2015 IRP Overview

WUTC

Phillip Popoff Manager Integrated Resource Planning

March 4, 2016

PSE 2015 IRP Overview

- Nature of the Integrated Resource Plan
- Market Context
- Electric Resource Needs
- Electric Resource Plan and Key Resource Issues
- Gas Resource Needs
- Gas Resource Plan and Key Resource Issues
- Action Plans

Integrated Resource Planning

Plans versus PLANS

Action Plan: Specific actions PSE intends to take.

Resource Plans Are...

- More of a forecast of what we expect will be cost effective in the future, given what we think we know about the future today.
- Focused on minimizing costs to customers.

Why is IRP Useful

- Understand how long-term uncertainties might affect near term decisions.
- Broader perspective of the future than if PSE operated in a vacuum.
- Prepare analytical frameworks for making real-time decisions.

Market Context

Electric Market Concerns: Resource Adequacy

- Northwest Power and Conservation Council
 - May 2015 Adequacy Assessment: Region short 1,150 MW by 2021
 - August 2015 Draft 7th Power Plan: Region okay if meet conservation and demand response targets.
- Conclusion: No longer assume short-term market 100% reliable
 - Regional adequacy assessments never supported that assumption.

Gas Market Concerns

- Pipeline capacity on Westcoast (upstream of Northwest Pipeline) is being fully utilized to peak capacity.
 - Short-term commodity markets may not be available to meet demand at Sumas under significantly cold weather conditions.
- Generation Fuel: Sufficient back-up fuel critical economic factor.

Pacific Northwest Gas Supply System

T-South Volume Flows to Huntingdon Winter 2013-2014

From a recent Westcoast presentation

PSE 2015 IRP Overview

- Nature of the Integrated Resource Plan
- Market Context
- Electric Resource Needs
 - 1. Load Forecast
 - 2. Reflect Wholesale Market Risk
 - 3. Planning Standard Based on Value to Customers
 - 4. LOLP to EUE
- Electric Resource Plan and Key Resource Issues
- Gas Resource Needs
- Gas Resource Plan and Key Resource Issues
- Action Plans

Electric Resource Need: 4 Key Updates

- 1. Updated Load Forecast
 - Clear feedback from Commission in 2013 IRP
 - Comprehensive update
- 2. Reflect Physical Risk of Wholesale Markets
 - Had assumed wholesale markets 100% reliable
 - Never aligned with region—concern by 2021

- 3. Revised Capacity Standard to Minimize Costs to Customers
 - Old 5% LOLP: Used at Regional Level
 - New: Minimizes Cost for Customers & Dramatically Reduces Risk
- 4. Changed metric from LOLP to EUE
 - Used to compare different resources, not establish capacity need
 - LOLP does not reflect magnitude, duration, or frequency of outages.

1. Load Forecast: Annual Load (aMW)

1. Load Forecast Updates: Peak (MW)

Except for King County, growth in residential building permits has not returned to pre-recession levels.

PUGET Data from on Building Industry Association of Washington Reports, US Bureau of Census

ENERGY

March 4, 2016: 2015 IRP Overview | 11

Within King County the majority of post-recession permits growth is outside of PSE's service area.

Data from Building Industry Association of Washington Reports, US Bureau of Census

March 4, 2016: 2015 IRP Overview | 12

1. 2013 IRP versus 2015 IRP Load Forecast Differences

- 2013 IRP LF assumed faster recovery of US economy from recession, while 2015 IRP LF assumed a more gradual recovery
- 2015 IRP LF used updated US population growth forecast from the US Bureau of Census which is lower compared to 2013 IRP LF
- Customer growth and customer counts in the 2015 IRP LF forecast are lower than in 2013 IRP LF because of slower housing recovery
- Peak load growth and peak load levels are also projected to be lower in 2015 IRP LF versus 2013 IRP LF
- Disaggregated system wide forecast to county and sub-county regions to examine reasonableness from both system and subsystem perspectives

Background: Adequacy Metrics

Loss of Load Probability (LOLP)

- Expected simulations with any load-resource balance shortfall.
- (#Simulations with shortfall) / (total # of simulations).
- No recognition of magnitude, duration, or frequency.

```
Expected Unserved Energy (EUE)
```

- (Sum MWh shortfalls across all simulations) / (total # simulations).
- Magnitude of energy lost, but not duration or frequency.

Loss of Load Hours/Loss of Load Expectations (LOLH/LOLE)

- (Sum of hours short across all simulations) / (total # simulations).
- Measure of duration, not magnitude or frequency.

