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Abstract

We decompose firm size into four components: the lagged 5-year component that represents

size five years ago, and the long-run, intermediate-run, and short-run components that capture

changes in size in each horizon. Our analyses indicate that while the lagged 5-year component

explains about 80% of the cross-sectional variation in size, it has little return predictability. In

contrast, the long-run change in size component explains only 18% of size, but it completely

captures the size premium. Our decomposition also sheds light on the January effect, the

disappearance of the size premium since early 1980s, and the return behaviors of new entrants.
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1 Introduction

Size premium, the empirical finding that small stocks (measured by market capitalization) outper-

form big stocks on average, is one of the most well-known investment strategies in the stock market.

In the asset pricing literature, besides the market factor, the small-minus-big (SMB) size factor is

the only factor that is included in all leading multi-factor asset pricing models, including Fama and

French (1993) three-factor model, Carhart (1997) four-factor model, and more recent Hou, Xue,

and Zhang (2015) four-factor model based on q theory of investment and Fama and French (2015)

five-factor model. In this paper, we examine the size premium from a different perspective from

many existing studies in the literature. We decompose the firm size into four components and study

how each component contributes to current firm size and to the size premium.

Our decomposition is motivated by the well-known cross-sectional stock return patterns at

various horizons, namely, long-term contrarian (De Bondt and Thaler (1985)), intermediate-term

momentum (Jegadeesh and Titman (1993)), and short-term reversal (Jegadeesh (1990)). The first

component in our size decomposition is the (log) firm size five years ago, capturing the extremely

persistent component of firm size. The second component, the long-run component, measures

the cumulative change in (log) firm size during prior 13-60 months, following the timing of long-

term contrarian strategy. The third component, the intermediate-run component, captures the

cumulative change in (log) firm size during prior 2-12 months, corresponding to the timing of the

price momentum strategy. The last component is the short-run component, defined as the prior

1-month change in (log) firm size, consistent with the timing of the short-term reversal.

Our empirical analyses suggest that despite being the most important determinant of current

firm size, the lagged 5-year component has little predictive power for future stock returns. Com-

pared with the 4.93% annual size premium, the premium based on the lagged 5-year component is

only 1.53% per year with a t-statistic of 0.63. Controlling for the market factor further reduces the

magnitude of the lagged 5-year size premium to −0.59% per year. Given that firm size is highly

persistent, this result indicates that the size premium does not originate from the level of firm size;

instead, it is the changes in firm size during past years that possess the predictive power for future

stock returns. The second component is the long-run change in size, which explains an average

of 18.4% of the cross-sectional variation in firm size. However, this component strongly predicts

stock returns. In decile portfolios sorted by this long-run component, the difference in stock returns

between firms with the most decrease in market value and firms with most increase in market value

in the prior 13-60 months is 7.33% per year with an annual Sharpe ratio of 0.5. As a comparison,

the Sharpe ratio for the size premium based on the same sample is only 0.3. The intermediate-run

component is also a strong return predictor, with stocks with most increase in market value in the

prior 2-12 months outperforming stocks with most decrease in market value by 8.64% per year,

which has a similar magnitude to the momentum profit. All else being equal, small firms tend to

have worse past stock performance than big firms, so the size strategy contains a short position

in momentum which contributes negatively to the size premium. Despite its large premium, the

intermediate-run component explains only about 2.6% of firm size, so its overall effect on the size
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premium is small. For the same reason, the short-run component only explains less than 1% of the

cross-sectional variation in size.

The relative performances of the strategies based on size components suggest that the size pre-

mium is mainly driven by the long-run component, which we further confirm in several ways. First,

in an independent double sort by firm size and its long-run component, we find that conditional on

firm size, the average premium based on the long-run component is 5.42% with a t-statistic of 3.84,

whereas the average size premium conditional on the long-run component is only 2.65% per year

with a t-statistic of 1.31. Controlling for the market factor further amplifies the difference, gener-

ating a capital asset pricing model (CAPM) alpha of 6.11% and 1.41%, respectively. Second, we

conduct linear factor model time series regressions tests. When size portfolio returns are regressed

on the long-run size component factor (together with the market factor), none of these portfolios

has a statistically significant abnormal return, including the long-short size portfolio. On the other

hand, when returns of portfolios sorted by the long-run component are regressed on the size pre-

mium factor (together with the market factor), we find a significant abnormal return of more than

3 standard errors from zero for the long-short spread portfolio. Our last test is Fama-MacBeth

regressions. Although firm size and its long-run component are both significant predictors for the

future stock returns in univariate regressions, the coefficient on firm size becomes insignificant once

controlling for its long-run component. Taken together, our results suggest that for size premium

investors, a strategy that is based on its long-run component consistently dominates the traditional

size strategy in terms of risk-return tradeoff.

Our decomposition is simple and straightforward. It also sheds lights on several other aspects

of the size premium. For instance, the close link between changes in the firm size and stock returns

provides a natural explanation for the negative (positive) correlation between momentum (long-

term contrarian) profits and size premium. More interestingly, our decomposition uncovers a novel

seasonality of the size premium in its exposure to the momentum factor due to the standard Fama

and French (1992) timing. In Fama and French (1992), size portfolios are rebalanced at the end of

every June, and firm size in June of year t is used to create size portfolios from July of year t to

June of year t+ 1. This timing implies that the relative weight of the intermediate-run component

decreases monotonically from July of current year to June of next year. If a large portion of the

change in market equity is due to stock returns, we expect a similar seasonality in the momentum

factor exposure of the Fama and French (1992) size premium. Indeed, in the time series regressions

of the long-short Fama and French (1992) size portfolio returns on the market and momentum

factors, we find the negative momentum factor loading peaks in the third quarter (−0.17 with a

t-statistic of −2.72) and bottoms in the second quarter (0.05 but statistically insignificant). As a

comparison, when we repeat the same analysis using the size portfolios sorted by the market value

from the previous month, the seasonality in momentum betas disappears.

Our decomposition also provides insights into the January effect, the empirical finding that the

size premium is concentrated in January (e.g., Keim (1983)). Two leading explanations for the

January effect in the literature are the tax-loss selling hypothesis and institutional investor window
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dressing hypothesis, both of which posit that shortly before year-end, investors sell stocks that have

had losses during the year. Since the stock performance within the past year is closely related to the

intermediate-run and short-run components, our decomposition provides a quantitative evaluation

of these two hypotheses. Our empirical analyses suggest that although all size components positively

contribute to the strong performance of size strategies in January, the intermediate-run and short-

run components combined only explain less than 20% of the January effect. In contrast, we find a

surprisingly large January effect based on the lagged 5-year and the long-run components, which

contribute about 60% and 30%, respectively, to the overall January effect. The results for the long-

run component, and especially for the lagged 5-year component, pose a challenge to both leading

hypotheses of the January effect, as neither interpretation traces firm performance for such a long

horizon. Therefore, our analysis indicates that a large portion of January effect remains puzzling.

Size premium is found to have disappeared since its discovery in early 1980s. In a review

paper on anomalies and market efficiency, Schwert (2003) writes that “it seems that the small-firm

anomaly has disappeared since the initial publication of the papers that discovered it”. Indeed,

the average size premium between 1982 and 2002 is only 1.55% per year (t-statistic = 0.39) in our

sample. However, we find that the long-run size component remains a significant return predictor

during the same sample period. When firms are sorted into decile portfolios based on the long-run

component, the long-short portfolio generates an average return of 8.22% per year (t-statistic =

2.16). Therefore, although the traditional size premium indeed disappears between early 1980s

and early 2000s, the premium based on the component that is driving the size premium (i.e., the

long-run component) was still alive and remains quite strong. Our analysis also suggests that the

disappearance of the size premium is primarily due to the bad performance of the lagged 5-year

component, which produces an average annual excess return of −2.19% in that sample period.

Lastly, we apply our decomposition to uncover a novel phenomenon among new entrants, which

are excluded from our benchmark analyses. We find a positive relation between the size premium

and firm age for firms that enter the CRSP dataset within the past 5 years. In the Fama-MacBeth

univariate regressions of one-month ahead stock returns on the log firm size, the size coefficient

decreases in magnitude from −0.22 for stocks of 4-5 years old to −0.03 (statistically insignificant)

for stocks younger than one year old. Our decomposition provides a natural explanation for this

interesting pattern. Since young firms do not have a long history, the long-run component, the

component that drives the size premium, becomes less important in explaining the cross-sectional

size variation, whereas the intermediate-run component that drags down the size premium becomes

relatively more important. Our analysis indicates that although the premiums based on each size

component remain quantitatively similar and stable across age groups, the change in the size

composition with firm age implies a smaller size premium among younger firms.

The paper adds to the large literature on the firm size effect. Beginning with Banz (1981),

size premium has been studied extensively in the past three decades. Fama and French (1995)

find that size premium can be related to financial distress. Fama and French (1996) use the size

premium factor to mimic the underlying risk factor that size premium represents. Studies most
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closely related to us are Berk (1995, 1996). Berk (1995) argues that size-related regularities should

not be regarded as anomalies if size is measured by market value. All else being equal, a firm

with higher discount rate has a smaller firm value and higher expected return, so even without

specifying the underlying data generating process for stock returns, the negative relation between

firm size and future stock returns should always be observed. Berk (1996) uses alternative non-

market based measures of firm size, including book value of assets, book value of un-depreciated

property, plant, and equipment, total value of annual sales, and total number of employees, but

finds no return predictive power. The result of our analyses is consistent with Berk (1995, 1996).

