EXHIBIT NO. ___(RCR-1CT) DOCKET NO. UE-09__/UG-09__ 2009 PSE GENERAL RATE CASE WITNESS: R. CLAY RIDING

BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION,

Complainant,

v.

Docket No. UE-09____ Docket No. UG-09____

PUGET SOUND ENERGY, INC.,

Respondent.

PREFILED DIRECT TESTIMONY (CONFIDENTIAL) OF R. CLAY RIDING ON BEHALF OF PUGET SOUND ENERGY, INC.

> REDACTED VERSION

MAY 8, 2009

PUGET SOUND ENERGY, INC.

PREFILED DIRECT TESTIMONY (NONCONFIDENTIAL) OF R. CLAY RIDING

CONTENTS

I.	INTRODUCTION	1
II.	GAS TRANSPORTATION FOR MINT FARM	2
III.	JACKSON PRAIRIE NATURAL GAS STORAGE FACILITY	7
IV.	OVERVIEW OF THE REGION'S NATURAL GAS SYSTEM AND PSE'S NATURAL GAS RESOURCES	11
V.	MARKET FORCES AFFECTING GAS SUPPLY	16
VI.	CONCLUSION	22

	PUGET SOUND ENERGY, INC.
	PREFILED DIRECT TESTIMONY (NONCONFIDENTIAL) OF R. CLAY RIDING
	I. INTRODUCTION
Q.	Please state your name and business address.
A.	My name is Clay Riding, and my business address is 10885 N.E. Fourth Street,
	Bellevue, Washington 98004. I am employed by Puget Sound Energy, Inc.
	("PSE" or "the Company") as Director, Natural Gas Resources.
Q.	Have you prepared an exhibit describing your education, relevant
	employment experience, and other professional qualifications?
A.	Yes, I have. It is Exhibit No. (RCR-2).
Q.	What is the purpose of your testimony?
A.	My testimony addresses several issues related to natural gas transportation and
	storage. First, I discuss PSE's gas supply resources for the recently acquired Mint
	Farm Generating Station ("Mint Farm"). Second, I address the recent expansion
	of PSE's Jackson Prairie natural gas storage facility and the agreement that allows
	PSE's electric portfolio (also known as the "Power Book") to take assignment of
Prefi (Con R. Cl	led Direct Testimony Exhibit No(RCR-1CT) fidential) of Page 1 of 22 lay Riding

