

July 21, 2011

VIA ELECTRONIC FILING AND OVERNIGHT DELIVERY

Washington Utilities and Transportation Commission 1300 S. Evergreen Park Drive, S.W. P.O. Box 47250 Olympia, Washington 98504-7250

Attention: David W. Danner Executive Director and Secretary

RE: UE-100514 – PacifiCorp's 2011 Integrated Resource Plan

Dear Mr. Danner:

PacifiCorp d.b.a. Pacific Power & Light Company submits for filing the Company's presentation material for the public meeting on July 28, 2011.

All formal correspondence and Staff requests regarding this filing should be directed to:

By e-mail (preferred):

datarequest@pacificorp.com

By regular mail:

Data Request Response Center PacifiCorp 825 NE Multnomah Street, Suite 2000 Portland, OR 97232

Any informal inquiries should be directed to Pete Warnken, Manager Integrated Resource Planning at (503) 813-5518 or me at (503) 813-6043.

Sincerely, Andrea L. Kelly

Andrea L. Kelly Vice President, Regulation

cc: David Nightingale, WUTC Deborah Reynolds, WUTC Vanda Novak, WUTC Steve Johnson, WUTC

2011 Integrated Resource Plan Overview

Washington Utilities and Transportation Commission July 28, 2011

Rocky Mountain Power Pacific Power PacifiCorp Energy

Significant Changes from the Last IRP

- Decrease in peak resource need of 175 MW on an average annual basis for 2011 through 2020; capacity deficit begins in 2011 for both IRPs
 - Reduction in system coincident peak load of 345 MW on an average annual basis for 2011 through 2020 (west down 283 MW; east down 62 MW)
- Decrease in projected natural gas and wholesale electricity prices relative to the forecasts prepared in 2008 and 2009
- Methodology
 - Updated demand-side management/distributed generation potential study
 - Conducted Energy Gateway scenario analysis prior to preferred portfolio determination
 - Conducted Loss of Load Probability (LOLP) study, leading to selection of a 13% capacity planning reserve margin
 - Disaggregated west-side transmission topology
 - West Main bubble converted to four new bubbles (Portland/North Coals, Willamette Valley/Central Coast, South-Central Oregon/North California, Bethel Substation)
 - Implemented System Optimizer proof-of-concept modeling for optimized coal plant replacement scenarios

Other Key Drivers of the 2011 IRP

- Loss of momentum in federal energy and climate change policies contribute to continued uncertainty regarding longterm investment in clean energy technologies
- Public and legislative support for clean energy policies at the state level remains robust
- Continued efforts by the U.S. Environmental Protection Agency to regulate electric utility plant emissions, including greenhouse gases, criteria pollutants, and other emissions
- Expectations for a more favorable economic environment than assumed in 2009. Load growth in such areas as data centers and natural resource extraction
- Progress and challenges in planning for, permitting, and building the Energy Gateway transmission project
- Near-term procurement activities, including the planned acquisition of Lake Side 2 in Utah, with a 2014 in-service date

2011 IRP Regulatory Compliance

- Address each requirement under WAC 480-100-238
 - Compliance described in Table B.5, Appendix B of Volume II
- 2008 IRP Acknowledgment Letter Requirements
 - Transmission planning:

		How the Requirement or Recommendation is
Reference	IRP Requirement or Recommendation	Addressed in the 2011 IRP
Letter Order, UE-	Transmission Planning (Chapter 4). The	Chapter 4 outlines an analysis of seven Energy
080826, Attachment	next IRP should discuss alternative	Gateway deployment scenarios that considers
p.1.	transmission options.	alternative transmission footprints, investment costs,
		in-service dates, and economic drivers.
Letter Order, UE-	Transmission Planning (Chapter 4). The	Chapter 4 focuses on two deployment scenarios
080826, Attachment	next IRP should discuss alternative	based on alternative directions for state and federal
p.1.	deployment schedules for the	resource policies: a Green Resource Future and
	transmission projects it considers and the	Incumbent Resource Future. Additionally, the
	benefits of each of the alternative	section entitled "Customer Load and Resources" in
	deployment schedules of any	Chapter 4 summarizes the process that PacifiCorp
	transmission segments considered in the	follows, in compliance with its Open Access
	modeling.	Transmission Tariff, to plan for and invest in
		transmission to meet network customer load
		requirements.