Instead of studying non-market based size measures, we find the lagged 5-year market value also

doesn’t predict stock returns, which suggests that it is not the level of market value, but its changes

in recent years that predict stock returns. In addition, because past changes in market value have

no direct relation with the current level of book asset, annual sale, or number of employees, the

lack of return predictability of these variables that is documented in Berk (1996) should not be

surprising.

Our decomposition and its implication for return predictability are motivated by the cross-

sectional stock return regularities at various horizons, including long-term contrarian, intermediate-

term momentum, short-term reversal, and equity issuance. The objective of this paper is not to

explain these patterns.1 Instead, we take these phenomena as given and study how the compo-

sition of these size components quantitatively affects the overall size premium. In terms of the

methodology of variable decompositions, our paper is similar to Gerakos and Linnainmaa (2016)

who decompose the book-to-market ratio to understand the value premium.

The paper proceeds as follows. Section 2 describes the data. In Section 3, we provide detailed

discussions on how to decompose firm size into four components. Section 4 explores the return

predictability of each size component. We document that the size premium is mainly driven by

the component that captures the change in firm size in prior 13-60 months. In Section 5, we

apply our size decomposition to other aspects of the size premium, including a novel seasonality in

the momentum factor exposure, the January effect, the disappearance of size premium since early

1980s, and the behaviors of new entrants. Section 6 concludes.

1There is large literature on these phenomena in the cross section. For long-term contrarian and value premium,
see, for instance, De Bondt and Thaler (1985), De Bondt and Thaler (1987), Lakonishok, Shleifer, and Vishny (1994),
Zhang (2005), Lettau and Wachter (2007), Da (2009), Ai, Croce, and Li (2013), Ai and Kiku (2015), Kogan and
Papanikolaou (2014). For intermediate-term momentum, see Jegadeesh and Titman (1993), Jegadeesh and Titman
(2001), Johnson (2002), Liu and Zhang (2008), Liu and Zhang (2014). For short-term reversal, see Lehmann (1990),
Jegadeesh (1990), Jegadeesh and Titman (1995), Nagel (2012), Da, Liu, and Schaumburg (2013). For equity issuance,
see, Daniel and Titman (2006), Pontiff and Woodgate (2008), Lyandres, Sun, and Zhang (2008). A small line of
research focuses on a joint explanation for these phenomena, especially for intermediate-term momentum, long-term
contrarian, and value premium. See, for example, Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and
Subrahmanyam (1998), Hong and Stein (1999), Sagi and Seasholes (2007), Li and Zhang (2017), and Li (2016). See
Fama and French (2008) and Nagel (2013) for excellent literature reviews on the cross-sectional stock returns.
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2 Data and Summary Statistics

Our data come from several sources. Stock data are from the monthly CRSP database. Account-

ing data are from Compustat Annually database. The Fama and French factors are from the

Fama/French data library. Our sample include NYSE/AMEX/NASDAQ common stocks (with a

share code of 10 or 11) with nonmissing market value at the end of June. Our sample period covers

630 months from July 1963 to December 2015. We use size and market value interchangeably unless

specified otherwise. In addition, we follow Shumway (1997) to correct for the delisting bias.

Panel A of Table 1 presents the mean (Re), standard deviation (Std), Sharpe ratio (SR), Skew-

ness (Skew), and Kurtosis (Kurt) of the value-weighted excess returns, as well as the CAPM alpha

(αCAPM ), of size decile portfolios and the spread portfolio that buys small firms and short-sells

big firms (S-B). Panel B reports the firm characteristics of these portfolios. Following Fama and

French (1992), at the end of each June, we form ten portfolios based on the market equity at June

using NYSE breakpoints. The portfolios are then held for one year. Panel A of Table 1 confirms

the finding in previous literature that small firms have higher average returns than big firms. The

return difference between small and big firms is 3.28% per year, with an annualized Sharpe ratio

of 0.2. The long-short portfolio return has large positive skewness and kurtosis, indicating that

the size strategy has a small chance of gaining large positive returns. CAPM captures a portion of

the size premium. After controlling for the market factor, the average abnormal return of the S-B

portfolio becomes only 2.21% per year with a t-statistic of 0.89. The latter finding is consistent

with Israel and Moskowitz (2013), who document that CAPM captures a sizable portion of the size

premium.

[Insert Table 1 Here]

Panel B reports the characteristics of a typical firm in each size decile. These characteristics

include the log market cap (ME), the book-to-market equity ratio (BM), prior 2-12 month stock

returns (MOM), and the prior 13-60 month stock return (LTCON). This panel shows that there is

a large cross-sectional dispersion in firm size. For instance, the average market value for a typical

firm in the small size decile (Decile S) is only 20 million dollars, compared with 6.6 billion dollars

in the big size decile (Decile B). Small (big) firms tend to be value (growth) firms, and the book-

to-market ratio decreases monotonically from the small decile to the big decile. More importantly,

big firms tend to have better past stock performance than small firms. Specifically, the average

prior 2-12 month return (MOM) is 0.44% for small firms and 11.54% for big firms, and the average

prior 13-60 month return (LTCON) is 6.66% for small firm and 69.72% for big firms.

The pattern above suggests that the size strategy contains a long position in long-term contrar-

ian strategy that buys long-term losers and short-sells long-term winners, and a short position in

the momentum strategy that buys momentum winners and short-sells momentum losers. The large

profitability of the long-term contrarian and intermediate-term momentum strategies documented

in the literature motivates us to decompose firm size into components over corresponding horizons.
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3 Decomposing firm size

Based on the results from the previous section, we decompose the log firm size into four compo-

nents. The first component, ∆ME(SR), captures the change in firm size during the past 1-month,

consistent with the timing of short-term reversal effect. As we will see later in this paper, although

this short-run component may not be crucial for the Fama and French (1992) size strategy, it is an

important component for the size strategy based the market value of the previous month, especially

for its unique role in January effect. The second component, ∆ME(IR), captures the change in firm

size during prior 2-12 months, consistent with the timing of intermediate-term momentum effect.

The third component, ∆ME(LR), captures the changes in firm size during prior 13-60 months,

consistent with the timing of the long-term contrarian effect. The last component, ME(lag5), mea-

sures the firm size five years ago and captures the extremely persistent component of firm size. For

the benchmark analysis, we focus on the Fama and French (1992) timing in creating size portfolios

using the market value at the end of June.2 We also restrict our benchmark sample to only include

firms that have non-missing market value in previous June and June 5 years ago. In Section 5.4,

we apply our decomposition to understanding the behaviors of these new entrants.

With the Fama and French (1992) timing, the size portfolios are created at the end of June of

year t, and the firm size at June and the resulting size decile is assigned to every month from July of

year t to June of year t+1. In contrast, the short-run, intermediate-run, and long-run windows that

correspond to the timing of short-term reversal, momentum, and long-term contrarian strategies

are moving with the calendar month even within the twelve months following the rebalancing of

size portfolios at the end of June. With this difference taken into consideration, each month, we

decompose market equity as follows. For firms in July of year t, the (log) firm size contains all four

components, because the size change from the beginning to the end of June of year t represents the

short-run component. As a result, our decomposition is based on the following three cross-sectional

regressions:

MEt,6 = a0t + b0t ×MEt,5 + ε0t ≡ M̂E0t + ∆ME(SR)t (1.1)

M̂E0t = a1t + b1t ×MEt−1,6 + ε1t ≡ M̂E1t + ∆ME(IR)t (1.2)

M̂E1t = a2t + b2t ×MEt−5,6 + ε2t ≡ ME(lag5) + ∆ME(LR)t, (1.3)

where MEt,6, MEt,5, MEt−1,6, MEt−5,6, are the log market equity (in million dollars) at the end

of June in year t, the end of May in year t, the end of June in year t − 1, and the end of June in

year t − 5, respectively. In the cross-sectional regression equation (1.1), we regress the log size at

the end of June of year t on the log size at the end of May of year t, and the residual component

∆ME(SR)t is the short-run component for the size in July of year t. The predicted values M̂E0t

from (1.1) are then used as the dependent variables in equation (1.2) to extract the intermediate-

run component. Specifically, we regress M̂E0t on the log size at the end of June of year t− 1, and

2In some analyses of this paper, we also consider an alternative size strategy that is based on the market value
from the end of previous month.
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the residual ∆ME(IR)t is the intermediate-run component. Lastly, we regress the predicted values

from equation (1.2), M̂E1t, on the log size at the end of June of year t− 5 in equation (1.3). The

residual is the long-run component ∆ME(LR)t, whereas the predicted value is our lagged 5-year

component ME(lag5).

For all other months from August of year t to June of year t+1, there are only three components,

because the information about the change in size from the previous month is absent in the size

at the end of June.3 For each of these months, we first regress the log firm size onto the log size

twelve months ago. The residual is the intermediate-run component ∆ME(IR)t, and the predicted

values from the first step are then regressed onto the log size at the end of June of year t− 5. For

example, for size in August of year t, we perform the following decomposition:

MEt,6 = a1t + b1t ×MEt−1,7 + ε1t ≡ M̂E1t + ∆ME(IR)t (2.1)

M̂E1t = a2t + b2t ×MEt−5,6 + ε2t ≡ ME(lag5) + ∆ME(LR)t, (2.2)

The residuals from equations (2.1) and (2.2), ∆ME(IR)t and ∆ME(LR)t, are the intermediate-run

and long-run size components for firms in August year t, whereas the predicted value from equation

(2.2), ME(lag5), represents the lagged 5-year component.

