

360-466-2214 www.cai-engr.com 2021 E. College Way, Suite 101 Mount Vernon, WA 98273

December 26, 2011

Wyatt Pierce, P.E. Project Manager NID Support and Special Projects Pacific Power

Subject: <u>Revision 3</u> Washington Distribution Efficiency Study Contract Release No. 3000071987

Wyatt,

Attached to this letter is Commonwealth's <u>Revision 3</u> report on the distribution efficiency opportunities for 19 distribution circuits in PacifiCorp's service area in Washington State. The attached report is in electronic Adobe pdf form. If you wish, Commonwealth will assemble one full hard copy report and will send it by regular mail. Please let me know if you would find this helpful.

This revision was necessary to address a PacifiCorp request to update the financial factors used in the calculations within the study and to correct the financial results from earlier Nob Hill revisions. As part of this effort you and I agreed to significantly revise the organization of the body of the report. Additionally, Appendices 7 and 12 were updated.

In addition to the full report, a Summary Report is also provided. The Summary Report is Section 1 of the full report.

Please let me know if you have any questions about the revised report. The Commonwealth team looks forward to the opportunity to serve you and PacifiCorp in the future.

Sincerely,

m P. White

John P. White, P.E. Vice President Commonwealth Associates, Inc.

Distribution System Efficiency and Voltage Optimization Study

Prepared for:

Prepared By:

COMMONWEALTH ASSOCIATES, INC.

with

UTILITY PLANNING SOLUTIONS, PLLC

Original: May 27, 2011 Revision 3: December 26, 2011

Distribution System Efficiency and Voltage Optimization Study

Prepared for:

Prepared by:

John P. White, P.E. Rick Cook, P.E. Robert Fletcher, PhD, P.E. – Utility Planning Solutions, PLLC

Approved by:

John P. White

John P. White, P.E. Vice President and Regional Manager Commonwealth Associates, Inc. **Date:** May 27, 2011 Revision 3: December 26, 2011

Table of Contents

Definitions of Terms	Page 1
Section 1 – Study Overview, Findings and Recommendations	4
Section 1A – Study Overview	4
Purpose	4
Data	5
Assumptions	5
Study Basis	6
Fielding	6
Staged Approach Used to Evaluate the Circuits	6
Economic Analysis per Voltage Optimization Protocol	7
Implementation Considerations	
Findings and Recommendations	
Section 1B – Summary of Results	9
Section 1C – Recommendations	
Viable Energy Savings Projects are Feasible	
Section 1D – Implementation Considerations	
Standards	
Operating Impacts	
Circuits to Consider for Voltage Optimization	
7-Year Capital Plan	
Section 2 – Approach to Analysis	
Circuit Fielding	
Model Verification and Correction	
"As is" Base Case Voltage Profiling	
Pre-VO Compliant	
Stage 1 Analysis	
Stage 2 Analysis	
Stage 3 Analysis	

Secondary System Considerations25
More on Light Load / Heavy Load Scaling30
Section 3 – Existing System Assessment
Area Overview
Metering
Substation
Line Voltage Regulator Metering34
End of the Line (Voltage Zone) Metering34
Voltage Control
VO Minimum Threshold Assessment
Section 4 – System Improvements
Primary System
Metering Improvements
Substation
Line Voltage Regulator Metering37
End of the Line (Voltage Zone) Metering
Metering Communications
Secondary System Considerations
Location of System Improvements
Cost Estimating
Section 5 – References

Appendices

1.	Washington Rules and Regulations And Utility Distribution Efficiency Measures	. 49
2.	Secondary System Voltage Drop Considerations	. 54
3.	MW and MVAr Histograms by Substation Transformers	. 61
4.	PacifiCorp Cost Estimating Spreadsheet and Crew Cost Information	. 74
5.	Maps showing System Improvements by Circuit and Stage	. 79
6.	Maps showing Voltage Profiles	104
7.	Detailed Results – All circuits & stages and for LCLC and BCR optimal solutions	129
8.	Simplified Voltage Optimization (VO) Measurement and Verification Protocol	136
9.	Summary Circuit Analysis by Stage	152
10.	Detailed Cost Estimates by Circuits and Stage	181
11.	High and Low Voltage Reports	220
12.	Summary of Study Data	223
13.	Metering and Communication Costs	226
14.	Circuit VAR Profiles	231
15.	Circuit Power Factor Profiles	252
16.	Comparison of Distribution Efficiency Potential	273

Table of Figures

Figure 1-1Costs and Energy Savings by Stage	9
Figure 1-2 Annual Energy Savings, LCLC & BCR by Stage and Optimal Solution	. 12
Figure 1-3 LCLC and BCR for each Stage Alternative	. 13
Figure 2-1 Example Voltage Zone	. 26

Table of Tables

Table 1-1 Financial Factors Used in the Study	8
Table 1-2 Summary Results by Stage with all Circuits Considered1	0
Table 1-3 Summary of Economically Viable Solutions by Stage and Over-All Optimal	
Solution1	1
Table 1-4 Capital Plan2	1
Table 2-1 Estimated number of customers with potential low voltage and associated	
transformers2	8
Table 3-1 Overview of Substations & Circuits Analyzed3	2
Table 4-1 System Improvement Cost Summary4	1
Table 4-2 System Improvement Cost by Circuit and Stage4	2

DEFINITIONS OF TERMS

Term	Definition
aMW	Average Megawatt – a measure of electric capacity produced continuously for a period of one year. 6 aMW = 6 MW x 8760 hours/year = 52,560 MWh/year.
BCR	Benefit Cost Ratio – the ratio of benefits to cost. For this study
	BCR = <u>(Present Value of the Energy Savings)</u> (Present Value of the Costs of System Improvements)
	This calculation is based on the anticipated 20 year life of the project. The costs include O&M costs and a capital update of the improvement assumed to be ten percent of the initial capital investment at year 15.
CVR	Conservation Voltage Reduction – is a means of reducing energy consumption as a result of reducing the primary voltage on an electric distribution system. Energy saved from CVR include no-load loss savings, distribution line loss savings, and end-use (service entrance) energy savings. See Appendix 1 for more detail.
CVR factor	Conservation Voltage Reduction factor (CVR_f) – is the percent change in energy consumption on a distribution system resulting from a one percent reduction in voltage. A positive CVR factor indicates that as the voltage goes down there are resultant energy savings. A CVR factor of 0.6 indicates there is a 0.6% energy savings for a 1% voltage reduction.
IVVO	Integrated Volt VAR Optimization – is the real time optimization of system voltage and reactive power (VAR). It requires a relatively sophisticated metering, communication and control system. Utilities are considering it as part of Smart Grid roll outs. IVVO is not studied in this report, although a Stage 3 implementation would include infrastructure useful for a future IVVO program.

LCLC	Life Cycle Levelized Costs – calculates the present value of an alternative expressed as an equal annual payment divided by the expected annual energy the alternative provides. If a project's present value is \$500k, it has a 20 year life and it produces 400 MWh of energy per year then its LCLC equals:			
	((\$500,000/20) / 400 MWh) = \$62.5/MWh = \$0.0625/kWh			
	For this study, LCLC's are calculated based on the anticipated 20 year life of the project.			
LDC	Line Drop Compensation – is a means of setting voltage controls on the LTC for power transformers and voltage regulators so that the voltage regulated point on the circuit is farther out on the circuit than the location of the LTC or regulator. Using LDC is an important aspect of voltage optimization programs.			
LTC	Load Tap Changer – is a voltage regulating device attached physically and electrically to a power transformer in a substation. It has the capability and controls to change load side voltage settings to maintain appropriate voltage levels in varying load situations.			
M&V	Measurement and verification – Utilities implementing energy conservation programs in compliance with RCW 19.285 must report on expected and actual energy savings. Additional metering may be required to measure and verify actual energy savings. See Appendix 8 for more detail.			
No-load loss	No-load loss – Energy losses from electrical devices, commonly transformers, which are energized but without load. It is advantageous to keep these losses as low as economically reasonable because they occur whenever the device is energized.			
NPV	Net Present Value – is a means of expressing a time sequence of cash flows, both positive and negative, as a present day value. The NPV is the sum of annual cash flows which have each been discounted by a factor which accounts for the value of money in the future as compared to today.			
SI	System Improvements – the changes made to the distribution system in a voltage optimization program in order to gain energy savings. These usually include phase balancing, installing capacitors to correct power factor, site specific reconductoring, and installation of line voltage regulators.			

VO	Voltage Optimization – is a combination of CVR and system
	improvements that together provide more energy savings than CVR
	alone.

VO factor Voltage Optimization factor (VO_f) – is expressed as the percent change in energy for a one percent change in voltage supplied at the end-use service entrance. VO factors are influenced by the percent of customers with non-electric heat, air-conditioning and the specific climate zone in which a distribution circuit is located. End-use energy savings associated with the VO factor can represent the majority (more than seventy-five percent in some systems) of the total energy saved in a voltage optimization program. The balance of the energy saved is derived from line loss savings and no-load loss savings. See Appendix 1

STUDY OVERVIEW, FINDINGS AND RECOMMENDATIONS

SECTION 1A – STUDY OVERVIEW

Purpose

The purpose of this Distribution System Efficiency Study was to identify the potential energy and monetary savings associated with implementing a distribution system loss reduction and conservation voltage regulation application. Commonwealth Associates, Inc., with Utility Planning Solutions, PLLC, was contracted by PacifiCorp to provide a Distribution System Efficiency Study on 19 distribution feeders. Energy savings are determined for PacifiCorp's distribution system based on the Simplified Voltage Optimization (VO) Measurement and Verification (M&V) Protocol approved on May 4, 2010, by the Northwest Power and Conservation Council Regional Technical Forum committee. This report summarizes the assessment findings on the feeders, which are located in Pacifi-Corp's Walla Walla, Yakima and Sunnyside service areas.

The Simplified VO M&V Protocol provides a simple means to estimate end-use energy savings as a result of system improvements that allow the electric distribution system to operate more efficiently and within the lower band of the ANSI Standard voltage level. The protocol covers utility electric distribution systems serving mostly residential and light commercial loads. System loads do not need to be uniformly distributed throughout the distribution system. This protocol identifies the procedure to determine the average annual voltage for a distribution primary system with source voltage regulation. Minimum system stability thresholds, system data requirements, and measurement and verification formulations are included as part of this protocol.

The study addresses the level of effort and system improvement (SI) necessary to comply with minimum VO thresholds and estimates the potential for SI and VO efficiency energy savings. For this report, 19 PacifiCorp circuits served from 12 substations were studied. They included circuits in the Yakima, Walla Walla and Sunnyside areas. Ideally, all distribution feeders that are common to one substation power transformer voltage control zone should be evaluated. This was not the case for all of these selected circuits.

The study is a starting point and potential guide for PacifiCorp as it considers implementing distribution efficiency programs for all of its Washington distribution circuits.

The study provides information for use in developing recommendations for PacifiCorp's Integrated Resource Plan (IRP).

Data

Data provided by PacifiCorp is assumed to be accurate and up to date. Modeling and data fielding verification was performed by Commonwealth. The following data was provided via on-site visits, phone conversation and e-mail. Data gathered included:

- GIS detailed AutoDesk Map files
- ABB FeederAll software, including PacifiCorp's Washington distribution circuit model
- Substation hourly peak kW and kVAR load history for 2009
- Summer and winter peak kW and kVAR loading for circuits in the study and for the adjacent circuits, those served by the same LTC or voltage regulator
- Locations and size of customers with large electrical demands
- Connected distribution transformer phase kVA for each feeder line section
- Line conductor sizes and phase configurations for each feeder
- Customer load characteristics used to determine VO factor
- Substation voltage control settings
- Financial and economic factors and marginal purchase power costs
- System planning criteria, system expansion guidelines and voltage standards
- Completed utility overview and scoping questionnaire
- Fully loaded hourly labor costs for crew labor, including transportation
- Block Cost Estimating Spreadsheet for system improvements

Assumptions

The GIS data received was assumed to be preliminary and may need further investigation if additional study is required. The data reported in the Commonwealth Data Request Questionnaire, as well as additional data provided, was used in this analysis. In some cases, requested data was unavailable at the time or was unknown. Feeder load factors are based on PacifiCorp's measured data. Feeder maps used to prepare the system electric connectivity model using ABB FeederAll software were revised based on the information gained by Commonwealth's fielding efforts.

Heavy loads for the study are peak summer MW with a MVAR load level representative of the 95th percentile on the MVAR Histogram based on the annual transformer hourly data. This can be seen in Appendix 3. These loads were used in the study because they represent reasonably high loads and, together, they result in a greater voltage drop than what would happen at the recorded winter peak when the MVAR loading is less.

The light loads are at the 5th percentile, from the MW and MVAR Histograms. These loading levels were chosen because they represent reasonably low-load levels without considering lighter loads on the Histogram, which occur with near zero probability.

The PacifiCorp system information was assessed for compliance with the entire set of VO minimum system thresholds identified by the NWPCC RTF Simplified VO Protocol. Substation power transformer load losses were not considered in this study. In the third stage, the 3-step staged approach results in a VO design with a minimum primary voltage of 119 volts on 120 volt basis.

The cost of system improvements, including engineering, material and labor, were based on information provided by PacifiCorp and supplemented by Commonwealth's knowledge and understanding of industry costs.

The Simplified VO Protocol methodology is an accepted approach to estimating the savings available from voltage optimization. Its approach to estimating the energy savings is accurate for the purpose of this planning study. This document provides the study results of implementing possible VO improvements on the 19 PacifiCorp feeders identified. This study is not a detailed plan of action; further studies will be required before implementing voltage optimization and system improvements.

All model development and engineering assessments were performed using the ABB FeederAll engineering analysis tool. It is assumed this model accurately models voltage drops, losses, etc.

The LTC and voltage regulator "R" set points were changed in 0.5 volt increments.

Study Basis

This study is based on information provided by PacifiCorp and circuit fielding by Commonwealth. PacifiCorp has an ABB FeederAll application that includes spatial location of feeder conductor sizes, phases and installed transformer kVA that is routinely maintained. Substation metering is installed on power transformers with feeder MW and MVAR demand. The PacifiCorp FeederAll application model has been updated to include up-to-date fielding information (i.e., wire sizes, transformer kVA sizes, phase connections, etc.) from Commonwealth fielding.

Fielding

As the system data and other information was being assembled and reviewed, the first major step of the project was to field the 19 circuits and note differences between field observations and the maps. This was necessary to make the starting model as accurate as possible for the analysis. Commonwealth staff went into the field to record existing conditions and worked with PacifiCorp staff as needed. Marked-up maps were sent back to Commonwealth's office, where they were scanned and electronically stored and made available to the modeling staff.

Staged Approach Used to Evaluate the Circuits

The study used a staged approach to evaluate the circuits. It started with an "As-is" base case and then moved through three evaluation stages for each circuit. For the As-is case, Commonwealth

made corrections to the system model based on the changes found during fielding. From this model of the existing system, Commonwealth used FeederAll to examine the voltage and losses during heavily loaded conditions and lightly loaded conditions. Heavy loads for all stages are the peak summer MW with a MVAR load level equal to the 95th percentile of the transformer histogram. The light loads are at the 5th percentile of the transformer histogram for both MW and MVAR. For the As-is voltage profile analysis, Commonwealth modeled the primary system on a 120 volt basis in an effort to keep the voltage from dropping below 121 volts (band center) on any spot on each of the modeled circuits. This was not always attainable, but it was the goal.

From the As-is case, Commonwealth stepped through the three stages of changes. In Stage 1, the LTC control in FeederAll was set to hold the end of the line (EOL) voltage at, or near, 120 volts; the phase loadings were balanced; and existing capacitors were optimized. Included in the Stage 1 costs are funds for metering improvements in the substations and at the end of the line necessary to verify the circuit is operating consistently with the VO protocol.

In Stage 2, the modeling included new capacitors, mostly switched, reconductoring and voltage regulators. If voltage regulators are added, then funds are included to provide the necessary metering for the newly created voltage control zone downstream of the regulator. In Stage 2, the EOL voltage was left at 120 volts.

In Stage 3, the EOL voltage was set to 119 volts. Also in Stage 3, communication between the EOL metering to the substation was included, as was communication between line voltage regulators and substations. The results would have been significantly improved for Stage 3 Benefit-Cost Ratios (BCRs) and Life Cycle Levelized Costs (LCLCs) without the costs of the communication infrastructure. This communication is both for monitoring and voltage control for energy efficiency gains and power quality.

Economic Analysis per Voltage Optimization Protocol

The costs and results from the system analysis were then used to complete the economic analysis consistent with the VO protocol and PacifiCorp's economic factors. This included analyzing the results from a Benefit-Cost Ratio (BCR) and Life Cycle Levelized Cost (LCLC) approach.

The financial and economic factors used in this study are shown in Table 1-1, below. It is important to note the assumed economic life of the energy savings is 20 years. Commonwealth has included funding capital, at year 15, equal to 10% of the initial capital investment to provide for modifications of the improvements near the end of the economic life. The economic analysis was performed using principles described in D.G. Newnan, T.G. Eschenbach, J.P. Lavelle, *Engineering Economic Analysis, Ninth Edition*, Oxford University Press, Inc., New York, 2004.

_		
	Retail Energy Rate Weighted Annual (\$/kWh)	\$0.08
	Minimum Permissible Benefit-Cost-Ratio BCR (p.u.)	1.0
	Capital Equipment Life Expectancy (yr)	48
	Planned life of Energy Savings (yr)	20
	Capitalized Annual Fixed Charged Rate (p.u.)	11.21%
	Annual Inflation Rate for kW Demand (%/yr)	1.80%
	Annual Inflation Rate for kWh Energy (%/yr)	1.80%
	Annual Inflation Rate for Investment (%/yr)	1.80%
	Annual Inflation Rate for O&M (%/yr)	1.80%
	Maximum Permissible LCLC (\$/kWh)	\$0.10591
	Marginal Purchase Demand Rate (\$/kW/yr)	\$0.00
	Marginal Purchase Energy Rate (\$/kWh)	\$0.10591
	Annual Operation & Maintenance Expense (%/yr)	2.00%
	Present Worth Rate for Cost of Energy & Losses (%/yr)	7.17%
	Present Worth Rate for Cost of Investment (%/yr)	7.20%
	Maintenance Lump Sum Amount in Future Year (%)	10.00%
	Maintenance Lump Sum in Future Year (yr)	15

Table 1–1: Financial Factors Used in the Study

Implementation Considerations

The team then developed implementation considerations, risks and mitigation alternatives. These were developed using the results from the system analysis, the economic analysis, conversations and input from PacifiCorp staff and the utility operating experience of the Commonwealth team members.

Findings and Recommendations

Considering all of the above, Commonwealth then developed the conclusions, findings and recommendations included in this report. These follow next in the report.

SECTION 1B - SUMMARY OF RESULTS

Figure 1-1 shows the costs and energy savings for each stage for all circuits regardless if a particular stage or circuit met the BCR and LCLC thresholds: 1.0 and \$105.91/MWhr, respectively.

The overall energy saved drops in stage two because the system improvements tend to raise and flatten voltage. The flattening tends to raise the voltage at the end of the impacted circuits. This is preparing the circuits for the voltage reduction which takes place in the third stage.

Table 1-2, below, provides an overview of the results for the studies associated with these 19 circuits.

General Information	Stage 1	Stage 2	Stage 3
Total Customers Served (#)	30,747	30,747	30,747
Feeder Annual Peak MW	138.33	138.33	138.33
Total Annual Energy Consumed (MWh/yr)	627,608	627,608	627,608
Average Customer Voltage Change (%)	1.35%	1.09%	2.01%
Average Reduction in Annual Energy Delivered from Sub (%)	0.94%	0.82%	1.40%
Total SI&VO Installed Cost	\$1,640,691	\$2,999,482	\$6,518,722
Utility Energy Savings Potential			
Line Loss Reduction (MWh/y)	282.7	712.7	678.8
No-load Loss Reduction (MWh/y)	252.5	199.8	357.1
VO Energy Savings (MWh/y)	5,337.9	4,235.4	7,744.8
Total Energy Savings (MWh/y)	5,873.1	5,147.8	8,781
Total Energy Savings (MWa)	0.6704	0.5877	1.0024
Total Coincidental Demand Reduction (kW)	1142.6	1,093.2	1,766.9
Average Customer Energy Reduction (kWh/yr)	174	138	252
Benefit Cost Projections			
Overall Utility Levelized Cost per kWh Saved	\$0.0434	\$0.0906	\$0.1155
Overall Utility Benefit Cost Ratio	2.52	1.21	0.95
Overall Net Utility PV Savings (\$)	\$4,734,832	\$1,194,119	(\$618,263)

Table 1-2 Summary Results by Stage with all Circuits Considered

Stage 1 has the lowest LCLC, which is to be expected given the limitation of actions (reducing voltage, phase balancing and redeploying capacitors) for the energy saved. Stage 2 provides slightly less energy than Stage 1; however, it is at more than double the cost. This is the impact of the system improvements, which become fully beneficial when the voltage is lowered in Stage 3. Stage 3 offers the greatest energy savings as a result of the system modifications made and the reduction of the EOL voltage to 119 volts (on a 120 volt basis). A large part of the Stage 3 cost, approximately \$2.7M, is due to the communication infrastructure required to provide real-time monitoring of voltage and energy at the substation and regulators, and EOL volt meters. At a total summary level the Stage 3 results do not meet the LCLC and BCR thresholds of \$105.91/MWh and 1.0 respectively. However, the total results are close to the limits indicating that some of the individual results likely do meet the thresholds.

After analyzing all the circuits and stages, two things became clear. One, the individual circuit results in each stage should be considered from an economic perspective; and second, a valuable point of view could be gained if the results were considered from a total energy savings view while ensuring the circuits and stages selected also met the 1.0 BCR and the \$105.91 LCLC thresholds. The goal of this second review was to get the most energy savings while staying within the economic thresholds. The results from this review are shown below by stage and from an optimal solution perspective.

Over-A		Jution		
				Optimal
General Information	Stage 1	Stage 2	Stage 3	Solution
Total Customers Served (#)	22,225	22,958	18,665	27,909
Feeder Annual Peak MW	95.08	103.58	76.01	125.50
Total Annual Energy				
Consumed (MWh/yr)	438,826	476,160	357,575	574,046
Average Customer Voltage				
Change (%)	1.12%	1.11%	2.07%	1.73%
Average Reduction in Annual Energy Delivered from Sub (%)	0.80%	0.85%	1.45%	1.23%
Total SI&VO Installed Cost	\$863,209	\$1,893,973	\$2,826,294	\$3,854,835
Utility Energy Savings Potential				
Line Loss Reduction (MWh/y)	198.0	565.0	371.5	643.1
No-load Loss Reduction (MWh/y)	129.5	146.4	187.1	267.5
VO Energy Savings (MWh/y)	3,185.9	3,347.2	4,621.5	6,127.4
Total Energy Savings (MWh/y)	3,513.4	4,058.5	5,180.1	7,038.0
Total Energy Savings (MWa)	0.4011	0.4633	0.5913	0.8034
Total Coincidental Demand Reduction (kW)	685.2	856.4	1,027.0	1,423.9
Average Customer Energy Reduction				
(kWh/yr)	143	146	248	220
Benefit Cost Projections				
Overall Utility Levelized Cost per				
kWh Saved	\$0.0382	\$0.0726	\$0.0849	\$0.0852
Overall Utility Benefit Cost Ratio	2.87	1.51	1.29	1.29
Overall Net Utility PV Savings (\$)	\$3,056,420	\$1,832,787	\$1,565,127	\$2,098,324

Table 1-3 Summary of Economically Viable Solutions by Stage and Over-All Optimal Solution

The numbers in the table above can be distilled down to the figure below. Figure 1-2 shows the annual energy saved, LCLC and BCR for by each stage when individual stage solutions that don't meet the BCR and LCLC thresholds are excluded from a given stage solution. The Optimal Solution includes the stage solution of each circuit which provides the most energy while meeting the economic thresholds. For each stage and for the Optimal Solution there are circuits which do not meet the economic considerations. For example, in the Optimal Solution the two circuits excluded are Pomeroy 5W342 and North Park 5Y356.

Figure 1-2 Annual Energy Savings, LCLC & BCR by Stage and Optimal Solution:

(Circuit solutions that do not meet the economic thresholds are excluded from that Stage.)

In addition to the roll up results described above Commonwealth reviewed the study results to determine the savings associated with each circuit for all three stages for all 19 circuits. In Figure 1-3, below, the LCLC and BCR results of each of the 19 circuits in all three stages are shown. The shaded area represents the area of the graph with an LCLC of less than \$105.91 and a BCR \ge 1.

Figure 1 – 3 LCLC and BCR

The figure clearly shows there a number of individual solutions within the shaded economic zone. Included are most Stage 1 results, and a good number Stage 2 and Stage 3 results. This is consistent with Table 1-3 above which shows the Optimal Solution as having the greatest number of customers served and largest peak load.

The results, as summarized, above indicate there is an opportunity for PacifiCorp to implement a Voltage Optimization and System Improvement program that provides energy savings within its economic thresholds.

SECTION 1C – RECOMMENDATIONS

The results of this distribution system study for 19 Tier 1 circuits on PacifiCorp's Washington system are favorable and demonstrate that sustainable and potentially viable VO savings can be obtained. Commonwealth recommends that PacifiCorp consider the Optimal Solution scenario. This scenario provides the greatest amount of energy, as compared to the stage scenarios considered, within the utility's economic thresholds. The next step may be to analyze the results of the Optimal Scenario in the utility's Production Cost Model to further consider its cost effectiveness.

Commonwealth recommends such Voltage Optimization improvement efforts should be consistent with PacifiCorp's implementation strategy outlined in its Smart Grid Technology Report. This report was filed with the Washington Utilities and Transportation Commission in September 2010, in compliance with WAC 480-100-505. If, in the future, other Smart Grid initiatives are pursued by the company on these Tier 1 circuits, the Stage 3 implementation costs could reasonably be expected to be shared among additional Smart Grid programs. Sharing the communication infrastructure costs would have a direct impact on the Stage 3 BCR and LCLC values derived in this report.

Viable Energy Savings Projects Are Feasible

The study indicates viable energy savings projects are feasible by implementing system improvements and voltage optimization. Based on the study results, Commonwealth's recommendation is:

• PacifiCorp should analyze the Integrated Resource Plan (IRP) data provided by Commonwealth for the Optimal Scenarios in PacifiCorp's Production Cost Model.

Should the results of the Production Cost Model be favorable, Commonwealth further recommends:

- Complete the voltage optimization studies on all circuits originating on a substation/power transformer that is included in the selected group.
- Select the final implementation group based on the findings of this study and the results of the study described in the preceding bullet.
- Develop an implementation and budget schedule such as is shown in Table 1-4.
- Field verify:
 - Loading on taps to be changed for phase balancing; select other taps if necessary
 - Locations selected for voltage regulators, capacitors, metering, etc., having usable pole, space, etc., for equipment to be installed. If necessary, find suitable alternative locations.
- Engineer system improvements capacitor installations, regulators, line reconductoring, etc.
- Brief/train Field Engineers, Estimators and other appropriate field staff on voltage optimization and potential issues.

- Complete construction of needed system improvements.
- Closely follow operational implications, if any, of implementing voltage optimization.
- Install some recording volt meters on a temporary basis to respond to low-voltage reports and monitor end of control zone line voltages.
- Consider installing the Stage 3 communication infrastructure consistent with any Smart Grid effort undertaken by the utility. This approach will demonstrate if the metering is necessary to operate a voltage optimized system and to determine if there are other benefits that could help offset this investment if implemented for future Stage 3 VO circuits.
- If PacifiCorp decides to reduce the primary voltage on one or more of the circuits to 119 volts (on a 120 volt basis):
 - Follow a process similar to what is described in Section 1D in the bullets following the paragraph starting with: "*What if additional work is needed to address potential low voltage issues*"
 - Develop a service standard for the 119 volt voltage optimization zones
 - Complete communication infrastructure engineering and installation
- Follow the energy savings verification steps described in the Simplified Voltage Optimization Measurement and Verification Protocol, to measure and record savings.
- As PacifiCorp considers implementing a voltage optimization program, Commonwealth suggests, its staff stay current with this developing field. Studies continue which may guide PacifiCorp's implementation decisions and approaches.

During this study, Commonwealth's team noted that PacifiCorp's general operating approach on these 19 circuits – for example, setting the EOL voltage to 121 volts, using line drop compensation appropriately and utilizing both fixed and switched line capacitors – results in a relatively efficient system as a starting point. This reduces the amount of energy that might otherwise be available from a voltage optimization program on distribution circuits without this operating approach.

SECTION 1D – IMPLEMENTATION CONSIDERATIONS

Commonwealth considered potential operational risks and other considerations for implementation. The most significant concern is the potential of customers having service entrance voltages below the ANSI C84.1 Range A acceptable level of 114 volts; 117 volts for primary metered customers.

In reviewing the work in this report, Commonwealth thinks the cost and response impacts of secondary voltage problems as noted in the report are a maximum probable amount. We also believe the likely level of impacts over the projected life cycle of these improvements are 25% to 50% less than what is calculated. We believe this because the actual number of customers reporting lowvoltage issues is extremely low even though the As-is base case modeling shows that, on the end of some primary distribution circuits, the voltages are as low as 119 volts. This seems to indicate the secondary system voltage drops are not going to result in as many potential customer issues as estimated in the report. However, the value was not reduced because, as a PacifiCorp staff member indicated, it is hard to know where the system is compared to the knee of the curve. So, Commonwealth has left the estimate as is and recognizes it as a likely worst case impact from the two perspectives: cost impacts and customer issues.

Commonwealth has considered the "*What if additional work is needed to address potential low volt-age issues?*" question and recommends the following as an approach to address the potential issue of customers experiencing low service entrance voltage due to a voltage optimization program that moves the end of the line primary voltage to 119 volts:

- Determine voltage zones on each distribution circuit where the voltage may drop below 120 volts. Use FeederAll to model each circuit in light load and heavy load conditions to determine where on each circuit the primary voltage will drop below 120 volts. Commonwealth completed this for the Tier 1 circuits.
- Determine customer kW loading. For some customers, PacifiCorp likely has kW demand information. For residential and small commercial, it is likely that PacifiCorp does not have this information. Commonwealth understands that PacifiCorp has customer kwh usage data by month or billing cycle. This information can be used to calculate average kW loads and, from this, it is possible to estimate the customer's normal peak demand.
- Determine transformer kW loading. Commonwealth understands PacifiCorp's GIS or similar system can determine which customers are connected to each transformer. If this is so, it should be possible to estimate the kW demand on each distribution transformer. Then, the ratio for each transformer's 'peak demand to name plate rating' can be determined. This ratio would need to be estimated for both heavy and light load conditions.
- Screen the customer loading and transformer loading. It should be possible to set up a spreadsheet or data base that considers the customer loading and transformer loading and provides a report when the transformer loading <u>and</u> customer loading are both at or above some threshold. The threshold for the transformer loading is probably a relatively high per-

centage (perhaps 90%) and the customer loading threshold will be in kW. Commonwealth recommends considering 10 kW as a starting point. This amount of load will cause approximately a 1% voltage drop in 100 feet of #2 Al Triplex (overhead or underground). It is also probably a good idea to screen at higher thresholds without the "and" requirement described above. This would flag excessive loading on transformers and services for the fielding described in the next bullet.

- Field-visit the transformers and services that do not pass the screening described above. In this step, a knowledgeable field person (engineer, field technician, service line worker, etc.) would check the transformer to ensure the loads are actually connected to the transformer as the records indicate. The same person would visually verify the conductor size and length of the service conductor for the customer(s) that have triggered the "large load" level.
- Consider the field visit data. In this step, the field findings are considered to determine if the customer(s) may have the potential for having a secondary system voltage drop of 5 or more volts. From this analysis, a judgment will be necessary to decide the next steps. It could range from doing nothing to installing temporary recording volt meters, changing taps on the distribution transformer, replacing services or installing a new distribution transformer.
- The field engineering and operational effort described above is included in the system improvement cost estimate.
- Consider installing some recording volt meters, even if they are not thought to be necessary, on the early fielding situations to confirm what has been modeled and calculated.
- Continue to respond appropriately to customers who call and ask about suspected low voltage.

The Commonwealth team working on this project has found the PacifiCorp team members to be highly knowledgeable and qualified to address distribution system issues as a result of training of PacifiCorp staff, such as estimators, line workers and other field staff, to help resolve issues that may arise due to implementing a voltage optimization program.

Standards

If PacifiCorp selects a solution set with Stage 3 voltage optimization, Commonwealth recommends that PacifiCorp consider developing a Stage 3 VO Service Standard. This standard would include guidelines for selection of transformers, use of secondary taps and sizing of service conductors for the Stage 3 VO circuits.

Operating Impacts

Commonwealth has considered the impacts of voltage optimization on a number of operational aspects of an electrical distribution system. There is nothing noted below that appears to be significant enough to cause PacifiCorp to stop considering the implementation of VO on the Tier 1 circuits studied.

- <u>Safety</u>: The introduction of voltage optimization into a distribution system does not materially change the operation of the distribution system, its equipment or complexity. As such, there is no reason to think it will impact the safe operation of PacifiCorp's system.
- <u>Power Quality</u>: With the exception of potential low voltage, the VO protocol as designed and as considered in this study will have a neutral or positive impact on the power quality of the circuits on which it is implemented. In regard to potential low voltage, Commonwealth recommends that PacifiCorp implement the steps described above in this section, or similar steps, to address this issue. Also, the end of the line voltage metering will provide PacifiCorp with additional voltage information for use with planning, engineering and operational responses.
- <u>System Complexity</u>: For Stage 1 circuits, there are no significant changes to the equipment on the circuits. The phase balancing and redeployment of capacitors does not materially alter the distribution system's complexity. The installation of switched capacitors and regulators, for stages 2 and 3, will require the field staff to be made aware of these devices. These are each well-proven distribution components that PacifiCorp currently has standard on its system. Their addition provides more to the overall quality of service than it contributes to operational or engineering complexity. Devices such as switched capacitors and voltage regulators as "active" devices do inherently increase the possibility of failures and related outages. However, they are well-proven devices that PacifiCorp has on its system and their use is not expected to negatively impact a circuit's reliability.
- <u>Impacts to Substation Capacitors</u>: Substation capacitors are used to improve power factor, losses and voltages on the bulk power system servicing the distribution substation transformers. To a lesser extent, they also help the distribution LTC regulators stay within their ±10 percent limits, but mostly the LTC regulators are responsible for maintaining the proper feeder voltages (so long as they are operating within their control range).
 - The application of switched capacitors in stages 2 and 3 will, in general, act to reduce the net reactive flow seen by the both the LTC and at the transformer high-side where the substation capacitors act. The additional reactive support added to each circuit is small compared to the substation capacitors in service at Bowman (3600 kVAR), Dodd Road (3000 kVAR), Mill Creek (3060 kVAR), and Nob Hill (4950 kVAR) and should not significantly impact their operation. The most likely outcome is that there will be a small decrease in the quantity of substation MVAR that is needed.

However, existing capacitors and settings should still fulfill their functions for the bulk power system and need not be changed. Future substation capacitor designs for circuits using voltage optimization may require slightly smaller sizes.

- Overall, Commonwealth does not see a need to change or adjust the existing substation capacitors or control settings. There may be a small reduction in the cost of future designs for substation capacitors where the tighter reactive control from the more extensive use of switched distribution capacitors reduces the reactive demand on the bulk electric system. It is possible that detailed analysis of the changed reactive requirements on the bulk electric system may call for reducing or eliminating some substation capacitors, but we would recommend that such changes be delayed until the intention to apply voltage optimization on all of the feeders emanating from the substation have been determined so that a complete picture of the impacts can be reviewed.
- <u>Impacts to Substation LTC</u>: The operation of the load tap changer (LTC) is impacted by the addition of switched distribution capacitors. The LTC may see a small increase in the frequency of operation caused by the added operation of switched capacitors. These impacts should be less significant than those seen for the switching of the larger and closer substation capacitor banks. The increased frequency of LTC operation should be minimal and cause negligible problems since the application of switched distribution capacitors is a common utility practice for which LTC transformers are designed.

Circuits to Consider for Voltage Optimization

As PacifiCorp considers primary circuits to determine if they are good candidates for voltage optimization, Commonwealth recommends that PacifiCorp look for circuits with the following characteristics:

- 1. A good power factor. The feeder-source minimum power-factor must be greater than 0.96.
- 2. Balanced loads at the start of a voltage control zone the feeder exit and at line voltage regulators. Phase-load-unbalance should be less than 0.15 per unit on 3φ lines. Also feeder-source neutral-current must be less than 40 amps on 3φ lines.
- 3. Circuits with relatively flat voltage profiles. This applies to both voltage control zones originating at substations and at line voltage regulators.
- 4. Consistency of voltage drop between feeders. Maximum voltage drop variance between multiple feeders served within a substation VO voltage control zone must be less than 2 volts (on a 120 volt base).

5. Circuits with significant residential and light commercial loads, in comparison to industrial loads, and which are relatively highly loaded.

As Commonwealth found in this study, some circuits fit these guidelines "naturally" and some required remedial action to make them VO compliant. This is a normal situation for electric utilities.

7-Year Capital Plan

PacifiCorp requested a capital spending plan be prepared as part of this study. Based on the Optimal Solution alternative, the capital spending plan in Table 1-4 was developed. These circuits are, based on this study, the most viable for consideration for voltage optimization. The circuits in the Optimal Solution were arranged by Stage, from Stage 1 to Stage 3. Then they were grouped by substation. This ordering seems logical because it allows PacifiCorp to implement the Voltage Optimization on a Stage by Stage approach and substation by substation sequence. It provides time for the additional engineering that will be needed for Stage 2 and Stage 3 work as compared to Stage 1. The resultant spending plan is shown below in Table 1-4.

Commonwealth acknowledges there are other ways of prioritizing the work. For example it could be prioritized by energy saved or greatest BCR. PacifiCorp may want to examine these alternative priorities before starting the implementation process.

Table 1-4 Circuits for Capital Plan

Based on Optimal Solutions having BCR ≥ 1.0 & LCLC ≤\$105.91

Service			Implementation	Estimated	Annual Estimated
Area	Substation	Circuit	Stage	Cost	Cost
Walla Walla	Bowman	5W154	Stage 1	\$29,526	
Yakima	Wiley	5Y434	Stage 1	\$100,248	
Walla Walla	Dodd Rd	4W22	Stage 2	\$288,415	
Yakima	Orchard	5Y456	Stage 2	\$124,802	\$542,991 Year 1
Yakima	River Road	5Y444	Stage 2	\$264,201	
Lower Valley	Grandview	5Y351	Stage 2	\$221,349	\$485,550 Year 2
Walla Walla	Bowman	5W150	Stage 3	\$345,514	Part of Year 6 total
Walla Walla	Mill Creek	5W116	Stage 3	\$318,157	
Walla Walla	Mill Creek	5W127	Stage 3	\$256,139	\$574,296 Year 3
Yakima	Clinton	5Y608	Stage 3	\$281,975	
Yakima	Clinton	5Y610	Stage 3	\$260,606	\$542,581 Year 4
Yakima	Nob Hill	5Y194	Stage 3	\$297,023	
Yakima	Nob Hill	5Y197	Stage 3	\$154,291	
Yakima	Nob Hill	5Y273	Stage 3	\$241,604	\$692,918 Year 5
Yakima	Orchard	5Y498	Stage 3	\$230,336	\$575,850 Year 6
Lower Valley	Sunnyside	5Y313	Stage 3	\$240,890	
Lower Valley	Sunnyside	5Y317	Stage 3	\$203,759	\$444,649 Year 7

SECTION 2 – APPROACH TO ANALYSIS

Circuit Fielding

To start the study, using printouts of the GIS detailed AutoDesk Maps, Commonwealth staff field verified each circuit. This included starting at the substation, noting the phasing leaving the station and following the circuit to the end of each lateral. The phasing for all transformers, corners and laterals was noted. The circuit conductor sizes and the location of line voltage regulators and capacitors were recorded. This information was captured on paper copies of the maps and then scanned and saved on CDs or DVDs and on Commonwealth's internal electronic network.

Model Verification and Correction

Using the information gathered during the circuit fielding, Commonwealth corrected and verified the modeling in the ABB FeederAll system. After the models were corrected and verified, Commonwealth used FeederAll to analyze the circuits. This work included the 3-stage approach described below.

"As is" Base Case Voltage Profiling

Commonwealth made corrections to the system model based on the changes found during fielding and from follow-up conversations with PacifiCorp staff. From this work, Commonwealth used the FeederAll model of the updated existing system to examine the voltage during heavy load conditions and light load conditions. Heavy loads for all stages are the peak summer MW with a MVAR load level representative of the 95th percentile. The light loads are at the 5th percentile for both MW and MVAR. These load levels were chosen because they represent reasonably possible highand low-load levels without the "peak" loads or loads at near zero probability, both of which happen infrequently.

For the As-is voltage profile analysis, Commonwealth's modeling found that 12 of 19 circuits had primary low voltages at the end of the line in the range of 119 to 120 volts, on a 120 volt basis. The remainder of the circuits had As-is low voltages that were 120 volts or higher at the end of the line.

Commonwealth reviewed PacifiCorp-provided customer data for the 19 circuits regarding low voltage for the years 2001 to 2011. The small number of low-voltage complaints (eight) is consistent with the findings of this stage of the study. Approximately half of these issues appear to be the result of load increases made without the customer notifying PacifiCorp. See Appendix 11 for the reported customer voltage issues. This small number also provides some confidence to the assumptions associated with the expected low number of transformers and customers who may experience low voltage due to secondary system loading after implementing voltage optimization.

Commonwealth also found the Grandview circuit 5Y351 may have had substation settings contributing to the potential of customers having high-voltage conditions. PacifiCorp field engineers have

taken steps to investigate and address this situation. As a result, the settings for the substation transformer were modified. This situation required revising the analysis for Grandview.

Pre-VO Compliant:

The voltage optimization protocol requires that voltage control zones meet or exceed certain performance thresholds during normal operating conditions. In some situations, it may be necessary to perform system improvements to bring the system to within the thresholds. This was the case for some PacifiCorp circuits that had distribution system voltage drops greater than the 3.3% provided for in the protocol guidelines. The distribution system voltage drop is the reduction in voltage on the primary system from the regulated point to the lowest voltage point at the end of the line. In most cases, the circuits were compliant with all performance thresholds by Stage 2. Please see Appendix 8, Section 2.3, for more about the minimum operating performance thresholds.

Stage 1 Analysis:

For the Stage 1 analysis, Commonwealth used the system model corrected from the fielding results. The work for this stage included balancing phasing and redeployment of in-place fixed capacitor banks on the circuit to achieve an improved power factor profile. The redeployment of capacitors was considered on a circuit-by-circuit basis. Commonwealth did not consider it in its analysis, but it understands that PacifiCorp would normally do this within a given service district. There could be a small reduction in the cost estimates for this effort if the capacitors were redeployed on this approach.

The circuit-specific changes are outlined in more detail in Section 4, below, and are shown on circuit maps in Appendix 6. Once these "O&M" type changes were made to the model, the end of the line voltage was reduced to no less than approximately 120 volts. For some circuits, the primary voltage did dip slightly below 120 volts. Keeping the voltage at or very near to 120 volts provides for the potential of a 6 volt drop on the secondary system. The analysis included primary voltages during both heavy and light load conditions.

Commonwealth also:

- Used the established VO protocol to calculate the energy savings associated with lowering the end of the line primary voltage to 120 volts for each circuit between the base case and the studied stage case.
- Developed cost estimates to complete the work to get the circuit into a Stage 1 configuration, including: metering, planning, engineering and construction; efforts to address potential increased low-voltage customer issues; and any ongoing maintenance and costs associated with the improvements. The estimated funding should be sufficient to research and develop an approach, complete fielding and develop solutions for specific transformers and services.
- Determined the additional O&M costs for Stage 1 should be low, due to the minimal additional investment. The annual O&M costs were increased by 2% of the capital investment

and the funding for Stage 1 should be adequate for meter data acquisition, which will be the major additional 0&M work effort over the life of implementation for this stage.

• Performed an economic benefit-cost analysis for Stage 1 improvements, including the secondary system improvements described below.

Stage 2 Analysis:

For the Stage 2 analysis, using the modifications from Stage 1 as a starting point, Commonwealth made system model modifications to include: new capacitors (switched and fixed), reconductoring, voltage regulators, etc. The circuit changes are outlined in more detail in Section 4, below, and are shown on circuit maps in Appendix 6. Using this model of the system, Commonwealth used FeederAll to analyze the circuit for heavy and light load conditions.

Commonwealth also:

- Used the established VO protocol to calculate the energy savings associated with operating the end of the line voltage at or near 120 volts for each circuit's respective Stage 2 configuration.
- Developed cost estimates to complete the work to get the circuit into a Stage 2 configuration. This included planning, engineering and construction; efforts to address potential increased low voltage customer issues; and any ongoing maintenance and costs associated with the improvements. For Stage 2, it is possible that the number of distribution transformers with primary voltages of 121 volts or less could be fewer than what would be expected for Stage 1. If this was the situation, the estimated costs for Stage 2 work were reduced, or negative, as the costs from stage to stage are cumulative. This situation would be created from the system improvements included in Stage 2.
- Considered the likely O&M costs in comparison to the 2% included in the financial analysis. The O&M funding for Stage 2 appears sufficient.
- Performed an economic benefit-cost analysis for Stage 2 improvements, including the secondary system improvements described below.

Stage 3 Analysis:

For Stage 3 analysis, Commonwealth started with the circuit improvements from the Stage 2 work and modeled the system with an end of the line primary voltage of 119 volts.

Commonwealth then:

- Used the established VO protocol to calculate the change in average voltage for each circuit between the Pre-VO Compliant base case and the studied stage case.
- Used the established protocol to estimate the energy savings from this system configuration as compared to the base case.

- Developed cost estimates to complete the work to get the circuit into a Stage 3 configuration, including: metering, planning, engineering and construction and efforts to address potential increased low-voltage customer issues.
- Included 250 hours of PacifiCorp staff time in the cost estimates to develop new service standards for VO zones operating with end of the line voltages set to 119 volts
- Considered the likely 0&M costs in comparison to the 2% included in the financial analysis. The 0&M funding for Stage 3 appears sufficient.
- Performed an economic benefit-cost analysis for Stage 3 improvements, including the secondary system improvements described below.
- Using the stage-appropriate system, used FeederAll output as an input to ArcGIS to prepare circuit maps showing the voltage along each circuit. This included the circuits in heavy load and light load conditions.

Secondary System Considerations

Commonwealth has considered the potential likelihood of customers having secondary system voltage drops of a large enough value to cause the service entrance voltage to drop below 114 volts. PacifiCorp's standards provide for secondary voltage drops of up to 5% (6 volts on a 120 volt basis). As the system's primary distribution voltage drops below 121 volts (leaving one volt for the downside bandwidth of the voltage regulator), it is possible that customers may have low-voltage scenarios develop. The probability of this happening is small. From the circuit information provided by PacifiCorp (see Appendix 11), it is clear there are infrequent customer inquiries about low voltage, even though the modeling indicates the primary voltage for a number of these 19 circuits drops below 120 volts (on a 120 volt basis) during normal operations. The data provided by PacifiCorp indicates that only 8 customers, over the last 10 years, have asked to have low-voltage issues investigated. There are a number of reasons that PacifiCorp may have such a small number of customers inquiring about low voltage, but the most likely reason is the load diversity at the distribution transformer level. The loading on the distribution transformers is approximately 39% of installed nameplate capacity during peak loads. This indicates the voltage drop of most transformers is not a major issue. For the vast majority of the transformers, the loading and voltage drop is going to be less during lightly loaded periods.

It is still possible that customers could experience low voltage, less than 114 volts, at the service entrance when the primary voltage (on 120 volt scale) is less than 120 volts or even between 120 and 121 volts. It is possible to determine, for a large group of distribution transformers and associated customers, the maximum probable number of transformers that may have a secondary voltage drop of more than a given value.

The secondary system voltage drop will have a Gaussian (normal) distribution. Based on this, it is possible to estimate the number of customers in the population that have secondary voltage drops of a particular amount or more. Commonwealth's approach to making these estimations is described in Appendix 2. From this approach, for heavy load, approximately 10.6% of the customers

may have secondary voltage drop of more than 5 volts. Commonwealth used the same approach to determine there is a probability of 26.8% for transformers to have a secondary voltage drop greater than 4 volts during heavy load periods.

Figure 2-1, below, shows three voltage zones: greater than 121 volts, 120 to 121 volts and 119 to 120 volts. These are primary voltages on a 120 volt basis.

For the voltage zone of 119 to 120 volts, transformers at the 119.01 point of the zone with a secondary voltage of 4.02 volts will, allowing one volt for the downside bandwidth of the regulator, have a potential of causing service voltages to drop to below 114 volts. This same secondary voltage drop on a transformer with a primary voltage of 119.99 (or 119.03) would not have low voltage. To determine the potential number of impacted transformers, one must use the statistics found in Appendix 2 of this report. From Appendix 2, you will see that it is assumed there are 3% of the customers that have a secondary system voltage drop of 6 volts (5% on a 120 volt basis). Appendix 2 also shows that the number of customers expected to have a 5 volt or greater secondary system voltage drop is calculated to be 10.6%. Using the same methodology, the percentage of customers with a secondary system voltage drop of 4 or greater volts is 26.8%.

Figure 2-1 Example Voltage Zone

To determine the number of transformers that may have low voltage, it is necessary to know the voltage zone of interest: either the 119 to 120 or the 120 to 121 volt zone and the number of transformers in the zone of interest. For example, if there are 50 transformers in the 119 to 120 volt

zone, then the number of transformers that may have low voltage = $(50) \times (.03 + .106)/2 = 3.4$ transformers. For this study, the number of transformers was always rounded up. In this example, then, the number of transformers with potential low voltage would be 4.

To resolve the issues associated with these situations, Commonwealth suggests the following options:

- 1. Adjust distribution transformer taps
- 2. Replace distribution transformers
- 3. Replace service conductors

The costs for this work are included in the estimates.

To estimate the number of customers and transformers that may have secondary system voltage concerns in light load conditions, an additional step is taken. For this estimate, the result from above is multiplied by the ratio of each circuit's light load to heavy load. For this example, if the heavy load is 7500 kW and the light load is 3000 kW, then the ratio is 0.4 (3000/7500) multiplied by 3.4, or 1.4; again rounding up, the maximum expected number of transformers with secondary system voltage drops resulting in potential low voltage is 2. This approach recognizes that the distribution transformer and individual service loads would have a reduced probability of experiencing coincident voltage drops sufficient to cause a secondary system to have a low-voltage condition during a light load period.

Table 2-1, below, (from FeederAll results) shows the number of transformers on each circuit by stage that could, due to the primary voltage dropping below 120 volts, have low voltage at their service entrance. This number includes customers who may, at times, have secondary voltage drops in excess of 5% (6 volts) but who, due to the primary voltage being above 120 volts, are not currently experiencing voltages below 114 volts. These customers are included in the total number of customers whose secondary system (transformer and service) may require work to maintain the customer's service entrance voltage at 115 volts or greater.

<u>Note</u>: The numbers of transformers shown in the table are the maximum expected number if the voltage optimization would be implemented to that particular stage. This means the total number of transformers shown is not additive, stage to stage. In fact, it is common for the number to go down between Stage 1 and Stage 2.

Table 2-1 Estimated Number of Customers with Potential Low Voltage and Associated Transformers

Circuit	Controlling Case	Number of Trans- formers at or below 120 volts	Number of Trans- formers from 120 to 121 volts	Estimated total number of transformers that may have customers with low voltage at Service Entrance**
Bowman 5W150				
Stage 1	Heavy	184	99	42
Stage 2	Heavy	184	99	42
Stage 3	Heavy	35	143	17
Bowman 5W154				
Stage 1	Heavy	0	6	1
Stage 2	Light	0	350	8
Stage 3	Light	350	22	21
Dodd Road 4W22				
Stage 1	Heavy	229	78	49
Stage 2	Light	35	189	14
Stage 3	Light	189	147	33
Mill Creek 5W116				
Stage 1	Light	91	294	10
Stage 2	Light	0	319	6
Stage 3	Heavy	63	98	19
Mill Creek 5W127				
Stage 1	Light	32	300	8
Stage 2	Light	32	300	8
Stage 3	Light	321	0	18
Pomeroy 5W342				
Stage 1	Heavy	83	27	16
Stage 2	Light	0	398	8
Stage 3	Heavy	64	197	26
Clinton 5Y608				
Stage 1	Light	38	341	12
Stage 2	Light	0	161	5
Stage 3	Light	161	218	17
Clinton 5Y610				
Stage 1	Light	16	277	7
Stage 2	Light	0	95	2
Stage 3	Light	95	198	10

SECTION 2

Circuit	Controlling Case	Number of Trans- formers at or below 120 volts	Number of Trans- formers from 120 to 121 volts	Estimated total number of transformers that may have customers with low voltage at Service Entrance**
Orchard 5Y456				
Stage 1	Light	0	215	4
Stage 2	Light	0	215	4
Stage 3	Heavy	46	34	11
Orchard 5Y498				
Stage 1	Light	0	322	6
Stage 2	Light	0	322	6
Stage 3	Heavy	63	96	19
Wiley 5Y434				
Stage 1	Heavy	53	69	15
Stage 2	Heavy	53	69	15
Stage 3	Heavy	150	17	30
Nob Hill 5Y197				
Stage 1	Heavy	0	0	0
Stage 2	Heavy	0	0	0
Stage 3	Heavy	0	96	7
Nob Hill 5Y194				
Stage 1	Light	164	65	12
Stage 2	Light	164	65	12
Stage 3	Light	355	65	24
Nob Hill 5Y273				
Stage 1	Light	463	0	25
Stage 2	Light	0	420	9
Stage 3	Light	420	43	24
North Park 5Y356				
Stage 1	Heavy	158	73	35
Stage 2	Light	0	232	6
Stage 3	Light	232	244	23
River Road 5Y444				
Stage 1	Light	43	406	12
Stage 2	Light	43	406	12
Stage 3	Heavy	57	251	28
Sunnyside 5Y313				
Stage 1	Light	21	198	7
Stage 2	Light	21	198	7
Stage 3	Light	209	18	15

Circuit	Controlling Case	Number of Trans- formers at or below 120 volts Number of Trans- formers from 120 to 121 volts		Estimated total number of transformers that may have customers with low voltage at Service Entrance**
Sunnyside 5Y317				
Stage 1				0
Stage 2				0
Stage 3	Light	135	19	9
Grandview 5Y351				
Stage 1	Heavy	19	20	5
Stage 2	Light	155	174	12
Stage 3	Heavy	63	111	20
**The number to that particu	s shown is the r Ilar stage. This	naximum expected nur means the total shown	nber if the Voltage Opti is not additive stage to	mization would be implemented stage. In fact, it is common for

the number to go down between Stage 1 and Stage 2.

The output of the system study was then analyzed from an economic perspective using the financial factors in Section 1b.

More on Light Load / Heavy Load Scaling

For this work, Commonwealth considered how the probability of a particular distribution transformer and the services off of it may have a low-voltage situation during light load after voltage optimization is implemented. This question is important because, during lightly loaded conditions, the voltage profile of the distribution circuit is "flatter" (has less voltage drop from the substation to the end of the line). The result is the potential for more transformers to have a lower primary source voltage during light loads than during heavy loads. The greater number of transformers is considered in the calculations for light load situations. The question to consider is: During light load periods, what is the change to the heavy load probability of having a secondary system with a specific, or greater, voltage drop? In this case, the voltage drops of concern are 4 volts or greater and 5 volts or greater. These are secondary system voltage drops that could, if the primary distribution system voltage were low enough, cause one or more customers being served from a particular transformer to have a service voltage of 115 volts or less.

Consider the components of the secondary system voltage drop. The voltage drop in the distribution transformer + the voltage drop in a shared secondary + the voltage drop in the service equals the secondary system voltage drop. In an equation:

$$V_{d-sec sys} = V_{d trans} + V_{d sec} + V_{d svc}$$

where:

 $V_{d \text{ trans}} = (I_{\text{trans}})(Z_{\text{trans}}); V_{d \text{ sec}} = (I_{\text{sec}})(R_{\text{sec cond}}); and V_{d \text{ svc}} = (I_{\text{svc}})(R_{\text{svc cond}})$

In this example, the impedances do not change appreciably as the current changes, so the voltage drop change is proportional to the change in the current. The sum of the transformer loadings on the distribution system is equal to the system load; therefore, as the system load drops, on average, so does the loading on an average transformer. As the loading on the transformer is the sum of the individual loads, the voltage drop would be expected to diminish as the current from the loads diminishes. The change in the voltage drop is proportional to the change in the load current, and on average, the system load changes with the transformer loadings. So, the likelihood of excessive voltage drop in an average transformer's secondary system at a given load level can be estimated by multiplying the ratio of the load at a given level to the peak load by the probability of the voltage drop at the peak level. This indicates that, for an average distribution transformer system, the probability, at light load, of the secondary voltage drop being equal to or more than a given amount is equal to the probability of that voltage drop scenario at peak load times the ratio of light load to heavy load. In equation form:

The estimated probability of the voltage drops for four or more volts is 26.8%, and for five or more volts it is 10.6%, as calculated via the methodology in Appendix 2. If the heavy load is known, for any given light load the probability of these voltage drops occurring on a distribution transformer's secondary system can be also be estimated with the equation above. This is the approach used in this study.

SECTION 3 – EXISTING SYSTEM ASSESSMENT

Area Overview

The 19 PacifiCorp feeders evaluated in this study serve approximately 30,747 customers. The total system peak demand for the 19 feeders is 138 MW, delivering approximately 627,612 MWh annually. The average PacifiCorp customer on the 19 feeders has an annual consumption of approximately 20,412 kWh. There is 354,360 kVA of connected distribution transformer nameplate capacity. The average distribution transformer is loaded to approximately 39% of its nameplate when comparing the peak load for all circuits and the connected distribution transformer nameplate capacity. Table 3-1 summarizes the substations and circuits analyzed for this study.

Station	Circuits in Study	Total Customers	Annual Peak (MW)	Comments
Bowman	2	3,619	14.92	One of the circuits has three capacitors in- stalled and the other four. These circuits serve 68% residential load, 29% commercial load and small amounts of industrial and irri- gation.
Dodd Rd	1	1,181	8.7	No capacitors are on this circuit. This circuit serves 45% residential load, 31% commer- cial. 13% industrial and 11% irrigation.
Mill Creek	2	4,021	14.32	One of the circuits has two capacitors in- stalled and the other none. These circuits serve 76% residential load and 23% com- mercial.
Pomeroy	1	1,204	6.04	One capacitor is installed on this circuit. This circuit serves 70% residential and 29% commercial load with a very small amount of industrial load.
Clinton	2	3,438	17.45	One circuit has one capacitor installed and the other two. These circuits serve 62% residential and 38% commercial load.
Nob Hill	3	5,661	22.07	One circuit has two capacitors installed, one circuit has one capacitor installed and one circuit has no capacitors installed. These circuits serve 71% residential and 29% commercial load.
North Park	1	1,634	6.79	Two capacitors are installed on this circuit. This circuit serves 85% residential and 15% commercial load with a very small amount of irrigation.
Orchard	2	3,172	13.58	One of the circuits has one capacitor in-

Table 3-1 Overview of Substations and Circuits Analyzed

Station	Circuits in Study	Total Customers	Annual Peak (MW)	Comments
				stalled and the other none. These circuits serve 81% residential with the balance es- sentially commercial.
Wiley	1	1,332	6.99	No capacitors are on this circuit. This circuit serves 87% residential load, 11% commer-
River Road	1	2,201	10.6	One capacitor is installed on this circuit. This circuit serves 60% residential load and 39% commercial
Grandview	1	1,286	7.7	There is one capacitor installed on this cir- cuit. This circuit serves 62% residential load, 28% commercial, 5% irrigation and the bal-
Sunnyside	2	1,998	9.0	ance industrial. One capacitor is installed on each circuit. These circuits serve 54% residential load and 45% commercial load.

The Simplified Voltage Optimization (VO) Measurement and Verification (M&V) Protocol provides a basic approach to determine end-use energy savings when operating the electric distribution system more efficiently and within the lower band of the ANSI Standard voltage level. The protocol covers utility electric distribution systems serving mostly residential and light commercial load as defined by the utility. System loads do not need to be uniformly distributed throughout the distribution system.

Appendix 12 includes the summary information for each circuit. The appendix shows the following:

- 70% to 95% of the customers on each circuit have air conditioning.
- There is a large penetration of natural gas in the area, which results in non-electric heat providing the majority of consumer heating needs on most circuits.
- The heating and cooling zones for this area are classified as 1.
- The expected VO factor for end use savings ranges from 0.51 to 0.65.

The 19 primary distribution circuits use a variety of primary conductor types. The overhead primary conductors were found to range from #6Cu and #2ACSR up to 795 kcm AAC. Underground conductor sizes ranged from #2CU to 1000 kcm AL cable.

Metering

Substation: To meet the VO protocol verification requirements, it is necessary to have interval data for the MW, MVAR, phase amps and bus voltage for each circuit operated with voltage optimization. Most of the metering infrastructure is available to meet the protocol requirements. Metering is present in each substation for each power transformer. Potential transformers are available to be used for the feeder metering. The substation feeders are being protected with circuit breakers. The circuit breakers have current transformers that can be used for feeder metering. A control enclosure is available in which to mount a new meter. Additionally, PacifiCorp Tech Ops managers indicate most remote terminal units (RTU) and analog lines are available to get feeder ampere readings into RANGER.

Line Voltage Regulator Metering: Because a line voltage regulator is the start of a separate voltage control zone, it is required that the same information be monitored and recorded at or near a voltage regulator as at a substation. It is likely that metering will need to be added to existing regulators.

End of the Line (Voltage Zone) Metering: There is currently no end of the line voltage monitoring in place on these 19 PacifiCorp circuits. This will require only the equipment necessary to measure the end of the line voltage on one phase.

The necessary metering is outlined in Section 4, with details of the equipment and the expected installation costs for the required metering described in Appendix 13.