2011 IRP Regulatory Compliance

- 2008 IRP Acknowledgment Letter Requirements
 - Out-year resource modeling and energy efficiency targets under RCW 19.285

		How the Requirement or Recommendation is
Reference	IRP Requirement or Recommendation	Addressed in the 2011 IRP
Letter Order, UE-	Specifically, the various portfolios have	PacifiCorp conducted a sensitivity analysis to
080826, Attachment	different resource selections during the	isolate the near-term resource selection impact of
p.3.	first five years of the planning period.	out-year resources in the context of capacity
	This might result in PacifiCorp, in its	expansion optimization modeling. The results of the
	planningprocess, choosing a set of early	sensitivity analysis are provided in Chapter 8.
	resources because they are in a portfolio	
	with lower risks in the later years of the	
	planning horizon, even though the	
	portfolios with higher risks could be	
	mitigated by future flexibility rather than	
	by choosing a different portfolio.	
	 PacifiCorp should address this issue 	
	in its next IRP	
Letter Order, UE-	The action plan does not specifically	Action Item Number 6, Class 2 DSM, explicitly
080826, Attachment	mention the utility's obligation under	mentions PacifiC orp's obligation to meet energy
p.4.	RCW 19.285 to determine and meet	efficiency targets under RCW 19.285.
	certain energy efficiency targets. The	
	Commission reminds the Company that it	
	needs to meet this obligation.	

IRP Results

Rocky Mountain Power Pacific Power PacifiCorp Energy

6

Coincident Peak Load Forecast

Year	Total	OR	WA	CA	UT	WY	ID	SE-ID
2011	10,449	2,332	775	160	4,840	1,329	679	336
2012	10,716	2,396	813	163	4,935	1,376	691	341
2013	10,960	2,429	802	164	5,074	1,423	721	346
2014	11,252	2,466	817	163	5,231	1,471	750	353
2015	11,501	2,496	830	166	5,354	1,509	787	359
2016	11,740	2,528	843	169	5,474	1,545	817	365
2017	11,960	2,557	855	171	5,602	1,574	831	370
2018	12,194	2,584	893	173	5,726	1,601	842	376
2019	12,378	2,611	880	174	5,845	1,633	854	381
2020	12,607	2,644	894	174	5,975	1,668	864	388
Average Annual Growth Rate								
2011-20	2.1%	1.4%	1.6%	0.9%	2.4%	2.6%	2.7%	1.6%
2021-30	1.7%	0.9%	1.3%	1.0%	2.0%	2.3%	1.4%	1.4%
2011-30	1.9%	1.2%	1.4%	1.0%	2.2%	2.4%	2.0%	1.5%

 Reflects peak loads prior to any load reductions from energy efficiency (Class 2 DSM)

Resource Need Determination - System

8

Resource Need Determination - West

9

Power Purchase Contract Trends

- Expiration of BPA peaking contract (575 MW in late 2011) and hydro contracts in 2011-2012
- Expiration of third-quarter firm purchases ("front office transactions")

System Energy Balance

Heavy load hour energy deficits begin in 2011

West-side Energy Balance

Addressing PacifiCorp's Peak Capacity Deficit

2011 IRP Resource Strategies – DSM

- Energy efficiency: acquire up to 1,200 MW of cost-effective capacity by 2020 (~4.5 million MWh)
 - Washington, 79 MW by 2020 (~383 thousand MWh)
 - Preferred portfolio includes about 2,560
 MW by 2030 (~10.7 million MWh)
- Load control: acquire up to 250 MW of costeffective irrigation load control, commercial curtailment, and residential direct load control by 2020 (~60 MW in the west)

2011 IRP Resource Strategies – Thermal and Market

- Combined-cycle combustion turbines: 1,700 MW acquired by 2019
 - additions in 2014 (Lake Side 2), 2016, and 2019
- Firm market purchases: ranges from 350 MW to ~1,400 MW on an annual basis, peaking in 2013
- Coal plant turbine upgrades: 65 MW (12 MW at Jim Bridger)

