The Valuation of
Common Stocks

In Chapter 17 it was noted that one purpose of financial analysis is to iden
tify mispriced securities. Fundamental analysis was mentioned as one approah
for conducting a search for such securities. With this approach the security ana
lyst makes estimates of such things as the firm’s future earnings and dividends. Il
these estimates are substantially different from the average estimates of other an
alysts but are felt to be more accurate, then from the viewpoint of the securin
analyst, a mispriced security will have been identified. If it is also felt that the
market price of the security will adjust to reflect these more accurate estimates,
then the security will be expected to have an abnormal rate of return. Accord
ingly, the analyst will issue either a buy or sell recommendation, depending on
the direction of the anticipated price adjustment. Based on the capitalization ol
income method of valuation, dividend discount models have been frequently
used by fundamental analysts as a means of identifying mispriced stocks. This
chapter will discuss dividend discount models and how they can be related to
models based on price-earnings ratios.

" CAPITALIZATION OF INCOME METHOD OF VALUATION

There are many ways to implement the fundamental analysis approach to identi-
fying mispriced securities. A number of them are either directly or indirectly re-
lated to what is sometimes referred to as the capitalization of income method of
valuation.! This method states that the “true” or “intrinsic” value of any asset is
based on the cash flows that the investor expects to receive in the future from
owning the asset. Because these cash flows are expected in the future, they are
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adjusted by a discount rate to reflect not only the time value of money but also
the riskiness of the cash flows.

Algebraically, the intrinsic value of the asset Vis equal to the sum of the pres-
ent values of the expected cash flows:

G C, C,
Ve 2y
A+k)) T A+ k2 A+ k)3
_ G 18.1
20 (18.1)

where C, denotes the expected cash flow associated with the asset at time ¢ and k
is the appropriate discount rate for cash flows of this degree of risk. In this equa-
tion the discount rate is assumed to be the same for all periods. Because the sym-
bol @ above the summation sign in the equation denotes infinity, all expected
cash flows, from immediately after making the investment until infinity, will be
discounted at the same rate in determining V.*

18.1.1 Net Present Value

For the sake of convenience, let the current moment in time be denoted as zero,
or t = 0.If the cost of purchasing an assetat ¢ = 0 is P, then its net present value
(NPV) is equal to the difference between its intrinsic value and cost, or:

NPV = V-—-P

=g
[E{ (1 + k)t

The NPV calculation shown here is conceptually the same as the NPV calcula-
ton made for capital budgeting decisions that has long been advocated in intro-
ductory finance textbooks. Capital budgeting decisions involve deciding whether
Or not a given investment project should be undertaken. (For example, should a
new machine be purchased?) In making this decision, the focal point is the NPV of
the project. Specifically, an investment project is viewed favorably if its NPV is posi-
tive, and unfavorably if its NPV is negative. For a simple project involving a cash
outflow now (at ¢t = 0) and expected cash inflows in the future, a positive NPV
means that the present value of all the expected cash inflows is greater than the
cost of making the investment. Conversely, a negative NPV means that the present
value of all the expected cash inflows is less than the cost of making the investment.

The same views about NPV apply when financial assets (such as a share of
common stock}, instead of real assets (such as a new machine), are being consid-
ered for purchase. That is, a financial asset is viewed favorably and said to be un-

-derpriced (or undervalued) if NPV > 0. Conversely, a financial asset is viewed
¢ unfavorably and said to be overpriced or (overvalued) if NPV < 0. From Equation
(18.2), this is equivalent to stating that a financial asset is underpriced if V > P:

il

—P. (18.2)

- ¢
DTl (18.3)
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Conversely, the asset is overvalued if V< P:

¢,
— = __<p
5(1 + k)

18.1.2 Internal Rate of Return

Another way of making capital budgeting decisions in a manner that is sirsl§
the NPV method involves calculating the internal rate of return (IRR) assoct
with the investment project. With IRR, NPV in Equation (18.2) is set eqt
zero and the discount rate becomes the unknown that must be calculated.
is, the IRR for a given investnent is the discount rate that makes the NPV of
investment equal to zero. Algebraically, the procedure involves solving the §
lowing equation for the internal rate of return k™

z C o
=5 ——_ _p 8!
0 z Ty P (18.99°

Equivalently, Equation (18.5) can be rewritten as:

< C
P=>y —rt—. 18.6
g TEWSY (18.6)
The decision rule for IRR involves comparing the project’s IRR (denoted by
k') with the required rate of return for an investment of similar risk (denoted by
k). Specifically, the investment is viewed favorably if & > k, and unfavorably if
k" < k. As with NPV, the same decision rule applies if either a real asset or a fi-
nancial asset is being considered for possible investment.?

18.1.3 Application to Common Stocks

This chapter is concerned with using the capitalization of income method to de-
termine the intrinsic value of common stocks. Because the cash flows associated
with an investment in any particular common stock are the dividends that are ex-
pected to be paid throughout the future on the shares purchased, the models
suggested by this method of valuation are often known as dividend discount
models (DDMs).* Accordingly, D, will be used instead of C, 1o denote the expect-
ed cash flow in period fassociated with a particular common stock, resulting in
the following restatement of Equation (18.1):

D, D, Dy

Vit as o T aa e T

< D, -
= z—m (18.7)

(=1

Usually the focus of DDMs is on determining the “true” or “intrinsic” value
of one share of a particular company’s common stock, even if larger size pur-
chases are being contemplated. This is because it is usually assumed that larger
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size purchases can be made at a cost that is a simple multiple of the cost of one
share. (For example, the cost of 1,000 shares is usually assumed to be 1,000 imes
the cost of one share.) Thus the numerator in DDMs is the cash dividends per
share that are expected in the future.

However, there is a complication in using Equation (18.7) to determine the
intrinsic value of a share of common stock. In particular, in order to use this
equation the investor must forecast all future dividends. Because a common
stock does not have a fixed lifetime, this suggests that an infinitely long stream of
dividends must be forccast. Although this mnay seem to be an impossible task,
with the addition of certain assumptions, the equation can be made tractable
{that is, usable).

These assumptions center on dividend growth rates. That is, the dividend
per share at any time ¢ can be viewed as being equal to the dividend per share at
time ¢ — 1 times a dividend growth rate of g,,

Dy =D, (1 + g) (18.8)

or, equivalently:

Dt _ Dz~1
b, g (18.9)
For example, if the dividend per share expected at ¢t = 2 is $4 and the dividend
per share expected att = 3 is $4.20, then g5 = ($4.20 — $4) /%4 = 5%.
The different types of tractable DDMs reflect different sets of assumptions
about dividend growth rates, and are presented next. The discussion begins with
the simplest case, the zero-growth model.

THE ZERO-GROWTH MODEL

One assumption that could be made about future dividends is that they will re-
main at a fixed dollar amount. That is, the dollar amount of dividends per share
that were paid over the past year D), will also be paid over the next year Dy, and
the year after that Dy, and the year after that Dy, and so on—that is,

D()=D1:D2=D3=...:Dx'

This is equivalent to assuming that all the dividend growth rates are zero, be-
tause if g, = 0, then D, = D,_) in Equation (18.8). Accordingly, this model is
often referred to as the zero-growth (or no-growth) model.

.

ey

3.2.1 Net Present Value

Be impact of this assumption on Equation (18.7) can be analyzed by noting
jat happens when D, is replaced by D, in the numerator:

< D,
V=Y —— (18.10)
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Fortunately, Equation (18.10) can be simplified by noting that D, is a S
lar amount, which means that it can be written outside the summation 8

t=1

o ply L
! ‘D”[E (1 + k)

The next step involves using a property of infinite series from mathem
If k > 0, then it can be shown that:

< 1 1 :

z (1 + k)! k y
Applying this property to Equation (18.11) results in the following formula
the zero-growth model:

_ D
kO.

Because D, = D)y, Equation (18.13) is written sometimes as:

y= =21 (18.14)

Example

As an example of how this DDM can be used, assume that the Zinc Company is
expected to pay cash dividends amounting to $8 per share into the indefinite fu-
ture and has a required rate of return of 10%. Using either Equation (18.13) o
Equation (18.14), it can be seen that the value of a share of Zinc stock is equal to
$80 (= $8/.10). With a current stock price of $65 per share, Equation (18.2)
would suggest that the NPV per share is $15 (= $80 — $65). Equivalently, as
V = $80 > P = $65, the stock is underpriced by $15 per share and would be a
candidate for purchase.