Voltage Control

PacifiCorp's standards for voltage control are consistent with ANSI/IEEE C84.1. For this study, it was assumed PacifiCorp's customers will most generally have a secondary system voltage drop of less than or equal to 5% (6 volts on 120 volt base). This provides for the primary voltage to drop to 120 volts (1 per unit, on a 120 volt base) and still ensure a service entrance voltage of 114 volts.

In general, the substations have power transformer load tap changers (LTC) used for voltage regulation. For all stations the As-is, or base case, voltage controls apply line drop compensation settings with a base voltage setting, for most circuits, of 121 volts with a 2 volt bandwidth (plus or minus 1 volt). This approach to voltage regulation is consistent with the Simplified VO protocol.

VO Minimum Threshold Assessment

The system was assessed to determine compliance with VO M&V Protocol minimum threshold limits for primary voltage, amperage unbalance, primary voltage drop and power factor. A number of the circuits required remedial action to come into the protocol criteria. At the end of Stage 1, a number of the circuits were not compliant with the protocol requirements to start voltage optimi-

zation. However, by Stage 2 all circuits were compliant with the protocol. It is not uncommon for a utility to need to make some adjustments to its system to bring some of its circuits into the acceptable range for the VO protocol. Refer to Appendix 8, Simplified VO M&V Protocols, Section 2.3, for the definition of minimum threshold limits.

SECTION 4 – SYSTEM IMPROVEMENTS

Primary System

System improvements (SI) are necessary to ensure compliance with minimum VO thresholds, improve distribution system efficiency, achieve lower end-user average voltages and reduce the risk of abnormal voltage. For the most part, the improvements considered were consistent with Pacifi-Corp's standard materials and approaches and are meant to be consistent with the work as described in PacifiCorp's Block Cost Estimating Spreadsheet.

The system improvements include:

- Phase changes to balance load and reduce neutral current.
- Installation of switched or fixed capacitors to improve power factor. From Commonwealth's examination of the current PacifiCorp application of capacitors, it is noted that switched distribution capacitors are used sparingly (only one was found on the19 Tier 1 feeders). Using only fixed banks, the existing capacitors on the distribution primary, for the most part, appear designed to seek to balance reactive needs between heavy and light load conditions. In redesigning the banks to include both fixed and switched capacitors, the fixed capacitor banks were used to satisfy light load reactive needs within 300 to 600 kVAR. Then, switched banks were used to serve the added reactive needs during heavy load, also generally within the range of 300 to 600 kVAR. This resulted in a tighter control of net feeder power factor, holding it close to unity power factor. A tighter power factor reduces feeder losses and it also results in flattening the voltage profile on the feeder, providing improved opportunity for voltage optimization. The results of installing these capacitors are shown in Appendix 14 and Appendix 15. The VAR profiles are noted in Appendix 14, and the power factor profiles are shown in Appendix 15. Both appendices show base case and system improvement modeling results.
- Reconductoring some sections of conductor where the existing wire is reaching the limit of its current carrying capacity.
- Installing line voltage regulators to reduce the voltage drop on the circuit.

With system improvements, the voltage profile along each feeder is flattened. With a smaller voltage drop along the feeder, the average feeder voltage can be reduced, which reduces system noload loss and provides end-use energy savings.

Metering Improvements

Substation: To meet the VO protocol verification requirements, it is necessary to have the MW, MVAR, phase amperage and bus voltage for each circuit operated with voltage optimization. Most of the metering infrastructure is available to meet the protocol requirements. Metering is present in each substation for each power transformer. Potential transformers are available to be used for

the feeder metering. The substation feeders are being protected with circuit breakers. The circuit breakers have current transformers that can be used for feeder metering. A control enclosure is available in which to mount a new meter. Additionally, PacifiCorp Tech Ops managers indicate most remote terminal units (RTU) and analog lines are available to get feeder ampere readings into RANGER.

In most cases, the installation of the meters in the substation should be relatively straightforward. The process for the substation installation will be to remove the existing demand meter and replace it with an SEL 751A relay, mounted on the panel in place of the existing meter. The overcurrent and reclosing relays will be maintained as backups. A test switch will be mounted adjacent to (below) the relay. The appropriate voltage quantities will be routed from the existing metering voltage transformer circuits, probably already in the control enclosure. The voltages will be wired to the test switch and relay. Current quantities will be wired to the test switch and relay from the feeder breaker current transformers. The relaying and metering settings will be installed in the relay, and a functional check of the relay will be performed. While it is likely the potential and current transformers will not be revenue accuracy metering, relay level accuracy is considered acceptable by the Simplified Voltage Optimization Protocol. PacifiCorp typically specifies an accuracy rating of 0.6% for relay and monitoring devices and 0.3% for revenue devices.

An accuracy class of 0.3 (or 0.6) indicates the device is certified by the manufacturer to be accurate to within 0.3% (or 0.6%) when operating at its rated value. When the current (for a current transformer) or voltage (for a potential transformer) drops significantly below the rated value, the error is allowed to increase without violating the accuracy standard. IEEE C57.13 allows that current transformers may have greater errors at lower currents. The standard permits twice the error at 10% current than is permitted at 100% current. So, a current transformer with an accuracy rating of 0.3% may have errors of 0.6% when the load is 10% of the rated amount. This means a current transformer in the 0.6 accuracy class may have permissible errors of 1.2% at the 10% load level. This greater error at such low current does not usually represent significant error in total registration of kilowatt hours.

For potential transformers, IEEE C57.13 requires the accuracy also be met at 90% voltage; this drop in voltage is greater than the voltage swing on PacifiCorp's distribution system. The 0.6% to 1.2% error range is not significant in determining the effects of voltage optimization and is why relay accuracy metering provides sufficient accuracy to determine if the implemented voltage optimization is acquiring the energy anticipated. It also provides the necessary data and information to appropriately control a distribution system being operated in a voltage optimization mode. For these reasons, Commonwealth does not recommend that PacifiCorp replace its relay accuracy current and potential transformers for voltage optimization.

Line Voltage Regulator Metering: Because a line voltage regulator is the start of a separate voltage control zone, it is required that the same information be monitored and recorded at or near a line voltage regulator as is monitored and recorded at a substation. It is likely that metering will be needed to be added to existing regulators. What is described here provides for this. It is possible to

order regulators with the metering necessary for voltage optimization, but to keep the costs consistent, this approach is what was included in the cost estimates for this work. The metering set for use at a 3-phase line regulator will be installed on a pole, as close to the load side of the regulators as practical. Three current transformers and three voltage transformers will be mounted on an instrument transformer cluster rack near the top of the pole. The voltage transformers will be connected to the line conductors through cutouts and hot clamps. The current transformers will be connected to the line across insulators added to the line, or at a deadend structure. The meter will be mounted to the pole near the base and connected to the voltage transformers using control cable. Since the meter will be exposed to public access, the control cable will be installed in conduit, up the pole, until the cable reaches 10 feet above the ground. After the wiring is complete, the meter will be installed in the meter base and the installation will be energized and verified.

End of the Line (Voltage Zone) Metering: There is currently no end of the line voltage monitoring in place on these 19 PacifiCorp circuits. Equipment will be required to measure only the voltages. The installation at the end of the line will be different than the substation installation. One voltage transformer will be provided and mounted on a convenient pole. The transformer will be mounted on a cluster rack at the top of the pole and connected to the line using a fused cutout and hot clamps. The meter will be mounted to the pole near the base and connected to the voltage transformers using control cable. Since the meter will be exposed to public access, the control cable will be installed in conduit, up the pole, until the cable reaches a minimum of 10 feet above the ground. After the wiring is complete, the meter will be installed in the meter base and the installation energized and verified. This installation will require a line crew to install the instrument transformers at the top of the pole and a meter worker to install and verify the meter.

The details of the equipment and the expected installation costs for the above metering are described in Appendix 13. Commonwealth has increased the estimated costs for the substation and end of the line metering by 20% to provide a contingency for this work effort.

The VO protocol would consider the metering described above sufficient for implementation of the voltage optimization plan included in this report. However, PacifiCorp is concerned that implementing to Stage 3 could result in operational issues, such as low voltage. In an effort to more closely monitor and manage the system in a Stage 3 level of voltage optimization, PacifiCorp has requested that Commonwealth include real-time communication and monitoring with the metering equipment. The metering for stages 1 and 2 should be compatible with the communication and metering infrastructure, so there will be no lost investment if implementation for Stage 3 lags stages 1 and 2.

Stage 3 Metering Communications: PacifiCorp is concerned that a Stage 3 implementation could result in customers having low voltage and asked that equipment and the associated costs for real-time monitoring and control be included in Stage 3 options. To do this, communications will be necessary between:

- Substations and the end of the line metering locations
- Substations and line voltage regulators
- Line voltage regulators and end of the line metering
- Substations to a central location for monitoring and data storage

The substation to the central monitoring and data storage location is communications gear, links, central equipment and software to support voltage optimization, IVVO, FDIR, AMI, DR and other Smart Grid services. It would be secure, real-time and always on communication. This is an accepted approach in the Voltage Optimization protocol. See Appendix 8, Simplified Voltage Optimization (VO) Measurement and Verification Protocol, for more information.

The communication between the stations and line metering equipment for both regulators and end of the line voltage metering would be wireless radio links.

The costs to provide this level of communication, which may be needed for full Smart Grid applications but may be more than is required for voltage optimization, will add approximately \$2.7M to the project, or about 40% of all costs, if every circuit in the study is developed to a Stage 3 level. If voltage optimization is implemented, Commonwealth believes that experience may demonstrate that there is less need for and fewer benefits to the communication than PacifiCorp expects. If this turns out to be true, it may mitigate the need for this level of metering and communication, at least until there are other uses for the system, such as Smart Grid applications, that could also share the cost burden.

Secondary System Considerations

For most circuits, it is possible that, as a result of voltage optimization, some number of distribution transformers, and hence customers, may have secondary voltage drops of sufficient magnitude to cause service entrance voltages to drop below 115 volts. Commonwealth's approach to addressing this is described in Section 2. Each of the circuits was analyzed based on this approach for each stage and for heavy and light load; the summary findings are included in Table 4-1, below.

Location of System Improvements

The installation of capacitors, regulators and reconductoring are shown on the circuits map in Appendix 6. Additionally, the locations for the primary system improvements for each circuit are noted in Appendix 9, Summary of Analysis.

Cost Estimating

The estimated costs by circuit and stage are shown in total in Table 4-1. In Table 4-2, the work is described in summary fashion with the respective cost for the work noted. Additional details

showing the cost estimates are in Appendix 10. The costs are based on PacifiCorp's Block Cost Estimating Sheet and PacifiCorp's loaded hourly labor rates. Both of these are shown in Appendix 4. Where needed, Commonwealth has supplemented the PacifiCorp cost information with its knowledge of industry equipment and installation costs.

In addition to the system improvements described and included in the costs, Commonwealth has included costs for the following project related tasks:

- Engineering and analysis for phase swapping
- Planning, engineering and analysis to prepare for and respond to potential low-voltage problems.

The actions of implementing Stage 2 and Stage 3 voltage optimization are generally dependent on the previous stage or stages. For example, a Stage 3 model relies on the phase balancing completed in the Stage 1 model and the capacitors installed in the Stage 2 model. This approached allowed Commonwealth to add the estimated costs from Stage 1 to Stage 2 and the Stage 1 + Stage 2 total to the Stage 3 cost estimate. Following this approach did, at times, result in an anomaly when working with the solutions associated with addressing the potential low-voltage problems. It was possible that, after the system improvements for Stage 2 were completed, there would be fewer transformers potentially at risk of low voltage than would be at risk in the Stage 1 solution. Since the Stage 1 cost estimate included more transformers at risk than were at risk in the Stage 2 configuration, this required giving Stage 2 a cost credit for this component of the estimate.

The Financial Model assumes the increased operating and maintenance (0&M) cost for the voltage optimization effort will be 2% of the installed (capital) cost for each year of the life of the VO effort. For the BCR optimal solution with installed costs of approximately \$520k, PacifiCorp should expect to have related 0&M costs of \$10,400 each year for the 20-year life of these VO projects. Assuming the 2% per year, the LCLC optimal solution with installed costs of approximately \$1.25M, the 0&M funding would be \$25,000/year. These costs are included in the economic modeling for both the LCLC and BCR solutions. These funding levels seem appropriate, given the differences between the two solutions.

This amount of funding seems appropriate to support the work load for this level of VO programming. The work expected includes:

- Staff time to check and record voltage levels, either in field or via SCADA or similar system data transmission
- Incremental engineering time to review circuit parameters and make adjustments such as:
 - Phase balancing
 - Voltage control settings due to system modifications
 - Address post implementation questions regarding service voltages
- Engineering review to check and document system savings

• Incremental crew resource time to support engineering with field work associated with the above review of circuit parameters and related adjustments

Additional funding is included in the cost estimate for the development of a new standard for the selection of service conductors and distribution transformers on circuits implementing voltage optimization with end of the line primary voltages set to 119 volts. This is necessary if implementation includes any of the circuits to the Stage 3 level. The funding for the standard is included in the Optimal LCLC estimate for the effort to remedy potential low voltages.

Service Area	Substation	Circuit	Stage1	Stage 1 and Stage 2	Stage 1, Stage 2, and Stage 3
Walla Walla	Bowman	5W150	\$180,378	\$329,870	\$341,514
Walla Walla	Bowman	5W154	\$29,526	\$102,929	\$272,600
Walla Walla	Dodd Road	4W22	\$219,622	\$288,415	\$583,960
Walla Walla	Mill Creek	5W116	\$58,178	\$150,565	\$318,157
Walla Walla	Mill Creek	5W127	\$83,645	\$106,799	\$256,139
Walla Walla	Pomeroy	5W342	\$107,846	\$317,873	\$622,153
Yakima	Clinton	5Y608	\$73,614	\$123,639	\$281,975
Yakima	Clinton	5Y610	\$53,438	\$118,025	\$260,606
Yakima	Orchard	5Y456	\$49,098	\$124,802	\$267,123
Yakima	Orchard	5Y498	\$44,502	\$65,499	\$230,336
Yakima	Wiley	5Y434	\$100,248	\$123,402	\$402,516
Yakima	Nob Hill	5Y197	\$23,910	\$47,064	\$154,291
Yakima	Nob Hill	5Y194	\$95,448	\$128,436	\$297,023
Yakima	Nob Hill	5Y273	\$128,058	\$107,026	\$241,604
Yakima	North Park	5Y356	\$166,286	\$231,435	\$522,300
Yakima	River Road	5Y444	\$85,444	\$264,201	\$552,570
Sunnyside	Sunnyside	5Y313	\$60,508	\$98,309	\$240,890
Sunnyside	Sunnyside	5Y317	\$26,690	\$49,844	\$203,759
Sunnyside	Grandview	5Y351	\$54,252	\$221,349	\$469,211
		Total	\$1,640,691	\$2,999,482	\$6,518,727

Table 4-1 System Improvement Cost Summary

Table 4-2 System Improvement Costs by Circuit and Stage

Circuit	Action		Cost	То	tal Stage
					Cost
Bowman 5	N150				
Stage 1	Metering	\$	17,670		
	Transformer change out, tap changes and service change outs	\$	162,708		
				\$	180,378
Stage 2	900 kVAR switched capacitor addition	\$	20,997		
-	Rotate phases	\$	4,820		
	Regulator addition	\$	72,594		
	Metering	\$	51.080		
		Ŧ		\$	149 492
Stage 3	Install feeder metering package	\$	108 833	Ψ	110,102
Oluge 0	Credit for fewer transformer change out tan changes and service	¢ ¢	(07 188)		
	change outs	Ψ	(97,100)		
				¢	11 645
Bowmon 5	N154			φ	11,045
Store 1	Remove existing conscitors	¢	F 200		
Slage	Metaria a	ው ው	5,200		
	Metering	Þ	17,670		
	I ransformer change out, tap changes and service change outs	\$	6,656	•	00 500
•		•		\$	29,526
Stage 2	I wo 900 KVAR switched capacitor addition	\$	41,995		
	Transformer change out, tap changes and service change outs	\$	31,408		
				\$	73,403
Stage 3	Install metering package	\$	115,748		
	Transformer change out, tap changes and service change outs	\$	53,924		
				\$	169,672
Dodd Road	4W22				
Stage 1	900 kVAR fixed capacitor addition	\$	5,912		
	Metering	\$	17,670		
	Transformer change out, tap changes and service change outs	\$	196,040		
				\$	219,622
Stage 2	1,800 kVAR switched capacitor addition	\$	18,667		
Ű	Two 300 kVAR switched capacitor additions	\$	24,802		
	447 feet reconductoring	\$	59,133		
	Regulator addition	ŝ	74 187		
	Metering	Ψ ¢	25 540		
	Credit for fewer transformer change out, tap changes and convice	Ψ Φ	(133 536)		
	change outs	Φ	(155,550)		
				ዮ	60 700
Store 2	Install matering peakers	ሱ	001 000	Φ	00,193
Stage 3	Install metering package	ф Ф	221,029		
	ransionner change out, tap changes and service change outs	\$	74,516	•	005 545
				\$	295,545

Circuit	Action		Cost	Tot	al Stage Cost
Mill Creek	5W116				
Stage 1	Metering	\$	17,670		
U	Transformer change out, tap changes and service change outs	\$	40,508		
				\$	58,178
Stage 2	900 kVAR switched capacitor addition	\$	20,997		
	Regulator addition	\$	63,842		
	Metering	\$	25,540		
	change outs	Ф	(17,992)		
				\$	92,387
Stage 3	Install metering package	\$	115,748		
	Transformer change out, tap changes and service change outs	\$	51,844		
				\$	167,592
Mill Creek	5W127				
Stage 1	Phasing change	\$	8,400		
	Phasing swaps	\$	14,460		
	Metering	\$	17,670		
	I ransformer change out, tap changes and service change outs	\$	35,828	•	
	600 kVAR fixed capacitor addition	\$	7,287	\$	83,645
Stage 2	600 kVAR switched capacitor addition	\$	23,154		
				\$	23,154
Stage 3	Install metering package	\$	108,833		
	Transformer change out, tap changes and service change outs	\$	40,508		
				\$	149,341
Pomeroy 5	W342	¢	4 000		
Stage 1	Phasing change	ф Ф	4,200		
	Phasing swaps Motoring	¢ ¢	9,640		
	Transformer change out, ten changes and convice change outs	¢ D	76 226		
	Transformer change out, tap changes and service change outs	φ	10,330	¢	107 846
Stage 2	300 kVAR switched capacitor addition	\$	17 333	Ψ	107,040
Olage 2	355 feet reconductoring	Ψ ¢	39 349		
	71 feet reconductoring	\$	10,930		
	Regulator additions	ŝ	127 683		
	Metering	\$	51.080		
	Credit for fewer transformer change out, tap changes and ser-	\$	(36.348)		
	vice change outs	Ŷ	(00,010)		
				\$	210,027
Stage 3	Install metering package	\$	227,944		
	Transformer change out, tap changes and service change outs	\$	76,336	~	
				\$	304,280

Circuit	Action Cost				al Stage Cost
Clinton 5Y608					
Stage 1	Phasing change	\$	2,280		
	Metering	\$	17,670		
I	Transformer change out, tap changes and service change outs	\$	53,664	•	70.044
040		¢	00.007	\$	73,614
Stage 2	900 KVAR switched capacitor addition	ф Ф	20,997		
	564 feet reconductoring	ф Ф	02,515		
I	and service change outs	Φ	(33,400 <i>)</i>	•	
-		•		\$	50,025
Stage 3	Install feeder metering package	\$	108,833	•	
I	Transformer change out, tap changes and service change outs	\$	49,504	\$	158,337
Clinton 5Y610					
Stage 1	Phasing change	\$	2.280		
	Metering	\$	17.670		
I	Transformer change out, tap changes and service	\$	33,488		
	change outs	*	;	\$	53.438
Stage 2	600 kVAR switched capacitor addition	\$	23.154	Ŧ	,
	576 feet reconductoring	\$	63.845		
	Credit for fewer transformer change out, tap changes and service change outs	\$	(22,412)		
I	-			\$	64,587
Stage 3	Install feeder metering package	\$	108,833		·
	Transformer change out, tap changes and service change outs	\$	33,748		
				\$	142,581
Orchard 5Y456					
Stage 1	Phasing change	\$	4,456		
I	Phasing swap	\$	4,820		
I	Metering	\$	17,670		
l	Transformer change out, tap changes and service change outs	\$	22,152	¢	40,000
Stage 2	600 W/AP switched conspirer addition	¢	22 154	Φ	49,098
Stage Z	4.002 fact recorductoring	ф Ф	23,134		
I	1,023 feet reconductoring	Φ	52,550	¢	75 704
Stage 3	Install matering nackage	¢	108 833	ψ	10,104
Slaye 5	Transformer change out tan changes and service	Ψ Φ	22 /88		
I	change outs	Ψ	55,400	¢	1 40 004
				Э	142,321

SECTION 4

Circuit	Action		Cost	Tota	al Stage Cost
Chroan			0031	1010	
Orchard 5Y498					
Stage 1	Fransformer change out, tap changes and service change outs	\$	26.832		
Stage I	Metering	\$	17,670		
			,	\$	44,502
Stage 2	900 kVAR switched capacitor addition	\$	20,997		
				\$	20,997
Stage 3 I	nstall metering package	\$	108,833		
1	Fransformer change out, tap changes and service change outs	\$	56,004		
				\$	164,837
Wiley 5Y434	200 LV/AD fixed connector addition	¢	7 007		
Stage	500 KVAR fixed capacitor addition	Э Ф	1,287		
C. N	BUD KVAR fixed capacitor addition	Э Ф	10,292		
ľ		Þ	17,670		
	ransformer change out, tap changes and service change outs	\$	65,000	•	400.040
01		۴	00 454	\$	100,248
Stage 2 6	buu kvAR switched capacitor addition	\$	23,154	¢	00 454
0		۴	044444	\$	23,154
Stage 3 I	nstall metering package	\$	214,114		
	ransformer change out, tap changes and service change outs	\$	65,000	۴	070 444
				\$	279,114
	Francformer change out tan changes and cervice change outs	¢	6 240		
Slage	Motoring	ф Ф	17 670		
I	wetening	ψ	17,070	¢	23 010
Stage 2	200 kV/AR switched capacitor addition	¢	23 154	Ψ	23,310
Oldye z d	Soo KVAR Switched Capacitor addition	Ψ	25,154	\$	23 154
Stane 3	nstall metering package	\$	73 730	Ψ	23,134
	Fransformer change out tap changes and service change outs	Ψ ¢	33 488		
l l	Tansionner onange oat, tap onanges and service onange oats	Ψ	00,400	\$	107 227
Nob Hill 5Y194				Ψ	101,221
Stage 1	Meterina	\$	17.670		
l	nstall 3 fixed capacitor banks (300, 600 & 1200 kVAR)	Š	26,194		
-	Fransformer change out, tap changes and service change outs	Ś	51,584		
		Ŧ		\$	95.448
Stage 2	nstall 3 switched Capacitor banks (300, 600 & 1200 kVAR)	\$	70,706	Ŧ	
(((((((((((((((((((Credit for fixed capacitors from Stage 1	ŝ	(26,194)		
3	313 feet reconductoring	Ś	24.790		
	19 feet reconductoring	ŝ	13,190		
(Credit for fewer transformer change out, tap changes and service	Ŝ	(49,504)		
(change outs	¥	(,		
	U C			\$	32,988
Stage 3 I	nstall metering package	\$	73.739		- ,
<u> </u>	Fransformer change out, tap changes and service change outs	\$	94,848		
			,	\$	168,587

Circuit	Action		Cost		Total Stage Cost	
Nob Hill 5Y273						
Stage 1	Phasing swaps	\$	2,280			
	600 kVAR capacitor removal	\$	2,600			
	Metering	\$	17,670			
	Transformer change out, tap changes and service change outs	\$	105,508			
				\$	128,058	
Stage 2	600 kVAR switched capacitor addition	\$	46,308			
	Credit for fewer transformer change out, tap changes and service change outs	\$	(67,340)			
				\$	(21,032)	
Stage 3	Install metering package	\$	73,739			
	Transformer change out, tap changes and service change outs	\$	60,840			
				\$	134,579	
North Park 5Y35	6					
Stage 1	Remove 900 kVAR capacitor	\$	2,600			
	Metering	\$	17,670			
	Transformer change out, tap changes and service change outs	\$	146,016	•		
0 . 1		•		\$	166,286	
Stage 2	900 kVAR switched capacitor addition	\$	20,997			
	607 feet reconductoring	\$	67,282			
	Voltage regulator addition	\$	72,594			
	Metering	\$	25,540			
	Credit for fewer transformer change out, tap changes and service change outs	\$	(121,264)			
				\$	65,149	
Stage 3	Install metering package	\$	221,029			
	Transformer change out, tap changes and service change outs	\$	69,836			
				\$	290,865	
River Road 5Y44		•	0.040			
Stage 1	Swap phasing	\$	6,840			
	Reduce capacitor size 1200 kVAR to 600 kVAR	\$	9,350			
		\$	17,670			
	I ransformer change out, tap changes and service change outs	\$	51,584	•	05 444	
0, 0		•	40.000	\$	85,444	
Stage 2	Addition of two 600 kVAR switched capacitors	\$	46,308			
	668 feet of reconductoring	\$	34,314			
	Voltage regulator addition	\$	72,594			
	Metering	\$	25,540	۴	470 757	
014 444 0		۴	004 000	\$	178,757	
Stage 3	Install metering package	\$ ¢	221,029			
	ransformer change out, tap changes and service change outs	Ф	67,340	\$	288,369	

SECTION 4

Circuit	Action		Cost	Tot	al Stage Cost
Circuit	Action		0051	100	a Stage Cost
Suppyside 5V313					
Stane 1	Reduce capacitors from 1200 KVAR to 900 kVAR	¢	9 350		
Otage 1	Metering	Ψ ¢	17 670		
	Transformer change out tap changes and service change outs	Ψ S	33 488		
	Transionner onlange out, up onlanges and service onlange outs	Ψ	00,400	\$	60 508
Stage 2	600 kV/AR switched capacitor addition	\$	23 154	Ψ	00,000
Oldgo 2	300 kVAR switched capacitor addition	\$	14 647		
		Ψ	14,047	\$	37 801
Stage 3	Install metering package	\$	108 833	Ψ	07,001
Oldge o	Transformer change out tap changes and service change outs	\$	33 748		
	Transionner onlange out, up onlanges and service onlange outs	Ψ	00,740	\$	142 581
Sunnyside 5Y317				Ψ	112,001
Stage 1	Phase swapping	\$	4 200		
Oldgo I	Three phase swap	\$	4 820		
	Metering	\$	17 670		
	mooning	Ψ	11,010	\$	26 690
Stage 2	600 kVAR switched capacitor installation	\$	23 154	Ψ	20,000
Oldgo 2		Ψ	20,101	\$	23 154
Stage 3	Install metering package	\$	115 748	Ψ	20,101
etage e	Transformer change out tap changes and service change outs	\$	38 168		
	Transienner enange eas, ap enangee and eervice enange ease	Ψ	00,100	\$	153 916
Grandview 5Y351				Ψ	100,010
Stage 1	Phase swapping	\$	4.820		
	Change 600 kVAR capacitor to 300 kVAR	\$	9.350		
	Meterina	\$	17.670		
	Transformer change out, tap changes and service change outs	\$	22.412		
		Ţ	,	\$	54,252
Stage 2	Add two 600 kVAR switched capacitors	\$	46,308	•	,
5	Voltage Regulator addition	\$	63,842		
	Metering	\$	25,540		
	Transformer change out, tap changes and service change outs	\$	31,408		
		,	,	\$	167,097
Stage 3	Install metering package	\$	214,114		, -
3 **	Transformer change out, tap changes and service change outs	\$	33,748		
			·	\$	247,862
				•	
	lotal			\$ 6	5,518,727

SECTION 5 – REFERENCES

- 1. ANSI Electrical Power Systems and Equipment Voltage Ratings (60Hz), ANSI Standard C84.1-1995, August 1995.
- 2. T. Gönen, *Electric Power Distribution System Engineering*, McGraw-Hill, New York, 1986.
- 3. D.G. Newnan, T.G. Eschenbach, J.P. Lavelle, *Engineering Economic Analysis, Ninth Edition*, Oxford University Press, Inc., New York, 2004.
- 4. *IEEE Distribution System Practices for Industrial Plants*, IEEE Standard 141-1993, Red Book, August 1993.
- 5. IEEE Tutorial Course "Engineering Economic Analysis: Overview and Current Applications 1991," *IEEE Trans. 91 EHO 345-9-PWR*, IEEE Service Center 445 Hoes Lane, P.O.Box1331, Piscataway, NJ 08855-1331.
- 6. W.H. Kersting, *Distribution System Modeling and Analysis*, CRC Press LLC, New York, 2002.
- 7. S. Mandal, A. Pahwa, "Optimal Selection of Conductors for Distribution Feeders," *IEEE Trans. Power Systems*, vol. 17, issue 1, February 2002, pp 192-197.
- 8. *National Electrical Code 2005*, ANSI/NFPA 70-2005 Standard, National Fire Protection Association, Quiney, MA.
- 9. NWPCC ProCost model used for development of the *wholesale power price forecast* for the 6th Power Plan "DEI ProCost RTF Template 257e-V2_with measure table_USEME_VO_20100706-cg-2" and companion 6th Power Plan Mid C Load Shapes "MC_AND_LOADSHAPE_6P_USEME."
- 10. Simplified Voltage Optimization (VO) Measurement and Verification Protocol, May 4, 2010. <u>http://www.nwcouncil.org/energy/rtf/measures/protocols/ut/VoltageOptimization</u> Protocol v1.pdf
- 11. T.A. Short, *Electric Power Distribution Handbook*, CRC Press, New York, 1997.
- 12. BPA Energy Efficiency Implementation Manual, October 2010.
- 13. www.bpa.gov/energy/n/pdf/FINAL_October_2010_Implementation_Manua_REV_2l.pdf
- 14. R.H. Fletcher, and K. Strunz, "Optimal Distribution System Horizon Planning Part I Formation, and Part II Application," IEEE Trans. Power Systems Journal, Vol. 5, May 2007.
- 15. Department of Energy, Distribution Transformers Rulemaking, Liquid-immersed Engineering Analysis Results; September 2007.
- 16. <u>http://www1.eere.energy.gov/buildings/appliance_standards/commercial/distribution_tran</u> <u>sformers_finalrule.html</u>

Appendix 1: Washington State Rules and Regulations and Utility Distribution System Efficiency Measures Washington State Rules and Regulations And Utility Distribution System Efficiency Measures

> Prepared by R. H. Fletcher, PhD, P.E. Utility Planning Solutions, PLLC January 20, 2011

Washington State voters passed Initiative 937 on Nov. 7, 2006. This initiative imposes targets for energy conservation and use of eligible renewable resources on the state's electric utilities that serve more than 25,000 customers. Specifically, these utilities, both public and investor owned, must secure 15 percent of their power supply from renewable resources by 2020. Initiative 937, also called the Washington Energy Independence Act (WEIA) was codified at RCW Title 19 Chapter 285.

Beginning Jan. 1, 2010, the WEIA requires utilities with 25,000 customers or more to acquire all conservation that is cost-effective, reliable and feasible as stated in the Energy Financing Voter Approval Act, RCW 80.52.030. Each utility is required to set an annual target which may be based on their integrated resource plan or a proportion of their regional share of achievable cost-effective conservation potential. Conservation can include increases in the efficiency of energy use, production, or distribution. Each utility must pursue all available cost-effective, reliable, and feasible conservation consistent with methodologies used by the Pacific Northwest Electric Power and Conservation Planning Council in its most recently published regional power plan.

Investor Owned Electric companies in Washington State are regulated in accordance with Washington Administrative Code, WAC, Title 480 Chapter 109 regarding acquisition of minimum quantities of conservation and renewable energy and describes implementation requirements to comply with RCW 19.285. There is no mention of "distribution system efficiency" conservation measures, however, RCW 480.109.007 does provide definitions for the "Conservation Council" which is defined as the Northwest Electric Power and Conservation Council which implies Council approved measures are acceptable. The WAC Title 194 Chapter 37 was created for Public Owned electric utilities and describes implementation requirements for energy independence and can be used as a guide for Investor Owned Electric companies as well.

WAC 194.37.090 provides additional documentation of efficiency from distribution system loss reduction improvements, including peak demand management and voltage regulation not specific address in RCW 480.109. For example, WAC 194.37.060-090 defines acceptable conservation measures or programs if they meet NWPCC (Council) measures or programs in its power plan which is based on methodologies and protocols established by the Regional Technical Forum. In Section 194.37.090 (2)(a)(i...iv) documentation requirements for distribution system improvements are as follows

(i) For distribution system upgrades, the utility will prepare a distribution flow analysis to compare the annual energy losses of the system being replaced or upgraded to the final system as installed.

(ii) For conservation voltage regulation, the utility will prepare a distribution flow analysis to compare the annual energy losses of the system before and after the implementation of a voltage regulation program. The difference in annual kilowatt-hour requirement at the utility point(s) of

receipt (for distribution utilities) or net energy for load for generating utilities may be counted as conservation savings.

(iii) For peak demand management, the utility will prepare a distribution flow analysis to compare the annual energy losses of the system before and after implementation of the peak demand management program. The change in net energy losses may be counted as conservation savings. Any net reduction in energy sales (economic curtailment) shall not be included in conservation savings.

(iv) The distribution flow analysis conducted for (b)(i), (ii), or (iii) of this subsection shall be prepared under the direction of, and carry the stamp of a registered professional electrical engineer licensed by the Washington department of licensing.

The Pacific Northwest Electric Power Planning and Conservation Act, P.L. 96-501, 16 U.S.C. 839 et seq. in Section 4 authorizes the Pacific Northwest Electric Power and Conservation Planning Council to "... establish such other voluntary advisory committees as it determines are necessary or appropriate to assist it in carrying out its functions and responsibilities". The Regional Technical Forum committee (RTF) was created in 1999 in this regard.

The four goals adopted by the Council for the Regional Technical Forum committee (RTF) corresponding to its original charge from Congress and the Comprehensive Review are to:

- 1. Develop standardized protocols for verification and evaluation of energy savings and the performance of renewable resources.
- 2. Track regional progress toward the achievement of the region's conservation and renewable resource goals.
- 3. Provide feedback and suggestions for improving the effectiveness of the conservation and renewable resource development programs and activities in the region.
- 4. Conduct periodic reviews of the region's progress toward meeting its conservation and renewable resource goals at least every 5 years, acknowledging changes in the market for energy services and the potential availability of cost-effective conservation opportunities.

The distribution system conservation savings assessment used in the NWPCC 6^{th} Power Plan was based on the estimates from measured data on 33 utility feeders, and analytical methods developed in a NEEA Distribution Efficiency Initiative study initiated in 2001 and completed in December 2007. The study was prepared by R.W. Beck, Inc. in association with five subcontractors and guided by the NEEA Technical Advisory Committee made up of NW electric utilities. The Council's 6^{th} Power Plan estimate potential of distribution efficiency savings is 400 MWa by 2029 (7% of the total regional sector savings) as reported in Table E-1 "Estimated Cost-Effective Conservation Potential in Average Megawatts 2010-2014 and 2010 – 2029" of NWPCC 6^{th} Power Plan Appendix E.

Costs and savings for four major distribution system measures in the 6th Power Plan were identified and applied to a descriptive data set of the region's distribution system. The measures are: Reduced System Voltage (LDC, Light System Improvements (capacitors and load balancing), Major System Improvements (reconductor, rephrasing, and regulators), and Enhanced Voltage Control (end-of-line feedback). The dataset contains system loads by customer class and load patterns, substation counts, feeder counts, customer counts, and climate zones for 137 regional utilities used to generate the units estimates.

To simplify the determination of distribution efficiency savings from voltage reduction and to encourage acceptance and adoption of distribution system efficiency, BPA worked with a newly form Energy Smart Utility Efficiency Technical Workgroup in 2009 and 2010 to develop a simplified measurement and verification protocol. The NWPCC and RTF adopted this new voltage reduction and distribution system efficiency methodology titled "Simplified Voltage Optimization (VO) Measurement and Verification Protocol" approved on May 4th, 2010. <u>http://www.nwcouncil.org/energy/rtf/measures/protocols/ut/VoltageOptimization_Protocol_v1.p</u> <u>df</u>

The Simplified Voltage Optimization (VO) Measurement and Verification (M&V) Protocol provides a basic approach to determine end-use energy savings when operating the electric distribution system more efficiently and within the lower band of the ANSI Standard voltage level and is consistent with WAC 194.37.090 reporting requirements. The protocol covers utility electric distribution systems serving mostly residential and light commercial load as defined by the utility. System loads do not need to be uniformly distributed throughout the distribution system.

The VO Protocol identifies the procedure to determine the average annual voltage for a distribution primary system with source voltage regulation. Minimum system stability thresholds (e.g., max voltage drops, min power factors, max phase unbalance, etc.), system data requirements, and measurement and verification formulations are included as part of this Protocol. To meet the minimum thresholds, utilities generally achieve distribution efficiency and the ability to lower the customer's average voltage. The Protocol defines a VO factor that is used to estimate the end-use energy savings from reduced voltage and is based on the NEEA DEI Study. BPA has successfully applied this protocol to many NW electric utilities.

The CVR factor was used for the past 30 years to define the relationship between either annual demand or energy at the source of a distribution feeder and the average change in voltage at the source. The CVR factor includes the savings from system no load loss savings and end use savings and was derived via length field tests. Based on the NEEA DEI Study work and the "Simplified Voltage Optimization (VO) Measurement and Verification Protocol" approved on May 4th, 2010 by the RTF, a new industry voltage and energy savings factor has been developed to better represent the change in energy use at the end-use customer. The end-use VO Factor is a ratio of expected % change in energy delivered for each 1% change in average voltage supplied at the end-use service entrance.

The end-use VO Factor is given as a p.u. ratio for a given system and is determined from VO Factor Tables in Appendix A of the Protocol. The VO factor does not include savings from line or no-load loss savings. The no-load loss savings can be easily determined knowing the distribution transformer total connected kVA. The line loss savings can be determined using accurate distribution load flow models to simulate line losses before and after system improvements. The CVR factor has been replaced with the VO factor.

To determine the VO factor, you must enter the table identified for the Heating and cooling climate zone associated for each substation and select the appropriate VO Factor using the percent customers with Non-Electric Heating (and Heat Pumps) and percent of customers with Air-conditioning. The protocol further discusses the formulation to calculate the average voltage change on the feeder and is used with the VO factor to yield the total change in energy at the

end-use customer. The line loss savings and no-load (core) distribution transformer loss savings are calculated separately from the VO savings.

Background Information Regarding the NWPCC 6th Power Plan

The Council uses its portfolio model to determine how much conservation is cost-effective to develop. The Pacific Northwest Electric Power Planning and Conservation Act defines regional cost-effectiveness as follows: "Cost-effective", when applied to any measure or resource referred to in this chapter, means that such measure or resource must be forecast to be reliable and available within the time it is needed, and to meet or reduce the electric power demand, as determined by the Council or the Administrator, as appropriate, of the consumers of the customers at an estimated incremental system cost no greater than that of the least-cost similarly reliable and available alternative measure or resource, or any combination thereof.

Under the Act the term "system cost" means an estimate of all direct costs of a measure or resource over its effective life, including, if applicable, the cost of distribution and transmission to the consumer and such quantifiable environmental costs and benefits as are directly attributable to such measure or resource. The Council has interpreted the Act's provisions to mean that in order for a conservation measure to be cost-effective the discounted present value of all of the measure's benefits should be compared to the present value of all of its costs. The NWPCC 6th Power Plan describes the conservation supply curves development in Appendix E of the 6th Power Plan. The NW annual distribution efficiency savings load factor is 0.558. http://www.nwcouncil.org/energy/powerplan/6/final/SixthPowerPlan_Appendices.pdf

The estimated savings potential for distribution system efficiency in the northwest is given in Table E-1 "Estimated Cost-Effective Conservation Potential in Average Megawatts 2010-2014 and 2010 - 2029" of NWPCC 6th Power Plan Appendix E as follows:

Distribution Sector	MWa by	MWa by	
	2014	2029	
Reduced system voltage	47	160	Reduce system voltage w/LDC voltage control method
Light system improvements	8	80	VAR management, phase load balancing, and feeder load balancing
Major system improvements	9	90	Voltage regulators on 1 of 4 substations
Voltage control	4	40	End of Line (EOL) voltage control method
Unique system improvements	5	30	Seattle City Light system implements EOL w/ major system improvements
All Distribution Efficiency Measures	72	400	
Total for All Sectors	1308	5740	
	5.5%	7.0%	

Appendix 2: Secondary System Voltage Drop Considerations

Secondary System Voltage Drop Considerations

R.H. Fletcher, PhD, P.E.

Utility Planning Solutions, PLLC

April 22, 2011 (v8)

Generally, most secondary systems are radial-designed except for specific service areas (downtown areas, business districts, and some military and hospital installations) where reliability considerations are far more important than cost and economic considerations. The secondary radial systems include distribution transformers, secondary main conductors, and service conductors. The secondary facilities can be overhead or underground. The secondary design (size of transformer, secondary conductor, and services) objective is to minimize costs while still meeting the Utility's standard guidelines.

The goal for each secondary design is to provide satisfactory performance for voltage-drop (i.e., less than 5%) at minimum costs. There is a variety of system designs for one distribution transformer; some serve only one customer having only one span of conductor, while others serve six to 10 customers with multiple secondary connections. In the practice some voltage-drops maximums exceed design objectives (i.e. greater than 5%). The following provides a methodology describing how to estimate the number of potential secondary connections that many have voltage drops greater than any design guideline (i.e., greater than 4%). This information will help determine the impact of lowering the distribution voltage.

The ANSI C84.1 defines the maximum and minimum voltage favorable zone for service entrance voltage. In addition, the voltage level for a tolerable zone is provided. The favorable zone includes the majority of the existing operating voltages, and the voltages within this zone (i.e. Range A) provide satisfactory operation of the customer's equipment. PacifiCorp, in Section 3.3.1.1 Service Voltage of its Planning Standards for Voltage, states: "PacifiCorp's supply systems are to be designed and operated so that most service voltage levels are within the limits specified for Range A. The occurrence of service voltage outside of these limits is to be infrequent." This is consistent with how most electric utilities plan and operate their electric systems.

Customer Coincident Loading - Considerations

The utility voltage guidelines are applied to a large range of customer connection possibilities. As more customers are served by one transformer, the individual customer maximum loading coincident with the system load becomes less. Utilities periodically evaluate customer coincident loading patterns by conducting sample Load Surveys. Customer loading patterns can vary greatly between utilities depending on the climate zone, saturation electric heat and air-conditioning, and number of customers connected to a secondary system. For an example, see the load data example below.

		30 min annual maximum diversified demands kVA per customer						
No of customers being served from one transformer	CF	Class 1	Class 2	Class 3				
1	1.0000	18.0	10	2.5				
2	0.7500	13.5	7.5	1.9				
4	0.6250	11.3	6.3	1.6				
12	0.5416	9.7	5.4	1.4				

Reference Turan Gönen, "Electric Power Distribution System Engineering" Dec 2007

As the number of customers served by a transformer or secondary conductor increases, the effective load impact on capacity requirement is decreased. The duration of sustained peak can also vary among utilities. The coincident factor (CF) is determined at each level of the distribution system and is a function of the total system coincidence and the number of similar loads. The average maximum diversified demand (AMDD) for any level is determined by multiplying the average maximum demand (AMD) for customers or components by *CF*. The coincident factor formulation used to determine the impact of customer or component loads on the next higher level in the distribution system where *N* is the number of parallel components given below. A typical formulation assumes that the total system coincidence is $CF_{TOTAL} = 0.50$ "IEEE Standard 141(TM)-1993, *IEEE Recommended Practice for Electric Power Distribution for Industrial Plants*, Red Book."

$$CF_N = CF_{TOTAL} \cdot \left[1 + \frac{1}{N}\right]$$
 Eq 1

The typical distribution secondary system design voltage drop across the secondary system is highest during customer peak loading periods. If distribution system modeling includes secondary modeling, the voltage drop is the absolute difference between the voltage magnitude on the high side of the distribution transformer minus the voltage at the lowest voltage customer. It is not the arithmetic sum of the transformer voltage drop and the secondary conductor voltage drop. The voltage drop determination requires the use of coincident factors applied at each level of system equipment to determine the maximum diversified voltage drop.

It is very unlikely that the transformer's customer coincident peak load will be sustained for 30 minutes or longer and occur at the same time as the system peak primary voltage. Customers have peak demand at different times, and this is why capacity and voltage drops are calculated by taking coincidence factors into account. Coincident factors and typical customer load patterns are typically obtained from residential load surveys.

Secondary Voltage Drop Normal Distribution - Example

As shown, the determination of expected voltage drops for the secondary systems involves a variety of random variables (i.e., number of customer connected to one transformer, common service connections, maximum non diversified customer loads, coincidence probabilities, and physical design attributes.) These variables suggest a random distribution of coincidental secondary voltage drops. For example, given maximum voltage drop constraint of 5% or 6 Volts, the diversified average voltage drop across a large number of transformer populations may be only 2.5% while the maximum voltage drop observed may be greater than 5%.

The following is a real world example of secondary voltage drops on one feeder for a distribution Blackman Hurst feeder in Jackson, MI. Coincidental hourly peak load data for the secondary systems was collected from customer AMR data an assigned to end-use nodes on a distribution feeder model. The peak hourly voltage drops for customers on the secondary system across the feeder illustrates the random nature of the secondary system peak voltage drops during peak load conditions. Load Flow simulations were performed and included the modeling of distribution transformers, secondary conductors, service conductors, and spot coincident customer loads. There are 727 customers served by 418 distribution transformers/secondary systems. The peak hourly load flow analysis included determination of the secondary voltage drops during peak conditions as determined from the load flow simulations. The mean secondary voltage drop at peak hourly conditions is 1.9% (2.3V) with a Std. Dev. of 2.2%. There are 33 (7.9%) transformer/secondary systems that have voltage drops greater than 5.0% (6.0V). There are 42 (10.0%) transformers with voltage drops greater than 4.2% (5.0V) needed to maintain 114V service voltage if the primary voltage is 119V. The maximum voltage drop is 15.0% or 18.0V.

Figure 1 - Distribution transformer/secondary max voltage drops

The secondary systems seen in this example are heavily loaded with an average distribution transformer utilization of 220% of rated kVA at peak load conditions. This example illustrates poorly managed and designed secondary systems. The secondary voltage drop probability distribution will vary among utilities depending on their secondary design practices.

In addition to evaluating maximum secondary voltage drops for the example feeder, the load flow assessment also determined the secondary low voltages during peak load conditions. The minimum primary voltage is 119.8 Volts. There are 24 transformer/secondary installations that have customer service voltages less than 114V at peak loading conditions. Figure 2 shows a scatter diagram that illustrates the number of transformer/secondary systems that are below 114V. The average is service voltage is 118.8V. The minimum voltage is 103.0V during peak conditions. These customer low voltages are included as part of the 33 secondary systems having greater than 5% voltage drop at peak conditions.

Figure 2 - Lowest service voltage for each distribution transformer/secondary

The example feeder illustrates the random nature of secondary system voltage performance during peak load conditions and that it closely resembles a Normal Distribution.

Normal Distribution Probability Function – Basics

The Normal Distribution function is defined as

$$f(X) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-\sigma}{\sigma}\right)^2}$$

Where,

 σ = Std Dev and x = variable.

Given σ , the plot of f(X) is a bell shaped curve similar to the curve shown in Figure 1. The total area under the curve represents 100% probability. The probability of an event occurring between

 X_1 and X_2 is the area under the Normal Distribution curve from X_1 and X_2 given σ . The values of X can be converted to a Z Score which is the number of σ separation from the Mean \overline{X} . The Normal Distribution function is symmetrical allowing the calculation of probability by using the Z Score Table 1. The probability for the positive half of the distribution function where the \overline{X} is zero is 0.50 or 50%. The probability of having a value of $X < 1.88 \sigma$ is 0.5000 + 0.4699 = 0.9699 or 97.0%. The probability of having $X > 1.88 \sigma$ is 3.0%.

Secondary Voltage Drop Normal Distribution – Feeder Example

Consider a feeder with 1000 customers served from 150 transformers (6.7 customers per transformer) with 120 Volts on the high-side of each distribution transformer. The distribution system is better designed, monitored, and maintained than the example given above. This feeder example shows the probability of the number of customers (or transformers) that are likely to have voltage drops greater than 5Volt (4.167%) when the primary voltage is lowered by 1 Volt from 121V to 120V. It is assumed for secondary systems that there are few customers with maximum secondary voltages drops greater than the 5% or 6 Volts limit. Customers who exceed 5% are assumed to have lower than 114 Volts at their service.

Although it is unlikely that there are any customers with greater than 5% voltage drop, it is assumed here that <u>3%</u> or 30 customers (4.5 transformers) have maximum voltages greater than 5% limit. The average maximum voltage drop is assumed to be <u>2.5%</u> based on the field experience example give above. The value of *Z* that yields 97% probability or 0.5000 + 0.4700 is *Z*=1.88. If \overline{X} =2.5% and upper limit is X_1 =5.0%, then $\sigma = (X_1 - \overline{X}) / Z =$ <u>1.335%</u>.

Given the assumptions above, if the design limit is reduced to 4.167% or <u>5 Volts</u>, the probability of customers having maximum voltage drops greater than the 4.167% limit is determined with $\sigma = 1.335\%$, $\overline{X} = 2.5\%$, and upper limit $X_2 = 4.167\%$, then $Z = [(X_2 - \overline{X}) / \sigma] = 1.25$. Entering this value into the Z Score Table yields a probability of 0.5000+0.3944 or 89.44% of customer with less than 4.167% voltage drop. The number of customers having greater than 4.167% voltage drop is 100% – 89.4% or 10.6%. Therefore, the number of customers having greater than 4.167% voltage drop is 106 (or 15.9 transformers).

The true impact is <u>much less than 15.9</u> transformer secondary systems having service voltages less than 114V because not all of the high-side transformer voltages are at 119 Volts. The number of transformers impacted can therefore be assumed to be 50% or 8 transformers.

Given the assumptions above, if the design limit is reduced to 119.0V, the maximum secondary voltage drop 3.33% or <u>4 Volts</u>. The probability of customers having maximum voltage drops greater than the 3.33% limit is determined with $\sigma =1.335\%$, $\overline{X} =2.5\%$, and upper limit $X_2=3.333\%$, then $Z = [(X_2 - \overline{X}) / \sigma] = 0.62$. Entering this value into the Z Score Table yields a probability of 0.5000+0.2324 or 73.24% of customer with less than 3.33% voltage drop. The number of customers having greater than 3.33% voltage drop is 100% – 73.24% or 26.8%.

Probability Area from central to Z Score (Z = # of Std. Dev. mean)										
Ζ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

Table 1 - Normal Distribution Z Score

Appendix 3: Histograms

Page 66

Page 67

254

Appendix 4: PacifiCorp Cost Estimating Spreadsheet and Crew Cost Information

Description	UOM	Labor	Material		AFUDC	
Primary Re-Conductor Urban 4/0 AAC Medium	feet	\$ 41.09	\$	41.84	\$	10.37
Primary Re-Conductor Urban 4/0 AAC Easy	feet	\$ 27.22	\$	25.65	\$	6.61
Primary Re-Conductor Urban 4/0 AAC Difficult	feet	\$ 75.27	\$	81.76	\$	19.63
Primary Re-Conductor Rural 4/0 AAC Medium	feet	\$ 35.09	\$	40.80	\$	9.49
Primary Re-Conductor Rural 4/0 AAC Easy	feet	\$ 20.78	\$	20.73	\$	5.19
Primary Re-Conductor Rural 4/0 AAC Difficult	feet	\$ 64.59	\$	78.31	\$	17.86
Primary Re-Conductor Urban 477 AAC Medium	feet	\$ 44.24	\$	45.33	\$	11.20
Primary Re-Conductor Urban 477 AAC Easy	feet	\$ 28.73	\$	28.89	\$	7.20
Primary Re-Conductor Urban 477 AAC Difficult	feet	\$ 79.60	\$	86.54	\$	20.77
Primary Re-Conductor Rural 477 AAC Medium	feet	\$ 38.08	\$	44.06	\$	10.27
Primary Re-Conductor Rural 477 AAC Easy	feet	\$ 22.19	\$	23.32	\$	5.69
Primary Re-Conductor Rural 477 AAC Difficult	feet	\$ 68.89	\$	82.81	\$	18.96
Primary Re-Conductor Urban 795 AAC Medium	feet	\$ 54.93	\$	51.97	\$	13.36
Primary Re-Conductor Urban 795 AAC Easy	feet	\$ 38.40	\$	34.29	\$	9.09
Primary Re-Conductor Urban 795 AAC Difficult	feet	\$ 92.44	\$	95.82	\$	23.53
Primary Re-Conductor Rural 795 AAC Medium	feet	\$ 48.70	\$	50.46	\$	12.40
Primary Re-Conductor Rural 795 AAC Easy	feet	\$ 31.79	\$	28.47	\$	7.53
Primary Re-Conductor Rural 795 AAC Difficult	feet	\$ 81.67	\$	91.77	\$	21.68
Primary Cable #2 Al 15 kV 1 Ph Medium In Conduit	feet	\$ 23.67	\$	36.70	\$	7.55
Primary Cable #2 Al 15 kV 1 Ph Easy In Conduit	feet	\$ 18.55	\$	36.70	\$	6.91
Primary Cable #2 AI 15 kV 1 Ph Difficult In Conduit	feet	\$ 28.79	\$	36.70	\$	8.19
Primary Cable 1/0 25 kV Medium In Conduit	feet	\$ 19.88	\$	33.07	\$	6.62
Primary Cable 1/0 25 kV Easy In Conduit	feet	\$ 11.68	\$	23.72	\$	4.43
Primary Cable 1/0 25 kV Difficult In Conduit	feet	\$ 30.20	\$	49.09	\$	9.91
Primary Cable 1000 Medium In Conduit	feet	\$ 22.13	\$	41.87	\$	8.00
Primary Cable 1000 Easy In Conduit	feet	\$ 13.93	\$	32.53	\$	5.81
Primary Cable 1000 Difficult In Conduit	feet	\$ 32.45	\$	57.90	\$	11.29
Primary Cable 4/0 Medium In Conduit	feet	\$ 21.16	\$	32.58	\$	6.72
Primary Cable 4/0 Easy In Conduit	feet	\$ 12.97	\$	23.23	\$	4.53
Primary Cable 4/0 Difficult In Conduit	feet	\$ 31.49	\$	48.60	\$	10.01
OH Switch-Unitized-Hookstick Operated 25 kV 600 A	each	\$ 2,225.30	\$	3,904.59	\$	766.24
Capacitor - Fixed 12000 V 600 kVar	each	\$ 3,070.58	\$	2,817.85	\$	736.05
Capacitor - Fixed 19920 V 600 kVar	each	\$ 2,011.92	\$	2,361.48	\$	546.68
Capacitor - Fixed 14400 V 900 kVar	each	\$ 2,011.92	\$	2,451.55	\$	557.93
Capacitor - Fixed 14400 V 600 kVar	each	\$ 2,011.92	\$	2,158.51	\$	521.30
Capacitor - Fixed 12000 V 1200 kVar	each	\$ 3,070.58	\$	3,610.71	\$	835.16
Capacitor - Fixed 12000 V 900 kVar	each	\$ 3,070.58	\$	2,687.98	\$	719.82
Capacitor - Fixed 7200 V 1200 kVar	each	\$ 3,070.58	\$	4,684.04	\$	969.33
Capacitor - Fixed 7200 V 600 kVar	each	\$ 3,070.58	\$	2,748.50	\$	727.39
Capacitor - Fixed 19920 V 900 kVar	each	\$ 2,011.92	\$	2,765.52	\$	597.18
Capacitor - Fixed 7200 V 900 kVar	each	\$ 3,070.58	\$	2,845.52	\$	739.51
Capacitor - Fixed 2400 V 150 kVar	each	\$ 2,011.92	\$	1,897.76	\$	488.71
Capacitor - Fixed 19920 V 1200 kVar	each	\$ 2,011.92	\$	2,765.52	\$	597.18
Capacitor - Fixed 14400 V 1200 kVar	each	\$ 2,011.92	\$	2,673.55	\$	585.68
Capacitor - Switched 19920 V 1200 kVar	each	\$ 4,772.71	\$	10,311.79	\$	1,885.56
Capacitor - Switched 12000 V 900 kVar	each	\$ 6,574.70	\$	10,392.83	\$	2,120.94
Capacitor - Switched 19920 V 900 kVar	each	\$ 4,772.71	\$	9,544.78	\$	1,789.69
Capacitor - Switched 12000 V 600 kVar	each	\$ 6,574.70	\$	12,135.53	\$	2,338.78
Capacitor - Switched 19920 V 600 kVar	each	\$ 4,772.71	\$	9,233.98	\$	1,750.84
Capacitor - Switched 12000 V 1200 kVar	each	\$ 6,574.70	\$	10,769.21	\$	2,167.99

Capacitor - Switched 2400 V 150 kVar	each	\$ 4,772.71	\$ 8,395.13	\$ 1,645.98
Capacitor - Switched 7200 V 900 kVar	each	\$ 6,574.70	\$ 10,796.58	\$ 2,171.41
Capacitor - Switched 7200 V 600 kVar	each	\$ 6,574.70	\$ 10,219.74	\$ 2,099.31
Capacitor - Switched 7200 V 1200 kVar	each	\$ 6,574.70	\$ 8,313.73	\$ 1,861.05
Capacitor - Switched 14400 V 1200 kVar	each	\$ 4,772.71	\$ 11,230.88	\$ 2,000.45
Capacitor - Switched 14400 V 600 kVar	each	\$ 4,772.71	\$ 9,189.59	\$ 1,745.29
Capacitor - Switched 14400 V 900 kVar	each	\$ 4,772.71	\$ 9,502.61	\$ 1,784.42
Regulator - 3 Ph 19920 V 200 A	each	\$ 11,202.63	\$ 39,521.26	\$ 6,340.49
Regulator - 3 Ph 7620 V 219 A	each	\$ 11,109.54	\$ 40,479.69	\$ 6,448.65
Regulator - 3 Ph 7620 V 328 A	each	\$ 11,109.54	\$ 47,552.68	\$ 7,332.78
Regulator - 3 Ph 14400 V 100 A	each	\$ 11,160.58	\$ 42,561.56	\$ 6,715.27
Regulator - 3 Ph 14400 V 200 A	each	\$ 11,160.58	\$ 47,859.89	\$ 7,377.56
Regulator - 3 Ph 19920 V 100 A	each	\$ 11,202.63	\$ 35,858.26	\$ 5,882.61
Regulator - 3 Ph 7620 V 100 A	each	\$ 11,109.54	\$ 36,053.62	\$ 5 <i>,</i> 895.40
Regulator - 1 Ph 19920 V 50 A	each	\$ 2,775.05	\$ -	\$ 346.88
Regulator - 1 Ph 14400 V 100 A	each	\$ 2,775.05	\$ 13,209.42	\$ 1,998.06
Regulator - 1 Ph 14400 V 50 A	each	\$ 2,775.05	\$ -	\$ 346.88
Regulator - 1 Ph 7620 V 50 A	each	\$ 2,775.05	\$ -	\$ 346.88
Regulator - 1 Ph 7620 V 100 A	each	\$ 2,775.05	\$ 11,039.64	\$ 1,726.84
OH Switch-Unitized-Handle Operated 35 kV 1200 A	each	\$ 2,176.19	\$ 5,748.14	\$ 990.54
OH Switch-Unitized-Handle Operated 25 kV 600 A	each	\$ 2,225.30	\$ 5,841.36	\$ 1,008.33
OH Switch-Unitized-Handle Operated 35 kV 600 A	each	\$ 2,225.30	\$ 5,841.36	\$ 1,008.33
Riser Pole	each	\$ 3,070.33	\$ 2,275.25	\$ 668.20

John,

I had pulled some numbers out of the efficiency calculator spreadsheet, and received the following information from our Operations department when I asked about it.

Wyatt W. Pierce, PE Desk: 541•633•2481 Cell: 541•848•7970

From: Ooten, Chad Sent: Friday, January 14, 2011 2:22 PM To: Pierce, Wyatt Subject: RE: Crew costs

The way we figure labor and equipment for a job is a little different than what you have in your spreadsheet. We have a set price per hour per man and that gives you a tooled up journeyman. All are the same from journeyman lineman to foremen as far as job costs. The per hour price will fluctuate from time to time, but right now today it is \$129.05 per hour for one man tooled up with whatever tools and trucks needed on the job. The only time equipment would be an adder is if we have to rent something like a crane or taller highline bucket or something along the specialty equipment lines that we don't have already. We don't get into equipment per hour as extra charges like contractors do. With them you pay the per hour for each man along with a per hour charge for all the equipment they have also. We don't do that. Our cost is a tooled up man with a truck.

The cost per different crews below is just 129.05 per hour times the number of people and hours. These costs include whatever equipment and tools they need.

Journeyman \$129.05 per hr.

2 man crew per hr \$258.10 3 man crew per hour \$387.15 4 man crew per hr \$516.20

Journeyman per 8 hr day \$1032.40 2 man crew per 8 hr day \$ 2064.80 3 man crew per 8 hr day \$ 3097.20 4 man crew per 8 hr day \$ 4129.60 Let me know if you have any questions.

Thanks - Chad

From: Pierce, Wyatt Sent: Friday, January 14, 2011 12:02 PM To: Ooten, Chad Subject: Crew costs

Chad,

Could you please take a look at the attached spreadsheet. This is part of what our CVR contractors are using to determine feasibility of capital improvements. I feel like the values for crew and equipment costs may be listed lower than our company's reality. I would appreciate it if you could update any numbers you have at your disposal and return this to me.