1		natural gas storage capacity from PSE's natural gas portfolio to serve gas
2		customers (also known as the "Core Gas Book"). I also discuss further efforts by
3		the Company to acquire additional gas storage resources to serve gas-fired
4		generation. Third, I provide an overview of the region's natural gas system and
5		the Company's access to supply basins. I address the recent transaction between
6		PSE and FB Energy Canada Corp. ("FB Energy"), which provides PSE additional
7		natural gas transportation capacity on Spectra Energy's Westcoast Energy
8		pipeline system. Finally, I discuss the current market forces and economics
9		affecting PSE's natural gas resource choices, including a brief discussion of the
0		role liquefied natural gas ("LNG") may play in future resource decisions.
1		II. GAS TRANSPORTATION FOR MINT FARM
	Q.	Please describe the gas transportation arrangements for Mint Farm.
3	Q. A.	Please describe the gas transportation arrangements for Mint Farm. Mint Farm is exclusively natural gas-fired and does not have alternate fuel back-
3	Q. A.	 Please describe the gas transportation arrangements for Mint Farm. Mint Farm is exclusively natural gas-fired and does not have alternate fuel back- up. Thus, there is no on-site fuel storage. Under normal baseload operations, the
13 14 15	Q. A.	 Please describe the gas transportation arrangements for Mint Farm. Mint Farm is exclusively natural gas-fired and does not have alternate fuel back- up. Thus, there is no on-site fuel storage. Under normal baseload operations, the facility requires approximately 43,500 million British thermal units ("MMBtu")
13 14 15	Q. A.	 Please describe the gas transportation arrangements for Mint Farm. Mint Farm is exclusively natural gas-fired and does not have alternate fuel back- up. Thus, there is no on-site fuel storage. Under normal baseload operations, the facility requires approximately 43,500 million British thermal units ("MMBtu") of natural gas per day. With duct-firing, Mint Farm requires a total of
12 13 14 15 16 17	Q. A.	 Please describe the gas transportation arrangements for Mint Farm. Mint Farm is exclusively natural gas-fired and does not have alternate fuel back- up. Thus, there is no on-site fuel storage. Under normal baseload operations, the facility requires approximately 43,500 million British thermal units ("MMBtu") of natural gas per day. With duct-firing, Mint Farm requires a total of approximately 52,000 MMBtu per day. Mint Farm is interconnected to the
12 13 14 15 16 17 18	Q. A.	 Please describe the gas transportation arrangements for Mint Farm. Mint Farm is exclusively natural gas-fired and does not have alternate fuel back- up. Thus, there is no on-site fuel storage. Under normal baseload operations, the facility requires approximately 43,500 million British thermal units ("MMBtu") of natural gas per day. With duct-firing, Mint Farm requires a total of approximately 52,000 MMBtu per day. Mint Farm is interconnected to the Williams Northwest Pipeline ("NWP") system via Cascade Natural Gas
13 14 15 16 17 18	Q. A.	Please describe the gas transportation arrangements for Mint Farm.Mint Farm is exclusively natural gas-fired and does not have alternate fuel back-up. Thus, there is no on-site fuel storage. Under normal baseload operations, thefacility requires approximately 43,500 million British thermal units ("MMBtu")of natural gas per day. With duct-firing, Mint Farm requires a total ofapproximately 52,000 MMBtu per day. Mint Farm is interconnected to theWilliams Northwest Pipeline ("NWP") system via Cascade Natural GasCompany's ("Cascade") distribution system, which provides natural gas service

I

1		to many of the large industrial companies in the area. Accordingly, the plant
2		requires gas transportation service on both systems.
3		PSE currently holds 30,000 MMBtu per day of firm natural gas transportation on
4		the Cascade system. The remaining Mint Farm baseload requirements are being
5		adequately met with non-firm Cascade transportation service. Industrial demand
6		on Cascade's system is down significantly and, therefore, non-firm service is
7		expected to be reliable until such industrial demand returns or significant new
8		markets are developed.
9	Q.	Does PSE have a longer-term plan for gas transportation on Cascade's
10		system?
11	А.	Yes. Although PSE has arranged for non-firm transportation capacity sufficient
12		to serve Mint Farm for baseload and duct-firing in the near to medium term, PSE
13		is in the process of arranging for firm service for Mint Farm's full requirements.
14		PSE has several possible options for long-term gas transportation capacity on
15		Cascade's system. PSE is evaluating these options and expects to decide on a
16		long term course of action by July 2009. The options PSE is actively pursuing
17		with Cascade include:
18 19		1. <u>Option 1</u> –
20 21		
	Prefile	ed Direct Testimony idential) ofREDACTED VERSIONExhibit No(RCR-1CT) Page 3 of 22
	R. Cla	iy Kiding
I	I	

1		The acquisition modeling for Mint Farm was based on Option 1, as it was known
2		at the time of agreement execution. The other options have been subsequently
3		vetted and will be chosen only if they prove to be more economic.
4	Q.	Has PSE obtained additional gas transportation on NWP's interstate pipeline
5		to serve Mint Farm?
6	А.	Yes. PSE has added both permanent and temporary gas transportation resources
7		in anticipation of, and since, the Mint Farm acquisition. PSE acquired 11,210
8		MMBtu per day of long-term NWP transportation capacity from Sumas to
9		Longview and other downstream delivery points, which PSE can use to serve the
10		plant, all of which commenced on or before April 1, 2009. PSE's Energy
11		Management Committee ("EMC") authorized the acquisition of this capacity at
12		an EMC meeting on January 31, 2008. The capacity was acquired through a
13		competitive bidding process through NWP's electronic bulletin board. PSE is
14		paying NWP's maximum tariff rate for this long-term capacity, which is expected
15		to be less than any NWP expansion projects.
16		PSE has also acquired another 34,000 MMBtu per day of discounted NWP
17		capacity, with terms ranging from 15 months (9,000 MMBtu per day commencing
18		on January 1, 2009) to 3 years (25,000 MMBtu per day commencing on
19		November 1, 2009). PSE's EMC authorized the acquisition of this mid-term
20		capacity at an EMC meeting on January 14, 2009. PSE is paying approximately