The decomposition implies that even though the firm size is a constant (fixed to be the market

value at the end of previous June) within the twelve months following size portfolio rebalancing,

its components do change from one month to the next. The change in the composition has novel

implications on the factor loadings and the performance of new entrants, which we discuss in later

sections. We also realize that there are other ways to decompose firm size in a similar spirit. We

choose the current procedure because, by construction, it guarantees that: 1) the components add

up to the (log) firm size in June; and 2) these components are orthogonal to each other.4

Figure 1 shows the time series variation of the relative importance of these size components in

explaining the cross-sectional variance of firm size. Each month, we run cross-sectional univariate

regressions of log size in June on each of these four components (or three components if not in

July) and collect the adjusted R2. The R2 for year t is then calculated as the average R2 from July

year t− 1 to June year t to remove the seasonality of the size components. The figure shows that

among all four size components, the lagged 5-year component, ME(lag5), is the most important

determinant that explains about 80.5% of the cross-sectional variance of firm size.5 This result is

expected because firm size is highly persistent over time – a big firm today is very likely to remain

a big firm five years later. The next important component is the long-run component ∆ME(LR),

which explains an average of 18.4% of current size. Between late 1980s and early 2000s, we observe

3However, this short-run component is present every month for the size measure based on the market value at
the end of the previous month.

4We repeat our analysis based on alternative decomposition procedures and find very similar results. For instance,
when we construct size components by directly taking the difference in log size between the beginning and end of
each horizon, instead of running regressions, the main finding is quantitatively similar. These results are available
upon requests.

5These R2s are reported in Panel A of Table 7 under Group 0.
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an increase in the stock return idiosyncratic volatility, which could drive the increase in the R2

of the long-run component relative to the lagged 5-year component. The last two components,

the intermediate-run ∆ME(IR) and short-run ∆ME(SR), explain an average of 2.6% and 0.4%,

respectively, of the cross-sectional size distribution. Given that the short-run component is only

available in July, we ignore it in most discussions on the Fama and French (1992) size strategy.

[Insert Figure 1 Here]

Table 2 reports the firm characteristics of deciles sorted by the size components. Since our

benchmark sample now imposes the restriction of non-missing size components, which differs from

Table 1, we also report the characteristics of size deciles using this benchmark sample in Panel A.

Besides properties of log size (ME), book-to-market (BM), prior 2-12 month returns (MOM), and

prior 13-60 month returns (LTCON), we also report the results for size components– ME(lag5),

∆ME(IR), and ∆ME(LR). Panel A shows that the components display an increasing pattern from

the small decile to the big decile size portfolios. For ∆ME(IR), it is −0.06 for small firms and

0.05 for big firms. For ∆ME(LR), it increases from −0.36 for small firms to 0.43 for big firms.

Interestingly, the dispersion in lagged 5-year firm size is only slightly smaller than that in the

current firm size, again indicating that firm size is highly persistent. This finding is also consistent

with the large explanatory power of the lagged 5-year component for the cross-sectional variation

in firm size plotted in Figure 1.

[Insert Table 2 Here]

Panels B, C, and D of Table 2 report the characteristics of the decile portfolios sorted by the

size components. Since our decomposition procedure enforces an orthogonal condition among these

components, sorting by one component does not create dispersions in other components, as shown in

the last three rows of each panel. In Panel B, the intermediate-run component sorts create a large

spread in the prior 2-12 month return. Firms with high ∆ME(IR) have an average momentum

(MOM) of 57.03%, in contrast with −27.19% for firms with low ∆ME(IR). In Panel C, firms

with high ∆ME(LR) have a large long-term contrarian (LTCON) of 271.58%, compared with that

among firms with low ∆ME(LR) (−45.78%). Therefore, the strategies based on intermediate-run

and long-run components are closely related to momentum and long-term contrarian strategies,

respectively.6 Similar to the patterns for the size portfolio in Panel A, Panel D also shows that

firms with large lagged 5-year size have higher current size and lower book-to-market ratio than

those with small lagged 5-year size.

6Changes in firm size can be due to both stock returns and net issuance. The existing studies document both
variables predict future stock returns. We could have further decomposed the change in firm size at each horizon into
the change in price and change in number of shares outstanding. We choose not to do this for the sake of parsimony.
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4 Decomposing the Size Premium

Based on the size decomposition from the previous section, we study the return predictability of

these components and quantitatively estimate their contributions to the overall size premium.

Table 3 reports the mean (Re), standard deviation (Std), and Sharpe ratio (SR) of the value-

weighted excess return, as well as CAPM alpha (αCAPM ), of decile portfolios sorted by size (Panel

A), ∆ME(IR) (Panel B), ∆ME(LR) (Panel C), and ME(lag5) (Panel D). By restricting non-missing

size components, the size premium becomes stronger: the average size premium is 4.93% per year

(t-statistic = 2.02) with a Sharpe ratio of 0.3. However, controlling for the market factor reduces

the size premium to 4.01% and the corresponding t-statistic becomes 1.68.

[Insert Table 3 Here]

Panel B reports the results for the intermediate-run component ∆ME(IR). Stocks with the

largest increase in firm size in the intermediate run (Decile Hi) have an average excess return

of 10.32% per year (t-statistic = 3.36), compared with only 1.69% for the firms with the largest

decrease in size (Decile 1) in the same horizon. The difference in average returns between the

two extreme decile portfolios is 8.64%, which is more than 3.6 standard errors from zero. A long-

short investment strategy that buys high ∆ME(IR) firms and short-sells low ∆ME(IR) generates a

Sharpe ratio of 0.51. In addition, CAPM fails to explain the strategy returns; controlling for market

exposures creates an abnormal return of 9.1% per year with a t-statistic of 3.85. This strategy

performance is consistent with the momentum strategy that past intermediate-term winners have

higher future returns than intermediate-term losers. Unfortunately, size premium investors do not

benefit from its good performance at all, because the size strategy effectively takes a short position

in it. In fact, this exposure consistently drags down the profitability of the size strategy over time.

Panel C reports the stock performance of the long-run component ∆ME(LR). Opposite to the

intermediate-run component, firms with the largest increase in size in the long run underperform

firms with the largest decrease in firm size by 7.33% per year (t-statistic = 3.23). The long-short

investment strategy based on ∆ME(LR) generates a Sharpe ratio of 0.5, and this strong profitability

is not captured by CAPM. The CAPM abnormal return is 7.76% with a t-statistic of 3.41. The

result for the portfolios sorted by the lagged 5-year component is reported in Panel D. In contrast

to the other two components from Panel B and Panel C, the return displays a hump shape from the

low ME(lag5) decile to the high ME(lag5) decile. The long-short portfolio generates an insignificant

average return of only 1.53% with a Sharpe ratio of 0.1. Controlling for the market factor further

reduces this premium to a negative value (−0.59% per year).

The result in Table 3 indicates that among all components of firm size from our decomposition,

only the long-run component, ∆ME(LR), contributes positively to the overall size premium in an

statistically and economically significant way. In other words, the size premium is likely to be

mainly driven by this long-run component. To test this conjecture, we perform three different

analyses. In the first analysis, we compare the performance of portfolios double sorted by size

and its long-run component. In particular, we create 5-by-5 portfolios double-sorted independently
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by size and ∆ME(LR). Panel A.1 of Table 4 reports the conditional size premium within each

∆ME(LR) quintile and the average conditional size premium across ∆ME(LR) quintiles. Among

all ∆ME(LR) quintiles, the conditional size premium is only significant in ∆ME(LR) quintile 2.

In the high ∆ME(LR) quintile, the conditional size premium is negative at −1.24% per year,

even though it is not statistically significant from zero. The average conditional size premium

across ∆ME(LR) quintiles is insignificant at 2.65%. The unconditional CAPM further reduces the

abnormal conditional size premium to 1.41% per year. In sharp contrast, the conditional ∆ME(LR)

premium is significant in 4 out of 5 size quintiles. It ranges from 8.92% (t-statistic = 6.37) among

small firms to 3.65% (t-statistic = 1.50) among big firms. The average conditional ∆ME(LR)

premium is 5.42% per year, which is more than 3.85 standard errors from zero. The CAPM alpha

for the conditional ∆ME(LR) premium is even higher at 6.11% per year, with a t-statistic of 4.33.

[Insert Table 4 Here]

The second test is a linear factor model test between size premium and ∆ME(LR) premium.

In Panel B.1 of Table 4, we test a two-factor model on size decile portfolios with the market factor

and the ∆ME(LR) premium factor as the factors. The ∆ME(LR) premium factor is calculated as

the return difference between the low ∆ME(LR) decile and the high ∆ME(LR) decile. Compared

with the CAPM result from Panel A of Table 3, none of the ∆ME(LR) deciles has a significant

abnormal return in the two-factor model, and the long-short portfolio (L-H) has an abnormal return

of −0.54% per year (t-statistic = −0.29). The reduction in abnormal returns is mainly due to the

exposure to the ∆ME(LR) factor, which decreases monotonically from 0.49 for small firms to −0.09

for big firms, and the difference is 12.6 standard errors from zero.

When we switch the order and regress the ∆ME(LR) decile excess returns on a two-factor model

with the market factor and size premium factor as the factors, the result looks quite different. In

Panel B.2, we find that despite the strong decreasing pattern of the size factor exposures across

∆ME(LR) portfolios, the abnormal return remains large in many portfolios. In addition, the long-

short ∆ME(LR) portfolio (L-H) has an abnormal return of 5.8% per year, which is more than 3.18

standard errors from zero. Adding the ∆ME(IR) premium factor does not alter the result in a

significant way (Panel C). If anything, the abnormal return of the long-short ∆ME(LR) portfolio

becomes even bigger (7.72% per year with a t-statistic = 4.38).