Thank you,

Wyatt W. Pierce, PE Pacific Power NID Support & Special Projects Desk: 541•633•2481 Cell: 541•848•7970 Appendix 5: Circuit Changes

Appendix 5

Appendix 5

Appendix 5

Appendix 5

Appendix 5

Appendix 5

Appendix 5

Appendix 5

Appendix 6: Circuit Voltages

16 & 5W127 creek Commonwealt		Hew Cap Regulator Circuit		W Rees Ave W Plns St	Hoodbard Aver Art Lade St
ciency Study: 5W1 age 02 HL & LL Mill 2400' (1: 28,800) 800 7,200	eet MOO TOO	 Miap Feat Pole Transformer Substation Underground Existing Capacitor Phase Change Overhead Circuit Line Undergound Circuit Line 	GSTI Yewritiger I N	Dell Ave 21 Seeulo H M Duncen Lo	Attesta Ave NE Alden St.
Washington Distribution Effic Voltage Profile For Sta Scale: 1" = 2.400 44	E dWenatchee	ouincy Moses Lake Map Area Pullman Map Area Pullman Trichland Cennewick Maila We Walla We Maila We Dalles La Gra		pd 21 keeninget [2]	Page 108

Appendix 6

Appendix 6

Appendix 7: Detailed Results by Stage and Circuit

General Information	Stage 1	Stage 2	Stage 3
Total Customers Served (#)	30,747	30,747	30,747
Feeder Annual Peak MW	138	138	138
Total Annual Energy			
Consumed (MWh/yr)	627,608	627,608	627,608
Average Customer Voltage Change (%)	1.35%	1.09%	2.01%
Average Reduction in Annual Energy Delivered from Sub	0.94%	0.82%	1.40%
Total SI&VO Installed Cost	\$1,640,691	\$2,999,482	\$6,518,727
Utility Energy Savings Potential	202.7	7407	670.0
Line Loss Reduction (WW//y)	282.7	/12./	6/8.8
	252.5	199.8	357.1
vo energy savings (wwwi/y)	5337.9	4235.4	7744.8
Total Energy Savings (MWh/y)	5873.1	5147.8	8780.7
Total Energy Savings (MWa)	0.6704	0.5877	1.0024
Total Coincidental Demand Reduction (kW)	1142.6	1093.2	1766.9
Average Customer Energy Reduction (kWh/yr)	174	138	252
Benefit Cost Projections Overall Utility Levelized Cost			
per kWh saved	\$0.0434	\$0.0906	\$0.1154
Overall Utility Benefit			
Cost Ratio	2.52	1.21	0.95
Overall Net Utility PV			
Savings (\$)	\$4,734,832	\$1,194,119	(\$618,263)

Appendix 7-1 Summary of Results by Stage with all Circuits Included

Appendix 7	 -2 Summary of 	Economically	Viable	Solutions by	Stage and	Overall Optima	I Solution
	,			,			

				Optimal
General Information	Stage 1	Stage 2	Stage 3	Solution
Total Customers Served (#)	22,225	22,958	18,665	27,909
Feeder Annual Peak MW	95.08	103.58	76.01	125.50
Total Annual Energy				
Consumed (MWh/yr)	438,826	476,160	357,575	574,046
Average Customer Voltage Change (%)	1.12%	1.11%	2.07%	1.73%
Average Reduction in Annual				
Energy Delivered from Sub	0.80%	0.85%	1.45%	1.23%
Total SI&VO Installed Cost	\$863,209	\$1,893,973	\$2,826,294	\$3,854,835
Utility Energy Savings Potential				
Line Loss Reduction (MWh/y)	198.0	565.0	371.5	643.1
No-load Loss Saved (MWh/y)	129.5	146.4	187.1	267.5
VO Energy Savings (MWh/y)	3185.9	3347.2	4621.5	6127.4
Total Energy Savings (MWh/y)	3513.4	4058.5	5180.1	7038.0
Total Energy Savings (MWa)	0.4011	0.4633	0.5913	0.8034
Total Coincidental Demand Reduction (kW)	685.2	856.4	1027.0	1423.9
Average Customer Energy Reduction (kWh/yr)	143	146	248	220
Benefit Cost Projections Overall Utility Levelized Cost				
per kWh saved	\$0.0382	\$0.0726	\$0.0848	\$0.0852
Overall Utility Benefit Cost Ratio	2.87	1.51	1.29	1.29
Overall Net Utility PV				
Savings (\$)	\$3,056,420	\$1,832,787	\$1,565,127	\$2,098,324

Appendix 7-3 Stage 1 Results - Individual Circuits, Total and Total Viable Circuits

	NC				1					1	1					1	NC				
	NC		NC			NC						NC	NC				NC				
Stage 1 - Results	Walla Walla	Walla Walla	Walla Walla	Walla Walla	Walla Walla	Walla Walla	Yakima	Lower Valley	Lower Valley	Lower Valley	Summary	Summary									
	Bowman	Bowman	Dodd Rd	Mill Creek	Mill Creek	Pomeroy	Clinton	Clinton	Nob Hill	Nob Hill	Nob Hill	North Park	Orchard	Orchard	Wiley	River Road	Grandview	Sunnyside	Sunnyside	All	Viable
	<u>5W150</u>	<u>5W154</u>	<u>4W22</u>	<u>5W116</u>	<u>5W127</u>	<u>5W342</u>	<u>5Y608</u>	<u>5Y610</u>	<u>5Y194</u>	<u>5Y197</u>	<u>5Y273</u>	<u>5Y356</u>	<u>5Y456</u>	<u>5Y498</u>	<u>5Y434</u>	<u>5Y444</u>	<u>5Y351</u>	<u>5Y313</u>	<u>5Y317</u>	Circuits	Solutions
General Information	NC		NC			NC						NC	NC				NC				
Total Customers Served (#)	1,796	1,823	1,181	2,053	1,968	1,204	2,037	1,401	1,572	1,873	2,216	1,634	1,421	1,751	1,332	2,201	1,286	1,020	978	30,747	22,225
Feeder Annual Peak MW	6.72	8.20	8.70	8.10	6.22	6.04	8.20	9.25	8.37	5.90	7.98	6.79	7.30	6.28	6.99	10.60	7.70	5.00	4.00	138.33	95.08
Total Annual Energy Consumed (MWh/yr)	33,096	37,064	39,920	34,127	29,178	22,784	41,300	43,296	42,555	30,679	35,323	30,778	28,933	27,290	27,726	49,558	33,272	20,865	19,868	627,608	438,826
Average Customer Voltage Change (%)	1.51%	0.83%	2.27%	2.78%	0.83%	1.02%	0.83%	0.83%	1.30%	1.58%	1.57%	3.42%	0.98%	1.21%	0.83%	0.76%	1.81%	0.60%	0.65%	1.35%	1.12%
Reduction in Annual Energy Delivered from Sub (%)	0.93%	0.56%	1.34%	1.87%	0.64%	0.62%	0.61%	0.56%	0.90%	1.05%	1.04%	2.24%	0.72%	0.77%	0.68%	0.52%	1.44%	0.56%	0.69%	0.94%	0.80%
Utility Energy Savings Potential																					
Line Loss Reduction (MWh/y)	-31.060	0.299	32.428	4.831	25.019	14.065	20.530	4.103	31.600	1.861	-4.047	-17.109	18.585	-8.442	33.510	6.618	67.763	33.317	48.810	282.678	198.007
VO Energy Savings (MWh/y)	318.9	197.7	470.2	607.1	155.6	118.4	220.3	230.9	340.4	310.9	357.9	672.9	180.8	210.5	147.9	241.7	390.7	80.8	84.2	5337.9	3185.9
Total Energy Savings (MWh/y)	306.3	208.6	536.1	636.7	187.2	141.3	250.6	243.7	384.4	323.0	367.2	690.3	207.9	210.0	189.4	258.6	477.8	117.8	136.3	5873.1	3513.4
Total Energy Savings (MWa)	0.0350	0.0238	0.0612	0.0727	0.0214	0.0161	0.0286	0.0278	0.0439	0.0369	0.0419	0.0788	0.0237	0.0240	0.0216	0.0295	0.0545	0.0134	0.0156	0.6704	0.4011
Total Coincidental Demand Reduction (kW)	53.7	38.9	103.9	120.1	38.3	29.7	48.8	46.2	75.0	60.8	68.2	126.3	43.0	38.0	42.8	49.3	100.8	28.4	30.5	1142.6	685.2
Customer Average Energy Reduction (kWh/yr)	178	108	398	296	79	98	108	165	217	166	162	412	127	120	111	110	304	79	86	174	143
Distribution Line Losses																					
Existing Base System Line Loss (kW)	325.2	98.8	288.9	122.6	65.7	194.1	113.0	128.8	165.1	44.7	150.2	231.7	124.3	91.7	144.8	186.1	106.0	86.8	49.6	2718.1	1447.9
Baseline Pre-VO System Line Loss (kW)	334.3	98.7	278.3	120.8	57.8	187.9	107.2	127.5	156.3	44.2	151.6	237.4	116.7	94.7	131.1	184.0	81.7	74.2	35.5	2619.9	1383.6
Line Loss Reduction (kW)	-9.1	0.1	10.6	1.8	7.9	6.2	5.8	1.3	8.8	0.5	-1.4	-5.7	7.6	-3.0	13.7	2.1	24.3	12.6	14.1	98.2	64.3
Line Loss Reduction (MWa)	-0.0035	0.0000341	0.0037	0.0006	0.0029	0.0016	0.0023	0.0005	0.0036	0.0002	-0.0005	-0.0020	0.0021	-0.0010	0.0038	0.0008	0.0077	0.0038	0.0056	0.0323	0.0226
End-Use Energy Consumption																					
Average Volts Pre-VO (V)	122.7	121.6	123.3	123.9	122.3	123.4	121.8	121.8	122.4	123.3	122.1	122.7	122.4	122.6	122.0	122.4	122.9	122.2	122.9	122.6	122.4
Average Volts Post-VO (V)	120.9	120.6	120.5	120.6	121.3	122.2	120.8	120.8	120.9	121.4	120.2	118.6	121.2	121.2	121.0	121.5	120.7	121.5	122.1	120.9	121.1
VO Factor (for End-Use) from VO Protocol	0.640	0.640	0.520	0.640	0.640	0.510	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.650	0.650	0.650	0.628	0.642
Total End-Use Demand Reduction (kW)	60.7	37.6	89.5	115.5	29.6	22.5	41.9	43.9	64.8	59.1	68.1	128.0	34.4	40.1	28.1	46.0	74.3	15.4	16.0	1015.6	606.1
VO Energy Savings (MWa)	0.0364	0.0226	0.0537	0.0693	0.0178	0.0135	0.0251	0.0264	0.0404	0.0354	0.0405	0.0768	0.0206	0.0240	0.0169	0.0276	0.0446	0.0092	0.0096	0.6105	0.3648
Change in Voltage (pu)	0.0151	0.0083	0.0227	0.0278	0.0083	0.0102	0.0083	0.0083	0.0125	0.0158	0.0158	0.0342	0.0098	0.0121	0.0083	0.0076	0.0181	0.0060	0.0065	0.0135	0.0112
Distribution Transformer No-Load Losses																					
Distribution Transformer Connected kVA	23,831	24,581	29,035	17,726	15,105	16,801	22,604	20,066	19,096	12,614	16,378	20,180	16,682	12,638	18,624	25,987	20,980	11,852	9,580	354,357	226,848
Total No-Load Loss (kW)	71.5	73.7	87.1	53.2	45.3	50.4	67.8	60.2	57.3	37.8	49.1	60.5	50.0	37.9	55.9	78.0	62.9	35.6	28.7	1063.1	680.5
Change in No-Load Loss (%)	2.94%	1.65%	4.38%	5.34%	1.65%	2.01%	1.65%	1.65%	2.45%	3.09%	3.09%	6.50%	1.93%	2.37%	1.65%	1.51%	3.52%	1.18%	1.29%	2.64%	2.21%
Total No-Load Loss Reduction (kW)	2.1	1.2	3.8	2.8	0.7	1.0	1.1	1.0	1.4	1.2	1.5	3.9	1.0	0.9	0.9	1.2	2.2	0.4	0.4	28.8	14.8
No-Load Loss Saved (MWh/yr)	18.4	10.6	33.4	24.9	6.5	8.9	9.8	8.7	12.3	10.3	13.3	34.5	8.4	7.9	8.1	10.3	19.4	3.7	3.3	252.5	129.5
No_Load Loss Reduction (MWa)	0.0021	0.0012	0.0038	0.0028	0.0007	0.0010	0.0011	0.0010	0.0014	0.0012	0.0015	0.0039	0.0010	0.0009	0.0009	0.0012	0.0022	0.0004	0.0004	0.0288	0.0148
Utility Energy Efficiency Costs and Benefits																					
VO Improvement Installation Cost	\$180,378	\$29,526	\$219,622	\$58,178	\$83,645	\$107,846	\$73,614	\$53,438	\$95,448	\$23,910	\$128,058	\$166,286	\$49,098	\$44,502	\$100,248	\$85,444	\$54,252	\$60,508	\$26,690	\$1,640,691	\$863,209
Energy Efficiency Incentives	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
VO Improvement First Year Cost	\$180,378	\$29,526	\$219,622	\$58,178	\$83,645	\$107,846	\$73,614	\$53,438	\$95,448	\$23,910	\$128,058	\$166,286	\$49,098	\$44,502	\$100,248	\$85,444	\$54,252	\$60,508	\$26 <i>,</i> 690	\$1,640,691	\$863,209
PV Annual Fixed Capital Charges	\$270,859	\$44,337	\$329,789	\$87,361	\$125,603	\$161,944	\$110,540	\$80,244	\$143,327	\$35,904	\$192,294	\$249,698	\$73,726	\$66,825	\$150,534	\$128,304	\$81,466	\$90,860	\$40,078	\$2,463,693	\$1,296,211
PV Annual Remaining Salvage Value	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
PV Operations & Maintenance Expense	\$70,627	\$11,561	\$85,993	\$22,780	\$32,751	\$42,227	\$28,824	\$20,924	\$37,373	\$9,362	\$50,141	\$65,109	\$19,224	\$17,425	\$39,252	\$33,456	\$21,242	\$23,692	\$10,450	\$642,411	\$337,989
Total Utility PV Costs	\$341,486	\$55,898	\$415,781	\$110,141	\$158,354	\$204,171	\$139,364	\$101,167	\$180,699	\$45,266	\$242,435	\$314,807	\$92,951	\$84,250	\$189,786	\$161,760	\$102,708	\$114,552	\$50,529	\$3,106,104	\$1,634,200
Utility Annual Levelized Cost per kWh Saved	\$0.0916	\$0.0220	\$0.0637	\$0.0142	\$0.0695	\$0.1186	\$0.0457	\$0.0341	\$0.0386	\$0.0115	\$0.0542	\$0.0375	\$0.0367	\$0.0330	\$0.0823	\$0.0514	\$0.0177	\$0.0799	\$0.0305	\$0.0434	\$0.0382
Utility Levelized Annual Cost per kW Reduction	\$522	\$118	\$329	\$75	\$340	\$564	\$234	\$180	\$198	\$61	\$292	\$205	\$178	\$182	\$365	\$270	\$84	\$331	\$136	\$223	\$196
Utility Benefit / Cost Ratio	1.20	4.98	1.72	7.72	1.58	0.92	2.40	3.22	2.84	9.53	2.02	2.93	2.99	3.33	1.33	2.13	6.21	1.37	3.60	2.52	2.87
Utility Revenue Requirements																					
Avoided PV of Purchase Power Costs	\$408,906	\$278,500	\$715,675	\$850,093	\$249,879	\$188,704	\$334,532	\$325,344	\$513,135	\$431,212	\$490,243	\$921,588	\$277,517	\$280,321	\$252,909	\$345,298	\$637,925	\$157,224	\$181,929	\$7,840,936	\$4,690,620
Net Utility PV Savings	\$67,420	\$222,603	\$299,894	\$739,952	\$91,525	(\$15,467)	\$195,169	\$224,177	\$332,436	\$385,946	\$247,808	\$606,781	\$184,567	\$196,071	\$63,123	\$183,538	\$535,217	\$42,672	\$131,401	\$4,734,832	\$3,056,420
Customer Impact / Substation																					
Customer kWh/yr (before SI & VO)	18,428	20,331	33,802	16,623	14,826	18,924	20,275	30,903	27,071	16,379	15,940	18,836	20,361	15,585	20,815	22,516	25,872	20,456	20,315	20,412	19,745
Customer kWh/yr (after SI & VO)	18,250	20,223	33,404	16,327	14,747	18,825	20,167	30,738	26,854	16,213	15,779	18,424	20,233	15,465	20,704	22,406	25,568	20,376	20,228	20,238	19,601

NC = Circuit is electrically non-compliant in first stage

Appendix 7-4 Stage 2 Results - Individual Circuits, Total and Total Viable Circuits

Store 2 Desults							Malta a	Nal i sa	Maltara	Maltara	No. La constante de la constan	No. 1 to a	No. Linear	No. Line	No.Line	Maltara				C	C
Stage 2 - Results	walla walla					walla walla	Yakima	Yакima	Yakima		такіта		Yakima	Yакima	Yакima		Lower valley	Lower valley	Lower valley	Summary	Summary
	Bowman	Bowman	Dodd Rd	Mill Creek	Mill Creek	Pomeroy	Clinton	Clinton	NOD HIII	Nob Hill	Nob Hill	North Park	Orchard	Orchard	Wiley	River Road	Grandview	Sunnyside	Sunnyside	All	Viable
	<u>5W150</u>	<u>5W154</u>	<u>4W22</u>	<u>5W116</u>	<u>5W127</u>	<u>5W342</u>	<u>5Y608</u>	<u>5Y610</u>	<u>5Y194</u>	<u>5Y197</u>	<u>5Y273</u>	<u>5Y356</u>	<u>5Y456</u>	<u>5Y498</u>	<u>5Y434</u>	<u>5Y444</u>	<u>5Y351</u>	<u>5Y313</u>	<u>5Y317</u>	Circuits	Solutions
General Information																					
Total Customers Served (#)	1,796	1,823	1,181	2,053	1,968	1,204	2,037	1,401	1,572	1,873	2,216	1,634	1,421	1,751	1,332	2,201	1,286	1,020	978	30,747	22,958
Feeder Annual Peak MW	6.72	8.20	8.70	8.10	6.22	6.04	8.20	9.25	8.37	5.90	7.98	6.79	7.30	6.28	6.99	10.60	7.70	5.00	4.00	138.33	103.58
Total Annual Energy Consumed (MWh/yr)	33,096	37,064	39,920	34,127	29,178	22,784	41,300	43,296	42,555	30,679	35,323	30,778	28,933	27,290	27,726	49,558	33,272	20,865	19,868	627,608	476,160
Average Customer Voltage Change (%)	1.43%	0.27%	1.59%	2.01%	1.31%	1.88%	0.53%	0.54%	1.27%	1.58%	0.72%	0.85%	0.83%	1.26%	0.77%	1.22%	1.33%	0.60%	0.71%	1.09%	1.11%
Reduction in Annual Energy Delivered from Sub (%)	1.21%	0.12%	1.21%	1.40%	0.93%	1.28%	0.46%	0.46%	0.99%	1.06%	0.58%	0.59%	0.76%	0.82%	0.63%	0.81%	1.07%	0.72%	0.68%	0.82%	0.85%
																				\$0	\$0
Utility Energy Savings Potential																				0	0
Line Loss Reduction (MWh/y)	78.163	-21.821	126.960	21.470	16.457	55.922	43.637	41.508	70.630	3.457	29.863	4.888	57.439	-5.093	30.517	-2.250	55.648	65.827	39.429	712.651	564.982
VO Energy Savings (MWh/y)	303.5	63.0	330.4	438.1	245.1	218.5	139.3	150.6	340.4	310.9	169.6	167.3	154.3	220.7	135.8	388.2	287.4	80.8	91.5	4235.4	3347.2
Total Energy Savings (MWh/y)	399.3	44.6	481.1	477.7	271.7	290.5	189.2	197.8	423.4	324.6	205.8	181.1	219.0	223.8	173.7	402.4	357.4	150.3	134.5	5147.8	4058.5
Total Energy Savings (MWa)	0.0456	0.0051	0.0549	0.0545	0.0310	0.0332	0.0216	0.0226	0.0483	0.0371	0.0235	0.0207	0.0250	0.0255	0.0198	0.0459	0.0408	0.0172	0.0154	0.5877	0.4633
Total Coincidental Demand Reduction (kW)	82.7	5.1	107.1	93.4	54.2	72.6	45.0	41.9	84.5	61.5	43.6	35.0	53.7	41.0	41.4	74.9	79.5	44.2	31.9	1093.2	856.4
Customer Average Energy Reduction (kWh/yr)	169	35	280	213	125	181	68	107	217	166	77	102	109	126	102	176	223	79	94	138	146
												_								0	0
Distribution Line Losses																				0	0
Existing Base System Line Loss (kW)	325.2	98.8	288.9	122.6	65.7	194.1	113.0	128.8	165.1	44.7	150.2	231.7	124.3	91.7	144.8	186.1	106.0	86.8	49.6	2718.1	1723.5
Baseline Pre-VO System Line Loss (kW)	302.3	106.1	247.4	114.6	59.3	164.9	95.2	116.2	146.8	43.5	139.6	229.5	100.8	93.6	130.1	186.9	82.8	58.4	35.5	2453.5	1520.6
Line Loss Reduction (kW)	22.9	-7.3	41.5	8.0	6.4	29.2	17.8	12.6	18.3	1.2	10.6	2.2	23.5	-1.9	14.7	-0.8	23.2	28.4	14.1	264.6	202.9
Line Loss Reduction (MWa)	0.0089	-0.0024910	0.0145	0.0025	0.0019	0.0064	0.0050	0.0047	0.0081	0.0004	0.0034	0.0006	0.0066	-0.0006	0.0035	-0.0003	0.0064	0.0075	0.0045	0.0814	0.0645
																				0.0	0.0
End-Use Energy Consumption																				0	0
Average Volts Pre-VO (V)	122.3	121.6	122.1	123.2	122.3	122.9	121.8	121.8	122.4	123.3	122.1	121.9	122.1	122.6	122.0	122.2	122.3	122.2	122.9	122.3	122.4
Average Volts Post-VO (V)	120.6	121.2	120.2	120.8	120.7	120.6	121.2	121.2	120.9	121.4	121.2	120.9	121.1	121.1	121.1	120.8	120.7	121.5	122.0	121.0	121.1
VO Factor (for End-Use) from VO Protocol	0.640	0.640	0.520	0.640	0.640	0.510	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.650	0.650	0.650	0.628	0.634
Total End-Use Demand Reduction (kW)	57.7	12.0	62.9	83.3	46.6	41.6	26.5	28.6	64.8	59.1	32.3	31.8	29.4	42.0	25.8	73.9	54.7	15.4	17.4	805.8	636.8
VO Energy Savings (MWa)	0.0346	0.0072	0.0377	0.0500	0.0280	0.0249	0.0159	0.0172	0.0395	0.0354	0.0186	0.0191	0.0176	0.0252	0.0155	0.0443	0.0328	0.0092	0.0104	0.4833	0.3819
Change in Voltage (pu)	0.0143	0.0027	0.0159	0.0201	0.0131	0.0188	0.0053	0.0054	0.0125	0.0158	0.0075	0.0085	0.0083	0.0126	0.0077	0.0122	0.0133	0.0060	0.0071	0.0109	0.0111
																				0.0000	0.0000
Distribution Transformer No-Load Losses																				0	0
Distribution Transformer Connected kVA	23,831	24,581	29,035	17,726	15,105	16,801	22,604	20,066	19,096	12,614	16,378	20,180	16,682	12,638	18,624	25,987	20,980	11,852	9,580	354,357	250,340
Total No-Load Loss (kW)	71.5	73.7	87.1	53.2	45.3	50.4	67.8	60.2	57.3	37.8	49.1	60.5	50.0	37.9	55.9	78.0	62.9	35.6	28.7	1063.1	751.0
Change in No-Load Loss (%)	2.81%	0.53%	3.11%	3.89%	2.57%	3.66%	1.05%	1.08%	2.45%	3.09%	1.48%	1.68%	1.65%	2.48%	1.51%	2.40%	2.61%	1.18%	1.40%	2.14%	2.18%
Total No-Load Loss Reduction (kW)	2.0	0.4	2.7	2.1	1.2	1.8	0.7	0.6	1.4	1.2	0.7	1.0	0.8	0.9	0.8	1.9	1.6	0.4	0.4	22.8	16.7
No-Load Loss Saved (MWh/yr)	17.6	3.4	23.7	18.1	10.2	16.1	6.2	5.7	12.3	10.3	6.4	8.9	7.2	8.2	7.4	16.4	14.4	3.7	3.5	199.8	146.4
No_Load Loss Reduction (MWa)	0.0020	0.0004	0.0027	0.0021	0.0012	0.0018	0.0007	0.0006	0.0014	0.0012	0.0007	0.0010	0.0008	0.0009	0.0008	0.0019	0.0016	0.0004	0.0004	0.0228	0.0167
																				0	0
Utility Energy Efficiency Costs and Benefits																				0	0
VO Improvement Installation Cost	\$329,870	\$102,929	\$288,415	\$150,565	\$106,799	\$317,873	\$123,639	\$118,025	\$128,436	\$47,064	\$107,026	\$231,435	\$124,802	\$65,499	\$123,402	\$264,201	\$221,349	\$98,309	\$49,844	\$2,999,482	\$1,893,973
Energy Efficiency Incentives	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
VO Improvement First Year Cost	\$329,870	\$102,929	\$288,415	\$150,565	\$106,799	\$317,873	\$123,639	\$118,025	\$128,436	\$47,064	\$107,026	\$231,435	\$124,802	\$65,499	\$123,402	\$264,201	\$221,349	\$98,309	\$49,844	\$2,999,482	\$1,893,973
PV Annual Fixed Capital Charges	\$495,339	\$154,560	\$433,089	\$226,091	\$160,371	\$477,324	\$185,659	\$177,229	\$192,862	\$70,672	\$160,712	\$347,527	\$187,405	\$98,355	\$185,303	\$396,729	\$332,382	\$147,623	\$74,847	\$4,504,080	\$2,844,026
PV Annual Remaining Salvage Value	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
PV Operations & Maintenance Expense	\$129,160	\$40,302	\$112,929	\$58,954	\$41,817	\$124,463	\$48,411	\$46,213	\$50,289	\$18,428	\$41,906	\$90,618	\$48,866	\$25,646	\$48,318	\$103,448	\$86,669	\$38,493	\$19,516	\$1,174,445	\$741,584
Total Utility PV Costs	\$624,499	\$194,862	\$546,018	\$285,045	\$202,188	\$601,787	\$234,069	\$223,441	\$243,151	\$89,100	\$202,618	\$438,145	\$236,271	\$124,001	\$233,621	\$500,177	\$419,051	\$186,115	\$94,363	\$5,678,524	\$3,585,610
Utility Annual Levelized Cost per kWh Saved	\$0.1285	\$0.3587	\$0.0932	\$0.0490	\$0.0611	\$0.1701	\$0.1016	\$0.0928	\$0.0472	\$0.0225	\$0.0809	\$0.1987	\$0.0886	\$0.0455	\$0.1104	\$0.1021	\$0.0963	\$0.1017	\$0.0576	\$0.0906	\$0.0726
Utility Levelized Annual Cost per kW Reduction	\$620	\$3,150	\$419	\$251	\$306	\$681	\$427	\$438	\$236	\$119	\$382	\$1,027	\$361	\$248	\$464	\$548	\$433	\$346	\$243	\$427	\$344
Utility Benefit / Cost Ratio	0.85	0.31	1.18	2.24	1.79	0.64	1.08	1.18	2.32	4.86	1.36	0.55	1.24	2.41	0.99	1.07	1.14	1.08	1.90	1.21	1.51
																				0.0	0.0
Utility Revenue Requirements																				0.00	0.00
Avoided PV of Purchase Power Costs	\$533,043	\$59,567	\$642,293	\$637,725	\$362,773	\$387,888	\$252,591	\$264,012	\$565,243	\$433,343	\$274,753	\$241,787	\$292,328	\$298,787	\$231,962	\$537,218	\$477,151	\$200,627	\$179,554	\$6,872,644	\$5,418,397
Net Utility PV Savings	(\$91,457)	(\$135,295)	\$96,274	\$352,680	\$160,584	(\$213,899)	\$18,521	\$40,570	\$322,092	\$344,243	\$72,134	(\$196,358)	\$56,057	\$174,786	(\$1,659)	\$37,041	\$58,100	\$14,512	\$85,191	\$1,194,119	\$1,832,787
																				0	0
Customer Impact / Substation																				\$0.00	\$0.00
Customer kWh/yr (before SI & VO)	18,428	20,331	33,802	16,623	14,826	18,924	20,275	30,903	27,071	16,379	15,940	18,836	20,361	15,585	20,815	22,516	25,872	20,456	20,315	20,412	20,740
Customer kWh/yr (after SI & VO)	18,259	20,297	33,522	16,409	14,701	18,742	20,207	30,796	26,854	16,213	15,864	18,733	20,252	15,459	20,713	22,340	25,649	20,376	20,221	20,274	20,595

Appendix 7-5 Stage 3 Results - Individual, Total and Total Viable Circuits

) (a bina a	Valiana	Valiana	Valiana) (a bissa a	Val.ing		Valiana	Valiera	Valia a	Lauran Mallaur			C	C
Stage 3 - Results	walla walla	walla walla	walla walla			walla walla	Yakima	Yakima	Yakima	<u> </u>		Yakima	Yакіma	Yakima Qadhaad	такіта	такіта Ві на Валі	Lower valley	Lower valley	Lower valley	Summary	Summary
	Bowman	Bowman	Dodd Rd	Mill Creek	Mill Creek	Pomeroy	Clinton	Clinton	Nob Hill	NOD Hill	Nob Hill	North Park	Orchard	Orchard	Wiley	River Road	Grandview	Sunnyside	Sunnyside	All	Viable
	<u>5W150</u>	<u>5W154</u>	<u>4W22</u>	<u>5W116</u>	<u>5W127</u>	<u>5W342</u>	<u>5Y608</u>	<u>5Y610</u>	<u>5Y194</u>	<u>5Y197</u>	<u>5Y273</u>	<u>5Y356</u>	<u>5Y456</u>	<u>5Y498</u>	<u>5Y434</u>	<u>5Y444</u>	<u>5Y351</u>	<u>5Y313</u>	<u>5Y317</u>	Circuits	Solutions
General Information	1 700	4 000	1 101	2.052	1.050	1 20 4	2 0 2 7	1 404	4 570	1.070	2.246	1.624	1 424	4 754	4 222	2 201	1 200	1 020	070	20 747	10.005
Total Customers Served (#)	1,796	1,823	1,181	2,053	1,968	1,204	2,037	1,401	1,572	1,873	2,216	1,634	1,421	1,751	1,332	2,201	1,286	1,020	978	30,747	18,665
Feeder Annual Peak MW	6.72	8.20	8.70	8.10	6.22	6.04	8.20	9.25	8.37	5.90	7.98	6.79	7.30	6.28	6.99	10.60	7.70	5.00	4.00	138.33	76.01
Total Annual Energy Consumed (WWN/yr)	33,096	37,064	39,920	34,127	29,178	22,784	41,300	43,296	42,555	30,679	35,323	30,778	28,933	27,290	27,726	49,558	33,272	20,865	19,868	627,608	357,575
Average Customer Voltage Change (%)	2.27%	1.10%	2.43%	2.84%	2.15%	2.71%	1.36%	1.38%	2.10%	2.41%	1.55%	1.68%	1.67%	2.10%	1.60%	2.06%	2.16%	2.26%	2.38%	2.01%	2.07%
Reduction in Annual Energy Delivered from Sub (%)	1.77%	0.68%	1.67%	1.95%	1.49%	1.73%	1.01%	1.01%	1.55%	1.61%	1.04%	1.15%	1.31%	1.37%	1.19%	1.37%	1.64%	1.85%	1.80%	1.40% ¢0	1.45%
Litility Energy Savings Potential																					30 0
Line Loss Reduction (MWh/y)	78 163	-21 821	126 960	21 470	16 457	55 922	43 637	41 508	70 630	3 457	-3 944	4 888	57 439	-5 093	30 517	-2 250	55 648	65 827	39 429	678 845	371 540
VO Energy Savings (MWh/y)	480.0	260.7	503.4	620.1	400 7	315 3	359.6	381 5	567.4	474 5	357.9	331 5	308.6	366.2	283.7	652.5	467.6	306.8	306.8	7744 8	4621 5
Total Energy Savings (MWh/y)	585.7	252.8	666 1	666.9	433.6	394.2	419 1	437.2	658 3	493.4	367.3	353.8	380.3	374.6	329.5	677.5	546.3	386.3	357 7	8780 7	5180 1
Total Energy Savings (MWa)	0.0669	0.0289	0.0760	0.0761	0.0495	0.0450	0.0478	0.0499	0.0751	0.0563	0.0419	0.0404	0.0434	0.0428	0.0376	0.0773	0.0624	0.0441	0.0408	1 0024	0 5913
Total Coincidental Demand Reduction (kW)	117.4	43.9	141 4	128.9	84 5	91.8	88.0	86.8	128.6	93.2	68.2	67.3	83.8	69.3	70.4	126 5	114.8	88.3	73.8	1766 9	1027.0
Customer Average Energy Reduction (kWh/vr)	267	143	426	302	204	262	177	272	361	253	162	203	217	209	213	296	364	301	314	252	248
	207	115	120	502	201	202	1,,	272	301	233	102	200	217	203	210	250	501	301	511	0	0
Distribution Line Losses																				0	0
Existing Base System Line Loss (kW)	325.2	98.8	288.9	122.6	65.7	194.1	113.0	128.8	165.1	44.7	150.2	231.7	124.3	91.7	144.8	186.1	106.0	86.8	49.6	2718.1	1343.4
Baseline Pre-VO System Line Loss (kW)	302.3	106.1	247.4	114.6	59.3	164.9	95.2	116.2	146.8	43.5	151.6	229.5	100.8	93.6	130.1	186.9	82.8	58.4	35.5	2465.5	1217.0
Line Loss Reduction (kW)	22.9	-7.3	41.5	8.0	6.4	29.2	17.8	12.6	18.3	1.2	-1.4	2.2	23.5	-1.9	14.7	-0.8	23.2	28.4	14.1	252.6	126.4
Line Loss Reduction (MWa)	0.0089	-0.0024910	0.0145	0.0025	0.0019	0.0064	0.0050	0.0047	0.0081	0.0004	-0.0005	0.0006	0.0066	-0.0006	0.0035	-0.0003	0.0064	0.0075	0.0045	0.0775	0.0424
																				0.0	0.0
End-Use Energy Consumption																				0	0
Average Volts Pre-VO (V)	122.3	121.6	122.1	123.2	122.3	122.9	121.8	121.8	122.4	123.3	122.1	121.9	122.1	122.6	122.0	122.2	122.3	122.2	122.9	122.3	122.5
Average Volts Post-VO (V)	119.6	120.2	119.2	119.8	119.7	119.6	120.2	120.2	119.9	120.4	120.2	119.9	120.1	120.1	120.1	119.8	119.7	119.5	120.0	119.9	120.0
VO Factor (for End-Use) from VO Protocol	0.640	0.640	0.520	0.640	0.640	0.510	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.650	0.650	0.650	0.628	0.642
Total End-Use Demand Reduction (kW)	91.3	49.6	95.8	118.0	76.2	60.0	68.4	72.6	108.0	90.3	68.1	63.1	58.7	69.7	54.0	124.2	89.0	58.4	58.4	1473.5	879.3
VO Energy Savings (MWa)	0.0548	0.0298	0.0575	0.0708	0.0457	0.0360	0.0411	0.0435	0.0653	0.0540	0.0400	0.0378	0.0352	0.0418	0.0324	0.0745	0.0534	0.0350	0.0350	0.8836	0.5271
Change in Voltage (pu)	0.0227	0.0110	0.0243	0.0284	0.0215	0.0271	0.0136	0.0138	0.0208	0.0242	0.0158	0.0168	0.0167	0.0210	0.0160	0.0206	0.0216	0.0226	0.0238	0.0201	0.0207
																				0.0000	0.0000
Distribution Transformer No-Load Losses																				0	0
Distribution Transformer Connected kVA	23,831	24,581	29,035	17,726	15,105	16,801	22,604	20,066	19,096	12,614	16,378	20,180	16,682	12,638	18,624	25,987	20,980	11,852	9,580	354,357	181,487
Total No-Load Loss (kW)	71.5	73.7	87.1	53.2	45.3	50.4	67.8	60.2	57.3	37.8	49.1	60.5	50.0	37.9	55.9	78.0	62.9	35.6	28.7	1063.1	544.5
Change in No-Load Loss (%)	4.38%	2.16%	4.68%	5.45%	4.16%	5.21%	2.67%	2.70%	4.04%	4.66%	3.09%	3.28%	3.25%	4.07%	3.12%	3.99%	4.19%	4.38%	4.59%	3.90%	4.02%
Total No-Load Loss Reduction (kW)	3.1	1.6	4.1	2.9	1.9	2.6	1.8	1.6	2.3	1.8	1.5	2.0	1.6	1.5	1.7	3.1	2.6	1.6	1.3	40.8	21.4
No-Load Loss Saved (MWh/yr)	27.5	14.0	35.7	25.4	16.5	23.0	15.8	14.2	20.3	15.5	13.3	17.4	14.3	13.5	15.3	27.3	23.1	13.6	11.5	357.1	187.1
No_Load Loss Reduction (MWa)	0.0031	0.0016	0.0041	0.0029	0.0019	0.0026	0.0018	0.0016	0.0023	0.0018	0.0015	0.0020	0.0016	0.0015	0.0017	0.0031	0.0026	0.0016	0.0013	0.0408	0.0214
																				0	0
Utility Energy Efficiency Costs and Benefits			4=00.000	4040455	4976 499	4699.459	4004 075		4007.000	4454.994	4944 694	4500.000	40.07 400	4000 000	÷ 100 510	4		40.40.000		0	0
VO Improvement Installation Cost	\$341,514	\$272,600	\$583,960	\$318,157	\$256,139	\$622,153	\$281,975	\$260,606	\$297,023	\$154,291	\$241,604	\$522,300	\$267,123	\$230,336	\$402,516	\$552,570	\$469,211	\$240,890	\$203,759	\$6,518,727	\$2,826,294
Energy Efficiency Incentives	ŞU	\$U	\$U	ŞU	\$U	ŞU	\$U	\$U	\$U	ŞU ¢154.201	\$U	ŞU 6522.200	\$U	\$U	ŞU	ŞU 6552.570	ŞU	\$U	\$U	\$U	\$U
VO Improvement First Year Cost	\$341,514	\$272,600	\$583,960	\$318,157	\$256,139	\$622,153	\$281,975	\$260,606	\$297,023	\$154,291	\$241,604	\$522,300	\$267,123	\$230,336	\$402,516	\$552,570	\$469,211	\$240,890	\$203,759	\$6,518,727	\$2,826,294
PV Annual Fixed Capital Charges	\$512,824	\$409,341	\$876,886	\$477,751	\$384,623	\$934,237	\$423,419	\$391,331	\$446,015	\$231,686	\$362,797	\$784,296	\$401,117	\$345,877	\$604,426	\$829,750	\$704,576	\$361,725	\$305,968	\$9,788,646	\$4,244,017
PV Annual Remaining Salvage Value	ېل د 122 72 0	ŞU ¢10€ 72€	ŞU 6220.640	ŞU 6124 574	ŞU 6100 201	ŞU 6242.002	ŞU 6110-107	ŞU ¢102.040	ŞU ¢116.200	ŞU ¢C0.412	ŞU 604.600	ŞU ¢204 500	ŞU 6104 502	ŞU 600.100	ŞU 6157.005	ŞU 6216.250	ŞU 6102 710	\$U	ېں د جو جوې	ŞU 62.552.402	ېU د 100 c 22
PV Operations & Maintenance Expense	\$133,720	\$106,736	\$228,649	\$124,574	\$100,291	\$243,603	\$110,407	\$102,040	\$116,299	\$60,413	\$94,600	\$204,506	\$104,592	\$90,188	\$157,605	\$216,358	\$183,719	\$94,320	\$79,782	\$2,552,402	\$1,106,633
Total Utility PV Costs	\$646,543	\$516,078	\$1,105,535	\$602,325	\$484,914	\$1,177,840	\$533,826	\$493,371	\$562,315	\$292,099	\$457,397	\$988,802	\$505,709	\$436,065	\$762,031	\$1,046,108	\$888,295	\$456,045	\$385,750	\$12,341,048	\$5,350,650
Utility Annual Levelized Cost per KWN Saved	\$0.0907	\$0.1676	\$0.1363	\$0.0742	\$0.0918	\$0.2454	\$0.1046	Ş0.0927	\$0.0701	\$0.0486	\$0.1023	\$0.2295	\$0.1092	\$0.0956	\$0.1899 cano	\$0.1268	\$0.1335	\$0.0970	\$0.0886	\$0.1154	ŞU.0848
Utility Levelized Annual Cost per KW Reduction	\$452	\$966	\$642	\$384	\$471	\$1,054	\$498 1 OF	\$467	\$359	\$257	\$551 1.07	\$1,207	\$495	\$517	\$889	\$679	\$635	\$424	\$429	\$574 0.05	\$428
Cuilty Denent / Cost Ratio	1.21	0.65	0.80	1.48	1.19	0.45	1.05	1.18	1.50	2.20	1.07	0.48	1.00	1.15	0.58	0.80	0.82	1.13	1.24	0.95	<u> </u>
Itility Revenue Requirements																				0.0	0.0
Avoided PV of Purchase Power Costs	¢781 880	\$337 556	<u> </u>	\$890 364	\$578 917	\$526 3/2	\$550 511	\$583 602	<u> </u>	\$658 736	\$490 381	\$472 297	\$507 735	\$500 127	¢130 801	\$901 550	\$729.405	\$515 6 81	\$477 604	\$11 722 785	\$6 915 777
Net Litility PV Savings	\$125,276	(\$178 521)	(\$216 212)	\$288.040	\$94.002	(\$651 /107)	\$25 685	\$90,052	\$316 560	\$366 637	\$32.08/	(\$516 505)	\$2.026	\$64.062	(\$322.1/0)	(\$141 540)	(\$158.801)	\$59 636	\$91 85 <i>1</i>	(\$618.263)	\$1,565,127
	γ133,340	(71/0,021)	(9210,313)	-γ200,040		(2021,437)	-γ 2 5,065	₹30,321	2210,200	<i>4300,037</i>	JJZ, 304	(2010,505)	<i>ΨΖ</i> ,020		(7522,140)	(7141,343)	(150,051)	JJJ,030	γJ1,0J4	(3010,203)	۲,505,127 آ
Customer Impact / Substation												+								<u> </u>	50 00 50 00
Customer kWh/vr (before SI & VO)	18 478	20 331	33,802	16.623	14,826	18,924	20.275	30,903	27,071	16,379	15,940	18,836	20.361	15 585	20.815	22,516	25,872	20.456	20.315	20.412	19,157
Customer kWh/yr (after SI & VO)	18,160	20.188	33.375	16.321	14.622	18.662	20.098	30.631	26.710	16.126	15.779	18.633	20.143	15.376	20.602	22.220	25.509	20,155	20.001	20,160	18,910
	,	- /====		-,	,	-,	-,		-,-=-	-,	- /	.,	-,	.,	-,=	,	-,	-,===	-,	-,	-,-=-

Appendix 7-6 Optimal Solutions by Circuit and Total Viable

Ontimal Solution	Walla Walla	Walla Walla	Walla Walla	Walla Walla	Walla Walla	Walla Walla	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Lower Valley	Lower Valley	Lower Valley	
(Greatest Savings and BCR >= 1 and $ C C \leq 105.91$)	Bowman	Bowman	Dodd Rd	Mill Creek	Mill Creek	Pomerov	Clinton	Clinton	Nob Hill	Nob Hill	Nob Hill	North Park	Orchard	Orchard	Wiley	River Road	Grandview	Sunnyside	Sunnyside	Optimal
	5W150	5W154	4W/22	5W116	5W/127	5W342	57608	57610	57194	57197	57273	57356	57456	57498	57434	57444	5Y351	57313	57317	Summary
General Information		<u>511151</u>		<u></u>	<u></u>	<u>500012</u>	<u> </u>	<u></u>	<u>51151</u>	<u>51157</u>	<u>512/5</u>	<u></u>	<u>51150</u>	<u>51150</u>	<u></u>	<u></u>	01001	<u>51515</u>	<u>51517</u>	
Total Customers Served (#)	1.796	1.823	1,181	2.053	1.968	NC	2.037	1.401	1.572	1.873	2.216	NC	1.421	1.751	1.332	2.201	1.286	1.020	978	27,909
Feeder Annual Peak MW	6.72	8.20	8.70	8.10	6.22	NC	8.20	9.25	8.37	5.90	7.98	NC	7.30	6.28	6.99	10.60	7.70	5.00	4.00	125.50
Total Annual Energy Consumed (MWh/yr)	33,096	37,064	39,920	34,127	29,178	NC	41,300	43,296	42,555	30,679	35,323	NC	28,933	27,290	27,726	49,558	33,272	20,865	19,868	574,046
Average Customer Voltage Change (%)	2.27%	0.83%	1.59%	2.84%	2.15%	NC	1.36%	1.38%	2.10%	2.41%	1.55%	NC	0.83%	2.10%	0.83%	1.22%	1.33%	2.26%	2.38%	1.73%
Reduction in Annual Energy Delivered from Sub (%)	1.77%	0.56%	1.21%	1.95%	1.49%	NC	1.01%	1.01%	1.55%	1.61%	1.04%	NC	0.76%	1.37%	0.68%	0.81%	1.07%	1.85%	1.80%	1.23%
Utility Energy Savings Potential																				
Line Loss Reduction (MWh/y)	78.163	0.299	126.960	21.470	16.457	NC	43.637	41.508	70.630	3.457	-3.944	NC	57.439	-5.093	33.510	-2.250	55.648	65.827	39.429	643.147
VO Energy Savings (MWh/y)	480.0	197.7	330.4	620.1	400.7	NC	359.6	381.5	567.4	474.5	357.9	NC	154.3	366.2	147.9	388.2	287.4	306.8	306.8	6127.4
Total Energy Savings (MWh/y)	585.7	208.6	481.1	666.9	433.6	NC	419.1	437.2	658.3	493.4	367.3	NC	219.0	374.6	189.4	402.4	357.4	386.3	357.7	7038.0
Total Energy Savings (MWa)	0.0669	0.0238	0.0549	0.0761	0.0495	NC	0.0478	0.0499	0.0751	0.0563	0.0419	NC	0.0250	0.0428	0.0216	0.0459	0.0408	0.0441	0.0408	0.8034
Total Coincidental Demand Reduction (kW)	117.4	38.9	107.1	128.9	84.5	NC	88.0	86.8	128.6	93.2	68.2	NC	53.7	69.3	42.8	74.9	79.5	88.3	73.8	1423.9
Customer Average Energy Reduction (kWh/yr)	267	108	280	302	204	NC	177	272	361	253	162	NC	109	209	111	176	223	301	314	220
Distribution Line Losses																				
Existing Base System Line Loss (kW)	325.2	98.8	288.9	122.6	65.7	NC	113.0	128.8	165.1	44.7	150.2	NC	124.3	91.7	144.8	186.1	106.0	86.8	49.6	2292.3
Baseline Pre-VO System Line Loss (kW)	302.3	98.7	247.4	114.6	59.3	NC	95.2	116.2	146.8	43.5	151.6	NC	100.8	93.6	131.1	186.9	82.8	58.4	35.5	2064.7
Line Loss Reduction (kW)	22.9	0.1	41.5	8.0	6.4	NC	17.8	12.6	18.3	1.2	-1.4	NC	23.5	-1.9	13.7	-0.8	23.2	28.4	14.1	227.6
Line Loss Reduction (MWa)	0.0089	0.0000	0.0145	0.0025	0.0019	NC	0.0050	0.0047	0.0081	0.0004	-0.0005	NC	0.0066	-0.0006	0.0038	-0.0003	0.0064	0.0075	0.0045	0.0734
End-Use Energy Consumption																				
Average Volts Pre-VO (V)	122.3	121.6	122.1	123.2	122.3	NC	121.8	121.8	122.4	123.3	122.1	NC	122.1	122.6	122.0	122.2	122.3	122.2	122.9	122.3
Average Volts Post-VO (V)	119.6	120.6	120.2	119.8	119.7	NC	120.2	120.2	119.9	120.4	120.2	NC	121.1	120.1	121.0	120.8	120.7	119.5	120.0	120.2
VO Factor (for End-Use) from VO Protocol	0.640	0.640	0.520	0.640	0.640	NC	0.640	0.640	0.640	0.640	0.640	NC	0.640	0.640	0.640	0.640	0.650	0.650	0.650	0.635
Total End-Use Demand Reduction (kW)	91.3	37.6	62.9	118.0	76.2	NC	68.4	72.6	108.0	90.3	68.1	NC	29.4	69.7	28.1	73.9	54.7	58.4	58.4	1165.8
VO Energy Savings (MWa)	0.0548	0.0226	0.0377	0.0708	0.0457	NC	0.0411	0.0435	0.0653	0.0540	0.0400	NC	0.0176	0.0418	0.0169	0.0443	0.0328	0.0350	0.0350	0.6990
Change in Voltage (pu)	0.0227	0.0083	0.0159	0.0284	0.0215	NC	0.0136	0.0138	0.0208	0.0242	0.0158	NC	0.0083	0.0210	0.0083	0.0122	0.0133	0.0226	0.0238	0.0173
Distribution Transformer No-Load Losses																				
Distribution Transformer Connected kVA	23,831	24,581	29,035	17,726	15,105	NC	22,604	20,066	19,096	12,614	16,378	NC	16,682	12,638	18,624	25,987	20,980	11,852	9,580	317,376
Total No-Load Loss (kW)	71.5	73.7	87.1	53.2	45.3	NC	67.8	60.2	57.3	37.8	49.1	NC	50.0	37.9	55.9	78.0	62.9	35.6	28.7	952.1
Change in No-Load Loss (%)	4.38%	1.65%	3.11%	5.45%	4.16%	NC	2.67%	2.70%	4.04%	4.66%	3.09%	NC	1.65%	4.07%	1.65%	2.40%	2.61%	4.38%	4.59%	3.38%
Total No-Load Loss Reduction (kW)	3.1	1.2	2.7	2.9	1.9	NC	1.8	1.6	2.3	1.8	1.5	NC	0.8	1.5	0.9	1.9	1.6	1.6	1.3	30.5
No-Load Loss Saved (MWh/yr)	27.5	10.6	23.7	25.4	16.5	NC	15.8	14.2	20.3	15.5	13.3	NC	7.2	13.5	8.1	16.4	14.4	13.6	11.5	267.5
No_Load Loss Reduction (MWa)	0.0031	0.0012	0.0027	0.0029	0.0019	NC	0.0018	0.0016	0.0023	0.0018	0.0015	NC	0.0008	0.0015	0.0009	0.0019	0.0016	0.0016	0.0013	0.0305
Utility Energy Efficiency Costs and Benefits																				
VO Improvement Installation Cost	\$341,514	\$29,526	\$288,415	\$318,157	\$256,139	NC	\$281,975	\$260,606	\$297,023	\$154,291	\$241,604	NC	\$124,802	\$230,336	\$100,248	\$264,201	\$221,349	\$240,890	\$203,759	\$3,854,835
Energy Efficiency Incentives			1								1					1		1		
VO Improvement First Year Cost	\$341,514	\$29,526	\$288,415	\$318,157	\$256,139	NC	\$281,975	\$260,606	\$297,023	\$154,291	\$241,604	NC	\$124,802	\$230,336	\$100,248	\$264,201	\$221,349	\$240,890	\$203,759	\$3,854,835
PV Annual Fixed Capital Charges	\$512,824	\$44,337	\$433,089	\$477,751	\$384,623	NC	\$423,419	\$391,331	\$446,015	\$231,686	\$362,797	NC	\$187,405	\$345,877	\$150,534	\$396,729	\$332,382	\$361,725	\$305,968	\$5,788,494
PV Annual Remaining Salvage Value	\$0 \$122 720	\$0 \$14 FC1	\$0	\$0 \$124 F74	\$0 \$100,201	NC	\$0 6110.407	\$0	\$0 ¢116.200	\$0 ¢c0.442	\$0	NC	\$0 ¢ 10.0000	\$0 ¢00.400	\$0 \$0	\$0 \$102.440	\$0 ¢06.660	\$0 ¢04.220	\$0 670 702	\$0 ¢4 500 257
PV Operations & Maintenance Expense	\$133,720	\$11,561	\$112,929	\$124,574	\$100,291	NC	\$110,407	\$102,040	\$116,299	\$60,413	\$94,600	NC	\$48,866	\$90,188	\$39,252	\$103,448	\$86,669	\$94,320	\$79,782	\$1,509,357
I taility Appual Levelized Cest per kW/b Saved	\$040,543	\$55,898	\$540,018	\$602,325 \$0.0742	\$484,914	NC	\$533,820	\$493,371	\$502,315	\$292,099	\$457,397	NC	\$236,271	\$436,065	\$189,780	\$500,177	\$419,051	\$450,045 \$0,0070	\$385,750	\$7,297,852
Utility Lovelized Appual Cost per kWI Saved	\$0.0907 \$452	\$0.0220 \$119	\$0.0952 \$410	\$0.0742 \$294	\$0.0918 \$471	NC	\$0.1040 ¢109	\$0.0927	\$0.0701 \$250	\$0.0480 \$257	\$0.1025 \$EE1	NC	\$0.0880 \$261	\$0.0950 ¢E17	\$0.0825 \$265	\$0.1021 \$E49	\$0.0905	\$0.0970 \$424	\$0.0880 \$420	\$0.0852 \$421
Utility Benefit / Cost Ratio	1.21	4.98	1.18	1.48	1.19	NC	3498 1.05	1.18	5559 1.56	2.26	1.07	NC	1.24	1.15	1.33	1.07	1.14	1.13	,429 1.24	1.29
					ļ	ļ														
Utility Revenue Requirements	6704.000	6270 500	¢642.202	6000.0C1	¢570.047			6502 C02	6070.075	6050 720	¢400-204		6202.220	¢500.407	6252 000	6527.240	6477454	¢545.004	6477 CO 4	60 20C 475
Avoided PV of Purchase Power Costs	\$781,889	\$278,500	\$642,293	\$890,364	\$578,917	NC	\$559,511	\$583,692	\$878,875	\$058,736	\$490,381	NC	\$292,328	\$500,127	\$252,909	\$537,218	\$477,151	\$515,681	\$477,604	\$9,396,175
Net Utility PV Savings	\$135,346	\$222,603	\$96,274	\$288,040	\$94,003	NC	\$25,685	\$90,321	\$316,560	\$366,63 <i>1</i>	\$32,984	NC	\$56,057	\$64,062	Ş63,123	\$37,041	\$58,100	\$59,636	Ş91,854	\$2,098,324
Customer Impact / Substation																				
Customer kWh/yr (before SI & VO)	18,428	20,331	33,802	16,623	14,826	NC	20,275	30,903	27,071	16,379	15,940	NC	20,361	15,585	20,815	22,516	25,872	20,456	20,315	20,568
Customer kWh/yr (atter SI & VO)	18,160	20,223	33,522	16,321	14,622	NC	20,098	30,631	26,710	16,126	15,779	NC	20,252	15,376	20,704	22,340	25,649	20,155	20,001	20,349
Optimal Recommended Solution	Stage 3	Stage 1	Stage 2	Stage 3	Stage 3	NC	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	NC	Stage 2	Stage 3	Stage 1	Stage 2	Stage 2	Stage 3	Stage 3	

NC = No stage solution is economically compliant

Appendix 8: Simplified Voltage Optimization (VO) Measurement and Verification Protocol

Simplified Voltage Optimization (VO)

Measurement and Verification Protocol

1.0 Introduction

1.1 Purpose

The Simplified Voltage Optimization (VO) Measurement and Verification (M&V) Protocol provides a basic approach to determine end-use energy savings when operating the electric distribution system more efficiently and within the lower band of the ANSI Standard voltage level. The protocol covers utility electric distribution systems serving mostly residential and light commercial load as defined by the utility. System loads do not need to be uniformly distributed throughout the distribution system. This Protocol identifies the procedure to determine the average annual voltage for a distribution primary system with source voltage regulation. Minimum system stability thresholds, system data requirements, and measurement and verification formulations are included as part of this Protocol.

- 1.1.1 Attachments
 - End-use VO Factors are identified in tables for use with this Protocol in Appendix A.
 - Examples of data collected are included with this document to provide an understanding of the level of effort and detail to perform VO Assessments. See Examples: Data Collection Templates.

1.1.2 Clarification of issues throughout this document.

The items in **bold** will appear frequently throughout the document.

- When **adjusted annual kW peak demand** is mentioned, 'adjusted' refers to common efforts by the utility to adjust for temperature, abnormal switching, or unusual loading conditions that would cause artificial peak demand information. Unusual loading conditions could, for example, be due to outage or maintenance.
- When **system modeling** is mentioned, it refers to using industry accepted distribution system power flow simulation tools for analysis of distribution system electric characteristics.
- When end-use VO Factor is mentioned, it refers to the tables in Appendix A that are derived from the 2007 NEEA Distribution Efficiency Initiative Study for end-use consumption (Load Research Project) and included 395 randomly selected residential homes throughout the Northwest using 12 plus months of day VO-On/ day VO-Off recordings. This information was presented to the NWPCC Regional Technical Forum (RTF) in 2008.
- When **voltage control zone** is mentioned, it consists of all distribution lines that are controlled by a tap changing source voltage regulator. Several voltage-control-zones may exist within one substation area
2

- When minimum operating performance thresholds are mentioned, they refer to a set of specifications to achieve higher efficiency. These specifications, called performance thresholds, are described in the NEEA Distribution Efficiency Guidebook, January 2008, which provides guidelines for industry best practices for distribution system efficiency based on the research performed during the NEEA Distribution Efficiency Initiative Study.
- Annual estimated or historical annual peak kW demand data may be used for estimation of end use VO savings during study/assessment periods; however, actual metered annual kW peak demand data is used during the verification process.
- Calculations of all system improvements (reduction of line losses and no-load losses) will be made using industry accepted engineering methodologies. This Protocol does not propose new methods of calculating reduction of losses due to system improvements nor are Appendix A Tables used for non end-use VO calculations.
- Metering periods must not occur during a holiday or unusual circumstance that would lead to abnormal patterns in residential use.

1.2 Simplified Voltage Optimization Overview

The Simplified VO Protocol encompasses three basic source voltage regulation techniques described below:

Voltage Fixed Reduction (VFR): The Voltage Fixed Reduction methods require that the distribution substation source voltage regulator and line regulators voltages be <u>lowered by a fixed amount</u>. It is assumed that the pre-installation voltage is fixed at a known value. No remote automated voltage feedback controls are applied.

Line Drop Compensation (LDC): The Line Drop Compensation methods require that the distribution substation source voltage regulator and line regulators apply <u>automatic voltage controls</u> to control voltage up and down <u>based on line load levels</u>. When the feeder or substation load is changing, the voltage regulator simulates (calculates) an EOL voltage level and adjusts the regulator voltage to hold the EOL voltage constant. The voltage is locally sensed at the substation and line voltage regulator locations.

Automated Voltage Feedback Control (AVFC): The Automated Voltage Feedback Control methods require that the distribution substation source voltage regulator and line regulators voltages apply <u>automatic voltage controls</u> to control voltage up and down <u>based on remote EOL voltage sensing</u>. When the EOL voltage rises or falls below the pre-determine set point, the substation and line voltage regulators raise or lower their voltages as necessary to hold the remote EOL voltage constant. The voltage is locally and remotely sensed at the substation and line voltage regulator locations. Continuous voltage monitoring is required at EOL to feedback voltage. All methods require voltage monitoring by the utility to periodically check that the end-of-line (EOL) voltages do not fall below a pre-determined set point.

All methods must be maintained annually in order to meet performance thresholds and VO guidelines.

2.0 Simplified VO M&V Approach

2.1 FEMP Measurement and Verification

The Simplified VO M&V Protocol follow Option D as described in "Measurement & Verification for Federal Energy Projects, Version 2.2 <u>www.eere.energy.gov/femp/financing/superespcs_mvresources.html</u> and "International Performance Measurement & Verification Protocol (IPMVP)", Volume I, March 2002 (<u>www.ipmvp.org</u>).

Option D is utilized because the VO M&V Protocol is applied to a single whole facility (substation or feeder) with many subparts requiring a collective approach and where the energy savings will be less than 10 percent. Option D allows for a minimum of pre and post metered data points, and includes some simulation modeling and/or calculations to arrive at the energy saved for each chosen facility or system.

2.2 Simplified VO M&V; Four Stages

The Simplified VO M&V Protocol approach has four stages. The general steps of each stage are identified below. Processes that will be used throughout the stages are explained in 2.3 through 4.0.

- 1. Stage One Existing Performance Assessment and VO Implementation Plan
 - a. Gather actual or estimated distribution system historical data that is readily available including voltage settings and voltage operational standards.
 - b. Perform preliminary assessment of distribution system's existing level of performance using system modeling.
 - c. Develop a preliminary improvement plan describing the system improvements needed to meet minimum operating performance thresholds for VO.
 - d. Develop preliminary plan for implementation of VO.
 - e. Estimate costs and propose preliminary schedules.
 - f. Calculate VO Factor from the VO Factor Tables.
 - g. Estimate potential savings of VO application.
 - h. Document all activities and results.
- 2. Stage Two System Improvements and Baseline Pre-VO measurements
 - a. Implement cost effective system improvements necessary to meet performance thresholds.
 - Install source voltage regulating equipment necessary for operation of VO with controls set to mimic pre-VO average voltage conditions (non-VO operation).
 Pre-VO control settings are determined using system modeling. Perform pre-VO baseline measurements for 7-day period (168 hours). The detailed measurements are averaged over each hour.

- c. Each voltage control zone must meet performance thresholds during this Pre-VO measurement period.
- d. Determine baseline pre-VO overall average voltage for all VO voltage control zones included as part of the VO plan.
- e. Identify final installation cost of system improvements including VO equipment.
- f. Document all activities and results.
- 3. Stage Three VO Implementation and Post-VO Measurements and Verification
 - a. Prepare an initial estimate of end-use energy savings resulting from VO using results of pre-VO baseline measurements, planned post-VO conditions, and distribution system known or estimated customer load characteristics.
 - b. Initiate post-VO operational voltage controls.
 - c. Perform post-VO measurements for 7-day period (168 hours). The detailed measurements are averaged over each hour.
 - d. Each voltage control zone must meet performance thresholds during this Post-VO measurement period.
 - e. Determine post-VO overall average voltage for the voltage control zone. Prepare a final post-VO verified estimate of energy savings resulting from change in average annual voltage for baseline pre-VO and post-VO.
 - f. Document all activities and results
- 4. Stage Four Persistence of Energy Savings
 - a. Complete annual self-certification checklist to ensure;
 - i. Voltage settings are still in operation as prescribed within all VO voltage control zones.
 - ii. Voltage control zones continue to meet performance thresholds. The annual VO performance self-certification is measured over a 12-month period.