1	40% of NWP's maximum tariff rate for this capacity for the initial terms of the
2	contracts. PSE expects that all of the temporary acquisitions will be available for
3	renewal for at least two years beyond the initial term. The 25,000 MMBtu
4	temporary contract was offered to PSE as of January 1, 2009, but it was
5	determined that PSE's existing combined portfolio could accommodate Mint
6	Farm deliveries until at least November 1, 2009. PSE's Core Gas Book has
7	plenty of excess capacity in the shoulder and summer months, and such capacity
8	can be used to provide service to Power Book resources at market rates.
9	Therefore, until November 1, 2009, Mint Farm will be served with PSE's other
10	pipeline capacity resources, market purchases or interruptible NWP capacity.
11	The capacity discussed above serves to bridge the gap until a long-term solution
12	is developed and executed. Such a long-term solution is necessary in order to
13	meet the long-term natural gas transportation capacity needs for PSE's existing
14	gas-fired generation facilities and the additional acquisition of gas-fired
15	generation as contemplated in PSE's Integrated Resource Plan. As discussed later
16	in my testimony PSE is currently working with several interstate pipeline
17	companies to develop a project that will provide additional access to Rockies
18	supply basins, including a cross-Cascades project. If subscriptions levels are not
19	sufficient to support a cross-Cascades project, such access to the Rockies will not
20	be possible, and PSE will work with NWP to expand its system from British
21	Columbia, although this is not PSE's preferred strategy.

1		Exhibit No. (RG-7HC) to the testimony of Roger Garratt includes
2		presentations to the EMC regarding gas transportation for Mint Farm.
3		III. JACKSON PRAIRIE NATURAL GAS STORAGE FACILITY
4	Q.	Please describe the expansion of PSE's Jackson Prairie gas storage facility.
5	A.	In 2007 and 2008, PSE undertook a significant expansion of the Jackson Prairie
6		storage facility. Specifically, ten additional withdrawal wells were drilled and
7		necessary plant piping and compression installed to increase the withdrawal
8		capability from 850 million standard cubic feet ("MMscf") per day to 1,150
9		MMscf per day (or approximately 1,200,000 MMBtu per day). The joint-owners
10		of the facility, PSE, NWP and Avista, equally shared in the cost of the expansion
1		project.
12	Q.	Is the Core Gas Book currently using all the storage capacity in the
13		expanded facility?
4	A.	No. The Core Gas Book is not using all of its storage capacity in the expanded
15		facility. The Core Gas Book will take several years to grow into all of the
16		expanded storage service of approximately 104,000 MMBtu per day.
17	Q.	Please describe the assignment between PSE's Core Gas Book and PSE's
18		Power Book for Jackson Prairie storage service for the Power Book.
	Prefil (Cont R. Cl	ed Direct Testimony Exhibit No(RCR-1CT) fidential) of Page 7 of 22 ay Riding