Expected Value of Lost Load (VOLL)

- DOE's Interruption Cost Estimator—consumer value of lost load.
- Calculations incorporate frequency, magnitude, and duration.

(Sum of consumer value of lost energy across all simulations) (total # simulations)

2. Incorporating Physical Wholesale Market Risk

In the past, PSE assumed wholesale markets were 100% reliable.

- Inconsistent with NPCC's resource adequacy modeling.
- As long as region passed adequacy test, update not worth expense.

By 2021, over 1300 MW of coal plants will be retired in the region.

• May 2015 adequacy assessment showed region short 1150 MW.

Needed to harmonize PSE's wholesale market view with analysis of the region.

• Very complicated to align PSE's resource adequacy model with regional model.

2. Incorporating Physical Wholesale Market Risk: Process Overview

GENESYS: Regional Adequacy Model

- Supports annual resource adequacy reports at NPCC.
- 6160 simulations of loads and resources.
- Starting point for PSE's outlook on market reliability.

Wholesale Purchase Curtailment Model (WPCM)

- Allocates regional curtailments to PSE, which may cause PSE's resources to fall short of load.
- Market-based approach as there is no centralized decision maker.

PSE's Resource Adequacy Model (RAM)

• Same 6160 simulations of loads/resource data as GENSYS.

PSE's loads/resources with wholesale market curtailments.

2. Incorporating Physical Wholesale Market Risk

Started with base assumptions for regional assessment.

Adjustments to Regional Model Assumptions

- Increased SW imports by 425 MW: Better ways to reflect "friction"
- Increased resources by 440 MW: PGE can build Carty 2
- Reduced 650 MW for Grays Harbor: No sign of firm pipeline capacity in a constrained gas pipeline corridor.
- Indirectly reflected 700 MW "stand-by resources"
 - Banks Lake 314 MW not operational now...maybe later?
 - PGE's stand-by resources dispatch limited...for wholesale sales?
 - Reflected in Wholesale Purchase Curtailment Model.

3. Update to Planning Standard Needed

Updated Planning Standard Reduces Expected Costs

	5%	LOLP	Optimal			
	Standard		Standard		Sav	/ings
Expected Value of Lost Load (\$ Million/yr):	\$	169	\$	39	\$	130
Expected Annual Cost to Achieve Savings (\$ I	Millior	n/yr):			\$	(63)
Annual Net Savings to Customers from Upda	ting Pl	anning St	tanda	ard:	\$	67

Conclusion: Update from 5 % LOLP needed to ensure lowest reasonable cost to customers.

3. Update Significantly Reduces Customer Risk

Figure 1-1: Comparison of Old and New Electric Capacity Planning Standard

		Reliability 202 Metric Capa		2021 Capacity	Customer Value of Lost Load		
		LOLP	EUE (MWh)	(Surplus)/ Need after DSR (MW)	Expected (\$million/yr)	Risk- TailVar90 (\$million/yr)	
1	2013 Planning Standard with Market Risk	5%	50.0	(117)	169	1,691	
2	2015 Optimal Customer Planning Standard (Includes Market Risk)	1%	10.9	234	39	385	
	Change			351	(130)	(1,306)	

3. Planning Standard Update: Process Overview

Annualized Benefit/Cost Analysis

Benefit

- Using MWh shortfalls from PSE's RAM: 6160 simulations in 2021
- Apply value of lost load from DOE's ICE calculator
- Changing resources leads to change in VOLL

Cost: Levelized cost of CT

3. Value of Lost Load-Example

Figure N-23: Interruption Cost Calculation of an

Average PSE Customer per Event of One-hour Duration

			Per Customer	Implied Avg KW	PSE		PSE	Avg Peak
_	Number of	Per Customer InterrCost	InterrCost per	per	Load	Peak	Peak	per Yr per
Customer Type	Customers	per Event - 2011\$	AvgKW/Hr - 2011\$	Yr(Flat)	Factors	KW/Yr	Shares	Cust, KW
	Year End 2020	1HR Duration	1HR Duration					
Medium&Large C&I	10,889	\$4,122.40	\$27.80	148.3	1.47	218	0.2	43.6
Small Comm&Ind	126,531	\$758.90	\$179.70	4.2	1.42	6	0.1	0.6
Residential	1,060,975	\$2.80	\$1.90	1.5	2.05	3	0.7	2.1
All Customers	1,198,395	\$120.06	\$38.76	3.1	1.71	5.3		46.3
Interr Cost Aver Per Cust per Hr(\$2020)		\$149.94						

values appear reasonable

Feedback at PNUCC Board Presentation Values may be too low for today's high-tech end-uses.