2.3 About Minimum Operating Performance Thresholds

The voltage control zones must meet or exceed performance thresholds during normal system switching configurations for the measurement periods; 7 days and/or 168 hours in Stage 2, 7 days and/or 168 hours in Stage 3, and there after during the Persistence period in Stage 4. All measurements during the measurement period are averaged over a one hour period.

In some cases it may be needed to perform system improvements to comply with performance thresholds (i.e. addition of line regulators, shunt capacitors, phase upgrades, line reconfigurations, and line reconductoring). If multiple VO voltage control zones are included as part of a substation system, the performance thresholds apply to each VO voltage control zone. System performance is determined from measurements at each VO voltage control zone source. Performance thresholds do not apply for non-VO voltage control zones.

For calculation purposes, load adjustment for temperature, abnormal switching configuration, or seasonal load anomalies may be performed to reflect normal annual loading operations.

1. The feeder-source <u>minimum power-factor</u> must be greater than 0.96. Power-factor

is total 3\phi kW divided by total 3\phi kVA.

- 2. The average of <u>feeder-source power-factor</u> must be greater than 0.98. Power-factor is defined in item 1 above.
- Feeder-source <u>phase-load-unbalance per unit (p.u.) must be l</u>ess than 0.15 on 3φ lines. The p.u. unbalance is the average of (1-[Average 3φ peak hourly demand <u>Amps</u>] / [maximum 1φ hourly demand Amps]) over the measurement-period. Phase-load-unbalance is determined for each VO voltage-control-zone. Maximum 1φ hourly demand Amps is measured for each line phase (e.g. line phases A, B, or C). Feeder-source <u>neutral-current</u> must be less than 40 amps on 3φ lines.
- 4. Substation VO voltage-control-zone <u>maximum adjusted voltage-drop</u> must be less than 3.3%. The calculation uses voltage measurements over the period and adjusts them for peak load periods. For pre-VO and post-VO assessments, the maximum adjusted voltage-drop is the average of all voltage-drops over the measurement period multiplied by the ratio [annual 3φ peak kW hourly demand / average 3φ kW demand for measurement period]. Primary voltage-drop is difference between regulator bus and EOL (lowest voltage location).

<u>Note:</u> Voltage-drop is the reduction in voltage on primary line between regulator source and lowest voltage points. The voltage-drop % is the reduction in volts divided by source volts times 100. Substation VO regulator or VO line regulator annual 3¢ peak kW hourly demand for a 12 month historical data period may be used with power flow simulations to determine the annual maximum voltage-drop for use with system assessment (Stage One) and self-certification monitoring (Stage Four). The peak kW demand is allocated across the VO voltage-control-zone feeder system.

- 5. Line Regulator voltage-control-zone <u>maximum adjusted voltage-drop</u> must be less than 3.3%. The calculation uses voltage measurements over the period and adjusts them for the peak load periods. For pre-VO and post-VO assessments, the maximum adjusted voltage-drop is the average of voltage-drops over the measurement-period multiplied by the ratio [annual 3φ peak kW hourly demand / average 3φ kW demand for measurement period]. Primary voltage-drop is difference between regulator bus and EOL (lowest voltage location).
- 6. <u>Secondary maximum allowed voltage-drop</u> must be less than 4.0% for all VO voltage control zones. This value is difficult to obtain, and therefore, it may be established from utility standards and design guidelines. Any time the secondary voltage-drop exceeds 4.0%, the solution should be to fix the problem and not to increase the source voltage. Secondary systems include the distribution transformer, secondary conductors, and service wires.
- Maximum <u>voltage-drop variance</u> between multiple feeders served within a substation VO voltage-control-zone must be less than 2 volts (on a 120V base). The voltage-drop p.u. variance is determined by comparing the maximum voltagedrops of each feeder measured over the measurement-period.
- The VO primary line minimum hourly voltage must be greater than [114 Volts + ¹/₂ the voltage regulation bandwidth + secondary maximum allowed voltage-drop]. Acceptable voltage regulation bandwidth is in the range of 2V to 3V (on 120V base.) Primary line minimum-voltage must be measured near the expected lowest voltage location on the primary line at EOL.

9. The VO primary line maximum hourly voltage must be less than [126 Volts - ½ the voltage regulation bandwidth]. Acceptable voltage regulation bandwidth is in the range of 2V to 3V on 120V base. Primary line maximum voltage must be measured near the expected highest voltage location on the primary line at or near the voltage-control-zone regulator measured over the measurement-period averaged over each hour.

<u>Note</u>: The Customer Service Voltage must be between 126 Volts to 114 Volts for normal system switching configuration measured line to ground on a 120 Volt base over the measurement period integrated over the interval period of one hour. For infrequent abnormal operating conditions, the customer service voltage range is 127 Volts to 110 Volts.

2.4 About Distribution System Load and Operating Data Collection

Additional system data is collected for all VO voltage control zones from annual historical data, during the pre-VO and post-VO measurement periods, and through annual certification measurement periods. The system data is needed to determine the average voltage reduction and resultant energy savings for each VO voltage control zone.

Annual load peak demand or annual energy adjustments for temperature, abnormal switching configuration, or seasonal load anomalies may be performed to reflect normal annual loading operations.

This data is determined for each VO voltage control zone and includes:

- <u>Annual 3φ peak kW hourly demand</u> and annual energy kWh. The VO assessment must also include an actual or adjusted annual kW peak demand and energy delivered by substation and assigned to each VO feeder and voltage control zone. This data is used to calculate annual load factor [annual 3φ kWh energy delivered / [maximum annual 3φ peak kW hourly demand * 8760 h]]
- 2. <u>Hourly demand phase Amps</u> for each VO voltage control zone source over the measurement period averaged over each hour.
- 3. <u>Hourly demand kW</u> over the measurement period for each VO voltage control zone, adjusted for normal conditions as required.
- 4. <u>Hourly demand kvar</u> over the measurement period for each VO voltage control zone, adjusted for normal conditions as required.
- <u>Maximum primary voltage-drop</u> at the time of the 3φ peak kW demand (on 120V base). The voltage-drop is the average value measured over the peak hour. Distribution system modeling may be performed to determine system maximum primary voltage-drop. <u>Source substation and line regulator Set-Point-Voltage settings on 120V base (in Volts)
 </u>
- 6. Source substation and line regulator <u>Current Transformer (CT) Primary Rating</u> (in Amps)
- 7. Source substation and line regulator <u>Potential Transformer (PT) Ratio</u> (line-toground)
- 8. Source substation and line regulator <u>real volts 'R' and reactive volts 'X' control</u> <u>setting</u> on 120V base (in Volts)

 Calculated regulator <u>maximum voltage-rise</u> at maximum 3φ peak kW hourly demand on 120V base (in Volts). Distribution system modeling and simulation may be performed to determine system maximum voltage-rise at maximum peak demand.

Note: The VO regulator voltage-rise is based on the peak load, control zone power factor and regulator control settings. For example, for most common conditions with average power factor greater than 0.98 and a 'X' setting equal to zero, the regulator maximum voltage-rise is ['R' setting (Volts) * average annual power factor (p.u.) * maximum annual 3ϕ peak hourly demand (Amps) / Current Transformer Primary Rating (Amps)]. All measurements are averaged over each hour.

2.5 About Distribution System Equipment Data

In addition to the measured or determined system parameters, additional information must be available to ensure correct system modeling, power flow simulations, and determine maximum voltage-drops and maximum voltage rises for all VO voltage control zones. The electric utility distribution system data is collected for system preliminary assessments, baseline pre-VO, post-VO, and annual self-certification M&V assessments for each VO application. The modeling data set includes:

- 1. Primary kV line-to-line voltage class (typically identified as the Distribution Transformer primary line-to-ground kV voltage rating.)
- 2. Distribution system maps and/or models depicting conductor sizes, phase configuration, and connected kVA size and location of distribution transformers.
- Location, size, and type of all station regulators and line regulators including control settings for each (e.g., set-point-voltage, R & X settings, time delay, CT Rating and PT ratio, regulator bandwidth, and regulator first house protection settings.)
- 4. Location and size of Shunt Capacitor banks and control settings (if applicable). For simplified VO application, switch capacitor control must be 'var' control only.
- 5. Overall utility characteristics, design guidelines, construction standards, historical system studies, customer information, and equipment data.

2.6 About Metering Requirements

Metering equipment is required to provide the measurement and verification of data for all VO voltage control zones for pre-VO, post-VO, and annual self-certification monitoring. Meters must collect kW demand, kvar demand, ampere demand, and volts measured over the measurement-period with measurements averaged over each hour. Metering locations include:

- Substation power transformer (on regulated voltage side).
- Substation feeder breakers.
- Line Regulator equipment (on regulated voltage side).
- Remote primary line EOL low voltage point locations (voltage recording meters only) for each VO voltage control zone.

Metering installations and calibration must be performed by qualified personnel. If feasible, it is desirable that all metering instrumentation complies with ANSI Standard C57.13

metering accuracy specifications. Substation and regulator metering data can be collected from energy/demand meters, electronic relays, or controllers provided they provide data on all phases present. Utility field self-verification and inspections are required to verify correct meter installation and correct register readings.

For VFR and LDC systems, one remote primary line EOL voltage-recording meter must be installed at the lowest voltage point locations on each of the primary feeders for each voltage-control-zone. For AVFC systems, there must be three-volt recording meters and volt remote feedback-sensing devices installed on each primary feeder at independent locations. The meters should measure voltage on all phases present for VRF, LDC, and AVFC systems.

3.0 About VO Factor and Energy Savings Calculations

3.1 Customer Data

Customer load information is required for each distribution substation where VO may be applied. This customer information is used to determine the end-use VO Factor from Appendix A Tables, which are used in energy savings calculations. Based on known customer information available for the electric utility (e.g. customer information systems, utility mapping records, and customer billing system) the customer load characteristics are determined. It may be necessary to provide an estimate of customer load characteristics using typical load research data or other similar analysis. The required customer load characteristics are as follows:

- 1. Heating and cooling climate zone classification for each substation area.
- 2. Percentage of substation area total annual load (kWh) that is classified as residential class load.
- 3. Percentage of existing residential class consumers that have electric heat (hot water, space heating, and/or heat pump). Non electric heat is typically provided by gas, oil, or wood.
- 4. Percentage of existing residential class consumers that have any type of electric air conditioning.

3.2 About End Use VO Factor

The end-use VO Factor is a ratio of expected % change in energy delivered for each 1% change in average voltage supplied at the end-use service entrance. The end use VO Factor is given as a p.u. ratio for a given system and is determined from VO Factor Tables in Appendix A of this Protocol. Enter the table identified for the Heating and cooling climate zone associated for each substation and select the appropriate VO Factor using the percent customers with Non-Electric Heating (and Heat Pumps) and percent of customers with Air-conditioning.

3.3 About Determination of Average Voltage Reduction

For each VO voltage control zone (pre-VO and post-VO conditions), the average voltage formulation depends upon the voltage control method chosen (e.g., VFR, LDC, or AVFC.) The normalized average annual voltages are determined at the baseline pre-VO measurements (Stage 2) and post-VO measurements (Stage 3) from 168 metered-hours emulating a 7-day period as follows:

A = Calculated Feeder Maximum Annual Volt-Drop

= Average_of_all_Volt-Drop(hourly) * [maximum_annual_3φ_peak_kW_demand(hourly) / average_kW_demand(hourly)]

B = Calculated Regulator Maximum Annual Volt-Rise

= [Average_of_all_Regulator_Output_Voltages(hourly) – (Regulator_Set_Point_Voltage_Setting)] * [maximum_annual_3φ_peak_kW_demand(hourly) / average_kW_demand(hourly)]

Note: The Volt-Drop (hourly) is the metered Regulator_Output_Voltage minus the lowest EOL voltage averaged over each hour. All values are calculated over the measurement-period. Variables A and B may be determined via system modeling simulations for initial VO average voltage estimates and annual self-certification assessments.

The final post-VO verified average annual voltage reduction is the difference between the adjusted pre-VO and post-VO average annual voltages weighted by VO voltage control zone kW load and depends on the pre-VO and the post-VO voltage control techniques applied.

The annual 3 ϕ peak kW hourly demand and Annual Load Factor are known from the measured historical data.

The baseline pre-VO overall average voltage for all VO voltage control zones is determined by applying the existing non-VO control settings and applying control setting adjustments to mimic pre-VO average voltage conditions (non-VO operation). Pre-VO control settings are determined using system modeling.

The <u>adjusted average voltage</u> calculation formulation for pre-VO and post-VO measurements for each voltage-control-zone is described as follows:

**** VFR Methods***

For VFR applications, the regulator R and X control settings are zero.

Adjusted Average Voltage for VFR = [Regulator_Set_Point_Voltage_Setting – ½ * A * Annual_Load_Factor]

**** LDC and AVFC Methods***

For LDC applications, the regulator R and X control settings should be set so that the maximum voltage rise B is equal to or greater than the maximum annual voltage-drop A.

Adjusted Average Voltage for LDC or AVFC = [Regulator_Set_Point_Voltage_Setting + Annual_Load_Factor *[B - 1/2 *A]]

3.4 About Determination of Average Annual Energy Reduction

For each voltage-control-zone, the average voltage is calculated as shown in Section 3.3 above for the baseline pre-VO and post-VO conditions. If there are multiple voltage-control-zones within each VO application area, the overall system average annual voltage

is the average of the control zone voltages weighted by control zone loads. All average annual voltages are on a 120V base.

Variables A and B can be determined via system modeling for initial VO average voltage estimates and annual self-certification assessments. The VO energy savings used for determining the initial VO estimate, final post-VO verification, or annual assessment is calculated as follows:

```
Overall Average Voltage Reduction (in volts) =
[Weighted Average Voltage (pre-VO) - Weighted Average Voltage (post-VO)]
Overall Average Voltage Reduction (p.u.) =
[Overall Average Voltage Reduction (in volts) / 120]
Energy Change (p.u.) = Overall Average Voltage Reduction (p.u.) * VO Factor
VO Energy Change (MWh) = Annual 3φ kWh energy load * Energy Change (p.u.)
```

The VO design should not yield voltages for customers outside the nominal ANSI C84.1 Standard Voltage Range of 126-114 Volts (on 120V base). In practice it is desired to achieve an overall average voltage for primary lines in the range of 122-118 Volts and depends on the secondary maximum allowed voltage-drop. At the residential and light commercial customer service meter, the goal is to have an average voltage between 120-114 Volts.

4.0 Recommendations for Ensuring Persistence of Energy Savings

System improvements typically have a useful life exceeding 35 years. However, control settings are easily altered over time unless they are integrated into utility operating and design standards. For new operating design standards to become entrenched, a three-year monitoring and documentation period is recommended. Standards that become entrenched tend to extend the life of VO perpetually.

This 3-year period includes the following:

- 1. On a monthly basis, a utility must document that voltage control settings within each the VO voltage control zone are maintained as necessary to be consistent with those determined during the original VO project.
- 2. On an annual basis, provide total kWh usage on the voltage control zone and provide average voltage at Substation and EOL.
- 3. A utility must maintain this documentation (or provide it to the appropriate organization) annually for a 3-year period.
- 4. During this three year period, if the voltage control settings have been off-line, either intentionally or unintentionally for a period of 30 days or longer, the utility must continue to maintain the voltage control setting documentation for a period equal to 30 days or longer beyond the original 3 year documentation period.
- 5. Verify performance thresholds for each voltage-control-zone and corrective actions taken if any. Thresholds include:
 - a. Feeder power factor Average hourly > 0.98 from *metered* data

- b. Feeder power factor Maximum hourly > 0.96 from *metered* data
- c. EOL primary voltage must be > [114 Volts + ½ the voltage regulation bandwidth + secondary maximum allowed voltage-drop] from <u>metered</u> data
- d. Regulator primary voltage must be < [126 Volts ½ the voltage regulation bandwidth + secondary maximum allowed voltage-drop] from <u>metered</u> data
- e. Feeder load unbalance must be < 0.15 from system modeling
- f. Feeder Source 3ϕ feeder neutral current < 40 Amps from <u>metered</u> data
- g. Feeder maximum adjusted primary voltage-drops <3.3% from system modeling
- h. Feeder maximum voltage-drop variance < 2.0 V on a 120V base.

APPENDIX A VO FACTOR TABLES FOR USE WITH SIMPLIFIED VO M&V PROTOCOL

Source of VO Factors is 2007 NEEA DEI Project Load Research Survey Reported Results

<u>Instructions</u>: These End-Use VO Factors are for use with the Simplified VO M&V Protocol. The End-Use VO Factor Tables are for use with distribution system customers classified as residential and small commercial as defined by the utility. To identify the appropriate VO Factor, locate the VO Factor Table for the known heating and cooling zone. The end-use VO Factor is derived by selecting the percent of customers with non-electric heat (and heat pumps) and percent of customers with air-conditioning. VO Factors are shown as percent of change in energy to percent change in average annual voltage. The tables are obtained from the NEEA Distribution Efficiency Initiative project 2003-2007, which performed VO load research evaluation on end-use loads throughout the Northwest for different climate zone.

	% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%			
0	0.27	0.29	0.32	0.35	0.38	0.42	0.46	0.51	0.56	0.63	0.70			
10	0.27	0.30	0.33	0.36	0.39	0.43	0.47	0.51	0.57	0.63	0.70			
20	0.27	0.31	0.33	0.36	0.40	0.43	0.47	0.52	0.57	0.63	0.70			
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.52	0.57	0.63	0.69			
40	0.29	0.32	0.35	0.38	0.41	0.45	0.49	0.53	0.58	0.63	0.69			
50	0.30	0.33	0.36	0.39	0.42	0.45	0.49	0.54	0.58	0.63	0.69			
60	0.31	0.34	0.36	0.39	0.43	0.46	0.50	0.54	0.59	0.63	0.69			
70	0.32	0.35	0.37	0.40	0.44	0.47	0.51	0.55	0.59	0.64	0.69			
80	0.33	0.36	0.38	0.41	0.44	0.48	0.51	0.55	0.59	0.64	0.68			
90	0.34	0.37	0.39	0.42	0.45	0.49	0.52	0.56	0.60	0.64	0.68			
100	0.35	0.38	0.40	0.43	0.46	0.49	0.53	0.56	0.60	0.64	0.68			

 Table 1 – End-Use VO Factors for Climate Zone Heating 1 and Cooling 1

Table 2 – End-Use VO Factors for Climate Zone Heating 1 and Cooling 2

	is of customers with Non-Electric field and field i unips (e.g. gas, oil, of wood field)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%			
0	0.27	0.29	0.32	0.35	0.38	0.42	0.46	0.51	0.56	0.63	0.70			
10	0.27	0.30	0.33	0.36	0.39	0.43	0.47	0.51	0.57	0.63	0.70			
20	0.28	0.31	0.33	0.36	0.40	0.43	0.47	0.52	0.57	0.63	0.69			
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.52	0.57	0.63	0.69			
40	0.29	0.32	0.35	0.38	0.41	0.45	0.49	0.53	0.58	0.63	0.69			
50	0.30	0.33	0.36	0.39	0.42	0.45	0.49	0.53	0.58	0.63	0.69			
60	0.31	0.34	0.37	0.40	0.43	0.46	0.50	0.54	0.58	0.63	0.69			
70	0.32	0.35	0.37	0.40	0.44	0.47	0.51	0.55	0.59	0.63	0.68			
80	0.33	0.36	0.38	0.41	0.44	0.48	0.51	0.55	0.59	0.64	0.68			
90	0.34	0.37	0.39	0.42	0.45	0.49	0.52	0.56	0.60	0.64	0.68			
100	0.35	0.38	0.40	0.43	0.46	0.49	0.53	0.56	0.60	0.64	0.68			

% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)

Simplified VO M&V Protocol

	% of customers with Non Electric near and near Pumps (e.g. gas, oil, of wood hear)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%			
0	0.27	0.29	0.32	0.35	0.39	0.42	0.46	0.51	0.55	0.61	0.66			
10	0.27	0.30	0.33	0.36	0.39	0.43	0.47	0.51	0.56	0.61	0.66			
20	0.28	0.31	0.34	0.37	0.40	0.44	0.47	0.52	0.56	0.61	0.66			
30	0.29	0.31	0.34	0.37	0.41	0.44	0.48	0.52	0.56	0.61	0.66			
40	0.29	0.32	0.35	0.38	0.41	0.45	0.49	0.53	0.57	0.61	0.66			
50	0.30	0.33	0.36	0.39	0.42	0.46	0.49	0.53	0.57	0.61	0.66			
60	0.31	0.34	0.37	0.40	0.43	0.46	0.50	0.54	0.57	0.62	0.66			
70	0.32	0.35	0.38	0.41	0.44	0.47	0.50	0.54	0.58	0.62	0.66			
80	0.33	0.36	0.39	0.42	0.45	0.48	0.51	0.55	0.58	0.62	0.66			
90	0.34	0.37	0.40	0.42	0.45	0.49	0.52	0.55	0.59	0.62	0.66			
100	0.35	0.38	0.41	0.43	0.46	0.49	0.52	0.56	0.59	0.62	0.66			

Table 3 – End-Use VO Factors for Climate Zone Heating 1 and Cooling 3

% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)

Table 4 – End-Use VO Factors for Climate Zone Heating 2 and Cooling 1

% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%		
0	0.27	0.29	0.32	0.34	0.38	0.42	0.46	0.51	0.58	0.66	0.75		
10	0.27	0.30	0.32	0.35	0.38	0.42	0.47	0.52	0.58	0.66	0.75		
20	0.28	0.30	0.33	0.36	0.39	0.43	0.47	0.52	0.58	0.66	0.74		
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.53	0.59	0.66	0.74		
40	0.29	0.32	0.35	0.37	0.41	0.44	0.49	0.54	0.59	0.66	0.73		
50	0.30	0.33	0.35	0.38	0.42	0.45	0.49	0.54	0.59	0.66	0.73		
60	0.31	0.34	0.36	0.39	0.42	0.46	0.50	0.55	0.60	0.66	0.73		
70	0.32	0.34	0.37	0.40	0.43	0.47	0.51	0.55	0.60	0.66	0.72		
80	0.33	0.35	0.38	0.41	0.44	0.48	0.52	0.56	0.61	0.66	0.72		
90	0.34	0.36	0.39	0.42	0.45	0.49	0.52	0.56	0.61	0.66	0.71		
100	0.35	0.37	0.40	0.43	0.46	0.49	0.53	0.57	0.61	0.66	0.71		

Table 5 – End-Use VO Factors for Climate Zone Heating 2 and Cooling 2

% of C	ustomers	with No	n Electric	Heat an	d Heat P	umps (e.	g. gas, oi	l, or woo	d heat)
00/	100/	200/	200/	400/	E 00/	600/	700/	000/	0.00/

%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
0	0.27	0.29	0.32	0.34	0.38	0.42	0.46	0.51	0.58	0.66	0.75
10	0.27	0.30	0.32	0.35	0.38	0.42	0.47	0.52	0.58	0.66	0.75
20	0.28	0.30	0.33	0.36	0.39	0.43	0.47	0.52	0.58	0.66	0.74
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.53	0.59	0.66	0.74
40	0.29	0.32	0.32	0.37	0.41	0.44	0.49	0.54	0.59	0.66	0.73
50	0.30	0.33	0.35	0.38	0.42	0.45	0.49	0.54	0.59	0.66	0.73
60	0.31	0.34	0.36	0.39	0.42	0.46	0.50	0.55	0.60	0.66	0.73
70	0.32	0.34	0.37	0.40	0.43	0.47	0.51	0.56	0.60	0.66	0.72
80	0.33	0.35	0.38	0.41	0.44	0.48	0.52	0.56	0.61	0.66	0.72
90	0.34	0.36	0.39	0.42	0.45	0.49	0.52	0.56	0.61	0.66	0.71
100	0.35	0.37	0.40	0.43	0.46	0.49	0.53	0.57	0.61	0.66	0.71

	% of customers with Non Electric reat and reat Pumps (e.g. gas, oil, of wood reat)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%			
0	0.27	0.29	0.32	0.34	0.38	0.42	0.46	0.51	0.58	0.65	0.75			
10	0.27	0.30	0.32	0.35	0.39	0.42	0.47	0.52	0.58	0.65	0.75			
20	0.28	0.30	0.33	0.36	0.39	0.43	0.47	0.52	0.58	0.65	0.74			
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.53	0.59	0.66	0.74			
40	0.29	0.32	0.35	0.37	0.41	0.45	0.49	0.54	0.59	0.66	0.73			
50	0.30	0.33	0.35	0.38	0.42	0.45	0.49	0.54	0.59	0.66	0.73			
60	0.31	0.34	0.36	0.39	0.42	0.46	0.50	0.55	0.60	0.66	0.72			
70	0.32	0.34	0.37	0.40	0.43	0.47	0.51	0.55	0.60	0.66	0.72			
80	0.33	0.35	0.38	0.41	0.44	0.48	0.52	0.56	0.60	0.66	0.72			
90	0.34	0.36	0.39	0.42	0.45	0.49	0.52	0.56	0.61	0.66	0.71			
100	0.35	0.37	0.40	0.43	0.46	0.49	0.53	0.57	0.61	0.66	0.71			

Table 6 – End-Use VO Factors for Climate Zone Heating 2 and Cooling 3

% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)

Table 7 – End-Use VO Factors for Climate Zone Heating 3 and Cooling 1

	to reasoners with ton Electric near and near 1 amps (e.g. gas, on, or wood near)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%			
0	0.27	0.29	0.32	0.35	0.38	0.42	0.46	0.51	0.57	0.64	0.73			
10	0.27	0.30	0.32	0.35	0.39	0.42	0.47	0.52	0.58	0.64	0.73			
20	0.28	0.30	0.33	0.36	0.39	0.43	0.47	0.52	0.58	0.65	0.72			
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.53	0.58	0.65	0.72			
40	0.29	0.32	0.35	0.38	0.41	0.45	0.49	0.53	0.59	0.65	0.72			
50	0.30	0.33	0.35	0.38	0.42	0.45	0.49	0.54	0.59	0.65	0.71			
60	0.31	0.34	0.36	0.39	0.43	0.46	0.50	0.54	0.59	0.65	0.71			
70	0.32	0.35	0.37	0.40	0.43	0.47	0.54	0.55	0.60	0.65	0.71			
80	0.33	0.35	0.38	0.41	0.44	0.48	0.51	0.56	0.60	0.65	0.70			
90	0.34	0.36	0.39	0.42	0.45	0.49	0.52	0.56	0.60	0.65	0.70			
100	0.35	0.38	0.40	0.43	0.46	0.49	0.53	0.57	0.61	0.65	0.70			

% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)

Table 8 – End-Use VO Factors for Climate Zone Heating 3 and Cooling 2

% of customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%		
0	0.27	0.29	0.32	0.35	0.38	0.42	0.46	0.51	0.57	0.64	0.73		
10	0.27	0.30	0.32	0.35	0.39	0.42	0.47	0.52	0.58	0.64	0.73		
20	0.28	0.30	0.33	0.36	0.39	0.43	0.47	0.52	0.58	0.65	0.72		
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.53	0.58	0.65	0.72		
40	0.29	0.32	0.35	0.38	0.41	0.45	0.49	0.53	0.59	0.65	0.72		
50	0.30	0.33	0.35	0.38	0.42	0.45	0.49	0.54	0.59	0.65	0.71		
60	0.31	0.34	0.36	0.39	0.43	0.46	0.50	0.54	0.59	0.65	0.71		
70	0.32	0.35	0.37	0.40	0.43	0.47	0.51	0.55	0.60	0.65	0.71		
80	0.33	0.35	0.38	0.41	0.44	0.48	0.51	0.56	0.60	0.65	0.70		
90	0.34	0.36	0.39	0.42	0.45	0.49	0.52	0.56	0.60	0.65	0.70		
100	0.35	0.38	0.40	0.43	0.46	0.49	0.53	0.57	0.61	0.65	0.70		

% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)

	% of Customers with Non Electric Heat and Heat Pumps (e.g. gas, oil, or wood heat)													
%AC	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%			
0	0.27	0.29	0.32	0.35	0.38	0.42	0.46	0.51	0.57	0.64	0.73			
10	0.27	0.30	0.32	0.35	0.39	0.42	0.47	0.52	0.58	0.64	0.73			
20	0.28	0.30	0.33	0.36	0.39	0.43	0.47	0.52	0.58	0.65	0.72			
30	0.29	0.31	0.34	0.37	0.40	0.44	0.48	0.53	0.58	0.65	0.72			
40	0.29	0.32	0.35	0.38	0.41	0.45	0.49	0.53	0.59	0.65	0.72			
50	0.30	0.33	0.35	0.38	0.42	0.45	0.49	0.54	0.59	0.65	0.71			
60	0.31	0.34	0.36	0.39	0.43	0.46	0.50	0.54	0.59	0.65	0.71			
70	0.32	0.35	0.37	0.40	0.43	0.47	0.51	0.55	0.60	0.65	0.71			
80	0.33	0.35	0.38	0.41	0.44	0.48	0.51	0.56	0.60	0.65	0.70			
90	0.34	0.36	0.39	0.42	0.45	0.49	0.52	0.56	0.60	0.65	0.70			
100	0.35	038	0.40	0.43	0.46	0.49	0.53	0.57	0.61	0.65	0.70			

Table 9 – End-Use VO Factors for Climate Zone Heating 3 and Cooling 3

####

Appendix 9: Summary of Circuit Analysis by Stage

Bowman 5W150 & 154

Bowman Substation T3853 Summary of Distribution Power Flow Results

Bowman		T3853			Base Case (w/ Fielding)										
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage	
5W150	Α		2065.6	193.4						R =	4.0	123.3	118.0	118.0	
	В		2278.6	283.1			Cust/Load	3.59		X =	0.0	123.3	117.4	117.4	
	С		2370.8	388.1			kVA/Cust	10.20		CT =	1200.0	123.3	114.7	114.7	
				Ineut =	37.6	37.6 Cust				Vset =	121.0				
										PT =	60.0				
	Т	33,096,331	6715.0	864.6	5.9%	1800.0	99.2%	23831.0	325.2	381.6	1.0276	0 V	Δ = 3.3 V	Δ = 8.6 V	
	LL		2431.6	-855.5							1.0147	121.8	120.3	120.3	
5W154	Α		2728.8	-4.8						R =		123.3	120.9	120.9	
	В		2841.6	39.0			Cust/Load			X =		123.3	121.5		
	С		2629.1	-46.2			kVA/Cust			CT =		123.3	122.4		
				Ineut =	27.0		Cust =	2074		Vset =					
										PT =					
	Т	37,063,709	8199.5	-12.0	4.0%	3000.0	100.0%	24580.5	98.8	247.7		0 V	Δ = 1.5 V	Δ = 2.4 V	
	LL		2507.5	-2018.1								121.8	123.1	123.1	

	Existing Regulator	Settings	Regul Flo H	ator w L	Regulator Flow LL					Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
	R =	3.5	268	3.2	988			HL	А	125.5	123.2	
	X =	0.0	124.	2 A					В	124.7	120.3	120.3
	CT =	250.0							С	121.7	117.1	117.1
	Vset =	120.0	HL	V =	1.0145			LL		120.5	119.5	119.5
	PT =	60.0	LL	V =	1.0053							Δ = 4.6 V
Changes for Stage-1		Node				Line	L	oad		Losses	Swap Phases	
EW/1E0 \$015											Nono	

5W150	S01a Spot Load	Changes	TR_230303_593050171 TR_245000_1540700183 TR_249380_593050811 TR_361980_456710504	291, 0.961 0, 1 153, 0.985 13, 0.997	None
5W154	S01a				None
5W150	S01b	Remove Caps	FP269902_302080200	- 900 kVAr	To avoid further dropping the 8.6 V drop to EOL to 9.3 V we did not remove 900 kVAr
5W154	S01b	Remove Caps Remove Caps	FP357704_369970265 FP300602_1540121947	- 900 kVAr - 900 kVAr	

Bowman		T3853							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5W150	Α		2042.2	171.9						R =	7.0	125.0	119.9	119.9
	В		2288.4	279.5						X =	0.0	125.0	119.1	119.1
	С		2379.0	385.1						CT =	1200.0	125.0	116.5	116.5
				Ineut =	41.5					Vset =	121.0			
										PT =	60.0			
	Т		6709.6	836.5	6.4%	1800.0	99.2%	23831.0	334.3	394.8	1.0420	0 V	Δ = 3.4 V	Δ = 8.5 V
	LL		2431.4	-874.8							1.0195	122.3	120.9	120.9
													-	
5W154	Α		2728.6	610.0						R =		125.0	120.8	120.8
	В		2839.9	659.4						X =		125.0	121.5	
	С		2628.7	579.0						CT =		125.0	122.2	
				Ineut =	25.2					Vset =				
										PT =				
	Т		8197.2	1848.4	3.9%	3000.0	97.6%	24580.5	98.7	256.1		0 V	Δ = 1.3 V	Δ = 4.1 V
	LL		2496.4	-138.3								122.3	121.8	121.8

Existing Regulator	Settings	Regulator Flow HL		Regulator Flow LL
R =	3.5	268	3.2	988
X =	0.0	124.	2 A	
CT =	250.0			
Vset =	120.0	HL	V =	1.0145
PT =	60.0	LL	V =	1.0053

	Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
А	125.2	122.8	
	124.3	119.7	119.7
ĺ	121.4	116.6	116.6
	121.1	119.9	119.9
			Δ = 4.8 V

HL

LL

Changes for	or Stage-2		Node			Line	Load	Losses	Swap Phases	
5W150	S02a		FP269903_3	02080452		5W150_302080024			CAB->ABC	
	S02b	Add Sw Cap	FP249363_9	593050816			+ 900 kVAr			
	S02c		Node No recondue	ctoring need	ed	Line	Load	Conductor	Length (ft)	
Changes f	or Stage-2		Node				Load			
5W154	S02b	Add Sw Cap Add Sw Cap	FP357704_3	369970265 540121947			+ 900 kVAr + 900 kVAr			
	\$02c	·	– Node No reconduc	ctoring need	ed	Line	Load	Conductor	Length (ft)	
5W150	S02e		FP239002		5W15	50_593050032-SP1	[Id = 602] 3	328 A 3Ph 16 step 3x	180 kVA	
		Add Regulator	Settings	Regulator Flow HL	Regulator Flow LL			Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
		R =	4.5	5202.3	2225		HL /	A 120.0	123.1	119.9
		X =	0.0	240.9 A			I	B 122.0	122.8	120.9
		CT =	400.0				(C 120.3	122.6	120.2
		Vset =	120.0	HL V=	1.0226	122.7	LL	120.0	120.8	120.1
		PT =	60.0	LL V =	1.0097	121.2				

Δ = 3.1 V

Bowman		T3853		Stage-02												
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Volt pu Balance	Regulator Voltage Pri	Min Volt pu		
5W150	Α		2292.1	-7.5						R =	9.0	124.1	120.0	120.0		
	В		2211.2	-78.9						X =	0.0	124.2	122.0	122.0		
	С		2188.9	-84.5						CT =	1200.0	124.2	120.3	120.3		
				Ineut =	17.3					Vset =	119.0					
										PT =	60.0					
	Т		6692.2	-170.9	2.8%	1800.0	100.0%	23831.0	302.3	359.7	1.0350	0 V	Δ = 2 V	Δ = 4.1 V		
	LL		2429.6	-839.9							1.0060	120.7	120.0	120.0		
5W154	Α		2728.2	-22.7						R =		124.1	121.9	121.9		
	В		2841.2	20.3						X =		124.2	122.5			
	С		2628.8	-64.5						CT =		124.2	123.3			
				Ineut =	26.9					Vset =				T		
										PT =						
	Т		8198.2	-66.9	4.0%	3000.0	100.0%	24580.5	97.6	241.9		0 V	Δ = 1.5 V	Δ = 2.3 V		
	LL		2496.6	-100.6								120.7	120.1	120.1		

Existing Regulator	Settings	Regu Flo H	lator w	Regulator Flow LL
R =	14.0	268	3.2	988
X =	0.0	124	.2 A	
CT =	250.0			
Vset =	118.0	HL	V =	1.0413
PT =	60.0	LL	V =	1.0047

	Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
А	119.9	124.3	119.7
В	120.9	125.5	
С	120.2	124.7	120.1
	120.1	120.4	119.4

Δ = 4.6 V

Dodd Road Substation T1202 Summary of Distribution Power Flow Results

Dodd	Ro	ad 4W22	2			Summa	ary of Distrib	ution Power Fl	ow Results					
Dodd Road		T1202						Base C	ase (w/ Fiel	ding)				
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
4W22	Α		2729.8	1077.0						R =	6.0	128.2	121.2	121.2
	В		3052.6	1262.0			Cust/Load	3.02		X =	0.0	128.2	119.5	119.5
	С		2917.0	1193.0			kVA/Cust	20.00		CT =	400.0	128.2	119.7	119.6
				Ineut =	24.7		Cust =	1451		Vset =	121.0			
										PT =	100.0			
	Т	39,919,839	8699.4	3532.0	5.3%	600.0	92.7%	29034.5	288.9	-13.5	1.0587	0 V	Δ = 1.7 V	Δ = 8.7 V
	LL		6235.6	845.0							1.0444	126.2	121.0	121.0
					-									

Changes for Stage-1			Node	Line	Load	Losses	Swap Phases		
4W22	S01a						none		
	S01b	Add Cap	FP017006_682660347		+ 900 kVAr				

Dodd Road	I	T1202		Stage-01													
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage			
4W22	Α		2726.1	793.2						R =	5.0	125.0	118.8	118.8			
	В		3049.2	984.6						X =	0.0	125.0	117.1	117.1			
	С		2913.4	916.1						CT =	400.0	125.0	117.2	117.2			
				Ineut =	25.4					Vset =	120.0						
										PT =	100.0						
	Т		8688.7	2693.9	5.3%	600.0	95.5%	29034.5	278.3	-12.0	1.0420	0 V	Δ = 1.7 V	Δ = 7.9 V			
	LL		6235.8	-41.5							1.0301	123.6	119.3	119.3			

Changes for Stage-2	
---------------------	--

Node

4W22	S02b	Add Sw Cap Add Sw Cap Add Sw Cap	FP179040_776390396 FP289361_423450417 FP340061_1540847160		+ 1800 kVAr + 300 kVAr + 300 kVAr		
	S02c	Node 1 from FP289003_1540261624 to FP339960_423450423		Line	Load	Conductor 1780 [20.8 #6 CU 3F 1690 [20.8 795AAC:	Length (ft) 447.0 3PLn 8xa]

S02e1		FP187200		4W2	2_776390096-SP2 [Id = 1	.033] [2).8 3-ph 347A]				
	Regulator	Settings	Regulator Flow HL	Regulator Flow LL			Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage		
	R =	4.5	2006.7	1342	HL	А	120.8	123.8	120.6		
	X =	0.0	92.9 A			В	121.4	123.6	122.1		
	CT =	120.0				С	121.0	123.3	121.1		
	Vset =	120.0	HL V:	1.0290	LL		120.4	122.0	119.9		
	PT =	60.0	LL V:	1.0194							
-											

```
S02e2
```

```
FP172640
```

4W22_776390081-SP1

[Id = 1033] [20.8 3-ph 347A]

Regulator	Settings	Regu Flo	lator ow IL	Regulator Flow LL
R =	6.0	281	.4.2	2047
X =	0.0	130	.3 A	
CT =	150.0			
Vset =	118.0	HL	V =	1.0268
PT =	60.0	LL	V =	1.0149

	Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
A	121.6	123.1	120.5
В	120.9	123.2	119.8
C	120.8	123.0	119.9
	120.4	121.6	119.9

ΗL

LL

Dodd Road	t t	T1202							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
4W22	Α		2716.5	-65.1						R =	4.0	124.0	121.9	
	В		3038.2	119.1						X =	0.0	124.0	121.3	
	С		2903.2	55.4						CT =	400.0	124.0	121.2	119.8
				Ineut =	25.1					Vset =	120.0			
										PT =	100.0			
	Т		8657.9	109.4	5.3%	600.0	100.0%	29034.5	247.4	-33.0	1.0336	0 V	Δ = 0.7 V	Δ = 4.2 V
	LL		6236.4	-9.2				-			1.0241	122.9	120.8	119.9

Mill Creek 5W116 & 127

Mill Creek Substation T3406 Summary of Distribution Power Flow Results

Mill Creek		T3406						Base	Case (w/ Fie	elding)				
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5W116	Α		2618.1	326.9						R =	0.0	123.9	121.3	120.0
	В		2704.0	345.6			Cust/Load	6.24		X =	0.0	123.9	120.0	118.5
	С		2775.2	387.3			kVA/Cust	7.40		CT =	900.0	124.0	120.6	118.9
				Ineut =	17.8		Cust =	2402		Vset =	124.0			
										PT =	60.0			
	Т	34,126,578	8097.3	1059.7	2.8%	600.0	99.2%	17726.0	122.6	193.9	1.0333	0 V	Δ = 1.3 V	Δ = 5.4 V
	LL		2147.5	59.4							1.0333	124.0	123.1	122.7
5W127	Α		2103.5	479.1								123.9	118.8	118.8
	В		2734.4	649.5			Cust/Load	6.53				123.9	121.2	121.2
	С		1380.5	287.7			kVA/Cust	7.00				124.0	123.9	123.9
				Ineut =	163.1		Cust =	2169						
	Т	29,177,609	6218.4	1416.2	31.9%	0.0	97.5%	15105.0	65.7	190.4		0.1 V	Δ = 5.1 V	Δ = 5.1 V
	LL		1830.5	562.2								124.0	122.4	122.3

Changes	Changes for Stage-1		Node	Line	Load	Losses	Swap Phases
5W116	S01 a						None
5W127	S01a		FP288803_544871716 FP219405_242020779 FP283816_544870486 FP291702_717550718 FP294700_717550725 FP285903_544870459	5W127_544870102 5W127_242020295 5W127_544870085 5W127_717550132 5W127_1540944656 5W127_544870096			CBA->CAB B->C B->C CBA->BAC B->C CBA->BAC
5W116	S01b						
5W127	S01b	New Cap	FP282811_544870470		+ 600 kVAr		

Mill Creek		T3406							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5W116	Α		2617.4	314.0						R =	8.0	124.8	122.3	121.0
	В		2703.1	336.8						X =	0.0	124.9	121.0	119.5
	С		2775.0	381.0						CT =	900.0	124.9	121.5	119.8
				Ineut =	18.0					Vset =	119.0			
										PT =	60.0			
	Т		8095.5	1031.8	2.8%	600.0	99.2%	17726.0	120.8	189.2	1.0408	0 V	Δ = 1.4 V	Δ = 5.3 V
	LL		2148.0	98.5							1.0053	120.6	119.7	119.3
5W127	Α		2101.1	268.7								124.8	121.5	121.4
	В		2158.7	273.9								124.9	122.9	122.9
	С		1950.5	209.4								124.9	123.5	123.5
				Ineut =	27.9									
	Т		6210.3	752.0	4.3%	0.0	99.3%	15105.0	57.8	163.0		0 V	Δ = 2.1 V	Δ = 3.4 V
	LL		1830.0	-42.6								120.6	119.7	119.7

Changes for Stage-2

5W116

S02b

Add Sw Cap FP166061_755430427

Load + 900 kVAr

	Node	Line	Load	Conductor	Length (ft)
S02c	No reconductoring needed				

Node

Load

5W127 S02b Add Sw Cap FP289805_544870439

FP165101

+600 kVAr

Load

ΗL

Node S02c No reconductoring needed

S02e

5W116_755430072-SP1

Line

122.7

120.7

[Id = 63] 219 A 3Ph 16 step 3x180 kVA

Conductor

Add Regulator	Settings	Regul Flo H	ator w L	Regulator Flow LL
R =	7.0	331	16	878
X =	0.0	153.	5 A	
CT =	400.0			
Vset =	120.0	HL	V =	1.0224
PT =	60.0	LL	V =	1.0059

		Regulator Voltage Pri	Regulator Voltage Sec	Reg. Min Voltage
łL	А	122.0	124.1	121.6
	В	120.5	122.5	120.0
	С	121.2	123.3	120.2
LL		120.2	120.9	120.3

Length (ft)

Mill Creek		T3406							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5W116	Α		2615.3	123.4						R =	4.0	122.9	122.0	122.0
	В		2701.1	155.5						X =	0.0	122.9	120.5	120.5
	С		2772.9	198.3						CT =	900.0	122.9	121.2	121.2
				Ineut =	19.4					Vset =	120.0			
										PT =	60.0			
	Т		8089.3	477.2	2.8%	600.0	99.8%	17726.0	114.6	192.2	1.0246	0 V	Δ = 1.5 V	Δ = 2.4 V
	LL		2147.9	95.4							1.0068	120.8	120.2	120.2
5W127	Α		2102.0	70.5								122.9	119.6	119.6
	В		2159.4	73.3								122.9	121.1	121.1
	С		1950.4	6.8								122.9	121.8	121.7
				Ineut =	28.7									
	Т		6211.8	150.6	4.3%	0.0	100.0%	15105.0	59.3	167.8		0 V	Δ = 2.1 V	Δ = 3.3 V
	LL		1830.0	-44.6								120.8	119.9	119.9
]		

Pomeroy 5W342

Pomeroy Substation T944 Summary of Distribution Power Flow Results

Pomeroy T944 Base Case (w/ Fielding)														
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE1: Branch Voltage Balance	LE1: Control Zone Min Voltage
5W342	Α		1821.1	-165.4						R =	2.0	124.7	123.3	122.3
	В		1926.8	-171.6			Cust/Load	3.40		X =	0.0	124.7	121.5	119.0
	С		2292.4	-108.3			kVA/Cust	11.0		CT =	400.0	124.7	121.2	122.3
				Ineut =	55.4		Cust =	1528		Vset =	123.0			
										PT =	60.0			
	Т	22,784,281	6040.3	-445.3	13.9%	600.0	99.7%	16801.0	194.1	135.5	1.0367	0 V	Δ = 2.1 V	Δ = 5.6 V
	LL		1595.6	-558.6							1.0281	123.5	122.6	121.4
													122.3	122.2

BE2: Branch Voltage Balance	LE2: Control Zone Min Voltage
119.7	118.5
120.4	
116.6	
Δ = 3.7 V	Δ = 6.3 V
	∆reg = 3.1 V

Changes for Stage-1		Node	Line	Load	Losses	Swap Phases
5W342	S01a	FP171860_420450094	5W342_420450011			BAC->BCA
		FP310600_463490170	5W342_1540118006			BAC->BCA
		FP325202_761212279	5W342_761210085			BC->CB
	Spot Load Changes	TR_314380_761210523		281, 0.997		
		TR_315100_1540376750		184, .997		
		TR_317080_761210594		216, .936		
		TR_317180_761210375		459, .997		
		TR_329402_761210710		0, 1		
	S01b			None		

Pomeroy		T944							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE1: Branch Voltage Balance	LE1: Control Zone Min Voltage
5W342	Α		1918.6	-170.8						R =	2.5	124.7	121.7	117.6
	В		2150.5	-139.9						X =	0.0	124.7	122.5	121.2
	С		1965.1	-153.8						CT =	400.0	124.8	122.6	120.8
				Ineut =	27.2					Vset =	123.0		Trial 1 R =	3.0
										PT =	60.0		Trial 2 R =	4.0
	Т		6034.2	-464.5	6.9%	600.0	99.7%	16801.0	187.9	129.6	1.0396	0 V	Δ = 0.8 V	Δ = 7.2 V
	LL		1595.3	-558.9							1.0288	123.5	122.6	121.4
													122.8	122.8

BE2: Branch Voltage Balance	LE2: Control Zone Min Voltage
119.2	118.1
119.8	
119.5	
Δ = 0.6 V	Δ = 6.6 V
	Δreg = 3.3 V

Changes for	Stage-2		Node				
5W342	S02b	Add Sw Cap	FP312104_761212376	Switched	300 kVAr		
	S02c	1 from to	Node MP_463490150 FP365261_463490189	Line Reconductor	Load existing new	Conductor 1/0 CU 477 AAC	Length (ft) 355.0
		2 from to	FP311103_761210762 FP311104_761210780	Reconductor	existing new	#6 CU 1/0 CU	71.0

5W342_1540871261-SP2

5W342_761210113

	Regulator	Settings	Regulator Flow HL		Regulator Flow LL	
S02e1	R =	10.5	439		131	
	X =	0.0	20	.3		
	CT =	50.0				
	Vset =	120.0	HL	V =	1.0356	
	PT =	60.0	LL	V =	1.0106	

FP044303A

[Id = 63]	219 A	3Ph	16 step	3x180 kVA

.

	Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
HL /	A 120.3	124.0	119.9
I	3 121.1	124.9	123.6
(121.1	124.9	123.1
LL	120.0	121.5	120.3

[Id = 63] 219 A 3Ph 16 step 3x180 kVA

	Regulator	Settings	Regulator Flow HL	Regulator Flow LL
S02e2	R =	7.0	1708	793
	X =	0.0		
	CT =	100.0		
	Vset =	118.0	HL V=	1.0294
	PT =	60.0	LL V =	1.0048

FP321102A

		Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
HL	А	120.5	123.9	121.2
	В	120.0	123.4	
	С	120.7	124.1	
LL		120.4	120.7	120.2

Pomeroy		T944							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE1: Branch Voltage Balance	LEL: Control Zone Min Voltage
5W342	Α		1923.9	-172.7						R =	4.5	123.1	121.6	
	В		2129.5	-146.6						X =	0.0	123.1	121.9	121.9
	С		1957.6	-155.2						CT =	400.0	123.1	122.0	
				Ineut =	24.3					Vset =	120.0			
										PT =	60.0			∆reg = 0 V
	Т		6011.0	-474.5	6.3%	600.0	99.7%	16801.0	164.9	126.0	1.0262	0 V	Δ = 0.4 V	Δ = 1.3 V
	LL		1594.1	-531.1							1.0069	120.8	120.4	120.5
												0.0	120.4	120.4
									23.0					

BE2: Branch Voltage Balance	LE2: Control Zone Min Voltage
120.5	120.5
120.0	120.0
120.7	120.7
Δ = 0.7 V	Δ = 3.1 V
	∆reg = 0 V

Clinton 5Y608 & 610

Clinton Substation T3716 Summary of Distribution Power Flow Results

Clinton		T3716						Base Ca	ase (w/ Field	ling)				
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y608	Α		2995.4	482.3						R =	2.0	122.1	116.2	116.0
	В		2711.8	404.5			Cust/Load	5.51		X =	4.0	122.2	119.5	
	С		2490.5	303.3			kVA/Cust	10.80		CT =	2000.0	122.2	120.7	
				Ineut =	60.6		Cust =	2088		Vset =	121.0			
										PT =	60.0			
	Т	41,300,182	8197.7	1190.1	9.6%	900.0	99.0%	22603.5	113.0	241.6	1.0167	0 V	Δ = 4.5 V	Δ = 6.2 V
	LL		3049.0	-67.8							1.0103	121.3	119.8	119.8
													•	
5Y610	Α		3376.8	387.3								122.1	119.0	118.1
	В		2848.0	197.5			Cust/Load	5.07				122.2	120.6	
	С		3022.7	270.5			kVA/Cust	13.50				122.2	119.6	
				Ineut =	69.0		Cust =	1485						
	Т	43,295,527	9247.5	855.2	9.5%	1800.0	99.6%	20066.0	128.8	213.7		0 V	Δ = 1.7 V	Δ = 4 V
	LL		2707.4	-262.4								121.3	120.5	120.2

Changes f	or Stage-1	Node	Line	Load	Losses	Swap Phases
5Y608	S01a	FP055861_389072157	5Y608_389070384			A->C
5Y610	S01b	FP278203_479410700	5Y610_479410265			A->B

Clinton T3716							Stage-01							
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y608	Α		2870.7	417.6						R =	13.0	124.4	120.0	120.0
	В		2718.2	388.4						X =	4.0	124.4	121.0	
	С		2602.5	330.3						CT =	2000.0	124.4	122.2	
				Ineut =	30.3					Vset =	119.0			
										PT =	60.0			
	Т		8191.4	1136.3	5.1%	900.0	99.1%	22603.5	107.2	225.7	1.0370	0 V	Δ = 2.2 V	Δ = 4.4 V
	LL		3049.3	-28.2							1.0058	119.0	118.0	118.0
5Y610	Α		3068.3	271.0						R =		124.4	121.4	120.5
	В		3158.1	261.0						X =		124.4	122.7	
	С		3018.2	243.6						CT =		124.4	122.1	
				Ineut =	19.3					Vset =				
										PT =				
	Т		9244.6	775.7	2.5%	1800.0	99.6%	20066.0	127.5	207.5		0 V	Δ = 1.4 V	Δ = 3.9 V
	LL		2708.0	-189.9								119.0	118.2	117.9

Changes for Stage-2

5Y608 S02b

to

Add Sw Cap FP274441

Node

Node

Node 1 from FP280201_984800474 FP280103_984800473

Changes for Stage-2

S02c

Add Sw Cap FP278510_460481740 5Y610 S02b

S02c

Node 1 from FP279560_460480611 to FP279609_460480657

Load

+ 900 kVAr

Conductor 943 [12.5 #4 ACS3PSn 8xa] 1055 [12.5 477AAC3PLn 8xa] Length (ft) 564.0

+ 600 kVAr

Conductor 1083 [12.5 4/0AAC3PMn 8xa] 1055 [12.5 477AAC3PLn 8xa]

Length (ft) 576.0

Clinton		T3716	Stage-02											
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y608	А		2867.0	93.9						R =	13.0	124.4	120.7	120.6
	В		2714	62.8						X =	4.0	124.4	121.8	
	С		2598.7	3.9						CT =	2000.0	124.4	122.9	
				Ineut =	30.4					Vset =	119.0			
										PT =	60.0			
	Т		8179.7	160.6	5.2%	900.0	100.0%	22603.5	95.2	220.8	1.0370	0 V	Δ = 2.2 V	Δ = 3.8 V
	LL		3048.9	-58.2							1.0058	120.7	119.8	119.8
			•											
5Y610	Α		3064.4	53.6						R =		124.4	121.6	120.8
	В		3155.9	44.1						X =		124.4	122.9	
	С		3014.6	25.6						CT =		124.4	122.3	
				Ineut =	19.5					Vset =				
										PT =				
	Т		9234.9	123.3	2.5%	1800.0	100.0%	20066.0	116.2	201.2		0 V	Δ = 1.3 V	Δ = 3.6 V
	LL		2707.7	-243.8								120.7	120.0	119.7

Nob Hill Substation T2430 Summary of Distribution Power Flow Results

Nob Hill		T2430		Base Case (w/ Fielding)										
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	Branch Voltage Balance	Control Zone Min Voltage
5Y197	Α		1809.5	347.6						R =	4.0	123.2	121.8	
	В		1982.4	372.5			Cust/Load	6.59		X =	2.0	123.3	122.2	121.0
	С		2107.5	408.1			kVA/Cust	6.40		CT =	2000.0	123.3	121.5	
				Ineut =	33.9		Cust =	1970		Vset =	121.0			
										PT =	60.0			
	Т	30,678,758	5899.4	1128.3	7.2%	0.0	98.2%	12613.5	44.7	91.9	2.47%	0 V	Δ = 0.7 V	Δ = 2.2 V
	LL		1625.6	396.9							1.32%	121.7	121.2	121.1
5Y194	Α		2894.9	668.4								122.9	118.3	117.9
	В		2819.0	635.7			Cust/Load	8.76				122.9	119.6	
	С		2652.4	562.3			kVA/Cust	9.50				122.9	120.3	
				Ineut =	31.8		Cust =	2005						
	Т	42,555,015	8366.3	1866.3	3.8%	1200.0	97.6%	19095.5	165.1	329.2	1.0247	0 V	Δ = 2 V	Δ = 5 V
	LL		2727.4	8.0							1.0132	121.6	120.5	120.3
5Y272	**		5500	690		600.0		14398.0						
	LL		1855	-147										

Nob Hill		T2430						:	Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	Branch Voltage Balance	Control Zone Min Voltage
5Y197	Α		1809.5	347.4						R =	7.5	123.5	122.0	
	В		1982.3	372.4						X =	2.0	123.5	122.5	121.3
	С		2107.4	408.0						CT =	2000.0	123.5	121.8	
				Ineut =	34.3					Vset =	120.0			
										PT =	60.0			
	Т		5899.2	1127.8	7.2%	0.0	98.2%	12613.5	44.2	91.0	2.96%	0 V	Δ = 0.7 V	Δ = 2.2 V
	LL		1628.8	397.5							0.91%	121.1	120.6	120.4
5Y194	Α		2891.0	146.5								123.5	119.9	119.5
	В		2817.1	107.6								123.5	121.2	
	С		2649.3	29.3								123.5	121.9	
				Ineut =	32.6									
	Т		8357.4	283.4	3.8%	1200.0	99.9%	19095.5	156.3	311.1		0 V	Δ = 2 V	Δ = 4 V
	LL		2732.9	-1520.1								121.1	120.9	120.8
5Y272	**		5500	690				14398.0						
	LL		1855	-147										

Changes for Stage-2			Node		Load	Load			
5Y197	S02b	Add Sw Cap	FP251304		+ 900 kVAr				
	S02c	No changes	Node	Line	Load	Conductor	Length (ft)		
Changes for	r Stage-2		Node		Load				
5Y194	S02b	Add Sw Cap Add Sw Cap Add Sw Cap	FP243305_991160290 FP242209_991162198 FP239013_556790634		600 kVAr fixed, 6 + 300 kVAr * + 600 kVAr * * Add switching added in St	500 kVAr switched mechanism for fixe tage 01.	* ed capacitors		
	S02c	1 from to 2 from to	Node MP_931350832 FP999999_931350864 FP999999_931350864 FP269312_931350900	Line	Load	Conductor 1050 [12.5 500 AL 1049 [12.5 1000Al 1097 [12.5 2/0AC 1055 [12.5 477AA	Length (ft) 3 313.0 .3PUGCond] 6 119.0 C3PLn 8xa]		

Nob Hill		T2430	Stage-02												
Circuit ID	Ph		kW	kVAr	%	kVAr	Factor	kVA	kW	kVAr	%	Balance	Voltage	Zone Min	
5Y197	Α		1809.1	31.0						R =	7.5	123.5	122.2		
	В		1982	56.0						X =	2.0	123.5	122.6	121.4	
	С		2107.3	91.6						CT =	2000.0	123.5	122.0		
				Ineut =	34.3					Vset =	120.0				
										PT =	60.0				
	Т		5898.4	178.6	7.2%	0.0	100.0%	12613.5	43.5	89.2	2.96%	0 V	Δ = 0.7 V	Δ = 2.1 V	
	LL		1628.8	397.5							0.91%	121.1	120.6	120.4	
5Y194	А		2887.6	143.3								123.5	120.0	119.7	
	В		2813.9	104.5								123.5	121.3		
	С		2646.5	26.5								123.5	122.0		
				Ineut =	32.5										
	Т		8348.0	274.3	3.8%	1200.0	99.9%	19095.5	146.8	308.5		0 V	Δ = 2 V	Δ = 3.8 V	
	LL		2727.6	18.4								121.1	120.0	119.8	
5Y272	**		5500	690				14398.0							
	LL		1855	-147											

Nob Hill 5Y273

Nob Hill Substation T2402 Summary of Distribution Power Flow Results

Nob Hill T2402 Base Case (w/ Fielding)														
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y273	Α		2450.5	126.1						R =	4.0	123.9	120.9	
	В		2650.1	174.4			Cust/Load	4.95		X =	0.0	123.9	120.3	119.7
	С		2884.2	260.7			kVA/Cust	7.10		CT =	1200.0	123.9	121.3	
				Ineut =	51.1		Cust =	2292		Vset =	121.0			
										PT =	60.0			
	Т		7984.8	561.1	8.4%	1200.0	99.8%	16377.5	150.2	324.5	1.0337			Δ = 0 V
	LL		2324.6	-911.4							1.0164	121.8	121.3	121.1
5Y195	**		3920	343		600.0		8463.0						
	LL		1201	-451										
			•											
5Y338	**		7750	1315		600.0		21380.5						
	LL		2755	73										

Changes for Stage-1

5Y273

ge-1

Node FP264901_656800698

S01b F

S01a

Remove Cap FP239106_556790602

5Y273_656800259

Line

- 600 kVar

Losses

Load

Swap Phases

C->A

Nob Hill		T2402							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y273	Α		2833.4	539.6						R =	8.5	124.6	120.3	120.0
	В		2761.0	509.8						X =	0.0	124.6	121.7	
	С		2598.2	444.1						CT =	1200.0	124.6	122.2	
				Ineut =	30.3					Vset =	118.0			
	_									PT =	60.0			
	Т		8192.6	1493.4	3.8%	1200.0	98.4%	16377.5	151.6	301.4	1.0373	0 V	Δ = 1.9 V	Δ = 4.6 V
	LL		2710.7	-222.3							1.0005	119.9	118.9	118.8
5Y195	**		3920	343				8463.0						
	LL		1201	-451										
5Y338	**		7750	1315				21380.5						
	LL		2755	73										

Changes fo	or Stage-2		Node		Load		
5Y273	S02b Add Sw Cap Add Sw Cap		FP239106_556790602 FP268700		+ 600 kVAr + 600 kVAr		
	S02c	None	Node	Line	Load	Conductor	Length (ft)

Nob Hill		T2402							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y273	Α		2828.8	119.7						R =	5.5	124.2	120.7	120.4
	В		2757.5	85.7						X =	0.0	124.3	122.0	
	С		2594.2	17.2						CT =	1200.0	124.3	122.7	
				Ineut =	30.9					Vset =	120.0			
										PT =	60.0			
	Т		8180.5	222.6	3.7%	1200.0	100.0%	16377.5	139.6	293.0	1.0349	0 V	Δ = 1.9 V	Δ = 3.9 V
	LL		2709.3	-252.4		•		•			1.0111	121.2	120.3	120.2
			•											
5Y195	**		3920	343				8463.0						
	LL		1201	-451										
5Y338	**		7750	1315				21380.5						
	LL		2755	73										