18.2.2 Internal Rate of Return

Equation (18.13) can be reformulated to solve for the IRR on an investment in a
zero-growth security. First, the security’s current price Pis substituted for V, and
second, £ is substituted for k. These changes result in:

Pty
k
which can be rewritten as:
D
k= 7)9 (18.154)
Dy
= —, 18.15b
2 (18.15b)
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Exampfe

Applying this formula to the stock of Zinc indicates that £ = 12.3% (=
$8/%$65). Because the IRR from an investment in Zinc exceeds the required
rate of return on Zinc (12.5% > 10%), this method also indicates that Zinc is
underpriced.®

18.2.3 Application

The zero-growth model may seem quite restrictive. After all, it secms unrcason-
able to assume that a given stock will pay a fixed dollar-size dividend forever. Al-
though such a criticism has validity for common stock valuation, there is one
particular situation where this model is quite useful.

Specifically, whenever the intrinsic value of a share of high-grade preferred
stock is to be determined, the zero-growth DDM will often be appropriate. This
is because most preferred stock is nonparticipating, meaning that it pays a fixed
dollarsize dividend that will not change as earnings per share change. Further-
more, for high-grade preferred stock these dividends are expected to be paid
regularly into the foresceable future. Why? Because preferred stock does not
have a fixed lifetime, and, by restricting the application of the zero growth
model to high-grade preferred stocks, the chance of a suspension of dividends is
remote.®

THE CONSTANT-GROWTH MODEL

The next type of DDM to be considered is one that assumes that dividends will
grow from period to period at the same rate forever, and is therefore known as
the constant growth model.” Specifically, the dividends per share that werc paid
over the previous year D, are expected to grow at a given rate g, so that the divi-
dends expected over the next year D are expected to be equal to Dy(1 + g).
Dividends the year after that arc again expected to grow by the same rate g,
meaning that Dy = Dy(1 + g). Because D; = I)y(1 + g), this is equivalent to as-
suming that Dy, = Dy(1 + g)?and, in general:

D, = D,_,(1 + g) (18.16a)
= Dy(1 + o). (18.16b)

18.3.1 Net Present Value

The impact of this assumption on Equation (18.7) can be analyzed by noting
what happens when D, is replaced by Dy(1 + g)’in the numerator:

£
2

V= E‘,M. (18.17)
o (L + k)
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Fortunately, Equation (18.17) can be simplified by noting that D, is &
lar amount, which means that it can be written outside the summation s

(1+
V= [)Q[E(Ll:%

The next step involves using a property of infinite series from mathe
If k> g, then it can be shown that:

c(d+g _1+g
§(1+k)’ k—g «

Substituting Equation (18.19) into Equation (18.18) results in the valuation
mula for the constant-growth model:

Sometimes Equation (18.20) is rewritten as:

V= D (18.21)
k- g

because Dy = Dy(1 + g).

Example

As an example of how this DDM can be used, assume that during the past yeat
the Copper Company paid dividends amounting to $1.80 per share. The forecast

e

[ \mle TLus J)mjends over the next year are expected to equal $1.89 [= $1.80

X (1 + .05)]. Using Equation (18.20) and assuming a required rate of return k
of 11%, it can be seen that the value of a share of Copper stock is equal to $31.50
[=$1.80 % (1 + .05 /(.11 — .05) = $1.89/(.11 — .05)]. With a current stock
price of $40 per share, Equation (18.2) would suggest that the NPV per share is
—$8.50 (= $31.50 — $40). Equivalently, as V = $31.50 < P = $40, the stock is
overpriced by $8.50 per share and would be a candidate for sale if currently
owned.

18.3.2 Internal Rate of Return

Equation (18.20) can be reformulated to solve for the IRR on an investment in a
constant-growth security. First, the current price of the security P is substituted
for Vand then k" is substituted for k. These changes result in:

p=p,| LTEL| (18.22)
k™~ g
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which can be rewritten as:

po= Dl g (18.23a)
- g
D,
=2 18.23b
bt (18.23b)

Example

Applying this formula to the stock of Copper indicates that k* = 9.72% (=
[$1.80 X (1 + .05)/%40] + .05 = ($1.89/%40) + .05}. Because the required
rate of return on Copper exceeds the IRR from an investment in Copper (11%
> 9.72%), this method also indicates that Copper is overpriced.

18.3.3 Relationship to the Zero-Growth Model

The zero-growth model of the previous section can be shown to be a special case
of the constant-growth model. In particular, if the growth rate gis assumed to be
equal to zero, then dividends will be a fixed dollar amount forever, which is the
same as saying that there will be zero growth. Letting g = 0 in Equations (18.20)
and (18.23a) results in two equations that are identical to Equations (18.13) and
(18.15a), respectively.

Even though the assumption of constant dividend growth may seem less re-
strictive than the assumption of zero dividend growth, it may still be viewed as
unrealistic in many cases. However, as will be shown next, the constant-growth
inodel is important because it is embedded in the multiple-growth model.

- AT cencral DOM o7 YoLuig COmMOn S0k € e mulpe.growth modl.

2. With this model, the focus is on a time in the future (denoted by T') after which
dividends are expected to grow at a constant rate g. Although the investor is still
poncerned with forecasting dividends, these dividends do not need to have any
eeific pattern until this time, after which they will be assumed to have the spe-
pattern of constant growth. The dividends up until 7 (Dy, Dy, Dy, . . ., D))
I be forecast individually by the investor. (The investor also forecasts when this
we " will occur.) Thereafter dividends are assumed to grow by a constant rate g
the investor must also forecast, meaning that:

DT+1 = DT(l + g)

Dy =D, (1 +g)
D7'+3 = DT+2(1 + g)

D, (1 + g)2
D (1 + g)3

Il

pon. Figure 18.1 presents a time line of dividends and growth rates associ-
ith the multiple-growth model.
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D, D, Dy Dr,,

. e
(1 + k) + (1 + kP + (1+ kP + (1 + k)T +(k—g)(1+k)7

Vr Vr

+

N —

Figure 18.1
Time Line for Multiple-Growth Model

18.4.1 Net Present Value

In determining the value of a share of common stock with the multiple-growth
modecl, the present value of the forecast stream of dividends must be dete
mined. This can be done by dividing the stream into two parts, finding the prew
ent value of each part, and then adding these two present values together.

The first part consists of tinding the present value of all the forecast divi-
dends that will be paid up to and including time 7. Denoting this present valur
by V,_, itis equal to:

4 D
4 —_ P S 9.
v, ‘§=f‘ T (18.24)

The second part consists of finding the present value of all the forecast divi-
dends that will be paid after time 7, and involves the application of the constant-
growth model. The application begins by imagining that the investor is not ar
time zero but is at time 7, and has not changed his or her forecast of dividends
for the stock. This means that the next period’s dividend D, ,; and all those
thereafter are expected to grow at the ratc g. Thus the investor would be viewing
the stock as having a constant growth rate, and its value at time 7, V,, could be
determined with the constant-growth model of Equation (18.21):

v, = nm(—l—). (18.25)
k—g

One way to view V; is that it represents a lump sum that is just as desirable as
the stream of dividends after 7. That is, an investor would find a lump sum of
cash equal to V,, to be received at time T, to be equally desirable as the stream of
dividends D, D, .y, D;,4, and so on. Now given that the investor is at time
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zero, not at time 7, the presentvalue at £ = 0 of the lump sum V, must be deter-
mined. This is done simply by discounting it for T periods at the rate &, resulting
in the following formula for finding the present valuc at time zero for all divi-
dends after 7, denoted V., :

Voo = V,

ﬁ] (18.26)

D7‘+1

(k=g (1 + k"

Having found the present value of all dividends up to and including time 7
with Equation (18.24), and the present value of all dividends after time 7" with
Equation (18.26), the value of the stock can be determined by summing up
these two amounts:

V=V, +V,

N /R TS
B E(l + k) * h —g)(1 + k)T (18.27)

Figurc 18.1 illustrates the valuation procedure for the multiple-growth DDM
that is given in Equation (18.27).

