

2021 Electric Integrated Resource Plan

James Gall, Electric IRP Manager

Avista Reliability Needs

- Load growth & changes
 - 0.3% annual average growth.
 - Large potential increases with electrification.
 - Climate change might lower winter and increase summer peak growth.
- Meet average coldest day's peak hour load, required reserves, and a 16% planning margin.
 - Maintain 5 percent Loss of Load Probability.
 - Regional effort to "pool" resources with resource adequacy program may lower resource need.
- ~300 MW needed with Nov-2026 expiration of Lancaster PPA
 - Additional 200 MW by 2036
- Aging Infrastructure & state policy pressuring existing resources to close:
 - Colstrip: 2025 (WA)
 - Northeast CT: 2035
 - Boulder Park: 2040
 - Kettle Falls CT: TBD
 - Coyote Springs 2 CCCT/Rathdrum CTs ???

Peak Load Forecast

AVISTA

Washington Clean Energy Requirements

- Assumes acquisition of clean energy to equal 80% of net retail sales by 2022.
 - Between 2022 and 2030 increases by 5 percent every two years to reach 100%.
- Resource Allocation
 - Washington customers "buy" Idaho clean energy share.
 - Assumes Idaho's wind/biomass may be sold to WA without limitation.
 - Assumes Idaho's hydro purchases limited to 20% of sales beginning in 2030, then declining. No transfers prior to 2030 for planning purposes.
- By 2045, 100% of Washington sales must be served with clean energy.
 - Assumes clean energy generated is equal to annual retail sales.

Washington Retail Sales & Clean Resource Balance

AVISTA'

Resource Options

- Multiple factors drive resource selection
 - Cost or price
 - Clean vs. fossil fuel
 - Capacity value or "peak credit"
 - Storage vs. energy production
 - Location
 - Availability (new vs. existing)

Resource retirements

- Future capital investment
- Operating & maintenance cost/availability
- Fuel availability
- Carbon pricing risk
- Non-energy costs & benefits
 - Social cost of carbon
 - Locational siting
 - Health, economic, and other benefits (still to come)

<u>Clean Resources</u>

Wind Solar (utility and customer) Biomass Hydro Geothermal Nuclear

Demand Resources

Energy efficiency

Conservation

Load control

Rate programs

Fuel switching

Co-generation

Fossil Fuel Resources

Natural gas peaker Natural gas baseload Coal (retention) *Customer generation*

<u>Storage</u>

Pumped hydro Lithium-ion batteries (utility & customer) Liquid air energy storage Flow batteries Hydrogen

IRP's Preferred Resource Strategy – Energy Efficiency

- AEG conducted the conservation potential study.
- Energy Efficiency (EE) meets 68% of future load growth.
- 63% of EE programs are C&I.
- 77% of EE savings are from Washington.
- Washington avoided costs are \$106/MWh plus \$151/kWyear for capacity.
 - Comprised of traditional avoided costs (energy/capacity, 35%), and non-traditional (social cost of carbon, clean energy, nonenergy costs, 65%).
- EE reduces winter peak by a 101% ratio to energy savings and 97% ratio for summer.
- Washington biennium target is 50% higher then previous biennium and higher than the IRP's two year cost effective acquisition amount.

2022-2023 Biennial Conservation Target (MWh)		
CPA Pro-Rata Share	101,566	
Distribution and Street Light Efficiency	219	
EIA Target	101,785	
Decoupling Threshold	5,119	
Total Utility Conservation Goal	106,904	
Excluded Programs (NEEA) ¹	-12,896	
Utility Specific Conservation Goal	94,008	
Decoupling Threshold	-5,119	
EIA Penalty Threshold	88,889	

System Energy Efficiency Selection

Washington End Use Program Targets

AVISTA

1. NEEA yet to be determined for the 2022-23 Biennium

5

IRP's Preferred Resource Strategy - Demand Response

- AEG conducted demand response potential study.
- IRP considered 16 demand response programs with savings in both winter and summer months.
- Programs will increase over time with enrollment.
- IRP identifies three levels of demand response:
 - Amount under contract;
 - · Amount expected when called upon; and
 - Amount contributed to reliability needs due to duration and call limitations.

Total Dem	and Respons	e
	Wheehington	

al Daman d Daama

Program	Washington	Idaho
Time of Use Rates	2 MW (2024)	2 MW (2024)
Variable Peak Pricing	7 MW (2024)	6 MW (2024)
Large C&I Program	25 MW (2027)	n/a
DLC Smart Thermostats	7 MW (2031)	n/a
Third Party Contracts	14 MW (2032)	8 MW (2024)
Behavioral	1 MW (2041)	n/a
Total	56 MW	15 MW

Annual Demand Response Acquisition

AVISTA

IRP's Preferred Resource Strategy - Supply Resources

- IRP focuses on state goals and system reliability to find lowest reasonable cost to serve customer load.
- Develop resource needs assessment for each state.
 - State policies drive resource choices.
 - Cost allocation based on state policies.
 - Rate forecasts.
- Does not include resources in current RFP.
- Limits existing resources acquisition to 75 MW of additional regional hydro after 2031.
- Resources are selected either as system resource (65%/35%) or state resource.