North Park 5Y356

North Park Substation T3536 Summary of Distribution Power Flow Results

North Park		T3536						Base C	ase (w/ Fiel	ding)				
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	EOL: Cntl Zone Min Voltage
5Y356	Α		2330.4	-9.9						R =	5.0	125.5	120.5	
	В		2109.2	-96.0			Cust/Load	3.81		X =	0.0	125.5	122.7	122.5
	С		2350.4	25.9			kVA/Cust	11.10		CT =	1000.0	125.5	119.1	118.9
				Ineut =	36.7		Cust =	1814		Vset =	121.0			
										PT =	60.0			
	Т	30,777,644	6790.0	-80.0	3.8%	1500.0	100.0%	20180.0	231.7	394.2	1.0396	0 V	Δ = 3.6 V	Δ = 6.6 V
	LL		2494.6	-1436.3							1.0202	122.7	122.0	122.0
5Y398	**		9400.0	945.2		1200.0		29702.5						
	LL		3673.8	-1100.7										

Changes for Stage-1	Node	Line	Load	Losses	Swap Phases
5Y356 S01a					None

5Y356 S01a

> S01b Remove Cap FP219900_826650557

-900 kVar

North Park	(T3536							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	EOL: Cntl Zone Min Voltage
5Y356	Α		2330.8	309.3						R =	12.0	125.0	118.8	
	В		2111.8	232.1						X =	0.0	125.0	120.9	120.7
	С		2353.2	342.5						CT =	1000.0	125.0	117.3	117.1
				Ineut =	36.0					Vset =	116.0			
										PT =	60.0			
	Т		6795.8	883.9	3.9%	1500.0	99.2%	20180.0	237.4	405.1	1.0417	0 V	Δ = 3.6 V	Δ = 7.9 V
	LL		2487.2	-452.0							0.9952	119.4	117.4	117.3
5Y398	**		9400.0	945.2										
	LL		3673.8	-1100.7										

Changes for Stage-2

5Y356

S02b

Node Add Sw Cap FP219900_826650557

Settings

5.5

0.0

500.0

120.0

60.0

+900 kVar

		Node	Line	Load	Conductor	Length (ft)
S02c	1 from	FP178002_640300540			1083 [12.5 4/0AAC	607.0
	to	FPUNK_640300538			1055 [12.5 477AAC	3PLn 8xa]

S02e

Regulator

R =

Χ=

CT =

Vset =

PT =

FP160001_274180881

Reg Flow

kVA

HL

6650.6

V =

HL V =

LL

5Y356_274180328-SP1

123.3869

Reg Flow

kVA

LL

2508.7

1.0282

1.0106

[Id = 602] 328 A 3Ph 16 step 3x180 kVA

	Regulator Voltage Sec	Branch Volt pu Balance	Reg. Min Voltage
HL A	123.6	120.9	
В	123.1	121.5	121.3
C	123.4	120.4	120.2
LL	121.1	120.4	120.3

North Park	(T3536							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Volt pu Balance	Regulator Voltage Pri	Min Volt pu
5Y356	Α		2328.8	-7.7						R =	6.0	123.5	121.2	121.2
	В		2108.8	-77.5						X =	0.0	123.5	122.3	122.3
	С		2347.5	21.3						CT =	1000.0	123.5	120.3	120.3
				Ineut =	35.6					Vset =	119.0			
										PT =	60.0			
	Т		6785.1	-63.9	3.8%	1500.0	100.0%	20180.0	229.5	389.2	1.0292	0 V	Δ = 2 V	Δ = 3.1 V
	LL		2485.0	-479.2							1.0059	120.7	119.8	119.8
5Y398	**		9400.0	945.2										
			2672.0	1100 7										
	LL		3673.8	-1100.7										

Orchard 5Y456

Orchard Substation T5035 Summary of Distribution Power Flow Results

Orchard		T5035						Base Ca	ase (w/ Field	ding)				
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y456	Α		2747.4	371.1						R =	5.0	126.0	120.0	119.7
	В		1943.0	88.2			Cust/Load	4.07		X =	2.0	126.1	125.2	
	С		2607.3	306.2			kVA/Cust	10.50		CT =	1300.0	126.0	121.9	
				Ineut =	102.4		Cust =	1582		Vset =	121.0			
										PT =	60.0			
	Т	28,932,545	7297.7	765.5	12.9%	1200.0	99.5%	16682.0	124.3	172.5	1.0432	0 V	Δ = 5.2 V	Δ = 6.3 V
	LL		1837.2	-324.2							1.0179	122.4	121.0	120.9
5Y458	**		7200	1497		1200.0		22817.5						
	LL		2512	-6										
5Y637	**		7600	1236		1200.0		20613.0						
	LL		2270	-121										

	Changes for Stage-1		Node	Line	Load	Losses	Swap Phases
FP213700_738390496 5Y456_738390191 A->B FP163200_306160581 5Y456_306160113 CBA->CAB	5Y456	S01a	FP168004_306160613 FP213700_738390496 FP163200_306160581	5Y456_306160060 5Y456_738390191 5Y456_306160113			C->B A->B CBA->CAB

S01b

			*At EOL A & C phases end, B phase continues.											
Orchard		T5035							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y456	Α		2417.4	258.9						R =	6.0	124.9	120.6	120.6
	В		2401.2	248.0						X =	2.0	124.9	122.4	122.3
	С		2471.5	271.1						CT =	1300.0	124.9	122.8	122.8
				Ineut =	8.2					Vset =	120.0			
										PT =	60.0			
	Т		7290.1	777.9	1.7%	1200.0	99.4%	16682.0	116.7	161.3	1.0414	0 V	Δ = 2.2 V	Δ = 4.3 V
	LL		1836.6	-303.6							1.0115	121.4	120.3	120.3
5Y458	**		7200	1497										
	LL		2512	-6										
				-										
5Y637	**		7600	1236										
			-											
	LL		2270	-121										

Changes for Stage-2

S02b

5Y456

Node

Add Sw Cap FP215411

Load

+600 kVAr

		Node	Line	Load	Conductor L	ength (ft)
S02c	1 from	FP167000_306160615			1256 [12.5 #6 CU 3F	812.0
	to	FP167101_306161294			1243 [12.5 #2AAC	3PSn 8xa]
	2 from	FP167101_306161294			943 [12.5 #4ACS	211.0
	to	FP167102_306160572			1243 [12.5 #2AAC	3PSn 8xa]

Orchard		T5035							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y456	Α		2423.0	50.1						R =	5.5	124.5	120.2	120.2
	В		2384.7	30.2						X =	2.0	124.6	122.0	121.9
	С		2466.5	56.7						CT =	1300.0	124.6	122.4	122.4
				Ineut =	9.0					Vset =	120.0			
										PT =	60.0			
	Т		7274.2	137.0	1.7%	1200.0	100.0%	16682.0	100.8	160.7	1.0382	0 V	Δ = 2.2 V	Δ = 4.3 V
	LL		1836.6	-301.1							1.0105	121.2	120.2	120.2
5Y458	**		7200	1497										
	LL		2512	-6										
				-									-	
5Y637	**		7600	1236										
	LL		2270	-121										

Orchard 5Y498

Orchard Substation T3797 Summary of Distribution Power Flow Results

Orchard	d T3797				Base Case (w/ Fielding)									
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y498	Α		2299.0	424.6						R =	4.0	126.1	123.2	
	В		2076.0	363.4			Cust/Load	6.49		X =	2.0	126.2	123.5	
	С		1902.7	356.9			kVA/Cust	6.00		CT =	1100.0	126.2	122.7	122.3
				Ineut =	49.3		Cust =	2091		Vset =	121.0			
										PT =	60.0			
	Т	27,289,488	6277.7	1144.9	9.9%	0.0	98.4%	12638.0	91.7	177.6	1.0444	0 V	Δ = 0.8 V	Δ = 3.9 V
	LL		1445.2	187.2							1.0169	122.2	121.5	121.4
5Y454	**		9800	1003		1200.0		24210.0						
	LL		2769	-841										
5Y639	**		7720	1651		0.0		18148.5						
	LL		2076	269										

Line

Changes	for	Stage-1
---------	-----	---------

Node

5Y498 S01a

S01b

Orchard		T3797							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y498	Α		2300.2	427.2						R =	4.0	124.2	121.2	
	В		2076.8	365.1						X =	2.0	124.3	121.6	
	С		1903.9	359.4						CT =	1100.0	124.3	120.7	120.3
				Ineut =	50.1					Vset =	120.0			
										PT =	60.0			
	Т		6280.9	1151.7	9.9%	0.0	98.4%	12638.0	94.7	184.1	1.0361	0 V	Δ = 0.9 V	Δ = 3.9 V
	LL		1445.3	187.7							1.0086	121.0	120.3	120.2
5Y454	**		9800	1003										
	LL		2769	-841										
5Y639	**		7720	1651										
	LL		2076	269										

Changes for Stage-2

5Y498

C **2**

Load

+ 900 kVAr

Load

Load

Losses

Swap Phases

None

S02b Add Sw Cap FP225240

Line

Conductor

Node S02c No Conductor Changes

Node

Length (ft)

Orchard		T3797							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y498	Α		2299.7	111.3						R =	3.5	123.7	121.1	
	В		2076.3	47.1						X =	2.0	123.8	121.4	
	С		1902.9	39.7						CT =	1100.0	123.8	120.6	120.2
				Ineut =	50.3					Vset =	120.0			
										PT =	60.0			
	Т		6278.9	198.0	9.9%	0.0	100.0%	12638.0	93.6	181.7	1.0319	0 V	Δ = 0.8 V	Δ = 3.2 V
	LL		1445.3	187.9							1.0075	120.9	120.1	120.0
5Y454	**		9800	1003										
	LL		2769	-841										
5Y639	**		7720	1651										
	LL		2076	269										

River Road 5Y444

River Road Substation T3453 Summary of Distribution Power Flow Results

River Road		T3453						Base C	Case (w/ Fiel	ding)				
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y444	Α		3986.7	362.2						R =	3.0	125.3	120.3	120.1
	В		3556.9	284.7			Cust/Load	5.57		X =	7.0	125.3	121.4	
	С		3051.2	51.0			kVA/Cust	10.40		CT =	1000.0	125.3	123.4	
				Ineut =	105.8		Cust =	2502		Vset =	121.0			
										PT =	60.0			
	Т	49,558,070	10594.8	697.8	12.9%	1200.0	99.8%	25987.0	186.1	519.3	1.0382	0 V	Δ = 3.1 V	Δ = 5.2 V
	LL		3313.5	-787.3							1.0127	121.6	120.7	120.7
5Y446	**		6600	434		300.0		11730.5						
	11		1496	-249										
			1.50	2.0										
5Y448	**		4360	661		600.0		20141.0						
	LL		2568	-512										

Changes for Stage-1		Node	Line	Load	Losses	Swap Phases
5Y444	S01a	FP150014_154241218 FP157000_154241204 FP156080_154241134	5Y444_154240243 5Y444_154240477 5Y444_154240377			A -> C A -> C A -> C

S01b

Reduce Cap FP237905_419030342

1200 kVAr -> 600 kVAr

River Road		T3453							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y444	Α		3661.1	453.6						R =	5.0	125.5	121.9	
	В		3580.4	501.1						X =	7.0	125.6	120.3	120.0
	С		3351.1	378.7						CT =	1000.0	125.6	122.8	
				Ineut =	30.7					Vset =	120.0			
										PT =	60.0			
	Т		10592.6	1333.4	3.7%	1200.0	99.2%	25987.0	184.0	512.4	1.0465	0 V	Δ = 2.5 V	Δ = 5.6 V
	LL		3311.4	-157.4							1.0101	121.2	120.0	119.9
5Y446	**		6600	434										
				-										
	LL		1496	-249										
				-										
5Y448	**		4360	661										
				-										
	LL		2568	-512										

Changes for Stage-2

5Y444 S02b

Add Sw Cap FP232945

Add Sw Cap FP147243

Node

Load

+ 600 kVAr + 600 kVAr

		Node	Line	Load	Conductor	Length (ft)
S02c	1 from	FP158001_80630559			1256 [12.5 #6 CU 3F	106.0
	to	FP158002_154241123			17 [12.5 1/0ACS3PS	n 8xa]
	2 from	FP158002_154241123			938 [12.5 #2 ACS 3P	562.0
	to	FP158104_154241172			17 [12.5 1/0ACS3PS	n 8xa]
S02e	Add Regulator	FP141001_33500763	5Y444_1031038802-SP1	[Id = 602] 3	28 A 3Ph 16 step 3x	180 kVA
APPENDIX 9

Regulator	Settings	Reg Flow kVA HL	Reg Flow kVA LL				Regulator Voltage Pri	Regulator Voltage Sec	Reg. Min Voltage
R =	5.5	6189.1	1944.5		HL	Α	120.7	123.0	
X =	0.0	286.5 A				В	120.5	122.8	119.9
CT =	500.0					С	121.5	123.1	
Vset =	120.0	HL V=	1.0263	123.1519	LL		120.0	120.7	120.4
PT =	60.0	LL V =	1.0083						

River Road		T3453			Stage-02									
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Volt pu Balance	Regulator Voltage Pri	Min Volt pu
5Y444	Α		3662.1	61.6						R =	2.0	122.5	120.7	120.7
	В		3582	113.7						X =	7.0	122.6	120.5	120.5
	С		3351.5	-12.2						CT =	1000.0	122.6	121.5	121.5
				Ineut =	31.1					Vset =	120.0			
										PT =	60.0			
	Т		10595.6	163.1	3.7%	1200.0	100.0%	25987.0	186.9	526.8	1.0216	0 V	Δ = 1 V	Δ = 2.1 V
	LL		3311.0	-147.4							1.0015	120.2	120.0	120.0
5Y446	**		6600	434										
	LL		1496	-249										
5Y448	**		4360	661										
	LL		2568	-512										

Wiley 5Y434

Wiley Substation T3676 Summary of Distribution Power Flow Results

Wiley		T3676	Base Case (w/ Fielding)											
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y434	Α		2253.7	626.0						R =	4.0	122.3	116.1	116.1
	В		2493.4	716.0			Cust/Load	3.8		X =	1.0	122.4	117.0	
	С		2245.0	619.5			kVA/Cust	11.7		CT =	2000.0	122.4	118.8	
				Ineut =	35.9		Cust =	1588		Vset =	120.0			
										PT =	60.0			
	Т	27,725,682	6992.1	1961.5	7.0%	0.0	96.3%	18624.0	144.8	345.9	1.0172	0 V	Δ = 2.8 V	Δ = 6.2 V
	LL		1641.9	1045.2							1.0053	120.7	118.5	118.5
5Y164	**		5900	663		2100.0		25936.0						
	LL		2286	-646										
5Y380	**		8500	978		2700.0		34519.5						
	LL		3043	-764										

Changes for Stage-1			Node	Line	Load	Losses	Swap Phases
5Y434	S01a						None
	S01b	Add Cap Add Cap	FP301903_506870503 FP254905_47582199		600 kVar 300 kVar		

Wiley		T3676							Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y434	Α		2246.8	307.4						R =	9.5	124.6	119.7	119.7
	В		2488.8	395.5						X =	1.0	124.7	120.5	
	С		2242.1	291.9						CT =	2000.0	124.7	122.4	
				Ineut =	36.5					Vset =	120.0			
										PT =	60.0			
	Т		6977.7	994.8	7.0%	0.0	99.0%	18624.0	131.1	308.1	1.0399	0 V	Δ = 2.7 V	Δ = 4.9 V
	LL		1639.1	119.9							1.0127	121.5	120.5	120.5
5Y164	**		5900	663										
	LL		2286	-646										
5Y380	**		8500	978										
	LL		3043	-764										

Changes for Stage-2

Load + 600 kVAr

Load

5Y434 S02b

Add Sw Cap FP365800

Node

Node

Length (ft)

S02c No Conductor Changes

Line

Conductor

Wiley		T3676							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y434	Α		2246.0	92.3						R =	9.5	124.6	120.0	120.0
	В		2488.7	179.8						X =	1.0	124.7	120.7	
	С		2241.8	74.0						CT =	2000.0	124.7	122.7	
				Ineut =	36.9					Vset =	120.0			
										PT =	60.0			
	Т		6976.5	346.1	7.0%	0.0	99.9%	18624.0	130.1	304.5	1.0399	0 V	Δ = 2.7 V	Δ = 4.6 V
	LL		1639.2	133.2				-			1.0127	120.7	119.7	119.7
5Y164	**		5900	663										
	LL		2286	-646										
5Y380	**		8500	978										
	LL		3043	-764										

Grandview 5Y351

Grandview Substation T859 Summary Of Distribution Power Flow Results

Grandview	1	T859	Base Case (w/ Fielding)											
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y351	Α		2230.7	241.2						R =	6.5	134.2	131.3	
	В		2964.0	443.6			Cust/Load	4.19		X =	0.0	134.3	130.2	129.2
	С		2504.7	308.1			kVA/Cust	14.10		CT =	500.0	134.3	132.5	
				Ineut =	83.6		Cust =	1377		Vset =	121.0			
										PT =	104.0			
	Т	33,271,598	7699.4	993.0	15.5%	600.0	99.2%	20980.4	106.0	199.0	1.0843	0 V		Δ = 5.1 V
	LL		2170.9	-367.2							1.0331	124.6	123.8	123.5
5Y302	** LL		7440 2770	1271 -468				26760.5						

Changes f	for Stage-1		Node	Line	Load	Losses	Swap Phases
5Y351	S01a		FP274501_564110792	5Y351_564110009			BAC> ABC
5Y351	1 S01b Reduce Cap		FP227502_728880503	Fixed	600 kVAr> 30	0 kVAr	

Grandview		T859		Stage-01										
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y351	Α		2462.0	454.5						R =	4.0	125.4	120.5	119.4
	В		2737.1	526.9						X =	0.0	125.5	123.5	
	С		2513.5	458.5						CT =	500.0	125.5	122.4	
				Ineut =	35.9					Vset =	120.0			
										PT =	104.0			
	Т		7712.6	1439.8	6.5%	300.0	98.3%	20980.4	75.2	128.9	1.0467	0 V		Δ = 6 V
	LL		2170.9	-26.8							1.0152	121.8	120.6	120.4
5Y302	** LL		7440 2770	1271 -468										

Grandview Substation T859 Summary Of Distribution Power Flow Results

Changes for Stage-2 Node 5Y351 FP229907_1040375491 600 kVAr S02b Add Sw Cap Switched Add Sw Cap Switched 600 kVAr Length (ft) Node Line Load Conductor S02c No Reconductoring needed

 S02e
 Add Regulator
 FP226205_728880766
 5Y351_72

 [Id = 63]
 219 A 3Ph 16 step
 3x180 kVA
 Flow

5Y351_728880260-SP1 Flow (kVA) = 855.1

Regulator	Settings	Regu Flo H	lator w	Regulator Flow LL
R =	2.5	855	.05	237
X =	0.0			
CT =	50.0			
Vset =	120.0	HL	V =	1.0165
PT =	60.0	LL	V =	1.0046

		Regulator Voltage Pri	Regulator Voltage Sec	Control Zone Min Voltage
HL	Α	120.0	122.1	119.7
	В	121.5	123.8	
	C	121.8	124.1	
LL		119.6	120.3	119.6
				Δ = 2.4 V

Grandview	,	T859				Stage-02								
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y351	Α		2461.8	50.1						R =	3.0	123.1	120.0	120.0
	В		2738.4	118.0						X =	0.0	123.1	121.5	121.5
	С		2513.3	45.7						CT =	500.0	123.1	121.8	121.8
				Ineut =	37.6					Vset =	119.0			
										PT =	104.0			
	Т		7713.5	213.8	6.5%	1500.0	100.0%	20980.4	83.0	147.6	1.0267	0 V		Δ = 3.1 V
	LL		2171.0	-17.4							1.0031	120.4	119.6	119.6
5Y302	**		7440	1271										
	LL		2770	-468										

APPENDIX 9

Sunnyside 5Y313 & 317

Sunnyside Substation T3570 Summary Of Distribution Power Flow Results

Sunnyside		T3570		Base Case (w/ Fielding)										
Circuit ID	Ph	Annual Energy kWhr	Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y313	Α		1385.6	159.1						R =	4.0	125.7	123.3	
	В		1593.8	243.2			Cust/Load	4.97		X =	2.0	125.7	123.6	
	С		1519.6	213.7			kVA/Cust	10.20		CT =	1000.0	125.7	123.0	121.5
				Ineut =	26.0		Cust =	1172		Vset =	121.0			
										PT =	104.0			
	Т	20,864,708	4499.0	616.0	6.3%	1200.0	99.1%	11851.5	86.8	94.1	1.0381	0 V		∆ = 4.2 V
	LL		1584.4	-205.1							1.0172	122.5	121.6	121.0
5Y314	Т		9400	1694		3000.0		32407.1						
	LL		4328	-601										
							Cust/Load	8.29						
5Y317	Α		1148.1	106.0			kVA/Cust	7.60				125.6	123.7	
	В		1782.0	306.0	Ineut = 93.4		Cust =	1277				125.6	123.0	122.8
	С		1069.7	86.9								125.7	125.3	
	Т	19,867,620	3999.8	498.9	33.7%	600.0	99.2%	9579.6	49.6	60.4		0 V		Δ = 2.8 V
	LL		1279.3	-129.0								122.5	121.7	121.6

Changes f	or Stage-1		Node	Line	Load	Swap Phases
5Y317	S01a		FP257504_823200895	5Y317_823200406 5Y317_823200313		B>A ABC>ACB
					TR_257501_823200453	A>B
5Y313	S01b	1. Reduce Cap	FP251510_823200918		1200 kVAr> 900 kVAr	

Sunnyside		T3570						:	Stage-01					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW	Losses kVAr	Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y313	Α		1386.6	275.1						R =	4.0	124.2	121.7	
	В		1594.9	358.9						X =	2.0	124.2	122.0	
	С		1520.7	329.7						CT =	1000.0	124.2	121.4	119.9
				Ineut =	26.3					Vset =	121.0			
								***	74.2	PT =	104.0			
	Т		4502.2	963.7	6.3%	900.0	97.8%	11851.5	77.0	64.7	1.0357	0 V		Δ = 4.3 V
	LL		1584.3	121.9							1.0128	121.5	120.5	119.9
5Y314	**		9400	1694										
	LL		4328	-601										
5Y317	Α		1409.6	192.9								124.2	121.9	121.7
	В		1378.5	182.9	26.3							124.2	122.5	
	С		1209.2	133.5				***	35.3			124.2	123.0	
	Т		3997.3	509.2	5.8%	600.0	99.2%	9579.6	35.5	42.6		0 V		Δ = 2.5 V
	LL		1279.0	-162.9								121.5	120.9	120.8
												•	•	•

*** Losses prior to redistribution of fixed caps

APPENDIX 9

+SW 600 kVAr

Sunnyside Substation T3570 Summary Of Distribution Power Flow Results

Changes f	for Stage-2		Node	Line	Load	Conductor	Length (ft)
5Y313	S02b	1 New Switched	FP251902_823200877		+SW 600 kVAr		
		2 New Switched	FP269202_42390692		+SW 300 kVAr		
	S02c	No reconductori	ng				

5Y317 S02b New Switched FP256511_937580500

S02c No reconductoring

Sunnyside		T3570							Stage-02					
Circuit ID	Ph		Feeder kW	Feeder kVAr	Unbalance %	Cap Banks kVAr	Power Factor %	Connected kVA	Losses kW		Rise at LTC %	Feeder Voltage Balance	BE: Branch Voltage Balance	LE: Control Zone Min Voltage
5Y313	Α		1381.5	-43.2						R =	3.5	123.9	122.1	
	В		1587.6	39.4						X =	2.0	123.9	122.5	
	С		1514.5	10.9						CT =	1000.0	123.9	121.8	120.4
				Ineut =	26.1					Vset =	121.0			
										PT =	104.0			
	Т		4483.6	7.0	6.2%	900.0	100.0%	11851.5	58.4	61.0	1.0331	0 V		Δ = 3.6 V
	LL		1584.3	121.4							1.0131	121.6	120.6	120.0
5Y314	**		9400	1694										
	LL		4328	-601										
5Y317	Α		1409.5	-15.6								123.9	123.9	121.7
	В		1378.6	-27.2	Ineut = 26.6							123.9	122.5	
	С		1208.9	-77.4								123.9	123.0	
	Т		3997.0	-120.2	5.8%	600.0	100.0%	9579.6	35.3	42.3		0 V		Δ = 2.2 V
	LL		1279.0	-163.3								121.6	120.9	120.8

Appendix 10: Cost Estimates

Changes for Stage 1		Node	Line	Load	Losses	Swap Phases					
						•					
		No phase changes were nece	essary					Metering			_
								Substation		\$8,130	
								End of Line	-	\$9,540	_
										\$17,670	•
Stage 1 Costs to address F	Potential Low Vol [#]	tages									
Heavy Load is the Controll	ing Case	-9									
			Assumed Solut	tion:		Assumptions			<u> </u>	Total	1
Number of Transformers	at or below 120 v	volte 184	13	transformer change	out	/8 hrs x 4 nerson	crew) + 10% of labor for mater	rial - ner unit		\$59 488	1
Estimated percent with set	condary Vd > 4 vo!	lts 26.8%	29	Itransformer tap cha	inges	(4 hrs x 3 person	crew) per tap change	iai - per unit	+	\$45,240	1
Number of Transformers f	from 120 to 121 v	olte 99	4	service change out	inges	(4 hrs x 2 person	crew) + 50% of labor for mater	rial - ner unit		\$6 240	1
Estimated percent with se	condary Vd > 5 vc	ults 10.6%	i i i i i i i i i i i i i i i i i i i	Planning and Engine	ering	(Estimated to be '	50% of Crew Labor)	iui per unit		\$51,740	1
Lotinated parts.	501.001, 12		L		c15	12000000	Total estimated cost	to resolve low vo	Itage concerns:	\$162.708	1
Estimated total number of	f transformers that	ıt						10.100	iuge errer	φ 1 0 <u>-</u> ,	
may have customers with	low voltage at Ser	rvice Entrance =	42								
indy nere exercises.											
									Total Stage 1 =	\$180,378	
											<u> </u>
Changes for Stage 2		Node	Line	Load	Losses	Swap Phases					
	Add Sw Cap	FP249363_593050816		+ 900 kV	Ar		Labor	Material	AFUDC	Total	
							\$6,575	\$10,393	\$2,121	\$19,088	
									-	\$1,909	Engineering = 10% of Total
										\$20,997	
							Three Phase swap				
		FP269903_302080452	5W150_30208	80024	Rotate phases	CAB->ACB	Engineer	4	\$130	\$520	Engineering and Analysis
							Svc Line Worker	0	\$130	\$0	Install /Remove metering
							Notifier	4	\$100	\$400	Notify customers of outage
							SVC Crew (4 person + 2				
							flaggers)	6	\$650	\$3,900	Make phase changes
							Total	14		\$4,820	
		FP243261	5W150_593050046	ő-SP2 328 /	A 3Ph 16 step 3x	.180 kVA	\$11,110	\$47,553	\$7,333	\$65,995	Per Block Estimate
									_	\$6,599	Engineering = 10% of total
										\$72,594	-
								Metering			
								Pegulator		\$32,000	v 2 for new and existing
								End of Line		\$52,000 \$10.080	x 2 for new and existing
								End of Line		\$13,000	
										\$31,000	
2: 2 C	Zotential Low Your	ages		dditional costs							
Stage 2 Costs to address P	of impacted transf	formers is slightly less in stage 2	"than in stage 1 No au								
Stage 2 Costs to address F The number c	of impacted transi	formers is slightly less in stage 2	2 than in stage 1. No a								
Stage 2 Costs to address F The number o	of impacted trans	formers is slightly less in stage 2	2 than in stage 1. No a					Stage 2 Mod	fication Total =	\$149,492	
Stage 2 Costs to address F The number o	of impacted trans	formers is slightly less in stage 2	2 than in stage 1. No a					Stage 2 Mod	ification Total =	\$149,492	

All changes in Stage three are to address potential low voltage.

		Work Descri	ption		No. of	Cost per	Total	Notes
					locations	location		
			End of 1	ph voltage control zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
				Line regulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
			Substation: communic	ations gear, links, central equipment, software to support				
			CVR, IVVO, FDIR, AMI, DI	R, other smart grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	Shared cost with 5W154
						Subtotal:	\$108,833	
Stage 3 Costs to address Potential Low Voltages								
Heavy Load is the Controlling Case								
25 less transformers will be impacted.								
		Assumed Sol	ution:					-
		Qty. (ea)	Work Description	Assumptions			Total	
Number of Transformers at or below 120 volts	35	-8	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material	l - per unit		(\$36,608)	
Estimated percent with secondary Vd > 4 volts	26.8%	-17	transformer tap changes	(4 hrs x 3 person crew) per tap change			(\$26,520)	
Number of Transformers from 120 to 121 volts	143	-2	service change out	(4 hrs x 2 person crew) + 50% of labor for material	l - per unit		(\$3,120)	
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			(\$30,940)	
				Total estimated cost to	resolve low v	oltage concerns:	(\$97,188)	_
Estimated total number of transformers that								
may have customers with low voltage at Service Entrance =	1	7			Stage 3 Mo	dification Total =	\$11,645	
				Stage 1 + Stage 2	+ Stage 3 Mod	dification Total =	\$341,514	

server data server	n 51//15/											
$\frac{1}{1000} \operatorname{Constraint} C$	11 244 124											
Remove Cope PP370700_3599702055 -000 V/V Engineer 8 1.00 Tode Remove Cope PP37000_359970255 -000 V/V Prove Cope PP37000_359970255 PP30700_359970255 PP30700_359970255 PP30700_359970255 PP30700_359970255 PP30700_359970255 PP30700_359970255 PP30700_359970255 PP300700_359970255 P300 V/V/r P300 V/V/r P300 V/								Estimate to remove both	capacitors			
Remove Cage P300002_154012397 -001 V/V Regent R 50 <u>diff</u> Remove Cage bank No phase adjusments required for balancing	Remove Caps	FP357704_3699	970265		- 900 kVAr			Engineer SVC Crew (3 person + 2	8	130	1040	Engineering & Admin
And the phase adjustments required for balancing Solo And the phase adjustments required for balancing Substance State of transformers at or below 120 volts 0, 80, 70, 70, 70, 70, 70, 70, 70, 70, 70, 7	Remove Caps	FP300602_1540	0121947		- 900 kVAr			flaggers)	8	520	4160	Remove Cap Bank
										-	5200	
	No phase adjust	conto required for ha	lancing						Motoring			
And of Line 9.500 51.700 Stage 1 Cost to address Potential Low Voltages Heavy Load is the Controlling Case - </td <td>No priase aujust</td> <td>nents required for bar</td> <td>lancing</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Substation</td> <td></td> <td>\$8 120</td> <td></td>	No priase aujust	nents required for bar	lancing						Substation		\$8 120	
Stage 1 Cosis to address Potential Low Voltages Heavy Load is the Controlling Case Number of Transformers at a below 120 volts 0 Standard generative with secondary Voltages Standard generative with secondary Voltages Standard generative standard generative standard voltages Mumber of Transformers frat may have customers with low voltage at Service Intrance = 1 Mode of Transformers frat may have customers with low voltage at Service Intrance = 1 Mode of Transformers frat may have customers with low voltage at Service Intrance = 1 Mode of Transformers at a below 120 volts Node Node Node Velocative denage out 1 Mode of Transformers with low voltage at Service Intrance = 1 Node									End of Line		\$9,130 \$9,540	
Space 1 Costs address Potential Low Voltages Heary Load is the Controlling Case Number of Transformers at or below 120 volts 0 Costs address Potential Low Voltage at Service Entrance ** 1 Standardomic regional Costs and Pose Potential Low Voltage at Service Entrance ** 1 Standardomic regional Costs and Pose Potential Low Voltage at Service Entrance ** 1 Standardomic Voltage Advises									End of Elife		\$17,670	-
Stap 2 Losts to address potential low voltages Heavy Load is the Constrolling Cose Number of Transformers at or below 120 volts 0 Stap 2 Losts to address potential Low voltage at Service Entrance * 1 Transformer to relation with secondary visit the construction of transformers that may have customers with low voltage at Service Entrance * 1 Mode for Stage 2 Node Add Sw Cap FP357704_300070265 Add Sw Cap FP357704_30007026												
Number of Transformers at or below 120 volts 0 Stimuted formationers mut 20 volts 0 Stimuted formationers from 20 to 21 volts 0.6 Add Sw Cap PS7704_389870265	Stage 1 Costs to address Potential Low	/oltages										
Number of Transformers at or below 120 welts 0 States 2 to 20 12 solves 0 col 1 col </td <td>Heavy Load is the Controlling Case</td> <td></td> <td></td> <td>Accumed Sel</td> <td>lution:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Heavy Load is the Controlling Case			Accumed Sel	lution:							
wurder of Transformers at to below 120 volts 0 stimuted percent with secondary Vd > 4 volts 26.8%. Wurder of Transformers from 120 to 121 volts 6 stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stimuted percent with secondary Vd > 5 volts 10.5% Stige 2 Costs to address Potential Low Voltages 100 Value 1 Cost Conductor Length (ft) Number of Transformers still be impacted. 7 total 7 more transformers with secondary Vd > 4 volts 26.8% Number of Transformers with secondary Vd > 4 volts 26.8% 1 service change out 100 kork to bescription 7 more transformers with secondary Vd > 4 volts 26.8% 1 service change out				Oty. (ea)	Work Description		Assumptions				Total	7
Estimated precent with secondary V4 >4 withs 26.8% Number of Transformers from 200 b121 withs 6 Estimated percent with secondary V4 >5 volts 10.6% Estimated total number of transformers that may have customers with low voltage at Service Entrance = 1 Images for Stage 2 Node Add Sw Cap PP3507704_309970265 Add Sw Cap + 900 kVAr Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case. 7 more 7 more transformers will be impacted. Number of Transformers will be impacted. 0 Service Entrange out 4 hrs 3 person crew) + 10% of labor for material per unit 513,149 Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case. 1 Ime Load Conductor Length (ft) Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case. 7 more Transformer tag change out 14 hrs 3 person crew) + 10% of labor for material per unit 513,252 Number of Transformers will be impacted. 0 Extended Solution: Total 53,813 Engineering = 10% of Total Stage 2 Costs to address Potential bow Voltages 0 1 Kasumed Solution: Total Stage 2	Number of Transformers at or below 12	0 volts	0	1	transformer change out		(8 hrs x 4 person cre	w) + 10% of labor for materi	ial - per unit		\$4.576	
Number of Transformers from 120 to 121 volts 6 Estimated percent with secondary V4 > 5 volts 10.6% Estimated percent with secondary V4 > 5 volts 10.6% Estimated percent with secondary V4 > 5 volts 10.6% Estimated total number of transformers that may have customers with low voltage at Service Entrance = 1 Total estimated to to resolve low voltage concerns: 56,556 Changes for Stage 2 Node Add Sw Cap PP357704_369970255 + 900 kV/Ar S13,149 S20,785 \$4,422 \$38,177 Add Sw Cap PP357704_369970255 + 900 kV/Ar \$13,149 \$20,785 \$4,4995 S14,995 Node Line Load Conductor Length (ft) F03,007 S41,995 Engineering = 10% of Total S12,728 \$41,995 \$41,995 \$41,995 S41,995 Engineering = 10% of Total S12,728 \$41,995 S41,995 S41,995 </td <td>Estimated percent with secondary Vd > 4</td> <td>volts</td> <td>26.8%</td> <td>0</td> <td>transformer tap changes</td> <td>S</td> <td>(4 hrs x 3 person cre</td> <td>ew) per tap change</td> <td></td> <td></td> <td>\$0</td> <td></td>	Estimated percent with secondary Vd > 4	volts	26.8%	0	transformer tap changes	S	(4 hrs x 3 person cre	ew) per tap change			\$0	
timated percent with secondary Vd > 5 volts 10.6% Planning and Engineering (Estimated to be 50% of Crew Labor) 92.080 Stimated total number of transformers that may have customers with low voltage at Service Entrance = 1 Image: Service Entrance = 56,656 Changes for Stage 2 Node Load Cost to install both Capacitors Total stage 1 = 529,526 Add Sw Cap FP30704_389970265 + 900 KVAr 513,149 520,726 54,22 538,177 Add Sw Cap FP30704_389970265 + 900 KVAr 513,149 520,726 54,22 538,177 Add Sw Cap FP3050621_1540121947 + 900 KVAr 513,149 520,726 54,22 538,177 Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case. Total Stage 2 Cost to address Potential Low Voltages 10% of Kescription Stage 2 Modificaton Total 513,749 Stage 2 mode is 55,6240 Number of Transformers will be impacted. Assumed Solution: Stage 2 mode is 55,6240 Stage 2 mode is 55,6240 Stage 2 mode is 55,6240 Number of Transformers that scondary Vd > 5 volts 10.6% Light total is controlling case. Stage 2 mode is 55,6240 Stage 2 mode is 53,1408 Lig	Number of Transformers from 120 to 12	1 volts	6	0	service change out		(4 hrs x 2 person cre	ew) + 50% of labor for materi	ial - per unit		\$0	
Total estimated cost to resolve low voltage concerns: 56,656 Total estimated cost to resolve low voltage concerns: 56,656 Total stage 1 = \$29,526 Changes for Stage 2 Node Costs to install both Capacitors Add Sw Cap FP350704_369970265 + 900 kVAr S13,149 S20,786 S4,242 S38,177 Node Light Load Conductor Length (ft) Node Light Load Conductor Length (ft) Node Light Load Const to address Potential Low Voltages Light Load Controlling Case. Total Total Total Mumber of Transformers will be impacted. Total Number of Transformers will be impacted. Total Stage 2 costs to address Potential Low Voltages Light Load is Controlling Case. Total Stage 2 costs to address Potential be inpacted. Total Stage 2 both total voltage 3 So total voltage 3 Stage 2 costs to address Potential Low Voltage 3 So totaddress Potential Cost to resolve low voltage c	Estimated percent with secondary Vd > !	volts	10.6%		Planning and Engineerin	g	(Estimated to be 50	% of Crew Labor)			\$2,080	
timinate total number of transformers with low voltage at Service Entrance = 1 timinate total number of transformers with low voltage at Service Entrance = 1 timinate total stage 1 = \$29,526 total stage 1 = \$29,526 Add Sw Cap PP357704_369970265 + 900 KVAr Stago 7 Stago 7 Stage 7 Sta						•		Total estimated cost	to resolve low	voltage concerns:	\$6,656	
Image for barger Node Loca Conductor Labor Material AFUDC Total Add Sw Cap FP3507062_1540121947 + 900 kVAr \$13,149 \$20,786 \$4,22 \$38,177 Add Sw Cap FP300502_1540121947 + 900 kVAr \$13,149 \$20,786 \$4,22 \$38,177 Mode Line Load Conductor Length (ft) Stage 2 Costs to address Potential Ox Voltages Experimental Conductoring needed Assumed Solution Number of Transformers will be impacted. 0 Assumed Solution Assumptions Number of Transformers stor below 120 volts 0 0 1 1 Estimated percent with secondary Vd > 4 volts 2.6.8% 3 1 1 1 Number of Transformers from 120 to 121 volts 3.00 1 3 1 1 1 1 Light Load Heavy Load = 2.01 2.01 2.01 2.02 2.03 2.	Changes for Stage 2	Nodo									Ş29,920	_
Add Sw Cap FP357704_369970265 + 900 kVAr \$13,14 \$13,14 \$20,786 \$4,24 \$38,177 Stage 2 Costs to address Potential Low Voltage Lipt Load is Controlling Case. 7 more transformers will be impacted. Number of Transformers stor below 120 volts Stimated percent with secondary Vd > 4 volts 25.08 Lipt Load / Havy Load = 2510 Lipt Load / Havy Load = 3.1 Estimated total number of transformers that may have customers with low voltage at Service Thanase = 8 Stage 2 Modification Total = \$73,403					bcol			Cost to install both Canac	itors			
Add Sw Cap F930060_1540121947 + 90 kVr S3.81 / 540.995 Node Line Load Conductor Length (ft) Node Line Load Conductor Length (ft) Stage 2 Costs to address Potential Low Voltages Same Same Same Uight Load is Controlling Case: Nome Transformers will be impacted. Number of Transformers at or below 120 volts 0 Same Number of Transformers from 120 to 121 volts 0 Same Stimated percent with secondary V4 > 4 volts 26.8% Number of Transformers from 120 to 121 volts 0 Eight Load = 2510 Heavy Load = 2513 Math Z Heavy Load = 2514 Math Z Heavy Load = 2512 Math Z Heavy Load = 2514 Math Z Heavy Load = 2512 Math Z Heavy Load = 2512 <td></td> <td>Noue</td> <td></td> <td></td> <td>Load</td> <td></td> <td></td> <td>Cost to install both Capac Labor</td> <td>itors Material</td> <td>AFUDC</td> <td>Total</td> <td></td>		Noue			Load			Cost to install both Capac Labor	i tors Material	AFUDC	Total	
Node No reconductoring needed Line Load Conductor Length (ft) Stage 2 tosts to address Potential Low Voltages Lipt Load is Controlling Case. 7 more transformers will be impacted. Number of Transformers at or below 120 volts 0 Estimated percent with secondary Vid > 4 volts 26.8%, Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vid > 4 volts 26.8%, Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vid > 4 volts 26.8%, Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vid > 4 volts 26.8%, Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vid > 4 volts 26.8%, Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vid > volts 0.6%, Number of Transformers from 120 to 121 volts 350 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = 573,403	Add Sw Cap	FP357704 3699	970265		Load + 900 kVAr			Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177	
Node b canoduction genedicLineLodConductorLegth (t)Conductor in geneticSape 2 solution do transformer sul be impacted:7mortransformer sul be impacted:7mortransformer sul be impacted:7mortransformer sul be impacted:7mortransformer sul be impacted:8transformer sul poly on transformer sul poly on transformer stransformer stransfor	Add Sw Car Add Sw Car	FP357704_3699 FP300602_1540	970265 0121947		Load + 900 kVAr + 900 kVAr			Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818	Engineering = 10% of Tota
Normality Normality Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case. 7 more transformers will be impacted. Number of Transformers at or below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vd > 5 volts 10.6% Light Load = 2510 Heavy Load = 0.31 Estimated total number of transformers that 0.31 may have customers with low voltage at Service Entrance = 8	Add Sw Cap Add Sw Cap	FP357704_3699 FP300602_1540	970265 9121947		Load + 900 kVAr + 900 kVAr			Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case: 7 more transformers will be impacted. Number of Transformers at or below 120 volts 0 6.8% Stanated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vd > 5 volts 10.6% Light Load = 2510 Heavy Load = 0.31 Estimated total number of transformers that 0 may have customers with low voltage at Service Entrance = 8	Add Sw Car Add Sw Car	FP357704_3699 FP300602_1540	970265 0121947	line	Load + 900 kVAr + 900 kVAr	Conductor	longth (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Totai
Stage 2 Costs to address Potential Low Voltages Light Load is Controlling Case. 7 more transformers will be impacted. Number of Transformers at or below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 300 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 300 Estimated percent with secondary Vd > 5 volts 10.6% Light Load = 2510 Heavy Load = 0.31 Estimated total number of transformers that 31.408 may have customers with low voltage at Service Entrance = 8	Add Sw Car Add Sw Car	FP357704_3699 FP300602_1540 Node	970265 9121947	Line	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Light Load is Controlling Case. 7 more transformers will be impacted. Number of Transformers at or below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 350 Estimated percent with secondary Vd > 5 volts 10.6% Light Load = 2510 Heavy Load = 2510 Heavy Load = 0.31 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 8 More than the service E	Add Sw Car Add Sw Car	PP357704_3695 FP300602_1540 Node No reconductor	970265 0121947 ring needed	Line	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Number of Transformers will be impacted. Saumed South So	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low V	FP357704_3695 FP300602_154(Node No reconductor	970265 9121947 ring needed	Line	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Number of Transformers at or below 120 volts 0 Assumed Solution: Estimated percent with secondary Vd > 4 volts 26.8% 3 transformer change out (8 hrs x 4 person crew) + 10% of labor for material - per unit \$13,728 Number of Transformers from 120 to 121 volts 350 4 transformer tap changes (4 hrs x 3 person crew) per tap change \$6,240 Number of Transformers from 120 to 121 volts 350 1 service change out (4 hrs x 2 person crew) per tap change \$6,240 Light Load = 2510 1 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit \$1,560 Light Load = 8200 Planning and Engineering Estimated to be 50% of Crew Labor) \$9,880 Light Load / Heavy Load = 0.31 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low V Light Load is Controlling Case.	FP357704_3699 FP300602_1540 Node No reconductor	970265)121947 ring needed	Line	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Number of Transformers at or below 120 volts0Qty. (ea)Work DescriptionAssumptionsTotalEstimated percent with secondary Vd > 4 volts26.8%3transformer change out(8 hrs x 4 person crew) + 10% of labor for material - per unit\$13,728Number of Transformers from 120 to 121 volts3504transformer tap changes(4 hrs x 3 person crew) + 50% of labor for material - per unit\$1,560Estimated percent with secondary Vd > 5 volts10.6%1service change out(4 hrs x 2 person crew) + 50% of labor for material - per unit\$1,560Light Load =25101service change out(4 hrs x 2 person crew) + 50% of labor for material - per unit\$9,880Light Load / Heavy Load =0.3126.8%1service change out(4 hrs x 2 person crew) + 50% of labor for wortage concerns:\$31,408Estimated total number of transformers that0.3151service change out(4 hrs x 2 person crew) + 50% of labor for material - per unit\$1,560Ight Load / Heavy Load =0.3151service change out(4 hrs x 2 person crew) + 50% of labor for material - per unit\$31,408Ight Load / Heavy Load =0.3151service change outStage 2 Modification Total =\$73,403may have customers with low voltage at Service Entrance =8Stage 2 Modification Total =\$73,403	Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil	FP357704_3696 FP300602_1540 No reconductor Voltages	970265 0121947 ring needed	Line	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Number of Transformers at or below 120 volts 0 3 transformer change out (8 hrs x 4 person crew) + 10% of labor for material - per unit \$13,728 Estimated percent with secondary Vd > 4 volts 26.8% 4 transformer tap change (4 hrs x 3 person crew) + 10% of labor for material - per unit \$13,728 Number of Transformers from 120 to 121 volts 350 1 service change out (4 hrs x 3 person crew) per tap change \$6,240 Light Load = 2510 1 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit \$1,308 Light Load = 2510 Planning and Engineering (Estimated to be 50% of Crew Labor) \$31,408 Light Load / Heavy Load = 0.31 Stage 2 Modification Total = \$73,403 may have customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil	FP357704_3696 FP300602_1540 No reconductor Voltages I be impacted.	970265 0121947 ring needed	Line Assumed Sol	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft)	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995	_Engineering = 10% of Tota
Estimated percent with secondary Vd > 4 volts 26.8% 4 transformer tap changes (4 hrs x 3 person crew) per tap change 56,240 Number of Transformers from 120 to 121 volts 350 1 service change out (4 hrs x 3 person crew) + 50% of labor for material - per unit \$1,560 Estimated percent with secondary Vd > 5 volts 10.6% Planning and Engineering (Estimated to be 50% of Crew Labor) \$9,880 Light Load = 2510 Total estimated cost to resolve low voltage concerns: \$31,408 Heavy Load = 0.31 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low V Light Load is Controlling Case. 7 more transformers wil	FP357704_3695 FP300602_1540 No reconductor Voltages	970265 9121947 ring needed	Line Assumed Sol Qty. (ea)	Load + 900 kVAr + 900 kVAr Load	Conductor	Length (ft) Assumptions	Cost to install both Capac Labor \$13,149	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total	_Engineering = 10% of Tota
Number of Transformers from 120 to 121 volts3501service change out(4 hrs x 2 person crew) + 50% of labor for material - per unit\$1,560Estimated percent with secondary Vd > 5 volts10.6%Planning and Engineering(Estimated to be 50% of Crew Labor)\$9,880Light Load =2510Total estimated cost to resolve low voltage concerns:\$31,408Heavy Load =0.31*********************************	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120	FP357704_3695 FP300602_1540 No reconductor /oltages I be impacted.	970265 0121947 ring needed	Line Assumed Sol Qty. (ea) 3	Load + 900 kVAr + 900 kVAr Load ution: <u>Work Description</u> transformer change out	Conductor	Length (ft) Assumptions (8 hrs x 4 person cree	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi	itors Material \$20,786 ial - per unit	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total \$13,728	_Engineering = 10% of Tota
Estimated percent with secondary Vd > 5 volts 10.6% Planning and Engineering (Estimated to be 50% of Crew Labor) \$9,880 Light Load = 2510 Total estimated cost to resolve low voltage concerns: \$31,408 Heavy Load = 8200 0.31 Stage 2 Modification Total = \$73,403 Is phave customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 4	FP357704_3696 FP300602_1540 No reconductor Voltages I be impacted.	970265 0121947 ring needed 0 26.8%	Line Assumed Sol Qty. (ea) 3 4	Load + 900 kVAr + 900 kVAr Load Work Description transformer change out transformer tap change:	Conductor	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change	itors Material \$20,786 ial - per unit	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total \$13,728 \$6,240	_Engineering = 10% of Total
Light Load = 2510 Total estimated cost to resolve low voltage concerns: \$31,408 Heavy Load = 820 1 Light Load / Heavy Load = 0.31 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 8	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low ¹ Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 4 Number of Transformers from 120 to 12	FP357704_3696 FP300602_1540 No reconductor Voltages I be impacted.	970265 0121947 ring needed 0 26.8% 350	Line Assumed Sol Qty. (ea) 3 4 1	Load + 900 kVAr + 900 kVAr Load Uution: transformer change out transformer tap change: service change out	Conductor	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre (4 hrs x 2 person cre	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi	itors Material \$20,786 ial - per unit	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total \$13,728 \$6,240 \$1,560	_ Engineering = 10% of Total
Heavy Load = 8200 Light Load / Heavy Load = 0.31 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 2 Estimated percent with secondary Vd > 12	FP357704_3696 FP300602_1540 No reconductor Voltages I be impacted.	070265 0121947 ring needed 0 26.8% 350 10.6%	Line Assumed Sol Qty. (ea) 3 4 1	Load + 900 kVAr + 900 kVAr Load Ution: Work Description transformer tap change out transformer tap change out Planning and Engineerin	Conductor 5 16	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre (4 hrs x 2 person cre (Estimated to be 50)	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi % of Crew Labor)	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total \$13,728 \$6,240 \$1,560 \$9,880	_ Engineering = 10% of Tota
Light Load / Heavy Load = 0.31 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low V Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 4 Number of Transformers from 120 to 12 Estimated percent with secondary Vd > 5 Light Load = 2	Vole FP357704_3695 FP300602_1540 No reconductor Voltages I be impacted. D volts V volts 1 volts 2 volts 2 volts 2 2510	070265 0121947 ring needed 0 26.8% 350 10.6%	Line Assumed Sol Qty. (ea) 3 4 1	Load + 900 kVAr + 900 kVAr Load Ution: Work Description transformer change out transformer tap changer service change out Planning and Engineerin	Conductor 5 g	Assumptions (8 hrs x 4 person cre (4 hrs x 2 person cre (5 thrs x 2	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi % of Crew Labor) Total estimated cost i	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 \$41,995 \$41,995 \$41,995 \$41,995 \$41,995 \$41,728 \$6,240 \$13,728 \$6,240 \$1,560 \$9,880 \$31,408	_Engineering = 10% of Tota
Estimated total number of transformers that may have customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 4 Number of Transformers from 120 to 12 Estimated percent with secondary Vd > 4 Light Load = 2 Heavy Load = 2	Node FP357704_3695 FP300602_1540 No reconductor No reconductor /oltages I be impacted. 0 volts volts 1 volts 5 volts 2 volts 52510 32000 3200	070265 0121947 ring needed 0 26.8% 350 10.6%	Line Assumed Sol Qty. (ea) 3 4 1	Load + 900 kVAr + 900 kVAr Load Ution: Work Description transformer change out transformer tap change: service change out Planning and Engineerin	Conductor s g	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre (4 hrs x 2 person cre (Estimated to be 50)	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi % of Crew Labor) Total estimated cost to	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total \$13,728 \$6,240 \$1,560 \$9,880 \$31,408	_Engineering = 10% of Tota
may have customers with low voltage at Service Entrance = 8 Stage 2 Modification Total = \$73,403	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 2 Light Load = 2 Light Load = 2 Light Load = 8 Light Load / Heavy Load =	Note FP357704_3695 FP300602_1540 Node No reconductor Voltages I be impacted. I volts Volts I volts 2510 3200 0.31	070265 0121947 ring needed 0 26.8% 350 10.6%	Line Assumed Sol Qty. (ea) 3 4 1	Load + 900 kVAr + 900 kVAr Load Work Description transformer change out transformer tap change: service change out Planning and Engineerin	Conductor s g	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre (4 hrs x 2 person cre (Estimated to be 500	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi % of Crew Labor) Total estimated cost i	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 \$	_ Engineering = 10% of Tota
	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low 1 Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 2 Light Load = 2 Heavy Load = 2 Light Load / Heavy Load = Estimated total number of transformers	FP357704_3696 FP300602_1540 No reconductor Voltages I be impacted.	070265 0121947 ring needed 0 26.8% 350 10.6%	Line Assumed Sol Qty. (ea) 3 4 1	Load + 900 kVAr + 900 kVAr Load Uution: Work Description transformer change out transformer change out service change out Planning and Engineerin	Conductor S Ig	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre (4 hrs x 2 person cre (Estimated to be 50%	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi % of Crew Labor) Total estimated cost t	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 \$	_ Engineering = 10% of Tota
	Add Sw Car Add Sw Car Add Sw Car Stage 2 Costs to address Potential Low V Light Load is Controlling Case. 7 more transformers wil Number of Transformers at or below 120 Estimated percent with secondary Vd > 2 Light Load = 2 Heavy Load = 2 Estimated total number of transformers may have customers with low voltage at	Node FP357704_3695 FP300602_1540 No reconductor No reconductor Voltages I be impacted. 0 volts Volts 1 volts Volts 2510 3200 0.31 that	070265 0121947 ring needed 0 26.8% 350 10.6%	Line Assumed Sol Qty. (ca) 3 4 1	Load + 900 kVAr + 900 kVAr Load Ution: Work Description transformer change out transformer tap change service change out Planning and Engineerin	Conductor s g	Length (ft) Assumptions (8 hrs x 4 person cre (4 hrs x 3 person cre (4 hrs x 2 person cre (Estimated to be 50)	Cost to install both Capac Labor \$13,149 ew) + 10% of labor for materi ew) per tap change ew) + 50% of labor for materi % of Crew Labor) Total estimated cost to	itors Material \$20,786	AFUDC \$4,242	Total \$38,177 \$3,818 \$41,995 Total \$13,728 \$6,240 \$1,560 \$9,880 \$31,408 \$73,403	_Engineering = 10% of Tota

		Work Descri	ption		No. of	Cost per	Total	Notes
					locations	location		
			End of 1ph vol	tage control zone: wireless 'radio' link to substation	2	\$3,551	\$7,102	
			l	ine regulator: wireless 'radio' link to the substation	1	\$3,364	\$3,364	
			Substation: communications	gear, links, central equipment, software to support				
			CVR, IVVO, FDIR, AMI, DR, othe	er smart grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	Shared cost with 5W150
		-				Subtotal:	\$115,748	
Stage 3 Costs to address Potential Low Voltages								
Light Load is Controlling Case.								
13 more transformers will be impacted.								
		Assumed Sol	ution:					
		Qty. (ea)	Work Description	Assumptions			Total]
Number of Transformers at or below 120 volts	350	4	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material	- per unit		\$18,304	
Estimated percent with secondary Vd > 4 volts	26.8%	9	transformer tap changes	(4 hrs x 3 person crew) per tap change			\$14,040	
Number of Transformers from 120 to 121 volts	22	3	service change out	(4 hrs x 2 person crew) + 50% of labor for material	- per unit		\$4,680	
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			\$16,900	
Light Load = 2510				Total estimated cost to	resolve low vo	oltage concerns:	\$53,924	
Heavy Load = 8200								
Light Load / Heavy Load = 0.31								
Estimated total number of transformers that								
may have customers with low voltage at Service Entrance =	21				Stage 3 Mod	dification Total =	\$169,672	
				Stage 1 + Stage 2 -	+ Stage 3 Mod	lification Total =	\$272 600	

Changes for Stage 1	Node		Line	Load Loss	ses Swap Phases					
					none					
						Labor	Material	AFUDC	Total	
Add Cap	FP017006_6826603	47		+ 900 kVAr		\$2,012	\$2,766	\$597	\$5,375	
									\$537	Engineering = 10% of Tota
									\$5,912	
							Metering			
							Substation		\$8.130	
							End of Line		\$9,540	
									\$17,670	_
Stage 1 Costs to address Potential Lov	v Voltages									
Heavy Load is the Controlling Case	voltages									
			Assumed Soluti	on:	A commution of				Tatal	7
Number of Transformers at or below	120 volte	220	Qty. (ea) W	ork Description	Assumptions /8 brs x 4 pors	on crow) + 10% of labor for ma	torial por unit		10tai	_
Estimated percent with secondary Vd >	A volts	229	24 tr	ansformer tan changes	(0 IIIS X 4 pers	on crew) per tap change	tenar-per unit		\$53,040	_
Number of Transformers from 120 to	121 volts	78	34 ti 8 se	ervice change out	(4 hrs x 2 pers	ion crew) + 50% of labor for ma	terial - ner unit		\$12,480	
Estimated percent with secondary Vd	5 volts	0.6%	PI	anning and Engineering	(Estimated to	be 50% of Crew Labor)	tenar per ante		\$61,880	
Estimated percent with secondary va-	5 1010	0.070			(Estimated to	Total estimated co	ost to resolve low vo	oltage concerns:	\$196.040	
may have customers with low voltage	at service critiance –	47								
								Total Stage 1 =	\$219,622	
Changes for Stage 2	Node			Load		labar	Matarial	Total Stage 1 =	\$219,622	
Changes for Stage 2	Node	96		Load		Labor \$4,773	Material	Total Stage 1 = AFUDC	\$219,622 Total	
Changes for Stage 2 Add Sw C	Node ap FP179040_7763903	96		Load + 1800 kVAr *used 1200kVAF	NR for pricing	Labor \$4,773	Material \$10,312	Total Stage 1 = AFUDC \$1,886	\$219,622 Total \$16,970 \$1 697	Engineering = 10% of Tota
Changes for Stage 2 Add Sw C	Node ap FP179040_7763903	96		Load + 1800 kVAr *used 1200kVAf	NR for pricing	Labor \$4,773	Material \$10,312	Total Stage 1 = AFUDC \$1,886	\$219,622 Total \$16,970 \$1,697 \$18,667	_Engineering = 10% of Tota
Changes for Stage 2 Add Sw C	Node PP179040_7763903	96		Load + 1800 kVAr *used 1200kVAF	NR for pricing	Labor \$4,773	Material \$10,312	Total Stage 1 = AFUDC \$1,886	\$219,622 Total \$16,970 \$1,697 \$18,667	_Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C	Node ap FP179040_7763903 ap FP289361_4234504 ap FP289361_4234504	96		Load + 1800 kVAr *used 1200kVAF + 300 kVAr + 300 kVAr	NR for pricing	Labor \$4,773 Labor	Material \$10,312 Material	Total Stage 1 = AFUDC \$1,886 AFUDC	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$23,547	_Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C	Node ap FP179040_7763903 ap FP289361_4234504 ap FP289361_4234504 ap FP340061_1540847	96 17 160		Load + 1800 kVAr *used 1200kVAF + 300 kVAr + 300 kVAr	NR for pricing	Labor \$4,773 Labor \$9,545	Material \$10,312 Material \$10,408	AFUDC \$1,886 AFUDC \$2,594	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255	_Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C	Node ap FP179040_7763903 ap FP179040_7763903 ap FP289361_4234504 ap FP289361_4234504 ap FP340061_1540847	96 17 160		Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr	NR for pricing	Labor \$4,773 Labor \$9,545	Material \$10,312 Material \$10,408	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802	_Engineering = 10% of Tota _Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C	Node ap FP179040_7763903 ap FP289361_4234504 ap FP289361_4234504 ap FP340061_1540847	96 17 160		Load + 1800 kVAr *used 1200kVAF + 300 kVAr + 300 kVAr	NR for pricing	Labor \$4,773 Labor \$9,545 Per-foot costs:	Material \$10,312 Material \$10,408	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802	_ Engineering = 10% of Tota _ Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C	Node ap FP179040_7763903 ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847	96 17 160		Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr	NR for pricing	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor	Material \$10,312 Material \$10,408 Material	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total	_Engineering = 10% of Tota _Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C	Node PF179040_7763903 PF289361_4234504 PF340061_1540847 Node	96 17 160		Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr	.R for pricing Length (ft)	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55	Material \$10,312 Material \$10,408 Material \$52	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$22,547 \$22,55 \$24,802 Total \$120	_Engineering = 10% of Tota _Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261	96 17 160 624	CC 1	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa]	R for pricing $\frac{\text{Length (ft)}}{447.0}$	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55	Material \$10,312 Material \$10,408 Material \$52	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$2,594 AFUDC \$13	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757	_Engineering = 10% of Tota _Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP289003_1540261 FP339960	96 17 160 624 23	CC 11 11	Load + 1800 kVAr *used 1200kVAF + 300 kVAr + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa]	NR for pricing <u>Length (ft)</u> 1] 447.0	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55	Material \$10,312 Material \$10,408 Material \$52	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376	_ Engineering = 10% of Tota _ Engineering = 10% of Tota Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP339960_4234504	96 17 160 624 23	CC 1: 10	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr 900 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa	R for pricing <u>Length (ft)</u> a] 447.0	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55	Material \$10,312 Material \$10,408 Material \$52	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133	_Engineering = 10% of Tota _Engineering = 10% of Tota _Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP339960_4234504	96 17 160 624 23	C 1 1	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr 7300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 #6 CU 3PSn 8xa]	R for pricing <u>Length (ft)</u> a] 447.0	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph	Material \$10,312 Material \$10,408 Material \$52	AFUDC \$1,886 AFUDC \$2,594 AFUDC \$2,594 AFUDC \$13	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133	_Engineering = 10% of Tota _Engineering = 10% of Tota _Engineering = 10% of Tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP187200	96 17 160 624 23	Ca 1: 1: 22_776390096-5	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa] 590 [20.8 795AAC3PLn 8xa]	AR for pricing 1) <u>Length (ft)</u> 1) 447.0 (a) 20.8 3-ph 347A]	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph 1 \$11,110	Material \$10,312 Material \$10,408 Material \$52 7620 V 328 A \$49,000	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13 \$7,333	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133 \$67,442	_Engineering = 10% of Tota _Engineering = 10% of Tota _Engineering = 10% of Tota \$49k Per email from Wyat
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP389906_4234504 FP187200 FP187200	96 17 160 624 23 4W2	Cc 1: 1: 22_776390096-S	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa 590 [20.8 795AAC3PLn 8xa]	NR for pricing 1] <u>Length (ft)</u> 1] 447.0 Ka] 20.8 3-ph 347A]	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph \$11,110	Material \$10,312 Material \$10,408 Material \$52 7620 V 328 A \$49,000	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13 \$7,333	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133 \$67,442 \$6,744	_ Engineering = 10% of Tota _ Engineering = 10% of Tota _ Engineering = 10% of Tota \$49k Per email from Wya _ Engineering = 10% of tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP339960_4234504 FP187200 FP187200	96 17 160 624 23 4W2	Cr 1: 1(22_776390096-S	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa P2 [Id = 1033] [2	NR for pricing 1) <u>Length (ft)</u> 1] 447.0 Ka] 20.8 3-ph 347A]	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph \$11,110	Material \$10,312 Material \$10,408 Material \$52 7620 V 328 A \$49,000	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13 \$7,333 \$7,333	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133 \$67,442 \$6,744 \$74,187	Engineering = 10% of Tota Engineering = 10% of Tota Engineering = 10% of Tota \$49k Per email from Wyat Engineering = 10% of tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP187200	96 17 160 624 23 4W2	Cr 1: 1(22_776390096-5	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa] 590 [20.8 795AAC3PLn 8xa]	AR for pricing <u>Length (ft)</u> 1) 447.0 (20.8 3-ph 347A]	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph 1 \$11,110	Material \$10,312 Material \$10,408 Material \$52 7620 V 328 A \$49,000 Metering	AFUDC \$1,886 AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13 \$7,333 \$7,333	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133 \$67,442 \$6,744 \$74,187	_ Engineering = 10% of Tota _ Engineering = 10% of Tota _ Engineering = 10% of Tota \$49k Per email from Wyat _ Engineering = 10% of tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP289003_1540261 FP339960_4234504 FP387200	96 17 160 624 23 4W2	Cc 1: 1(22_776390096-5	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa] 590 [20.8 795AAC3PLn 8xa]	NR for pricing <u>Length (ft)</u> 1] 447.0 Ka] 20.8 3-ph 347A]	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph \$11,110	Material \$10,312 Material \$10,408 Material \$52 7620 V 328 A \$49,000 Metering Regulator	AFUDC \$1,886 AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13 \$7,333 \$7,333	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133 \$67,442 \$6,744 \$74,187 \$16,000	_ Engineering = 10% of Tota _ Engineering = 10% of Tota _ Engineering = 10% of Tota \$49k Per email from Wyat _ Engineering = 10% of tota
Changes for Stage 2 Add Sw C Add Sw C Add Sw C 1 from to	Node ap FP179040_7763903 ap FP289361_4234504 ap FP340061_1540847 Node FP39003_1540261 FP339960_4234504 FP187200	96 17 160 624 23 4W2	Cc 1: 1(22_776390096-5	Load + 1800 kVAr *used 1200kVAf + 300 kVAr + 300 kVAr 780 [20.8 #6 CU 3PSn 8xa] 590 [20.8 #6 CU 3PSn 8xa] 590 [20.8 795AAC3PLn 8xa] 592 [Id = 1033] [2	AR for pricing Length (ft) 1] 447.0 (ca] 20.8 3-ph 347A]	Labor \$4,773 Labor \$9,545 Per-foot costs: Labor \$55 *used pricing for 3 ph 1 \$11,110	Material \$10,312 Material \$10,408 Material \$52 7620 V 328 A \$49,000 Metering Regulator End of Line	Total Stage 1 = AFUDC \$1,886 AFUDC \$2,594 AFUDC \$13 \$7,333 \$7,333	\$219,622 Total \$16,970 \$1,697 \$18,667 Total \$22,547 \$2,255 \$24,802 Total \$120 \$53,757 \$5,376 \$59,133 \$67,442 \$6,744 \$74,187 \$16,000 \$9,540	_ Engineering = 10% of Tota _ Engineering = 10% of Tota _ Engineering = 10% of Tota \$49k Per email from Wyat _ Engineering = 10% of tota

Stage 2 Costs to address Potential Low Voltages

Light Load is Stage 2 Controlling Case.