1	A.	PSE has assigned 50,000 MMBtu per day of storage deliverability and 500,000
2		MMBtu of storage capacity to the Power Book from December 1, 2008 through
3		March 31, 2010. Prior to termination of the initial term, PSE will determine if the
4		arrangement can continue for a subsequent term, based on the planning criteria
5		used by PSE to determine Core Gas Book requirements.
6		The Power Book purchased the capacity for operational reliability and supply
7		management, and retains all rights associated with the service, with no restrictions
8		beyond those governing PSE's storage operations (fill requirements, withdrawal
9		decline curve, etc.). The Power Book may use the storage service for any
10		purpose, including balancing load, meeting peak-day requirements, or intra-day
11		dispatching.
12		The Power Book will pay the Core Gas Book \$114,375 per month during the
13		initial term of the assignment, which is a market-based value, calculated using the
14		same methodology PSE uses to value storage services (either purchases or sales)
15		in the Pacific Northwest market. If the storage service assignment is extended
16		beyond the current term, it will be done at the then current market value.
17	Q.	Is it important for PSE's power portfolio to have access to natural gas
18		storage?
19	A:	Yes. First and foremost, access to natural gas storage increases electric service
20		reliability. PSE's CT fleet is a critical component of PSE's generation
	Prefile (Confi R. Cla	ed Direct Testimony Exhibit No(RCR-1CT) Idential) of Page 8 of 22 y Riding

1		resources-necessary to meet the Company's electric load requirements and
2		provide day-to-day operational flexibility for unplanned generation outages.
3		PSE's CTs are often called upon to dispatch intra-day and on weekends to support
4		and respond to sudden, unexpected changes in customer demand or power
5		generation, particularly changes in wind generation. During these times, there is
6		no real-time natural gas market, and finding natural gas to operate PSE's CTs is
7		very difficult. If natural gas can be found in the market during these times, it
8		usually comes at a premium to the standard daily product being traded.
9		Conversely, if a CT must reduce output or be taken off-line during these times,
10		PSE must find a market to sell the gas. If PSE does find such a market, the gas is
11		usually sold at a discount to the daily product. Having natural gas storage allows
12		the power portfolio the ability, on a real time basis, to withdraw gas from storage
13		to meet its needs or inject gas into storage when it has an excess of gas.
	0	
14	Q.	What plans has the Company made for gas in storage for power generation
15		after the Jackson Prairie assignment ends in March 2010?
16	A.	As mentioned above, the assignment could be extended, in part or in whole, if it is
17		determined then that the Core Gas Book does not require all of the resource to
18		meet core market demand. In addition, PSE recently took assignment of a small
19		Jackson Prairie storage contract through an asset management arrangement that
20		will reside in the Power Book, involving 6,704 MMBtu per day of storage
	Prefil (Conf	ed Direct Testimony Exhibit No(RCR-1CT) ridential) of Page 9 of 22

(Confidential) of R. Clay Riding

deliverability and 140,622 MMBtu of storage capacity; the assignment has an initial term of three years, but continues year-to-year thereafter, subject to timely termination notice by either party.

4 PSE will begin to evaluate in 2010 further expansion potential at Jackson Prairie. 5 PSE's preliminary view is that the primary zone in use has reached its practical 6 potential; however, there are other zones in the formation that may have different 7 operating characteristics that have not been overly appealing for core gas market 8 operations (i.e., injecting gas in the summer and withdrawing gas in the winter), 9 but could be appealing for reliability purposes in managing gas-fired power 10 generation. One such zone under consideration for expansion requires gas to be 11 re-injected more quickly than is required in current operations in the primary 12 zone. Although this storage may not be suitable to take full advantage of winter-13 summer price differentials, it could be used to respond quickly to intra-day balancing needs, which is the primary benefit storage provides for gas-fired 14 15 power generation operations. Therefore, it is expected that the next expansion 16 undertaken at Jackson Prairie, once proven physically and economically feasible, will be for the benefit of the Power Book. 17

In addition to evaluating expansion potential at Jackson Prairie, PSE is in
 discussions with various parties regarding possible assignment of Jackson Prairie
 storage service. Furthermore, PSE will consider participation in Northwest
 Natural's anticipated expansion of the Mist underground storage facility when

