

Avista's 2016 Natural Gas IRP

Washington State Utilities and Transportation Commission Olympia, WA November 3, 2016

Agenda

- Introduction
- Demand Forecasts
- DSM
- Supply Side Resources
- Market Fundamentals
- Prices
- Integrated Resource Scenarios and Action Plan

2016 IRP Timeline

- August 31, 2015 Work Plan filed with WUTC
- January through April 2016 Technical Advisory Committee meetings. Meeting topics will include:
 - Demand Forecast and Demand Side Management January 21
 - Supply/Infrastructure, Natural Gas Pricing, and Potential Case Discussion– February 18
 - Distribution Planning, SENDOUT® Preliminary Output Results and Further Case Discussion – March 16
 - SENDOUT® results April 21
- May 30, 2016 Draft of IRP document to TAC
- June 30, 2016 Comments on draft due back to Avista
- July 2016 TAC final review meeting (if necessary)
- August 31, 2016 File finalized IRP document

Avista Facts

	State	Total	% of
S		Customers	Total
	WA	156,000	46%
STATIS	OR	99,000	30%
	ID	79,000	24%
	Total	334,000	100%

- Williams Northwest Pipeline (NWP)
- TransCanada Gas Transmission Northwest (GTN)
- TransCanada Foothills
- TransCanada Alberta
- Spectra Energy (Westcoast)

PIPELINES

Jackson Prairie Storage

One third owner with Puget Sound Energy and Williams Pipeline.

Avista Natural Gas Service Areas, Gas Fields, Trading Hubs and Major Pipelines

Demand Forecasts

WA-ID Region Firm Customers: 2016 IRP and 2014 IRP

WA-ID-Base 2014 WA-ID-Base

Washington Demand Profile

AVISTA'

7

Use per Customer per HDD WA/ID Residential

WA/ID Demand

Temperature & Degree Days

Weather Planning Assumptions

Area	Coldest in 20 Year HDD	Coldest on Record HDD
WA-ID	76	82
Klamath Falls	72	72
La Grande	74	74
Medford	54	61
Roseburg	48	55

Coldest on Record Dates

WA/ID – December 30, 1968 Medford – December 9, 1972 Roseburg – December 22, 1990 Klamath Falls – December 21,1990 LaGrande – December 23,1983

ANISTA

Spokane HDD's (1890-2015)

AVIS

12

1-572 peak planning

In the chart below, the blue and red bands represent areas of uncertainty, where the effects of temperature vary depending on differences between individuals.

http://www.livescience.com/34128-limits-human-survival.html

WA-ID Peak Day Planning

 Since 1890

 >= 70 HDD
 50

 >=75 HDD
 17

 >=80 HDD
 2

14

Demand Side Management

2016 DSM Modeling Methodology

WA Cumulative, Achievable, Economic and Technical Conservation Potential

	2017	2018	2021	2026	2036	
Baseline projection (DTh)	16,571,868	16,714,623	17,138,164	18,008,011	20,090,687	
Cumulative Savings (DTh)						
Achievable Potential	48,911	110,194	363,259	879,075	2,057,559	
Economic Potential	195,247	390,263	979,438	1,971,461	3,789,348	
Technical Potential	298,959	597,600	1,485,318	2,945,852	5,585,883	
Cumulative Savings as a % of Baseline						
Achievable Potential	0.3%	0.7%	2.1%	4.9%	10.2%	
Economic Potential	1.2%	2.3%	5.7%	10.9%	18.9%	
Technical Potential	1.8%	3.6%	8.7%	16.4%	27.8%	

WA Conservation Potential Forecasts

Top WA Residential Measures (2018)

Rank	Residential Measure	2018 Cumulative Energy Savings (DTh)	% of Total
1	Windows - High Efficiency	20,516	32.8%
2	Heating – Furnace EF 0.98	19,873	31.8%
3	Furnace - Maintenance	4,025	6.4%
4	Water Heater - Low-Flow Showerheads	3,270	5.2%
5	Water Heater - Temperature Setback	2,983	4.8%
6	Insulation - Ceiling	2,914	4.7%
7	Water Heating - Water Heater EF 0.67	2,243	3.6%
8	Thermostat - Programmable/Interactive	1,831	2.9%
9	Water Heater - Pipe Insulation	1,797	2.9%
10	Heating – Boiler EF 0.98	1,582	2.5%
11	Water Heater - Faucet Aerators	527	0.8%
12	Boiler - Maintenance	484	0.8%
13	Boiler - Pipe Insulation	248	0.4%
14	Insulation - Wall Sheathing	199	0.3%
	Total	62,491	100%