35 less transformers will be impacted.

Accumod	Colution	
Assumed	Solution:	

14

33

Number of Transformers at or	below 120 volts	35
Estimated percent with second	dary Vd > 4 volts	26.8%
Number of Transformers from	120 to 121 volts	189
Estimated percent with second	dary Vd > 5 volts	10.6%
Light Load =	6236	
Heavy Load =	8700	
Light Load / Heavy Load =	0.72	
Estimated total number of tran	nsformers that	
may have customers with low	voltage at Service Entrance	=

Qty. (ea)	Work Description	Assumptions	Total
-11	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	(\$50,336)
-24	transformer tap changes	(4 hrs x 3 person crew) per tap change	(\$37,440)
-2	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	(\$3,120)
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	(\$42,640)

Total estimated cost to resolve low voltage concerns: (\$133,536)

Stage 2 Modification Total= \$68,793

Stage 1 + Stage 2 Modification Total = \$288,415

Changes for Stage 3

No. of	Cost per	Total	Notes	

Work Description	No. of	Cost per	Total	Notes
	locations	location		
End of 1ph voltage control zone: wireless 'radio' link to substation	2	\$3,551	\$7,102	
Line regulator: wireless 'radio' link to the substation	1	\$3,364	\$3,364	
Substation: communications gear, links, central equipment, software to support				
CVR, IVVO, FDIR, AMI, DR, other smart grid services. Secure, real-time, always on.	1	\$210,563	\$210,563	
		Subtotal:	\$221.029	

Stage 3 Costs to address Potential Low Voltages

Light Load is Stage 3 Controlling Case.

19 more transformers will be impacted.

Number of Transformers at or below	120 volts	189
Estimated percent with secondary Vo	l > 4 volts	26.8%
Number of Transformers from 120 to	121 volts	147
Estimated percent with secondary Vo	l > 5 volts	10.6%
Light Load =	6236	
Heavy Load =	8700	
Light Load / Heavy Load =	0.72	
Estimated total number of transform	ers that	
may have customers with low voltage	e at Service Entrance =	

Assumed Solution:

Qty. (ea)	Work Description	Assumptions	Total
6	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$27,456
13	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$20,280
2	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$3,120
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$23,660

Total estimated cost to resolve low voltage concerns: \$74,516

Stage 3 Modification Total = \$295,545

Stage 1 + Stage 2 + Stage 3 Modification Total = \$583,960

Nom Metric Metric 0.1	Changes for Stage 1	Node		Line	Load	Losses	Swap Phases					
Nore Subdiam Skills List and Score Globes Skills Skills <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Metering</th> <th></th> <th></th> <th></th>									Metering			
							None		Substation		\$8,130	
<text> Support Support <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>End of Line</td><td></td><td>\$9,540</td><td></td></td<></text>									End of Line		\$9,540	
Start Sta											\$17,670	
tanta during du	Stage 1 Costs to address Po	tential Low Voltages										
Number of Transformers star below 120 volts 9 for (a) is an advanced frame advan	Light Load is Controlling Cas	2		Assumed Co	lution							
Number of Transformers at or below 101 volts 91 (1) 1000 volts <				Assumed So	Work Description		Accumptions			1	Total	1
Total stage 2 logical state 2 solutions of a 2 solution of the 2 solution of	Number of Transformers at	ar balaw 120 valta	01	Q(y, (ea)	transformer change	out	/8 brs v 4 porcon crow)	10% of labor for matorial	por unit		¢12 729	
number of Transformers from 120 to 211 rules 120 tight load * 213 tight load * 113 tig	Estimated percent with seco	ndany Vd > 4 volts	26.8%		transformer tan char		(4 brs x 3 person crew)	ner tan change	- per unit		\$10,020	
the function of nation the function of nation the function of nation of the function of the functi	Number of Transformers fro	m 120 to 121 volto	20.8%	,	convice change out	iges	(4 hrs x 3 person crew)	LEO% of labor for matorial	por unit		\$10,520	
$\frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	Estimated percent with seco	ndary V/d > 5 volts	10.6%	2	Planning and Engine	ering	(4 III's x 2 person crew)	f Crew Labor)	- per unit		\$3,120	
$\frac{1}{1000} + \frac{1}{1000} + 1$	Light Load -	21/8	10.078		rianning and Engine	ering	(Estimated to be 50% o	Total estimated cost to	resolve low vo	Itage concerns:	\$10,508	l
ting tange 1 may tange 1 may tange 2 manual service framme = 0.2 Estimated total number of transformers that may have customers with low voltage at Service framme = 0 Stage 2 Improvements Note Load Add Sw Cap FP166061_755430427 + 900 kVAr Add Sw Cap FP166061_755430072-SP1 (ld = 63] 219 A 3Ph 16 step 3x180 kVA S11,110 S40,480 S6,494 S58,088 S6,880 Fegineering = 10% of Tot Stage 2 Costs to address Potential Low Voltage Stage 2 Costs to address Potential Low Voltages Stage 2 Costs to address Potential Cov Voltages Stage 2 Costs to address Potential Cov Voltages Stage 2 Costs to address Potential Cov Voltages Stage 2 Costs to address Pote	Heavy Load -	2148						Total estimated cost to	1000 00	itage concerns.	540,508	
$ \frac{1}{2} 1$	light load / Heavy load -	0.27										
Control Control Control Stage 2 Improvements Node Load Add Sw Cap FP166661_755430072-SP1 + 900 kVAr S55.75 S10,393 S2,122 S10,808 Feinferering = 10% of Tart Stoge 2 Improvements Mode FP16501 SV116_755430072-SP1 (Id e fail 2 19 A 3Ph 16 step 3x180 kVA S11,100 S04,040 S58,038 Feinferering = 10% of Tart Stoge 2 Constrolling Case. FP165101 SV116_755430072-SP1 (Id e fail 2 19 A 3Ph 16 step 3x180 kVA S11,110 S04,040 S58,038 Feinferering = 10% of Tart Stoge 2 Constrolling Case. FP165101 SV116_755430072-SP1 (Id e fail 2 19 A 3Ph 16 step 3x180 kVA S11,110 S04,040 S58,038 Feinferering = 10% of Tart Stage 2 Constrolling Case. Feinferering = 10% S11,110 S04,040 S58,038 Feinferering = 10% of Tart List Last Stage 2 Constrolling Case. Stage 2 Consto Constroll Stage 2 Consto Constroll Stage 2 Consto Const	Eight Load / Heavy Load – Estimated total number of ti	ansformers that										
Note Counted winder winder and the product of the product	may have customers with lo	w voltage at Service Entrar	ce = 1(
Singe 2 haprovenents in definition of the second s	indy have customers with to	w voltage at service Entral								Total Stage 1 =	\$58,178	
Stage 2 ImprovementsNoteLodAdd S va gaP16061_755430427 $+ 900$ VAr $abar$											<i>+••</i> ,-••	
$\frac{1}{1} \frac{1}{1} \frac{1}$	Stage 2 Improvements	Node			Load							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								Labor	Material	AFUDC	Total	
$\frac{51,90}{502e}$ FP165101 SW116_755430072-SP1 [d = 63] 219 A 3Ph 16 step 3x180 kVA S11,10 $\frac{54,0,480}{56,499}$ $\frac{56,499}{58,038}$ $\frac{55,804}{56,3842}$ Fgineering = 10% of Tot $\frac{56,3842}{56,3842}$ Fgineering = 10% of Tot $\frac{56,3842}{55,300}$ Fgineering = 10% of Tot $\frac{56,3842}{52,540}$ Step 2 Costs to address Potential Low Voltages Ught Load is Stage 2 Controlling Case. 4 les transformers will ble impacted. 5 Step 4 Costs to address Potential Low Voltage 3 Core view 100% of 120 volts $\frac{100}{22}$ $\frac{100}$		Add Sw Cap FP16606	1 755430427		+ 900 kV/	٩r		\$6,575	\$10,393	\$2,121	\$19,088	
$\frac{1}{520,997} - \frac{1}{520,997} - \frac{1}{520,997$			-								\$1,909	Engineering = 10% of Tota
S02e F91510 SW16_75543072-SP1 [d = 63] 219 A 9h 16 step 3x180 kVA \$11,10 \$0,480 \$6,49 \$58,083 \$63,842 S02e F91510 SW16_75543072-SP1 [d = 63] 219 A 9h 16 step 3x180 kVA \$11,10 \$0,480 \$6,49 \$58,083 \$63,842 \$63,842 \$63,842 \$63,842 \$63,842 \$63,842 \$64,95 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$58,083 \$64,96 \$55,960 \$65,982 \$66,96 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,960 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920 \$55,920										-	\$20,997	
SO2e FP165101 5W116_755430072-SP1 [Id = 63] 219 A 3Ph 16 step 3x180 kVA \$11,110 \$40,480 \$65,449 \$58,804												
Stage 2 Costs to address Potential Low Voltages A less transformers will be impacted. A less transformers will be impacted. A less transformers will be impacted. A sumptions Stage 2 Controlling Case. 4 less transformers at or below 120 volts 0 Controlling Case. Voltageas 1 less transformers will be impacted. Assumed Solution: Stage 2 Controlling Case. 2 transformer to the condary Vd > 4 volts 0 Condary Vd > 2 (less transformer to the condary Vd > 5 volts) 10.6% 1 2 transformer to the condary Vd > 5 volts 10.6% 2 transformer to the condary Vd > 5 volts 10.6% 1 2 transformer to the condary Vd > 5 volts 10.6% 1	S02e	FP16510	1 5W116_7554	30072-SP1	[Id = 63] 219 A 3	3Ph 16 step 3x	180 kVA	\$11,110	\$40,480	\$6,449	\$58,038	
Stage 2 Costs to address Potential Low Voltages Fagualator \$63,82 Stage 2 Costs to address Potential Low Voltages \$16,000 End of Line \$95,540 Stage 2 Controlling Case. 4 less transformers will be impacted. \$25,500 Number of Transformers at or below 120 volts 0 6 \$25,500 \$25,500 Stating 4 percent with secondary Vd > 4 volts 26.8% \$26,500 \$26,500 \$26,500 Stimated percent with secondary Vd > 4 volts 26.8% \$26,500 \$26,500 \$26,500 Stimated percent with secondary Vd > 4 volts 26.8% \$20,500 \$20,500 \$20,500 Stimated percent with secondary Vd > 5 volts 10.8% \$26,500 \$20,500 \$20,500 Stimated percent with secondary Vd > 5 volts 10.8% \$20,500 \$20,500 \$20,500 Stimated percent with secondary Vd > 5 volts 10.8% \$20,500 \$20,500 \$20,500 Stimated percent with secondary Vd > 5 volts 10.8% \$20,500 \$20,500 \$20,500 Stimated percent with secondary Vd > 5 volts 10.8% \$20,500 \$20,500 \$20,500 Ight Load / Heavy Load = 0.27										-	\$5,804	Engineering = 10% of Tota
Metering Regulator Stac 2001 Stace 2 Controlling Case. 1 4 less transformers will be impacted. Number of Transformers will be impacted. 525,540 Vumber of Transformers at or below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 319 Estimated percent with secondary Vd > 5 volts 10.6% Light Load Easy Load = 2148 Heavy Load = 0.27 Estimated for transformers that 0 may have customers with low voltage at Service Entrance = 6											\$63,842	
Stage 2 Costs to address Potential Low Voltages <u>End of Line</u> <u>59,540</u> <u>525,540</u> <u>526,540</u> <u>525,540</u> <u>525,540</u> <u>525,540</u> <u>525,540</u> <u>525,540</u> <u>525,540</u> <u>525,540</u> <u>525,540 <u>525,540 </u> <u>526,540 <u>526,550 <u>526,550 <u>526,560 <u>526,560 <u>526,560 <u>526,520 </u><u>52,520 </u><u>52,520 </u><u>52,520 </u><u>52,520 </u> <u>52,520 </u> <u>52,520 </u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>									Metering			
Stage 2 Costs to address Potential Low Voltages End of Line \$9,540 Light Load is Stage 2 Controlling Case. A Ies transformers will be impacted. Number of Transformers stor below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26,8% Number of Transformers from 120 to 121 volts 319 Estimated percent with secondary Vd > 5 volts 10.6% Light Load / Heavy Load = 2148 Heavy Load = 2148 Heavy Load = 0.27 Estimated total number of transformers that (\$1,7,992) Total estimated cost to resolve low voltage concerns: (\$1,7,992) Estimated total number of transformers with low voltage at Service Entrance = 6									Regulator		\$16,000	
Stage 2 Costs to address Potential Low Voltages S25,540 Light Load is Stage 2 Controlling Case. A less transformers will be impacted. Number of Transformers at or below 120 volts 0 Cstimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 319 S10 2 transformer change out (8 hrs x 4 person crew) + 10% of labor for material - per unit (\$9,152) Light Load = 2148 10.6% 0 service change out (4 hrs x 3 person crew) + 50% of labor for material - per unit \$0 Light Load = 2148 0.27 Stimated percent with secondary Vd > 5 volts 10.6% 10 Planning and Engineering (Estimated to be 50% of Crew Labor) (\$17,992) Light Load = 0.27 Stimated total number of transformers that 0 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit \$0 Light Load + Heavy Load = 0.27 Cast Stage 2 Modification Total \$92,387									End of Line		\$9,540	
Stage 2 Costs to address Potential Low Voltages Light Load is Stage 2 Controlling Case. 4 less transformers will be impacted. Number of Transformers at or below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 319 Estimated percent with secondary Vd > 5 volts 10.6% Light Load / Heavy Load = 20.7 Estimated total number of transformers that may have customers with low voltage at Service Entrance =											\$25,540	
Light Load is Stage 2 Controlling Case. 4 less transformers will be impacted. Number of Transformers at or below 120 volts 0 Estimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 319 Estimated percent with secondary Vd > 5 volts 10.6% Light Load = 2148 Heavy Load = 8100 Light Load / Heavy Load = 0.27 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Mumber of transformers that may have customers with low voltage at Service Entrance = 6 Assumptions Assumptions Assumptions Assumptions Assumptions (Shrs x 4 person crew) + 10% of labor for material - per unit (\$9,152) (\$1,40 × 3 person crew) per tap change (£5 × 2015) (\$1,40 × 3 person crew) + 10% of labor for material - per unit (\$9,152) (\$1,40 × 3 person crew) + 10% of labor for material - per unit (\$9,152) Destributed (\$1,40 × 10 × 2005) (\$1,57,200) Total estimated to be 50% of Crew Labor) (\$5,720) Total estimated cost to resolve low voltage concerns: (\$17,992) Stage 2 Modification Total = \$92,387	Stage 2 Costs to address Po	tential Low Voltages										
4 ies transformers will be impacted. A iess transformers will be impacted. Number of Transformers at or below 120 volts 0 Seximed Solution: Estimated percent with secondary Vd > 4 volts 26.8% 0 service change out (8 hrs x 4 person crew) + 10% of labor for material - per unit (\$9,152) 2 transformer change out (8 hrs x 4 person crew) + 10% of labor for material - per unit (\$9,152) 2 transformer change out (4 hrs x 3 person crew) + 10% of labor for material - per unit (\$9,152) 2 transformer tage changes (4 hrs x 3 person crew) + 10% of labor for material - per unit (\$0,152) 2 transformer tage changes (4 hrs x 3 person crew) + 10% of labor for material - per unit (\$1,20) 1 0 service change out (4 hrs x 3 person crew) + 10% of labor for material - per unit (\$1,20) 1 0 service change out (4 hrs x 3 person crew) + 10% of labor for material - per unit (\$1,20) 1 0 service change out (4 hrs x 3 person crew) + 10% of labor for material - per unit (\$1,20) 1 0 service change out (4 hrs x 3 person crew) + 10% of labor for mate	Light Load is Stage 2 Control	ling Case.										
Assumed solution: Question of Transformers at or below 120 volts 0 Stimated percent with secondary Vd > 4 volts 26.8% Number of Transformers from 120 to 121 volts 319 Estimated percent with secondary Vd > 5 volts 10.6% Light Load = 2148 Total estimated cost to resolve low voltage concerns: \$0 Itight Load / Heavy Load = 0.27 Total estimated cost to resolve low voltage concerns: \$17,992 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total = \$92,387	4 less tran	stormers will be impacted.		A								
Under of Transformers at or below 120 volts 0 Issumptions Issumptions Estimated percent with secondary Vd > 4 volts 26.8% -2 transformer change out (8 hrs x 4 person crew) + 10% of labor for material - per unit (\$9,152) Number of Transformers from 120 to 121 volts 319 0 service change out (4 hrs x 3 person crew) + 50% of labor for material - per unit \$0 Ight Load = 2148 0 service change out (Estimated to be 50% of Crew Labor) (\$5,720) Ight Load / Heavy Load = 0.27 0.27 service Entrance = 6 Stage 2 Modification Total = \$92,387				Assumed So	Mort Description		Assumations			1	Tatal	1
Number of transformers at or below 120 volts 0 -2 transformer function and point (59,152) Estimated percent with secondary V4 > 4 volts 26.8% -2 transformer tap changes (4 hrs x 2 person crew) + 10% of labor for material - per unit (59,152) Number of Transformers from 120 to 121 volts 319 0 service change out (4 hrs x 2 person crew) per tap change (50,152) Light Load = 2148 0 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit \$0 Light Load = 8100 10.6% Planning and Engineering (Estimated to be 50% of Crew Labor) (\$17,992) Estimated total number of transformers that 0.27 Stage 2 Modification Total = \$92,387	Number of Transformers at	ar halaw 120 yalta	0	Qty. (ea)	work Description	ot	Assumptions	10% of lobor for motorial	norunit		(\$0.152)	
Is dimited percent with secondary V0 / 4 Volts 21 Volts 319 Estimated percent with secondary V0 / 4 Volts 319 Estimated percent with secondary V0 / 4 Volts 319 Estimated percent with secondary V0 / 5 Volts 319 Estimated percent with secondary V0 / 5 Volts 319 Estimated percent with secondary V0 / 5 Volts 319 D service change out (4 hrs x 5 person crew) + 50% of labor for material - per unit (5), (20) Planning and Engineering (Estimated to be 50% of Crew Labor) (\$5,720) Ight Load / Heavy Load = 0.27 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total = \$92,387	Estimated parcent with case	ndany V/d > 4 volts	0 26.9%	-2	transformer tan char		(8 hrs x 4 person crew)	+ 10% of labor for material	- per unit		(\$9,152)	
Number of transformers from 120 to 121 volts 519 0 service change out 14 this x2 person crew + 50% of radio from fracting - per unit 50 Estimated percent with secondary Vd > 5 volts 10.6% Planning and Engineering (Estimated to be 50% of Crew Labor) (\$5,720) Light Load = 2148 Heavy Load = 0.27 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total = \$92,387	Estimated percent with seco	m 120 to 121 volts	20.0%	-2	cialisionner tap char	iges	(4 hrs x 3 person crew)	per tap change	norunit		(\$5,120)	
Light Load = 2148 Total estimated be solve of crew Labory (\$1,7,992) Light Load = 8100 Light Load / Heavy Load = 0.27 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total = \$92,387	Estimated percent with core	ndany V/d > E volto	10.6%	0	Blanning and Engine	oring	(4 ms x 2 person crew)	+ 50% of labor for material	- per unit		50 (\$5.720)	
Light Load - 2148 Total estimated cost of resolve low voltage concerns. (317,592) Heavy Load = 8100 1 1 1 Light Load / Heavy Load = 0.27 1 1 1 Estimated total number of transformers that 1 1 1 1 may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total= \$92,387	Light Load =	11uary Vu > 5 Voits	10.0%		Fidining and Engine	ering	(Estimated to be 50% 0	Total actimated cost to	rocoluo lovu vo	ltago concorne:	(\$3,720)	l
Itelay Load - 0.10 Light Load / Heavy Load = 0.27 Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total= \$92,387	Light Load =	2148						Total estimated cost to	resolve low vo	itage concerns:	(\$17,992)	
Estimated total number of transformers that may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total= \$92,387	Heavy Load / Heavy Load =	0.10										
may have customers with low voltage at Service Entrance = 6 Stage 2 Modification Total= \$92,387	Eight Load / Heavy Load -	0.27										
	may have sustemars with lo	uvoltago at Sonvico Entrar	co = 6						Stage 2 Med	ification Total=	¢02 207	
	may nave customers with to	w vonage at service Effilial	0						Stage 2 1VIOU	meation rotal=	10C,2C¢	

										1
			Work Descri	ption			No. of	Cost per	Total	Notes
							locations	location		
				End of 1	ph voltage control zone: wirel	ess 'radio' link to substation	2	\$3,551	\$7,102	
					Line regulator: wireless '	radio' link to the substation	1	\$3,364	\$3,364	
				Substation: communic	ations gear, links, central equi	pment, software to support				
				CVR, IVVO, FDIR, AMI, D	R, other smart grid services. S	ecure, real-time, always on.	0.5	\$210,563	\$105,282	Share cost with 5W127
								Subtotal:	\$115,748	
Stage 3 Costs to address Potential Low Voltages										
Heavy Load is the Controlling Case.										
13 more transformers will be impacted.										
			Assumed Sol	ution:						_
			Qty. (ea)	Work Description	Assumptions				Total	
Number of Transformers at or below 120 volts	63		4	transformer change out	(8 hrs x 4 person crew	 + 10% of labor for material 	- per unit		\$18,304	
Estimated percent with secondary Vd > 4 volts	26.8%		9	transformer tap changes	(4 hrs x 3 person crew	 per tap change 			\$14,040	
Number of Transformers from 120 to 121 volts	98		2	service change out	(4 hrs x 2 person crew	r) + 50% of labor for material	- per unit		\$3,120	
Estimated percent with secondary Vd > 5 volts	10.6%			Planning and Engineering	(Estimated to be 50%	of Crew Labor)			\$16,380	
						Total estimated cost to	resolve low v	oltage concerns:	\$51,844	-
Estimated total number of transformers that										
may have customers with low voltage at Service Entrance =		19					Stage 3 Mod	lification Total =	\$167,592	
						Stage 1 + Stage 2	+ Stage 3 Mod	ification Total =	\$318,156	

Mill Creek 5W127

Changes for Stage 1 FP288803_544871716 FP219405_242020779 FP288816_544870486 FP291702_717550718 FP291702_717550725 FP285903_544870459 FP285903_544870459 Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	SW127_544870102 SW127_242020295 SW127_544870085 SW127_717550132 SW127_1540944656 SW127_544870096	CBA->CAB B->C CBA->BAC B->C CBA->BAC CBA->BAC	Inree (3) Single Phase of Staff Engineer Svc Line Worker Notifier SVC Crew (3 person + 2 flaggers) Total Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	hours hours 12 0 6 12 30 swaps 12 0 12 18 42 Metering Substation End of Line	rate \$130 \$100 \$520 \$130 \$130 \$130 \$100 \$650	total \$1,560 \$0 \$600 \$6,240 \$8,400 \$1,560 \$0 \$1,200 \$11,700 \$14,460 \$11,700 \$14,460 \$17,670 \$17,670	Work Description Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
HP28803_544870716 FP219405_242020779 FP28316_544870486 FP291702_717550718 FP294700_717550725 FP285903_544870459 Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	SW127_24487/0102 SW127_24487/00295 SW127_51487/0085 SW127_17550132 SW127_1540944656 SW127_54487/0096	CBA->CAB B->C CBA->BAC B->C CBA->BAC	Statt Engineer Svc Line Worker Notifier SVC Crew (3 person + 2 flaggers) Total Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	nours 12 0 6 12 30 swaps 12 0 12 12 12 12 0 12 12 0 12 0 12 0 12 0 12 0 12 0 12 0 5 Swaps Exact on the second s	rate \$130 \$130 \$520 \$520 \$130 \$130 \$130 \$100 \$650 \$650	total \$1,560 \$600 \$6,240 \$8,400 \$1,560 \$0 \$1,200 \$11,700 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670 Total	Work Description Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
FP219405_242020779 FP283816_544870486 FP291702_717550718 FP294700_717550725 FP285903_544870459 Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	5W127_242020295 5W127_544870085 5W127_17550132 SW127_1540944656 5W127_544870096 600 KVar	B->C B->C CBA->BAC B->C CBA->BAC	Engineer Svc Line Worker Notifier SVC Crew (3 person + 2 flaggers) Total Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	12 0 6 12 30 swaps 12 0 12 12 18 42 Metering Substation End of Line Material	\$130 \$100 \$520 \$130 \$130 \$130 \$130 \$100 \$650 AFUDC	\$1,560 \$0 \$6,240 \$8,400 \$1,560 \$0 \$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
FP283816_544870486 FP291702_717550718 FP294700_717550725 FP285903_544870459 Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	5W127_544870085 5W127_717550132 5W127_1540944656 5W127_544870096 600 kVar	B->C CBA->BAC B->C CBA->BAC	Svc Line Worker Notifier SVC Crew (3 person + 2 flaggers) Total Three (3) × Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	0 6 12 30 swaps 12 0 12 12 18 42 Metering Substation End of Line	\$130 \$100 \$520 \$130 \$130 \$100 \$650	\$0 \$600 \$6,240 \$8,400 \$1,560 \$0 \$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Install /Remove metering Notify customers of outage Make phase changes Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
FP291702_717550718 FP294700_717550725 FP285903_544870459 Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	5W127_717550132 5W127_1540944656 5W127_544870096 600 kVar	CBA->BAC B->C CBA->BAC	Notifier SVC Crew (3 person + 2 flaggers) Total Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	6 12 30 swaps 12 0 12 18 42 Metering Substation End of Line	\$100 \$520 \$130 \$130 \$100 \$650 AFUDC	\$600 \$6,240 \$8,400 \$1,560 \$0 \$1,200 \$11,700 \$14,460 \$9,540 \$17,670 \$17,670	Notify customers of outage Make phase changes Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
FP294700_717550725 FP285903_544870459 Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	5W127_1540944656 5W127_544870096 600 kVar	B->C CBA->BAC	flaggers) Total Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	12 30 swaps 12 0 12 12 18 42 Metering Substation End of Line	\$520 \$130 \$130 \$100 \$650 AFUDC	\$6,240 \$8,400 \$1,560 \$0 \$1,200 \$11,700 \$14,460 \$9,540 \$17,670	Make phase changes Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	5W127_544870096	CBA->BAC	Total Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	swaps 12 0 12 18 42 Metering Substation End of Line Material	\$130 \$130 \$100 \$650	\$1,560 \$0 \$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Three (3) x Three Phase Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	swaps 12 0 12 18 42 Metering Substation End of Line Material	\$130 \$130 \$100 \$650	\$1,560 \$0 \$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Engineering and Analysis Install /Remove metering Notify customers of outage Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Engineer Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	12 0 12 18 42 Metering Substation End of Line	\$130 \$130 \$100 \$650 AFUDC	\$1,560 \$0 \$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Engineering and Analysis Install /Remove metering Notify customers of outage
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Svc Line Worker Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	0 12 18 42 Metering Substation End of Line	\$130 \$100 \$650 AFUDC	\$0 \$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Install /Remove metering Notify customers of outage Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Notifier SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	12 18 42 Metering Substation End of Line Material	\$100 \$650 AFUDC	\$1,200 \$11,700 \$14,460 \$8,130 \$9,540 \$17,670	Notify customers of outage Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		SVC Crew (4 person + 2 flaggers) Total Labor \$3,071	18 42 Metering Substation End of Line Material	\$650 AFUDC	\$11,700 \$14,460 \$8,130 \$9,540 \$17,670	_ Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		flaggers) Total Labor \$3,071	18 42 Metering Substation End of Line Material	\$650 AFUDC	\$11,700 \$14,460 \$8,130 \$9,540 \$17,670	_ Make phase changes
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Total Labor \$3,071	42 Metering Substation End of Line Material	AFUDC	\$14,460 \$8,130 \$9,540 \$17,670	
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Labor \$3,071	Metering Substation End of Line Material	AFUDC	\$8,130 \$9,540 \$17,670	_
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages .ight Load is Controlling Case	600 kVar		Labor \$3,071	Metering Substation End of Line Material	AFUDC	\$8,130 \$9,540 \$17,670	_
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Labor \$3,071	Substation End of Line Material	AFUDC	\$8,130 \$9,540 \$17,670	_
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Labor \$3,071	End of Line Material	AFUDC	\$9,540 \$17,670	_
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Labor \$3,071	Material	AFUDC	\$17,670	_
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		Labor \$3,071	Material	AFUDC	Tatal	
Add Cap FP282811_544870470 Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case	600 kVar		\$3,071			Total	
Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case				\$2,818	\$736	\$6,624	
Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case						\$662	Engineering = 10% of Total
Stage 1 Costs to address Potential Low Voltages Light Load is Controlling Case						\$7.287	
	Assumed Solution:						
	Qtv. (ea) Work Description	Assumptions				Total	
Number of Transformers at or below 120 volts 32	3 transformer change out	t (8 hrs x 4 pers	on crew) + 10% of labor for mate	rial - per unit		\$13,728	
Estimated percent with secondary V/d > 4 volts 26 8%	5 transformer tan change	(4 brs x 3 pers	con crew) per tan change	indi per dine		\$7,800	_
Number of Transformers from 120 to 121 volts 20.8%	2 service change out	(4 hrs x 2 pers	(a) = 10%	rial - ner unit		\$7,800	
Estimated necessary with secondary V/d > E volta 10.6%	2 Service change out	(4 III3 × 2 pers	be 50% of Crow Lober)	inai - per unit		\$3,120	_
Light Lood – 1820	Planning and Engineerin	(Estimated to	De 50% Of Crew Labor)	* *** *****	altaga concorne	\$11,180	
Light Load / Heavy Load = 1830 (ight Load / Heavy Load = 0.29			l otal estimated cos	t to resolve low v	oltage concerns	: \$35,828	
Estimated total number of transformers that	8						
may have customets with low voltage at service entrance =	U						
					Total Stage 1	= <u>\$83,645</u>	
Changes for Stage 2 Node	Load		Labor \$6.575	Material	AFUDC	Total	
S02b Add Sw Cap FP289805_544870439	+600 kVAr		<i>د ، د</i> رەپ	÷12,130	<i>2.335</i>	\$2,105	Engineering = 10% of Total
Light Load / Heavy Load = 0.29 Estimated total number of transformers that may have customers with low voltage at Service Entrance =	8				Total Stage 1	= \$83,645	
	Loau		\$6,575	\$12,136	\$2,339	\$21,049	5 i i i i i i i i i i i i i i i i i i i

Work Description	No. of	Cost per	Total	Notes
	locations	location		
End of 1ph voltage control zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
Line regulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
Substation: communications gear, links, central equipment, software to support				
CVR, IVVO, FDIR, AMI, DR, other smart grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	Share cost with 5W116
		Subtotal:	\$108,833	

Stage 3 Costs to address Potential Low Voltages

Number of Transformers at or below 120 volts

Estimated percent with secondary Vd > 4 volts

Number of Transformers from 120 to 121 volts

Estimated percent with secondary Vd > 5 volts

Light Load is Controlling Case.

10 more transformers will be impacted.

Accumed	Solution
Assumed	Solution:

321

0

18

26.8%

10.6%

Work Description	Assumptions	Total
transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$13,728
transformer tap changes	(4 hrs x 3 person crew) per tap change	\$10,920
service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$3,120
Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$12,740
	Work Description transformer change out transformer tap changes service change out Planning and Engineering	Work Description Assumptions transformer change out (B hrs x 4 person crew) + 10% of labor for material - per unit transformer tap changes (4 hrs x 3 person crew) per tap change service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit Planning and Engineering (Estimated to be 50% of Crew Labor)

Total estimated cost to resolve low voltage concerns: \$40,508

Light Load = 1830 Heavy Load = 6220 Light Load / Heavy Load = 0.29 Estimated total number of transformers that

may have customers with low voltage at Service Entrance =

Stage 3 Modification Total = \$149,341

Stage 1 + Stage 2 + Stage 3 Modification Total = \$256,139

Changes for Stage 1		Node				Swap Phases	One (1) Two Phase chang	es			
							Staff	hours	rate	total	Work Description
S01a		FP171860_420450094	5W342_420450011	L		BAC->BCA	Engineer	6	\$130	\$780	Engineering and Analysis
		FP310600_463490170	5W342_154011800	Jb		BAC->BCA	Svc Line Worker	0	\$130	\$0	Install /Remove metering
		FP325202_761212279	5W342_761210085	5		BC->CB	Notifier	3	\$100	\$300	Notify customers of outage
							SVC Crew (3 person + 2				
							flaggers)	6	\$520	\$3,120	Make phase changes
							Total	15		\$4,200	
							Two (2) x Three Phase sw Engineer Svc Line Worker Notifier SVC Crew (4 person + 2	vaps 8 0 8	\$130 \$130 \$100	\$1,040 \$0 \$800	Engineering and Analysis Install /Remove metering Notify customers of outage
							flaggers)	12	\$650	\$7,800	Make phase changes
							Total	28		\$9,640	_
								Metering Substation End of Line		\$8,130 \$9,540 \$17,670	_
Stage 1 Costs to address Heavy Load is the Contro Number of Transformers	Potential Low Volution For the second second Second second	ltages olts 83	Assumed Solution: Qty. (ea) Work 6 transi	Description		Assumptions (8 hrs x 4 person)	crew) + 10% of labor for mater	ial - per unit		Total \$27,456	7
Estimated nercent with s	econdary Vd > 4 yr					V	,				
Estimated percent with s		olfs 26.8%	12 Itrans	former tan change	\$	(4 hrs x 3 nerson	crew) ner tan change			\$18 720	
Number of Transformers	from 120 to 121 v	olts 26.8%	12 transi	former tap change	S	(4 hrs x 3 person	crew) per tap change	ial - per unit		\$18,720	
Number of Transformers	s from 120 to 121 v	olts 26.8% volts 27	12 transi 4 servic	former tap change te change out	5	(4 hrs x 3 person (4 hrs x 2 person	crew) per tap change crew) + 50% of labor for mater	ial - per unit		\$18,720 \$6,240	
Number of Transformers Estimated percent with s Estimated total number of	secondary Vd > 4 v secondary Vd > 5 v of transformers that	volts 26.8% volts 27 olts 10.6%	12transi4servicPlann	former tap change e change out ing and Engineerir	g	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be 9	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost	ial - per unit to resolve low	voltage concern	\$18,720 \$6,240 \$23,920 ns: \$76,336	
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2	is from 120 to 121 v secondary Vd > 5 v of transformers that h low voltage at Se	volts 20.8% volts 27 olts 10.6% at rvvice Entrance =	12 transi 4 servic Plann 18	former tap change e change out ing and Engineerir	s	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be !	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost	ial - per unit to resolve low	voltage concern Total Stage 1	\$18,720 \$6,240 \$23,920 \$576,336 \$76,336 \$107,846	
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2	s from 120 to 121 v eccondary Vd > 5 v of transformers that h low voltage at Se	Node	12 transi 4 servic Plann 18	former tap change e change out ing and Engineerir	g	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost	ial - per unit to resolve low	voltage concerr Total Stage 1	\$18,720 \$6,240 \$23,920 Is: \$76,336 = \$107,846	
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b	from 120 to 121 v eccondary Vd > 5 v of transformers that h low voltage at Se Add Sw Cap	oits 20.8% rolts 27 olts 10.6% at rrvice Entrance = Node FP312104_761212376	12 transi 4 servic Plann 18 Switched	former tap change ie change out ing and Engineerir 300 kVAr	s	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa	ial - per unit to resolve low	voltage concerr Total Stage 1 n 600 kVAR cost	\$18,720 \$6,240 \$23,920 hs: \$76,336 = \$107,846	te)
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b	From 120 to 121 v secondary Vd > 5 v of transformers that h low voltage at Se Add Sw Cap	otts 20.8% volts 27 olts 10.6% at	12 transi 4 servic Plann 18 Switched	former tap change ee change out ing and Engineerir 300 kVAr	s g	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor	ial - per unit to resolve low utions (based or Materia l	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC	\$18,720 \$6,240 \$23,920 15: \$76,336 = \$107,846 : in block estimat Total	te)
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b	from 120 to 121 v secondary Vd > 5 v of transformers tha h low voltage at Se Add Sw Cap	Node FP312104_761212376	12 transi 4 servic Plann 18 Switched	former tap change e change out ing and Engineerir 300 kVAr	s g	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be !	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773	ial - per unit to resolve low stions (based or Material \$9,234	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751	\$18,720 \$6,240 \$23,920 ss: \$76,336 = \$107,846 t in block estimat Total \$15,758 \$1,576 \$17,333	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b	from 120 to 121 v secondary Vd > 5 vi of transformers tha h low voltage at Se Add Sw Cap	Node Node	12 transi 4 servic Plann 18 Switched Line	former tap change e change out ing and Engineerir 300 kVAr	s g Conductor	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be !	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs:	ial - per unit to resolve low stions (based on Material \$9,234	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751	\$18,720 \$6,240 \$23,920 s: \$76,336 = \$107,846 : in block estimat Total \$15,758 \$1,576 \$17,333	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b	from 120 to 121 v secondary Vd > 5 v of transformers that h low voltage at Se Add Sw Cap	oits 20.8% volts 27 oits 10.6% at	12 transi 4 servic Plann 18 Switched Line Reconductor	former tap change e change out ing and Engineerir 300 kVAr existing	s g Conductor 1/0 CU	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be <u>Length (ft)</u> 355.0	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor	to resolve low to resolve low ditions (based on Material \$9,234 Material	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC	\$18,720 \$6,240 \$23,920 is: \$76,336 = \$107,846 iin block estimat Total \$15,758 \$1,576 \$17,333 Total	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	from 120 to 121 v secondary Vd > 5 v of transformers that h low voltage at Se Add Sw Cap	oits 20.8% volts 27 oits 10.6% at	12 transi 4 servic Plann 18 Switched Line Reconductor	former tap change e change out ing and Engineerir 300 kVAr 300 kVAr existing new	s g Conductor 1/0 CU 477 AAC	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be 9 (Estimated to be 9 (Estimated to be 9 (Estimated to be 9) (Estimated to	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44	ial - per unit to resolve low tions (based on Material \$9,234 Material \$45	voltage concern Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC \$11	\$18,720 \$6,240 \$23,920 s: \$76,336 = \$107,846 : in block estimat Total \$15,758 \$1,576 \$17,333 Total \$101	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	from 120 to 121 v secondary Vd > 5 v of transformers that h low voltage at Se Add Sw Cap 1 from to	oits 26.8% volts 27 olts 10.6% at	12 transi 4 servic Plann 18 Switched Line Reconductor	former tap change te change out ing and Engineerir 300 kVAr 300 kVAr existing new	s g Conductor 1/0 CU 477 AAC	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be ! Length (ft) 355.0	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44	ial - per unit to resolve low stions (based on Material \$9,234 Material \$45	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC \$11	\$18,720 \$6,240 \$23,920 \$19,23 \$76,336 \$107,846 \$107,846 \$107,846 \$15,758 \$1,576 \$17,333 Total \$15,758 \$1,576 \$17,333	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	from 120 to 121 v secondary Vd > 5 vd of transformers that h low voltage at Se Add Sw Cap	oits 20.8% volts 27 olts 10.6% at	12 transi 4 servic Plann 18 Switched Line Reconductor	former tap change te change out ing and Engineerir 300 kVAr autor kVAr existing new	s g Conductor 1/0 CU 477 AAC	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be ! Length (ft) 355.0	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44	ial - per unit to resolve low stions (based or Material \$9,234 Material \$45	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC \$11	\$18,720 \$6,240 \$23,920 \$53,920 \$55,76,336 \$107,846 \$107,846 \$107,846 \$15,758 \$1,576 \$17,333 Total \$101 \$35,772 \$33,577 \$39,349	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	Add Sw Cap 1 from 12 to 121 v secondary Vd > 5 v of transformers that h low voltage at Se Add Sw Cap	oits 26.8% volts 27 olts 10.6% at	12 transi 4 servic Plann 18 Switched Line Reconductor	former tap change te change out ing and Engineerin 300 kVAr 300 kVAr existing new	s <u>g</u> <u>Conductor</u> 1/0 CU 477 AAC #6 CU	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be ! Length (ft) 355.0	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44	to resolve low to resolve low stions (based on Material \$9,234 Material \$45	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC \$11	\$18,720 \$6,240 \$23,920 \$107,846 \$107,846 \$107,846 \$107,846 \$101 \$15,758 \$1,576 \$17,333 Total \$101 \$35,772 \$39,349 \$03	te) Engineering = 10% of Total
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	Add Sw Cap 1 from to 2 from 1 from	oits 26.8% volts 27 olts 10.6% at	12 transi 4 servic Plann 18 Switched Line Reconductor Reconductor	former tap change te change out ing and Engineerin 300 kVAr existing new existing new 4	s <u>(g</u> <u>Conductor</u> 1/0 CU 477 AAC #6 CU 1/0 CU /0 AAC for pricin	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be 9 (Estimated to be 9 355.0 71.0	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44 \$41	to resolve low to resolve low stions (based on Material \$9,234 Material \$45 \$42	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC \$11 \$10	\$18,720 \$6,240 \$23,920 \$23,920 \$576,336 \$76,336 \$107,846 \$107,846 \$101 \$15,758 \$1,576 \$17,333 Total \$101 \$35,772 \$39,349 \$93 \$6,624 \$662 \$3,663 \$1,286 \$3,643 \$10,930	te) Engineering = 10% of Total Engineering = 10% of Total Engineering = 10% of Total S0% Small Job mark up Total Estimate
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	1 from to Add Sw Cap	olts 20.8% rolts 27 olts 10.6% at rrvice Entrance = Node FP312104_761212376 Node MP_463490150 FP365261_463490189 FP311103_761210762 FP311104_761210762 FP311104_761210780	12 transi 4 servic Plann 18 Switched Line Reconductor Reconductor	former tap change te change out ing and Engineerin 300 kVAr existing new existing new 4	s <u>Conductor</u> 1/0 CU 477 AAC #6 CU 1/0 CU /0 AAC for pricin	(4 hrs x 3 person (4 hrs x 2 person (Estimated to be ! (Estimated to be ! 355.0 71.0 g	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44 \$41 \$41 Costs are for both units in \$22,210	ial - per unit to resolve low ations (based or Material \$9,234 Material \$45 \$45 \$42	voltage concerr Total Stage 1 n 600 kVAR cost AFUDC \$1,751 AFUDC \$11 \$10	\$18,720 \$6,240 \$23,920 \$107,846 \$107,846 \$107,846 \$107,846 \$101 \$15,758 \$1,576 \$17,333 Total \$10,758 \$1,576 \$17,333 Total \$10,758 \$1,577 \$39,349 \$93 \$6,624 \$662 \$3,643 \$10,930	te) Engineering = 10% of Total Engineering = 10% of Total Engineering = 10% of Total S0% Small Job mark up Total Estimate
Number of Transformers Estimated percent with s Estimated total number of may have customers with Changes for Stage 2 S02b S02c	1 from to Add Sw Cap	oits 20.8% volts 27 olts 10.6% at rrvice Entrance = Node FP312104_761212376 Node MP_463490150 FP365261_463490189 FP311103_761210762 FP311104_761210780 FP944303A	12 transi 4 servic Plann 18 Switched Line Reconductor Reconductor SW342_1540871261-SP2	former tap change te change out ing and Engineerir 300 kVAr existing new existing new 4	s g Conductor 1/0 CU 477 AAC #6 CU 1/0 CU 1/0 CU /0 AAC for pricin Ph 16 step 3x18	(4 hrs x 3 person ((4 hrs x 2 person) (Estimated to be ! <u>Length (ft)</u> 355.0 71.0 g 30 kVA	crew) per tap change crew) + 50% of labor for mater 50% of Crew Labor) Total estimated cost Cost for 300 kVAR Installa Labor \$4,773 Per-foot costs: Labor \$44 \$41 \$41	tions (based on Material \$9,234 Material \$45 \$42 \$42	voltage concern Total Stage 1 n 600 kVAR cost AFUDC \$1,751 \$11 \$10 \$10	\$18,720 \$6,240 \$23,920 s: \$76,336 \$76,336 \$76,336 \$107,846 \$107,846 \$101 \$15,758 \$1,576 \$17,333 Total \$101 \$35,772 \$39,349 \$93 \$6,624 \$662 \$7,286 \$3,643 \$10,930 \$116,076	te) Engineering = 10% of Total Engineering = 10% of Total Engineering = 10% of Total S0% Small Job mark up Total Estimate

Costs are for metering at both Regulators and end of line metering Metering Regulator \$32,000 End of Line \$19,080 \$51,080

Stage 2 Costs to address Potential Low Voltages

Number of Transformers at or below 120 volts

Estimated percent with secondary Vd > 4 volts

Number of Transformers from 120 to 121 volts

Estimated percent with secondary Vd > 5 volts

Estimated total number of transformers that may have customers with low voltage at Service Entrance =

Light Load is Stage 2 Controlling Case.

10 less transformers will be impacted.

1596 6045

0.26

Qty. (ea)	Work Description	Assumptions	Total
-3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	(\$13,728)
-7	transformer tap changes	(4 hrs x 3 person crew) per tap change	(\$10,920)
0	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$0
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	(\$11,700)

Total estimated cost to resolve low voltage concerns: (\$36,348)

Stage 2 Modification Total= \$210,027

Stage 1 + Stage 2 Modification Total = \$317,873

Changes for Stage 3

Light Load =

Heavy Load = Light Load / Heavy Load =

Work Description	No. of	Cost per	Total	Notes
	locations	location		
End of 1ph voltage control zone: wireless 'radio' link to substation	3	\$3,551	\$10,653	
Line regulator: wireless 'radio' link to the substation	2	\$3,364	\$6,728	
Substation: communications gear, links, central equipment, software to support				
CVR, IVVO, FDIR, AMI, DR, other smart grid services. Secure, real-time, always on.	1	\$210,563	\$210,563	
			6003044	

Subtotal: \$227,944

Stage 3 Costs to address Potential Low Voltages

Heavy Load is the Controlling Case.

18 more transformers will be impacted.

Assumed Solution:

0

8

26.8%

10.6%

398

64

26.8%

10.6%

197

26

Qty. (ea)	Work Description	Assumptions	Total
6	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$27,456
12	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$18,720
4	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$6,240
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$23,920

Total estimated cost to resolve low voltage concerns: \$76,336

Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that

Number of Transformers at or below 120 volts

Estimated percent with secondary Vd > 4 volts

Number of Transformers from 120 to 121 volts

may have customers with low voltage at Service Entrance =

Stage 3 Modification Total = \$304,280

Stage 1 + Stage 2 + Stage 3 Modification Total = \$622,153

Change													
	es for Stage 1		Node		Line	Load	Losses	Swap Phases	Staff	hours	rate	total	Work Description
									Engineer	4	\$130	\$520	Engineering and Analysis
									Svc Line Worker	0	\$130	\$0	Install /Remove meterin
5Y608	S01a		FP055861	389072157	5Y608 389	070384		A->C	Notifier	2	\$100	\$200	Notify customers of outa
			_	-	-				SVC Crew (3 person				
									+ 2 flaggers)	3	\$520	\$1,560	Make phase changes
									Total	9	10-0	\$2,280	
									10101	5		<i>QL)LOO</i>	
										Metering			
										Substation		\$8 130	
										End of Line		\$9.540	
										End of Ene		\$17,670	_
Stago 1	Costs to addros	C Dotontial Low	/oltagos									\$17,070	
Jight Lo	and is Controlling	Coco	onages										
LIGHT LO	au is controlling	Case			Assumed S	olution:							
					Oty (ea)	Work Descripti	on	Assumptions				Total	
Number	of Transformer	rs at or below 120	volts	38	(cu)	transformer cha		/8 hrs x / nerson c	rew) + 10% of labor for m	atorial - nor i	unit	\$18.304	-
Ectimate	ed nercent with	secondary Vd > A	volts	26.8%	4	transformer tar	changes	(4 hrs x 3 person c	rew) ner tan change	laterial - per t	inic	\$12,304	-
Number	of Transformer	rs from 120 to 121	volts	3/1	0	service change		(4 hrs x 2 person c	rew) + 50% of labor for m	atorial - nor i	unit	\$6.240	
Ectimate	tod porcont with	socondary Vd > E	volts	10.6%	4	Planning and Er	ginooring	(4 mis x 2 person c	(1ew) + 30% of labor 101 II	iateriai - per t	init	\$16.640	-
LightLo	ed percent with	secondary vu > 3		10.076		Fidililing and Li	gineering	(LStimated to be .	Total actimated cost to ro			\$10,040	
	lood -	50	200						I OLAI ESLIMALEU COST LO IE	SOIVE IOW VOIL	age concerns	. \$55,004	
LightLo	-odu –	02	0.00										
Light LO	au / Heavy Loau	. – 	0.57										
Estimate	.ed total number	of transformers t	.nat										
may nav	ve customers wit	th low voltage at :	service Entranc	ce = 12									
Change	s for Stage 2		Node			Load	1		Labor	Material	AFUDC	Total	
	S02b	Add Sw Cap	FP274441			+ 90	U KVAr		\$6,575	\$10,393	\$2,121	\$19,088 \$1,909	_Engineering = 10% of Tota
												\$20,997	
			Node			Conductor		Length (ft)					
	S02c	1 from	FP280201_	984800474		943 [12.5 #4 AC	S3PSn 8xa]	564.0	\$44.24	\$45.33	\$11.20	\$101	Per foot cost - Urban Ave
		to	FP280103_	984800473		1055 [12.5 477/	AC3PLn 8xa]					\$56,832	Labor, Material, AFUDC,
												\$5,683	Engineering = 10% of tota
												\$62,515	Total
Stage 2	Costs to addres	s Potential Low \	/oltages										
2	oad is Controlling	, Case.											
Light Lo			a impacted										
Light Lo	less ti	ransformers will t	je impacteu.										
Light Lo	less ti	ransformers will l	se impacteu.		Assumed Se	olution:							
Light Lo 7	less ti	ransformers will l	be impacted.		Assumed So Qty. (ea)	olution: Work Description	on	Assumptions				Total]
Light Lo 7 Number	less t. r of Transformer	ransformers will I 's at or below 120	volts	0	Assumed So Qty. (ea) -3	olution: Work Descripti transformer cha	on ange out	Assumptions (8 hrs x 4 person of	rew) + 10% of labor for m	naterial - per u	unit	Total (\$13,728)	3
Light Lo 7 Number Estimate	less t r of Transformer ed percent with	ransformers will I 's at or below 120 secondary Vd > 4	volts volts	0 26.8%	Assumed So Qty. (ea) -3 -4	blution: Work Description transformer cha transformer tap	on ange out o changes	Assumptions (8 hrs x 4 person of (4 hrs x 3 person of	rrew) + 10% of labor for m rrew) per tap change	naterial - per u	ınit	Total (\$13,728) (\$6,240)	-
Light Lo 7 Number Estimate	less t er of Transformer ed percent with r of Transformer	ransformers will I 's at or below 120 secondary Vd > 4 s from 120 to 121	volts volts volts	0 26.8% 161	Assumed So Qty. (ea) -3 -4 -2	blution: Work Descripti transformer cha transformer tap service change	on ange out o changes out	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m	naterial - per u naterial - per u	ınit	Total (\$13,728) (\$6,240) (\$3,120)	
Light Lo 7 Number Estimate Estimate	less t er of Transformer ed percent with r of Transformer ed percent with	ransformers will l rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 5	volts volts volts volts volts	0 26.8% 161 10.6%	Assumed So Qty. (ea) -3 -4 -2	blution: Work Descripti transformer cha transformer tap service change Planning and Er	on ange out o changes out gineering	Assumptions (8 hrs x 4 person of (4 hrs x 3 person of (4 hrs x 2 person of (Estimated to be 5	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m 50% of Crew Labor)	naterial - per u naterial - per u	ınit	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400)	
Light Lo 7 Number Estimate Light Lo	less t er of Transformer ed percent with r of Transformer ed percent with ad =	ransformers will l rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 5 30	volts volts volts volts volts 50	0 26.8% 161 10.6%	Assumed So Qty. (ea) -3 -4 -2	Very Description: Work Description transformer char transformer tap service change Planning and Er	on ange out o changes out gineering	Assumptions (8 hrs x 4 person of (4 hrs x 3 person of (4 hrs x 2 person of (Estimated to be 5	rrew) + 10% of labor for n rrew) per tap change rrew) + 50% of labor for n 50% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt	init init age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Light Lo Heavy L	less t er of Transformer ed percent with rof Transformer ed percent with ad = .oad =	ransformers will I rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 5 30 82	volts volts volts volts volts i50 00	0 26.8% 161 10.6%	Assumed So Qty. (ea) -3 -4 -2	Olution: Work Descripti transformer cha transformer tap service change Planning and Er	on ange out o changes out gineering	Assumptions (8 hrs x 4 person of (4 hrs x 3 person of (4 hrs x 2 person of (Estimated to be 5	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m 90% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt	init init age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Number Estimate Light Lo Heavy L Light Lo	less t er of Transformer ed percent with r of Transformer ed percent with ad = .oad = ad / Heavy Load	ransformers will I rs at or below 120 secondary Vd > 4 s from 120 to 121 secondary Vd > 5 30 82 =	volts volts volts volts i50 .00 0.37	0 26.8% 161 10.6%	Assumed St Qty. (ea) -3 -4 -2	Olution: Work Descripti transformer cha transformer ta service change Planning and Er	on ange out o changes out gineering	Assumptions (8 hrs x 4 person o (4 hrs x 3 person o (4 hrs x 2 person o (Estimated to be 5	rrew) + 10% of labor for m rew) per tap change rrew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt	unit unit age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Light Lo Heavy L Light Lo Estimate	less t er of Transformer ed percent with r of Transformer ed percent with had = .oad = heavy Load ed total number	ransformers will 1 rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 5 30 82 = of transformers t	volts volts volts volts volts volts volts volts volts volts volts volts volts volts volts	0 26.8% 161 10.6%	Assumed Si Qty. (ea) -3 -4 -2	olution: Work Descripti transformer cha transformer tap service change Planning and Er	on ange out ochanges out gineering	Assumptions (8 hrs x 4 person of (4 hrs x 3 person of (4 hrs x 2 person of (Estimated to be 5	rew) + 10% of labor for m rew) per tap change rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt	init init age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Light Lo Heavy L Light Lo Estimate may hav	less t er of Transformer ted percent with r of Transformer ted percent with bad = .oad = bad / Heavy Load ed total number ve customers with	ransformers will I rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 5 30 82 = of transformers t th low voltage at 1	volts volts	0 26.8% 161 10.6% ce = 5	Assumed Si Qty. (ea) -3 -4 -2	olution: Work Descriptii transformer cha transformer tap service change Planning and Er	on ange out changes out gineering	Assumptions (8 hrs x 4 person o (4 hrs x 3 person o (4 hrs x 2 person o (4 hrs x 2 person o (Estimated to be 5	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt	unit unit age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Number Estimate Light Lo Heavy L Light Lo Estimate may have	less t er of Transformer ted percent with r of Transformer ed percent with bad = .oad = .oad = ad / Heavy Load red total number ve customers with T	ransformers will I rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 5 30 82 I = of transformers t th low voltage at 1 he number of imp	volts volts	0 26.8% 161 10.6% ce = 5 rmers is less in stag	Assumed Si Qty. (ea) -3 -4 -2 -2	Work Descripti transformer cha transformer tap service change Planning and Er	on ange out changes out gineering	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c (4 hrs x 2 person c (Estimated to be 5	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt	unit unit age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Light Lo Heavy L Light Lo Estimate may hav	less t er of Transformer ted percent with r of Transformer ed percent with bad = .oad = .oad / Heavy Load ed total number ve customers with T	ransformers will I s at or below 120 secondary Vd > 4 s from 120 to 121 secondary Vd > 5 30 82 I = of transformers t th low voltage at 1 he number of imp	volts volts volts volts iso 0.37 hat Service Entranc vacted transfor	0 26.8% 161 10.6% ce = 5 rmers is less in stag	Assumed Si Qty. (ea) -3 -4 -2 -2 -2	Work Descripti transformer cha transformer tap service change Planning and Er	on ange out i changes out gineering al costs	Assumptions (8 hrs x 4 person o (4 hrs x 3 person o (4 hrs x 2 person o (5 the second of the second	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m 0% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt tage 2 Modifi	unit unit age concerns cation Total :	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	
Light Lo 7 Number Estimate Light Lo Heavy L Light Lo Estimate may hav	less t er of Transformer ted percent with r of Transformer ed percent with bad = Load = bad / Heavy Load ed total number ve customers with T	ransformers will I rs at or below 120 secondary Vd > 4 rs from 120 to 121 secondary Vd > 3 30 82 I= of transformers t th low voltage at 1 'he number of imp	volts volts volts tvolts 50 00 0.37 hat Service Entrand bacted transfor	0 26.8% 161 10.6% cce = 5 rmers is less in stag	Assumed So Qty. (ea) -3 -4 -2 -2	Work Descripti transformer cha transformer tag service change Planning and Er e 1. No additiona	on ange out i changes out gjineering al costs	Assumptions (8 hrs x 4 person o (4 hrs x 3 person o (4 hrs x 2 person o (Estimated to be 5	rrew) + 10% of labor for m rrew) per tap change rrew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	naterial - per u naterial - per u solve low volt tage 2 Modifi	unit unit age concerns	Total (\$13,728) (\$6,240) (\$3,120) (\$10,400) : (\$33,488)	

All changes in Stage three are to address potential low voltage.