Prefiled Direct Testimony (Confidential) of R. Clay Riding

1

2

1		that project goes forward. Finally, PSE has had discussions concerning other
2		regional storage resources, including Aitken Creek in British Columbia, AECO in
3		Alberta, and Clay Basin in Utah. AECO and Clay Basin will require a cross-
4		Cascades and/or Rockies pipeline project to go forward if they are to be of benefit
5		to the Power Book.
6 7		IV. OVERVIEW OF THE REGION'S NATURAL GAS SYSTEM AND PSE'S NATURAL GAS RESOURCES
8	Q.	Please provide an overview of the region's natural gas system.
9	A.	Pacific Northwest natural gas markets are served by three pipeline companies:
10		NWP, TransCanada GTN ("GTN") and Spectra Energy BC Pipeline
11		("Westcoast"). Upstream of these pipelines are various other pipelines (e.g.,
12		TransCanada's Foothills and Alberta systems), gathering systems and processing
13		plants that facilitate delivery of gas to markets.
14		Additionally, the Pacific Northwest has two underground storage facilities
15		Jackson Prairie and Mistand several LNG peaking facilities. Please see Exhibit
16		No. (RCR-3) for a schematic of the region's natural gas infrastructure.
17		These pipelines provide Pacific Northwest markets with access to supplies
18		produced in the Rocky Mountains and the Western Canadian Sedimentary Basin
19		(in both Alberta and British Columbia), and access to supply-area underground
	Prefile (Conf R. Cla	ed Direct Testimony idential) of Page 11 of 22 ay Riding

storage facilities (Clay Basin in Utah, AECO in Alberta and Aitken Creek in British Columbia).

3 Q. Please describe PSE's natural gas transportation and storage resources.

PSE has entered into various firm transportation and storage service contracts that 4 5 allow PSE to serve its firm customers under winter, peak-day conditions, and to 6 provide reliable natural gas supply for its gas-fired power generating facilities. 7 PSE has access to all three supply basins (Rockies, Alberta and British Columbia) 8 through resources it has acquired for the Core Gas Book, and access to British 9 Columbia and Rockies supply basins through resources it has acquired for the 10 Power Book. PSE purchases sufficient firm natural gas resources to meet 11 projected peak-day requirements for both the gas and power portfolios, taking 12 into account on-system peaking and alternative fuel resources. Except for two 13 small peak-shaving facilities (the Swarr propane air and Gig Harbor LNG facilities), deliveries to all of PSE's core gas markets require NWP transportation 14 15 services, as do all but two gas-fired generating facilities (Whitehorn and Sumas). 16 However, three gas-fired generating sites (Whitehorn, Fredonia and Frederickson) 17 can burn fuel oil and have fuel oil on-site, so firm pipeline capacity is not required 18 for those sites; instead, they rely on non-firm transportation arrangements 19 purchased from the Core Gas Book at market sensitive rates or purchased from 20 other parties, including NWP.

Prefiled Direct Testimony (Confidential) of R. Clay Riding

1

2

Exhibit No. (RCR-1CT) Page 12 of 22

Q. What are the projected peak-day demand requirements for the Core Gas Book and Power Book?

3 Projected peak-day demand for the Core Gas Book requires NWP deliveries of A. 4 approximately 946,000 MMBtu per day for the 2009-2010 heating season. The 5 Power Book requires peak-day, baseload natural gas deliveries of approximately 6 140,000 MMBtu per day for its current combined-cycle CT fleet that is served 7 through NWP. If all of the combined-cycle generating facilities are generating 8 additional electricity through the use of duct firing, the peak-day requirement 9 grows to approximately 159,000 MMBtu per day. As noted above, PSE's simple-10 cycle CTs can operate on fuel oil and adequate oil storage is maintained on-site to 11 meet peak-day load requirements; however, if all of PSE generating facilities are 12 operating on natural gas, the generating facilities served through NWP can 13 consume as much as 290,000 MMBtu per day. In addition, PSE generating 14 facilities that have direct access to Westcoast, and do not require NWP service, 15 can consume as much as 71,000 MMBtu per day.