Supply-Side Resource Changes

Resource Type	Year	State	Capability (MW)
Colstrip	2021	System	(222)
Montana wind	2023	WA	100
Montana wind	2024	WA	100
Lancaster	2026	System	(257)
Post Falls modernization	2026	System	8
Kettle Falls modernization	2026	System	12
Natural gas peaker	2027	ID	85
Natural gas peaker	2027	System	126
Montana wind	2028	WA	100
NW Hydro Slice	2031	WA	75
Rathdrum CT upgrade	2035	System	5
Northeast	2035	System	(54)
Natural gas peaker	2036	System	87
Solar w/ storage	2038	System	100
4-hr storage for solar	2038	System	50
Boulder Park	2040	System	(25)
Natural gas peaker	2041	ID	36
Montana wind	2041	WA	100
Solar w/ storage	2042-2043	WA	239
4-hr storage for solar	2042-2043	WA	119
Liquid air energy storage	2044	WA	12
Liquid air energy storage	2045	ID	10
Solar w/ storage	2045	WA	149
4-hr storage for solar	2045	WA	75
Supply-side resource net total (MW)			1,032
Supply-side resource total additions (MW)			1,589

Preferred Resource Strategy Costs and Rates

- Existing and new costs are allocated between the states Avista serves.
- Washington rates are ~1 cent (12%) higher per kWh today.
 - Spreads increase to 1.7 cents (15%) by 2030 and 2.0 cents by 2035.*
 - Spreads increases without support of Idaho renewable resources.
- Power costs rise well above inflation over first 8 years due to clean energy and capacity additions.

Overall Energy Rates

Power Cost Rate Change

AVISTA

* Non-power related cost such as non-generation transmission, distribution, and administration, are not directly modeled in the IRP and assume a 2% annual growth rate.

8

Greenhouse Gas Emissions Forecast

- Colstrip responsible for >1 million tons. ٠
 - Colstrip emissions would fall as the plant dispatch decreases over time.
- By 2030, emissions fall by 76 percent. ٠
- Emissions from natural gas upstream ٠ operations and construction are included in this IRP.
 - Washington load portion includes these emissions priced at the social cost of carbon.
 - WUTC recently ruled this emissions accounting is encouraged but not required.
- Net emissions include market • purchases and sales at the regional emission intensity rate.

Note: 2020 emissions are estimated to be ~2.7 million metric tons.

Annual Greenhouse Gas Types

ANISTA

Equity & Non-Energy Benefits Plan

Vulnerable Communities with Avista Washington Service Area

- Avista is developing an Equity Advisory Group
 - First meeting will occur prior to May 1, 2021.
- Avista conducted a preliminary assessment of vulnerable communities within the service territory.
- Conducted base-line comparisons for:
 - Energy use;
 - Energy burden;
 - Reliability and resiliency; and
 - Avista power plant emissions.
- Avista will conduct analysis for all resources to consider non-energy impacts to all communities.

AVISTA

Washington Related Comments Summary of Key Issues & Highlights

Next Public Meeting:

February 24th from 5 pm to 7pm will be a public IRP meeting for both natural gas and electric IRPs for all customers.

https://us02web.zoom.us/webinar/register/WN_d GkqejcaRLa8epxl0rKcIA

Public comment themes to date

- Snake River Dam removal concerns
- Interest in microgrid/home storage
- Energy storage
- Move to zero carbon
- AMI concerns
- Cyber & physical security
- More R&D for energy storage
- EE incentives for landlords
- Reliability (too much reliance on renewables)
- What is equity

Commenter	Comment
WA/ID staff	Jurisdictional cost allocation of new resources.
Renewable NW	Consider lowering solar and storage capital costs.
Renewable NW, WA Staff	Enhance evaluation of ancillary services for resource options.
Rye Development	Avista should not seek to construct new natural gas facilities.
Rye Development	Advocate for capacity RFP as soon as possible.
NW Energy Coalition	Clarification of Social Cost of Carbon analysis within the plan.
NW Energy Coalition	Include 2045 Water Heaters in Demand Response acquisition.
Various Commenters	Additional detail and analysis of resource peak credit for resource adequacy.
Various Commenters	Additional analysis on Distributed Energy Resource's non energy benefits.
Various Commenters	Support for continued electrification analysis and more scenario analysis for both building and transportation electrification.
Tyre Energy	Consider Lancaster PPA extension as a resource option