! xample

As an example of how this DDM can be used, assume that during the past year
the Magnesium Company paid dividends amounting to .75 per share. Over the

uext year, Magnesium is e)Tected to ‘)a\ (Hm \m ” i NQ \ |

( : |
L L

. J hy = — 5./5)/%.75 = 167%. The year after that, dividends are
expected to amount to $3 per share, indicating that gy = (Dy — D))/D; = ($3 —
$2)/$2 = 50%. At this timc, the forecast is that dividends will grow by 10% per
year indefinitely, indicating that 7' = 2 and g = 10%. Consequently, D, ,; = Ds
$3(1 + .10) = $3.30. Given a required rate of rcturn on Magnesium shares
15%, the values of V,_ and V,, can be calculated as follows:

\ -

2 3
V- = 3.15)1 T (‘1’5&.15)2
= $4.01
S $3.30
(15 = 10)(1 + .15)2
= $49.91.

g V.- and V.| results in a value for V of $4.01 + $49.91 = $53.92. With
t stock price of $55 per share, Magnesium appears to be fairly priced.
Magnesium is not significantly mispriced because V and P are nearly of
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18.4.2 Internal Rate of Return

The zero-growth and constant-growth models have equations for V that]
reformulated in order to solve for the IRR on an investment in a stock. !
nately, a convenient expression similar to Equations (18.15a), (18.15b), (]
and (18.23b) is not available for the multiplegrowth model. This can be
noting that the expression for IRR is derived by substituting P for V, and I's
in Equation (18.27):

— - Dt + D1+1
S+ kY k" — g (1 + k"7

(

This equation cannot be rewritten with k isolated on the left-hand side, m
ing that a closed-form expression for IRR does not exist for the multiple-growth
model.

However, all is not lost. It is still possible to calculate the IRR for an invest
ment in a stock conforming to the multiplegrowth model by using an “educag. -
ed” trial-and-error method. The basis for this method is in the observation that
the right-hand side of Equation (18.28) is simply equal to the present value of -
the dividend stream, where £ is used as the discount rate. Hence the larger the
value of k*, the smaller the value of the right-hand side of Equation (18.28). The
trial-and-error method proceeds by initially using an estimate for k". If the result-
ing value on the right-hand side of Equation (18.28) is larger than F, then a larg-
er estimate of k" is tried. Conversely, if the resulting value is smaller than F, then
a smaller estimate of k" is tried. Continuing this search process, the investor can
hone in on the value of k" that makes the right-hand side equal P on the lefi-
hand side. Fortunately, it is a relatively simple matter to program a computer to
conduct the search for k" in Equation (18.28). Most spreadsheets include a func-
tion that does so automatically.

Example

Applying Equation (18.28) to the Magnesium Company results in:

$55 = $2  , _ $3 $3.30
1+ kY A+ kD2 (B =100 + k)Y

(18.29)

Initially a rate of 14% is used in attempting to solve this equation for k. Inserting
14% for k" in the right-hand side of Equation (18.29) results in a value of $67.54.
Earlier 15% was used in determining Vand resulted in a value of $53.92. This
means that £ must have a value between 14% and 15%, since $55 is between
$67.54 and $53.92. If 14.5% is tried next, the resulting value is $59.97, suggesting
that a higher rate should be tried. If 14.8% and 14.9% are subsequently tried,
the respective resulting values are $56.18 and $55.03. As $55.03 is the closest to
F, the IRR associated with an investment in Magnesium is 14.9%. Given a re-
quired return of 15% and an IRR of approximately that amount, the stock of
Magnesium appears to be fairly priced.
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18.4.3 Relationship to the Constant-Growth Model

The constant-growth model can be shown to be a special case of the multiple-
growth model. In particular, if the time when constant growth is assumed to
begin is set equal to zero, then:

T Dt
V=3 —+— =
Z{ (1 + k)

and
DT+1 — Dl
k-1 + k)" k—¢g

because T = 0 and (1 + k)° = 1. Given that the muliiplegrowth model states
that V= V,_ + V., it can be seen that setting T = Oresultsin V = D/ (k — g),
a formula that is equivalent to the formula for the constant-growth model.

Vie =

18.4.4 Two-Stage and Three-Stage Models

Two dividend discount models that investors sometimes use are the two-stage
model and the three-stage model.® The two-stage model assumes that a constant
growth rate gy exists only until some time 7, when a different growth rate g, is as-
sumed to begin and continue thereafter. The three-stage model assumes that a
constant growth rate g; exists only until some time 7}, when a second growth
rate is assumed to begin and last until a later time 7y, when a third growth rate is
assumed to begin and last thereafter. By letting V;, denote the present value of
all dividends after the last growth rate has begun and V; _ the present value of all
the preceding dividends, it can be seen that these models are just special cases of
the multiple-growth model.

In applying the capitalization of income method of valuation to common
stocks, it might seem appropriate to assume that the stock will be sold at some
pointin the future. In this case the expected cash flows would consist of the divi-

_dends up to that point as well as the expected selling price. Because dividends
“afer the selling date would be ignored, the use of a dividend discount model
“may seem to be improper. However, as will be shown next, this is not $O.

* VALUATION BASED ON A FINITE HOLDING PERIOD

gapitalization of income method of valuation involves discounting all divi-
that are expected throughout the future. Because the simplified models
owth, constant growth, and multiple growth are based on this method,
involve a future stream of dividends. Upon reflection it may seem that
lels are relevant only for an investor who plans to hold a stock forever,
h an investor would expect to receive this stream of future dividends.
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But what about an investor who plans to sell the stock in a year?®
situation, the cash flows that the investor expects to receive from pure
share of the stock are equal to the dividend expected to be paid one
now (for ease of exposition, it is assumed that common stocks pay divid
nually) and the expected selling price of the stock. Thus it would seem 3
ate to determine the intrinsic value of the stock to the investor by dis
these two cash flows at the required rate of return as follows:

D+ B
1+ k

D, i
1+ & 1+ k

where D) and P, are the expected dividend and selling price at ¢t = 1, respec

In order to use Equation (18.30), the expected price of the stock at ¢ #-
must be estimated. The simplest approach assumes that the selling price will be
based on the dividends that are expected to be paid after the selling date. Thu:
the expected selling price at¢ = 1 is: )

D, . _ Dy D
(1+k)1 1+ k2 (1+k)3

P1=

s e k)t‘l ‘ (18.31)

(=2

Substituting Equation (18.31) for P, in the right-hand side of Equation (18.30)
results in:

ve D, D, D _ D 1
1+k 1+ k) (1+ k2 (1+k)3 1+k
D, D, Dy Dy
= + + + +
A+ k) (1+k)2 (1+£k)3 (14 k)¢
= iL
o (1 + k)

which is exactly the same as Equation (18.7). Thus valuing a share of common
stock by discounting its dividends up to some point in the future and its expected
selling price at that time is equivalent to valuing stock by discounting all future div-
idends. Simply stated, the two are equivalent because the expected selling price is
itself based on dividends to be paid after the selling date. Thus Equation (18.7), as
well as the zero-growth, constant-growth, and multiple-growth models that are
based on it, is appropriate for determining the intrinsic value of a share of com-
mon stock regardless of the length of the investor’s planned holding period.