2011 IRP Resource Strategies – Renewables and Distributed Generation

- Wind: Additions beginning in 2018, 800 MW added through 2020 and 2,100 MW added by 2030
 - additions driven by
 - Assumed long-term state/federal renewables policies and/or carbon policies and associated uncertainty
 - Fuel risk mitigation and resource diversity benefits
 - Federal production tax credit assumed to fully expire by 2015
- Distributed generation: acquire up to 100 MW by 2020
 - Combined Heat & Power, ~50 MW
 - Solar photovoltaic programs
 - Investigate cost-effectiveness of a solar hot water heating program
- Energy storage evaluation

Resource Energy Mix: 2011 versus 2020

Carbon Dioxide Emissions Trend Based on nominal \$19/ton CO₂ Tax beginning in 2015

 Gas prices have a significant impact on CO₂ emissions—lower prices lead to lower coal plant utilization and greater gas plant reliance

Energy Gateway Status and IRP Scenario Analysis

Rocky Mountain Power Pacific Power PacifiCorp Energy

Energy Gateway Overview

• Key Principles

- Secure capacity for the long-term benefit of customers
- Load service needs first, regional needs second
- Support multiple resource scenarios
- Secure regulatory and community support
- Build it

• Highlights

- Approximately 2,000 new line miles
- Multi-year, multi-billion dollar investment
- Segment "B" completed November 2010
- Segment "C" under construction
- Ratings and license obtained from WECC to interconnect and operate all segments

This map is for general reference only and reflects current plans. It may not reflect the final routes, construction sequence or exact line configuration.

2011 IRP System Optimizer Scenarios

 Wind (MWs)

 East
 1758

 West
 284

 Total
 2042

 Wind (MWs)

 East
 1768

 West
 300

 Total
 2068

Scenario 4

Wind (MWs)					
East	1758				
West	284				
Total	2042				

Scenario 5

Foundational Assumption: Green Resource Future

- The IRP considered "green resource" and "incumbent resource" futures based on varying RPS and CO₂/gas price assumptions
- Seven Energy Gateway scenarios modeled
- The full Energy Gateway footprint (Scenario 7) provides the necessary capacity for a green resource future, with a PVRR \$830 to \$907 million lower than a limited transmission expansion (Scenario 1)
- However, without the mandate for additional renewables consistent with a green resource future, and regulatory support for associated transmission, the risk of building increases significantly
- Regulatory support is critically important to these investments materializing

Portfolio Modeling and Preferred Portfolio Selection Approach

Rocky Mountain Power Pacific Power PacifiCorp Energy

2011 IRP Modeling Approach - Steps

- Use capacity expansion optimization tool, System Optimizer, to develop alternative resource portfolios that meet capacity, energy, and resource-related state regulatory requirements, based on numerous input scenarios
- Conduct Monte Carlo production cost modeling of each portfolio (100 simulations resulting in 100 distinct portfolio costs) – accounts for stochastic behavior of loads, prices, and plant availability
- Select top-performing portfolios based on simulations with alternative CO₂ tax levels
 - Best combinations of low "average" and "upper-tail" portfolio costs

2011 IRP Modeling Approach - Steps

- Final screen: compare other performance metrics, including risk-adjusted cost, 10-year customer rate impact, CO₂ emissions, supply reliability, etc
- Select top three portfolios and simulate with System Optimizer given different deterministic cost assumptions (deterministic risk assessment)
- Select top-performing portfolio

2011 IRP Modeling Approach - Steps

- Preferred portfolio determination
 - Evaluate top portfolio based on resource-specific acquisition risks
 - Geothermal resource development costs ("dry hole" risk)
 - Preferred wind schedule for meeting regulatory compliance requirements, address public policy goals, mitigate fuel price risk
 - Timing of next major thermal resource (after Lake Side 2 in 2014)
 - Refine preferred portfolio resources and reoptimize with System Optimizer to ensure that capacity reserve margins are met for every year