Top WA Commercial Measures (2018)

Rank	Commercial Measure	2018Cumulative Energy Savings (DTh)	% of Total
1	Retrocommissioning	13,476	25.3%
2	Heating – Boiler EF 0.98	11,887	22.3%
3	Gas Boiler - Hot Water Reset	5,159	9.7%
4	Heating – Furnace EF 0.98	4,102	7.7%
5	Insulation - Ceiling	3,360	6.3%
6	Water Heating - Water Heater EF 0.67	2,826	5.3%
7	Water Heater - Faucet Aerators/Low Flow Nozzles	2,150	4.0%
8	Water Heater - Central Controls	1,979	3.7%
9	Strategic Energy Management	1,784	3.4%
10	Water Heater - Pre-Rinse Spray Valve	1,564	2.9%
11	Gas Boiler - Parallel Positioning Control	1,540	2.9%
12	Food Preparation – ENERGY STAR Fryer	740	1.4%
13	Steam Trap Maintenance	657	1.2%
14	Food Preparation - ENERGY STAR Oven	386	0.7%
15	HVAC – Shut Off Damper	304	0.6%
16	Food Preparation - ENERGY STAR Griddle	235	0.4%
17	Windows - High Efficiency	223	0.4%
18	Water Heater - Pipe Insulation	204	0.4%
19	Food Preparation - ENERGY STAR Steamer	184	0.3%
20	Heating – Unit Heater (Condensing)	171	0.3%
	Total	52,933	99.4%

Top WA Commercial Measures (2018)

Rank	Industrial Measure2018 CumulativeIndustrial MeasureEnergy Savings(DTh)		% of Total
1	Custom	415	53.5%
2	Boiler - Hot Water Reset	205	26.4%
3	Boiler - Parallel Positioning Control	97	12.5%
4	Boiler - Maintenance	46	5.9%
5	Steam Trap Maintenance	11	1.5%
6	Gas Furnace - Maintenance	2.	0.3%
	Total	777	100.0%

2018 Natural Gas IRP

- Avista's 2018 IRP will contain a dynamic DSM program structure in it analytics.
- Effects of Clean Air Rule, Carbon Taxes, etc.

Supply Side Resources

Avista's Storage Resources

Washington and Idaho Owned Jackson Prairie

7.7 Bcf of Capacity with approximately 346,000
 Dth/d of deliverability

Oregon

Owned Jackson Prairie

 823,000 Dth of Capacity with approximately 52,000 Dth/d of deliverability

Leased Jackson Prairie

 95,565 Dth of Capacity with approximately 2,654 Dth/d of deliverability

Optimization

op·ti·mize ┥ (ŏp'tə-mīz')

tr.v. op·ti·mized, op·ti·miz·ing, op·ti·miz·es

- 1. To make as perfect or effective as possible.
- 2. Computers To increase the computing speed and efficiency of (a program), as by rewriting instructions.
- 3. To make the most of.

 Optimization helps Avista to recover costs, for our customers, on assets when not in use for load.

Storage Optimization Example of Storage Opt Deals

Transportation Optimization Example AECO to MALIN Demand \$.45 Cost to transport .10 *AECO = \$1.45 MALIN = \$2.00

\$.55 - \$.10 = \$.45

Lowered cost to ratepayers by \$.45

This is referred to as a location spread.

*2/10/16

City Gate Analysis

		Design Day	Physical	Design Day Demand: %
City Gate Station	state	Demand	Limitation	of Physical Capacity
Mica	WA	1173	1110	106 %
Colton	WA	11	8	138 %
Pullman	WA	984	834	118 %
Sprague	WA	12	10	120 %

Market Fundamentals

The Short Term Fundamentals

Bulls

Dwindling rig counts Economic recovery LNG & Methanol Plants Weather – Normal is now bullish Power Demand

Bears

Demand is weak Storage is full Oil Prices are near 10+ year lows Record Production Increased drilling efficiency DUC Wells