All changes in Stage three are to address poten	tial low voltage.							
		Work Desc	ription		No. of	Cost per	Total	Notes
					locations	location		
			End of 1ph voltage	e control zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
			Line	regulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
		S	Substation: communications gea	ar, links, central equipment, software to support				
		CV	R, IVVO, FDIR, AMI, DR, other si	mart grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	Shared cost with 5Y610
						Subtotal:	\$108,833	
Stage 3 Costs to address Potential Low Voltag	es							
Light Load is Controlling Case								
12 more transformers will be imp	acted.							
		Assumed S	olution:					
		Qty. (ea)	Work Description	Assumptions			Total]
Number of Transformers at or below 120 volts	161	4	transformer change out	(8 hrs x 4 person crew) + 10% of labor for ma	aterial - per ur	nit	\$18,304	
Estimated percent with secondary Vd > 4 volts	26.8%	8	transformer tap changes	(4 hrs x 3 person crew) per tap change			\$12,480	
Number of Transformers from 120 to 121 volts	218	2	service change out	(4 hrs x 2 person crew) + 50% of labor for ma	aterial - per ur	nit	\$3,120	
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			\$15,600	1
Light Load = 3050				Total estimated cost to res	olve low volta	ge concerns:	\$49,504	_
Heavy Load = 8200								
Light Load / Heavy Load = 0.1	37							
Estimated total number of transformers that								
may have customers with low voltage at Service	e Entrance = 17			Sta	age 3 Modific	ation Total =	\$158,337	

Stage 1 + Stage 2 + Stage 3 Modification Total = \$281,975

5Y610													
Changes for Stage 1	Node	I	Line	Load	Losses	Swap Phase	s Staff	1	hours	rate	1	otal	Work Description
							Engineer			4	\$130	\$520	Engineering and Analysis
							Svc Line Wo	orker		0	\$130	\$0	Install /Remove meterin
S01b	FP278203 47941	.0700 5	5Y610 479410265			A->B	Notifier			2	\$100	\$200	Notify customers of out
							SVC Crew (3	s person					
							+ 2 flaggers))		3	\$520	\$1 560	Make phase changes
							Total			0	J JZ0	\$1,500	- Make phase changes
							TOtal			5		\$2,280	
									Motoring				
									Cubetation			ćo 120	
										1		\$6,150 ¢0,540	
								-		:		\$9,540	_
												Ş17,070	
Stage 1 Costs to address Po	tential Low Voltages												
Light Load is Controlling Cas	е												
		/ E	Assumed Solution:										7
			Qty. (ea) Work D	escription		Assumption	IS					Total	
Number of Transformers at	or below 120 volts	16	3 transfo	rmer change o	out	(8 hrs x 4 pe	rson crew) + 10% of lai	bor for mat	terial - per	unit		\$13,728	_
Estimated percent with seco	ndary Vd > 4 volts 2	5.8%	4 transfor	rmer tap char	iges	(4 hrs x 3 pe	rson crew) per tap cha	inge				\$6,240	_
Number of Transformers fro	m 120 to 121 volts	277	2 service	change out		(4 hrs x 2 pe	rson crew) + 50% of lat	bor for mat	terial - per	unit		\$3,120	_
Estimated percent with seco	ndary Vd > 5 volts 1	0.6%	Plannin	g and Enginee	ering	(Estimated t	to be 50% of Crew Labo	or)				\$10,400	
Light Load =	2707						Total estimated c	cost to reso	olve low vo	Itage co	ncerns:	\$33,488	
Heavy Load =	9250												
Light Load / Heavy Load =	0.29												
Estimated total number of tr	ansformers that												
may have customers with lo	w voltage at Service Entrance =	7											
										Total Sta	age 1 =	\$53,438	
Changes for Stage 2	Node			Load				Labor I	Material	AFU	. DC	fotal ¢21.040	
507h	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1740		1 600 kV/A				Ş0,575	Ş12,15	0.	şz,559	\$21,049	Engineering - 10% of Tot
3020 #	Aud Sw Cap FP278510_46048	1740		+ 000 KVA	u .						-	\$2,103	
												\$23,154	
	Nada		Conduc	tor		Longth (ft)	ć	44.24	¢ 45.2	2 ć	11 20	¢101	Por foot cost Urban Av
602.	Node	0644	1002 [4				Ş	44.24	ə 45.5	ςς	11.20	\$101	Lehen Meteriel AEUDC
5020	1 from FP279560_46048	0611	1083 [1	2.5 4/UAAC3P	vivin 8xaj	576.0						\$58,041	Labor, Material, AFUDC,
	to FP279609_46048	0657	1055 [1	2.5 477AAC3	PLn 8xaj						-	\$5,804	Engineering = 10% of tot
												\$63,84	5 Total
Stage 2 Costs to address Po	tential Low Voltages												
Light Load is Controlling Cas	е.												
5 less transf	ormers will be impacted.												
		É É	Assumed Solution:									T I	7
N		_ F	uty. (ea) Work D	escription		Assumption	15	(te station			Total	4
Number of Transformers at	or below 120 volts	U	-2 transfo	rmer change o	out	(8 hrs x 4 pe	rson crew) + 10% of lal	por for mat	terial - per	unit		(\$9,152)	4
Estimated percent with seco	ndary Vd > 4 volts 2	0.8%	-3 transfo	rmer tap char	iges	(4 hrs x 3 pe	rson crew) per tap cha	inge				(\$4,680)	4
Number of Transformers fro	m 120 to 121 volts	95	-1 service	change out		(4 hrs x 2 pe	rson crew) + 50% of lat	bor for mat	terial - per	unit		(\$1,560)	_
Estimated percent with seco	muary vd > 5 volts 1	0.0%	Plannin	g and Enginee	ering	(Estimated t	u ue 50% of Crew Labo))				(\$7,020)	1
Light Load =	2/0/						Total estimated c	cost to reso	oive low vo	itage co	ncerns:	(\$22,412)	
neavy Load =	9250												
Light Load / Heavy Load =	0.29												
Estimated total number of tr	ansformers that	-											
may have customers with lo	w voitage at Service Entrance =	2											
								C+-	ao 2 Madi	fication	Total	664 597	
								sta	Re z INIOUI	ncation	iotai =	J04,58/	
							C+-	ago 1 + Sta	ao 2 Modi	fication	Total -	\$118.025	
							318	BC IT JId	Per viou	neacion	-otar -	9110,020	

	Work Description	No. of
		locations
	End of 1ph voltage control zone: wireless 'radio' link to substation	1
	Line regulator: wireless 'radio' link to the substation	0
	Substation: communications gear, links, central equipment, software to support	
	CVR, IVVO, FDIR, AMI, DR, other smart grid services. Secure, real-time, always on.	0.5
Sterre 3 Coste to address Detential Law Valesce		

Stage 3 Costs to address Potential Low Voltages

Light Load is Controlling Case.

8 more transformers will be impacted.

may have customers with low voltage at Service Entrance =

Assumed Solution:

Qty. (ea)	Work Description	Assumptions	Total
3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$13,728
5	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$7,800
1	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$1,560
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$10,660

Total estimated cost to resolve low voltage concerns: \$33,748

Stage 3 Modification Total = \$142,581

Stage 1 + Stage 2 + Stage 3 Modification Total = \$260,606

Cost per

location

\$3,551

\$3,364

\$210,563

Subtotal:

Total

\$3,551

\$0

\$105,282

\$108,833

Notes

Shared cost with 5Y608

			Qty. (ea)	Work Description	Assumptions
Number of Transformers at or bel	ow 120 volts	95	3	transformer change out	(8 hrs x 4 perso
Estimated percent with secondary	vVd > 4 volts	26.8%	5	transformer tap changes	(4 hrs x 3 perso
Number of Transformers from 120) to 121 volts	198	1	service change out	(4 hrs x 2 perso
Estimated percent with secondary	vVd > 5 volts	10.6%		Planning and Engineering	(Estimated to b
Light Load =	2707				
Heavy Load =	9250				
Light Load / Heavy Load =	0.29				
Estimated total number of transfo	rmers that				

10

Orchard 5Y456

		Node		Line	Load	Losses	Swap Phases	Staff	hours	rate	total	Work Description
								2 - Single Phase mov	es z c	ć120	¢02C	Engineering and Applycic
CO1 -		ED100004 2001000	2	EV/4EC 200100000			C > D	Engineer	7.2	\$130	\$936	Engineering and Analysis
501a		FP168004_30616061	13	51456_306160060			C->B	SVC Line worker	0	\$130	\$U	Install / Remove metering
		FP213700_73839049	90	51456_738390191			A->B	Notifier	4	\$100	\$400	Notify customers of outage
		ED162200 2061605	01	EV4E6 206160112				- 2 flaggars)	c	6520	62 120	Make phase changes
		FP105200_50010056	51	51450_500100115			CDA->CAD	+ 2 Haggers)	17.2	Ş520	\$5,120	wake phase changes
								Total	17.2		Ş4,430	
								Three Phase swap				
								Engineer	4	\$130	\$520	Engineering and Analysis
								Svc Line Worker	0	\$130	\$0	Install /Remove metering
								Notifier	4	\$100	\$400	Notify customers of outage
								SVC Crew (4 person				
								+ 2 flaggers)	6	\$650	\$3,900	Make phase changes
								Total	14		\$4,820	_
									Matarian			
									Substation		ć9 120	
									Substation		\$6,150 ¢0,540	
									EIIU OI LIIIE		\$9,540	—
			_	Qty. (ea) Work D	escription		Assumptions				Total	
Number of Transformer	at or below 120 v	olts	0	2 transfor	mer change c	out	(8 hrs x 4 person	crew) + 10% of labor for m	aterial - per ι	ınit	\$9,152	
Estimated percent with	secondary Vd > 4 v	olts 26.89	6	2 transfor	mer tap chan	ges	(4 hrs x 3 person	crew) per tap change			\$3,120	_
Number of Transformer	; from 120 to 121 v	volts 21	5	2 service	change out		(4 hrs x 2 person	crew) + 50% of labor for m	aterial - per ι	init	\$3,120	
Estimated percent with	secondary Vd > 5 v	olts 10.69	6	Planning	g and Enginee	ring	(Estimated to be	FOO(of Crown Lob or)			6C 7C0	
	102						(Estimated to be	50% of Crew Labor)			\$6,760	
Light Load =	103	7					(Estimated to be	Total estimated cost to re	solve low volt	age concerns	\$6,760	
Light Load = Heavy Load =	730	7 '0						Total estimated cost to re	solve low volt	age concerns	\$6,760	
Light Load = Heavy Load = Light Load / Heavy Load Ectimated total number	730 =	67 10 0.25					Restanded to be	Total estimated cost to re	solve low volt	age concerns	\$6,760 : \$22,152	
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit	730 = of transformers th h low voltage at Se	7 10 0.25 at Prvice Entrance =	4					Total estimated cost to re	solve low volt	age concerns	\$6,760 : \$22,152	
ight Load = Heavy Load = .ight Load / Heavy Load Estimated total number nay have customers wit	730 = of transformers th h low voltage at Se	87 10 0.25 at 3rvice Entrance =	4				Lestimated to be .	Total estimated cost to re	solve low volt	age concerns otal Stage 1	: \$22,152 = \$49,098	
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2	730 = of transformers th h low voltage at Se	0 0.25 at ervice Entrance =	4		Load			Total estimated cost to re	solve low volt	age concerns otal Stage 1 = AFUDC	 \$6,760 \$22,152 \$49,098 Total 	
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2	730 = of transformers th h low voltage at Se	0.25 at ervice Entrance =	4		Load			Total estimated cost to re Labor \$6,575	To To Material \$12,136	age concerns otal Stage 1 : AFUDC \$2,339	 \$6,760 \$22,152 \$49,098 Total \$21,049 	_]
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2 S02b	730 = of transformers th h low voltage at Se Add Sw Cap	7 10 0.25 14 15 15 16 16 17 16 16 16 16 16 16 16 16 16 16	4		Load + 600 kVA	r		Total estimated cost to re Labor \$6,575	solve low volt Tr Material \$12,136	age concerns Dtal Stage 1 - AFUDC \$2,339	\$6,760 \$6,760 \$22,152 \$22,152 Total \$21,049 \$2,105	Engineering = 10% of Total
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2 S02b	730 = of transformers th h low voltage at Se Add Sw Cap	7 00 0.25 Nat Prvice Entrance = Node FP215411	4		Load + 600 kVA	r		Total estimated cost to re Labor \$6,575	To Material \$12,136	age concerns otal Stage 1 : AFUDC \$2,339	\$6,760 \$22,152 \$22,152 Total \$21,049 \$2,105 \$23,154	Engineering = 10% of Total
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2 S02b	and a second sec	7 10 0.25 Inat ervice Entrance = Node FP215411 Node	4	Conduc	Load + 600 kVA	r	Length (ft)	Total estimated cost to re Labor \$6,575	Tr Material \$12,136	age concerns Dtal Stage 1 AFUDC \$2,339	\$6,760 \$22,152 \$22,152 Total \$21,049 \$2,105 \$23,154	Engineering = 10% of Total
ight Load = łeavy Load = ight Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2 S02b S02c	730 = of transformers th h low voltage at Se Add Sw Cap 1 from	7 0.25 1at ervice Entrance = Node FP215411 Node 7000_306160615	4	Conduc	Load + 600 kVA tor 1256 [1	r 12.5 #6 CU	Length (ft) 3 812.0	Labor \$6,575	Tr Tr Material \$12,136 \$21	age concerns otal Stage 1 = AFUDC \$2,339 \$5	\$6,760 \$56,760 \$22,152 \$22,152 Total \$21,049 \$21,059 \$23,154 \$47	Engineering = 10% of Total Per foot cost - Urban Aver
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers with Changes for Stage 2 S02b S02c	Add Sw Cap	7 00 0.25 1at ervice Entrance = Node FP215411 Node 7000_306160615 7101_306161294	4	Conduc	Load + 600 kVA tor 1256 [1 1243 [3	r 12.5 #6 CU 12.5 #2AAC	Length (ft) 3 812.0 3295n 8xa]	Some of Crew Labory Total estimated cost to re Labor \$6,575 \$21 Used 4/0 Easy cost	Tr Tr Material \$12,136 \$21	age concerns otal Stage 1 AFUDC \$2,339 \$5	\$6,760 \$6,760 \$22,152 \$22,152 Total \$21,049 \$21,049 \$22,154 \$47 \$47,773	Engineering = 10% of Total Per foot cost - Urban Aver: Labor, Material, AFUDC, To
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2 S02b S02c	Add Sw Cap	7 10 0.25 1at ervice Entrance = Node FP215411 Node 7000_306160615 7101_306161294	4	Conduc	Load + 600 kVA tor 1256 [1 1243 [1	r 12.5 #6 CU 12.5 #2AAC	Length (ft) 3 812.0 3PSn 8xa]	Some of Crew Labory Total estimated cost to re Labor \$6,575 \$21 Used 4/0 Easy cost	Taterial \$12,136	age concerns otal Stage 1 : AFUDC \$2,339 \$5	\$6,760 : \$22,152 = \$49,098 Total \$21,049 \$2,105 \$23,154 \$47 \$47,773 \$47,773 \$4,777	Engineering = 10% of Total Per foot cost - Urban Avera Labor, Material, AFUDC, To Engineering = 10% of total
Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wit Changes for Stage 2 S02b S02c	Add Sw Cap	7 0.25 iat ervice Entrance = Node FP215411 Node 7000_306160615 7101_306161294 7101_306161294	4	Conduc	Load + 600 kVA tor 1256 [1 1243 [1 943 [1:	r 12.5 #6 CU 12.5 #2AAC 2.5 #4ACS 3	<u>Length (ft)</u> 3 812.0 3PSn 8xa] 3f 211.0	Sow of Crew Labory Total estimated cost to re Labor \$6,575 \$21 Used 4/0 Easy cost	Tr Material \$12,136 \$21	age concerns otal Stage 1 - AFUDC \$2,339 \$5	\$6,760 : \$22,152 = \$49,098 Total \$21,049 \$2,105 \$23,154 \$47 \$47,773 \$4,777 \$52,550	Engineering = 10% of Total Per foot cost - Urban Avera Labor, Material, AFUDC, To Engineering = 10% of total Total

Total reconductor= 1023.0

Stage 2 Costs to address Potential Low Voltages

The number of impacted transformers is less in stage 2 than in stage 1. No additional costs

Stage 2 Modification Total = \$75,704

Stage 1 + Stage 2 Modification Total =\$124,802

All changes in Stage three are to address potential low voltage.				
	Work Description	No. of	Cost per	
		locations	location	
	End of 1ph voltage control zone: wireless 'radio' link to substation	1	\$3,551	
	Line regulator: wireless 'radio' link to the substation	0	\$3,364	
	Substation: communications gear, links, central equipment, software to support			
	CVR, IVVO, FDIR, AMI, DR, other smart grid services. Secure, real-time, always on.	0.5	\$210,563	
			Subtotal:	

Stage 3 Costs to address Potential Low Voltages

Number of Transformers at or below 120 volts

Estimated percent with secondary Vd > 4 volts

Number of Transformers from 120 to 121 volts

Estimated percent with secondary Vd > 5 volts

Estimated total number of transformers that

Heavy Load is controlling case.

7 more transformers will be impacted.

may have customers with low voltage at Service Entrance =

Assumed Solution:

46

34

11

26.8%

10.6%

Qty. (ea)	Work Description	Assumptions	Total
3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$13,728
4	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$6,240
2	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$3,120
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$10,400
			1

Total estimated cost to resolve low voltage concerns: \$33,488

Stage 3 Modification Total = \$142,321

Total

\$3,551 \$0 \$105,282 \$108,833 Notes

Stage 1 + Stage 2 + Stage 3 Modification Total = \$267,123

d 5Y498											
Changes for Stage 1	Node		Line	Load	Losses	Swap Phases	Staff	hours	rate	total	Work Description
No System	n Improvements necess	ay for Stage 1									
Stage 1 Costs to address Potent HL Case is subset of LL Case	ial Low Voltages										
			Assumed Sc	lution:							
			Qty. (ea)	Work Description		Assumptions				Total	7
Number of Transformers at or be	elow 120 volts	0	2	transformer change	out	(8 hrs x 4 person c	rew) + 10% of labor fo	or material - per ι	unit	\$9,152	
Estimated percent with secondar	ry Vd > 4 volts	26.8%	4	transformer tap cha	nges	(4 hrs x 3 person c	rew) per tap change			\$6,240	
Number of Transformers from 12	20 to 121 volts	322	2	service change out		(4 hrs x 2 person c	rew) + 50% of labor fo	or material - per ι	unit	\$3,120	
Estimated percent with secondar	ry Vd > 5 volts	10.6%		Planning and Engine	ering	(Estimated to be 5	0% of Crew Labor)			\$8,320	
Light Load =	1446					1	otal estimated cost to	o resolve low volt	tage concerns	\$26,832	
Light Load / Heavy Load = Estimated total number of transf may have customers with low vo	0.23 formers that Itage at Service Entrand	ce = 6						Metering Substation End of Line To	otal Stage 1 =	\$8,130 \$9,540 \$17,670 : \$44,502	-
Changes for Stage 2	Node			Load			Labor	Material	AFUDC	Total	
				2000			\$6.575	\$10.393	\$2.121	\$19.088	
S02b Add 5	Sw Cap FP225240			+ 900 kV	Ar					\$1,909 \$20,997	_Engineering = 10% of Total
Stage 2 Costs to addu The numb	ress Potential Low Volt ber of impacted transfor	r ages rmers is the same as	in stage 1. No	additional costs				Stage 2 Modifi	cation Total =	- \$20,997	

All changes in Stage three are to address potential low voltage.

	-	Work Desc	rintion		No. of	Cost ner	Total	Notes
					locations	location	. Star	
			End of 1ph voltage	e control zone: wireless 'radio' link to substation	1	\$3 551	\$3 551	
				e regulator: wireless 'radio' link to the substation	0	\$3 364	\$0	
			Substation: communications ge	ar links central equipment software to support		<i>\$3,30</i>	φ¢	
		cv	R. IVVO. FDIR. AMI. DR. other s	mart grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	
			.,,,,,,			Subtotal:	\$108.833	
Stage 3 Costs to address Potential Low Voltages								
Heavy Load is controlling case								
13 more transformers will be impacted.								
· · · · · · · · · · · ·		Assumed S	olution:					
		Qty. (ea)	Work Description	Assumptions			Total	1
Number of Transformers at or below 120 volts	63	4	transformer change out	(8 hrs x 4 person crew) + 10% of labor for ma	aterial - per ur	nit	\$18,304	
Estimated percent with secondary Vd > 4 volts	26.8%	9	transformer tap changes	(4 hrs x 3 person crew) per tap change			\$14,040	
Number of Transformers from 120 to 121 volts	96	4	service change out	(4 hrs x 2 person crew) + 50% of labor for ma	aterial - per ur	nit	\$6,240	
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			\$17,420	
Estimated total number of transformers that				Total estimated cost to res	olve low volta	ge concerns:	\$56,004	-
may have customers with low voltage at Service Entra	ince = 19							
				Sta	age 3 Modific	ation Total =	\$164,837	
				Stage 1 + Stage 2 + Sta	age 3 Modific	ation Total =	\$230,336	

1434										
Changes for Stage 1	Node	Line	Load	Losses	Swap Phases					
No phase changes					None					
						Labor	Material	AFUDC	Total	
Add Cap	FP301903_506870503		600 kVar			\$3,071	\$2,818	\$736	\$6,624	
								-	\$662	Engineering = 10% of Total
									\$7,287	
Add Cap	FP254905 47582199		300 kVar			\$3.071	\$5,209	\$1.076	\$9.356	
						<i>+=)=</i>	+=)===	<i>+_,</i>	\$936	Engineering = 10% of Total
								-	\$10,292	_
							Matariac			
							Nietering		ć0 100	
							Substation End of Lino		\$8,130 \$0,540	
							LING OF LINE		\$3,340	_
Stage 1 Costs to address Potential Lo Heavy Load is controlling case	ow Voltages	Assumed So	olution:							
Stage 1 Costs to address Potential Lo Heavy Load is controlling case	ow Voltages	Assumed So Qty. (ea)	olution: Work Description		Assumptions				Total]
Stage 1 Costs to address Potential Le Heavy Load is controlling case	120 volts 53	Assumed So Qty. (ea) 5	olution: Work Description transformer change ou	ut	Assumptions (8 hrs x 4 person crew	+ 10% of labor for	material - per ur	nit	Total \$22,880	3
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vo	120 volts 53 1 > 4 volts 26.8%	Assumed So Qty. (ea) 5 10	olution: Work Description transformer change of transformer tap chang	ut ges	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew	+ 10% of labor for	material - per ur	nit	Total \$22,880 \$15,600	
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vo Number of Transformers from 120 to	120 volts 53 1 > 4 volts 26.8% 1 > 1 volts 69 1 > 5 volts 10.0%	Assumed So Qty. (ea) 5 10 4	olution: Work Description transformer change ou transformer tap chang service change out	ut ges	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew	+ 10% of labor for per tap change + 50% of labor for	material - per ur material - per ur	nit Nit	Total \$22,880 \$15,600 \$6,240	
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vd Number of Transformers from 120 to Estimated percent with secondary Vd Estimated percent with secondary Vd	120 volts 53 1 > 4 volts 26.8% 1 21 volts 69 1 > 5 volts 10.6%	Assumed So Qty. (ea) 5 10 4	olution: Work Description transformer change ou transformer tap chang service change out Planning and Engineer	ut ges ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%)	+ 10% of labor for per tap change + 50% of labor for of Crew Labor)	material - per ur material - per ur	nit nit	Total \$22,880 \$15,600 \$6,240 \$20,280 \$55,000	
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vd Number of Transformers from 120 to Estimated percent with secondary Vd Estimated total number of transform may have customers with low voltage	120 volts 53 1 > 4 volts 26.8% 1 > 1 volts 69 1 > 1 volts 69 4 > s volts 10.6% ers that 15	Assumed So Qty. (ea) 5 10 4	olution: Work Description transformer change ou transformer tap chang service change out Planning and Engineer	ut ges ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%) Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to	material - per ur material - per ur resolve low volta	hit hit ge concerns:	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000	
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vd Number of Transformers from 120 to Estimated percent with secondary Vd Estimated total number of transformer may have customers with low voltage	120 volts 53 1 > 4 volts 26.8% 1 > 121 volts 69 1 > 5 volts 10.6% ers that 2 e at Service Entrance = 15	Assumed Sc Qty. (ea) 5 10 4	olution: Work Description transformer change ou transformer tap chang service change out Planning and Engineer	ut ges ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%) Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to	material - per ur material - per ur resolve low volta Tol	nit nit ge concerns: tal Stage 1 =	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248	
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vd Number of Transformers from 120 to Estimated percent with secondary Vd Estimated total number of transform may have customers with low voltage	120 volts 53 1> 4 volts 26.8% 121 volts 69 1> 5 volts 10.6% ers that 15 volte Entrance = 15	Assumed So Qty. (ea) 5 10 4	olution: Work Description transformer change ou transformer tap change service change out Planning and Engineer	ut ges ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50% Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to	material - per ur material - per ur resolve low volta Tot	hit it ge concerns: tal Stage 1 =	Total \$22,880 \$15,600 \$62,240 \$20,280 \$65,000 \$100,248	
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vo Number of Transformers from 120 to Estimated percent with secondary Vo Estimated total number of transform may have customers with low voltage	120 volts 53 1>4 volts 26.8% 121 volts 69 1>5 volts 10.6% ers that 15 e at Service Entrance = 15	Assumed So Qty. (ea) 5 10 4	olution: Work Description transformer change ou transformer tap chang service change out Planning and Engineer Load	ut ;es ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50% Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to	material - per ur material - per ur resolve low volta Tot Material	hit ge concerns: tal Stage 1 =	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total	
Stage 1 Costs to address Potential Lo Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vo Number of Transformers from 120 to Estimated percent with secondary Vo Estimated total number of transform may have customers with low voltage Changes for Stage 2 S02b Add Sw C	120 volts 53 1 > 4 volts 26.8% 1 > 1 volts 69 1 > 5 volts 10.6% ers that = e at Service Entrance = 15 Node pp: 400 / 200	Assumed Sc Qty. (ea) 5 10 4	Dution: Work Description transformer change out transformer tap chang service change out Planning and Engineer Load + 600 kVAr	ut ;es ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%) Tota	+ 10% of labor for) per tap change + 50% of labor for of Crew Labor) estimated cost to Labor \$6,575	material - per ur material - per ur resolve low volta Tot Material \$12,136	hit ge concerns: tal Stage 1 = AFUDC \$2,339	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total \$21,049	
Stage 1 Costs to address Potential Log Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Voc Number of Transformers from 120 to Estimated percent with secondary Voc Estimated total number of transformer may have customers with low voltage Changes for Stage 2 S02b Add Sw Co	120 volts 53 1 > 4 volts 26.8% 1 > 1 volts 69 1 > 5 volts 10.6% ers that = e at Service Entrance = 15 Node ap FP365800	Assumed Sr Qty. (ea) 5 10 4	Dution: Work Description transformer change out transformer tap chang service change out Planning and Engineer Load + 600 kVAr	ut ges	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%) Tota	+ 10% of labor for) per tap change + 50% of labor for of Crew Labor) estimated cost to Labor \$6,575	material - per ur material - per ur resolve low volta Tot Material \$12,136	hit hit ge concerns: tal Stage 1 = AFUDC \$2,339	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total \$21,049 \$2,105	Engineering = 10% of Total
Stage 1 Costs to address Potential Le Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vo Number of Transformers from 120 to Estimated percent with secondary Vo Estimated percent with secondary vo Restinated percent with secondary vo Estimated total number of transformer may have customers with low voltage Changes for Stage 2 S02b Add Sw C	120 volts 53 1 > 4 volts 26.8% 1 > 1 volts 69 1 > 5 volts 10.6% ers that = e at Service Entrance = 15	Assumed Sr Qty. (ea) 5 10 4	Ution: Work Description transformer change out transformer tap chang service change out Planning and Engineer Load + 600 kVAr	ut ges ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%) Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to Labor \$6,575	material - per ur material - per ur resolve low volta Tot Material \$12,136	hit ge concerns: tal Stage 1 = AFUDC \$2,339	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total \$21,049 \$2,105 \$23,154	Engineering = 10% of Total Total
Stage 1 Costs to address Potential Lo Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vd Number of Transformers from 120 to Estimated percent with secondary Vd Estimated percent with secondary Vd Estimated percent with secondary Vd Estimated total number of transformer may have customers with low voltage Changes for Stage 2 S02b Add Sw C Stage 2 Costs to address	20 volts 53 d > 4 volts 26.8% d > 4 volts 26.8% d > 5 volts 69 d > 5 volts 10.6% ers that e at Service Entrance = 15 Node ap FP365800 Potential Low Voltages	Assumed Sr Qty. (ea) 5 10 4	olution: Work Description transformer change out transformer tap chang service change out Planning and Engineer Load + 600 kVAr	ut ges ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50%) Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to Labor \$6,575	material - per ur material - per ur resolve low volta Tol Material \$12,136	hit tal Stage 1 = AFUDC \$2,339	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total \$21,049 \$2,105 \$23,154	Engineering = 10% of Total Total
Stage 1 Costs to address Potential Lo Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vd Number of Transformers from 120 to Estimated percent with secondary Vd Estimated percent with secondary Vd Estimated percent with secondary Vd Estimated total number of transform may have customers with low voltage Changes for Stage 2 S02b Add Sw C Stage 2 Costs to address I The number of	120 volts 53 1> 4 volts 26.8% 121 volts 69 1> 5 volts 10.6% ers that e at Service Entrance = 15 Node ap FP365800 Potential Low Voltages f impacted transformers is only slightl	Assumed So Qty. (ea) 5 10 4	olution: Work Description transformer change out transformer tap change service change out Planning and Engineer Load + 600 kVAr age 1. No additional cos	ut ing	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50% Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to Labor \$6,575	material - per ur material - per ur resolve low volta Tot Material \$12,136 Stage 2 Modific	ation Total=	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total \$21,049 \$2,105 \$23,154	Engineering = 10% of Total Total
Stage 1 Costs to address Potential Log Heavy Load is controlling case Number of Transformers at or below Estimated percent with secondary Vod Number of Transformers from 120 too Estimated percent with secondary Vod Estimated total number of transform may have customers with low voltage Changes for Stage 2 S02b Add Sw Co Stage 2 Costs to address The number of	I20 volts 53 i > 4 volts 26.8% i 21 volts 69 d > 5 volts 10.6% ers that e at Service Entrance = 15 Node ap FP365800 Potential Low Voltages f impacted transformers is only slightl	Assumed So Qty. (ea) 5 10 4	Ution: Work Description transformer change out transformer tap change service change out Planning and Engineer Load + 600 kVAr age 1. No additional cos	ut jes ing sts	Assumptions (8 hrs x 4 person crew (4 hrs x 3 person crew (4 hrs x 2 person crew (Estimated to be 50% Tota	+ 10% of labor for per tap change + 50% of labor for of Crew Labor) estimated cost to Labor \$6,575	material - per un material - per un resolve low volta Tot Material \$12,136	ation Total=	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000 \$100,248 Total \$21,049 \$2,2105 \$23,154 \$23,154	Engineering = 10% of Total Total

		Work Desc	ription		No. of	Cost per	Total	Notes
					locations	location		
			End of 1ph voltag	ge control zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
			Line	e regulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
		S	ubstation: communications ge	ar, links, central equipment, software to support				
		CV	R, IVVO, FDIR, AMI, DR, other s	mart grid services. Secure, real-time, always on.	1	\$210,563	\$210,563	
						Subtotal:	\$214,114	
Heavy Load is controlling case. 15 more transformers will be impacted								
Heavy Load is controlling case. 15 more transformers will be impacted		Assumed S Qty. (ea)	olution: Work Description	Assumptions			Total]
Heavy Load is controlling case. 15 more transformers will be impacted Number of Transformers at or below 120 volts	150	Assumed S Qty. (ea) 5	olution: Work Description transformer change out	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma	terial - per ur	nit	Total \$22,880]
Heavy Load is controlling case. 15 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts	150 26.8%	Assumed S Qty. (ea) 5 10	olution: Work Description transformer change out transformer tap changes	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change	terial - per ur	nit	Total \$22,880 \$15,600]
Heavy Load is controlling case. 15 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts	150 26.8% 17	Assumed S Qty. (ea) 5 10 4	olution: Work Description transformer change out transformer tap changes service change out	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma	terial - per ur terial - per ur	nit	Total \$22,880 \$15,600 \$6,240]
Heavy Load is controlling case. 15 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts	26.8% 17 10.6%	Assumed S Qty. (ea) 5 10 4	olution: Work Description transformer change out transformer tap changes service change out Planning and Engineering	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor)	terial - per ur terial - per ur	nit Nit	Total \$22,880 \$15,600 \$6,240 \$20,280	
Heavy Load is controlling case. 15 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that	26.8% 17 10.6%	Assumed S Qty. (ea) 5 10 4	olution: Work Description transformer change out transformer tap changes service change out Planning and Engineering	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to reso	terial - per ur terial - per ur olve low volta	nit iii iii ge concerns:	Total \$22,880 \$15,600 \$6,240 \$20,280 \$65,000	

Stage 1 + Stage 2 + Stage 3 Modification Total = \$402,516

lill 5Y197						
Changes for Stage 1	Node	Line	Load Losses	Swap Phases		
S01a	No Phase changes for Stage	1				
Stage 1 Costs to address Potential Heavy Load is controlling case	Low Voltages					
		Assumed S	olution:			
		Qty. (ea)	Work Description	Assumptions	Total	
Number of Transformers at or below	v 120 volts 0	0	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$0	
Estimated percent with secondary \	/d > 4 volts 26.8%	0	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$0	
Number of Transformers from 120 t	co 121 volts 0	3	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$4,680	
Estimated percent with secondary \	/d > 5 volts 10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$1,560	
Estimated total number of transforr	ners that	-	· · · · · · · · · · · · · · · · · · ·	Total estimated cost to resolve low voltage concerns:	\$6,240	
				Metering Substation End of Line	\$8,130 \$9,540 \$17,670	
				Total Stage 1 =	\$23,910	
Changes for Stage 2	Node		Load			
				Labor Material AFUDC	Fotal	
S02b Add Sw	Cap FP365800		+ 900 kVAr	\$6,575 \$12,136 \$2,339	\$21,049	5
				-	\$2,105 \$23.154	Engineering = 10% of Total Total
Stage 2 Costs to address The number of	5 Potential Low Voltages of impacted transformers is less than it	in stage 1. No ac	lditional costs	-	\$2,105 \$23,154	Engineering = 10% of Total Total
Stage 2 Costs to address The number of	s Potential Low Voltages of impacted transformers is less than i	in stage 1. No ac	lditional costs	- Stage 2 Modification Total=	\$2,105 \$23,154 \$23,154	Engineering = 10% of Total Total

		Work Desc	ription		No. of	Cost per	Total	Notes
					locations	location		
			End of 1ph voltag	e control zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
			Line	e regulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
		S	ubstation: communications ge	ar, links, central equipment, software to support				Shared cost with 5Y19/
		CVI	R, IVVO, FDIR, AMI, DR, other s	mart grid services. Secure, real-time, always on.	0.33	\$210,563	\$70,188	& 5Y273
						Subtotal:	\$73,739	
Heavy Load is controlling case								
Heavy Load is controlling case 7 more transformers will be impacted	l.	Assumed So	plution:					_
Heavy Load is controlling case 7 more transformers will be impacted	I.	Assumed So Qty. (ea)	olution: Work Description	Assumptions			Total	
Heavy Load is controlling case 7 more transformers will be impacted Number of Transformers at or below 120 volts	I. O	Assumed So Qty. (ea) 3	olution: Work Description transformer change out	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma	iterial - per un	it	Total \$13,728]
Heavy Load is controlling case 7 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts	I. 0 26.8%	Assumed So Qty. (ea) 3 4	olution: Work Description transformer change out transformer tap changes	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change	aterial - per un	it	Total \$13,728 \$6,240	
Heavy Load is controlling case 7 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts	I. 0 26.8% 96	Assumed So Qty. (ea) 3 4 2	olution: Work Description transformer change out transformer tap changes service change out	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma	iterial - per un iterial - per un	it lit	Total \$13,728 \$6,240 \$3,120	
Heavy Load is controlling case 7 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts	l. 26.8% 96 10.6%	Assumed So Qty. (ea) 3 4 2	olution: Work Description transformer change out transformer tap changes service change out Planning and Engineering	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor)	iterial - per un iterial - per un	it it	Total \$13,728 \$6,240 \$3,120 \$10,400	
Heavy Load is controlling case 7 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that	l. 26.8% 96 10.6%	Assumed So Qty. (ea) 3 4 2	olution: Work Description transformer change out transformer tap changes service change out Planning and Engineering	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to reso	aterial - per un aterial - per un olve low volta;	it it ge concerns:	Total \$13,728 \$6,240 \$3,120 \$10,400 \$33,488	
Heavy Load is controlling case 7 more transformers will be impacted Number of Transformers at or below 120 volts Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that nay have customers with low voltage at Service Entr	I. 26.8% 96 10.6% rance = 7	Assumed So Qty. (ea) 3 4 2	olution: Work Description transformer change out transformer tap changes service change out Planning and Engineering	Assumptions (8 hrs x 4 person crew) + 10% of labor for ma (4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to reso	iterial - per un iterial - per un olve low volta;	it it ge concerns:	Total \$13,728 \$6,240 \$3,120 \$10,400 \$33,488	

Stage 1 + Stage 2 + Stage 3 Modification Total = \$154,291

Hill 5Y194								
Changes for Stage 1		Node	Line	Load Losses	Swap Phases	Labor Material	AFUDC	Total
S01b	Add Fixed Cap	FP2433005_991160290		+1200 kVAr		\$3,071 \$3,61	.1 \$835	5 \$7,517 \$752 Engineering = 10% of Tota \$8,269 Total
	Add Fixed Cap	FP242209_991162198		+300 kVAr		\$3,071 \$5,209	\$1,076	\$9,356 <u>\$936</u> Engineering = 10% of Tota \$10,292
Relocate	Fixed Cap	FP242209_991162198		600 kVAR		\$6,141	\$798	\$6,940 694Engineering = 10% of Tota \$7,633
		No Phase changes for Stage 1						
						Metering Substatior End of Line	2	\$8,130 \$9,540 \$17,670
Stage 1 Costs to add LL Case is controlling	dress Potential Low V g case with HL as subs	Yoltages set	Assumed Solution:					
			Qty. (ea) Work Desc	cription	Assumptions			Total
Number of Transfor	mers at or below 120	volts 164	4 transforme	er change out	(8 hrs x 4 person cre	ew) + 10% of labor for material - per	unit	\$18,304
Estimated percent w	vith secondary Vd > 4	volts 26.8%	8 transforme	er tap changes	(4 hrs x 3 person cre	ew) per tap change		\$12,480
Estimated percent w	ith secondary Vd > 5	volts 10.6%	3 Service cha	nge out	(4 nrs x 2 person cre (Estimated to be 50	ew) + 50% of labor for material - per	unit	\$4,680
Light Load = Heavy Load = Light Load / Heavy L	27 82 oad =	10 00 0.33	<u>18</u>	in engineering	Tc	otal estimated cost to resolve low vo	ltage concerns	\$51,584
Estimated total num may have customers	ber of transformers t s with low voltage at !	hat Service Entrance = 12				_	Total Stage 1	<mark>= \$95,448</mark>
Changes for Stage 2		Nodo		Lood		Labor Material		Total
S02b	Add Sw Cap Add Sw Cap Add Sw Cap	FP2433005_991160290 FP242209_991162198 FP242209_991162198	+600 kVAr (+ 1200 kVAr + 600 kVAr (only 300 kVAR need	led)	\$19,725 \$36,40	96 \$4,678	3 \$60,809 Cost for all 3 units installe \$6,081 Engineering = 10% of Tota \$66,889 Total
Я	emove 600 kVAr fixe	d bank				\$3,071	\$399	\$3,470 Engineering = 10% of Tota \$3,817
	Credit fo	r Stage one fixed Capacitors at the	same locations					(\$26,194)
S02c	1 from to	Node MP_931350832 FP9999999_931350864	Conductor 1050 [12.5 1049 [12.5	500 AL3PUGCond 1000AL3PUGCond	Length (ft) 313.0	\$6,927 \$13,10	95 \$2,504	\$22,536 Urban Average Cost \$2,254 Engineering = 10% of Tota \$24,790 Total
	2 from	FP9999999 931350864	1097 [12.5	2/0ACS 3PSn 8xa]	119.0	\$5,265 \$5,39	94 \$1,332	2 \$11,991 Urban Medium Cost

1055 [12.5 477AAC3PLn 8xa]

to

FP269312_931350900

\$1,199 Engineering = 10% of Total

\$13,190 Total

Stage 2 Costs to address Potential Low Voltages

LL Case is controlling case with HL as subset.

12 less transformers will be impacted.

		Qty. (ea)	Work Description	Assumptions			Total	
Number of Transformers at or below 120 volts	0	-4	transformer change out	(8 hrs x 4 person crew) + 10% of labor for mat	erial - per ur	it	(\$18,304)	
Estimated percent with secondary Vd > 4 volts	26.8%	-8	transformer tap changes	(4 hrs x 3 person crew) per tap change			(\$12,480)	7
Number of Transformers from 120 to 121 volts	0	-2	service change out	(4 hrs x 2 person crew) + 50% of labor for mat	erial - per ur	it	(\$3,120)	
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			(\$15,600)	
Light Load = 2710				Total estimated cost to reso	lve low volta	ge concerns:	(\$49,504)	-
Heavy Load = 8200								
Light Load / Heavy Load = 0.33								
Estimated total number of transformers that								
may have customers with low voltage at Service Er	ntrance = 0							
				Sta	ge 2 Modific	ation Total=	\$32,988	
				Stage 1 + Stag	ge 2 Modific	ation Total =	\$128,436	
Changes for Stage 3								I •• •
		Work Desc	ription		No. of	Cost per	Total	Notes
					locations	location	40.554	
			End of 1ph Voltag	e control zone: Wireless radio link to substation	1	\$3,551	\$3,551	
				regulator: wireless radio link to the substation	U	\$3,304	ŞU	Sharad cast with EV107
			Bubstation: communications get	ar, links, central equipment, software to support	0.22	6210 562	670 100	and EV272
		CV	R, IVVO, FDIR, AIVII, DR, other si	mart grid services. Secure, real-time, always on.	0.33	\$210,503	\$70,188	allu 3f273
						Subtotal.	\$15,159	
Stage 3 Costs to address Potential Low Voltages								
LL Case is controlling case with HL as subset								
24 more transformers will be impact	ed							
24 more dunsionners will be impact	cu.	Assumed S	olution:					
		Oty, (ea)	Work Description	Assumptions		T	Total	7
Number of Transformers at or below 120 volts	355	8	transformer change out	(8 hrs x 4 person crew) + 10% of labor for mat	erial - per ur	it	\$36.608	-
Estimated percent with secondary Vd > 4 volts	26.8%	16	transformer tap changes	(4 hrs x 3 person crew) per tap change		-	\$24,960	-
Number of Transformers from 120 to 121 volts	65	2	service change out	(4 hrs x 2 person crew) + 50% of labor for mat	erial - per ur	it	\$3.120	-
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)		-	\$30.160	-
Light Load = 2710				Total estimated cost to reso	lve low volta	ge concerns:	\$94,848	
Heavy Load = 8200								
Light Load / Heavy Load = 0.33								
Estimated total number of transformers that				Star	ge 3 Modific	ation Total =	\$168,587	
may have customers with low voltage at Service Fi								
may have castomers with low voltage at service E	ntrance = 24							

Assumed Solution:

1111 312												
	Changes for Stage 1	Node		Line	Load	Losses	Swap Phases	Staff	hours	rate	total	
	FP264901_656800698	5Y273_656800259					C->A					Work Description
								Engineer	4	130	520	Engineering and Analysis
								Svc Line Worker	0	130	0	Install /Remove metering
								Notifier	2	100	200	Notify customers of outag
								SVC Crew (3 person				
								+ 2 flaggers)	3	520	1560	Make phase changes
								Total	9		\$2,280	
S01b	Remove Cap	FP23910	6_556790602	2			- 600 kVar	Engineer	4	130	520	Engineering & Admin
								SVC Crew (3 person				
								+ 2 flaggers)	4	520	2080	Remove Cap Bank
											2600	
									Metering			
									Substation		\$8.130	
									End of Line		\$9.540	
											\$17.670	_
											. ,	
Stage	e 1 Costs to address Potential Low Voltages											
LL Ca	ase is controlling case with HL as subset											
			Assumed S	olution:								_
			Qty. (ea)	Work D	escription		Assumptions				Total	
Num	ber of Transformers at or below 120 volts	463	8	transfor	mer change o	out	(8 hrs x 4 person o	crew) + 10% of labor for m	naterial - per u	unit	\$36,608	
Estim	nated percent with secondary Vd > 4 volts	26.8%	17	transfor	mer tap char	iges	(4 hrs x 3 person o	crew) per tap change			\$26,520	
Num	ber of Transformers from 120 to 121 volts	0	6	service of	hange out		(4 hrs x 2 person o	crew) + 50% of labor for m	naterial - per u	unit	\$9,360	
Estim	nated percent with secondary Vd > 5 volts	10.6%		Planning	and Enginee	ering	(Estimated to be 5	50% of Crew Labor)			\$33,020	
Light	Load = 2324							Total estimated cost to re	solve low volt	tage concern	s: \$105,508	
Heav	vy Load = 8080											
Light	load / Heavy Load = 0.29											

Estimated total number of transformers that

may have customers with low voltage at Service Entrance = 25

Total Stage 1 = \$128,058

Changes for Stage-2		Node			Load						
						Labor	Material	AFUDC	Total		
S02b	Add Sw Cap	FP239106_55	6790602		+ 600 kVAr	\$13,149	\$24,271	\$4,678	\$42,098	Cost are for both units installed	
	Add Sw Cap	FP268700			+ 600 kVAr			_	\$4,210	Engineering = 10% of Total	
									\$46,308	Total	
Stage 2 Costs to addres LL Case is controlling ca 16 less t	ss Potential Low Vo se with HL as subso transformers will be	oltages et. e impacted.		Assumed So Otv. (ea)	olution:	Assumptions			Total	1	
Number of Transforme	rs at or below 120	volts	0	-5	transformer change out	(8 hrs x 4 person crew) + 10% of labor for ma	terial - per ur	nit	(\$22.880)		
Estimated percent with	secondary Vd > 4	volts	26.8%	-11	transformer tap changes	(4 hrs x 3 person crew) per tap change			(\$17.160)		
Number of Transforme	rs from 120 to 121	volts	420	-4	service change out	(4 hrs x 2 person crew) + 50% of labor for ma	terial - per ur	nit	(\$6,240)		
Estimated percent with	secondary Vd > 5 v	volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)	teriai per ai	iii c	(\$21,060)		
Light Load =	232	24	1010/0			Total estimated cost to reso	olve low volta	ge concerns:	(\$67.340)	1	
Heavy Load =	808	80						8	(+,,-		
Light Load / Heavy Load Estimated total number may have customers wi	d = r of transformers th ith low voltage at S	0.29 nat ervice Entrance =	- 9			540	aa 7 Madifia	ation Total -	(\$21.022)		
						Sta	ige 2 iviodific	ation lotal =	(\$21,032)		
						Change 1 + Cha		ation Total -	¢107.020		
						Stage 1 + Sta	ige z iviodifica	ation Total =	\$107,026		
Changes for Stage 3											
enanges for stage s				Work Desc	ription		No. of	Cost per	Total	Notes	
							locations	location			
					End of 1ph voltage	control zone: wireless 'radio' link to substation	1	\$3.551	\$3.551		
					Line	regulator: wireless 'radio' link to the substation	0	\$3,364	\$0		
				S	ubstation: communications gea	r, links, central equipment, software to support				Shared cost w/ 5Y194	
				CVI	R, IVVO, FDIR, AMI, DR, other sm	art grid services. Secure, real-time, always on.	0.33	\$210,563	\$70,188	and 5Y197	
								Subtotal:	\$73,739		
Stage 3 Costs to addres LL Case is controlling ca 15 more t	ss Potential Low Vo use with HL as subso cransformers will bo	oltages et. e impacted.		Assumed So	olution:	Assumptions			Total	1	
Number of Transformo	rs at or helow 120	volts	420	ς τ	transformer change out	$(8 \text{ brs x 4 person crew}) \pm 10\% of labor for mask$	terial - ner ur	nit	\$77.880	1	
Estimated parcent with		*****	740		transformer thange out	to make person crew i + 10/0 or abor for ma	icenai - per ur	iic.	722,000	4	
ESTIMATED DET ETT WITT	secondary Vd > 4	volts	26.8%	10	transformer tan changes	(4 hrs x 3 person crew) per tap change			\$15,600		
Number of Transformer	secondary Vd > 4 rs from 120 to 121	volts	26.8%	10	transformer tap changes	(4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma	terial - ner ur	nit	\$15,600 \$3,120	-	
Number of Transformer	secondary Vd > 4 v rs from 120 to 121	volts volts	26.8% 43 10.6%	10 2	transformer tap changes service change out Planning and Engineering	(4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma	terial - per ur	nit	\$15,600 \$3,120 \$19,240		
Number of Transformer Estimated percent with Light Load = Heavy Load =	secondary Vd > 4 rs from 120 to 121 secondary Vd > 5 232 808	volts volts volts 24 80	26.8% 43 10.6%	10 2	transformer tap changes service change out Planning and Engineering	(4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to reso	terial - per ur olve low volta	nit ge concerns:	\$15,600 \$3,120 \$19,240 \$60,840		
Sumated percent with Number of Transforme Esgimated percent with Light Load = Heavy Load = Light Load / Heavy Load Estimated total number nay have customers wi	secondary Vd > 4 v rs from 120 to 121 secondary Vd > 5 v 232 808 d = r of transformers th ith low voltage at S	volts volts 24 80 0.29 nat ervice Entrance =	26.8% 43 10.6%	10 2	transformer tap changes service change out Planning and Engineering	(4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to reso	terial - per ur	iit ge concerns:	\$15,600 \$3,120 \$19,240 \$60,840		
Estimated percent with Number of Transforme Estimated percent with Light Load = Heavy Load = Light Load / Heavy Load Estimated total number may have customers wi	secondary Vd > 4) rs from 120 to 121 secondary Vd > 5) 233 808 d = r of transformers th ith low voltage at S	volts volts 24 80 0.29 nat iervice Entrance =	26.8% 43 10.6%	10 2	transformer tap changes service change out Planning and Engineering	(4 hrs x 3 person crew) per tap change (4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to reso Sta	terial - per ur blve low volta nge 3 Modific:	ge concerns:	\$15,600 \$3,120 \$19,240 \$60,840 \$134,579		
Changes for Stage 1		Node	Line	Load	Losses Swa	p Phases					
--	---	---	--------------------	--	--	---	---	--	--	---	--
S01a		No Line/Phase swaping need	ed				Engineer SVC Crew (3 person	4	130	520	Engineering & Admin
S01b	Remove Cap	FP219900_826650557		-900 kVar			+ 2 flaggers)	4	520	2080 2600	_Remove Cap Bank
								Metering			
								Substation		\$8,130	
								End of Line		\$9,540	
								-		\$17,670	-
Stage 1 Costs to addr	ress Potential Low V	oltages									
Heavy Load is control	lling case		Accumed	lution							
			Assumed Sc	Work Description	٨٠٠	motions				Total	1
Number of Transform	ners at or below 120	volts 158	11	transformer change ou	1t (8 h	rs x 4 person c	rew) + 10% of labor for m	aterial - per uni	t	\$50.336	1
Estimated percent wit	th secondary $Vd > 4$	volts 26.8%	24	transformer tap change	es (4 h	s x 3 person c	rew) per tap change	ateriar per uni		\$37,440	1
Number of Transform	ners from 120 to 121	volts 73	8	service change out	(4 h	rs x 2 person c	rew) + 50% of labor for m	aterial - per uni	t	\$12,480	
Estimated percent wit	th secondary Vd > 5	volts 10.6%	-	Planning and Engineeri	ing (Est	mated to be 5	0% of Crew Labor)			\$45,760	
										<i>+</i> ,	
Estimated total numb may have customers v	per of transformers t with low voltage at S	hat Service Entrance = 35				Т	otal estimated cost to re	solve low voltag	e concerns:	\$146,016	
Estimated total numb	per of transformers t with low voltage at S	hat ervice Entrance = 35				Т	otal estimated cost to re	solve low voltag	e concerns: Il Stage 1 =	\$146,016 \$166,286	
Estimated total numb may have customers of Changes for Stage 2	eer of transformers t with low voltage at S	hat ervice Entrance = 35 Node		Load		T	otal estimated cost to re-	r Material	e concerns: al Stage 1 =	\$146,016 \$166,286 Total	
Estimated total numb may have customers of Changes for Stage 2	er of transformers ti with low voltage at S	hat ervice Entrance = 35 Node		Load		T	otal estimated cost to re Labor \$6,575	r Material , \$10,393	e concerns: al Stage 1 = AFUDC \$2,121	\$146,016 \$166,286 Total \$19,088	Environment = 10% of Tet
Estimated total numb may have customers v Changes for Stage 2 S02b	eer of transformers ti with low voltage at S Add Sw Cap	hat ervice Entrance = 35 Node FP219900_826650557		Load +900 kVar	<u> </u>	Т	otal estimated cost to re Laboı \$6,575	r Material / \$10,393	e concerns: al Stage 1 = AFUDC \$2,121	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,007	_Engineering = 10% of Tot
Estimated total numb may have customers of Changes for Stage 2 S02b	eer of transformers ti with low voltage at S Add Sw Cap	hat ervice Entrance = 35 Node FP219900_826650557		Load +900 kVar		T	otal estimated cost to re Laboı \$6,575	r Material x \$10,393	e concerns: al Stage 1 = AFUDC \$2,121	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997	_ Engineering = 10% of Tot
Estimated total numb may have customers of Changes for Stage 2 S02b	eer of transformers ti with low voltage at S Add Sw Cap	hat ervice Entrance = 35 Node FP219900_826650557 Node		Load +900 kVar Conductor	Len	7 	otal estimated cost to re Laboı \$6,575	r Material \$10,393	e concerns: al Stage 1 = AFUDC \$2,121	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997	_Engineering = 10% of Tot
Estimated total numb may have customers of Changes for Stage 2 S02b S02c	eer of transformers ti with low voltage at S Add Sw Cap 1 from	hat ervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540		Load +900 kVar Conductor 1083 [12.5 4/0AAC3PN	<u>Len</u>	7 <u>;th (ft)</u>)7.0	otal estimated cost to re Laboı \$6,575 \$26,854	r Material / \$10,393 \$27,515	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165	_Engineering = 10% of Tot Urban Average Cost
Estimated total numb may have customers of Changes for Stage 2 S02b S02c	er of transformers ti with low voltage at S Add Sw Cap 1 from to	hat ervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538		Load +900 kVar Conductor 1083 [12.5 4/0AAC3PN 1055 [12.5 477AAC3P]	<u>لدور المحمد المحم المحمد المحمد المحمد </u>	t th (ft) 17.0	otal estimated cost to re Laboı \$6,575 \$26,854	r Material / \$10,393 \$27,515	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot
Estimated total numb may have customers of Changes for Stage 2 S02b S02c	er of transformers to with low voltage at S Add Sw Cap 1 from to	hat ervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538		Load +900 kVar Conductor 1083 [12.5 4/0AAC3PI 1055 [12.5 477AAC3PI	<u>Len</u> Mn 8xa] 6	T <u>sth (ft)</u> 77.0	otal estimated cost to re Laboı \$6,575 \$26,854	r Material / \$10,393 \$27,515	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117 \$67,282	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total
Estimated total numb may have customers of Changes for Stage 2 S02b S02c	er of transformers ti with low voltage at S Add Sw Cap 1 from to	hat service Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538		Load +900 kVar Conductor 1083 [12.5 4/0AAC3PN 1055 [12.5 477AAC3PI	<u>Len</u> In 8xa] 6 Ln 8xa]	7 <u>sth (ft)</u> 07.0	otal estimated cost to re Labou \$6,575 \$26,854	r Material / \$10,393 \$27,515	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117 \$67,282	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total
Estimated total numb may have customers of Changes for Stage 2 S02b S02c S02e	eer of transformers ti with low voltage at S Add Sw Cap 1 from to Line Regulator	hat ervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538 FP160001_274180881 5	Y356_27418032	Load +900 kVar Conductor 1083 [12.5 4/0AAC3PN 1055 [12.5 477AAC3PI 8-SP1 [Id = 602	<u>Len</u> In 8xa] 6 Ln 8xa]	T <u>i</u>th (ft) 07.0 6 step	otal estimated cost to re Laboi \$6,575 \$26,854 \$11,110	solve low voltag Tota r Material / \$10,393 \$27,515 \$47,553	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796 - \$7,333	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117 \$67,282 \$65,995	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total Per Block Estimate
Estimated total numb may have customers of Changes for Stage 2 S02b S02c S02e	eer of transformers ti with low voltage at S Add Sw Cap 1 from to Line Regulator	hat ervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538 FP160001_274180881 5	; Y356_27418032	Load +900 kVar Conductor 1083 [12.5 4/0AAC3PI 1055 [12.5 477AAC3PI 8-SP1 [Id = 602 3x180 kVA	<u>Len</u> /In 8xa] 6 Ln 8xa] 2] 328 A 3Ph 1	T <u>rth (ft)</u> 17.0 6 step	otal estimated cost to re Labon \$6,575 \$26,854 \$11,110	r Material / \$10,393 \$27,515 \$47,553	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796 \$7,333	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117 \$67,282 \$65,995 \$6,599 \$72,594	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total Per Block Estimate Engineering = 10% of tota
Estimated total numb may have customers of Changes for Stage 2 S02b S02c S02e	eer of transformers ti with low voltage at S Add Sw Cap 1 from to Line Regulator	hat ervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538 FP160001_274180881 5	Y356_27418032	Load +900 kVar 0083 [12.5 4/0AAC3PN 1055 [12.5 477AAC3PI 8-SP1 [Id = 602 3x180 kVA	<u>Len</u> In 8xa] 6 Ln 8xa]	T ;th (ft))7.0 6 step	otal estimated cost to re Laboi \$6,575 \$26,854 \$11,110	r Material / \$10,393 \$27,515 \$47,553 Metering	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796 \$7,333 -	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117 \$67,282 \$65,995 \$6,599 \$72,594	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total Per Block Estimate Engineering = 10% of tota
Estimated total numb may have customers of Changes for Stage 2 S02b S02c S02e	eer of transformers ti with low voltage at S Add Sw Cap 1 from to Line Regulator	hat jervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538 FP160001_274180881 5	5Y356_27418032	Load +900 kVar Conductor 1083 [12.5 4/0AAC3PN 1055 [12.5 477AAC3PI 8-SP1 [Id = 602 3x180 kVA	<u>Len</u> In 8xa] 6 Ln 8xa] 2] 328 A 3Ph 1	T g th (ft) 07.0 6 step	otal estimated cost to re Laboı \$6,575 \$26,854 \$11,110	r Material / \$10,393 \$27,515 \$47,553 Metering Regulator	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796 - \$7,333	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$6,117 \$67,282 \$65,995 \$6,599 \$72,594 \$16,000	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total Per Block Estimate Engineering = 10% of tota
Estimated total numb may have customers of Changes for Stage 2 S02b S02c S02e	er of transformers ti with low voltage at S Add Sw Cap 1 from to	hat jervice Entrance = 35 Node FP219900_826650557 Node FP178002_640300540 FPUNK_640300538 FP160001_274180881 5	5Y356_27418032	Load +900 kVar Conductor 1083 [12.5 4/0AAC3Ph 1055 [12.5 477AAC3Ph 8-SP1 [Id = 602 3x180 kVA	/In 8xa] <u>Len</u> In 8xa] 6 Ln 8xa] ?] 328 A 3Ph 1	T <u>sth (ft)</u> 17.0 6 step	otal estimated cost to re Laboı \$6,575 \$26,854 \$11,110	r Material , \$10,393 \$27,515 \$47,553 Metering Regulator End of Line	e concerns: al Stage 1 = AFUDC \$2,121 \$6,796 \$7,333	\$146,016 \$166,286 Total \$19,088 \$1,909 \$20,997 \$61,165 \$61,165 \$61,17 \$67,282 \$65,995 \$65,9	Engineering = 10% of Tot Urban Average Cost Engineering = 10% of Tot Total Per Block Estimate Engineering = 10% of tota

Stage 2 Costs to address Potential Low Voltages

LL Case is controlling case with HL as subset.

- 29)	less	trans	form	ers۱	will	be i	impac	ted	
------	---	------	-------	------	------	------	------	-------	-----	--

Number of Transformers at or below 120 volts 0									
Estimated percent with secondary Vd > 4 volts 2									
Number of Transformers from 120 to 121 volts									
Estimated percent with secondary Vd > 5 volts 1									
Light Load =	2496								
Heavy Load =	6800								
Light Load / Heavy Load = 0.37									
Estimated total number of transformers that									
may have customers with low voltage at Service Entrance =									

Assumed	Solution:
---------	-----------

-9 transformer change out (8 hrs x 4 person crew) + 10% of labor for material - per unit (\$41,184 -20 transformer tap changes (4 hrs x 3 person crew) per tap change (\$31,200 -7 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit (\$10,920 P Description of the service of tabor for material - per unit (\$10,920	Qty. (ea)	Work Description	Assumptions	Total
-20 transformer tap changes (4 hrs x 3 person crew) per tap change (\$31,200 -7 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit (\$10,920 -7 benetic for the bar power for the b	-9	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	(\$41,184)
-7 service change out (4 hrs x 2 person crew) + 50% of labor for material - per unit (\$10,920	-20	transformer tap changes	(4 hrs x 3 person crew) per tap change	(\$31,200)
Plansie and Excise size (Extincted to be E00(of Counterback))	-7	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	(\$10,920)
Planning and Engineering (Estimated to be 50% of Crew Labor) (\$37,960		Planning and Engineering	(Estimated to be 50% of Crew Labor)	(\$37,960)

Total estimated cost to resolve low voltage concerns: (\$121,264)

Stage 2 Costs to address Potential Low Voltages

The number of impacted transformers is approximately the same as stage 1. No additional costs

6

Stage 2 Modification Total = \$65,149

Stage 1 + Stage 2 Modification Total = \$231,435

Changes for Stage 3

Work Description	No. of	Cost per	Total	Notes
	locations	location		
End of 1ph voltage control zone: wireless 'radio' link to substation	2	\$3,551	\$7,102	
Line regulator: wireless 'radio' link to the substation	1	\$3,364	\$3,364	
Substation: communications gear, links, central equipment, software to support				
CVR, IVVO, FDIR, AMI, DR, other smart grid services. Secure, real-time, always on.	1	\$210,563	\$210,563	
		Cubtotal	¢221.020	

Subtotal: \$221,029

Stage 3 Costs to address Potential Low Voltages

LL Case is controlling case with HL as subset.