Q. What is PSE's peak-day firm delivery capability for the Core Gas Book and Power Book?

A. The table below illustrates PSE's peak-day firm delivery capability, based on its
 NWP-based transportation capacity holdings from all three supply basins and
 market area storage facilities:

Prefiled Direct Testimony (Confidential) of R. Clay Riding

1

2

Exhibit No. (RCR-1CT) Page 13 of 22

From All Sources	Ci	Current Capacity (MDth/day)*					
Gas Source and Route	Core Gas B	Core Gas Book Power			Tota	al	
British Columbia	260	26%	119	62%	379	32%	
Alberta	76	8%	-	0%	76	6%	
U.S. Rockies	184	18%	17	8%	201	179	
Jackson Prairie	404	41%	57	30%	461	39%	
Plymouth LNG	70	7%	-	0%	70	69	
Total Pipeline Delivery Capabil	ity 994		193		1,187		
*MDth is equal to 1,000 MMBtu							
n addition to the capacities on	NWP detailed ab	ove, P	SE holds	the fol	lowing		
vipeline transportation resource	es on certain upstr	ream p	ipelines:				
Upstream Pipeline	Core Gas Book	Pow	er Book	То	tals		
	(MDth/day)*	(MD	th/day)*	(MDth	n/day)*		
Westcoast Energy	97		47	1	44		
GTN	90			ç	90		
Foothills	79			7	79		
Nova	80			8	30		
*MDth is equal to 1,000 MMBtu							
The Core Gas Book resources r under long-term contracts that c	eflected in the pr contain rights of f	ecedin first re	g tables a fusal. So	are own me of t	ied or he he Powe	ld r	
Book resources are held under t	temporary assign	ments	(51,000]	MMBtu	ı per day	of	
pipeline capacity and all of the storage capacity), primarily with a remaining term							
oppeline capacity and all of the	storage expansion,				U		
of three years. Such mid-term a	arrangements hav	ve beer	negotiat	ed to p	rovide a		
of three years. Such mid-term a bridge to more permanent solut	arrangements hav	ve beer	n negotiat sed belov	ed to p	rovide a		

1	A.	PSE has supply requirements related to NWP transportation capacity of
2		approximately 260,000 MMBtu per day at Sumas for the Core Gas Book and
3		119,000 MMBtu per day for the Power Book. In addition, the Power Book has
4		additional demand of 25,000 MMBtu per day at Sumas to supply the Sumas
5		Generating Station. The Power Book also has Sumas-sourced, non-firm, simple-
6		cycle CT demands approaching 180,000 MMBtu per day. PSE's long-term
7		strategy is to supply approximately 50% of those Sumas requirements from
8		Northern British Columbia supply areas via Westcoast pipeline capacity. PSE has
9		been successful in procuring Westcoast capacity at a discount to maximum tariff
10		rates. The most recent example is the transaction under which PSE took
11		permanent assignment of approximately 25,000 MMBtu per day of Westcoast T-
12		South pipeline capacity through October 2018 from FB Energy, and FB Energy
13		made a lump-sum payment to PSE to effect the discount.
14		PSE procured this capacity for the Power Book to work towards the 50%
15		Northern British Columbia supply strategy. Prior to the acquisition, the Core Gas
16		Book ratio for Northern British Columbia to Sumas was 37%, while the Power
17		Book's ratio was 15%. The transaction raised the Power Book's ratio to 32%.
18		PSE will continue to look for opportunistic acquisitions of stranded or distressed
19		resources, such as this acquisition from FB Energy.

1

2

V. MARKET FORCES AFFECTING GAS SUPPLY

Q. Please describe the market forces affecting natural gas supply.

3 Conventional natural gas supplies in North America have been in decline over the A. 4 last several years and are projected to continue to decline; the only region with 5 significant growth projections during that period was the U.S. Rockies. Given the 6 state of decline, many experts predicted that LNG imports would be required to 7 replace declining production as well as serve growing demand, including the 8 burgeoning gas-fired power generation market. Several LNG import facilities 9 were built and many more are under development. In 2007 and 2008, natural gas 10 prices increased dramatically on the global market, as LNG prices followed skyrocketing oil prices. Those high prices had a tremendous effect on the North 11 12 American gas market as well. First, high international prices dramatically cut 13 LNG imports into the U.S. as suppliers chased higher value markets. Second, the 14 high prices tempered demand across all sectors. However, high cash prices and 15 promise of high future prices enticed producers to increase exploration and 16 development expenditures dramatically, and enabled development of 17 unconventional fields and formations that were previously thought to be 18 uneconomic.