Example

As an example, reconsider the common stock of the Copper Company. Over the
past year it was noted that Copper paid dividends of $1.80 per share, with the
forecast that the dividends would grow by 5% per year forever. This means that
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dividends over the next two years (D; and D,) are forecast to be $1.89 [ = $1.80
X (1 + .05)] and $1.985 [= $1.89 X (1 + .05)], respectively. If the investor
plans to sell the stock after one year, the selling price could be estimated by not-
ing thatat ¢ = 1, the forecast of dividends for the forthcoming year wouid be D,
or $1.985. Thus the anticipated selling price at ¢t = 1, denoted P, would be
equal to $33.08 [= $1.985/(.11 — .05)]. Accordingly, the intrinsic value of Cop-
per to such an investor would equal the present value of the expected cash flows,
which are D, = $1.89 and P, = $33.08. Using Equation (18.30) and assuming a
required rate of 11%, this value is equal to $31.50 [= ($1.89 + $33.08)/(1 +
.11)]. Note that this is the same amount that was calculated earlier when all the
dividends from now to infinity were discounted using the constant-growth
model: V= D,/ (k — g = $1.89/(.11 — .05) = $31.50.

m MODELS BASED ON PRICE-EARNINGS RATIOS

Despite the inherent sensibility of DDMs, many security analysts use a much sim-
pler procedure to value common stocks. First, a stock’s earnings per share over
the forthcoming year E, are estimated, and then the analyst (or someone else)
specifies a “normal” price-earnings ratio for the stock. The product of these two
numbers gives the estimated future price P;. Together with estimated dividends
D, to be paid during the period and the current price F, the estimated return on
the stock over the period can be determined:

(A - P) + D

- (18.32)

Expected return =

: where P, = (P,/E;) X E,.
Some security analysts expand this procedure, estimating earnings per share
and price-eamings ratios for optimistic, most likely, and pessimistic scenarios to

nduce a rudimentary probability distribution of a security’s return. Other ana-

determine whether a stock is underpriced or overpriced by comparing the

%k's actual price-earnings ratio with its “normal” price-earnings ratio, as will
own next. !

In order to make this comparison, Equation (18.7) must be rearranged and

g New variables introduced. To begin, it should be noted that earnings per

are related to dividends per share D, by the firm’s payout ratio p,,

D, = pE,. (18.33)

» if an analyst has forecast earnings-per-share and payout ratios,
' ghe has implicitly forecast dividends.

1 (18.33) can be used to restate the various DDMs where the focus is
what the stock’s price-earnings ratio should be instead of on esti-
atrinsic value of the stock. In order to do so, p,E, is substituted for D,
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in the right-hand side of Equation (18.7), resulting in a general formuls
termining a stock’s intrinsic value that involves discounting earnings:

__Db D D
T+ kR Q+R2 T+ k)

PrE poEs psEs
(1 + k)! + (1 + k)2 + (1 + k)3

— < ptEt
- 2 1+ k)"

t=1

Vv

Earlier it was noted that dividends in adjacent time periods could be viewed -
as being “linked” to each other by a dividend growth rate g,. Similarly, earnings
per share in any year ¢ can be “linked” to earnings per share in the previous year
t — 1 by a growth rate in earnings per share, g,,,

E,=E _(1+g,) (18.3%)
This implies that
E, = Ey(1 + gel)
Ey = E(1 + g9 = E(1 + g1)(1 + g9)

Es = Eqo(1 + g3) = Eo(1 + g)(1 + g2 (1 + g.3)
and so on, where Ej is the actual level of earnings per share over the past year, I,
is the expected level of earnings per share over the forthcoming year, E, is the
expected level of earnings per share for the year after £, and E; is the expected
level of earnings per share for the year after E,.

These equations relating expected future earnings per share to E, can be
substituted into Equation (18.34), resulting in:

_ hlE( + g)] " polEp(1 + g.) (1 + g,9)]
(1 + k)! (1 + k)2

+ pslEo(1 + g) (1 + go) (1 + g5)] . (18.36)
(1 + k)3

As V is the intrinsic value of a share of stock, it represents what the stock would
be selling for if it were fairly priced. It follows that V/E, represents what the
price-earnings ratio would be if the stock were fairly priced, and is sometimes re-
ferred to as the stock’s “normal” price-earnings ratio. Dividing both sides of
Equation (18.36) by E, and simplifying results in the formula for determining
the “normal” price-earnings ratio:

YV _n0+g) | pa(d+ g0+ ga)

E, (1 + k)! (1 + k)?
n ps(1 + g0 + go) (A + g.3) . (18.37)
(1 + k)3

582 CHAPTER 18



This shows that, other things being equal, a stock’s “normal” price-earnings ratio
will be higher:

The greater the expected payout ratios (py, py, ps, . - .),
The greater the expected growth rates in earnings per share (g,;, g.2, €23, - - -)»
The smaller the required rate of return (k).

The qualifying phrase “other things being equal” should not be overlooked.
For example, a firm cannot increase the value of its shares by simply making
greater payouts. This will increase p,, po, ps, . . ., but will decrease the expected
growth rates in earnings per share g,;, 2,9, g3, - - - - Assuming that the firm’s in-
vestment policy 1s not altered, the effects of the reduced growth in its earnings
per share will just offset the effects of the increased payouts, leaving its share
value unchanged.

Earlier it was noted that a stock was viewed as underpriced if V > Pand over-
priced if V < P. Because dividing both sides of an inequality by a positive con-
stant will not change the direction of the inequality, such a division can be done
here to the two inequalities involving V and F, where the positive constant is E,.
The result is that a stock can be viewed as being underpriced if V/E, > P/E; and
overpriced if V/E, < P/E,. Thus a stock will be underpriced if its “normal”
price-earnings ratio is greater than its actual price-earnings ratio, and overpriced
if its “normal” price-earnings ratio is less than its actual price-earnings ratio.

Unfortunately, Equation (18.37) is intractable, meaning that it cannot be
used to estimate the “normal” price-earnings ratio for any stock. However, sim-
plifying assumptions can be made that result in tractable formulas for estimating
“normal” price-earnings ratios. These assumptions, along with the formulas, par-
allel those made previously regarding dividends and are discussed next.

18.6.1 The Zero-Growth Model

The zerogrowth model assumed that dividends per share remained at a fixed

tloliar amount forever. This is most likely if earnings per share remain at a fixed

dollar amount forever, with the firm maintaining a 100% payout ratio. Why
= J00%? Because if a lesser amount were assumed to be paid out, it would mean
that the firm was retaining part of its earnings. These retained earnings would
be put to some use, and would thus be expected to increase future earnings and
hence dividends per share.
Accordingly, the zero-growth model can be interpreted as assuming p, = 1
all time periods and E, = E, = E, = E; and so on. This means that D, = E,
= £, = Dy = E, and so on, allowing valuation Equation (18.13) to be re-
ted as:

y= Lo (18.38)
k
g Equation (18.38) by £, results in the formula for the “normal” price-
Mg ratio for a stock having zero growth:
v 1

— = -. 18.39
E Ok ( )

bt b e
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Example

Earlier it was assumed that the Zinc Company was a zero-growth fi
idends of $8 per share, selling for $65 a share, and having a requi
turn of 10%. Because Zinc is a zero-growth company, it will be ass
has a 100% payout ratio which, in turn, means that £, = $8. At this pg
tion (18.38) can be used to note that a “normal” price-earnings ratio f
1/.10 = 10. As Zinc has an actual price-earnings ratio of $65/%$8 = 8,
cause V/E, = 10 > P/E, = 8.1, it can be seen that Zinc stock is underps

18.6.2 The Constant-Growth Model

Earlier it was noted that dividends in adjacent time periods could be viewed
being connected to each other by a dividend growth rate g,. Similarly, it
noted that earnings per share can be connected by an earnings growth rate
The constant-growth model assumes that the growth rate in dividends per shage -
will be the same throughout the future. An equivalent assumption is that carm
ings per share will grow at a constant rate g, throughout the future, with the paw
out ratio remaining at a constant level p. This means that:

El = EO(l + ge) = EO(l + ge)l
Ey = Ey(1 + g) = Eo(1 + g)(1 + g) = E(1 + g)?
Es = Ex(1 + g) = Eg(1 + g)(1 + g)(1 + g) = Eo(1 + g)°

and so on. In general, earnings in year ¢ can be connected to K, as follows:

E = E,(1 + g)-. (18.40)

I

Substituting Equation (18.40) into the numerator of Equation (18.34) and
recognizing that p, = presults in:

pEo(l + ge
V= 2 (1 + k)!