Our third test is Fama-MacBeth regressions. Compared to the value-weighted portfolio ap-

proach in the first two tests, Fama-MacBeth regressions put relatively more weights on small firms.

Each month, we run a cross-sectional regression of one-month ahead stock returns on log size and its

components ∆ME(IR), ∆ME(LR), and ME(lag5), and the time series average of these coefficients

are reported in Table 5. Columns (1)-(4) report the univariate regression results. Consistent with

the results from Table 3, we find that although size (ME) is a strong predictor for future stock

returns, the coefficient on ME(lag5) is only −0.05 with a t-statistic of −1.43. In contrast, the other

two components ∆ME(IR) and ∆ME(LR) have much stronger predictive power. The coefficient on

∆ME(IR) is 0.73, which is more than 4 standard errors from zero. The coefficient on ∆ME(LR) is
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−0.41 with an even stronger t-statistic of −5.52. These results confirm the relative performance of

the corresponding long-short portfolios reported in Table 3.

[Insert Table 5 Here]

Columns (5)-(7) present the horse race results from the Fama-MacBeth regressions using log

size and one of its components as the return predictors. In Column (5), when both size and size 5

years ago are included into the same regression, the coefficient on size becomes more significant at

−0.32 with a t-statistic of −4.4, compared with the univariate specification. On the other hand,

the coefficient on ME(lag5) is now positive. This finding is intuitive from our decomposition: if the

lagged 5-year component has no predictive power for stock return and is adding noise to the size

premium, controlling this component would make the size premium stronger. We find a similar

pattern when we control for the ∆ME(IR) component (Column (7)). As we discussed earlier, the

size premium strategy contains a short position in the ∆ME(IR) premium, so controlling ∆ME(IR)

would enhance the performance of size strategies. In column (6), the horse race between size and

its long-run component ∆ME(LR), controlling for ∆ME(LR), firm size has little predictive power

for returns. Its coefficient decreases from −0.11 in the univariate regression in Column (1) to an

insignificant value of −0.04 (t-statistic = −1.12). Interestingly, the coefficient on the ∆ME(LR)

becomes more statistically significant.

One advantage of the Fama-MacBeth regressions over the portfolio approach is that we can

quantify the contribution of each size component to the overall size premium. If one component

explains an average of X (or 100X percent) of the cross-sectional variation in size, and the Fama-

MacBeth regression coefficient on this component is Y , its contribution to the coefficient on size

in the Fama-MacBeth regression would be X × Y . We use the coefficient estimates from Spec-

ifications (2)-(4) and the explanatory power of each component for the cross-sectional variation

in firm size in Section 3 to estimate their contributions. For the lagged 5-year component, its

percentage contribution is approximately 39.9% (0.054 × 80.5%/0.109), and this is compared with

69.4% (0.411 × 18.4%/0.109) for the long-run component and −17.5% (−0.734 × 2.6%/0.109) for

the intermediate-run component.7 This result indicates that although the 5-year component cap-

tures more than 80% of the firm size, it only contributes less than 40% of the size premium.8 In

contrast, the long-run component ∆ME(LR) captures only 18% of firm size but contributes almost

70% of the size premium. In untabulated analyses, we find the ∆ME(LR) premium is not driven

by extremely small and illiquid firms, which is a criticism for the implementability of size strategies

(Horowitz, Loughran, and Savin (2000)). For example, when we exclude from our sample firms

with market value of less than 5 million dollars, or firms with end-of-June price lower than $5 per

7The fact that the contributions from these components do not exactly add up to one can be due to: 1) we did
not include the short-run component in this calculation; 2) there are seasonality in the size components within a
year; and 3) the panel data is not balanced; we have more observations in later years than earlier years.

8The contribution from the lagged 5-year component is driven by its correlation with the premium based on the
long-run component. In an untabulated analysis, we find that the ME(lag5) premium changes sign and becomes
positive after controlling for the market factor and a ∆ME(LR) premium factor.
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share, the long-short ∆ME(LR) portfolio still produces an average return of more than 7% per year

with a t-statistic greater than 3.

Taken together, our analyses suggest that the size premium is driven by its long-run component

∆ME(LR). Once controlling for this long-run component, firm size does not have significant pre-

dictive power for future stock returns. These findings are consistent with Berk (1995, 1996). Berk

(1995) argues that size-related regularities should not be regarded as anomalies if size is measured

by market value. All else being equal, a firm with a higher discount rate has a smaller firm value

and higher expected return, so even without specifying the data generating process of stock returns

of a firm, the negative relation between firm size and future stock returns should always be ob-

served. Our findings can be consistent with this argument: firms that experience a large decrease

in market value in the prior 13-60 months (i.e., in the long run) could have experienced positive

shocks to discount rate (either rationally or irrationally). Their realized returns are negative but

expected returns increase. However, we find the similar argument does not hold for the horizon of

prior 2-12 months. Instead, this intermediate-run change in firm size, which is related to the mo-

mentum strategies, positively predicts future stock returns. Berk (1996) studies the size premium

using alternative measures of firm size including book value of assets, book value of un-depreciated

property, plant, and equipment, total value of annual sales, and total number of employees, but

find no return predictive power. Our decomposition provides a natural interpretation for his find-

ings. Particularly, it is not the level of market value, but its recent change, that predicts stock

returns. Because the recent changes in market value have no direct relation with the level of these

alternative size measures, it is not surprising these variables have no return predictive power. For

size premium investors, our findings also suggest that investing in its long-run component is far

better than investing in firm size itself from the perspective of risk-return tradeoff.

5 Further Implications

In this section, we explore additional implications of our size decomposition. In Section 5.1, we

uncover an interesting seasonality in the momentum factor loading of size portfolios that is due

to the Fama and French (1992) timing. In Section 5.2, we use our decomposition to evaluate

leading explanations for the January effect in the existing literature. In Section 5.3, we discuss

the disappearance of the size premium between early 1980s and early 2000s. We study how our

decomposition can be applied to new entrants in Section 5.4.

5.1 Seasonality in momentum beta

Our size decomposition is performed at each month, so these components change from one month to

the next. The rolling horizons of the intermediate-run and long-run components indicate that there

is a seasonality of the intermediate-run and long-run components in the twelve months following the

portfolio rebalancing at the end of each June. For instance, in July of year t, the intermediate-run

component is based on the change in log market value from July of year t − 1 to May of year t.
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As time moves forward by one month, the horizon shrinks by one month, and the intermediate-run

component in August of year t is based on the change in log market value from August of year t−1

to May of year t. In June of year t+ 1, although the firm size still corresponds to the market value

at the end of June of year t, its intermediate-run component is only based on the change in size

from May of year t to June of year t. Since the intermediate-run change in size is highly correlated

with the price momentum, the size premium should also show a seasonality in its momentum factor

exposure. Figure 2 presents this seasonality.

[Insert Figure 2 Here]

In Panel A of Figure 2, we plot the average quarterly momentum factor beta of the size premium

following portfolio rebalancing at the end of June according to the Fama and French (1992) timing.

For each quarter, we estimate the momentum beta by running time series regressions of the monthly

long-short size portfolio excess return on the market excess return and the winner-minus-loser

portfolio return from momentum deciles. We test this at the quarterly frequency to avoid even

higher frequency seasonality such as the January effect. Panel A shows that for Quarter 3 (Q3)

from July to September, i.e., the first quarter following portfolio rebalancing, the size premium has

a large negative momentum factor loading of −0.174 (t-statistic = −2.72). This negative sign is

consistent with the short position of the size premium in the momentum strategies. The momentum

beta increases monotonically over time, and by Quarter 2 (Q2) from April to June, i.e., the last

quarter of the 12-month holding period, it becomes positive at 0.05 but statistically insignificant

(t-statistic = 0.56). As a comparison, we also estimate the momentum beta across quarters for

the size premium based on the market value from the end of the previous month, and the result

is plotted in Panel B of Figure 2. With this alternative timing, size deciles are rebalanced every

month, and the horizon for the intermediate-run component is constant. Therefore, we do not

expect a strong seasonality in momentum beta for this size strategy. Indeed, from Panel B of

Figure 2, the size premium has a negative momentum exposure in all quarters: the momentum

beta is −0.176 for Q3, −0.114 for Q4, −0.194 for Q1, and −0.13 for Q2. This confirms that the

seasonality of momentum beta from Panel A is due to the Fama and French (1992) timing.

5.2 The January effect

The size premium itself is also highly seasonal. Banz (1981) and Reinganum (1983) document that

the good stock market performance in January is mainly driven by small stocks. Keim (1983) finds

that half of the size premium over the 1963 to 1979 period occurs during January, whereas Blume

and Stambaugh (1983) show that all of the size effect occurs in January after adjusting for the

“bid-ask spread” bias. Among alternative hypotheses explaining the puzzling January effect, two

leading explanations are tax-loss selling hypothesis (see, e.g., Branch (1977), Dyl (1977), Givoly

and Ovadia (1983), Starks, Yong, and Zheng (2006)) and the institutional investor window dressing

hypothesis (see, for instance, Haugen and Lakonishok (1988), Musto (1997), and Ritter and Chopra

(1989)). Both hypotheses argue that investors tend to sell stocks that have had bad performance,
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and this selling pressure depresses year-end stock prices which rebound in January. In the tax-loss

selling hypothesis, investors sell losing stocks in order to lower taxes on net capital gains. In the

institutional investor window dressing hypothesis, portfolio managers sell losing stocks to avoid

revealing that they have held poorly performing stocks.

