result in a difference in cost of common equity

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.pdf}
\caption{Boxplots of Utility Stock Betas Using 4 Year Periods Data}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.pdf}
\caption{Boxplots of Utility Stock Betas Using 5 Year Periods Data}
\end{figure}
of 136 basis points. Using a common equity ratio of 0.50, this would impact the weighted average rate of return by 68 points. Assuming a rate base of $5 billion (the level for a moderately large electric utility), the difference in “allowed” net income would be 0.0068 x $5 billion, or, $34 million. Assuming a 37.5 percent income tax rate, the increase in revenues required to earn the additional $34 million would be $54 million. This is obviously a substantial difference.

It is important for us to stress in this example that we do not necessarily advocate these inputs for the recommended cost of common equity for a utility with a raw beta of 0.50. The deliberation in recommending the cost of common equity is performed with a careful and detailed analysis of the company and stock, referral to more than one valuation model of the cost of common equity estimation and expert judgment.

IV. Conclusion

Major vendors of CAPM betas such as Merrill Lynch, Value Line, and Bloomberg distribute Blume-adjusted betas to investors. We have shown empirically that public utility betas do not have a tendency to converge to 1. Short-term betas of public utilities follow a cyclical pattern with recent downward trends, then upward structural breaks with long-term betas following a downward trend. We estimate the Blume equation for electric and gas public utilities, finding that all but one equation is statistically insignificant. The single significant equation implies a long-term convergence of beta to approximately 0.59. During our nearly 45-year study period, the median beta ranged from 0.08 to 0.74. Therefore the Blume equation overpredicts utility betas and Blume-adjustments of utility betas are not appropriate.

We are not suggesting that betas should not be adjusted for prediction. Rather, the measurement period and subjective adjustment to beta should be based upon the likely future trend in peer group or public utility betas, or the specific utility’s beta, not the trend in betas for all stocks in general. The time pattern of utility betas is obviously more complex than a smooth curvilinear adjustment, or for that matter, any adjustment toward one. Nor do we suggest as an alternative the use of raw or unadjusted betas in an application of the CAPM to estimate a public utility’s cost of common equity.

Endnotes:

6. Id.
10. Blume, supra note 5.
17. Id.

Major vendors of CAPM betas such as Merrill Lynch, Value Line, and Bloomberg distribute Blume adjusted betas to investors.