- pEo[z %] (18.41)
t=1

The same mathematical property of infinite series given in Equation (18.19) can
be applied to Equation (18.41), resulting in:

1+ g,
k— gl

V= pE, (18.42)

It can be noted that the earnings-based constant-growth model has a numer-
ator that is identical to the numerator of the dividend-based constant-growth
model, because pE, = D,. Furthermore, the denominators of the two models are
identical. Both assertions require that the growth rates in earnings and dividends
be the same (that is, g, = g). Examination of the assumptions of the models
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reveals that these growth rates must be equal. This can be seen by recalling that
constant earnings growth means:

E = E_(1+g).

Now when both sides of this equation are multiplied by the constant payout
ratio, the result is:

I)Ez = PEl—](I + gz)
Because pE, = D,and pE,_, = D, _,, this equation reduces to:
D, =D,_,(1+ g)

which indicates that dividends in any period ¢ — 1 will grow by the earnings
growth rate, g,. Because the dividend-based constantgrowth model assumed
that dividends in any period ¢ ~ 1 would grow by the dividend growth rate g it
can be seen that the two growth rates must be equal for the two models to be
equivalent.

Equation (18.42) can be restated by dividing each side by E,, resulting in the
following formula for determining the “normal” price-earnings ratio for a stock
with constant growth:

= p(i&) (18.43)

Example

Farlier it was assumed that the Copper Company had paid dividends of $1.80 per
share over the past year, with a forecast that dividends would grow by 5% per year
forever. Furthermore, it was assumed that the required rate of return on Copper
was 11%, and the current stock price was $40 per share. Now assuming that £, was
$2.70, it can be seen that the payout ratio was equal to 66%% (= $1.80/$2.70).
This means that the “normal” price-earnings ratio for Copper, according to Equa-
tion (18.43), is equal to 11.7 [= 6667 X (1 + .05) /(.11 —.05)]. Because this is
less than Copper’s actual price-earnings ratio of 14.8 (= $40/$2.70), it follows
;. that the stock of Copper Company is overpriced.

18.6.3 The Multiple-Growth Model

Earlier it was noted that the most general DDM is the multiple-growth model,
ere dividends are allowed to grow at varying rates until some point in time 7,
r which they are assumed to grow at a constant rate. In this situation the pres-
value of all the dividends is found by adding the present value of all divi-
ds up to and including 7, denoted by V;_, and the present value of all
ldends after 7, denoted by V,.,:

V=V._ + V.,

—_ < Dt DT+1
2T U 20+ B

(18.27)
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In general, earnings per share in any period ¢ can be expressed as
equal to E, times the product of all the earnings growth rates from time
time ¢£:

E = E(L + g)(L+ go) - (1+ &) (1

Because dividends per share in any period ¢ are equal to the payout ratio for
period times the earnings per share, it follows from Equation (18.44) that:

D, = p,E, )

= ptEO(l + gel)(l + ge2) e (1 + get)' (18'“
Replacing the numerator in Equation (18.37) with the right-hand side of Equae’
tion (18.45) and then dividing both sides by E, gives the following formula fog:
determining a stock’s “normal” price-earnings ratio with the multiple-growth
model:

v _ pnd + gy n P21 + g) (1 + g)

+ P
E A+ &) a + k)2
f At g)d + gy) - (A + g0
1+ k)T
+ pA+g)AQ +g9) -0 +g)0 +g) . (18.46)

(k-0 + k)"

Example

Consider the Magnesium Company again. Its share price is currently $55, and
per share earnings and dividends over the past year were $3 and $.75, respective-
ly. For the next two years, forecast earnings and dividends, along with the earn-
ings growth rates and payout ratios, are:

D] = $2OO E] = $5OO ga = 67% pl = 40%
D, = $3.00 Ey=$600 g, =20%  p, = 50%.

Constant growth in dividends and earnings of 10% per year is forecast to begin
at T = 2, which means that D; = $3.30, E; = $6.60, g =10%, and p = 50%.

Given a required return of 15%, Equation (18.46) can be used as follows to
estimate a “normal” price-earnings ratio for Magnesium:

V _ 400+ 67) | 50(1+.67)(1+.20) | .50(1 + .67)(1+.20)(1 +.10)
E,  (1+.15)! (1 + .15)2 ~ (15 = .10)(1 + .15)2

= 58 +.76 + 16.67
= 18.01.

Because the actual price-earnings ratio of 18.33 (= $55/$3) is close to the “nor-
mal” ratio of 18.01, the stock of the Magnesium Company can be viewed as fairly
priced.
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BELER souRces oF EARNINGSGROWTH

So far no explanation has been given as to why earnings or dividends will be ex-
pected to grow in the future. One way of providing such an explanation uses the
constantgrowth model. Assuming that no new capital is obtained externally and
no shares are repurchased (meaning that the number of shares outstanding
does not increase or decrease), the portion of earnings not paid to stockholders
as dividends will be used to pay for the firm’s new investments. Given that p, de-
notes the payout ratio in year ¢, then (1 — p,) will be equal to the portion of
earnings not paid out, known as the retention ratio. Furthermore, the firm’s new
investments, stated on a per-share basis and denoted by I, will be:

I,= (1 - p)E,. (18.47)

If these new investments have an average return on equity of 7, in period ¢
and every year thereafter, they will add 7,1, to earnings per share in year ¢ + 1
and every year thereafter. If all previous investments also produce perpetual
earnings at a constant rate of return, next year’s earnings will equal this year’s
carnings plus the new earnings resulting from this year’s new investments:

E=E + 1]
=E + r(l — p)E, (18.48)
= Et[l + r (1 - Pt)]
Because it was shown earlier that the growth rate in earnings per share is:
E o= E (1 + g (18.35)
it follows that:

E1=EQ + g,41). (18.49)
A comparison of Equations (18.48) and (18.49) indicates that:
gu+1 = 1(1 = p). (18.50)

If the growth rate in earnings per share g, , | is to be constant over time, then

" the average return on equity for new investments 7, and the payout ratio p, must

¢ lbo be constant over time. In this situation Equation (18.50) can be simplified
hy removing the time subscripts: -

e

g =11 — p). (18.51a)

ause the growth rate in dividends per share gis equal to the growth rate in
ings per share g,, this equation can be rewritten as:

g=rl—p). (18.51b)

this equation it can be seen that the growth rate g depends on (1) the pro-
n of earnings that is retained 1 — p, and (2) the average return on equlty
earnings that are retained

constant-growth valuation formula given in Equation (18.20) can be
ged by replacing g with the expression on the right-hand side of Equation
b)), resulting in:
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<
|

1+g¢g
= D,
4k-—g)

=D[l+r(l—p)].

Lk — r(1 — p)
1
‘Dl[k—r(l—;» '

Under these assumptions, a stock’s value (and hence its price) should be greater, the
greater its average return on equity for new investments, other things being equali’

Example

Continuing with the Copper Company, recall that E, = $2.70 and p = 66X%.
This means that 33%% of earnings per share over the past year were retained
and reinvested, an amount equal to $.90 (= .3333 X $2.70). The earnings per
share in the forthcoming year E, are expected to be $2.835 [= $2.70 X (1 +
.05)] because the growth rate g for Copper is 5%.

The source of the increase in earnings per share of $.135 (= $2.835 — $2.70)
is the $.90 per share that was reinvested at ¢ = 0. The average return on equity for
new investments ris 15%, because $.135/$.90 = 15%. That is, the reinvested earn-
ings of $.90 per share can be viewed as having generated an annual increase in
earnings per share of $.135. This increase will occur not only at ¢t = 1, but also at
t = 2,t= 3, and so on. Equivalently, a $.90 investment at ¢ = 0 will generate a
perpetual annual cash inflow of $.135 beginning at¢t = 1.

Expected dividends at ¢t = 1 can be calculated by multiplying the expected
payout ratio p of 66%% times the expected earnings per share E, of $2.835, or
6667 x $2.835 = $1.89. It can also be calculated by multiplying 1 plus the
growth rate gof 5% times the past amount of dividends per share D, of $1.80, or
1.05 X $1.80 = $1.89.

It can be seen that the growth rate in dividends per share of 5% is equal to
the product of the retention rate (33%%) and the average return on equity for
new investments (15%), an amount equal to 5% (= .3333 X .15).