To evaluate these two hypotheses, we decompose the size premium in January in the same

way as we decompose the overall size premium. Table 6 reports the result. We consider both

the Fama and French (1992) size strategy, and the size strategy based on the previous-month-end

market value to fully capture the stock performance during the previous year. Panel A presents

the average explanatory power of each size component for the cross-sectional variation in firm size.

For the Fama and French (1992) size strategy, there are three size components because the short-

run component only exists in July. The lagged 5-year, long-run, and intermediate-run components

explain 80.6%, 18.6%, and 2.3% of firm size, respectively. The composition looks very similar

for the size premium based on the previous-month market value, except for the intermediate-run

component, which doubles its explanatory power to 4.7%. Furthermore, the short-run component

now shows up and explains about 0.6% of firm size.

[Insert Table 6 Here]

Panel B of Table 6 reports the results from Fama-MacBeth regressions. For the Fama and

French (1992) timing, the coefficient on the log firm size in January is −1.62, which is 14.9 times

greater than the estimate for all months (Column (1) of Table 5), confirming the January effect

in our sample. In addition, these values suggest that the average size premium estimated from

the Fama-MacBeth regression for non-January months is negative. The three size components all

contribute positively to January effect. The estimated coefficient on ME(lag5) is −1.29, which

is 23.9 times greater than that from Table 5, suggesting that even the lagged 5-year component

displays a strong January effect. The coefficient on ∆ME(LR) is −3.04, which is 7.4 times greater

than that from Table 5. This result indicates that although the ∆ME(LR) premium is significantly

higher in January, it also exists in other months.9 The coefficient on that ∆ME(IR) is −3.27, which

is 4.5 times greater than that for all months in magnitude but with an opposite sign. The latter

pattern is consistent with the momentum literature that find the average momentum profit to be

negative in January (e.g., Jegadeesh and Titman (1993)). The predictive power of the short-run

and intermediate-run components for the January return is also consistent with Branch (1977)’s

observation that stocks that had negative returns during the prior year also have high returns in

January, a finding that motivates the tax-loss selling hypothesis.

In order to quantify the contribution of each size component to the January effect, we multi-

ply the estimated R2 from Panel A of Table 6 with the corresponding Fama-MacBeth regressions

coefficients from Panel B. In the case of the Fama and French (1992) timing, the contributions

from the lagged 5-year, long-run, and intermediate-run components are 64.0%, 34.8%, and 4.6%,

9Indeed, in an untabulated analysis, we find that the average value-weighted return of the long-short ∆ME(LR)
portfolio for non-January months is 4.5% with a t-statistic of 2.06.

15



respectively. In the case of the size strategy based on the market value from previous month,

the intermediate-run component becomes more important and these three components contribute

to 58.0%, 29.2%, and 11.5%, respectively. In addition, the short-run component appears in Jan-

uary and has a large negative predictability for the January return. The estimated coefficient of

∆ME(SR) is −17.22 with a t-statistic of −7.23, indicating that stocks that perform poorly in pre-

vious December rebounds strongly in January. This pattern is consistent with the selling pressure

on losing stocks in the tax-loss selling hypothesis and institutional investor window dressing hy-

pothesis. Despite its significance, this component only explains about 5.8% of the overall January

effect, due to its low explanatory power for firm size from Panel A.

Our quantitative results pose a challenge for both leading hypotheses for the January effect.

Both hypotheses rely on investors’ behaviors in reaction to the stock performance from the previous

year. Our estimates suggest that the contribution from the stock performance in the previous year is

well below 20%. The significant coefficient on the long-run component is consistent with De Bondt

and Thaler (1985) and Chan (1986), and suggests that investors may wait for years before realizing

losses. Still, there is about 60% the January size premium that comes from the lagged 5-year

component. Therefore, a large portion of the January effect remains puzzling.10

5.3 The disappearance of size premium

It has been documented that the size premium has disappeared since its discovery. For example,

Schwert (2003) reports an average CAPM alpha of 0.2% per month with a t-statistic of 0.67 be-

tween 1982 and 2002 for the Dimensional Fund Advisors (DFA) US 9-10 Small Company Portfolio,

which closely mimics the size strategy described in Banz (1981). Several studies have proposed

potential explanations for this disappearance. Hou and van Dijk (2014) argue that it is the large

negative profitability shocks that drives the poor performance of small firms after early 1980s. As-

ness, Frazzini, Israel, Moskowitz, and Pedersen (2015) document that size premium is robust after

controlling for quality. Shi and Xu (2015) emphasize the importance of the delisting bias. They

document that there is a positive size premium for firms close to be delisted, and once excluding

these observations, the size premium reappears. Ahn, Min, and Yoon (2016) find that the size

effect is significantly positive at the bottom of the business cycles.

Our decomposition provides an alternative explanation for this phenomenon. Figure 3 plots the

cumulative returns of the long-short portfolio based on firm size and its components. The figure

shows that the strategy based on the long-run component outperforms the size strategy, whereas

the intermediate-run and the lagged 5-year components perform poorly. For the full sample period

from July 1963 to December 2015, the cumulative return is about 190.5% for the size premium,

which is smaller than 327.3% for the ∆ME(LR) premium. On the other hand, the cumulative return

is only 14.4% for the lagged 5-year component, and −531.1% for the intermediate-run component.

10In untabulated analyses, we extend the horizon back further and find that the premium based on the lag 10-year
or even 20-year market values still displays a strong January effect. This pattern is unlikely to be explained by the
delayed realization of long-run losses by investors.
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The large negative loss for the intermediate-run component is consistent with its strong return

predictability documented in Section 4.

[Insert Figure 3 Here]

Narrowing the sample period down to 1982-2002 during which Schwert (2003) documents the

disappearance of the size effect, we find that the average size premium is indeed only 1.55% per

year, which is about 0.39 standard errors from zero. However, the premium based on the long-run

component, ∆ME(LR), is 8.22% per year with a t-statistic of 2.16. These results suggest that

although the size premium has disappeared between early 1980s and early 2000s, the premium

based on the component that drives the size premium (i.e., the long-run component) was still alive

and remained quite strong. But what makes the overall size premium disappeared? Our analysis

indicates that one main reason is the poor performance of the lagged 5-year component. When

focusing on the pattern of the cumulative returns of the size premium and the lagged 5-year size

premium between 1982 and early 2000s in Figure 3, we can see a strong comovement between

these two time series. More importantly, the average premium of this lagged 5-year component

is −2.19% per year during this sample period. This bad performance, together with its large

explanatory power for the cross-sectional variation in size (Figure 1), drags down the average size

premium.11,12

5.4 New entrants

Our analysis in previous sections focuses solely on firms that have non-missing size components

from the decomposition. In particular, we exclude firms that entered the CRSP database within

the previous 5 years. Fama and French (2004) document that firms that obtain public equity

financing expands dramatically in the 1980s and 1990s. The cross section of the profitability of

these firms are highly left skewed but their growth rates are highly right skewed. Therefore, the

behavior of the size premium among these new entrants could potentially be different from those

in our benchmark sample.

In this subsection, we apply our size decomposition to these new entrants. Different from a

relatively mature firm in our benchmark sample, the composition of a newly entered young firm

depends on the number of years since its entry. For example, a firm that enters the CRSP database

4 years ago has both the long-run and intermediate-run components. In contrast, for a firm that

enters 11 months ago, the long-run component is absent. To control this cohort effect, we separate

these new entrants into five groups. Group 1 includes stocks younger than 1 year, Group 2 includes

11One possible explanation for the negative ME(lag5) premium is the increased idiosyncratic volatility. In unt-
abulated analyses, we notice that the level of common idiosyncratic volatility (CIV) (Herskovic, Kelly, Lustig, and
Van Nieuwerburgh (2016)) doubled from early 1980s to early 2000s. Furthermore, we find a strong negative exposure
of the ME(lag5) premium to the CIV shock, so unexpected increases in CIV lower the ME(lag5) premium in this
sample period. A comprehensive exploration of these historically small firms can be interesting for future studies.

12Another explanation for the disappearance of size premium since early 1980s is the bad performance of the newly
entered firms. See, for example, Fama and French (2004), Hou and van Dijk (2014). We discuss the implication of
our decomposition on the performance of these firms in Section 5.4.
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stocks older than 1 year but younger than 2 years, Group 3 includes stocks older than 2 years but

younger than 3 years, Group 4 includes stocks older than 3 years but younger than 4 years, and

Group 5 includes stocks older than 4 years but younger than 5 years. As a comparison, we also

include stocks in our benchmark sample as Group 0. Since these new entrants do not have a long

history up to 5 years, we define ME(lag) as the initial log market value when firms enter the CRSP

database for firms in all groups other than Group 0.