3. Benefit-Cost Analysis

Figure 6-4: Marginal Benefit of Reliability, 2015 Optimal Planning Standard

- Reflects <u>expected</u> VOLL, not <u>risk</u>.
- Additional generation would further reduce risk.
- Previous slide showed risk from updated standard all ready drops

from \$1.6 billion to \$385 million.

PUGET

SOUND ENERGY

4. LOLP to EUE

Clarification

- EUE used to compare resources
- B/C analysis drives capacity need, not change from LOLP to EUE

		EUE
	LOLP	<u>(MWh)</u>
2013 Planning Standard	5%	26
2013 Planning Standard with Market Risk	5%	50

Reason to Update

- Compared EUE for 5% LOLP with and without market risk.
- Expected unserved energy doubles, though achieved same LOLP.
- LOLP misses the mark.
- Additionally, LOLP disadvantages intermittent resources, which may reduce MWh of lost load, but not completely avoid all shortfalls.

Combining Impact of Incorporating Market Risk and Planning Standard Update

Figure 6-2: Summary of Planning Standard Changes

				2021 Peaker	Customer Value of		
		Reliabilit	y Metric	Capacity	Lost I	₋oad	
			EUE	Added after	Expected	TVar90	
		LOLP	(MWh)	DSR (MW)	(\$mill/yr)	(\$mill/yr)	
1	2013 Planning Standard	F 0/	00	(450)	0.0*	050*	
	with No Market Risk	5%	26	(150)	86^	858*	
2	2013 Planning Standard	=0/	=0		400	1 00 1	
	with Market Risk	5%	50	(117)	169	1,691	
3	2015 Optimal Planning						
	Standard	1%	10.9	234	39	385	
	(Includes Market Risk)						

* Inaccurate estimate because it ignores reliability impact of wholesale market risk.

Electric Peak Capacity Load/Resource Balance

Annual Energy Need/Position

Renewable Resource/Renewable Energy Credit Need (RECs/MWh Qualifying Renewable Energy)

PSE 2015 IRP Overview

- Nature of the Integrated Resource Plan
- Market Context
- Electric Resource Needs
- Electric Resource Plan and Key Resource Issues
- Gas Resource Needs
- Gas Resource Plan and Key Resource Issues
- Action Plans

Resource Plan

Figure 1-7: Electric Resource Plan Forecast,

Cumulative Nameplate Capacity of Resource Additions

	2021	2026	2030	2035
Conservation (MW)	411	669	770	906
Demand Response (MW)	121	130	138	148
Wind (MW)	-	206	337	337
Combined Cycle Gas (MW)	-	577	577	805
Peaker/CT Dual Fuel (MW)	277	403	609	609

Additional...if Colstrip Retired by 2026

- Units 1 & 2: Additional Peaker/CT
- All 4 Units: Additional Combined Cycle Gas

Additional Portfolio Sensitivites

- A. Colstrip
 - 1. Units 1 & 2 Retire 2026
 - 2. All 4 Units Retire 2026
- B. Demand Side Resources
- C. Thermal Mix
- D. Gas Plant Location—East/West Cascades
- E. Gas Transport Needed for Peakers
- F. Energy Storage/Flexibility
- G. Reciprocating Engine/Flexibility
- H. Montana Wind
 - 1. Base line
 - 2. Lower
 - 3. Colstrip Embedded Transmission Cost
- I. Solar Penetration—Increased Distributed Solar Penetration
- J. Carbon Reduction Impact of Added Wind

Results of Deterministic Optimization Analysis

Deterministic Analysis Informs Stochastic

Next Step is Determine Focus of Stochastic Portfolio Analysis

Conservation & Demand Response Nearly Same in Every Scenario

Renewables Stable Across Scenarios

- Driven by RPS: Washington wind forecast to be least cost
- Variation primarily driven by load forecast.
- MT wind driven by binary issue: access to embedded cost transmission—not well suited to stochastic analysis.

Variability: CCCT vs Peakers

- 2 Scenarios only CCCT
- 2 Scenarios only Peaker
- 5 Scenarios different Combinations

Led to Portfolios for Stochastic Analysis

SOUND ENERGY

Results of Stochastic Portfolio Analysis

Results of Stochastic Portfolio Analysis

Figure 2-7: Stochastic Analysis Resource Addition Results

NPV (\$Millions)	Base Deterministic Portfolio Cost	Difference from Base	Mean	Difference from Base	TVar90	Difference from Base
1 - All Frame Peaker	12,531		11,343		14,589	
2 - Early Recip Peaker	12,620	89	11,782	439	15,014	426
3 - Early CCCT/Thermal Mix	12,729	198	11,392	49	14,412	(177)
4 - All CCCT	12,761	230	10,993	(350)	13,856	(733)
5 - Mix CCCT & Frame Peaker	12,627	96	11,138	(205)	14,147	(442)

If All CCCT is lower cost and lower risk...why are frame peakers in the Plan?