'nﬁ Tears from now (¢ = 2), earnings per share are anticipated to be $2.977

[= $2.835 X (1 + .05)], a further increase of $.142 (= %2.9% — MM!& tLatls
due to the retention and reinvestment of $.945 (= .3333 X $2.835) per share at
t = 1. This expected increase in earnings per share of $.142 is the result of earn-
ing (15%) on the reinvestment ($.945), because .15 X $.945 = §.142.

The expected earnings per share at t = 2 can be viewed as having three
components. The first is the earnings attributable to the assets held at ¢ = 0, an
amount equal to $2.70. The second is the earnings attributable to the reinvest-
ment of $.90 at t = 0, earning $.135. The third is the earnings attributable to the
reinvestment of $.945 at t = 1, earning $.142. These three components, when
summed, can be seen to equal E, = $2.977 (= $2.70 + $.135 + $.142).

Dividends at ¢ = 2 are expected to be 5% larger than at t = 1, or $1.985 (=
1.05 X $1.89) per share. This amount corresponds to the amount calculated by
multiplying the payout ratio times the expected earnings per share att = 2, or
$1.985 (= .6667 x $2.977). Figure 18.2 summarizes the example.
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+ + + + —>00
Ep=$2.70 $2.700 $2.700
$90x.15 = 135 135
E, - s$2835 $945x .15 = 142
E, = $2977
h = $ .90 I = $.945 L = §.992
D, = 1.80 D, = 1.890 D, = 1985
E, = $270 E, = 2835 E, = 82977
Figure 18.2

Growth in Earnings for Copper Company

18.8 A THREE-STAGE DDM

As this chapter’s Institutional Issues discusses, the three-stage DDM is the most
widely applied form of the general multiple-growth DDM. Consider analyzing
the ABC Company.

18.8.1 Making Forecasts

Over the past year, ABC has had earnings per share of $1.67 and dividends per
share of $.40. After carefully studying ABC, the security analyst has made the follow-
ing forecasts of earnings per share and dividends per share for the next five years:

E, = $267 E,=$400 E,=$600 E,=$800 E, = $10.00
D,=%$60 D,=$160 D,=%240 D,=$%320 D,=$ 5.00.

These forecasts imply the following payout ratios and earnings-per-share growth
fles:

‘“ = 60% g2 — 50% 83 = 50% g4 = 33% 85 = 25%

Furthermore, the analyst believes that ABC will enter a transition stage at the
of the fifth year (that is, the sixth year will be the first year of the transition
), and that the transition stage will last three years. Earnings per share and
put ratio for year 6 are forecast to be Eg = $11.90 and pg = 55%. {Thus
9% [= ($11.90 — $10.00)/$10.00] and Ds = $6.55 (= .55 X $11.90)}.

growth rate of 4% and a payout ratio of 70%. Now it was shown in
(18.51b) that with the constant-growth model, g = r(1 — p), where ris
return on equity for new investment and p is the payout ratio. Given

last stage, known as the maturity stage, is forecast to have an earnings- -
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INSTITUTIONAI. ISSUES

Applymg Dwzdend Discount Models

Over the last 30 years, leldend dlscount models.
1 " (DbMs) have achleved broad acceptance among .
: 'professmnal common stock investors. Although

few investment managers rely solely on-DDMs to
. “select stocks, ‘many have integrated DDMs mto
©_their security valuation procedures..

- The reasons for the popularity of DDMs are,,'

- twofald. -First, DDMs arc based on a simple, widely
* understood concept: The fair-value of any security
+_ should equal the discourited value of the cash flows

expected to be produced hy that security. Second, -

Aapply, mstxtutlonal investors typically view the
assurned dividend growth assumptions as overly sini-
plistic. Instead, these investors generally prefer
three-stage models, believing that they provide the
best combination of realism and ease of application.

“Whereas many variations of the three-stage
DDM exist, in general, the model is based on the
assumption that companies evolve through three
stages during their lifetimes. (Figure 18.3 portrays
these stages.)

the basic inputs for DDMs are standard outputs for

" many large investment management firms—that is, -

 these firms employ security analysts who are re-
- sponsible for projecting corporate earnings.
 Valuing ¢ommon stocks with a DDM technieatly

Tequires an estimate of future dividends over an in-’

~ finite time:horizon. leen that accurately forecast-
ing dividends three years from today, let alone 20

- years in the future, is a difficult proposition, how
do investment firms actually go about implement-
~ ing DDMs? - '

One approach is to use constant or two-stage divi-
- dend growth models, as described in the text. How-
. ever, although such ‘models are ’re;lanvely €asy 1o

1. Growth stage: Characterized by rapidly ex-

panding sales, high profit margins, and ab-
" normally high growth in earnings per share.
Because of highly profitable expected invest-
ment oppertunities, the payout ratio is low.
Competitors are attracted by the unusually
- high earnings, leading to a decline in the

¢ . growth rate.

2. Transition stage: In later years, increased
competition reduces profit margins and earn-
ings growth slows. With fewer new investment
opportunities, the company begins to pay out
a larger percentage of earnings.

e i

/

L~ -~ Growth -~~~ }: ** Transition ~-fr--~~-~-----

et e

T —————————

Earnings per share

Dividends per share

Time

Figure 18.3
~ The Three Stages of the Multiple-Growth Model

Source: Adapted from Carmine J. Grigoli, “Demystifying Dividend Discount Models,” Merrill

Lynch Quantitative Research, April 1982,
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3. Maturity (steady-state) stage: Eventually the
company reaches a position where its new
investment opportunities offer, on average,
only slightly attractive returns on equity. At
that time its earnings growth rate, payout
ratio, and return on equity stabilize for the
remainder of i its life.

The forecasting process of the three-stage DDM
involves specifying earnings and dividend growth
rates in each of the three stages. Although one
cannot expect a security analyst to be omniscient
in his or her growth forecast for a particular com-
pany, one can hope that the forecast pattern of
growth—in terms of magnitude and duration—re-
sembles that actually realized by the company, par
ncularly in the shortrun. =

Investment firms attempt to structure their
DDMs to make maximum use of their analysts’
forecasting capabthhes Thus the models ernpha—
size specific forecasts in the near term, when it is
realistic to expect security analysts to project earn~
ings and dividends more accurately. Conversely,
the models emphasize more general forecasts over
the longer term, when distinctions between com-
panies’ growth rates become less discernible. Typi-
cally, analysts are requlred to supply the followmg
for their assx§ned com anres

H‘,‘ oo \I I ‘H ‘\ ‘ ‘ ‘\‘ \“ ‘ ‘

1. expected annual carmngs and dmdcnds for

the next several years;

2. after these specific annual forecasts end,

earnings growth and the payout ratio fore-

.

I

/

3. the number of years unul the transmon
stage is reached;

4. the duration (in years) of the - transition
stage—that is, once abnormally high growth -

L #nd used to determine 7

=g/l —p).

4 Valuation of Common Stocks

o

! decrsrons Despne Lhese comp exwes, “success[u
. -1mp1emented DDMs can combine the creative in-

ends, the number of years until the maturity
stage is reached.

Most three-stage DDMs assume that during the
transition stage, earnings growth declines and
payout ratios rise linearly to the maturity-stage

steady-state levels. (For example, if the transition

stage is ten years long, earnings growth at the ma-
turity stage is 5% per vear, and earnings growth at
the end of the growth stage is 25%, then earnings
growth will decline 2% in each year of the transi-
tion stage.) Finally, most three-stage DDMs make
standard assumptions that all companies in the
maturity stage have the same growth rates, payout
ratios, and return on equity.

With analysts’ inputs, plus an .appropriate re-

k quired rate of return for each security, all the nec-
. essary information for the threestage DDM is

available. The last step involves merely calculating
the discounted value of the estimated dividends to
determine the stock’s “fair” value. -

The seeming simplicity of the three-stage DDM
should not lead one to believe that it is without its
implementation problems. Investment firms must
strive to achieve consistency across their analysts’

forecasts. The long-term nature of the estimates in-

volved, the substantial trammg requlred to make

oL i D

o

W “,,w i M ]

the coordmauon of a numbcr of ;analysts covering

" many companies severely complicate’ the problem.
Considerable discipline is required if the DDM valu-

ations generated by a firm’s analysts are€ to be suffi-
ciently comparable and rehable to guide investment

}H \HU h i H

y

sights ‘of - secunty analysts with the rigor and disci-

phne of quanutauve investment techniques.