19 Resulting discoveries and developments have radically changed the North
20 American natural gas supply landscape. Technology advances enabled producers

Prefiled Direct Testimony (Confidential) of R. Clay Riding Exhibit No. (RCR-1CT) Page 16 of 22

1	to successfully develop unconventional production such as shale formations and
2	increased recoverable reserve projections dramatically. In recent years,
3	unconventional production made up less than 40% of North American production;
4	by 2020, it is projected that unconventional production will make up 75% of total
5	North American production, with most of that growth in shale formations. Total
6	North American production is expected to grow from current production levels of
7	50 billion cubic feet ("Bcf") per day to 60 Bcf per day in 2020.
8	Promising Canadian shale plays are also under development; however, Canadian
9	exploration and development costs are currently much more expensive than costs
10	in the U.S. due to the lack of infrastructure in the fields to be developed and the
11	severe conditions in northern British Columbia and Alberta. Further, Canadian
12	gas available for export is expected to decline over time as demand in Canada
13	grows, especially for use in oil production.
14	Global LNG supplies are also expected to increase substantially in coming years,
15	with as much as 7 Bcf per day coming on-line in the next two years, which may
16	lead to near-term supply surpluses; however, LNG is generally expected to play
17	only a minor role in the North American supply picture, comprising only 5%-10%
18	of the market. North American markets will be able to take advantage of surplus
19	LNG supplies due to the continent's tremendous storage capacity, which is much
20	greater than any other continent. However, baseload deliveries into North
21	America are less certain.

Exhibit No. (RCR-1CT) Page 17 of 22

Q. Do you anticipate the development of LNG import terminals in the Pacific Northwest?

3	А.	No. It will be very difficult to develop import terminals in the Pacific Northwest,
4		partly due to the project development climate, but primarily due to the relatively
5		small Pacific Northwest market. The region cannot readily absorb the 1 Bcf per
6		day capacity levels generally required to economically justify a terminal, so
7		terminals must have access to California markets. Pipeline projects could be
8		developed, but are expensive for the anticipated load factor. It is generally
9		believed that additional import capacity could be more readily and efficiently
10		developed in Mexico, with easier access to much larger Southwest U.S. markets;
11		it would make even more sense that they be developed in California, but
12		California will likely not embrace such a project within its state.
13	Q.	How will the growing demand in the Pacific Northwest be served?
14	А.	Given the difficulty developing an LNG terminal in this region, Pacific Northwest
15		growth will be served by new and/or expanded pipeline projects from the U.S.
16		Rockies and/or British Columbia.
17		As discussed earlier, there is strong natural gas supply growth throughout North
18		America. Natural gas supplies are readily available, but pipeline capacity must
19		eventually be built to accommodate continued growth, especially in the natural

gas-fired power generation sector. The existing infrastructure meets current

Prefiled Direct Testimony (Confidential) of R. Clay Riding

20

1

regional requirements, but data compiled by the Northwest Gas Association suggests that design-day Pacific Northwest demand is fast approaching system capacity.

Q. Does PSE expect to obtain additional pipeline capacity from Canada or the Rockies?

A. Yes, PSE has several options available that will provide the Company additional
pipeline capacity. PSE will be participating in a pipeline expansion project within
the next two years in order to position itself to provide reliable service to its
customers in the long-term. PSE's preferred strategy is to maintain a balanced
U.S.-Canadian supply basin portfolio, which will require the next tranche of
capacity to be from the Rockies. In the interim, PSE has acquired sufficient midterm resources to meet its needs until a pipeline expansion is completed.