Background: How Portfolio Analysis Works...

Resources dispatched to market price signals

- Includes unit commitment logic: start-up costs, ramping efficiencies, minimum run times, minimum down times, etc.,
- Units not "dispatched to load" because PSE is not on an island.
- "Out of the money" means cheaper to buy market than run plants for load.
- "In the money," run the plant. If generation in excess of load—sell to market.

Net Cost= Fixed Cost - (Market Price - Variable Cost)

• Stochastic analysis varies market prices and variable costs over planning horizon.

Relative Net Cost of Different Resources is Focus

- Different operational characteristics can affect fixed and/or variable costs.
- Includes the market value of dispatch: Market Price Variable Cost
- Capacity contribution to portfolio impacts fixed costs.

Relative Cost of Resource Alternatives is Focus

• Compare the net cost of different resource alternatives.

Sufficiency of Oil Back-Up Critical Assumption

Frame peakers lower cost, IF firm pipeline capacity not needed. | 38

Examined "Supply/Demand" Non-Firm Gas Capacity

"Supply" of non-firm pipeline capacity based on PSE's gas utility

- No information available from NWP on conditions when non-firm gas transport unavailable...very complicated.
- Examined weather conditions under-which PSE's gas utility would not be expected to have surplus firm, TF-1 transport capacity.
- Seasonal firm transport from storage not available for generation.

"Demand" for non-firm gas from PSE's RAM

- Identified simulations from the 6160 when dispatch of existing dual-fuel units was needed for resource adequacy.
- Converted MWh needed to run hours, to compare with back-up fuel inventory.

Don't Count on Non-Firm Gas Capacity

March 4, 2016: 2015 IRP Overview | 40

Current Back-Up Fuel Seems Adequate

March 4, 2016: 2015 IRP Overview | 41

Conclusion: Include Frame Peaker

At least one additional dual-fuel frame peaker could probably be sited with sufficient run hours to avoid need for firm pipeline capacity.

Need More Analysis in 2017 IRP:

- 2015 IRP focused on gas capacity for existing units.
- Update to scale up for additional dual fuel units.
- Potential carbon regulation impact on availability of non-firm fuel?
- Include potential dispatch for reserves/flexibility.
- At least qualitative consideration to impact of EIM participation.

"Portfolio" Carbon Emissions

Figure 1-9: Projected Annual Total PSE Portfolio CO₂ Emissions

and Savings from Conservation

Forecast of PSE Emissions from Generation in Washington

PSE 2015 IRP Overview

- Nature of the Integrated Resource Plan
- Market Context
- Electric Resource Needs
- Electric Resource Plan and Key Resource Issues
- Gas Resource Needs
- Gas Resource Plan and Key Resource Issues
- Action Plans

Gas Utility Peak Resource Need

Market Scenarios: Gas Same as Electric

	Scenario Name	Gas Price	CO ₂ Price	Demand
1	Low Scenario	Low	None	Low
2	Base Scenario	Mid	Mid	Mid
3	High Scenario	High	High	High
4	Base + Low Gas Price	Low	Mid	Mid
5	Base + High Gas Price	High	Mid	Mid
6	Base + Very High Gas Price	Very High	Mid	Mid
7	Base + No CO ₂	Mid	None	Mid
8	Base + High CO ₂	Mid	High	Mid
9	Base + Low Demand	Mid	Mid	Low
10	Base + High Demand	Mid	Mid	High

Sensitives

- Discount Rate: Would lower discount rate change amount of conservation?
 - Confuses Perspective: IRP is customer focused, not societal planning.
- Lumpiness of Pipeline Expansions: Would eliminating lumpiness in later years impact near-term decisions?