¢4hat the maturity stage has constant growth, this equation can be reformulated

us 1 {or ABC has an implied value of 13.33% [ = 4%/(100% — 70%)], which is
uned 1o be consistent with the long-run growth forecasts for similar companics.
At this point there are only two missing pieces of information that arc need-
B v determine the value of ABC—the earnings-per-share growth rates and the
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payout ratios for the transition stage. Taking earnings per share
forecast that g, = 19% and g, = 4%. One method of determining
“decay” to 4% is to note that there are three years between the sixth
years, and 15% between 19% and 4%. A “linear decay” rate would be i
by noting that 15%/3 years = 5% per year. This rate of 5% would be &
from 19% to get g,;, resulting in 14% (= 19% — 5%). Then it would b
ed from 14% to get g, resulting in 9% (= 14% — 5%). Finally, as a c¢hi
be noted that4% (= 9% — 5%) is the value that was forecast for g.

A similar procedure can be used to determine how the payout ra
in year 6 will grow to 70% in year 9. The “linear growth” rate will be
55%)/3 years = 15%/3 years = 5% per year, indicating that p, = 60% (=
+ 5%) and pg = 65% (= 60% + 5%). Again a check indicates that
65% + 5%) is the value that was forecast for p,.

With these forecasts of earnings-per-share growth rates and payout ﬁw '
hand, forecasts of dividends per share can now be made:

Dy = prE,
= prEs(1 + g)
60 X $11.90 X (1 + .14)
= .60 X $13.57
= $8.14
Dy = pgks
= psFe(l + g (1 + gs)
= .65 X $11.90 X (1 + .14) X (1 + .09)
.65 x $14.79
$9.61
Dy = pokEq
= PQEG(I + gﬂ)(l + geﬂ)(l + g29)
70 X $11.90 X (1 + .14) X (1 + .09) X (1 + .04)

I

.70 X $15.38
$10.76.

1

18.8.2 Estimating the Intrinsic Value

Given a required rate of return on ABC of 12.4%, all the necessary inputs for the
multiple-growth model have been determined. Hence it is now possible to est-
mate ABC’s intrinsic {or fair) value. To begin, it can be seen that T = 8, indicai-
ing that V,_ involves determining the present value of D; through D,

v = $.60 L [—$160 1, [__$2.40
Tl 4 a2t [+ 1242 1+ .124)°
L[ %820 ], [_$500 ], [_ $6.55
1+ 2244 |4+ .1249)° (1 +.124)°
43814 ) [__$961
(1 +.129)7] [ (1 + .124)8
= $18.89.
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Then V,, can be determined using D:

$10.76
(124 — .04)(1 + .124)%

$50.28.

Veiy =

I

Combining V,._ and V,, results in the intrinsic value of ABC:

V=V_+ V,
$18.89 + $50.28
= $69.17.

Given a current market price for ABC of $50, it can be seen that its stock is
underpriced by $19.17 (= $69.17 ~ $50) per share. Equivalently, it can be noted
that the actual price-earnings ratio for ABCis 29.9 (= $50/$1.67) but thata “nor-
mal” price-earnings ratio would be higher, equal to 41.4 (= $69.17/$1.67), again
indicating that ABC is underpriced.

18.8.3 Implied Returns

As shown with the previous example, once the analyst has made certain fore-
casts, it is relatively straightforward to determine a company’s expected divi-
dends for each year up through the first year of the maturity stage. Then the
present value of these predicted dividends can be calculated for a given required
rate of return. However, many investment firms use a computerized trial-and-
error procedure to determine the discount rate that equates the present value of
the stock’s expected dividends with its current price. Sometimes this long-run in-
ternal rate of return is referred to as the security’s implied return. In the case of

=

18.8.4 The Security Market Line

T T il

beta for each stock can be estimated. Then for all the stocks analyzed, this in
~mation can be plotted on a graph that has implied returns on the vertical axis
_and estimated betas on the horizontal axis.
% At this point there are alternative methods for estimating the security mar-
thet line (SML).!! One method involves determining a line of best fit for this
graph by using a statistical procedure known as simple regression (as discussed
Chapter 17). That is, the values of an intercept term and a slope term are de-
mined from the data, thereby indicating the location of the straight line that
describes the relationship between implied returns and betas.'?
Figure 18.4 provides an example of the estimated SML. In this case the SML
been determined to have an intercept of 8% and a slope of 4%, indicating
 general, securities with higher betas are expected to have higher implied
in the forthcoming period. Depending on the sizes of the implied re-
such lines can have steeper or flatter slopes, or even negative slopes.
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A Security Market Line Estimated from Implied Returns

The second method of estimating the SML involves calculating the implied
return for a portfolio of common stocks. This is done by taking a value-weighted
average of the implied returns of the stocks in the portfolio, with the resulting re-
turn being an estimate of the implied return on the market portfolio. Given this
return and a beta of 1, the “market” portfolio can be plotted on a graph having
implied returns on the vertical axis and betas on the horizontal axis. Next the
riskfree rate, having a beta of 0, can be plotted on the same graph. Finally, the
SML is determined by simply connecting these two points with a straight line.

Either of these SMLs can be used to determine the required return on a
stock. However, they will most likely result in different numbers, as the two lines
will most likely have different intercepts and slopes. For example, note that in
the first method the SML may not go through the riskfree rate, whereas the sec-
ond method forces the SML to go through this rate.

18.8.5 Required Returns and Alphas

Once a security’s beta has been estimated, its required return can be deter-
mined from the estimated SML. For example, the equation for the SML shown
in Figure 18.4 is:

k= 8 + 48,

Thus if ABC has an estimated beta of 1.1, then it would have a required return
equalto 12.4% [= 8 + (4 X 1.1)].

Once the required return on a stock has been determined, the difference be-
twecn the stock’s implied return (from the DDM) and this required return can
be calculated. This difference is then viewed as an estimate of the stock’s alpha
and represents “. . . the degree to which a stock is mispriced. Positive alphas indi-
cate undervalued securities and negative alphas indicate overvalued securities.”?
In the case of ABC, its implied and required returns were 14.8% and 12.4%, re-
spectively. Thus its estimated alpha would be 2.4% (= 14.8% ~ 12.4%). Because
this is a positive number, ABC can be viewed as being underpriced.
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18.8.6 The Implied Return on the Stock Market

Another product of this analysis is that the implied return for a portfolio of
stocks can be compared with the expected return on bonds. (The latter is typi-
cally represented by the current yicld-to-maturity on long-term Treasury bonds.)
Specifically, the difference between stock and bond returns can be used as an
input for recommendations concerning asset allocation between stocks and
bonds. That is, it can be used to form recommendations regarding what percent
of an investor’s money should go into stocks and what percent should go into
bonds. For example, the greater the implied return on stocks relative 1o bonds,
the larger the percentage of the investor’s money that should be placed in com-
mon stocks.

m " DIVIDEND DISCOUNT MODELS AND EXPECTED RETURNS

The procedures described here are similar to those employed by a number of
brokerage firms and portfolio managers.l‘* A security’s implied return, obtained
from a DDM, is often treated as an expected return, which in turn can be divid-
cd into two components—the security’s required return and alpha.

However, the expected return on a stock over a given holding period may
differ from its DDM-based implied rate &. A simple set of examples will indicate
why this difterence can exist.

Assume that a security analyst predicts that a stock will pay a dividend of
$1.10 per year forever. On the other hand, the consensus opinion of “the mar-
ket” (most other investors) is that the dividend will equal $1.00 per year forever.
['his suggests that the analyst’s prediction is a deviant or nonconsensus one.

Assume that both the analyst and other investors agree that the required
tate of return for a stock of this type is 10%. Using the formula for the zero-
wrowth model, the value of the stock is D,/.10 = 10D, meaning that the stock
should sell for ten times its expected dividend. Because other investors expect to
receive $1.00 per year, the stock has a current price Pof $10 per share. The ana-
st lecls that the stock has a value of $1.10/.10 = $11 and thus feels that itis un-
“gerpriced by $11 — $10 = $1 per share.