Panel A of Table 7 reports the explanatory power (R2) of each component for the cross-sectional

variation in firm size. For all groups, the persistent component, ME(lag), has the most explana-

tory power, followed by ∆ME(LR), ∆ME(IR), and ∆ME(SR). More importantly, there are clear

patterns for these component R2 across these age groups. The R2 for ME(lag), ∆ME(IR), and

∆ME(SR) decreases monotonically from Group 2 to Group 5, whereas the R2 for ∆ME(LR) dis-

plays an opposite increasing pattern. Intuitively, compared to a relatively older firm, the probability

for a young firm to have a big change in market value since its entry is small, so its entry size ex-

plains the majority of its current size. In addition, the short-run and intermediate-run components

carry less weight as firms get older, because the long-run component gradually plays a more im-

portant role. For firms younger than 1 year old, the long-run component is absent, whereas the

intermediate-run component may only cover a fraction of the 11-month horizon. Interestingly, the

monotonic patterns do not extend to the benchmark sample (Group 0) that consists of more mature

stocks. For example, the R2 for ME(lag) is 80.5% in Group 0, which is higher than 55% in Group

5. Similarly, the R2 for ∆ME(LR) is only 18.4% for Group 0, even lower than 28.3% for Group 3.

This break in monotonicity can be due to higher stock return volatility and more frequent equity

issuance for these young firms, resulting a greater cumulative change in firm size within the past

few years. This effect can be so strong that it dominates the effect from the horizon changes so

that the mature firms in Group 0 is more predicted by their ME(lag).13

[Insert Table 7 Here]

In Panel B, we run univariate Fama-MacBeth regressions of one-month ahead stock returns on

log firm size and its components. When the predictive variable is log firm size (ME), the estimated

coefficient is negative for all age groups, but it is much smaller in magnitude for younger firms.

For instance, the coefficient is −0.22 for firms that are 4 years old, compared with only −0.03

for firms younger than 1 year old. Therefore, we find a positive relation between size premium

and firm age. To understand this pattern, the last four columns report the coefficients of the size

components. Surprisingly, the estimated coefficients are very stable across age groups. For the

ME(lag) component, it ranges from −0.049 to −0.092, but none of these estimates are statistically

significant. This finding is consistent with what we documented in the benchmark sample that

lagged 5-year size has no predictive power for future stock returns. Similar patterns are found for

the other components. The estimated coefficient for firms in Groups 1-5 is between −0.56 and −0.69

13Indeed, we find the cross-sectional standard deviations of the monthly change in firm size in the intermediate-run
and long-run horizons are 13.4% and 15.4% for firms in Group 5, significantly larger than the corresponding values
of 10.4% and 11.6% for firms in Group 0.
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for ∆ME(LR), between 0.61 and 0.78 for ∆ME(IR), and between −4.4 and −7.7 for ∆ME(SR).

Therefore, the relation between size premium and firm age for these new entrants must be mainly

driven by the variation in the size components. In particular, for firms younger than 1 year old,

the ME(lag) and ∆ME(LR) components dominate, so the size premium is small and insignificant.

As firms get older, the long-run component becomes more important and the corresponding R2 is

increased to 43.7% when firms are 4 years old (Group 5). As a result, the implied size premium

among these firms is much stronger than firms in Group 1.

6 Conclusion

In this paper, we analyze the size effect by decomposing firm’s market value into four components.

Our result indicates that despite explaining about 80% of the cross-sectional variation in firm size,

the lagged 5-year component, which measures firm size 5 years ago, has little predictive power for

future stock returns. In contrast, the intermediate-run and long-run components, which measure

the changes in firm size in the prior 2-12 and 13-60 month horizons, only capture 3% and 18%

of firm size. However, they are strong return predictors: firms with the largest increase in size in

the intermediate-run (long-run) outperform (underperform) firms with the largest decrease in size

in intermediate-run (long-run) by 8.64% (7.33%). Therefore, the standard size strategy effectively

takes a long position in the premium based on the long-run component and a short position in the

intermediate-run component. These results also suggest that the size premium is mainly driven by

this long-run component, which we confirm using double-sorted portfolios, linear factor time series

regressions, and Fama-MacBeth cross-sectional regressions.

We apply this decomposition to several aspects of the size premium. First, we uncover an

interesting seasonality in momentum factor beta of the size premium with Fama and French (1992)

timing. Since a large fraction of change in firm size in the intermediate-run horizon is due to stock

returns, the seasonality of the intermediate-run component from the decomposition procedure also

implies a momentum exposure seasonality. Second, our size decomposition sheds light on the

January effect quantitatively. Leading explanations such as the tax-loss selling hypothesis and

the institutional investor window dressing hypothesis are based on the stock performance in the

previous year. Our analysis suggests that the previous-year change can only explain less than

20% of the January effect. Instead, firm size 5 years ago captures more than 60% of the January

effect, which poses a challenge to these explanations. Third, we relate our decomposition to the

disappearance of size premium between early 1980s and early 2000s. Our result suggests that

although the traditional size premium disappeared in this sample period, the premium from the

long-run component that drives the size premium was still alive and quite strong. Lastly, we study

the performance of new entrants, that is, firms that enter the CRSP database within the previous

5 years. We document a positive relation between size premium and firm age among these new

entrants, and find that the change in the composition of size components with firm age is mainly

responsible for this positive correlation.
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Table 1: Characteristics of size portfolios
This table reports the value-weighted average excess returns (Rete), standard deviation (Std),
Sharpe Ratio (SR), Skewness (Skew), Kurtosis (Kurt), and intercepts from CAPM model (αCAPM )
of the decile Size portfolios in Panel A, and the time-series average of the cross-sectional median
firm characteristics in Panel B. At the end of June each year, we sort NYSE/AMEX/NASDAQ
common stocks by market equity into Size deciles. ME is log of market equity in million dollars.
BM is the book value of equity divided by market value at the end of the last fiscal year. MOM is
momentum, defined as prior 2-12 month returns, LTCON is long-term contrarian, defined as prior
13-60 month returns. The returns and alphas are annualized and reported in percentages. The
t-statistics in parentheses are calculated based on the heteroskedasticity-consistent standard errors
of Newey and West (1987). The sample period is from July 1963 to December 2015.

Panel A: Size portfolio excess returns

Port. S 2 3 4 5 6 7 8 9 B S-B

Re 8.54 8.00 9.15 8.55 8.72 7.64 7.94 7.58 6.72 5.27 3.28
(2.43) (2.44) (3.01) (2.88) (3.06) (2.87) (3.00) (3.05) (2.88) (2.57) (1.28)

Std 21.99 21.93 20.79 20.26 19.37 18.25 17.88 17.34 15.99 14.67 16.65
SR 0.39 0.36 0.44 0.42 0.45 0.42 0.44 0.44 0.42 0.36 0.20
Skew -0.15 -0.25 -0.45 -0.45 -0.51 -0.56 -0.45 -0.48 -0.45 -0.36 0.73
Kurt 2.48 2.12 2.02 2.18 2.27 1.95 2.16 1.81 2.00 1.72 4.20
αCAPM 1.91 0.76 2.02 1.53 1.81 0.99 1.32 1.08 0.65 -0.30 2.21

(0.91) (0.47) (1.50) (1.20) (1.74) (1.08) (1.60) (1.51) (1.20) (-0.63) (0.89)

Panel B: Size portfolio characteristics

Port. S 2 3 4 5 6 7 8 9 B

ME 3.00 4.48 5.03 5.47 5.88 6.29 6.72 7.21 7.83 8.80
BM 0.92 0.72 0.70 0.67 0.64 0.62 0.60 0.60 0.59 0.50
MOM 0.44 7.71 9.78 10.89 11.38 11.73 11.78 11.65 11.46 11.54
LTCON 6.66 41.07 52.69 56.19 61.98 64.68 64.43 61.88 64.41 69.72
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Table 2: Characteristics of size and component portfolios
This table reports the time-series average of the cross-sectional median firm characteristics in the
decile portfolios sorted by log size (ME, Panel A), intermediate-run change in log size (∆ME(IR),
Panel B), long-run change in log size (∆ME(LR), Panel C), and lagged 5-year log size (ME(lag5),
Panel D). At the beginning of each month, firms are sorted into deciles based on the sorting
variables. ME is logarithms of market equity at June in million dollars following the timing in
Fama and French (1992). BM is the book value of equity divided by market value at the end of
the last fiscal year. MOM is momentum, defined as prior 2-12 month returns, LTCON is long-
term contrarian, defined as prior 13-60 month returns. The size decomposition is described in
Section XXX. The sample includes all NYSE/AMEX/NASDAQ common stocks with nonmissing
size components from the size decomposition from July 1963 to December 2015.

Panel A: Size portfolios
Port. Lo 2 3 4 5 6 7 8 9 Hi
ME 3.05 4.49 5.07 5.54 5.98 6.40 6.84 7.35 7.94 8.90
BM 1.06 0.82 0.77 0.73 0.70 0.66 0.62 0.62 0.59 0.48
MOM 2.34 8.48 10.31 10.88 11.41 11.67 11.76 11.41 11.47 11.54
LTCON 7.58 41.58 53.05 56.56 62.82 63.84 63.39 63.47 64.35 70.23
∆ME(IR) -0.06 0.00 0.02 0.02 0.03 0.03 0.04 0.03 0.04 0.05
∆ME(LR) -0.36 0.02 0.13 0.18 0.24 0.26 0.29 0.30 0.32 0.43
ME(lag5) 3.36 4.45 4.91 5.33 5.70 6.10 6.53 7.02 7.58 8.49

Panel B: Portfolios sorted by intermediate-run change in size (∆ME(IR))
Port. Lo 2 3 4 5 6 7 8 9 Hi
ME 3.65 4.46 4.84 5.08 5.24 5.36 5.41 5.40 5.24 4.67
BM 0.80 0.81 0.80 0.79 0.78 0.78 0.77 0.75 0.75 0.73
MOM -27.19 -9.79 -2.39 3.11 7.86 12.18 17.11 23.13 32.05 57.03
LTCON 25.68 37.08 41.09 43.13 44.82 46.00 46.18 47.13 45.71 29.41
∆ME(IR) -0.38 -0.19 -0.11 -0.06 -0.01 0.04 0.08 0.14 0.21 0.40
∆ME(LR) -0.07 0.00 0.04 0.05 0.07 0.08 0.08 0.09 0.07 -0.08
ME(lag5) 4.18 4.64 4.90 5.07 5.14 5.19 5.19 5.13 4.90 4.27