Key IRP Inputs/Assumptions

Rocky Mountain Power Pacific Power PacifiCorp Energy

Load Forecast - Comparison

29

Transmission System Model Topology

Resource Option Categories

	Other		Energy					
Gas-fired,	Thermal,	Renewable,	Storage, Utility	Distributed	Load Control	Energy Efficiency	Demand Response	
Utility Scale	Utility Scale	Utility Scale	Scale	Generation	(Class 1 DSM)	(Class 2 DSM)	(Class 3 DSM)	Transmission
Cogeneration	Supercritical	Wind, 35% and	Advanced	Combined Heat &	Residential and	Nine measure	Residential Time-of-	Energy Gateway
	Pulverized	29% Capacity	Battery Storage	Power,	Small Commercial	bundles grouped by	Use	Central
	Coal without	Factors		Reciprocating	Air Conditioning	cost for five states		
	CCS			Engine		plus three measure		
						bundles for Oregon		
						provided by the		
						Energy Trust of		
						Oregon		
Aeroderivative	Supercritical	Geothermal,	Hydro Pumped	Combined Heat &	Residential	One bundle for	Commercial Critical	Energy Gateway
SCCT	pulverized coal	Brownfield	Storage	Power, Gas	Electric Water	Compact Florescent	Peak Pricing	Central plus
	with CCS	(Dual Flash)		Turbine	Heating	Lamps for 2011 and		Windstar-Populus
						2012.		
Intercooled	Supercritical	Geothermal,	Compressed Air	Microturbine	Irrigation Direct		Commercial/	Energy Gateway
Aeroderivative	pulverized coal	Greenfield	Energy Storage		Load Control		Industrial Demand	Central plus
SCCT	with retrofit	(Binary)					Buyback	Windstar-Populus
	CCS							plus Aeolus-Mona
Internal	Integrated	Solar, Thin Film		Fuel Cell	Commercial/		Commercial/	Energy Gateway
Combustion	Gasification	Photovoltaic			Industrial		Industrial Real Time	Central plus
Engine	Combined				Curtailment		Pricing	windstar-Populus
	Cycle with				(includes			plus Aeolus-Mona
	us				distributed stand-			pius Populus-
					by generation)			Henning way/Hennin
								gway-Boardman-
SCICT Erama	Nuclear	Solar		Commercial	Commoraie1/		Mandatowy	Cascade Clossing
SCELITAILE	Nuclear	Concentrating		biomass	Industrial Thermal		Irrigation Time_of	
		(Thermal		(Anaerobic	Energy Storage		Lice	
		Trough with Gas		Digester)	Lifergy Storage		Use	
		Backup)		Digester)				
CCCT: Wet-		Solar		Roofton				
Cooled Dry-		Concentrating		Photovoltaic				
Cooled E Class		(Thermal		1 noto voltate				
GClass, H Class		Trough)						
		Biomass		Solar Water				
		Diolitass		Heaters				
		Hydrokinetic		Solar Attic Fans				

* CCS = Carbon Capture and Sequestration, SCCT = Simple-Cycle Combustion Turbine, CCCT = Combined-Cycle Combustion Turbine

Natural Gas Price Forecast Scenarios

 Three underlying forecasts—High, Medium, Low—support development of scenario forecasts reflecting CO₂ prices and other IRP input assumptions

Henry Hub Natural Gas Price Forecast Summary (nominal \$/MMBtu)

Forecast Name	2011	2015	2020	2025	2030
High	\$4.41	\$8.41	\$10.99	\$14.55	\$15.97
Medium	\$4.41	\$7.43	\$8.09	\$9.58	\$10.04
Low	\$4.41	\$4.79	\$5.70	\$6.75	\$7.41

 Gas price forecasts significantly lower than the 2008 IRP and 2008 IRP Update

Carbon Dioxide Price Scenarios

- Also modeled CO₂ emissions physical hard cap scenarios
 - Base 15% below 2005 emission levels by 2020, and 80% by 2050
 - Oregon 10% below 1990 emission levels by 2020, and 80% by 2050

Conclusion

- 2011 IRP complies with Washington's IRP guidelines
 - Lowest reasonable cost criterion, considering:
 - \circ Market volatility risks
 - \circ Other risks
 - Washington state resource preferences
 - \circ Resource dispatchability for resource mix
 - Conservation and load management assessment

• Potential study available at:

http://www.pacificorp.com/es/dsm.html

 Short term action plan and progress report (Chapter 9)

Questions?