13 Two Rockies projects are still under development, but PSE expects only one 14 westbound pipeline project to be successfully developed. The Ruby pipeline is 15 sufficiently subscribed to move forward, has made its Federal Energy Regulatory Commission application and is projected to be in service in mid 2011. The Ruby 16 17 project will deliver 1.2 Bcf to 1.5 Bcf per day of Western Wyoming natural gas to 18 Malin, Oregon, located on the California-Oregon border. Pacific Northwest 19 markets have access to such Malin deliveries through GTN, whether they 20 subscribe to Ruby capacity or not; however, new pipeline capacity must be built

Prefiled Direct Testimony (Confidential) of R. Clay Riding

1

2

3

4

5

Exhibit No. (RCR-1CT) Page 19 of 22

1		from GTN, to redeliver the natural gas to I-5 corridor markets, through an
2		expansion of NWP or through the addition of a new cross-Cascades pipeline.
3		PSE is currently working with NWP to facilitate delivery of additional gas into its
4		market, with a primary focus on a cross-Cascades project. PSE continues to
5		analyze its options and follow project developments, especially with respect to the
6		Ruby pipeline. PSE is taking a measured approach and is working to develop a
7		sound strategy. PSE can be deliberate in weighing the alternatives because it has
8		positioned its portfolio with mid-term resources to meet current requirements.
9		PSE expects to finalize its strategy during 2009 and make project commitments in
10		the third or fourth quarter of 2009.
11		At this juncture, the Ruby project appears to be moving forward, so PSE is
12		weighing its options with respect to Ruby. These options are to either purchase
13		capacity on Ruby or purchase gas at Malin or Stanfield, Oregon. However, PSE
14		will continue to monitor developments in the competing Sunstone pipeline project
15		in the event that the project can be successfully developed. The Sunstone project
16		would deliver natural gas from Western Wyoming to Stanfield, Oregon.
17		Concurrently, PSE will be working with NWP to develop a project that will
18		deliver natural gas across the Cascades to the I-5 corridor to serve PSE
19		requirements.
20	Q.	Is PSE considering a pipeline capacity expansion from British Columbia?

1	A.	PSE has explored expansion from British Columbia. Such an expansion would be
2		less complicated than a Rockies pipeline because it could accommodate a smaller
3		project and would largely be accomplished through additional compression (i.e.,
4		it would require very little additional pipe). Given the smaller project size, PSE
5		would not need other subscribers and could arrange for an NWP expansion from
6		British Columbia, if a cross-Cascades project proves unfeasible.
7		Although expansion from British Columbia will be less expensive when viewed
8		solely through the lens of fixed costs, the region would be increasingly subject to
9		Canadian market conditions. As mentioned previously, northern British
10		Columbia shale development looks promising, but such development is expected
11		to require market prices of approximately \$7 per MMBtu, compared to \$4.00-
12		\$5.50 per MMBtu or less in the U.S. Consequently, current pricing parameters
13		make the prospect of large-scale development uncertain. Furthermore, producers
14		will primarily target oil sands, mid-continent and east coast markets, so most of
15		the production will strive to move east out of British Columbia. Since 2000, these
16		factors have led to much higher prices in Canada than in the Rockies. Daily
17		Sumas prices exceeded Rockies prices by \$1.66 per MMBtu in calendar year
18		2008. If projects are not developed from the U.S. Rockies, including a cross-
19		Cascades line, those significant price differentials are expected to continue.
20		As indicated previously, PSE's current supply basin is heavily weighted to
21		Western Canada (69%), and additional expansion from Sumas would serve to

Exhibit No. (RCR-1CT) Page 21 of 22

magnify dependency on Canadian supply. If all currently projected required 1 2 additions were to originate from Sumas, dependency would increase to nearly 3 80%. Therefore, PSE's goal is to participate in the development of pipeline projects that can access Rockies supplies. However, success will be dependent on 4 5 achieving sufficient subscription levels in the region to support such expansions. 6 VI. CONCLUSION 7 Does this conclude your direct testimony? Q. 8 Yes, it does. A.