Forecasted Natural Gas Production

Lower 48 supply outlook

The Northeast will continue to fuel production growth through 2030

- The Marcellus and Utica will grow their share of US Lower 48 dry from 27% in 2015 to 44% by 2025 as infrastructure build-out allows for more resource to get to market.
- Additionally, associated gas fuels 10 bcfd of net growth between 2017 and 2024 once oil price recover late this decade

US – Drilling efficiency

• EIA DPR - 7 most prolific areas in the US, which account for all natural gas production growth during 2011 - 2014

North American LNG Export Terminals Proposed

PROPOSED TO FERC

Pending Applications:

- 1. Astoria, OR: 1.25 Bcfd (Oregon LNG) (CP09-6)
- 2. Elba Island, GA: 0.35 Bcfd (Southern LNG Company) (CP14-103)
- 3. Lake Charles, LA: 1.07 Bcfd (Magnolia LNG) (CP14-347)
- 4. Sabine Pass, TX: 2.1 Bcfd (ExxonMobil Golden Pass) (CP14-517)
- 5. Pascagoula, MS: 1.5 Bcfd (Gulf LNG Liquefaction) (CP15-521)
- 6. Freeport, TX: 0.34 Bcfd (Freeport LNG Dev) (CP15-518)
- 7. Cameron Parish, LA: 1.41 Bcfd (Venture Global Calcasieu Pass) (CP15-550)
- 8. Hackberry, LA: 1.41 Bcfd (Sempra Cameron LNG) (CP15-560)

Projects in Pre-filing:

- 9. Plaquemines Parish, LA: 1.07 Bcfd (CE FLNG) (PF13-11)
- 10. Plaquemines Parish, LA: 0.30 Bcfd (Louisiana LNG) (PF14-17)
- 11. Robbinston, ME: 0.45 Bcfd (Kestrel Energy Downeast LNG) (PF14-19)
- 12. Jacksonville, FL: 0.075 Bcf/d (Eagle LNG Partners) (PF15-7)
- 13. Brownsville, TX: 0.54 Bcfd (Texas LNG Brownsville) (PF15-14)
- 14. Brownsville, TX: 0.94 Bcfd (Annova LNG Brownsville) (PF15-15)
- 15. Port Arthur, TX: 1.4 Bcfd (Port Arthur LNG) (PF15-18)
- 16. Brownsville, TX: 3.6 Bcfd (Rio Grande LNG NextDecade) (PF15-20)
- 17. Freeport, TX: 0.72 Bcfd (Freeport LNG Dev) (PF15-25)
- 18. Corpus Christi, TX: 1.4 Bcfd (Cheniere Corpus Christi LNG) (PF15-26)
- 19. Plaquemines Parish, LA: 2.80 Bcfd (Venture Global LNG) (PF15-27)
- 20. Nikiski, AK: 2.55 Bcfd (ExxonMobil, ConocoPhillips, BP, TransCanada and Alaska Gasline) (PF14-21)
- 21. Cameron Parish, LA: 1.84 Bcfd (G2 LNG) (PF16-2)

PROPOSED TO U.S.-MARAD/COAST GUARD

22. Gulf of Mexico: 1.8 Bcfd (Delfin LNG)

PROPOSED CANADIAN SITES

- 23. Kitimat, BC: 1.28 Bcfd (Apache Canada Ltd.)
- 24. Douglas Island, BC: 0.23 Bcfd (BC LNG Export Cooperative)
- 25. Prince Rupert Island, BC: 2.74 Bcfd (Pacific Northwest LNG)

Aivista

Source: FERC

Oil and Gas Rigs & Production

Bcf/d

65

60

55

50 + Jan

Feb

Mar

five-year range

(2010 - 2014)

2015 – – 5 Yr. Avg.

Aug

Sep

Oct

Nov

Dec

2014

Jun

Jul

Max-Min

May

Apr

ANISTA

34

Oil and Gas Bankruptcies

2015-2016 CUMULATIVE NORTH AMERICAN OILFIELD SERVICES BANKRUPTCY FILINGS

HAYNES AND BOONE OILFIELD SERVICES BANKRUPTCY TRACKER

See pages 6-7 for the list of bankruptcies. (As of September 30, 2016)

http://www.haynesboone.com/~/media/files/attorney%20publications/2016/ofstracker.ashx

38

How prices affect IRP Planning?