Figure 7-9: PSE Gas Transportation Map Showing Supply Alternatives

Optimal Plans Across Scenarios

Figure 2-10: Gas Sales Portfolios by Scenario (MDth/day)

March 4, 2016: 2015 IRP Overview | 49

LNG Results: Assumed Linear Cost Scale

Figure 7-25: PSE LNG Project Resource Additions by Scenario (MDth per day)

50

LNG Real Choice—Clear Portfolio Benefit

		Gas Portfolio Costs Net Present Value (\$000s)								
SCENARIO		FULL LNG		NO LNG	(B	enefit) / Cost of LNG				
BASE	\$	9,366,925	\$	9,464,726	\$	(97,801)				
LOW	\$	6,257,998	\$	6,294,659	\$	(36,661)				
HIGH	\$	12,963,307	\$	13,052,452	\$	(89,146)				
BASE + LOW GAS	\$	8,212,622	\$	8,263,903	\$	(51,281)				
BASE + HIGH GAS	\$	10,719,839	\$	10,823,632	\$	(103,794)				
BASE+VERY HIGH GAS	\$	11,906,047	\$	11,994,805	\$	(88,758)				
BASE+NO CO2	\$	7,775,728	\$	7,846,172	\$	(70,444)				
BASE+HIGH CO2	\$	10,465,655	\$	10,565,404	\$	(99,748)				
BASE+LOW DEMAND	\$	9,031,721	\$	9,040,101	\$	(8,379)				
BASE+HIGH DEMAND	\$	10,450,532	\$	10,550,911	\$	(100,379)				

Figure 7-31: Compare Cost-effective Level of Gas DSR, Base vs. Alternate Discount Rate

March 4, 2016: 2015 IRP Overview | 52

March 4, 2016: 2015 IRP Overview | 53

IRP Action Plan Items

Electric

- Acquire Energy Efficiency-In Process
- Demand Response RFP-Under Development
- Pause on All Source RFP-Inconsistent Council Messages
- Improve Flexibility Analysis
- Continue Investigating Emerging Resources
- Participate in CA EIM

Gas

- Acquire Energy Efficiency-In Process
- Continue Developing PSE LNG Project
- Begin Upgrades to Swarr
- Improve Basin Risk Analysis

Appendix Slides

Flexibility

March 4, 2016: 2015 IRP Overview | 56

Flexibility Values

Figure 6-41: Summary Results from 2013 IRP Stochastic Flexibility Analysis, 50 Simulations

Portfolio	Capacity (MW)	Expected Annual Balancing Savings (\$)	Expected Annual Balancing Savings (\$/kW Capacity)
Base Portfolio + CCCT	343	\$800,000	\$2.33
Base Portfolio + Frame CT	220	\$1,037,000	\$4.69
Base Portfolio + Recip	18	\$328,000	\$18.23

Annual Savings Batteries: \$99.52/kW

Values from 2013 IRP Vintage Analysis

In process of developing framework to update for 2017 IRP

Energy Storage and Flexibility

Figure 6-40: Battery and Pumped Storage Portfolio Cost

	NPV Portfolio Cost (\$Millions)	Difference from Base
Base Portfolio ¹	12,277	
80 MW Pumped Storage in 2023	12,478	201
200 MW Pumped Storage in 2023	12,915	638
80 MW Batteries in 2023	12,374	97
80 MW Batteries in 2023 with \$150/kw-yr Flexibility Value ²	12,277	-

NOTES

1 Includes 80 MW of batteries in 2035

2 Represents the tipping point for the flexibility value to bring batteries in line with the base portfolio.

Flexibility: Reciprocating Engines Valuable

	No Flevihi	litv Benefit	With Flexibility Benefit			With Flexibility Benefits at 50% for			
	NOTIONIDI	ny benent	man realising Benefit			Recip Peakers			
				1		Value of			Value of
						Flexibility			Flexibility
	Portfolio	Difference	Portfolio	C	Difference	to Portfolio	Portfolio	Difference	to Portfolio
	Cost	from Base	Cost	fi	rom Base		Cost	from Base	
NPV						(e) = (a)-			(h) = (a)-
(\$Millions)	(a)	(b)	(C)		(d)	(C)	(f)	(g)	(f)
Base Portfolio	12,277		12,221			56	12,221		56
Recip Peaker									
75 MW*	12,263	14	12,202		19	61	12,208	14	56
Recip Peaker									
75 MW in 2023	12,282	(5)	12,212		10	70	12,221	1	61
Recip Peaker									
224 MW in									
2023	12,354	(77)	12,235		(13)	120	12,260	(40)	93

Conclusion: Flexibility value of Recips may change relative costs.

Next Steps:

- Improve flexibility framework for 2017 IRP.
- Clarify particulate emission concerns in 2017 IRP.
- EIM implications important...beyond 2017 IRP.

Base Key Assumptions

March 4, 2016: 2015 IRP Overview | 60

Nominal Sumas Gas Prices

Gas Prices Compared to Council's 7th Plan

Range of CO2 Prices

Range of Mid-C Power Price Forecasts

64