17	more	transformers will be impacted.
----	------	--------------------------------

			Assumed S	olution:		
			Qty. (ea)	Work Description	Assumptions	Total
Number of Transformers at or b	elow 120 volts	232	6	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$27,456
Estimated percent with seconda	ry Vd > 4 volts	26.8%	11	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$17,160
Number of Transformers from 1	20 to 121 volts	244	2	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$3,120
Estimated percent with seconda	ry Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$22,100
Light Load =	2496				Total estimated cost to resolve low voltage concerns:	\$69,836
Heavy Load =	6800					
Light Load / Heavy Load =	0.37					
Estimated total number of trans	formers that				Stage 3 Modification Total =	\$290,865
may have customers with low vo	oltage at Service Entrance	= 23				
					Stage 1 + Stage 2 + Stage 3 Modification Total =	\$522,300

Changes for Stage 1	Node		Line	Load	Losses	Swap Phases	Three - 1 Phase swap	р			
							Engineer	12	\$130	\$1,560	Engineering and Analysis
S01a	FP150014_	_154241218	5Y444_154240243			A -> C	Svc Line Worker	0	\$130	\$0	Install /Remove metering
	FP157000_	_154241204	5Y444_154240477			A -> C	Notifier	6	\$100	\$600	Notify customers of outag
							SVC Crew (4 person				
	FP156080_	_154241134	5Y444_154240377			A -> C	+ 2 flaggers)	9	\$520	\$4,680	Make phase changes
							Total	27		\$6,840	
	50007005			1000 11/	600 L V						
S01b Reduce Cap	FP237905_	_419030342		1200 kVA	\r -> 600 kV	Ar .	Labor	Material	AFUDC	Total	
							\$8,000	\$500	\$0	\$8,500	E 1 1 100/ (E 1
										\$850	_Engineering = 10% of Tota
										\$9,350	
								Metering			
								Substation		\$8 130	
								End of Line		\$9.540	
							-	Life of Life		\$9,340	-
										\$17,070	
Stage 1 Costs to address Potential Low	Voltages										
For Stage 1 LL Case is controlling case w											
For stage 1 LL case is controlling case w	ALL AS SUBSEL										
			Assumed Solution:								
			Assumed Solution: Qty. (ea) Work De	scription		Assumptions				Total	7
Number of Transformers at or below 12	20 volts	43	Assumed Solution: Qty. (ea) Work De 4 transfore	scription ner change	out	Assumptions (8 hrs x 4 person c	rew) + 10% of labor for ma	iterial - per u	nit	Total \$18,304	-
Number of Transformers at or below 12 Estimated percent with secondary Vd >	20 volts 4 volts	43 26.8%	Assumed Solution: Qty. (ea) Work De 4 transform 8 transform	scription ner change ner tap cha	out	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c	rew) + 10% of labor for ma rew) per tap change	iterial - per u	nit	Total \$18,304 \$12,480	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1	20 volts 4 volts 21 volts	43 26.8% 406	Assumed Solution: Qty. (ea) Work De 4 transform 8 transform 3 service c	scription ner change ner tap cha hange out	out nges	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma	aterial - per u	nit	Total \$18,304 \$12,480 \$4,680	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1 Estimated percent with secondary Vd >	20 volts 4 volts 21 volts 5 volts	43 26.8% 406 10.6%	Assumed Solution: Qty. (ea) Work De 4 transform 8 transform 3 service of Planning	scription ner change ner tap cha hange out and Engine	out nges ering	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c (5 timated to be 5	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma 0% of Crew Labor)	aterial - per u aterial - per u	nit	Total \$18,304 \$12,480 \$4,680 \$16,120	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1 Estimated percent with secondary Vd > Light Load =	20 volts • 4 volts 21 volts • 5 volts 3314	43 26.8% 406 10.6%	Assumed Solution: Qty. (ea) Work De 4 transform 8 transform 3 service c Planning	ner change ner tap cha hange out and Engine	out nges ering	Assumptions (8 hrs x 4 person o (4 hrs x 3 person o (4 hrs x 2 person o (Estimated to be 5	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma 0% of Crew Labor) Total estimated cost to resc	aterial - per un aterial - per un olve low volta	nit nit ge concerns:	Total \$18,304 \$12,480 \$4,680 \$16,120 \$51,584	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1 Estimated percent with secondary Vd > Light Load = 1 Heavy Load = 1	20 volts • 4 volts 21 volts • 5 volts 3314 0600	43 26.8% 406 10.6%	Assumed Solution: Qty. (ea) Work De 4 transfor 8 transfor 3 service c Planning	scription ner change ner tap cha hange out and Engine	out nges ering	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c (Estimated to be 5	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma 0% of Crew Labor) Fotal estimated cost to reso	iterial - per u iterial - per u olve low volta	nit nit ge concerns	Total \$18,304 \$12,480 \$4,680 \$16,120 \$51,584	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1 Estimated percent with secondary Vd > Light Load = 1 Heavy Load = 1 Light Load / Heavy Load =	20 volts 4 volts 21 volts 5 volts 3314 2600 0.31	43 26.8% 406 10.6%	Assumed Solution: Qty. (ea) Work De 4 transforr 8 transforr 3 service c Planning	escription ner change ner tap cha hange out and Engine	out nges ering	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c (Estimated to be 5	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma 0% of Crew Labor) Fotal estimated cost to reso	iterial - per un iterial - per un olve low volta	nit nit ge concerns	Total \$18,304 \$12,480 \$4,680 \$16,120 \$51,584	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1 Estimated percent with secondary Vd > Light Load = 1 Heavy Load = 1 Light Load / Heavy Load = Estimated total number of transformer	20 volts 4 volts 21 volts 5 volts 3314 0600 0.31 s that	43 26.8% 406 10.6%	Assumed Solution: Qty. (ea) Work De 4 transforr 8 transforr 3 service c Planning	escription mer change mer tap cha hange out and Engine	out nges ering	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c (Estimated to be 5	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma 0% of Crew Labor) Total estimated cost to reso	aterial - per un aterial - per un olve low volta	nit nit ge concerns:	Total \$18,304 \$12,480 \$4,680 \$16,120 \$51,584	
Number of Transformers at or below 12 Estimated percent with secondary Vd > Number of Transformers from 120 to 1 Estimated percent with secondary Vd > Light Load = 1 Light Load / Heavy Load = Estimated total number of transformer may have customers with low voltage a	20 volts 4 volts 21 volts 5 volts 3314 0600 0.31 s that t Service Entrany	43 26.8% 406 10.6%	Assumed Solution: Qty. (ea) Work De 4 transforr 8 transforr 3 service c Planning	escription mer change mer tap cha hange out and Engine	out nges ering	Assumptions (8 hrs x 4 person c (4 hrs x 3 person c (4 hrs x 2 person c (Estimated to be 5	rew) + 10% of labor for ma rew) per tap change rew) + 50% of labor for ma 0% of Crew Labor) rotal estimated cost to reso	aterial - per un aterial - per un olve low volta	nit nit ge concerns:	Total \$18,304 \$12,480 \$4,680 \$16,120 \$51,584	

Changes for Stage 2		Node			Load							
S02b	Add Sw Cap Add Sw Cap	FP232945 FP147243			+ 600 kVAr + 600 kVAr			Labor \$13,149	Material \$24,271	AFUDC \$4,678	Total \$42,098 \$4,210 \$46,308	Cost are for both units installed _Engineering = 10% of Total Total
\$02c	1 from to	Node FP158001_8063 FP158002_1542	30559 241123		Conductor 1256 [12.5 #6 CU 3PSr 17 [12.5 1/0ACS3PSn 8	Length (ft) 8xa] 106.0 xa] 106.0	U	\$21 sed 4/0 Easy cost	\$21	\$5	\$47 \$31,195 \$3,119	Per foot cost - Urban Average Labor, Material, AFUDC, Total Engineering = 10% of total
	2 from to	FP158002_1542 FP158104_1542	241123 241172		938 [12.5 #2 ACS 3PSn 17 [12.5 1/0ACS3PSn 8	8xa] 562.0 xa]					\$34,314	Total
					Total Reconduct	or = 668.0						
S02e	Add Regulator	FP141001_3350	00763 5Y444	4_103103880	2-SP1 [Id = 602	2] 328 A 3Ph 16 step 3	3x180 kVA	\$11,110	\$47,553	\$7,333	\$65,995 \$6,599 \$72,594	Per Block Estimate Engineering = 10% of total
									Metering Regulator End of Line		\$16,000 \$9,540 \$25 540	_
								St Stage 1 + Sta	age 2 Modific age 2 Modifica	ation Total= ation Total =	\$178,757 <mark>\$264,201</mark>	
Changes for Stage 3											-	
				Work Descri	ption				No. of locations	Cost per location	Total	Notes
					End of 1pł	voltage control zone: v	vireless 'radio	o' link to substation	2	\$3,551	\$7,102	
						Line regulator: wirel	ess 'radio' lir	k to the substation	1	\$3,364	\$3,364	
				Su	bstation: communicat	ions gear, links, central	equipment, s	oftware to support				
				CVR	, IVVO, FDIR, AMI, DR,	other smart grid service	s. Secure, re	al-time, always on.	1	\$210,563	\$210,563	
Stage 3 Costs to addre Heavy Load is controllir 16 more t	ss Potential Low Vo gg case for Stage 3. ransformers will be	ltages impacted.		Assumed So	lution: Work Description	Assumption	s				Total	7
Number of Transforme	rs at or below 120 v	olts	57	5	transformer change ou	it (8 hrs x 4 pe	rson crew) +	10% of labor for ma	aterial - per un	it	\$22,880	1
Estimated percent with	secondary Vd > 4 v	olts	26.8%	11	transformer tap chang	es (4 hrs x 3 pe	rson crew) p	er tap change			\$17,160	
Number of Transforme	rs from 120 to 121 v	olts	251	4	service change out	(4 hrs x 2 pe	rson crew) +	50% of labor for ma	nterial - per un	it	\$6,240	4
Estimated percent with Estimated total number	secondary Vd > 5 vo r of transformers that	olts at	10.6%		Planning and Engineer	ing (Estimated t	o be 50% of Total e	Crew Labor) stimated cost to res	olve low volta	ge concerns:	\$21,060 \$67,340	
may have customers w	ith low voltage at Se	rvice Entrance =	28					Sta	age 3 Modifica	ation Total =	\$288,369	

nnyside 5Y313									
Changes for Stage 1	Node	line	heol						Work Description
changes for stage 1	Node	Line	LOBO						Work Description
5Y313 S01b 1. Reduce Cap	FP251510_823200918		1200 kVAr> 900 kVA	ſ	Labor \$8,000	Material \$500	AFUDC \$0	Total \$8,500 \$850 \$9,350	Engineering = 10% of Total
						Metering Substation End of Line	_	\$8,130 \$9,540 \$17,670	
Stage 1 Costs to address Potential Low Light Load is Controlling Case.	v Voltages	Assumed Solution:						ţ1,jore	
		Qty. (ea) Wo	rk Description	Assumptions				Total]
Number of Transformers at or below 1	20 volts 21	3 trar	nsformer change out	(8 hrs x 4 person crew) + 10%	6 of labor for m	aterial - per unit		\$13,728	
Estimated percent with secondary Vd >	> 4 volts 26.8%	4 trar	nsformer tap changes	(4 hrs x 3 person crew) per ta	ap change	•		\$6,240	
Number of Transformers from 120 to	121 volts 198	2 serv	vice change out	(4 hrs x 2 person crew) + 50%	6 of labor for m	aterial - per unit		\$3,120	
Estimated percent with secondary Vd >	> 5 volts 10.6%	Plar	nning and Engineering	(Estimated to be 50% of Crev	v Labor)			\$10,400	
Light Load = 1583		,		Total estir	nated cost to re	esolve low voltage	e concerns:	\$33,488	-
Light Load / Heavy Load = Estimated total number of transformer may have customers with low voltage	0.35 rs that at Service Entrance = 7					Tota	Il Stage 1 =	\$60,508	
Changes for Stage 2	Node	Line	Load						
5Y313 S02b 1 New Switcher	FP251902_823200877		+SW 600 kVAr		Labor \$6,575 \$0.13	Material \$12,136	AFUDC \$2,339 	Total \$21,049 \$2,105 \$23,154	Engineering = 10% of Total
2 New Switcher	FP269202_42390692		+SW 300 kVAr		\$6,575	\$5,209	\$1,532 -	\$13,316 \$1,332 \$14,647	Engineering = 10% of Total
Stage 2 Costs to address Potential Lov The number of transformer	v Voltages rs is basically the same as Stage 1 - no add	itional costs				Stage 2 Modifica	ation Total=	\$37,801	
					Stage 1 + S	Stage 2 Modificat	tion Total =	\$98,309	

Changes for Stage 3

	-						
	Work Description	n		No. of	Cost per	Total	Notes
				locations	location		
		End of 1ph voltage c	ontrol zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
		Line re	gulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
	S	ubstation: communications gear,	links, central equipment, software to support				
	CVI	R, IVVO, FDIR, AMI, DR, other sma	rt grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	Shared cost with 5Y317
					Subtotal:	\$108,833	
Stage 3 Costs to address Potential Low Voltages							
Light Load is Controlling Case.							
8 more transformers will be impacted.							
	Assumed Solution	on:					_
	Qty. (ea)	Work Description	Assumptions			Total	
Number of Transformers at or below 120 volts 209	3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for ma	aterial - per uni	t	\$13,728	
Estimated percent with secondary Vd > 4 volts 26.8%	5	transformer tap changes	(4 hrs x 3 person crew) per tap change			\$7,800	
Number of Transformers from 120 to 121 volts 18	1	service change out	(4 hrs x 2 person crew) + 50% of labor for ma	aterial - per uni	t	\$1,560	
Estimated percent with secondary Vd > 5 volts 10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			\$10,660	
Light Load = 1583			Total estimated cost to re	solve low volta	ge concerns:	\$33,748	-
Heavy Load = 4500							
Light Load / Heavy Load = 0.35							
Estimated total number of transformers that							
may have customers with low voltage at Service Entrance = 15				Stage 3 Modifie	ation Total=	\$142,581	
			Stage 1 + Stage 2 + S	tage 3 Modific	ation Total =	\$240,890	

changesi	for Stage 1	Node	Line	Load	Swap Phases					
	-				-	Two 1-phase change	s (tap and trans	former)		
5Y317	S01a	FP257504_823200895	5Y317_823200406		B>A	Staff	hours	rate	total	Work Description
			5Y317_823200313		ABC>ACB	Engineer	6	\$130	\$780	Engineering and Analysis
				TR_257501_823200453	A>B	Svc Line Worker	0	\$130	\$0	Install /Remove metering
						Notifier	3	\$100	\$300	Notify customers of outage
						SVC Crew (3 person				
						+ 2 flaggers)	6	\$520	\$3,120	Make phase changes
						Total	15		\$4,200	-
						One - Three Phase s	wap			
						Engineer	4	\$130	\$520	Engineering and Analysis
						Svc Line Worker	0	\$130	\$0	Install /Remove metering
						Notifier	4	\$100	\$400	Notify customers of outage
						SVC Crew (4 person				
						+ 2 flaggers)	6	\$650	\$3,900	Make phase changes
						Total	14		\$4,820	
							Metering			
							Substation		\$8,130	-
							End of Line		\$9,540	
									\$17,670	total metering
Stage 1 C	osts to address Pote	ntial Low Voltages								
	The number of trai	insformers with potentially low second	ndary voltage = 0				То	otal Stage 1 =	\$26,690	
Changes	for Stage 2	Node	Line	Load		Labor	Material		Total	
	sob New Sv	witched EP256511 937580500		+SW 600 kVAr		\$6 575	\$12 136	\$2 339	\$21.049	
enanges	3025 110.00	Actied 11250511_557500505				<i>40,373</i>	<i>412,130</i>	<i>42,335</i>	\$2 105	Engineering = 10% of Total
enungeo								-	\$23,154	
enanges (
Stage 2 Co	osts to address Pote The number of trai	ntial Low Voltages	ndary voltage = 0							
Stage 2 Co	osts to address Pote The number of trai	Intial Low Voltages Insformers with potentially low seco	ndary voltage = 0				Store 2 Modifi	ication Total-	\$73 154	
Stage 2 C	osts to address Pote The number of trai	Intial Low Voltages Insformers with potentially low seco	ndary voltage = 0				Stage 2 Modifi	ication Total=	\$23,154	

Changes for Stage 3

		Work Description	on		No. of	Cost per	Total	Notes
					locations	location		
			End of 1ph voltage	e control zone: wireless 'radio' link to substation	2	\$3,551	\$7,102	
			Line	regulator: wireless 'radio' link to the substation	1	\$3,364	\$3,364	
		S	ubstation: communications gea	ar, links, central equipment, software to support				
		CV	R, IVVO, FDIR, AMI, DR, other si	mart grid services. Secure, real-time, always on.	0.5	\$210,563	\$105,282	Shared cost with 5Y313
						Subtotal:	\$115,748	
Stage 3 Costs to address Potential Low Voltages Light Load is Controlling Case.								
9 more transformers will be impacted.								
		Assumed Solution	on:					
		Qty. (ea)	Work Description	Assumptions			Total	1
Number of Transformers at or below 120 volts	135	3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for ma	aterial - per uni	t	\$13,728	
Estimated percent with secondary Vd > 4 volts	26.8%	6	transformer tap changes	(4 hrs x 3 person crew) per tap change			\$9,360	
Number of Transformers from 120 to 121 volts	19	2	service change out	(4 hrs x 2 person crew) + 50% of labor for ma	aterial - per uni	t	\$3,120	
Estimated percent with secondary Vd > 5 volts	10.6%		Planning and Engineering	(Estimated to be 50% of Crew Labor)			\$11,960	
Light Load = 1279				Total estimated cost to re	solve low volta	ge concerns:	\$38,168	_
Heavy Load = 4000								
Light Load / Heavy Load = 0.32								
Estimated total number of transformers that								
may have customers with low voltage at Service Entrance =	9				Stage 3 Modifie	cation Total=	\$153,916	
				Stage 1 + Stage 2 + S	tage 3 Modifica	ation Total =	\$203,759	

Changes for	r Stage 1	Node		Line		Load	Losses	Swap Phases					
									One - Three Phase sw	vap			
5Y351 9	S01a	FP274501_564110792		5Y351_564110009	9			BAC> ABC	Engineer	4	\$130	\$520	Engineering and Analysis
									Svc Line Worker	0	\$130	\$0	Install /Remove metering
									Notifier	4	\$100	\$400	Notify customers of outage
									SVC Crew (4 person				
									+ 2 flaggers)	6	\$650	\$3,900	Make phase changes
									Total	14		\$4 <i>,</i> 820	
57351 (S01b Reduce Can	FP227502 728880503		F	Fixed	600 kVAr	> 300 kV/	r	Labor	Material	AFUDC	Total	
0.002		1122,502_,20000505			, incu				\$8,000	\$500	\$0	\$8 500	
									\$0,000	çsoo	ψŪ	\$850	Engineering = 10% of Total
											-	\$9.350	
										Metering			
										Substation		\$8,130	
										End of Line	-	\$9,540	
												\$17,670	total metering
Heavy Load	is Controlling Case.	Low voltages											
			ĺ	Assumed Solution:	: Work Desc	rintion		Assumptions				Total	7
Number of	Transformers at or held	120 volts 19		2 t	transforme	er change	out	(8 hrs x 4 nerson (rew) + 10% of labor for m	aterial - ner uni	+	\$9.152	
Estimated n	percent with secondary	Vd > 4 volts 26 8%			transforme	er tan chai	nges	(4 hrs x 3 person o	rew) ner tan change	ateriar per an	c	\$4 680	
Number of	Transformers from 120	to 121 volts 20		1 9	convice cha		.9	(+ .,	
Estimated n	percent with secondary				SELVILE LU/	ange out		(4 hrs x 2 person c	rew) + 50% of labor for m	aterial - ner uni	т	\$1 560	
Estimated to	servering men secondary	Vd > 5 volts 10.6%		F	Planning ar	ange out nd Engine	ering	(4 hrs x 2 person of (Estimated to be 5	crew) + 50% of labor for m	aterial - per uni	t	\$1,560 \$7,020	_
may have ci	total number of transfo	Vd > 5 volts 10.6% rmers that	5	F	Planning ar	ange out nd Engine	ering	(4 hrs x 2 person o (Estimated to be 5	crew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	aterial - per uni esolve low volta	t ge concerns:	\$1,560 \$7,020 \$22,412	_
may have cı	total number of transfo sustomers with low volt	Vd > 5 volts 10.6% rmers that age at Service Entrance =	5	F	Planning ar	ange out nd Engine	ering	(4 hrs x 2 person of (Estimated to be 5	crew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	aterial - per uni esolve low volta	t ge concerns:	\$1,560 \$7,020 \$22,412	
may have ci	total number of transfo sustomers with low volt	Vd > 5 volts 10.6% rmers that age at Service Entrance =	5	F	Planning ar	nd Engine	ering	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re	aterial - per uni esolve low volta To	t ge concerns: tal Stage 1 =	\$1,560 \$7,020 \$22,412 \$54,252	
may have ci Changes for	total number of transfo ustomers with low volt r Stage 2	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node	5	1	Planning ar	ange out nd Engine	ering	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both c	aterial - per uni esolve low volta To apacitor banks	t ge concerns: tal Stage 1 =	\$1,560 \$7,020 \$22,412 \$54,252	
may have ci	total number of transfo ustomers with low volt r Stage 2	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node	5	1	Planning ar	nd Engine	ering	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both c Labor	aterial - per uni esolve low volta To apacitor banks Material	t ge concerns: tal Stage 1 = AFUDC	\$1,560 \$7,020 \$22,412 \$54,252 Total	
May have ci Changes for 5Y351	total number of transfo ustomers with low volt r Stage 2 S02b Add Sw Ca	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491	5	1	Switched	nd Engined	ering	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149	aterial - per uni esolve low volta To apacitor banks Material \$24,271	t ge concerns: tal Stage 1 = AFUDC \$4,678	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098	
Changes for 5Y351	total number of transfo ustomers with low volt r Stage 2 S02b Add Sw Ca Add Sw Ca	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270	5	1	Switched Switched	nd Engine 600 kVA 600 kVA	ering r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both c Labor \$13,149	aterial - per uni esolve low volta To apacitor banks Material \$24,271	t ge concerns: tal Stage 1 = AFUDC \$4,678	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210	Engineering = 10% of Total
Changes for	total number of transfo ustomers with low volt r Stage 2 S02b Add Sw Ca Add Sw Ca	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270	5	1	Switched Switched	600 kVA	ering r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149 \$0.13	aterial - per uni esolve low volta To' apacitor banks Material \$24,271	t ge concerns: tal Stage 1 = AFUDC \$4,678	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308	Engineering = 10% of Total
Changes for 5Y351	otal number of transfo ustomers with low volt r Stage 2 S02b Add Sw Ca Add Sw Ca	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270 ter E0226205_728882270	5	261 720000160 65	Switched Switched	600 kVA	ring r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149 \$0.13	aterial - per uni esolve low volta To apacitor banks Material \$24,271	t ge concerns: tal Stage 1 = AFUDC \$4,678	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308	Engineering = 10% of Total
Changes for 5Y351	total number of transfo ustomers with low volt r Stage 2 S02b Add Sw Ca Add Sw Ca Add Regula	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270 tor FP226205_728880766 _219 A 30h 16 step 3180 kVA	5	351_728880260-SF	Switched Switched P1 855 1	600 kVA	ering r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149 \$0.13 \$11,110	aterial - per uni esolve low volta To apacitor banks Material \$24,271 \$40,480	t ge concerns: tal Stage 1 = AFUDC \$4,678 \$6,449	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308 \$58,038 \$58,038	Engineering = 10% of Total
May have ci Changes for 5Y351	r Stage 2 S02b Add Sw Ca Add Sw Ca Add Regula [Id = 63]	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270 tor FP226205_728880766 219 A 3Ph 16 step 3x180 kVA	5	351_728880260-SF Flow (kVA) =	Switched Switched Switched P1 855.1	600 kVA	r r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both c Labor \$13,149 \$0.13 \$11,110	aterial - per uni esolve low volta To apacitor banks Material \$24,271 \$40,480	t ge concerns: tal Stage 1 = AFUDC \$4,678 \$6,449	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308 \$58,038 \$5,804 \$63,842	Engineering = 10% of Total Engineering = 10% of Total
Changes for 5Y351	r Stage 2 SO2b Add Sw Ca Add Sw Ca Add Sw Ca Add Sw Ca (Id = 63)	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270 tor FP226205_728880766 219 A 3Ph 16 step 3x180 kVA	5	351_728880260-SF Flow (kVA) =	Switched Switched Switched P1 855.1	600 kVA 600 kVA	r r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149 \$0.13 \$11,110	aterial - per uni esolve low volta To apacitor banks Material \$24,271 \$40,480	t ge concerns: tal Stage 1 = AFUDC \$4,678 \$6,449	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308 \$58,038 \$5,804 \$63,842	Engineering = 10% of Total
Changes for 5Y351	r Stage 2 SO2b Add Sw Ca Add Sw Ca Add Regula [Id = 63]	Vd > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270 tor FP226205_728880766 219 A 3Ph 16 step 3x180 kVA	5	351_728880260-SF Flow (kVA) =	Switched Switched Switched P1 855.1	600 kVA 600 kVA	ering r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149 \$0.13 \$11,110	aterial - per uni esolve low volta To apacitor banks Material \$24,271 \$40,480 Metering Desulator	t ge concerns: tal Stage 1 = AFUDC \$4,678 \$6,449	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308 \$58,038 \$5,804 \$63,842	Engineering = 10% of Total
Changes for 5Y351	r Stage 2 S02b Add Sw Ca Add Sw Ca Add Regula [Id = 63]	VG > 5 volts 10.6% rmers that age at Service Entrance = Node p FP229907_1040375491 p FP226502_728882270 tor FP226205_728880766 219 A 3Ph 16 step 3x180 kVA	5	351_728880260-SF Flow (kVA) =	Switched Switched Switched P1 855.1	600 kVA 600 kVA	ering r	(4 hrs x 2 person o (Estimated to be 5	rew) + 50% of labor for m 50% of Crew Labor) Total estimated cost to re Costs to install both o Labor \$13,149 \$0.13 \$11,110	aterial - per uni esolve low volta To apacitor banks Material \$24,271 \$40,480 Metering Regulator	tal Stage 1 = AFUDC \$4,678 \$6,449	\$1,560 \$7,020 \$22,412 \$54,252 Total \$42,098 \$4,210 \$46,308 \$58,038 \$58,038 \$58,038 \$5,804 \$63,842	Engineering = 10% of Total Engineering = 10% of Total

Stage 2 Costs to address Potential Low Voltages

Number of Transformers at or below 120 volts

Estimated percent with secondary Vd > 4 volts Number of Transformers from 120 to 121 volts

Estimated percent with secondary Vd > 5 volts

Estimated total number of transformers that

2171

7700 0.28

may have customers with low voltage at Service Entrance =

Light Load is Controlling Case.

7 more transformers will be impacted.

Assumed Solution:

155 26.8%

174

12

10.6%

Qty. (ea)	Work Description	Assumptions	Total
3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for material - per unit	\$13,728
4	transformer tap changes	(4 hrs x 3 person crew) per tap change	\$6,240
1	service change out	(4 hrs x 2 person crew) + 50% of labor for material - per unit	\$1,560
	Planning and Engineering	(Estimated to be 50% of Crew Labor)	\$9,880
-		Total activities and another second value law values and another	621 400

Total estimated cost to resolve low voltage concerns: \$31,408

Stage 2 Modification Total= \$167,097

Stage 1 + Stage 2 Modification Total = \$221,349

Changes for Stage 3

Light Load =

Heavy Load =

Light Load / Heavy Load =

		W	ork Descriptio	on		No. of	Cost per	Total	Notes
						locations	location		
				End of 1ph voltage	control zone: wireless 'radio' link to substation	1	\$3,551	\$3,551	
				Line	regulator: wireless 'radio' link to the substation	0	\$3,364	\$0	
			9	ubstation: communications gea	r, links, central equipment, software to support				
			CV	R, IVVO, FDIR, AMI, DR, other sr	nart grid services. Secure, real-time, always on.	1	\$210,563	\$210,563	
							Subtotal:	\$214,114	
Stage 3 Costs to address Potential Low Voltages									
Heavy Load is Controlling Case.									
8 more transformers will be impacted.									
		As	ssumed Soluti	on:					_
		L	Qty. (ea)	Work Description	Assumptions			Total	
Number of Transformers at or below 120 volts	63	L	3	transformer change out	(8 hrs x 4 person crew) + 10% of labor for ma	aterial - per uni	t	\$13,728	
Estimated percent with secondary Vd > 4 volts	26.8%		5	transformer tap changes	(4 hrs x 3 person crew) per tap change			\$7,800	
Estimated percent man secondary rate i tons									
Number of Transformers from 120 to 121 volts	111		1	service change out	(4 hrs x 2 person crew) + 50% of labor for ma	aterial - per uni	t	\$1,560	
Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts	111 10.6%	E	1	service change out Planning and Engineering	(4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor)	aterial - per uni	t	\$1,560 \$10,660	-
Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that	111 10.6%	F	1	service change out Planning and Engineering	(4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to re	aterial - per uni solve low volta	t ge concerns:	\$1,560 \$10,660 \$33,748]
Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that may have customers with low voltage at Service Entrance =	111 10.6%	20	1	service change out Planning and Engineering	(4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to re	aterial - per uni solve low volta	t ge concerns:	\$1,560 \$10,660 \$33,748]
Number of Transformers from 120 to 121 volts Estimated percent with secondary Vd > 5 volts Estimated total number of transformers that may have customers with low voltage at Service Entrance =	111 10.6%	20	1	service change out Planning and Engineering	(4 hrs x 2 person crew) + 50% of labor for ma (Estimated to be 50% of Crew Labor) Total estimated cost to re	aterial - per uni solve low volta	t ge concerns:	\$1,560 \$10,660 \$33,748	}

Stage 1 + Stage 2 + Stage 3 Modification Total = \$469,211

Appendix 11: High and Low Voltage Reports

John P. White

From: Sent: To: Subject: Attachments: Pierce, Wyatt [Wyatt.Pierce@PacifiCorp.com] Wednesday, April 06, 2011 3:16 PM John P. White Revised OPQ list Voltage OPQ List for Tier 1 Circuits version 2.xlsx

John,

As promised, here is a new version of the OPQ sheet, which I think looks better. It's the same data except for one row. Doug informed me that the third OPQ on the old list was not an issue, so I removed it.

Thanks,

Wyatt W. Pierce, PE Pacific Power NID Support & Special Projects Desk: 541•633•2481 Cell: 541•848•7970

APPENDIX 11

Feeder	Request Date	OPQ Number	Voltage	Request Description	Xfmr ID	Comments
4W22	10/20/2005	2737162	Maybe	PLEASE INVESTIGATE, CUST IS EXPERIENCING LOW VOLTAGE DUE TOSOME UPGRADES IN HIS AREA BECAUSE OF CONSTRUCTION AROUND HIM, HE FEELS HIS SERVICE HAS BEE	TR_126582_ 726180197	CONCLUSION UNKNOWN.
4W22	11/16/2005	2751051	Yes	PLEASE INVESTIGATE, CUST IS EXPERIENCING LOW VOLTAGE DUE TOSOME UPGRADES IN HIS AREA BECAUSE OF CONSTRUCTION. SINCE UPGRADE, HAS HAD LOW VOLTAGE. NOT	TR_126582_ 726180197	A SECTIONALIZER WAS ADDED TO REDUCE THE SECONDARY LENGTH.
5W116	2/25/2009	5288343	Yes	PLEASE INVESTIGATE. LIGHT BULBS HAVE BEEN BURNING OUT TOO FAST. THEIR ELECTRICIAN THINKS TOO MUCH VOLTAGE IS COMING IN AND 312 N DIVISION AND 314 N DI	TR_212704_ 122450256	POSSIBLY LIGHTLY LOADED PHASE, CLOSE TO SUB.
5W116	6/21/2010	5444889	Yes	FLICKERING LIGHTS - CUSTOMER HAS INSTALLED A HEAT PUMP WITHOUT INFORMING US. SET RVM PER REQUEST OF DOUG G/ENGINEER.	TR_161001_ 755430222	CUSTOMER INTRODUCED NEW 9% FLICKER.
5W127	11/22/2010	5496672	Yes	PLEASE INVESTIGATE CUST GETTING DIMMING LIGHTS WHEN RUNNINGA SAW IN THE GARRAGE. AN ELECTRICTION STATED THAT SHE THOUGHT THAT OUR LINE FROM THE POLE T	TR_281801_ 544870376	STEADY STATE 113V UNDER LOAD, 7% FLICKER.
5W154	8/17/2004	2508998	Maybe	PLEASE INVESTIGATE. CUSTOMER IS EXPERIENCING POWER FLUCTUATIONS. SOMETIMES JUST MINUTES APART, SOMETIMES HOURS APART. THE VOLTAGE SEEMS TO DECREASE	TR_358607_ 369970338	FAR FROM SUB; CONCLUSION UNKNOWN.
5W342	2/26/2007	2984768	Yes	CUSTOMER'S LIGHTS DIM WHEN HEAT PUMP STARTS UP. PLEASESET MR-4	TR_355402_ 463490102	NEW HEAT PUMP, NEW 5.4% DIP.
57317	12/10/2008	5266498	Ves	PLEASE INVESTIGATE. STATES THAT THEY HAVE A LOT OF LIGHT BULBS BURN OUT. NO ISSUES WITH BREAKERS GOING OFF A LOT THOUGH. LAND LORD TOLD THEM THAT 130V	TR_255603_ 823200514	POSSIBLY LIGHTLY LOADED PHASE, CLOSE TO SUB.
5Y351	1/3/2011	5507484	Yes	FROM DMS# 674204: CUST STATES VOLTAGE AT SITE IS 515, SVCMANWAS ALREADY AT THIS SITE, ASKED US TO CREATE A REQUEST	TR_230801_ 858280420	WE MEASURED 515V ON 480V SYSTEM. WE LOWERED THE VOLTAGE.
5Y356	7/22/2003	2303616	Maybe	DMS ORDER HAS BEEN SENT. PLEASE INVESTIGATE VOLT ISSUES THAT ARE CAUSING CUSTOMER TO LOSE POWER AND, IN SEVERAL CASES, LOSE APPLIANCES. CUSTOMER HAS	TR_157583_ 1031037258	FAR FROM SUB; CONCLUSION UNKNOWN.
57156	7/20/2010	5459766	Vec	KEN MARTIN EXPERIENCES BROWN OUTS EVERYTIME TURNS ON AC. LIGHTING DIMS CANNOT RECEIVE ANY POWER. HAS HAD ELECTRICIAN TOSITE STATES NOT INTERNAL. HAPPE	TR_164180_ 306160252	CUST ADDED A/C.
5Y498	1/30/2009	5280544	Yes	PLEASE INVESTIGATE WHEN FURNACE COMES ON ELECTRICIAN TOLD HIM THERE IS NOT ENOUGH VOLTAGE COMING TO THE HOME PLS CHECK THIS HAPPENS DAILY THANKS CUSTO	TR_229202_ 185300510	CUSTOMER WAS ALREADY NEAR LIMIT AND THEN ADDED LOAD.

Appendix 12: Summary of Study Data

Appendix 12 - PacifiCorp Circuit Input Data

Circuit No.	5W150	5W154	5W22	5W116	5W127	5W342	5Y608	5Y610	5Y194	5Y197	5Y273	5Y356	5Y456	5Y498	5Y434	5Y444	5Y351	5Y313	5Y317
Substation	BOWMAN	BOWMAN	DODD RD	MILL CREEK	MILL CREEK	POMEROY	CLINTON	CLINTON	NOB HILL	NOB HILL	NOB HILL	NORTH PARK	ORCHARD	ORCHARD	WILEY	RIVER ROAD	GRANDVIEW	SUNNYSIDE	SUNNYSIDE
Circuit Name	PINE STREET	GARDEN	WINDWARD	GREEN PARK	WILBUR	POMEROY	IKE	BOULEVARD	16TH AVE	TWELFTH AVE.	18TH AVE	FREEWAY	COWICHE	PEACH	DAZET	WRIGHT	EUCLID	CARNATION	EDISON
Base Case	T3853	T3853	T1202	T3406	T3406	T3303	T3716	T3716	T2430	T2430	T2402	T3536	T5035	T3797	T3676	T3453	T859	T3570	T3570
Feeder VCZ (lowest voltage)	114.7V	120.9	119.5V	118.5V	118.8V	119.0V	116.0V	118.1V	118.3	121.1V	119.7	118.9V	119.7V	122.3V	116.1V	120.1	122.1	121.5	122.8
Existing VD% (peak Load)	7.2	2.0	7.3	4.5	4.2	4.6	5.2	3.3	4.2	1.8	3.5	5.5	5.3	3.3	5.2	4.3	4.5	3.5	2.3
Existing V-Rise (Peak Load)	2.3	2.3	7.2	0.0	0.0	1.7	1.2	1.2	2.3	2.3	2.9	4.5	5.0	5.2	2.4	4.3	6.5	4.7	4.7
Existing V-Set (No Load)	121.0	121.0	121.0	124.0	124.0	123.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	120.0	121.0	121.0	121.0	121.0
Existing kW Demand (Fdr)	6,715.0	8,198.8	8,699.4	8,097.3	6,218.4	6,040.3	8,197.7	9,247.6	8,366.3	5,899.4	7,984.8	6,790.0	7,297.7	6,277.7	6,992.1	10,595.0	7,699.4	4,999.0	3,999.8
Existing kW Demand (Reg 1)	2,683.2																		
Regulator 1 VCZ																			
Existing VD% (peak Load)	3.8																		
Existing V-Rise (Peak Load)	4.7																		
Existing V-Set (No Load)	120.0																		
Existing KW Demand (Reg 1)	2,083.2																		
Customors	1 796	1 972	1 1 2 1	2 052	1 068	1 204	2 027	1 401	1 572	1 972	2 216	1.624	1 / 21	1 751	1 2 2 7	2 201	1 226	1 020	078
Annual MW/h	33,096,3	37.063.7	39 919 8	3/ 126 5	29 177 6	22 78/1 2	/1 300 1	/13 295 5	1,572	30 678 7	35 373 7	30 777 6	28 932 5	27 289 5	27 725 6	<i>2,201</i> <i>1</i> 9,558,0	33 271 6	20 864 7	19 867 6
	325.2	98.8	288.9	122.5	65.7	19/ 1	113.0	128.8	165 1	ΔΔ 7	150.2	231.7	124.3	91 7	144.8	186 1	76.9	86.8	49.6
Connected Ttransformers kVA	23 831 0	24 580 5	29 034 5	17 726 0	15 105 0	16 801 0	22 603 5	20.066.0	19 095 5	12 613 5	16 377 5	20 180 0	16 682 0	12 638 0	18 624 0	25 987 0	20 980 4	11 851 5	9 579 6
Heat Zone	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cool Zone	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
% w/ A/C	95%	95%	95%	95%	95%	85%	90%	85%	85%	85%	85%	85%	95%	85%	90%	80%	80%	75%	70%
% w/ non-e heat	90%	90%	60%	90%	90%	60%	50%	100%	100%	100%	100%	80%	98%	100%	80%	97%	95%	95%	99%
VO factor	0.64	0.64	0.52	0.64	0.64	0.51	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.65
Stage 1 Case	NC		NC			NC						NC	NC				NC		
Feeder VCZ																			
C Max VD% (peak Load)	7.2	2.0	7.3	4.5	2.8	4.6	3.7	3.3	4.2	1.8	3.5	5.5	5.3	3.3	4.1	4.3	4.5	3.5	2.3
C V-Rise (Peak Load)	8.6	2.3	8.7	2.5	5.9	3.7	5.4	5.4	2.3+2.7	2.3+1.7	2.9+1.3	6.6	6.3	5.2	4.7	5.2	6.5	4.7	4.7
C V-Set (No Load)	121	121	121	124	120	123	120	120	121	121	121	121	121	121	121	121	121	121.0	121.0
C kW Demand (Fdr)	6715.0	8198.8	8699.4	8097.3	6218.4	6040.3	8197.7	9247.6	8366.3	5899.4	7984.8	6790.0	7297.7	6277.7	6992.1	10595.0	7699.4	4,999.0	3,999.8
C kW Demand (Reg 1)	2683.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Post-VO Max VD% (peak Load)	7.1	2.0	6.6	4.4	2.8	6.0	3.7	3.3	3.3	1.8	3.8	6.6	3.6	3.3	4.1	4.7	4.9	3.5	2.1
Post-VO V-Rise (Peak Load)	4.0	2.3	5.0	5.9	5.9	1.7	5.4	5.4	3.5	3.5	6.6	9.0	4.9	4.3	4.7	5.6	6.4	3.2	3.2
Post-VO V-Set (No Load)	121.0	120.0	120.0	119.0	119.0	123.0	119.0	119.0	120.0	120.0	118.0	116.0	120.0	120.0	120.0	120.0	119.0	121.0	121.0
Regulator 1 VCZ																			
C Max VD% (peak Load)	3.8																		
C V-Rise (Peak Load)	5.4																		
C V-Set (NO LOdd)	120.0																		
C KW Demand (Reg 1)	2,085.2																		
Post-VO Max VD% (peak Load)	0.0																		
Post-VO V-Rise (Peak Load)	4.0																		
Post-VO V-Set (No Load)	120.0																		
kW Line Loss	334.3	98.7	278.3	120.8	57.8	187.9	107.2	127.5	156.3	44.2	151.6	237.4	116.7	94.7	131.1	184.0	81.7	74.2	35.5
Improvoment Costs Ś	\$180.278	\$20.526	\$210,622	¢59 179	\$92.645	\$107.846	\$72.614	¢52 /28	¢05 118	\$72.010	\$128.058	\$166.286	\$40.008	\$44 502	\$100.248	¢ 95 ΛΛΛ	¢54.252	\$60,508	\$26,600
	\$160,378	ŞZ9,3Z0	ŞZ19,0ZZ	ŞJ0,170	J03,043	\$107,840	\$75,014		<i>333,</i> 440	\$23,910	\$120,030	\$100,280	Ş49,098	\$44,302	\$100,248		,234,232	Ş00,508	\$20,050
Stage 2 Case	Une Exist Reg											Add 4 Day							
	AUU I KEg	2.0	Add 2 Keg	AUU I Keg	20	Auu 2 Keg	27	2.2	4.2	1 0	<u>Э</u> г		2.6	2.2	Л 1		AUU I KEg	Э Г	7 7
C Wax VD/0 (peak LOdu)	Add one	2.0		<u> </u>	<u>۲.0</u>	Add two	5./ 5./	5.5 5 /	4.2 7 2±7 7	1.0 7 2±7 7	3.3 2 0⊥1 2	2.0 1 5	5.0 // A	۵.۵ ۲ ۲	4.1 // 7	2./ / 2	2.0 Л 5	5.5 // 7	2.5 // 7
	series	171	naralell	124	120	naralell	120	120	171	171	171	121	+.0 121	171	171	171	121	+. <i>7</i> 121 0	+. <i>i</i> 121 0
C kW Demand (Edr)	reg	8198 8	reas	8097 3	6218.4	regs	8197 7	9247 6	8366 3	5899 1	7984 8	6790.0	7297 7	6277 7	6992 1	10595 0	7699 4	4,999 0	3,000 8
C kW Demand (Reg 1)	<u>م</u> ~ .	0.0	8-	3304.0	0.0	2-	0.0	0.0	0.0	0.0	0.0	6650.0	0.0	0.0	0.0	6189.0	851.7	0.0	0.0
Post-VO Max VD% (peak Load)		0.8		2.0	2.7		3.2	3.0	3.2	1.8	3.2	2.6	3.6	2.7	3.8	1.7	2.5	3.0	1.8
Post-VO V-Rise (Peak Load)		2.9		2.9	2.9		4.0	4.0	3.5	3.5	4.3	4.5	4.6	3.8	4.7	2.6	2.9	2.9	2.9
Post-VO V-Set (No Load)		120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	119.0	120.0	120.0	120.0	120.0	120.0	121.0	121.0
Regulator 1 VCZ																			
C Max VD% (peak Load)				2.1								2.7				1.7	1.7		
C V-Rise (Peak Load)				-0.5								3.4				3.1	2.0		
C V-Set (No Load)				124.0								121.0				121.0	121.0		
C kW Demand (Reg 1)				3,304.0								6,650.0				6,189.0	851.7		
C kW Demand (Reg 2)				0.0								0.0				0.0	0.0		
Post-VO Max VD% (peak Load)				2.5								2.7				2.4	2.0		
Post-VO V-Rise (Peak Load)				3.3								3.4				2.8	2.7		
Post-VO V-Set (No Load)				120.0								120.0				120.0	120.0		
kW Line Loss	302.3	106.1	247.4	114.6	59.3	164.9	95.2	116.2	146.8	43.5	139.6	229.5	100.8	93.6	130.1	186.9	82.8	58.4	35.3
Improvement Costs \$	\$329,870	\$102,929	\$288,415	\$150,565	\$106,799	\$317,873	\$123,639	\$118,025	\$128,436	\$47,064	\$107,026	\$231,435	\$124,802	\$65,499	\$123,402	\$264,201	\$221,349	\$98,309	\$49,844

Appendix 12 - PacifiCorp Circuit Input Data

												1							
Circuit No.	5W150	5W154	5W22	5W116	5W127	5W342	5Y608	5Y610	5Y194	5Y197	5Y273	5Y356	5Y456	5Y498	5Y434	5Y444	5Y351	5Y313	5Y317
Substation	BOWMAN	BOWMAN	DODD RD	MILL CREEK	MILL CREEK	POMEROY	CLINTON	CLINTON	NOB HILL	NOB HILL	NOB HILL	NORTH PARK	ORCHARD	ORCHARD	WILEY	RIVER ROAD	GRANDVIEW	SUNNYSIDE	SUNNYSIDE
Circuit Name	PINE STREET	GARDEN	WINDWARD	GREEN PARK	WILBUR	POMEROY	IKE	BOULEVARD	16TH AVE	TWELFTH AVE.	18TH AVE	FREEWAY	COWICHE	PEACH	DAZET	WRIGHT	EUCLID	CARNATION	EDISON
																	1		
Stage 3 Case	One Exist Reg																		
Feeder VCZ	Add 1 Reg		Add 2 Reg	Add 1 Reg		Add 2 Reg						Add 1 Reg				Add 1 Reg	Add 1 Reg		
C Max VD% (peak Load)		2.0		2.4	2.8		3.7	3.3	4.2	1.8	3.5	2.8	3.6	3.3	4.1	2.7	2.8	3.5	2.3
C V-Rise (Peak Load)	Add one	2.3	Add two	0.0	5.9	Add two	5.4	5.4	2.3+2.7	2.3+2.7	2.9+1.3	4.5	4.6	5.2	4.7	4.3	4.5	4.7	4.7
C V-Set (No Load)	series	121	paralell	124	120	paralell	120	120	121	121	121	121	121	121	121	121	121	121	121.0
C kW Demand (Fdr)	reg	8198.8	regs	8097.3	6218.4	regs	8197.7	9247.6	8366.3	5899.4	7984.8	6790.0	7297.7	6277.7	6992.1	10595.0	7699.4	4999.0	3,999.8
C kW Demand (Reg 1)		0.0		3304.0	0.0		0.0	0.0	0.0	0.0	0.0	6650.0	0.0	0.0	0.0	6189.0	851.7	0.0	0.0
Post-VO Max VD% (peak Load)		0.8		2.0	2.7		3.2	3.0	3.2	1.8	3.2	2.6	3.6	2.7	3.8	1.7	2.5	3.0	1.8
Post-VO V-Rise (Peak Load)		2.9		2.9	2.9		4.0	4.0	3.5	3.5	4.3	4.5	4.6	3.8	4.7	2.6	2.9	2.9	2.9
Post-VO V-Set (No Load)		119.0		119.0	119.0		119.0	119.0	119.0	119.0	119.0	118.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0
Regulator VCZ																			
C Max VD% (peak Load)				2.1								2.7				1.7	1.7		
C V-Rise (Peak Load)				-0.5								3.4				3.1	2.0		
C V-Set (No Load)				124.0								121.0				121.0	121.0		
C kW Demand (Reg 1)				3,304.0								6,650.0				6,189.0	851.7		
C kW Demand (Reg 2)				0.0								0.0				0.0	0.0		
Post-VO Max VD% (peak Load)				2.5								2.7				2.4	2.0		
Post-VO V-Rise (Peak Load)				3.3								3.4				2.8	2.7		
Post-VO V-Set (No Load)				119.0								119.0				119.0	119.0		
kW Line Loss	302.3	106.1	247.4	114.6	59.3	164.9	95.2	116.2	146.8	43.5	151.6	229.5	100.8	93.6	130.1	186.9	82.9	58.4	35.3
Improvement Costs \$	\$345,514	\$272,600	\$583 <i>,</i> 960	\$318,157	\$256,139	\$622,153	\$281,975	\$260,606	\$297,023	\$154,291	\$241,604	\$522,300	\$267,123	\$230,336	\$402,516	\$552,570	\$469,211	\$240,890	\$203,759

Appendix 13: Metering and Communication Costs

Commonwealth Developed Metering – Cost Estimate

Each feeder in each substation will need to be individually monitored and metered. Similarly, the end of the line will need to be metered. However, only voltage quantity will be monitored. The load side of a three-phase line regulator will need to be metered with a full complement of quantities monitored.

Several choices for multi-function meters are available that could be used to meter the distribution circuits. For this estimate, an SEL 751A Feeder Protection Relay was selected for use in the substation. A single phase GE kV2 Multifunction Electricity Meter was chosen for the end of the line application. And, a three phase GE kV2 Multifunction Electricity Meter was selected to be used at a line regulator

Metering Within the Substation

Metering is present in each substation for each power transformer load. That means that there are voltage transformers available to be used for the feeder metering. The substation feeders are being protected with circuit breakers. The circuit breakers have current transformers which can be used for feeder metering. A control enclosure is available in which to mount the meter.

The installation of the meters in the substation should be straightforward. The process for the substation installation will be to remove the existing overcurrent and reclosing relays and replace them with the SEL 751A relay. The relay will be mounted on the panel in place of the existing relays. A test switch will be mounted adjacent (below) the relay. The appropriate voltage quantities will be routed from the existing metering voltage transformer circuits, probably already in the control enclosure. The voltages will be wired to the test switch and relay. Current quantities will be wired to the test switch and relay from the feeder breaker current transformers. The relaying and metering settings will be installed in the relay and a functional check of the relay will be performed.

	ITEM	QTY	EA	Total
1	SEL 751A Feeder Protection Relay	1	2,500.00	2,500.00
2	Modifications to the relay panel	1	300.00	300.00
	Labor (assume 2 relay/metermen 8 hours per instl.)	8	258.10	2,064.80
3	Test Switch	1	175.00	175.00
4	4 conductor control cable (ft)	150	1.25	187.50
5	Labor (assume 6 hours per installation)	6	258.10	1,548.60
	(2 man crew = \$258.10 per hour)			
			TOTAL	6,775.90

The estimated cost per circuit to install the metering in a substation is itemized as follows:

Metering at the End of the Line

At the end of the line, there will only be a need to measure the voltage quantities. The installation at the end of the line will be different than the substation installation. One voltage transformers will be provided and mounted on a convenient pole. The transformer will be mounted on a cluster rack at the top of the pole and connected to the line using a fuse cutout and hot clamps. The meter will be mounted to the pole near the base and connected to the voltage transformers using control cable. Since the meter will be exposed to public access, the control cable will be installed in conduit, up the pole, until the cable reaches 10 feet above the ground. After the wiring is complete, the meter will be installed in the meter base and the installation energized and verified. This installation will require a line crew to install the instrument transformers at the top of the pole and a meter man (men) to install and verify the meter.

	ITEM	QTY	EA	TOTAL
1	GE kV2 1-Ph. Multifunction Meter	1	\$1,200.00	\$1,200.00
2	Meter base with space for test switch.	1	\$200.00	\$200.00
3	Test Switch	1	\$125.00	\$125.00
4	Fuse cutouts and hot clamps	1	\$550.00	\$550.00
5	Instrument transformer rack	1	\$250.00	\$250.00
6	Voltage transformer	1	\$1,200.00	\$1,200.00
7	4 conductor control cable (ft)	75	\$1.25	\$93.75
8	Ground rods and ground wire (lot)	1	\$200.00	\$200.00
9	Labor (assume 8 hours per installation)	8	\$516.20	\$4,129.60
	(4 man crew, linemen and metermen = \$516.2 per hour)			
			TOTAL	\$7,948.35

The estimated cost per circuit to install the metering at the end of the circuit is itemized as follows:

Metering at a Three Phase Line Regulator

The metering set for use at a three-phase line regulator will be installed on a pole, as close to the load side of the regulators as practical. Three current transformers and three voltage transformers will be mounted on an instrument transformer cluster rack near the top of the pole. The voltage transformers will be connected to the line conductors through cutouts and hot clamps. The current transformers will be mounted to the line across insulators added to the line, or at a deadend structure. The meter will be mounted to the pole near the base and connected to the voltage transformers using control cable. Since the meter will be exposed to public access, the control cable will be installed in conduit, up the pole, until the cable reaches 10 feet above the ground. After the wiring is complete, the meter will be installed in the meter base and the installation energized and verified. This installation will require a line

crew to install the instrument transformers at the top of the pole and a meter man (men) to install and verify the meter.

The estimated cost per circuit to install the metering at a three phase voltage regulator is itemized as follows:

	ITEM	QTY	EA	TOTAL
1	GE kV2 3-Ph. Multifunction Meter	1	\$1,750.00	\$1,750.00
2	Meter base with space for test switch.	1	\$275.00	\$275.00
3	Test Switch	1	\$175.00	\$175.00
4	Fuse cutouts and hot clamps	3	\$550.00	\$1,650.00
5	Instrument transformer rack	1	\$500.00	\$500.00
6	Voltage transformer	3	\$1,200.00	\$3,600.00
7	Current transformers	3	\$1,200.00	\$3,600.00
8	12 conductor control cable (ft)	75	\$1.55	\$116.25
9	Ground rods and ground wire (lot)	1	\$200.00	\$200.00
10	Labor (assume 8 hours per installation)	8	\$516.20	\$4,129.60
	(4 man crew, linemen and metermen = \$516.2 per hour)			
			TOTAL	\$15,995.85

Costs and Spreadsheet provided by PacifiCorp, Applied by Commonwealth for Washington Distribution Efficiency Study Metering and Communications Cost Estimate for Stage 3 Implementation

		Walla			Walla		Walla													
Work Description	Cost Per	Walla	Walla Walla	Walla Walla	Walla	Walla Walla	Walla	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Yakima	Sunnyside	Sunnyside	Sunnyside
(Feeder Improvements)	Location	5W150	5W154	4W22	5W116	5W127	5W342	5Y608	5Y610	5Y194	5Y197	5Y273	5Y356	5Y456	5Y498	5Y434	5Y444	5Y351	5Y313	5Y317
			1	1		1	2											1		
Three phase voltage control points																				
		1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Single phase voltage control points																				
End of voltage control zone: 3ph														Î	1	Î				1
primary metering on new pole	\$ 11,500	C	o o	0	C	o o	0	C		0		o d		0		0 0	0	0 0	0	, o
End of voltage control zone: 1ph																				
primary metering on new pole	\$ 6,700	C	0 0	0	C	0 0	0	0	0 0	0) (o (0 0	0	0 0	0 0	C	0 0	0	. 0
End of any voltage control zone:																				
revenue meter, socket, test switch,																				
miscellaneous wiring	\$ 8,000	C	0 0	0	C	0 0	0	C	0 0	0) (0 0	0 0	0 0	0 0	0 0	0	0 0	0	0
End of 1ph voltage control zone:																				
wireless 'radio' link to substation	\$ 3,551	1	1 2	2	1	2	3	1	1	1	1	1 1	2	1	. 1	. 1	2	2 1	1	2
Line regulator: wireless 'radio' link to																				
substation	\$ 3,364	C	1	1	. C	1 1	2	C) (0) (0 0) 1	. 0) (0 0	1	. 0	0	1
	Total																			
	Circuit Cost	\$3,551	l \$10,466	\$10,466	\$3,551	\$10,466	\$17,381	\$3,551	\$3,551	\$3,551	l \$3,55 1	1 \$3,551	\$10,466	\$3,551	\$3,551	\$3,551	\$10,466	5 \$3,551	\$3,551	\$10,466
	Total,																			
	Tier 1																			
	Circuits	\$ 122,789																		
	Average																			
	Circuit Cost	\$ 6,463																		
Work Description	Cost Per	All		Walla Walla	Yakima	Sunnyside														
(Substation Improvements)	Substation	Districts		Substations	Substations	Substations														
Substation: communications gear,	\$ 210,563		-	4	6	2														
links, central equipment, software to	Tatal																			
support CVR, IVVO, FDIR, AMI, DR,	Tion 1																			
other smart grid services. Secure, real	- Her 1																			
time, always on.	Subs	\$ 2,526,75 6	_	\$ 842,252	\$ 1,263,378	\$ 421,126														
Work Description		All		Walla Walla	Yakima	Sunnyside														
(All Improvements)		Districts		Substations	Substations	Substations														
	Total All																			
	Circuits																			
	and Subs	\$ 2.649.545		\$ 898.133	\$ 1.312.718	\$ 438.694														
	Average	. ,,	1	,,	. ,,	,,	1													
	Circuit Cost	\$ 139 450		\$ 149.689	\$ 131 272	\$ 146 231														
		+ -00,400		÷ 10,000		¥ 110,201	4													

APPENDIX 13

Appendix 14: VAR Profiles

Appendix 14

Clinton 5Y608 Reactive Profile

Mill Creek 5W116 Reactive Profile

Nob Hill 5Y197 Reactive Profile

Page 241

Nob Hill 5Y273 Reactive Profile

North Park 5Y356 Reactive Profile

Orchard 5Y456 Reactive Profile

Page 244

River Road 5Y444 Reactive Profile

Sunnyside 5Y313 Reactive Profile

Page 249

Appendix 15: Power Factor Profiles

Bowman 5W150 Power Factor Profile

Bowman 5W154 Power Factor Profile

Clinton 5Y610 Power Factor Profile

Mill Creek 5W116 Power Factor Profile

Mill Creek 5W127 Power Factor Profile

Appendix 15

Nob Hill 5Y197 Power Factor Profile

Nob Hill 5Y273 Power Factor Profile

Orchard 5Y456 Power Factor Profile

Orchard 5Y498 Power Factor Profile

Pomeroy 5W342 EOL2 Power Factor Profile

River Road 5Y444 Power Factor Profile

Page 270

Sunnyside 5Y317 Power Factor Profile

Wiley 5Y434 Power Factor Profile

Appendix 16: Comparison of Distribution System Efficiency Potential

Comparison of Distribution System Efficiency Potential

R.H. Fletcher, PhD, P.E.

Utility Planning Solutions, PLLC

April 22, 2011 (v1)

Electric utilities vary in distribution system design and operation practices. However, Northwest utilities have primary and secondary systems that are radial-designed except for specific service areas (downtown areas, business districts, and some military and hospital installations) where reliability considerations are far more important than cost and economic considerations. The primary voltage class among utilities varies from 4kV to 34.5 kV. Most are either 12.5kV or 24.9 kV systems. Allowable maximum conductor loading, percent phase unbalance, maximum voltage drops, and minimum power factor practices also differ among utilities.

The following table provides a comparison of utility practices and potential energy savings that is available based on typical financial constraints. Typical NW utility and High Performance utility attributes are based on experience performing distribution system feasibility studies in the Northwest.

	PacifiCorp 19	Typical NW	High
	feeder Attributes	Utility Attributes	Performance
			Utility Attributes
Feeder Metering	kW, kvar and	kW, kvar and	Hourly kW, kvar,
	Amp demand	Amp demand	and Amp Manual
	Manual Data	Manual Data	Data Collection
	Collection	Collection	
Maximum conductor loading %	60%	80%	<50%
of emergency			
Maximum allowed phase	20%	30%	<15%
unbalance			
Minimum hourly PF	95%	93%	>96%
Average Annual hourly PF	97%	96%	>98%
Maximum Allowed Primary	5	5	<3
voltage drop(V)			
Maximum allowed Secondary	6	3.5	<3
voltage drop(V)			
Source REG Voltage Control	LDC	Fixed	LDC
Method			
Source REG Voltage Settings	121	124	119
Exist Pri Volts	122.0	123.0	119.6
Potential for Avg Pri Volts	120.6	119.6	119.6
Potential average voltage change	1.17 %	2.83%	0%
Potential VO Energy Savings(%)	0.61%	1.48%	0%

Notes

- 1. Potential for energy savings assumes an end-use VO factor of 0.6 and system loss savings 15% of total savings.
- 2. The Potential Average Primary voltage is determined by the utility's financial constraints. For PacifiCorp, the average voltage potential is higher than other utilities due to PacifiCorp requirement to have continuous voltage monitoring because of high secondary voltage drops and the potential for voltages below 114V at the end-use service entrance.

The Pacific energy savings potential from its distribution systems is lower than other northwest utilities primarily due to its existing operating practices with line drop compensation (LDC) and having a relatively low source regulator voltage setting of 121V. However, PacifiCorp does have the potential to increase its energy saving by removing the costly continuous voltage monitor requirement as part of the lowering of voltage initiative to 119V. Other PacifiCorp design and operation attributes are similar to those of the typical northwest utility and exhibit potential for distribution efficiency loss reduction.

####