- Major component of the total cost
- Change in price **can** trigger price elastic response
- **THE** major piece of avoided costs and therefore cost effectiveness of DSM
- Can change resource selection based on basin differentials
- Storage utilization

Price Elasticity Proposed Assumptions

- The data is a mixed bag at best:
 - 8 of 9 super regions have statistically significant short and long run elasticity's.
 - At a state level only 10 of 50 show statistical significant elasticity's.
 - In some cases, the estimated elasticity's are positive.
- We incorporated a -.15 price elastic response for our expected elasticity assumption.
 - A price elasticity factor of -0.15:
 - A 10% price increase will prompt a 1.5% consumption decrease
 - A 10% price **decrease** will prompt a 1.5% consumption **increase**

42 Expected = 2 Sigma of "Likely Policy" & No carbon & i-732 @ equally distributed between remaining probability *Aivista*'

Carbon Adder – Expected

- Includes carbon pricing from 2026-2035 from our consultant
- Avista added pricing starting from 2018 to address incremental adders from legislation in our service territory jurisdictions.
 - We assume floor pricing the same as California's cap and trade of \$10 back at the programs initial auction in 2013.

\$ / Metric Tonne							
	Years						
Low	\$	-	\$	-	2015-2035		
Likely Policy	\$	10.00	\$	19.85	2018-2035		
2015 Electric IRP	\$	12.03	\$	25.00	2020-2035		
i-732	\$	15.00	\$	46.44	2018-2035		
Expected	\$	9.89	\$	19.93	2018-2035		

Long Term Henry Hub Price Forecasts (Real \$ / Dth)

Integrated Resource Scenarios and Action Plan

Proposed Scenarios

Proposed Scenarios	sed Scenarios Expected Expected High Growth Low Growth		Cold Day 20yr	Average		
INPUT ASSUMPTIONS	Case - Low Prices	<u>Case</u>	<u>& Low Prices</u>	<u>& High Prices</u>	<u>Weather Std</u>	<u>Case</u>
Customer Crowth Date	Reference Case	Reference Case	High Crowth Data	Low Crowth Data	Reference Case	Reference Case
Customer Growth Rate	Cust Growth Rates	Cust Growth Rates	High Growth Rate	Low Growth Rate	Cust Growth Rates	Cust Growth Rates
Use per Customer	3 yr Flat +	3 yr Flat +	3 yr Flat +	3 yr Flat +	3 yr Flat +	3 yr Flat +
	Price Elast.	Price Elast.	Price Elast. +	Price Elast.	Price Elast.	Price Elast.
			CNG/NGV			
Demand Side Management	Yes	Yes	Yes	Yes	Yes	Yes
					Alternate Planning	
Weather Planning Standard	Coldest Day	Coldest Day	Coldest Day	Coldest Day	Standard	Normal
Prices						
Price curve	Low	Expected	Low	High	Expected	Expected
Carbon Legislation (\$/Ton)	\$9.89 - 19.93	\$9.89 - 19.93	None	\$9.89 - 19.93	\$9.89 - 19.93	\$9.89 - 19.93
			RESULTS			
First Gas Year Unserved						
WA/ID	N/A	N/A	2033	N/A	N/A	N/A
Medford	N/A	N/A	2027	N/A	N/A	N/A
Roseburg	N/A	N/A	2027	N/A	N/A	N/A
Klamath	N/A	N/A	2034	N/A	N/A	N/A
La Grande	N/A	N/A	2031	N/A	N/A	N/A

Existing Resources vs. Peak Day Demand

Peak Day Deficiencies by Scenario and Area

High Growth & Low Price scenario solve

- Washington/Idaho Increase contracting on Alberta System, Foothills, and GTN pipeline by 13,000 Dth/day.
- Medford/Roseburg Add an upsized compressing station on the Medford Lateral increasing deliverability by 50,000 Dth/day.
- Klamath Falls Increase the Operating Pressure on the Klamath Falls Lateral.
- La Grande Increase contract delivery on Northwest Pipeline.

Key Risk – "Flat Demand" If demand rebounds the need for resources accelerates.

Figure 9: Flat Demand Risk Example

Demand

-Initial Demand -Revised Demand

Action Plan

- 1. Avista will research market opportunities due to historically low prices including derivative based contracts, 10 year forward strip, and natural gas reserves.
- 2. Avista's 2018 IRP will contain a dynamic DSM program structure in its analytics.