Panel C: Portfolios sorted by long-run change in size (∆ME(LR))
Port. Lo 2 3 4 5 6 7 8 9 Hi
ME 3.09 4.00 4.53 4.96 5.24 5.46 5.59 5.67 5.74 5.71
BM 1.28 1.06 0.95 0.86 0.81 0.75 0.69 0.62 0.53 0.41
MOM 8.29 8.81 8.82 9.19 9.03 8.87 8.66 8.10 7.31 3.60
LTCON -45.78 -7.44 13.91 31.06 46.95 63.78 82.43 107.21 147.88 271.58
∆ME(IR) 0.00 0.00 -0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00
∆ME(LR) -1.10 -0.53 -0.27 -0.09 0.06 0.21 0.36 0.53 0.78 1.31
ME(lag5) 4.33 4.53 4.80 5.03 5.16 5.23 5.22 5.11 4.93 4.23

Panel D: Portfolios sorted by lagged 5-year size (ME(lag5))
Port. Lo 2 3 4 5 6 7 8 9 Hi
ME 3.19 4.50 5.03 5.46 5.88 6.30 6.74 7.24 7.83 8.83
BM 0.92 0.82 0.80 0.78 0.74 0.72 0.69 0.67 0.66 0.57
MOM 5.80 8.21 8.98 9.70 9.44 9.88 9.72 10.45 9.51 9.39
LTCON 41.84 37.45 40.56 41.82 42.19 44.41 44.40 43.64 42.54 39.95
∆ME(IR) -0.02 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02
∆ME(LR) -0.03 -0.03 0.02 0.04 0.05 0.08 0.12 0.12 0.13 0.16
ME(lag5) 3.31 4.53 5.00 5.41 5.81 6.20 6.62 7.10 7.67 8.57
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Table 3: Returns and asset pricing tests of size and component portfolios
This table reports the value-weighted average excess returns (Re), standard deviation (Std), Sharpe
Ratio (SR), and intercepts from CAPM model (αCAPM ) of decile portfolios sorted by log size (ME,
Panel A), intermediate-run change in log size (∆ME(IR), Panel B), long-run change in log size
(∆ME(LR), Panel C), and lagged 5-year log size (ME(lag5), Panel D). The size decomposition is
described in Section XXX. At the beginning of each month, firms are sorted into deciles based on
the sorting variables. The returns and CAPM alphas are annualized and reported in percentages.
The t-statistics in parentheses are calculated based on the heteroskedasticity-consistent standard
errors of Newey and West (1987). The sample includes all NYSE/AMEX/NASDAQ common stocks
with nonmissing size components from size decomposition from July 1963 to December 2015.

Panel A: Size portfolios
Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
Re 10.22 9.51 10.19 9.82 9.89 8.45 8.51 7.75 6.72 5.29 4.93

(3.05) (3.05) (3.55) (3.53) (3.67) (3.36) (3.41) (3.25) (2.99) (2.61) (2.02)
Std 21.42 21.17 19.92 19.16 18.32 17.37 17.19 16.83 15.50 14.58 16.33
SR 0.48 0.45 0.51 0.51 0.54 0.49 0.49 0.46 0.43 0.36 0.30
αCAPM 3.79 2.61 3.43 3.21 3.44 2.14 2.19 1.46 0.89 -0.22 4.01

(1.88) (1.60) (2.51) (2.55) (3.06) (2.23) (2.37) (1.93) (1.34) (-0.45) (1.68)

Panel B: Portfolios sorted by intermediate-run change in size (∆ME(IR))
Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
Re 1.69 3.95 5.62 4.61 6.29 5.78 6.68 8.21 8.54 10.32 -8.64

(0.49) (1.5) (2.48) (2.17) (3.13) (2.89) (3.29) (3.96) (3.54) (3.36) (-3.64)
Std 23.05 18.01 16.14 15.20 14.84 14.46 14.80 15.40 16.88 20.47 16.65
SR 0.07 0.22 0.35 0.30 0.42 0.40 0.45 0.53 0.51 0.50 -0.51
αCAPM -5.95 -2.08 0.04 -0.77 0.99 0.58 1.30 2.62 2.42 3.16 -9.10

(-3.46) (-1.41) (0.04) (-0.80) (1.12) (0.74) (1.67) (3.65) (2.85) (2.39) (-3.85)

Panel C: Portfolios sorted by long-run change in size (∆ME(LR))
Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
Re 11.88 8.43 8.26 8.19 7.48 7.03 5.95 5.66 5.46 4.54 7.33

(3.77) (3.48) (3.76) (3.84) (3.77) (3.39) (2.89) (2.67) (2.42) (1.59) (3.23)
Std 20.67 17.33 15.85 14.81 14.14 14.55 14.73 15.13 16.44 19.57 14.81
SR 0.57 0.49 0.52 0.55 0.53 0.48 0.40 0.37 0.33 0.23 0.50
αCAPM 5.17 2.54 2.80 3.01 2.47 1.80 0.62 0.15 -0.58 -2.60 7.76

(2.99) (1.94) (2.47) (2.90) (3.07) (2.22) (0.81) (0.20) (-0.69) (-2.61) (3.41)

Panel D: Portfolios sorted by lagged 5-year size (ME(lag5))
Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
Re 7.02 8.95 8.25 8.67 8.51 7.97 7.42 7.50 6.62 5.49 1.53

(2.02) (2.77) (2.71) (2.91) (3.17) (3.04) (2.99) (3.09) (2.99) (2.82) (0.63)
Std 22.56 21.82 20.30 20.08 18.23 18.06 17.33 16.71 15.66 14.14 15.99
SR 0.31 0.41 0.41 0.43 0.47 0.44 0.43 0.45 0.42 0.39 0.10
αCAPM -0.41 1.46 1.10 1.53 1.91 1.35 1.00 1.18 0.71 0.18 -0.59

(-0.23) (1.03) (0.91) (1.37) (1.88) (1.51) (1.31) (1.99) (1.40) (0.35) (-0.27)
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Table 4: Relation between size and ∆ME(LR) component
This table reports the relation between firm size and ∆ME(LR) components. In Panel A, each
month we construct 5-by-5 portfolios independently double-sorted by firm size and ∆ME(LR)
component. Panel A.1 reports the size premium (the annualized value-weighted excess returns
and CAPM alphas difference between bottom and top size quintile portfolios) within and across
∆ME(LR) quintiles. Panel A.2 reports the ∆ME(LR) premium (the annualized value-weighted
excess returns and CAPM alphas difference between bottom and top ∆ME(LR) quintile portfolios)
within and across size quintiles. Panel B reports the time series regression coefficients of size (Panel
B.1) and ∆ME(LR) (Panel B.2) decile portfolios in a two-factor model, with the market factor and
the ∆ME(LR) premium factor as the risk factors. Panel B.1 reports the intercept (α), the market
beta (β1), and the ∆ME(LR) factor beta (β2). Panel B.2 reports the intercept (α), the market beta
(β1) and the size factor (β2). Panel C reports the time series regression coefficients of size (Panel
C.1) and ∆ME(LR) (Panel C.2) decile portfolios in a three-factor model with the addition of a
∆ME(IR) premium factor. The returns and alphas are annualized and reported in percentages.
The t-statistics in parentheses are calculated based on the heteroskedasticity-consistent standard
errors of Newey and West (1987). The sample includes all NYSE/AMEX/NASDAQ common stocks
with nonmissing size components from size decomposition from July 1963 to December 2015.

Panel A: Double sorts and conditional premium
Panel A.1: Conditional size premium across ∆ME(LR) quintiles
∆ME(LR) Lo 2 3 4 Hi Average
Re 4.02 4.06 3.35 3.06 -1.24 2.65

(1.40) (2.03) (1.81) (1.37) (-0.5) (1.31)
αCAPM 2.46 2.91 2.11 1.82 -2.26 1.41

(0.90) (1.53) (1.19) (0.85) (-0.91) (0.74)
Panel A.2: Conditional ∆ME(LR) premium across size quintiles
Size Lo 2 3 4 Hi Average
Re 8.92 5.50 4.24 4.80 3.65 5.42

(6.37) (3.34) (2.51) (2.64) (1.50) (3.85)
αCAPM 9.29 5.99 5.04 5.65 4.57 6.11

(6.63) (3.57) (3.00) (3.13) (1.88) (4.33)
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Panel B: Size and ∆ME(LR) portfolios in two-factor models
Panel B.1: Size portfolios

Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
α -0.04 -0.88 0.48 0.71 1.24 0.66 0.99 0.41 0.47 0.50 -0.54

(-0.03) (-0.71) (0.45) (0.67) (1.32) (0.76) (1.17) (0.64) (0.75) (1.08) (-0.29)
β1 1.11 1.18 1.16 1.13 1.10 1.07 1.07 1.06 0.98 0.91 0.20

(31.41) (43.10) (47.04) (43.64) (45.01) (51.78) (55.62) (75.20) (63.40) (90.75) (4.67)
β2 0.49 0.45 0.38 0.32 0.28 0.19 0.15 0.14 0.05 -0.09 0.59

(12.56) (14.30) (14.33) (12.28) (10.94) (8.77) (7.18) (7.40) (3.34) (-8.62) (12.60)
R2 0.71 0.80 0.84 0.85 0.87 0.90 0.91 0.94 0.94 0.95 0.30

Panel B.2: ∆ME(LR) portfolios
Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
α 3.39 1.83 2.51 2.95 2.42 1.82 0.96 0.63 -0.13 -2.41 5.80