9.1 Rate of Convergence of Investors’ Predictions

situation the implied return according to the analystis $1.10/$10 = 11%.
¢ analyst buys a share now with a plan to sell it a year later, what rate of re-
-might the analyst expect to earn? The answer depends on what assumption
regarding the rate of convergence of investors’ predictions—that is, the an-
nds on the expected market reaction to the mispricing that the analyst
currently exists.

emses shown in Table 18.1 are based on an assumption that the analyst is
-that his or her forecast of future dividends is correct. That is, in all of
the analyst expects that at the end of the year, the stock will pay the

vidend of $1.10.
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gt

Expected Amount of

Convergence
0% 100% 50%
(A) (B) {C)
Dividend predictions D,
Consensus of other investors 1.00 1.10 1.05
Analyst 1.10 1.10 1.10
Expected stock price P, 10.00 11.00 10.50
Expected return:
Dividence yield D, /P 11% 11% 1%
Capital gain (P, — P|/P 0 10 5
Total expected return 1% 21% 16%
Less required return 10 10 10
Alpha 1% 11% 6%

Note: P, is equal to the consensus dividend prediction at t = | divided by the
required return of 10%. The example assumes that the current stock price P is
$10, and dividends are forecast by the consensus at t = 0 ta remain constant
at $1.00 per share, whereas the analyst forecasts the dividends at t = 0 to
remain constant at $1.10 per share.

No Convergence

In column (A), it is assumed that other investors will regard the higher dividend
as a fluke and steadfastly refuse to alter their projections of subsequent divi-
dends from their initial estimate of $1.00. As a result, the security’s price at t = 1
can be expected to remain at $10 (= $1.00/.10). In this case the analyst’s total
return is expected to be 11% (= $1.10/$10), which will be attributed entirely to
dividends as no capital gains are expected.

The 11% exrected return can also be viewed as consisting of the required

e at105 o s g of 1 b o heplf1 I IR NICO

unanticipated by other investors, $.10/$10. Accordingly, if it is assumed that
there will be no convergence of predictions, the expected return would be set at
the implied rate of 11% and the alpha would be set at 1%.

Complete Convergence

Column (B) shows a very different situation. Here it is assumed that the other
investors will recognize their error and completely revise their predictions. At
the end of the year, it is expected that they too will predict future dividends of
$1.10 per year thereafter; thus the stock is expected to be selling for §11 (=
$1.10/.10) at t = 1. Under these conditions, the analyst can expect to achieve a
total return of 21% by selling the stock at the end of the year for $11, obtaining
11% (= $1.10/$10) in dividend yield and 10% (= $1/$10) in capital gains.
The 10% expected capital gains result directly from the expected repricing
of the security because of the complete convergence of predictions. In this case
the fruits of the analyst’s superior prediction are expected to be obtained all in
one year. Instead of 1% “extra” per year forever, as in column (A), the analyst
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expects to obtain 1% (= $.10/$10) in extra dividend yield plus 10% (= $1/$10)
in capital gains this year. By continuing to hold the stock in subsequent years, the
analyst would expect to earn only the required return of 10% over those years.
Accordingly, the expected return is 21% and the alpha is 11% when it is assumed
that there is complete convergence of predictions.

Partial Convergence

Column (C) shows an intermediate case. Here the predictions of the other in-
vestors are expected to converge only halfway toward those of the analyst (that
is, from $1.00 to $1.05 instead of to $1.10). Total return in the first year is ex-
pected to be 16%, consisting of 11% (= $1.10/$10) in dividend yield plus 5%
(= $.50/$10) in capital gains.

Since the stock is expected to be selling for $10.50 (= $1.05/.10) at t = 1,
the analyst will still feel that it is underpriced at ¢ = 1 because it will have an in-
trinsic value of $11 (= $1.10/.10) at that time. To obtain the remainder of the
“extra return” owing to this underpricing, the stock would have to be held past ¢
= 1. Accordingly, the expected return would be set at 16% and the alpha would
be set at 6% when it is assumed that there is halfway convergence of predictions.

In general, a security’s expected return and alpha will be larger, the faster
the assumed rate of convergence of predictions.!® Many investors use the im-
plied rate (that is, the internal rate of return k°) as a surrogate for a relatively
short-term (for example, one year) expected return, as in column (A). In doing
so, they are assuming that the dividend forecast is completely accurate, but that
there is no convergence. Alternatively, investors could assume that there is some
degree of convergence, thereby raising their estimate of the security’s expected
return. Indeed, investors could further alter their estimate of the security’s ex-
pected return by assuming that the security analyst’s deviant prediction is less
than perfectly accurate, as will be seen next.'®

18.9.2 Predicted versus Actual Returns
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adjusts them, based on relationships between previous predictions and actual
outcomes. Panels (a) and (b) of Figure 18.5 provide examples.

Each point in Figure 18.5(a) plots a predicted return on the stock market as a
:fwhnle (on the horizontal axis) and the subsequent actual return for that period
Hon the vertical axis). The line of best fit (determined by simple regression)
rough the points indicates the general relationship between prediction and
seome. If the current prediction is 14%, history suggests that an estimate of
A% would be superior.

Each point in Figure 18.5(b) plots a predicted alpha value for a security (on
horizontal axis) and the subsequent “abnormal return” for that period (on
vertical axis). Such a diagram can be made for a given security, or for all the
ftles that a particular analyst makes predictions about, or for all the securi-
Wt the investment firm makes predictions about. Again a line of best fit can
through the points. In this case, if the current prediction of a security’s
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Figure 18.5
Adjusting Predictions

alpha is + 1%, this relationship suggests that an “adjusted” estimate of +2.5%
would be superior.

An important by-product of this type of analysis is the measure of correla-
tion between predicted and actual outcomes, indicating the nearness of the
points to the line. This information coefficient (IC) can serve as a measure of
predictive accuracy. If it is too small to be significantly different from zero in a
statistical sense, the value of the predictions is subject to considerable question.!”

| 18.10 IV

1. The capitalization of income method of valuation states that the intrinsic
value of any asset is equal to the sum of the discounted cash flows investors
expect to receive from that asset.
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2. Dividend discount models (DDMs) are a specific application of the capitaliza-
tion of income method of valuation to common stocks.

3. To use a DDM, the investor must implicitly or explicitly supply a forecast of all
future dividends expected to be generated by a security.

4, Investors typically make certain simplifying assumptions about the growth of
common stock dividends. For example, a common stock’s dividends may be
assumed to exhibit zero growth or growth at a constant rate. More complex
assumptions may allow for multiple growth rates over time.

5. Instead of applying DDMs, many security analysts use a simpler method of se-
curity valuation that involves estimating a stock’s “normal” price-earnings
ratio and comparing it with the stock’s actual price-earnings ratio.

6. The growth rate in a firm’s earnings and dividends depends on its earnings
retention rate and its average return on equity for new investments.

7. Determining whether a security is mispriced using a DDM can be done in
one of two ways. First, the discounted value of expected dividends can be
compared with the stock’s current price. Second, the discount rate that
equates the stock’s current price to the present value of forecast dividends
can be compared with the required return for stocks of similar risk.

8. The rate of return that an analyst with accurate non-consensus dividend fore-
casts can expect to earn depends on the rate of convergence of other in-
vestors’ predictions to the predictions of the analyst.

QUESTIONS AND PROBLEMS

1. Consider five annual cash flows (the first occurring one year from today):

Year Cash Flow
1 S5
2 $6
3 S7
4 $8
5 $9

Given a discount rate of 10%, what is the present value of this stream of cash
Aows?

Alia Cohen is considering buying a machine to produce baseballs. The ma-
chine costs $10,000. With the machine, Alta expects to produce and sell
1.000 baseballs per year for $3 per baseball, net of all costs. The machine’s
Mie is five years (with no salvage value). Based on these assumptions and an
B 8% discount rate, what is the net present value of Alta’s investment?

$ub Collins has invested in a project that promised to pay $100, $200, and -
DO, respectively, at the end of the next three years. If Hub paid $513.04 for
investment, what is the project’s internal rate of return?

Products currently pays a dividend of $4 per share on its common
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