

Distribution System Planning

Terrence Browne, Senior Gas Planning Engineer

November 3, 2016

• Using technology to plan and design a safe, reliable, and economical distribution system

Seasonal Demand Profiles

-Residential —Commercial —Industrial

Our Planning Models

- 122 cities
- 40 load study models

Scope of Gas Distribution Planning Supplier Pipeline Gate Sta. High Pressure Main Reg. Reg. Reg.

Distribution Main and Services

SynerGi (SynerGEE, Stoner) Load Study

- Simulate distribution behavior
- Identify low pressure areas
- Coordinate reinforcements with expansions
- Measure reliability

Preparing a Load Study

- Estimating Customer Usage
- Creating a Pipeline Network
- Join Customer Loads to Pipes
- Convert to Load Study

Estimating Customer Usage

- Gathering Data
 - Days of service
 - Degree Days
 - Usage
 - Name, Address, Revenue Class, Rate Schedule...

Estimating Customer Usage cont.

- Degree Days
 - Heating (HDD)
 - Cooling (CDD)
- Temperature Usage Relationship
 - Load vs. HDD's
 - Base Load (constant)
 - Heat Load (variable)
 - High correlation with residential

Ava Daily	Heating	Cooling
Temperature	Degree Davs	Degree Days
('Fahrenheit)	(HDD)	
85		20
80		15
75		10
70		5
65	0	0
60	5	
55	10	
50	15	
45	20	
40	25	
35	30	
30	35	
25	40	
20	45	
15	50	
10	55	
5	60	
4	61	
0	65	
-5	70	
-10	75	
-15	80	
-17	82	

Load vs. Temperature

summary / 109735 / 103678 / 114268 / 114279 Chart1 / 133049 / 156920 / 161549 / 208478 /

Estimating Customer Usage cont.

- Peaking Factor
 - Peaking Factor = 6.25% of daily load
 - "Observed ratio" of greatest hourly flow to total daily flow at Gate Stations
- Industrial Customers
 - Model maximum hourly usage per Contractual Agreement
 - Firm Transportation customers only
 - Low Temperature-Usage correlation

Creating a Pipeline Model

- Elements
 - Pipes, regulators, valves
 - Attributes: Length, internal diameter, roughness
- Nodes
 - Sources, usage points, pipe ends
 - Attributes: Flow, pressure

Join Customer Loads to a Model

- Residential and commercial loads are assigned to *pipes*
- Industrial or other large loads are assigned to *nodes*

Balancing Model

- Simulate system for any temperature – HDD's
- Solve for pressure at all nodes

Validating Model

- Simulate recorded condition
- Pressure Recorders
 - Do calculated results match *field* data?
- Gate Station Telemetry
 - Do calculated results match source data?
- Possible Errors
 - Missing pipe
 - Source pressure changed
 - Industrial loads

Validating Model cont.

Location: N. Orchard, Moscow ID

Observation Date: Friday, March 1st

Planning Criteria

- Reliability during design HDD
 - Spokane 82 HDD
 - Medford 61 HDD
 - Klamath Falls 72 HDD
 - La Grande 74 HDD
 - Roseburg 55 HDD
- Maintain minimum of 15 psig in system at all times
 - 5 psig in lower MAOP areas

Planning Criteria

- Reliability during design HDD
 - Spokane 82 HDD (avg. daily temp. -17' F)
 - Medford 61 HDD (avg. daily temp. 4' F)
 - Klamath Falls 72 HDD (avg. daily temp. -7' F)
 - La Grande 74 HDD (avg. daily temp. -9' F)
 - Roseburg 55 HDD (avg. daily temp. 10' F)
- Maintain minimum of 15 psig in system at all times
 5 psig in lower MAOP areas

Interpreting Results

- Identify Low Pressure Areas
 - Number of feeds
 - Proximity to source
- Looking for Most Economical Solution
 - Length (minimize)
 - Construction obstacles (minimize)
 - Customer growth (maximize)

Long-term Planning Objectives

- Future Growth/Expansion
- Design Day Conditions
- Facilitate Customer Installation Targets