(2.68) (1.55) (2.25) (2.88) (2.97) (2.26) (1.28) (0.88) (-0.16) (-2.44) (3.18)
β1 1.05 0.96 0.90 0.86 0.83 0.87 0.90 0.94 1.02 1.20 -0.15

(33.38) (31.30) (30.77) (32.69) (36.29) (41.22) (36.32) (41.53) (38.94) (51.86) (-3.22)
β2 0.44 0.18 0.07 0.01 0.01 0.00 -0.09 -0.12 -0.11 -0.05 0.49

(10.22) (4.88) (1.49) (0.47) (0.38) (-0.19) (-3.16) (-5.63) (-5.51) (-1.96) (8.52)
R2 0.82 0.79 0.79 0.81 0.83 0.85 0.88 0.89 0.90 0.88 0.29

Panel C: Size and ∆ME(LR) portfolios in three-factor models
Panel C.1: Size portfolios

Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
α -0.04 -0.76 0.83 0.98 1.59 1.05 1.36 0.90 0.73 0.61 -0.65

(-0.02) (-0.58) (0.76) (0.91) (1.62) (1.15) (1.54) (1.37) (1.07) (1.26) (-0.33)
β1 1.11 1.18 1.15 1.12 1.09 1.06 1.06 1.05 0.97 0.91 0.20

(30.92) (42.53) (46.74) (43.71) (44.80) (50.88) (53.93) (75.42) (61.36) (90.76) (4.64)
β2 0.49 0.45 0.37 0.31 0.27 0.18 0.14 0.12 0.05 -0.10 0.59

(11.51) (12.38) (12.87) (11.33) (10.53) (8.48) (6.85) (6.82) (3.05) (-7.96) (11.41)
β3 0.00 0.01 0.03 0.02 0.03 0.03 0.03 0.04 0.02 0.01 -0.01

(0.01) (0.29) (0.99) (0.85) (1.24) (1.47) (1.57) (2.93) (1.60) (0.70) (-0.16)
R2 0.71 0.80 0.84 0.85 0.87 0.90 0.91 0.94 0.94 0.95 0.30

Panel C.2: ∆ME(LR) portfolios
Port. Lo 2 3 4 5 6 7 8 9 Hi L-H
α 4.62 2.68 3.70 3.71 2.86 2.23 1.45 0.72 -0.32 -3.11 7.72

(3.70) (2.29) (3.19) (3.41) (3.25) (2.83) (1.93) (0.98) (-0.37) (-3.14) (4.38)
β1 1.05 0.95 0.89 0.86 0.83 0.87 0.90 0.94 1.03 1.20 -0.16

(37.14) (30.79) (29.99) (31.76) (35.12) (41.21) (36.81) (41.34) (38.63) (52.50) (-3.77)
β2 0.42 0.16 0.05 0.00 0.00 -0.01 -0.09 -0.12 -0.11 -0.04 0.46

(10.70) (4.80) (1.15) (0.08) (0.13) (-0.57) (-3.49) (-5.55) (-5.36) (-1.56) (9.01)
β3 0.13 0.09 0.12 0.08 0.05 0.04 0.05 0.01 -0.02 -0.07 0.20

(4.58) (3.81) (3.92) (2.89) (1.78) (2.02) (2.12) (0.54) (-0.81) (-3.31) (4.99)
R2 0.83 0.80 0.80 0.81 0.83 0.86 0.88 0.89 0.90 0.88 0.34
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Table 5: Fama-MacBeth regressions
This table reports the results from Fama-MacBeth regressions of returns (in percentages) on firm
characteristics, including the logarithm of the firm size and its components. The t-statistics in
parentheses are calculated based on the heteroskedasticity-consistent standard errors of Newey and
West (1987). The sample includes all NYSE/AMEX/NASDAQ common stocks with nonmissing
size components from size decomposition from July 1963 to December 2015.

Specification (1) (2) (3) (4) (5) (6) (7)

Intercept 1.724 1.460 1.234 1.229 1.442 1.406 1.788
(4.49) (3.91) (5.07) (5.05) (3.89) (3.77) (4.67)

ME -0.109 -0.323 -0.041 -0.123
(-2.77) (-4.4) (-1.12) (-3.11)

ME(lag5) -0.054 0.273
(-1.43) (4.24)

∆ME(LR) -0.411 -0.371
(-5.52) (-6.15)

∆ME(IR) 0.734 0.862
(4.06) (4.86)

R2(%) 1.48 1.14 0.78 0.74 2.04 1.95 2.16
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Table 6: January effect
This table analyzes January effect for two size strategies. The first strategy follows Fama and French
(1992) timing and defines firm size as the market value at the end of previous June. The second
strategy defines firm size as the market value at the end of previous month. Panel A reports the
fraction of the cross-sectional variance of log firm size that is explained by its components. Panel B
reports the coefficients from the univariate Fama-MacBeth regressions of returns (in percentages)
on the logarithm of the firm size and its components. The t-statistics in parentheses are calculated
based on the heteroskedasticity-consistent standard errors of Newey and West (1987). The sample
includes all January from 1964 to 2015.

Panel A: Adj R2 of size regressions
Size timing ME(lag5) ∆ME(LR) ∆ME(IR) ∆ME(SR)

End of previous June 0.806 0.186 0.023
End of previous month 0.790 0.171 0.047 0.006

Panel B: Fama-MacBeth regressions
Size timing ME ME(lag5) ∆ME(LR) ∆ME(IR) ∆ME(SR)

End of previous June -1.62 -1.29 -3.04 -3.27
(-6.79) (-6.13) (-6.14) (-4.50)

End of previous month -1.81 -1.32 -3.08 -4.39 -17.22
(-6.91) (-6.43) (-6.00) (-5.08) (-7.23)
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Table 7: New entrants
This table analyzes new entrants, defined as all NYSE/AMEX/NASDAQ common stocks that enter
the CRSP database within the past five years but have non-missing market value at the end of
previous June. At each month, Group 1 includes stocks younger than 1 year, Group 2 includes
stocks older than 1 but younger than 2 years, Group 3 includes stocks older than 2 but younger
than 3 years, Group 4 includes stocks older than 3 but younger than 4 years, and Group 5 includes
stocks older than 4 years. As a comparison, we also report the result for the sample of firms used
in Table 2 (Group 0). ME(lag) is the log market value 5 years ago for Group 0. For the other
groups, ME(lag) is the log market value when firms enter the CRSP database. Panel A reports the
fraction of the cross-sectional variance of log firm size that is explained by its components. Panel B
reports the coefficients from the univariate Fama-MacBeth regressions of returns (in percentages)
on the logarithm of the firm size and its components. The t-statistics in parentheses are calculated
based on the heteroskedasticity-consistent standard errors of Newey and West (1987). The sample
is monthly from July 1963 to December 2015.

Panel A: Adj R2 of size regressions
Group ME(lag) ∆ME(LR) ∆ME(IR) ∆ME(SR)

1 0.936 0.100 0.029
2 0.818 0.140 0.129 0.014
3 0.698 0.283 0.085 0.009
4 0.618 0.367 0.071 0.007
5 0.550 0.437 0.063 0.006
0 0.805 0.184 0.026 0.004

Panel B: Fama-MacBeth regressions
Group ME ME(lag) ∆ME(LR) ∆ME(IR) ∆ME(SR)

1 -0.030 -0.066 0.612 -4.390
(-0.40) (-0.86) (1.28) (-2.35)

2 -0.053 -0.074 -0.687 0.675 -6.105
(-0.84) (-1.06) (-3.56) (2.19) (-2.92)

3 -0.219 -0.092 -0.639 0.779 -4.668
(-3.27) (-1.35) (-4.10) (2.87) (-2.01)

4 -0.227 -0.049 -0.584 0.653 -7.701
(-3.53) (-0.72) (-4.63) (2.26) (-3.45)

5 -0.223 -0.075 -0.558 0.658 -5.363
(-3.75) (-1.28) (-5.48) (2.62) (-2.50)

0 -0.109 -0.054 -0.411 0.734 -6.010
(-2.77) (-1.43) (-5.52) (4.06) (-4.24)
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Figure 1: Fractions of cross-sectional variance of firm size explained by its components
This figure plots the fractions of cross-sectional variance of firm size explained by its components
over time. At each month, we run a cross-sectional regression of log market equity from the
previous June on each of its components (ME(lag5), ∆ME(LR), ∆ME(IR), and ∆ME(SR)). For
each component, the adjusted R2 for year t is calculated as the average R2 from July, year t− 1 to
June, year t. The sample includes all NYSE/AMEX/NASDAQ common stocks with nonmissing
size components from size decomposition from July 1963 to December 2015.
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Figure 2: Seasonality in momentum beta
This figure plots the seasonality in momentum beta of the Fama and French (1992) size premium
(Panel A) and the size premium based on the market value of the previous month (Panel B). In
each quarter, we estimate the momentum beta of the long-short size decile portfolios in a two-factor
model with the market excess return and the winner-minus-loser portfolio return from momentum
deciles as the risk factors. The sample includes all NYSE/AMEX/NASDAQ common stocks from
July 1963 to December 2015.
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Figure 3: Cumulative returns of size and components strategies
This figure plots the cumulative returns of the long-short portfolio based on standard size and
its components. To be consistent with the sign of the size premium, the long-short portfolio for
each sorting variable is the difference between the bottom and top decile portfolios. The sample
includes all NYSE/AMEX/NASDAQ common stocks with nonmissing size components from size
decomposition from July 1963 to December 2015.
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